WO2024095530A1 - Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather - Google Patents

Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather Download PDF

Info

Publication number
WO2024095530A1
WO2024095530A1 PCT/JP2023/024119 JP2023024119W WO2024095530A1 WO 2024095530 A1 WO2024095530 A1 WO 2024095530A1 JP 2023024119 W JP2023024119 W JP 2023024119W WO 2024095530 A1 WO2024095530 A1 WO 2024095530A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
hot melt
parts
moisture
resin composition
Prior art date
Application number
PCT/JP2023/024119
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 千々和
善典 金川
雅美 竹中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024095530A1 publication Critical patent/WO2024095530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the present invention relates to a moisture-curable polyurethane hot melt resin composition, an adhesive, and synthetic leather.
  • Synthetic leather uses polyurethane (PU), polyvinyl chloride (PVC), olefin-based thermoplastic elastomer (TPO), etc. as the surface material, and these surface materials are generally bonded to a base fabric such as cloth or nonwoven fabric with an adhesive (see, for example, Patent Document 1).
  • solvent-based adhesives have been the most widespread and commonly used up until now, but as part of environmental efforts, regions, countries, and companies are calling for a reduction in VOCs, and it is becoming necessary to replace solvent-based with water-based or solvent-free adhesives.
  • a water-based system which is one of the VOC reduction systems, is a low-viscosity compound liquid that is coated on the surface layer, then dried to remove the solvent, and if necessary, aged to obtain a strong film.
  • the low viscosity of the system allows it to wet well with the surface material, making it easy to obtain adhesion.
  • the drying process requires more drying energy than solvent-based systems, making production efficiency an issue.
  • RHM reactive hot melt adhesives
  • the problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent adhesion, low-temperature flexibility, and durability.
  • the present invention provides a moisture-curable polyurethane hot-melt resin composition that contains a hot-melt urethane prepolymer (A) having an isocyanate group and a compound (B) having a sulfonic acid group, the hot-melt prepolymer (A) being made from a polyol (a) containing 50% by mass or more of a polyether polyol (a1), and the content of the compound (B) is in the range of 0.01 to 1 part by mass per 100 parts by mass of the hot-melt urethane prepolymer (A).
  • the present invention also provides an adhesive that contains the moisture-curable polyurethane hot melt resin composition.
  • the present invention also provides synthetic leather that has at least a thermoplastic resin layer and the adhesive layer.
  • the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion (particularly adhesion to polyvinyl chloride), low-temperature flexibility, and durability. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
  • the moisture-curable polyurethane hot melt resin composition of the present invention contains a hot melt urethane prepolymer (A) having an isocyanate group, which is made from a specific polyol (a), and a specific amount of a specific compound (B).
  • the hot melt urethane prepolymer (A) having isocyanate groups is made from polyol (a) containing 50% by mass or more of polyether polyol (a1).
  • the amount of polyether polyol (a1) used is preferably 50 to 90% by mass, and more preferably 55 to 70% by mass, of the polyol (a) in order to obtain even better low-temperature flexibility.
  • polyether polyol (a1) for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, polyoxypropylene polyoxytetramethylene glycol, etc. can be used. These polyols may be used alone or in combination of two or more. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred because they provide even better low-temperature flexibility, and polytetramethylene glycol is more preferred because they provide even better heat resistance and wet heat resistance.
  • the polyether polyol may be derived from a plant.
  • plant-derived polyether polyol for example, "Bio PTMG” manufactured by Mitsubishi Chemical Corporation, “Bio PTG” manufactured by Hodogaya Chemical Co., Ltd., biomass polypropylene glycol manufactured by Vithal Castor Polyols, etc. can be obtained as commercially available products.
  • polyol (a) other polyols can be used in combination with the polyether polyol (a).
  • other polyols for example, commercially available polyols such as polyester polyols, polycarbonate polyols, polybutadiene polyols, silicone diols, and acrylic diols can be used. These polyols may be used alone or in combination of two or more, and may be derived from petroleum or plants.
  • polyester polyols are preferred because they provide even better adhesion.
