WO2024084730A1 - Moisture-curable polyurethane hot-melt resin composition, cured product, laminate, and skin material - Google Patents

Moisture-curable polyurethane hot-melt resin composition, cured product, laminate, and skin material Download PDF

Info

Publication number
WO2024084730A1
WO2024084730A1 PCT/JP2023/019461 JP2023019461W WO2024084730A1 WO 2024084730 A1 WO2024084730 A1 WO 2024084730A1 JP 2023019461 W JP2023019461 W JP 2023019461W WO 2024084730 A1 WO2024084730 A1 WO 2024084730A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
resin composition
melt resin
polyester polyol
mass
Prior art date
Application number
PCT/JP2023/019461
Other languages
French (fr)
Japanese (ja)
Inventor
善典 金川
宏之 千々和
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024084730A1 publication Critical patent/WO2024084730A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain

Definitions

  • the present invention relates to a moisture-curable polyurethane hot melt resin composition, a cured product, a laminate, and a skin material.
  • Laminated sheets such as synthetic leather and artificial leather are used on the surface of furniture and vehicle seats, and are generally provided with a buffer layer such as urethane foam (PUF) to provide cushioning properties (see, for example, Patent Document 1).
  • a buffer layer such as urethane foam (PUF) to provide cushioning properties
  • synthetic leather and PUF/PUF and mesh fabric for providing slip during sewing are bonded together by frame lamination (flame welding), where the PUF is melted with a flame and bonded to the surface surface/back surface base material of the synthetic leather, etc.
  • the above-mentioned flame lamination method uses flames to bond the material, which generates hydrogen cyanide (HCN) during production, causing problems with the working environment.
  • HCN hydrogen cyanide
  • water-based and solvent-based adhesives are used, but they require a drying process, which raises concerns about reduced production efficiency, and if the material is not dried sufficiently, the adhesive may seep out onto the surface of the backing fabric (adhesive penetration), causing blocking when the material is wound up.
  • the problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent initial strength, mechanical strength, and adhesion, and can suppress punch-through.
  • the present invention provides a moisture-curable polyurethane hot melt resin composition that contains an aromatic polyester polyol (a1) made from a compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule, an aromatic polyester polyol (a2) other than (a1), an aliphatic polyester polyol (a3), a crystalline polyester polyol (a4) other than (a3), and a polyether polyol (a5), and a urethane prepolymer (i) having an isocyanate group that is a reaction product of a polyisocyanate (B).
  • aromatic polyester polyol a1 made from a compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule
  • an aromatic polyester polyol (a2) other than (a1) an aliphatic polyester polyol (a3), a crystalline polyester polyol (a4) other than (
  • the present invention also provides a cured product formed from the moisture-curable polyurethane hot melt resin composition.
  • the present invention also provides a laminate having a polyurethane foam, a layer of the cured product, and a base fabric, and a skin material.
  • the moisture-curable polyurethane hot melt resin composition of the present invention has excellent initial strength, mechanical strength, and adhesion, and can suppress punch-through. Furthermore, by using the moisture-curable polyurethane hot melt resin composition, the conventional frame lamination is no longer necessary, which contributes to improving the work environment.
  • the moisture-curable polyurethane hot melt resin composition of the present invention contains aromatic polyester polyol (a1) made from compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule, aromatic polyester polyol (a2) other than (a1), aliphatic polyester polyol (a3), crystalline polyester polyol (a4) other than (a3), and polyether polyol (a5), polyol (A) containing polyether polyol, and urethane prepolymer (i) having an isocyanate group, which is a reaction product of polyisocyanate (B).
  • aromatic polyester polyol (a1) made from compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule
  • aromatic polyester polyol (a2) other than (a1) aliphatic polyester polyol (a3), crystalline polyester polyol (a4) other than (a3)
  • the urethane prepolymer (i) is a reaction product of a specific polyol (A) and a polyisocyanate (B).
  • the polyol (A) contains the above-mentioned (a1) to (a5) as essential components.
  • the raw material be a compound (x) that has a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule.
  • the molecular weight of the compound (x) is a value calculated from the chemical formula.
  • compound (x) for example, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,2-butanediol, 1,3-butanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-1,3-hexanediol, neopentyl glycol, 2-isopropyl-1,4-butanediol, 2,4-dimethyl-1,5-pentanediol, 2-ethyl-1,6-hexanediol, 3,5-heptanediol, 2-methyl-1,8-octanediol,
  • the amount of compound (x) used is preferably in the range of 0.1 to 30% by mass, more preferably 0.2 to 20% by mass, and even more preferably 0.3 to 15% by mass, based on the total mass of polyol (A) and polyisocyanate (B), in order to maintain an excellent punch-through suppression effect while having a suitable viscosity and obtaining good flexibility of the cured film.
  • aromatic polyester polyol (a1) examples include a reaction product of a compound having two or more hydroxyl groups, including the compound (x), and a polybasic acid.
  • examples of compounds having two or more hydroxyl groups include aliphatic compounds such as ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, diethylene glycol, triethylene glycol, and tetraethylene glycol; alicyclic compounds such as cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, and alkylene oxide adducts thereof; and aromatic compounds such as bisphenol A, bisphenol F, and alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) adducts thereof. These compounds may be used alone or in combination
  • polybasic acid examples include phthalic acid, isophthalic acid, terephthalic acid, and phthalic anhydride.
  • polybasic acids examples include aromatic polybasic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, and 1,12-dodecanedicarboxylic acid; succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosadioic acid, citraconic acid, itaconic acid, citraconic anhydride, and itaconic anhydride.
  • polybasic acids may be used alone or in combination of two or more.
  • aromatic polybasic acids are preferred, and phthalic acid (one or more compounds selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, and phthalic anhydride) is more preferred, since they provide even better break-through suppression effect, adhesion, reactivity, and flexibility.
  • the number average molecular weight of the aromatic polyester polyol (a1) is preferably 700 to 10,000, more preferably 800 to 5,000, in order to obtain a more excellent punch-through suppression effect and flexibility.
  • the number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
  • the content of the aromatic polyester polyol (a1) in the polyol (A) is preferably 10 to 40% by mass, and more preferably 15 to 30% by mass, in order to obtain a more excellent effect of suppressing penetration and flexibility.
  • the aromatic polyester polyol (a2) is other than the aromatic polyester polyol (a1) (not made from the compound (x)) and is intended to extend the bonding time and provide excellent handling properties.
  • the raw material for the aromatic polyester polyol (a2) may be a compound having two or more hydroxyl groups or a polybasic acid that can be used as a raw material for the aromatic polyester polyol (a1).
  • the compound having two or more hydroxyl groups is preferably an aliphatic compound, and the polybasic acid preferably includes phthalic acid.
  • the number average molecular weight of the aromatic polyester polyol (a2) is preferably 700 to 10,000, more preferably 800 to 5,000.
  • the number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
  • the content of the aromatic polyester polyol (a2) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
  • the aliphatic polyester polyol (a3) adjusts the solidification time, and may be a reaction product of an aliphatic compound having two or more hydroxyl groups and an aliphatic polybasic acid.
  • the compound (x) can be used; an aliphatic compound such as ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, diethylene glycol, triethylene glycol, or tetraethylene glycol.
  • These compounds may be used alone or in combination of two or more. Among these, it is preferable to use the compound (x) in combination with the aliphatic compound.
  • succinic acid As the aliphatic polybasic acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosadionic acid, citraconic acid, itaconic acid, citraconic anhydride, itaconic anhydride, etc. can be used.
  • These polybasic acids may be used alone or in combination of two or more.
  • the number average molecular weight of the aliphatic polyester polyol (a3) is preferably 700 to 50,000, more preferably 800 to 7,000.
  • the number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
  • the content of the aliphatic polyester polyol (a3) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
  • the crystalline polyester polyol (a4) is for obtaining excellent adhesion and is other than the aliphatic polyester polyol (a3), and may be, for example, a reaction product of a compound having a hydroxyl group and a polybasic acid.
  • "crystalline" refers to a peak of heat of crystallization or heat of fusion that can be confirmed in a DSC (differential scanning calorimeter) measurement according to JIS K7121:2012.
  • Examples of the compound having a hydroxyl group include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, trimethylolpropane, trimethylolethane, and glycerin. These compounds may be used alone or in combination of two or more.
  • polybasic acid for example, oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, etc. can be used. These compounds can be used alone or in combination of two or more.
  • the number average molecular weight of the crystalline polyester polyol (a4) is preferably 600 to 50,000, and more preferably 1,000 to 10,000, in order to obtain even better adhesive properties.
  • the number average molecular weight of the crystalline polyester polyol (a4) is a value measured by gel permeation chromatography (GPC).
  • the content of the crystalline polyester polyol (a4) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
  • the polyether polyol (a5) is used to achieve low viscosity and adjust the lamination time, and may be, for example, a polyalkylene glycol such as polyethylene glycol, polypropylene glycol, or polytetramethylene glycol; or a derivative of the polyalkylene glycol (for example, a derivative of alkyl-substituted tetrahydrofuran, or a derivative of neopentyl glycol).
  • These polyether polyols may be used alone or in combination of two or more kinds. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred.
  • the number average molecular weight of the polyether polyol (a5) is preferably 300 to 10,000, and more preferably 350 to 4,000.
  • the number average molecular weight of the polyether polyol (a5) is a value measured by gel permeation chromatography (GPC).
  • the content of the polyether polyol (a5) in the polyol (A) is preferably 10 to 50 mass %, and more preferably 15 to 40 mass %.
  • the polyol (A) contains the above-mentioned (a1) to (a5) as essential components, but other polyols may be used in combination as necessary.
  • polyester polyols other than (a1) to (a4) acrylic polyols, polycarbonate polyols, polybutadiene polyols, etc.
  • acrylic polyols polycarbonate polyols
  • polybutadiene polyols etc.
  • These polyols may be used alone or in combination of two or more kinds.
  • polyisocyanate (B) for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, xylylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, aromatic polyisocyanates are preferred from the viewpoint of mechanical strength, and diphenylmethane diisocyanate is more preferred.
  • the urethane prepolymer (i) can be produced, for example, by adding a mixture of the polyol (A) dropwise to a reaction vessel containing the polyisocyanate (B), heating the mixture, and reacting the mixture under conditions in which the isocyanate groups of the polyisocyanate (B) are in excess of the hydroxyl groups of the polyol (A).
  • the equivalent ratio (isocyanate group/hydroxyl group) of the isocyanate group in the polyisocyanate (B) to the hydroxyl group in the polyol (A) is preferably 1.5 to 5, more preferably 1.6 to 2.5.
  • the isocyanate group content (hereinafter abbreviated as "NCO%") of the urethane prepolymer (i) is preferably 1.0 to 5.0 mass%, and more preferably 2.3 to 4.8 mass%.
  • the NCO% of the urethane prepolymer (i) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
  • the moisture-curable polyurethane hot melt resin composition of the present invention contains the urethane prepolymer (i) as an essential component, but may contain other additives as necessary.
  • the other additives that can be used include, for example, curing catalysts, antioxidants, tackifiers, plasticizers, stabilizers, flame retardants, fillers, dyes, pigments, fluorescent brighteners, silane coupling agents, waxes, thermoplastic resins, etc. These additives may be used alone or in combination of two or more.
  • the laminate of the present invention has a polyurethane foam, a cured layer of the moisture-curable polyurethane hot melt resin composition, and a base fabric.
  • the polyurethane foam provides shock-absorbing properties, cushioning properties, breathability, etc., and any known polyurethane foam can be used.
  • the thickness of the polyurethane foam can be, for example, in the range of 1.5 to 20 mm.
  • the base fabric is laminated with the polyurethane foam to impart slipperiness and improve workability when it is set into a molded product such as a car seat
  • examples of such base fabric include nonwoven fabrics, woven fabrics, and knitted fabrics made from polyester fibers, polyethylene fibers, nylon fibers, acrylic fibers, polyurethane fibers, acetate fibers, rayon fibers, polylactic acid fibers, cotton, hemp, silk, wool, glass fibers, carbon fibers, and blends thereof.
  • the moisture-curing polyurethane hot melt resin composition by using the moisture-curing polyurethane hot melt resin composition, excellent punch-through suppression effects can be obtained even when a mesh fabric base fabric is used.
  • the method for producing the laminate includes, for example, a method of applying the moisture-curable polyurethane hot melt resin composition onto the polyurethane foam.
  • the method for applying the moisture-curable polyurethane hot melt resin composition include coater methods such as gravure coater, roll coater, spray coater, T-die coater, knife coater, and comma coater; precision methods such as dispenser, inkjet printing, screen printing, and offset printing; nozzle application; spray application; and film lamination methods.
  • coater methods such as gravure coater, roll coater, spray coater, T-die coater, knife coater, and comma coater
  • precision methods such as dispenser, inkjet printing, screen printing, and offset printing
  • nozzle application nozzle application
  • spray application and film lamination methods.
  • intermittent application is preferred because it provides even better mechanical strength, adhesive strength, and punch-through suppression effects.
  • the moisture-curable polyurethane hot melt resin composition may be melted at 70 to 120°C.
  • the coating amount of the moisture-curable polyurethane hot-melt resin composition is, for example, 5 to 35 g/ m2 .
  • the moisture-curable polyurethane hot melt resin composition After the moisture-curable polyurethane hot melt resin composition has been applied, it may be cooled to increase the rate at which the moisture-curable polyurethane hot melt resin composition solidifies.
  • a release paper or carrier sheet may be placed on the cured product. When using it as a skin material, it is preferable to peel it off.
  • the thickness of the cured product of the moisture-curable polyurethane hot melt resin composition can be, for example, in the range of 5 to 200 ⁇ m.
  • the laminate of the present invention has the above-mentioned effects and is therefore particularly suitable for use as a skin material.
  • the skin material may be configured, for example, by laminating the base fabric, a cured layer of the moisture-curable polyurethane hot melt resin composition, the polyurethane foam, and the skin layer.
  • a base fabric may be provided between the polyurethane foam and the skin layer, and these may be bonded using a known adhesive.
  • known adhesives include acrylic adhesives, urethane adhesives, and moisture-curing polyurethane hot melt adhesives.
  • the skin layer can be formed from known materials, such as solvent-based polyurethane, water-based polyurethane, polyvinyl chloride, thermoplastic urethane (TPU), thermoplastic polyolefin (TPO), thermoplastic polyester (TPE), etc.
  • solvent-based polyurethane water-based polyurethane
  • polyvinyl chloride polyvinyl chloride
  • thermoplastic urethane TPU
  • thermoplastic polyolefin TPO
  • TPE thermoplastic polyester
  • the skin material can be used to cover, for example, vehicle seats.
  • Example 2 Preparation of moisture-curable polyurethane hot melt resin composition (2) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 25 parts by mass of aromatic PEs (a1-1), 10 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 10 parts by mass of crystalline PEs (a4-1), 10 parts by mass of PEt (a5-1), and 15 parts by mass of polyether polyol (polypropylene glycol, number average molecular weight: 400, hereinafter abbreviated as "PEt (a5-2)"). The mixture was mixed and heated at 70 ° C.
  • Example 3 Preparation of moisture-curable polyurethane hot melt resin composition (3)
  • a1-1 aromatic PEs
  • a2-1 15 parts by mass of aromatic PEs
  • 10 parts by mass of aliphatic PEs a3-1
  • 15 parts by mass of crystalline PEs a4-1
  • polyether polyol polytetramethylene glycol, number average molecular weight: 2,000, hereinafter abbreviated as "PEt (a5-3)”
  • Example 4 Preparation of moisture-curable polyurethane hot melt resin composition (4)
  • a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 15 parts by mass of aromatic PEs (a1-1), 35 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 15 parts by mass of crystalline PEs (a4-1), and 15 parts by mass of PEt (a5-1), mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less.
  • the flask was cooled to 90 ° C., 25 parts by mass of MDI melted at 70 ° C. was added, and the isocyanate group content was allowed to react at 110 ° C. for about 3 hours under a nitrogen atmosphere until it became constant, NCO%; 4.0% by mass of hot melt urethane prepolymer (i-4) was obtained, and the moisture-curable polyurethane hot melt resin composition (4) was obtained.
  • Example 5 Preparation of moisture-curable polyurethane hot melt resin composition (5)
  • a1-1 35 parts by mass of aromatic PEs
  • a2-1 15 parts by mass of aromatic PEs
  • 10 parts by mass of aliphatic polyester polyol neopentyl glycol, diethylene glycol, hexanediol, and adipic acid reaction product, number average molecular weight: 2,000, hereinafter abbreviated as "aliphatic PEs (a3-2)").
  • Example 6 Preparation of moisture-curable polyurethane hot melt resin composition (6)
  • a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 20 parts by mass of aromatic PEs (a1-1), 10 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 10 parts by mass of crystalline PEs (a4-1), and 40 parts by mass of PEt (a5-1), mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less.
  • the flask was cooled to 90 ° C., 26 parts by mass of MDI melted at 70 ° C. was added, and the isocyanate group content was allowed to react at 110 ° C. for about 3 hours under a nitrogen atmosphere until it became constant, NCO%; 4.0% by mass of hot melt urethane prepolymer (i-6) was obtained, and the moisture-curable polyurethane hot melt resin composition (6) was obtained.
  • PEt 50 parts by mass of PEt (a5-1) were added, mixed and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less.
  • the flask was cooled to 90°C, 24 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (iR-1) with an NCO% of 3.2% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (R1).
  • the number average molecular weights of the polyols used in the Synthesis Examples and Comparative Synthesis Examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
  • Measurement device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were used, connected in series. "TSKgel G5000” (7.8mm I.D. x 30cm) x 1 "TSKgel G4000” (7.8mm I.D. x 30cm) x 1 "TSKgel G3000” (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D.
  • the moisture-curable polyurethane hot melt resin composition of the present invention was found to have excellent mechanical strength, initial strength, and adhesion, and to be able to suppress punch-through.
  • Comparative Example 1 which does not use aromatic polyester polyol (a2) or aliphatic polyester polyol (a3), had low initial strength and showed breakthrough.
  • Comparative Example 2 is an embodiment in which aromatic polyester polyols (a1), (a2) and aliphatic polyester polyol (a3) are not used, but the initial strength was lower than that of Comparative Example 1, and breakthrough occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention provides a moisture-curable polyurethane hot-melt resin composition characterized by containing a urethane prepolymer (i) having an isocyanate group that is the reaction product of a polyisocyanate (B) and a polyol (A) containing an aromatic polyester polyol (a1) that has a molecular weight of less than 500, has a branched structure, and has a compound (x) having two to four hydroxyl groups per molecule as a raw material, an aromatic polyester polyol (a2) other than the (a1), an aliphatic polyester polyol (a3), a crystalline polyester polyol (a4) other than the (a3), and a polyether polyol (a5). The present invention also provides a cured product characterized by being formed from the moisture-curable polyurethane hot-melt resin composition.