  • the number average molecular weight of the polyol (a) is preferably 200 to 10,000, more preferably 500 to 6,000, in order to obtain better adhesion, low-temperature flexibility, durability, and mechanical strength.
  • the number average molecular weight of the polyol (a) is a value measured by gel permeation chromatography (GPC).
  • the hot melt urethane prepolymer (A) having an isocyanate group can be, for example, a reaction product of the polyol (a) and the polyisocyanate (b).
  • polyisocyanate (b) for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used.
  • aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphen
  • polyisocyanates may be used alone or in combination of two or more, and may be derived from petroleum or plants.
  • aromatic polyisocyanates are preferred, and diphenylmethane diisocyanate is more preferred, in that they provide even better reactivity and adhesion.
  • the hot melt urethane prepolymer (A) has isocyanate groups at the polymer terminals or within the molecule that can react with moisture present in the air or in the substrate or adherend to which the urethane prepolymer is applied to form a crosslinked structure.
  • the hot melt urethane prepolymer (A) can be produced, for example, by dropping the polyol (a) into a reaction vessel containing the polyisocyanate (b), heating the vessel, and reacting the polyisocyanate (b) under conditions in which the isocyanate groups of the polyisocyanate (b) are in excess of the hydroxyl groups of the polyol (a).
  • the molar ratio [NCO/OH] of the hydroxyl groups in the polyol (a) to the isocyanate groups in the polyisocyanate (b) is preferably 1.3 to 2.5, more preferably 1.5 to 2.0, in order to obtain even better hot melt properties, adhesion, durability, and low-temperature flexibility.
  • the isocyanate group content (hereinafter abbreviated as "NCO%) of the hot melt urethane prepolymer (A) is preferably 1.2 to 5.0 mass%, more preferably 1.7 to 3.5 mass%, in order to obtain even better hot melt properties, adhesion, durability, and low-temperature flexibility.
  • the NCO% of the hot melt urethane prepolymer (A) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
  • the compound (B) having a sulfonic acid group is an essential component for obtaining excellent adhesion, and its content must be in the range of 0.01 to 1 part by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to achieve both excellent adhesion and durability.
  • the content of the compound (B) is preferably 0.05 to 0.6 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to maintain high levels of adhesion and durability.
  • Examples of the compound (B) that can be used include methanesulfonic acid, ethanesulfonic acid, methanedisulfonic acid, 2-hydroxy-1-ethanesulfonic acid, sulfoacetic acid, 2-amino-1-ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, and alkylbenzenesulfonic acid. These compounds may be used alone or in combination of two or more. Among these, methanesulfonic acid is particularly preferred because it further improves adhesion to polyvinyl chloride.
  • the moisture-curable polyurethane hot-melt resin composition of the present invention contains the hot-melt urethane prepolymer (A) and the compound (B) as essential components, but may contain other additives as necessary.
  • additives examples include urethane catalysts, neutralizing agents, crosslinking agents, silane coupling agents, thickeners, fillers, thixotropic agents, tackifiers, waxes, heat stabilizers, light resistance stabilizers, fluorescent whitening agents, foaming agents, pigments, dyes, conductivity agents, antistatic agents, moisture permeability enhancers, water repellents, oil repellents, hollow foams, water absorbents, moisture absorbents, deodorizers, foam stabilizers, plasticizers, antiblocking agents, hydrolysis inhibitors, etc. These additives may be used alone or in combination of two or more.
  • the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and durability. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
  • the synthetic leather has at least a thermoplastic resin layer and an adhesive layer containing the moisture-curable polyurethane hot melt resin composition, and may be, for example, a layer of a substrate, the adhesive layer, and a thermoplastic resin layer laminated in that order.
  • the substrate may be, for example, a nonwoven fabric, woven fabric, or knitted fabric made of polyester fiber, polyethylene fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, glass fiber, carbon fiber, or a blend of these fibers.
  • the thermoplastic resin layer may be formed from, for example, known polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polystyrene, TPO (Thermoplastic Olefinic Elastomer), thermoplastic ester-based elastomer, thermoplastic polyurethane, etc.
  • TPO Thermoplastic Olefinic Elastomer
  • thermoplastic ester-based elastomer thermoplastic polyurethane, etc.