Description

湿気硬化型ポリウレタンホットメルト樹脂組成物、硬化物、積層体、及び、表皮材Moisture-curable polyurethane hot melt resin composition, cured product, laminate, and skin material
 本発明は、湿気硬化型ポリウレタンホットメルト樹脂組成物、硬化物、積層体、及び、表皮材に関する。 The present invention relates to a moisture-curable polyurethane hot melt resin composition, a cured product, a laminate, and a skin material.
合成皮革や人工皮革などの積層シートは、家具・車輌用シートにの表皮面に使用され、クッション性を発現するために一般的にウレタンフォーム(PUF)などの緩衝層が設けられる(例えば、特許文献1を参照。)。従来より、合成皮革とPUF/PUFと縫製時の滑り付与のためのメッシュ生地との貼り合わせにはフレームラミネート(火炎溶着)にて、PUFを火炎で溶融して合成皮革等の表皮面/裏面基材と貼り合わせている。 Laminated sheets such as synthetic leather and artificial leather are used on the surface of furniture and vehicle seats, and are generally provided with a buffer layer such as urethane foam (PUF) to provide cushioning properties (see, for example, Patent Document 1). Conventionally, synthetic leather and PUF/PUF and mesh fabric for providing slip during sewing are bonded together by frame lamination (flame welding), where the PUF is melted with a flame and bonded to the surface surface/back surface base material of the synthetic leather, etc.
 しかしながら、上記フレームラミ法による貼り合わせでは、火炎を用いるために製造時にはシアン化水素(HCN)が発生して作業環境の悪化が問題となっている。代替として水系接着剤や溶剤系接着剤を使用しているが、乾燥工程が必要になるため生産効率の低下が懸念される上、乾燥不十分な場合には裏基布表面まで接着剤が染み出し(接着剤の突き抜け)、巻取り時にブロッキングを生じることが考えられる。 However, the above-mentioned flame lamination method uses flames to bond the material, which generates hydrogen cyanide (HCN) during production, causing problems with the working environment. As an alternative, water-based and solvent-based adhesives are used, but they require a drying process, which raises concerns about reduced production efficiency, and if the material is not dried sufficiently, the adhesive may seep out onto the surface of the backing fabric (adhesive penetration), causing blocking when the material is wound up.
特開2017-136735号公報JP 2017-136735 A
 本発明が解決しようとする課題は、初期強度、機械的強度、及び接着性に優れ、かつ、突き抜けを抑制できる湿気硬化型ポリウレタンホットメルト樹脂組成物を提供することである。 The problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent initial strength, mechanical strength, and adhesion, and can suppress punch-through.
 本発明は、分子量が500未満であり、分岐構造を有し、1分子中に2~4個の水酸基を有する化合物(x)を原料とする芳香族ポリエステルポリオール(a1)、前記(a1)以外の芳香族ポリエステルポリオール(a2)、脂肪族ポリエステルポリオール(a3)、前記(a3)以外の結晶性ポリエステルポリオール(a4)、及び、ポリエーテルポリオール(a5)を含有するポリオール(A)、及び、ポリイソシアネート(B)の反応物であるイソシアネート基を有するウレタンプレポリマー(i)を含有することを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物を提供するものである。 The present invention provides a moisture-curable polyurethane hot melt resin composition that contains an aromatic polyester polyol (a1) made from a compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule, an aromatic polyester polyol (a2) other than (a1), an aliphatic polyester polyol (a3), a crystalline polyester polyol (a4) other than (a3), and a polyether polyol (a5), and a urethane prepolymer (i) having an isocyanate group that is a reaction product of a polyisocyanate (B).
 また、本発明は、前記湿気硬化型ポリウレタンホットメルト樹脂組成物により形成されたことを特徴とする硬化物を提供するものである。また、本発明は、ポリウレタン発泡体、前記硬化物による層、及び、基布を有することを特徴とする積層体、並びに、表皮材を提供するものである。 The present invention also provides a cured product formed from the moisture-curable polyurethane hot melt resin composition. The present invention also provides a laminate having a polyurethane foam, a layer of the cured product, and a base fabric, and a skin material.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物あり、初期強度、機械的強度、及び接着性に優れ、かつ、突き抜けを抑制できるものである。また、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を用いることにより、従来行っていたフレームラミネートが不要となるため、作業環境の向上にも貢献できるものである。 The moisture-curable polyurethane hot melt resin composition of the present invention has excellent initial strength, mechanical strength, and adhesion, and can suppress punch-through. Furthermore, by using the moisture-curable polyurethane hot melt resin composition, the conventional frame lamination is no longer necessary, which contributes to improving the work environment.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、分子量が500未満であり、分岐構造を有し、1分子中に2~4個の水酸基を有する化合物(x)を原料とする芳香族ポリエステルポリオール(a1)、前記(a1)以外の芳香族ポリエステルポリオール(a2)、脂肪族ポリエステルポリオール(a3)、前記(a3)以外の結晶性ポリエステルポリオール(a4)、及び、ポリエーテルポリオール(a5)を含有するポリオール(A)、及び、ポリイソシアネート(B)の反応物であるイソシアネート基を有するウレタンプレポリマー(i)を含有するものである。 The moisture-curable polyurethane hot melt resin composition of the present invention contains aromatic polyester polyol (a1) made from compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule, aromatic polyester polyol (a2) other than (a1), aliphatic polyester polyol (a3), crystalline polyester polyol (a4) other than (a3), and polyether polyol (a5), polyol (A) containing polyether polyol, and urethane prepolymer (i) having an isocyanate group, which is a reaction product of polyisocyanate (B).
 前記ウレタンプレポリマー(i)は、特定のポリオール(A)とポリイソシアネート(B)との反応物である。 The urethane prepolymer (i) is a reaction product of a specific polyol (A) and a polyisocyanate (B).
 前記ポリオール(A)は、前記した(a1)~(a5)を必須成分として含有するものである。 The polyol (A) contains the above-mentioned (a1) to (a5) as essential components.
 前記芳香族ポリエステルポリオール(a1)は、優れた初期強度を発現し、突き抜けを抑制するために、分子量が500未満であり、分岐構造を有し、1分子中に2~4個の水酸基を有する化合物(x)を原料とすることが必須である。なお、前記化合物(x)の分子量は、化学式から算出される値を示す。 In order for the aromatic polyester polyol (a1) to exhibit excellent initial strength and suppress breakthrough, it is essential that the raw material be a compound (x) that has a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule. The molecular weight of the compound (x) is a value calculated from the chemical formula.
 前記化合物(x)としては、例えば、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチルグリコール、2-イソプロピル-1,4-ブタンジオール、2,4-ジメチル-1,5-ペンタンジオール、2-エチル-1,6-ヘキサンジオール、3,5-ヘプタンジオール、2-メチル-1,8-オクタンジオール、トリメチロールプロパン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた突き抜け抑制効果が得られる点から、ネオペンチルグリコールが好ましい。 As the compound (x), for example, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,2-butanediol, 1,3-butanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-1,3-hexanediol, neopentyl glycol, 2-isopropyl-1,4-butanediol, 2,4-dimethyl-1,5-pentanediol, 2-ethyl-1,6-hexanediol, 3,5-heptanediol, 2-methyl-1,8-octanediol, trimethylolpropane, etc. can be used. These compounds may be used alone or in combination of two or more. Among these, neopentyl glycol is preferred because it provides an even more excellent effect in suppressing penetration.
 前記化合物(x)の使用量としては、優れた突き抜け抑制効果を維持しつつ、適度な粘度を有し、良好な硬化皮膜の柔軟性が得られる点から、ポリオール(A)、及び、ポリイソシアネート(B)の合計質量中0.1~30質量%の範囲が好ましく、0.2~20質量%の範囲がより好ましく、0.3~15質量%の範囲が更に好ましい。 The amount of compound (x) used is preferably in the range of 0.1 to 30% by mass, more preferably 0.2 to 20% by mass, and even more preferably 0.3 to 15% by mass, based on the total mass of polyol (A) and polyisocyanate (B), in order to maintain an excellent punch-through suppression effect while having a suitable viscosity and obtaining good flexibility of the cured film.
 前記芳香族ポリエステルポリオール(a1)としては、具体的には、前記化合物(x)を含む水酸基を2つ以上有する化合物と、多塩基酸との反応物が挙げられる。 Specific examples of the aromatic polyester polyol (a1) include a reaction product of a compound having two or more hydroxyl groups, including the compound (x), and a polybasic acid.
 前記化合物(x)以外の、水酸基を2つ以上有する化合物としては、例えば、エチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の脂肪族化合物;シクロペンタンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールA、これらのアルキレンオキサイド付加物等の脂環式化合物;ビスフェノールA、ビスフェノールF、これらのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等)付加物等の芳香族化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた突き抜け抑制効果および柔軟性が得られる点から、脂肪族化合物が好ましく、ジエチレングリコールがより好ましい。 Other than the compound (x), examples of compounds having two or more hydroxyl groups include aliphatic compounds such as ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, diethylene glycol, triethylene glycol, and tetraethylene glycol; alicyclic compounds such as cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, and alkylene oxide adducts thereof; and aromatic compounds such as bisphenol A, bisphenol F, and alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) adducts thereof. These compounds may be used alone or in combination of two or more. Among these, aliphatic compounds are preferred, and diethylene glycol is more preferred, in that even better punch-through suppression effects and flexibility can be obtained.
 前記多塩基酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、無水フタル酸等を用いることができる。それ以外の多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、1,12-ドデカンジカルボン酸等の芳香族多塩基酸;コハク酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸、ドデカン二酸、エイコサ二酸、シトラコン酸、イタコン酸、無水シトラコン酸、無水イタコン酸などを用いることができる。これらの多塩基酸は単独で用いても2種以上を併用してもよい。これらの中でも、より一層優れた突き抜け抑制効果、接着性、反応性、及び、柔軟性が得られる点から、芳香族多塩基酸が好ましく、フタル酸(フタル酸、イソフタル酸、テレフタル酸、及び無水フタル酸からなる群より選ばれる1種以上の化合物)がより好ましい。 Examples of the polybasic acid that can be used include phthalic acid, isophthalic acid, terephthalic acid, and phthalic anhydride. Examples of other polybasic acids that can be used include aromatic polybasic acids such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, and 1,12-dodecanedicarboxylic acid; succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosadioic acid, citraconic acid, itaconic acid, citraconic anhydride, and itaconic anhydride. These polybasic acids may be used alone or in combination of two or more. Among these, aromatic polybasic acids are preferred, and phthalic acid (one or more compounds selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid, and phthalic anhydride) is more preferred, since they provide even better break-through suppression effect, adhesion, reactivity, and flexibility.
 前記芳香族ポリエステルポリオール(a1)の数平均分子量としては、より一層優れた突き抜け抑制効果、及び、柔軟性が得られる点から、700~10,000がより好ましく、800~5,000がより好ましい。なお、前記芳香族ポリエステルポリオール(a1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the aromatic polyester polyol (a1) is preferably 700 to 10,000, more preferably 800 to 5,000, in order to obtain a more excellent punch-through suppression effect and flexibility. The number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
 前記芳香族ポリエステルポリオール(a1)の含有率としては、より一層優れた突き抜け抑制効果、及び、柔軟性が得られる点から、ポリオール(A)中10~40質量%が好ましく、15~30質量%がより好ましい。 The content of the aromatic polyester polyol (a1) in the polyol (A) is preferably 10 to 40% by mass, and more preferably 15 to 30% by mass, in order to obtain a more excellent effect of suppressing penetration and flexibility.
 前記芳香族ポリエステルポリオール(a2)は、前記芳香族ポリエステルポリオール(a1)以外のもの(前記化合物(x)を原料としないもの)であり、貼り合わせ時間を延長し、優れたハンドリング性を得るためのものである。 The aromatic polyester polyol (a2) is other than the aromatic polyester polyol (a1) (not made from the compound (x)) and is intended to extend the bonding time and provide excellent handling properties.
 前記芳香族ポリエステルポリオール(a2)の原料としては、前記芳香族ポリエステルポリオール(a1)の原料として用いることができる、前記水酸基を2つ以上有する化合物や、前記多塩基酸を用いることができ、前記水酸基を2つ以上有する化合物としては前記脂肪族化合物が好ましく、前記多塩基酸としては前記フタル酸を含むことが好ましい。 The raw material for the aromatic polyester polyol (a2) may be a compound having two or more hydroxyl groups or a polybasic acid that can be used as a raw material for the aromatic polyester polyol (a1). The compound having two or more hydroxyl groups is preferably an aliphatic compound, and the polybasic acid preferably includes phthalic acid.
 前記芳香族ポリエステルポリオール(a2)の数平均分子量としては、700~10,000がより好ましく、800~5,000がより好ましい。なお、前記芳香族ポリエステルポリオール(a1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the aromatic polyester polyol (a2) is preferably 700 to 10,000, more preferably 800 to 5,000. The number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
 前記芳香族ポリエステルポリオール(a2)の含有率としては、ポリオール(A)中5~30質量%が好ましく、10~25質量%がより好ましい。 The content of the aromatic polyester polyol (a2) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
 前記脂肪族ポリエステルポリオール(a3)は、固化時間を調整するものであり、水酸基を2つ以上有する脂肪族化合物と、脂肪族多塩基酸との反応物が挙げられる。 The aliphatic polyester polyol (a3) adjusts the solidification time, and may be a reaction product of an aliphatic compound having two or more hydroxyl groups and an aliphatic polybasic acid.
 前記水酸基を2つ以上有する脂肪族化合物としては、例えば、前記化合物(x);エチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の脂肪族化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、前記化合物(x)と前記脂肪族化合物とを併用することが好ましい。 As the aliphatic compound having two or more hydroxyl groups, for example, the compound (x) can be used; an aliphatic compound such as ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, diethylene glycol, triethylene glycol, or tetraethylene glycol. These compounds may be used alone or in combination of two or more. Among these, it is preferable to use the compound (x) in combination with the aliphatic compound.
 前記脂肪族多塩基酸としては、コハク酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸、ドデカン二酸、エイコサ二酸、シトラコン酸、イタコン酸、無水シトラコン酸、無水イタコン酸などを用いることができる。これらの多塩基酸は単独で用いても2種以上を併用してもよい。 As the aliphatic polybasic acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosadionic acid, citraconic acid, itaconic acid, citraconic anhydride, itaconic anhydride, etc. can be used. These polybasic acids may be used alone or in combination of two or more.
 前記脂肪族ポリエステルポリオール(a3)の数平均分子量としては、700~50,000がより好ましく、800~7,000がより好ましい。なお、前記芳香族ポリエステルポリオール(a1)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the aliphatic polyester polyol (a3) is preferably 700 to 50,000, more preferably 800 to 7,000. The number average molecular weight of the aromatic polyester polyol (a1) is a value measured by gel permeation chromatography (GPC).
 前記脂肪族ポリエステルポリオール(a3)の含有率としては、ポリオール(A)中5~30質量%が好ましく、10~25質量%がより好ましい。 The content of the aliphatic polyester polyol (a3) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
 前記結晶性ポリエステルポリオール(a4)は、優れた接着性を得るためのものであり
、前記脂肪族ポリエステルポリオール(a3)以外のものであり、例えば、水酸基を有する化合物と多塩基酸との反応物を用いることができる。なお、本発明において、「結晶性」とは、JISK7121:2012に準拠したDSC(示差走査熱量計)測定において、結晶化熱あるいは融解熱のピークを確認できるものを示す。
The crystalline polyester polyol (a4) is for obtaining excellent adhesion and is other than the aliphatic polyester polyol (a3), and may be, for example, a reaction product of a compound having a hydroxyl group and a polybasic acid. In the present invention, "crystalline" refers to a peak of heat of crystallization or heat of fusion that can be confirmed in a DSC (differential scanning calorimeter) measurement according to JIS K7121:2012.
 前記水酸基を有する化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、トリメチロールプロパン、トリメチロールエタン、グリセリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも結晶性を高め、より一層優れた接着性が得られる点から、ブタンジオール、ヘキサンジオール、オクタンジオール、及び、デカンジオールからなる群より選ばれる1種以上を用いることが好ましい。 Examples of the compound having a hydroxyl group include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, trimethylolpropane, trimethylolethane, and glycerin. These compounds may be used alone or in combination of two or more. Among these, it is preferable to use one or more compounds selected from the group consisting of butanediol, hexanediol, octanediol, and decanediol, since this increases crystallinity and provides even better adhesion.
 前記多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the polybasic acid, for example, oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, etc. can be used. These compounds can be used alone or in combination of two or more.
 前記結晶性ポリエステルポリオール(a4)の数平均分子量としては、より一層優れた接着性が得られる点から、600~50,000が好ましく、1,000~10,000がより好ましい。なお、前記結晶性ポリエステルポリオール(a4)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the crystalline polyester polyol (a4) is preferably 600 to 50,000, and more preferably 1,000 to 10,000, in order to obtain even better adhesive properties. The number average molecular weight of the crystalline polyester polyol (a4) is a value measured by gel permeation chromatography (GPC).
 前記結晶性ポリエステルポリオール(a4)の含有率としては、ポリオール(A)中5~30質量%が好ましく、10~25質量%がより好ましい。 The content of the crystalline polyester polyol (a4) in the polyol (A) is preferably 5 to 30 mass %, and more preferably 10 to 25 mass %.
 前記ポリエーテルポリオール(a5)は、低粘度性、貼り合わせ時間の調整のために用いるものであり、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール;前記ポリアルキレングリコールの誘導体(例えば、アルキル置換テトラヒドロフランの誘導体、ネオペンチルグリコールの誘導体)などを用いることができる。これらのポリエーテルポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、ポリプロピレングリコール、及び/又は、ポリテトラメチレングリコールが好ましい。 The polyether polyol (a5) is used to achieve low viscosity and adjust the lamination time, and may be, for example, a polyalkylene glycol such as polyethylene glycol, polypropylene glycol, or polytetramethylene glycol; or a derivative of the polyalkylene glycol (for example, a derivative of alkyl-substituted tetrahydrofuran, or a derivative of neopentyl glycol). These polyether polyols may be used alone or in combination of two or more kinds. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred.
 前記ポリエーテルポリオール(a5)の数平均分子量としては、300~10,000が好ましく、350~4,000がより好ましい。なお、前記ポリエーテルポリオール(a5)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the polyether polyol (a5) is preferably 300 to 10,000, and more preferably 350 to 4,000. The number average molecular weight of the polyether polyol (a5) is a value measured by gel permeation chromatography (GPC).
 前記ポリエーテルポリオール(a5)の含有率としては、ポリオール(A)中10~50質量%が好ましく、15~40質量%がより好ましい。 The content of the polyether polyol (a5) in the polyol (A) is preferably 10 to 50 mass %, and more preferably 15 to 40 mass %.
 前記ポリオール(A)は、前記(a1)~(a5)を必須成分として含有するが、必要に応じて、その他のポリオールを併用してもよい。 The polyol (A) contains the above-mentioned (a1) to (a5) as essential components, but other polyols may be used in combination as necessary.
 前記その他のポリオールとしては、例えば、前記(a1)~(a4)以外のポリエステルポリオール、アクリルポリオール、ポリカーボネートポリオール、ポリブタジエン系ポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。 As the other polyols, for example, polyester polyols other than (a1) to (a4), acrylic polyols, polycarbonate polyols, polybutadiene polyols, etc. can be used. These polyols may be used alone or in combination of two or more kinds.
 前記ポリイソシアネート(B)としては、例えば、ポリメチレンポリフェニルポリイソシアネート、ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネートイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環族ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、機械的強度の点から、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネートがより好ましい。 As the polyisocyanate (B), for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, xylylene diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more. Among these, aromatic polyisocyanates are preferred from the viewpoint of mechanical strength, and diphenylmethane diisocyanate is more preferred.
 前記ウレタンプレポリマー(i)の製造方法としては、例えば、前記ポリイソシアネート(B)の入った反応容器に、前記ポリオール(A)の混合物を滴下した後に加熱し、前記ポリイソシアネート(B)の有するイソシアネート基が、前記ポリオール(A)の有する水酸基に対して過剰となる条件で反応させることによって製造することができる。 The urethane prepolymer (i) can be produced, for example, by adding a mixture of the polyol (A) dropwise to a reaction vessel containing the polyisocyanate (B), heating the mixture, and reacting the mixture under conditions in which the isocyanate groups of the polyisocyanate (B) are in excess of the hydroxyl groups of the polyol (A).
 前記ウレタンプレポリマー(i)を製造する際には、前記ポリイソシアネート(B)が有するイソシアネート基と前記ポリオール(A)が有する水酸基の当量比(イソシアネート基/水酸基)としては、1.5~5が好ましく、1.6~2.5がより好ましい。 When producing the urethane prepolymer (i), the equivalent ratio (isocyanate group/hydroxyl group) of the isocyanate group in the polyisocyanate (B) to the hydroxyl group in the polyol (A) is preferably 1.5 to 5, more preferably 1.6 to 2.5.
 前記ウレタンプレポリマー(i)のイソシアネート基含有率(以下、「NCO%」と略記する。)としては、1.0~5.0質量%が好ましく、2.3~4.8質量%がより好ましい。なお、前記ウレタンプレポリマー(i)のNCO%は、JISK1603-1:2007に準拠し、電位差滴定法により測定した値を示す。 The isocyanate group content (hereinafter abbreviated as "NCO%") of the urethane prepolymer (i) is preferably 1.0 to 5.0 mass%, and more preferably 2.3 to 4.8 mass%. The NCO% of the urethane prepolymer (i) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、前記ウレタンプレポリマー(i)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。 The moisture-curable polyurethane hot melt resin composition of the present invention contains the urethane prepolymer (i) as an essential component, but may contain other additives as necessary.
 前記その他の添加剤としては、例えば、硬化触媒、酸化防止剤、粘着付与剤、可塑剤、安定剤、難燃剤、充填材、染料、顔料、蛍光増白剤、シランカップリング剤、ワックス、熱可塑性樹脂等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。 The other additives that can be used include, for example, curing catalysts, antioxidants, tackifiers, plasticizers, stabilizers, flame retardants, fillers, dyes, pigments, fluorescent brighteners, silane coupling agents, waxes, thermoplastic resins, etc. These additives may be used alone or in combination of two or more.
 本発明の積層体は、ポリウレタン発泡体、前記湿気硬化型ポリウレタンホットメルト樹脂組成物の硬化物層、及び、基布を有するものである。 The laminate of the present invention has a polyurethane foam, a cured layer of the moisture-curable polyurethane hot melt resin composition, and a base fabric.
 前記ポリウレタン発泡体は、緩衝性、クッション性及び通気性等を付与するものであり、公知のものを用いることができる。 前記ポリウレタン発泡体の厚さとしては、例えば、1.5~20mmの範囲が挙げられる。 The polyurethane foam provides shock-absorbing properties, cushioning properties, breathability, etc., and any known polyurethane foam can be used. The thickness of the polyurethane foam can be, for example, in the range of 1.5 to 20 mm.