  • the adhesive layer is formed from the moisture-curable polyurethane hot melt resin composition of the present invention, and examples of the method for forming the adhesive layer include a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin layer or the substrate using a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater; a precision method such as a dispenser, inkjet printing, screen printing, or offset printing; or a nozzle coater, and then the layers are bonded together.
  • a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater
  • a precision method such as a dispenser, inkjet printing, screen printing, or offset printing
  • a nozzle coater a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin
  • the adhesive can be dried and cured as necessary using known methods.
  • the synthetic leather may further have a surface treatment layer on top of the thermoplastic resin layer.
  • the surface treatment layer may be made of, for example, a known solvent-based urethane resin, water-based urethane resin, solvent-based acrylic resin, water-based acrylic resin, etc.
  • Example 1 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 122 parts by mass of polytetramethylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-1”), 73 parts by mass of polyester polyol (residual reaction of 1,6-hexanediol and orthophthalic acid, number average molecular weight: 2,000, hereinafter abbreviated as "PEs-1”), and 49 parts by mass of polyester polyol (residual reaction of 1,6-hexanediol and sebacic acid, number average molecular weight: 3,500, hereinafter abbreviated as "PEs-2”), mixed, and heated at 100°C under reduced pressure to dehydrate the water in the flask until the water content was 0.05% by mass or less.
  • PEt-1 polytetramethylene glycol
  • PETs-1 polyester polyo
  • Example 2 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 119 parts by mass of PEt-1, 50 parts by mass of PEs-1, and 30 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 44 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.1 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (2).
  • Example 3 In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 188 parts by mass of polypropylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-2”), 68 parts by mass of PEs-1, and 85 parts by mass of polyester polyol (ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500, hereinafter abbreviated as "PEs-3”) were added, mixed, and heated under reduced pressure at 100 ° C.
  • PEt-2 polypropylene glycol
  • PEs-1 a polypropylene glycol
  • polyester polyol ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500
  • Example 4 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 52 parts by mass of PEt-1, 22 parts by mass of PEs-1, and 13 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 19 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.25 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (4).
  • Example 5 In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 83 parts by mass of PEt-2, 19 parts by mass of PEs-1, and 26 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 28 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.85 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (5).
  • Example 6 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 208 parts by mass of PEt-1, 48 parts by mass of PEs-1, and 64 parts by mass of PEs-3, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 66 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.3 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (6).
  • Example 7 A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 29 parts by mass of PEt-1, 29 parts by mass of PEt-2, 19 parts by mass of PEs-1, and 19 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 21 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C.
  • Example 8 A moisture-curable polyurethane hot melt resin composition (8) was obtained in the same manner as in Example 1, except that PEt-1 was replaced with biomass polytetramethylene glycol ("Bio PTMG” manufactured by Mitsubishi Chemical Corporation, number average molecular weight: 2,000).
  • the number average molecular weights of the polyols used in the examples and comparative examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
  • Measurement device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were used, connected in series. "TSKgel G5000” (7.8mm I.D. x 30cm) x 1 "TSKgel G4000” (7.8mm I.D. x 30cm) x 1 "TSKgel G3000” (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D.
  • the moisture-curable polyurethane hot melt resin composition obtained in the examples and comparative examples was applied to a thickness of 30 microns using a roll coater, and then aged for 24 hours or more under conditions of a temperature of 23 ° C. and a humidity of 50 ⁇ 5% to produce a film.
  • the obtained film was cut into strips with a width of 5 mm and a length of 50 mm, and the film was stretched at a crosshead speed of 10 mm / sec under an atmosphere of a temperature of 23 ° C. using a tensile tester "Autograph AG-i" (manufactured by Shimadzu Corporation), and the 100% modulus (MPa) of the test piece was measured.
  • the chuck distance at this time was 40 mm. Furthermore, the film strength of the film prepared was measured after leaving it for 5 weeks under conditions of a temperature of 70 ° C. and a humidity of 95 ⁇ 5% as a durability test, and the value of the 100% modulus (MPa) at that time was measured, and the value divided by the value of the 100% modulus (MPa) of the test piece before the durability test was taken as the 100% modulus retention rate. A retention rate of 30% or more was evaluated as " ⁇ ", a retention rate of 10% or more but less than 30% was evaluated as " ⁇ ”, and a retention rate of less than 10% was evaluated as " ⁇ ".
  • the moisture-curable polyurethane hot melt resin compositions of the present invention were found to have excellent adhesion, low-temperature flexibility, and durability.
  • Comparative Example 2 is an embodiment in which the content of compound (B) exceeds the range specified in the present invention, but the durability was poor.
  • Comparative Example 3 is an embodiment in which the amount of polyether polyol (a1) used is below the range specified in the present invention and compound (B) is not used, but the adhesion and low-temperature flexibility were poor.
  • Comparative Example 4 is an embodiment in which the amount of polyether polyol (a1) used is below the range specified in the present invention, but the low-temperature flexibility was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention provides a moisture-curable polyurethane hot melt resin composition which contains an isocyanate group-containing hot melt urethane prepolymer (A) and a sulfonic acid group-containing compound (B), and which is characterized in that the hot melt prepolymer (A) contains, as a raw material, a polyol (a) containing 50 mass% or more of a polyether polyol (a1), and that the content of the compound (B) is 0.01-1 parts by mass relative to 100 parts by mass of the hot melt urethane prepolymer (A). The present invention also provides an adhesive characterized by containing the moisture-curable polyurethane hot melt resin composition. The present invention also provides a synthetic leather characterized by having at least a thermoplastic resin layer and a layer of the adhesive.

Description

湿気硬化型ポリウレタンホットメルト樹脂組成物、接着剤、及び、合成皮革Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
 本発明は、湿気硬化型ポリウレタンホットメルト樹脂組成物、接着剤、及び、合成皮革に関する。 The present invention relates to a moisture-curable polyurethane hot melt resin composition, an adhesive, and synthetic leather.
 合成皮革には、表皮材としてポリウレタン(PU)、ポリ塩化ビニル(PVC)、オレフィン系熱可塑性エラストマー(TPO)等が使用されており、これらの表皮材を布地や不織布などの基布と接着剤で貼り合せた物が一般的に使用されている(例えば、特許文献1を参照。)。中でも接着剤はこれまで溶剤系のものが広く普及し一般的に使用されてきたが、環境に向けた取り組みとして地域・国・企業からVOCの低減が求められており、溶剤系から水系や無溶剤の接着剤への置き換えが必要となっている。 Synthetic leather uses polyurethane (PU), polyvinyl chloride (PVC), olefin-based thermoplastic elastomer (TPO), etc. as the surface material, and these surface materials are generally bonded to a base fabric such as cloth or nonwoven fabric with an adhesive (see, for example, Patent Document 1). Among these, solvent-based adhesives have been the most widespread and commonly used up until now, but as part of environmental efforts, regions, countries, and companies are calling for a reduction in VOCs, and it is becoming necessary to replace solvent-based with water-based or solvent-free adhesives.
VOC低減システムの1つである水系は低粘度の配合液を表皮層へのコーティングした後に乾燥させ溶剤を除去し、必要な場合は熟成をさせることで強固な皮膜が得られる。低粘度のため表皮材への濡れ性も良く、密着性が得られやすいことが特徴である。しかしながら、乾燥工程では溶剤系に比べ乾燥エネルギーが増加するため生産効率が課題となっている。一方、もう1つのVOC低減システムである無溶剤系はポリウレタン系の反応性ホットメルト接着剤(RHM)の検討が盛んに行われているが、塗工基材の中でもPVC表皮材などの被着体に対しては、一般的にRHMとの濡れ性が低く、従来のRHMを使用しても、接着性の点で充分な性能を発揮することが困難となっている。 A water-based system, which is one of the VOC reduction systems, is a low-viscosity compound liquid that is coated on the surface layer, then dried to remove the solvent, and if necessary, aged to obtain a strong film. The low viscosity of the system allows it to wet well with the surface material, making it easy to obtain adhesion. However, the drying process requires more drying energy than solvent-based systems, making production efficiency an issue. On the other hand, for the other VOC reduction system, solvent-free systems, polyurethane-based reactive hot melt adhesives (RHM) are being actively studied, but RHM generally has low wettability with adherends such as PVC surface materials, which is one of the coating substrates, making it difficult to achieve sufficient performance in terms of adhesion, even when using conventional RHM.