 前記基布としては、前記ポリウレタン発泡体と貼り合わせて、カーシートなどの成形品にセットする際の滑り性を付与して作業性を向上させるものであり、例えば、ポリエステル繊維、ポリエチレン繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、グラスファイバー、炭素繊維、それらの混紡繊維等による不織布、織布、編み物などが挙げられる。なお、本発明においては、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を用いることにより、メッシュ生地の基布を用いた場合でも優れた突き抜け抑制効果が得られるものである。 The base fabric is laminated with the polyurethane foam to impart slipperiness and improve workability when it is set into a molded product such as a car seat, and examples of such base fabric include nonwoven fabrics, woven fabrics, and knitted fabrics made from polyester fibers, polyethylene fibers, nylon fibers, acrylic fibers, polyurethane fibers, acetate fibers, rayon fibers, polylactic acid fibers, cotton, hemp, silk, wool, glass fibers, carbon fibers, and blends thereof. In the present invention, by using the moisture-curing polyurethane hot melt resin composition, excellent punch-through suppression effects can be obtained even when a mesh fabric base fabric is used.
 前記積層体を製造する方法としては、例えば、前記ポリウレタン発泡体上に前記湿気硬化型ポリウレタンホットメルト樹脂組成物を塗布する方法などが挙げられる。前記湿気硬化型ポリウレタンホットメルト樹脂組成物を塗布する方法としては、例えば、グラビアコーター、ロールコーター、スプレーコーター、T-ダイコーター、ナイフコーター、コンマコーター等のコーター方式;ディスペンサー、インクジェット印刷、スクリーン印刷、オフセット印刷等の精密方式;ノズル塗布;スプレー塗布;フィルムラミネート法などを使用する方法が挙げられる。これらの中でも、より一層優れた機械的強度、接着強度、及び、突き抜け抑制効果が得られる点から、間欠塗布が好ましい。前記塗布する前には、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を70~120℃で溶融してもよい。 The method for producing the laminate includes, for example, a method of applying the moisture-curable polyurethane hot melt resin composition onto the polyurethane foam. Examples of the method for applying the moisture-curable polyurethane hot melt resin composition include coater methods such as gravure coater, roll coater, spray coater, T-die coater, knife coater, and comma coater; precision methods such as dispenser, inkjet printing, screen printing, and offset printing; nozzle application; spray application; and film lamination methods. Among these, intermittent application is preferred because it provides even better mechanical strength, adhesive strength, and punch-through suppression effects. Before the application, the moisture-curable polyurethane hot melt resin composition may be melted at 70 to 120°C.
 前記湿気硬化型ポリウレタンホットメルト樹脂組成物の塗布量としては、例えば、5~35g/mが挙げられる。 The coating amount of the moisture-curable polyurethane hot-melt resin composition is, for example, 5 to 35 g/ m2 .
 前記湿気硬化型ポリウレタンホットメルト樹脂組成物を塗布した後は、前記湿気硬化型ポリウレタンホットメルト樹脂組成物の固化速度を速めるため冷却してもよい。 After the moisture-curable polyurethane hot melt resin composition has been applied, it may be cooled to increase the rate at which the moisture-curable polyurethane hot melt resin composition solidifies.
 前記湿気硬化型ポリウレタンホットメルト樹脂組成物が固化した後は、その硬化物の上に離型紙やキャリアシートを載置してもよい。表皮材として利用される際には、剥離されていることが好ましい。 After the moisture-curable polyurethane hot melt resin composition has solidified, a release paper or carrier sheet may be placed on the cured product. When using it as a skin material, it is preferable to peel it off.
 前記湿気硬化型ポリウレタンホットメルト樹脂組成物の硬化物の厚さとしては、例えば、5~200μmの範囲が挙げられる。 The thickness of the cured product of the moisture-curable polyurethane hot melt resin composition can be, for example, in the range of 5 to 200 μm.
 本発明の積層体は、上記効果を有するため、表皮材として特に好適に用いることができる。表皮材の構成としては、例えば、前記基布、前記湿気硬化型ポリウレタンホットメルト樹脂組成物の硬化物層、前記ポリウレタン発泡体、及び、前記表皮層が積層されたものが挙げられる。 The laminate of the present invention has the above-mentioned effects and is therefore particularly suitable for use as a skin material. The skin material may be configured, for example, by laminating the base fabric, a cured layer of the moisture-curable polyurethane hot melt resin composition, the polyurethane foam, and the skin layer.
 前記ポリウレタン発泡体と前記表皮層との間には、必要に応じて、更に基布を設けてもよく、これらは公知の接着剤を用いても接着してもよい。前記公知の接着剤としては、例えば、アクリル系接着剤、ウレタン接着剤、湿気硬化型ポリウレタンホットメルト接着剤などを用いることができる。 If necessary, a base fabric may be provided between the polyurethane foam and the skin layer, and these may be bonded using a known adhesive. Examples of known adhesives that can be used include acrylic adhesives, urethane adhesives, and moisture-curing polyurethane hot melt adhesives.
 前記表皮層としては、公知の材料により形成することができ、例えば、溶剤系ポリウレタン、水系ポリウレタン、ポリ塩化ビニル、熱可塑性ウレタン(TPU)、熱可塑性ポリオレフィン(TPO)、熱可塑性ポリエステル(TPE)等を用いることができる。 The skin layer can be formed from known materials, such as solvent-based polyurethane, water-based polyurethane, polyvinyl chloride, thermoplastic urethane (TPU), thermoplastic polyolefin (TPO), thermoplastic polyester (TPE), etc.
 前記表皮材としては、例えば、車輛の座席などにカバーさせることができる。 The skin material can be used to cover, for example, vehicle seats.
 以下、実施例を用いて、本発明をより詳細に説明する。 The present invention will now be described in more detail using examples.
[実施例1]湿気硬化型ポリウレタンホットメルト樹脂組成物(1)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族ポリエステルポリオール(ネオペンチルグリコール、ジエチレングリコール及び無水フタル酸の反応物、数平均分子量;1,000、以下「芳香族PEs(a1-1)」と略記する。)を35質量部、芳香族ポリエステルポリオール(ヘキサンジオール及び無水フタル酸の反応物、数平均分子量;2,000、以下「芳香族PEs(a2-1)」と略記する。)を15質量部、脂肪族ポリエステルポリオール(エチレングリコール、ネオペンチルグリコール、ヘキサンジオール、及び、アジピン酸の反応物、数平均分子量;5,500、以下「脂肪族PEs(a3-1)」と略記する。)を10質量部、結晶性ポリエステルポリオール(1,6-ヘキサンジオール及びアジピン酸の反応物、数平均分子量;8,000、以下「結晶性PEs(a4-1)」)15質量部、ポリエーテルポリオール(ポリプロピレングリコール、数平均分子量;2,000、以下「PEt(a5-1)」と略記する。)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融した4,4’-ジフェニルメタンジイソシアネート(以下「MDI」と略記する。)を22質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;2.5質量%のホットメルトウレタンプレポリマー(i-1)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(1)とした。
Example 1 Preparation of Moisture-Curable Polyurethane Hot-Melt Resin Composition (1) Into a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser, 35 parts by mass of aromatic polyester polyol (reaction product of neopentyl glycol, diethylene glycol, and phthalic anhydride, number average molecular weight: 1,000, hereinafter abbreviated as "aromatic PEs (a1-1)"), 15 parts by mass of aromatic polyester polyol (reaction product of hexanediol and phthalic anhydride, number average molecular weight: 2,000, hereinafter abbreviated as "aromatic PEs (a2-1)"), and 15 parts by mass of aliphatic polyester polyol (ethylene glycol, neopentyl glycol, hexane A reaction product of diol and adipic acid, number average molecular weight; 5,500, hereinafter abbreviated as "aliphatic PEs (a3-1)"), 10 parts by mass of crystalline polyester polyol (reaction product of 1,6-hexanediol and adipic acid, number average molecular weight; 8,000, hereinafter abbreviated as "crystalline PEs (a4-1)"), and 15 parts by mass of polyether polyol (polypropylene glycol, number average molecular weight; 2,000, hereinafter abbreviated as "PEt (a5-1)") were added, mixed, and heated at 70°C under reduced pressure, thereby dehydrating the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90°C, and 22 parts by mass of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as "MDI") melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (i-1) with an NCO% of 2.5% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (1).
[実施例2]湿気硬化型ポリウレタンホットメルト樹脂組成物(2)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を25質量部、芳香族PEs(a2-1)を10質量部、脂肪族PEs(a3-1)を10質量部、結晶性PEs(a4-1)を10質量部、PEt(a5-1)10質量部、ポリエーテルポリオール(ポリプロピレングリコール、数平均分子量;400、以下「PEt(a5-2)」と略記する。)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを33質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;4.0質量%のホットメルトウレタンプレポリマー(i-2)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(2)とした。
[Example 2] Preparation of moisture-curable polyurethane hot melt resin composition (2) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 25 parts by mass of aromatic PEs (a1-1), 10 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 10 parts by mass of crystalline PEs (a4-1), 10 parts by mass of PEt (a5-1), and 15 parts by mass of polyether polyol (polypropylene glycol, number average molecular weight: 400, hereinafter abbreviated as "PEt (a5-2)"). The mixture was mixed and heated at 70 ° C. under reduced pressure to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90°C, 33 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (i-2) with an NCO% of 4.0% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (2).
[実施例3]湿気硬化型ポリウレタンホットメルト樹脂組成物(3)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を35質量部、芳香族PEs(a2-1)を15質量部、脂肪族PEs(a3-1)を10質量部、結晶性PEs(a4-1)を15質量部、ポリエーテルポリオール(ポリテトラメチレングリコール、数平均分子量;2,000、以下「PEt(a5-3)」と略記する。)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを22質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;2.5質量%のホットメルトウレタンプレポリマー(i-3)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(3)とした。
[Example 3] Preparation of moisture-curable polyurethane hot melt resin composition (3) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 35 parts by mass of aromatic PEs (a1-1), 15 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 15 parts by mass of crystalline PEs (a4-1), and 15 parts by mass of polyether polyol (polytetramethylene glycol, number average molecular weight: 2,000, hereinafter abbreviated as "PEt (a5-3)"). were added, mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask until it was 0.05% by mass or less. Next, the flask was cooled to 90°C, 22 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (i-3) with an NCO% of 2.5% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (3).
[実施例4]湿気硬化型ポリウレタンホットメルト樹脂組成物(4)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を15質量部、芳香族PEs(a2-1)を35質量部、脂肪族PEs(a3-1)を10質量部、結晶性PEs(a4-1)を15質量部、PEt(a5-1)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを25質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;4.0質量%のホットメルトウレタンプレポリマー(i-4)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(4)とした。
[Example 4] Preparation of moisture-curable polyurethane hot melt resin composition (4) A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 15 parts by mass of aromatic PEs (a1-1), 35 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 15 parts by mass of crystalline PEs (a4-1), and 15 parts by mass of PEt (a5-1), mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 25 parts by mass of MDI melted at 70 ° C. was added, and the isocyanate group content was allowed to react at 110 ° C. for about 3 hours under a nitrogen atmosphere until it became constant, NCO%; 4.0% by mass of hot melt urethane prepolymer (i-4) was obtained, and the moisture-curable polyurethane hot melt resin composition (4) was obtained.
[実施例5]湿気硬化型ポリウレタンホットメルト樹脂組成物(5)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を35質量部、芳香族PEs(a2-1)を15質量部、脂肪族ポリエステルポリオール(ネオペンチルグリコール、ジエチレングリコール、ヘキサンジオール、及び、アジピン酸の反応物、数平均分子量;2,000、以下「脂肪族PEs(a3-2)」と略記する。)を10質量部、結晶性PEs(a4-1)を15質量部、PEt(a5-1)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを22質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;2.3質量%のホットメルトウレタンプレポリマー(i-5)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(5)とした。
[Example 5] Preparation of moisture-curable polyurethane hot melt resin composition (5) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 35 parts by mass of aromatic PEs (a1-1), 15 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic polyester polyol (neopentyl glycol, diethylene glycol, hexanediol, and adipic acid reaction product, number average molecular weight: 2,000, hereinafter abbreviated as "aliphatic PEs (a3-2)"). 15 parts by mass of crystalline PEs (a4-1), and 15 parts by mass of PEt (a5-1) were added, mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90°C, 22 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (i-5) with an NCO% of 2.3% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (5).
[実施例6]湿気硬化型ポリウレタンホットメルト樹脂組成物(6)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を20質量部、芳香族PEs(a2-1)を10質量部、脂肪族PEs(a3-1)を10質量部、結晶性PEs(a4-1)を10質量部、PEt(a5-1)40質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを26質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;4.0質量%のホットメルトウレタンプレポリマー(i-6)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(6)とした。
[Example 6] Preparation of moisture-curable polyurethane hot melt resin composition (6) A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 20 parts by mass of aromatic PEs (a1-1), 10 parts by mass of aromatic PEs (a2-1), 10 parts by mass of aliphatic PEs (a3-1), 10 parts by mass of crystalline PEs (a4-1), and 40 parts by mass of PEt (a5-1), mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 26 parts by mass of MDI melted at 70 ° C. was added, and the isocyanate group content was allowed to react at 110 ° C. for about 3 hours under a nitrogen atmosphere until it became constant, NCO%; 4.0% by mass of hot melt urethane prepolymer (i-6) was obtained, and the moisture-curable polyurethane hot melt resin composition (6) was obtained.
[実施例7]湿気硬化型ポリウレタンホットメルト樹脂組成物(7)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族PEs(a1-1)を35質量部、芳香族ポリエステルポリオール(エチレングリコール、アジピン酸、無水フタル酸、及び、テレフタル酸の反応物、数平均分子量;2,000、以下「芳香族PEs(a2-2)」と略記する。)を15質量部、脂肪族PEs(a3-1)を10質量部、結晶性PEs(a4-1)を10質量部、PEt(a5-1)15質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを27質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;4.0質量%のホットメルトウレタンプレポリマー(i-7)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(7)とした。
[Example 7] Preparation of moisture-curable polyurethane hot melt resin composition (7) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 35 parts by mass of aromatic PEs (a1-1), 15 parts by mass of aromatic polyester polyol (a reaction product of ethylene glycol, adipic acid, phthalic anhydride and terephthalic acid, number average molecular weight: 2,000, hereinafter abbreviated as "aromatic PEs (a2-2)"), 10 parts by mass of aliphatic PEs (a3-1), 10 parts by mass of crystalline PEs (a4-1), and 15 parts by mass of PEt (a5-1) were added, mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90°C, 27 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (i-7) with an NCO% of 4.0% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (7).
[比較例1]湿気硬化型ポリウレタンホットメルト樹脂組成物(R1)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、芳香族ポリエステルポリオール(ネオペンチルグリコール、及び、無水フタル酸の反応物、数平均分子量;1,000、以下「芳香族PEs(a1-2)」と略記する。)を15質量部、結晶性ポリエステルポリオール(ヘキサンジオール、及び、セバシン酸の反応物、数平均分子量;4,000、以下「結晶性PEs(a4-2)」と略記する。)を35質量部、PEt(a5-1)50質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを24質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;3.2質量%のホットメルトウレタンプレポリマー(iR-1)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(R1)とした。
Comparative Example 1 Preparation of Moisture-Curable Polyurethane Hot Melt Resin Composition (R1) In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 15 parts by mass of aromatic polyester polyol (neopentyl glycol and phthalic anhydride reaction product, number average molecular weight: 1,000, hereinafter abbreviated as "aromatic PEs (a1-2)"). 35 parts by mass of crystalline polyester polyol (hexanediol and sebacic acid reaction product, number average molecular weight: 4,000, hereinafter abbreviated as "crystalline PEs (a4-2)"). 50 parts by mass of PEt (a5-1) were added, mixed and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90°C, 24 parts by mass of MDI melted at 70°C was added, and the mixture was reacted at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, thereby obtaining a hot-melt urethane prepolymer (iR-1) with an NCO% of 3.2% by mass, which was used as a moisture-curable polyurethane hot-melt resin composition (R1).
[比較例2]湿気硬化型ポリウレタンホットメルト樹脂組成物(R2)の調製
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、結晶性PEs(a4-2)を20質量部、PEt(a5-1)80質量部を入れ、混合し、70℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。 次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを18質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させることによって、NCO%;1.9質量%のホットメルトウレタンプレポリマー(iR-2)を得、湿気硬化型ポリウレタンホットメルト樹脂組成物(R2)とした。
[Comparative Example 2] Preparation of moisture-curable polyurethane hot melt resin composition (R2) 20 parts by mass of crystalline PEs (a4-2) and 80 parts by mass of PEt (a5-1) were placed in a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, mixed, and heated under reduced pressure at 70 ° C. to dehydrate the water in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 18 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, NCO%; 1.9% by mass of hot melt urethane prepolymer (iR-2) was obtained, and the moisture-curable polyurethane hot melt resin composition (R2) was obtained.
[数平均分子量の測定方法]
 合成例および比較合成例で用いたポリオールの数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により、下記の条件で測定し得られた値を示す。
[Method for measuring number average molecular weight]
The number average molecular weights of the polyols used in the Synthesis Examples and Comparative Synthesis Examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measurement device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were used, connected in series.
"TSKgel G5000" (7.8mm I.D. x 30cm) x 1 "TSKgel G4000" (7.8mm I.D. x 30cm) x 1 "TSKgel G3000" (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D. x 30cm) x 1 Detector: RI (differential refractometer)
Column temperature: 40°C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL/min Injection volume: 100 μL (sample concentration 0.4% by mass in tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
[機械的強度の評価方法]
 110℃に温度設定したホットプレート上で、100μm厚みの離型PETに50μmアプリケーターを用いて、110℃で1時間溶融した、実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物を塗布し、環境温度23℃、環境湿度50%にて3日間放置し、フィルムを得た。得られたフィルムを、幅5mm、長さ50mmの短冊状に裁断し、引張試験機「オートグラフAG-I」(株式会社島津製作所製)を用いて、温度23℃の雰囲気下で、クロスヘッドスピード300mm/秒の条件で引張り、試験片の100%モジュラス(MPa)等を測定した。この時のチャック間距離は40mmとした。
[Method for evaluating mechanical strength]
On a hot plate set at 110 ° C., a 50 μm applicator was used to apply the moisture-curable polyurethane hot melt resin composition obtained in the Examples and Comparative Examples, which had been melted at 110 ° C. for 1 hour, to a 100 μm-thick release PET sheet, and the sheet was left at an environmental temperature of 23 ° C. and an environmental humidity of 50% for 3 days to obtain a film. The obtained film was cut into strips of 5 mm width and 50 mm length, and the test piece was stretched at a crosshead speed of 300 mm / sec under an atmosphere of 23 ° C. using a tensile tester "Autograph AG-I" (manufactured by Shimadzu Corporation), and the 100% modulus (MPa) of the test piece was measured. The chuck distance at this time was 40 mm.
[初期強度の評価方法]
 温度23℃、湿度50±5%に調整された恒温恒湿室にて、110℃に温度設定したホットプレート上で、100μm厚みのコロナ処理したPETに100μmアプリケーターを用いて、実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物を塗布して、コロナ処理PETとゴムローラーで貼り合わせした後、所定時間で1inch幅にてカットして引張強度を引張試験機「オートグラフAG-I」(株式会社島津製作所社製、H・S=200mm/min)にて測定した。
[Evaluation method for initial strength]
In a constant temperature and humidity chamber adjusted to a temperature of 23°C and a humidity of 50±5%, a moisture-curable polyurethane hot melt resin composition obtained in each of the Examples and Comparative Examples was applied to a 100 μm-thick corona-treated PET sheet on a hot plate set at a temperature of 110°C using a 100 μm applicator, and the sheet was laminated to the corona-treated PET sheet with a rubber roller. After that, the sheet was cut to a width of 1 inch after a predetermined time, and the tensile strength was measured using a tensile tester "Autograph AG-I" (manufactured by Shimadzu Corporation, H.S.=200 mm/min).
[接着性、及び突き抜け抑制の評価方法]
 ポリウレタンフォームにグラビアコーターを用いて、実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物を20±5g/mとなるように間欠塗布して、裏基布ナイロンメッシュと貼り合わせて、2kg/A4サイズで荷重をかけたまま、環境温度23℃、環境湿度50%にて24hr熟成後に、接着性を引張試験機「オートグラフAG-I」(株式会社島津製作所社製、H・S=200mm/min)にて測定した。また、前記貼り合わせ品の裏基布メッシュへの突き抜けを目視で確認した。なお、湿気硬化型ポリウレタンホットメルト樹脂組成物の突き抜けがないものを「〇」、あるものを「×」と評価した。なお、表中の「PUF」はポリウレタンフォームを示す。
[Method for evaluating adhesion and punch-through suppression]
Using a gravure coater, the moisture-curing polyurethane hot melt resin composition obtained in the examples and comparative examples was intermittently applied to the polyurethane foam so as to be 20±5 g/m 2 , and then bonded to a backing fabric nylon mesh. After aging for 24 hours at an environmental temperature of 23°C and an environmental humidity of 50% while applying a load of 2 kg/A4 size, the adhesion was measured using a tensile tester "Autograph AG-I" (manufactured by Shimadzu Corporation, H·S=200 mm/min). In addition, the penetration of the bonded product into the backing fabric mesh was visually confirmed. Note that those that did not have the moisture-curing polyurethane hot melt resin composition penetrated were evaluated as "◯", and those that did have the moisture-curing polyurethane hot melt resin composition penetrated were evaluated as "×". Note that "PUF" in the table indicates polyurethane foam.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、機械的強度、初期強度、及び、接着性に優れ、かつ、突き抜けを抑制できることが分かった。 The moisture-curable polyurethane hot melt resin composition of the present invention was found to have excellent mechanical strength, initial strength, and adhesion, and to be able to suppress punch-through.
 一方、比較例1は、芳香族ポリエステルポリオール(a2)及び脂肪族ポリエステルポリオール(a3)を用いない態様であるが、初期強度が低く、突き抜けがあった。 On the other hand, Comparative Example 1, which does not use aromatic polyester polyol (a2) or aliphatic polyester polyol (a3), had low initial strength and showed breakthrough.
 一方、比較例2は、芳香族ポリエステルポリオール(a1)、(a2)、及び脂肪族ポリエステルポリオール(a3)を用いない態様であるが、初期強度が比較例1より低く、突き抜けがあった。 On the other hand, Comparative Example 2 is an embodiment in which aromatic polyester polyols (a1), (a2) and aliphatic polyester polyol (a3) are not used, but the initial strength was lower than that of Comparative Example 1, and breakthrough occurred.

Claims (9)

  1. 分子量が500未満であり、分岐構造を有し、1分子中に2~4個の水酸基を有する化合物(x)を原料とする芳香族ポリエステルポリオール(a1)、前記(a1)以外の芳香族ポリエステルポリオール(a2)、脂肪族ポリエステルポリオール(a3)、前記(a3)以外の結晶性ポリエステルポリオール(a4)、及び、ポリエーテルポリオール(a5)を含有するポリオール(A)、及び、ポリイソシアネート(B)の反応物であるイソシアネート基を有するウレタンプレポリマー(i)を含有することを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物。 A moisture-curable polyurethane hot melt resin composition comprising: aromatic polyester polyol (a1) made from compound (x) having a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule; polyol (A) containing aromatic polyester polyol (a2) other than (a1); aliphatic polyester polyol (a3); crystalline polyester polyol (a4) other than (a3); and polyether polyol (a5); and a urethane prepolymer (i) having an isocyanate group, which is a reaction product of polyisocyanate (B).
  2. 前記芳香族ポリエステルポリオール(a1)及び芳香族ポリエステルポリオール(a2)が、いずれも芳香族多塩基酸を原料とするものである請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物。 The moisture-curable polyurethane hot melt resin composition according to claim 1, wherein the aromatic polyester polyol (a1) and the aromatic polyester polyol (a2) are both made from aromatic polybasic acids.
  3. 前記脂肪族ポリエステルポリオール(a3)が、分子量が500未満であり、分岐構造を有し、1分子中に2~4個の水酸基を有する化合物(x)を原料とするものである請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物。 The moisture-curable polyurethane hot melt resin composition according to claim 1, wherein the aliphatic polyester polyol (a3) is made from a compound (x) that has a molecular weight of less than 500, a branched structure, and 2 to 4 hydroxyl groups per molecule.
  4. 前記ポリエーテルポリオール(a5)が、ポリプロピレングリコール、及び/又は、ポリテトラメチレングリコールである請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物。 The moisture-curable polyurethane hot melt resin composition according to claim 1, wherein the polyether polyol (a5) is polypropylene glycol and/or polytetramethylene glycol.
  5. 請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物により形成されたことを特徴とする硬化物。 A cured product formed from the moisture-curable polyurethane hot melt resin composition according to claim 1.
  6. ポリウレタン発泡体、請求項5記載の硬化物層、及び、基布を有することを特徴とする積層体。 A laminate comprising a polyurethane foam, a cured layer according to claim 5, and a base fabric.
  7. 前記湿気硬化型ポリウレタンホットメルト樹脂組成物の硬化物層が、間欠塗布により形成されたものである請求項6記載の積層体。 The laminate according to claim 6, wherein the cured layer of the moisture-curable polyurethane hot melt resin composition is formed by intermittent application.
  8. 前記基布が、メッシュ生地である請求項6記載の積層体。 The laminate according to claim 6, wherein the base fabric is a mesh fabric.
  9. 更に、表皮層を設けたことを特徴とする請求項6記載の表皮材。 The skin material according to claim 6, further comprising a skin layer.
PCT/JP2023/019461 2022-10-18 2023-05-25 Moisture-curable polyurethane hot-melt resin composition, cured product, laminate, and skin material WO2024084730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166840 2022-10-18
JP2022-166840 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084730A1 true WO2024084730A1 (en) 2024-04-25

Family

ID=90737245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019461 WO2024084730A1 (en) 2022-10-18 2023-05-25 Moisture-curable polyurethane hot-melt resin composition, cured product, laminate, and skin material

Country Status (1)

Country Link
WO (1) WO2024084730A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153907A1 (en) * 2012-04-12 2013-10-17 Dic株式会社 Moisture-curable polyurethane hot melt resin composition, adhesive and article
JP2019077817A (en) * 2017-10-26 2019-05-23 太陽精機株式会社 Moisture-curable polyurethane hot melt adhesive and production method thereof
WO2021025093A1 (en) * 2019-08-08 2021-02-11 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition
CN112552859A (en) * 2020-12-29 2021-03-26 烟台信友新材料有限公司 High-initial-adhesion low-shrinkage high-strength polyurethane hot melt adhesive and preparation method thereof
CN113046014A (en) * 2021-03-22 2021-06-29 杭州之江新材料有限公司 Low-viscosity high-initial-viscosity polyurethane hot melt adhesive and preparation method thereof
JP2021161219A (en) * 2020-03-31 2021-10-11 昭和電工マテリアルズ株式会社 Reactive hot-melt adhesive, adherend and method for producing the same, and clothing
CN114015402A (en) * 2021-11-25 2022-02-08 万华生态科技有限公司 High-temperature reaction type hot melt adhesive composition for PVC edge sealing and preparation method thereof
WO2022133635A1 (en) * 2020-12-21 2022-06-30 Henkel Ag & Co. Kgaa Oil resistant adhesive composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153907A1 (en) * 2012-04-12 2013-10-17 Dic株式会社 Moisture-curable polyurethane hot melt resin composition, adhesive and article
JP2019077817A (en) * 2017-10-26 2019-05-23 太陽精機株式会社 Moisture-curable polyurethane hot melt adhesive and production method thereof
WO2021025093A1 (en) * 2019-08-08 2021-02-11 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition
JP2021161219A (en) * 2020-03-31 2021-10-11 昭和電工マテリアルズ株式会社 Reactive hot-melt adhesive, adherend and method for producing the same, and clothing
WO2022133635A1 (en) * 2020-12-21 2022-06-30 Henkel Ag & Co. Kgaa Oil resistant adhesive composition
CN112552859A (en) * 2020-12-29 2021-03-26 烟台信友新材料有限公司 High-initial-adhesion low-shrinkage high-strength polyurethane hot melt adhesive and preparation method thereof
CN113046014A (en) * 2021-03-22 2021-06-29 杭州之江新材料有限公司 Low-viscosity high-initial-viscosity polyurethane hot melt adhesive and preparation method thereof
CN114015402A (en) * 2021-11-25 2022-02-08 万华生态科技有限公司 High-temperature reaction type hot melt adhesive composition for PVC edge sealing and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108290993B (en) Moisture-curable polyurethane hot-melt resin composition and laminate
JP6481801B2 (en) Moisture curable polyurethane hot melt resin composition and laminate
JP5532224B2 (en) Urethane prepolymer
JP5682565B2 (en) Reactive hot melt adhesive composition
JPWO2019163622A1 (en) Moisture-curable polyurethane hot melt resin composition
JP6620965B1 (en) Adhesive and synthetic leather
JP7231383B2 (en) Low outgassing urethane hot melt adhesive composition
CN111108245B (en) Method for producing synthetic leather
JP2022185595A (en) Low-outgassing urethane hot-melt adhesive composition
JP7196435B2 (en) Moisture-curable polyurethane hot-melt resin composition
JP7447475B2 (en) How to collect base materials
WO2024084730A1 (en) Moisture-curable polyurethane hot-melt resin composition, cured product, laminate, and skin material
JPWO2019163621A1 (en) Moisture-curable polyurethane hot melt resin composition and cured product thereof
JP2003138243A (en) Reactive hot-melt adhesive for cloth and process for bonding cloth
JP6981578B2 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
JP7400257B2 (en) Moisture-curable polyurethane hot melt resin composition and cured product thereof
JP2022114079A (en) Moisture-curable polyurethane hot-melt resin composition, moisture-curable polyurethane hot-melt adhesive, cured product and laminate
JP6485726B1 (en) Synthetic leather manufacturing method
CN111491970B (en) Moisture-curable polyurethane hot-melt resin composition and article using same
JP2023001004A (en) Laminate and skin material for vehicular sheet
JP7517622B2 (en) Method for manufacturing polyurethane foam sheet and method for manufacturing synthetic leather
WO2024122083A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
WO2024116443A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
KR102614433B1 (en) Synthetic Leather
WO2024095530A1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879384

Country of ref document: EP

Kind code of ref document: A1