特表2008-514403号公報JP 2008-514403 A
 本発明が解決しようとする課題は、接着性、低温屈曲性、及び、耐久性に優れる湿気硬化型ポリウレタンホットメルト樹脂組成物を提供することである。 The problem that the present invention aims to solve is to provide a moisture-curable polyurethane hot melt resin composition that has excellent adhesion, low-temperature flexibility, and durability.
 本発明は、イソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、スルホン酸基を有する化合物(B)を含有する湿気硬化型ポリウレタンホットメルト樹脂組成物であって、前記ホットメルトプレポリマー(A)が、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とするものであり、前記化合物(B)の含有量が、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、0.01~1質量部の範囲であることを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物を提供するものである。 The present invention provides a moisture-curable polyurethane hot-melt resin composition that contains a hot-melt urethane prepolymer (A) having an isocyanate group and a compound (B) having a sulfonic acid group, the hot-melt prepolymer (A) being made from a polyol (a) containing 50% by mass or more of a polyether polyol (a1), and the content of the compound (B) is in the range of 0.01 to 1 part by mass per 100 parts by mass of the hot-melt urethane prepolymer (A).
 また、本発明は、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を含有することを特徴とする接着剤を提供するものである。また、本発明は、少なくとも、熱可塑性樹脂層、及び、前記接着剤層とを有することを特徴とする合成皮革を提供するものである。 The present invention also provides an adhesive that contains the moisture-curable polyurethane hot melt resin composition. The present invention also provides synthetic leather that has at least a thermoplastic resin layer and the adhesive layer.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、接着性(特に、ポリ塩化ビニルに対する接着性)、低温屈曲性、及び、耐久性に優れるものである。よって、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、熱可塑性樹脂を表皮材とする合成皮革の製造に特に好適に用いることができる。 The moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion (particularly adhesion to polyvinyl chloride), low-temperature flexibility, and durability. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、特定のポリオール(a)を原料とするイソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、特定の化合物(B)を特定量を含有するものである。 The moisture-curable polyurethane hot melt resin composition of the present invention contains a hot melt urethane prepolymer (A) having an isocyanate group, which is made from a specific polyol (a), and a specific amount of a specific compound (B).
 前記イソシアネート基を有するホットメルトウレタンプレポリマー(A)は、優れた低温屈曲性を得るうえで、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とすることが必須である。このように設計することで、接着剤をガラス転移温度を低下させることができるため、優れた低温屈曲性を得ることができる。前記ポリエーテルポリオール(a1)の使用量としては、より一層優れた低温屈曲性が得られる点から、ポリオール(a)中50~90質量%が好ましく、55~70質量%がより好ましい。 In order to obtain excellent low-temperature flexibility, it is essential that the hot melt urethane prepolymer (A) having isocyanate groups is made from polyol (a) containing 50% by mass or more of polyether polyol (a1). By designing in this way, the glass transition temperature of the adhesive can be lowered, and therefore excellent low-temperature flexibility can be obtained. The amount of polyether polyol (a1) used is preferably 50 to 90% by mass, and more preferably 55 to 70% by mass, of the polyol (a) in order to obtain even better low-temperature flexibility.
 前記ポリエーテルポリオール(a1)としては、例えば、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシテトラメチレングリコール、ポリオキシプロピレンポリオキシテトラメチレングリコール等を用いることができる。これらのポリオールは単独でも2種以上を併用してもよい。これらの中でも、より一層優れた低温屈曲性が得られる点から、ポリプロピレングリコール及び/又はポリテトラメチレングリコールが好ましく、更により一層優れた耐熱性及び湿熱性が得られる点から、ポリテトラメチレングリコールがより好ましい。なお、前記ポリエーテルポリオールとしては、植物由来のものを用いてもよい。前記植物由来のポリエーテルポリオールとしては、例えば、三菱ケミカル株式会社製「Bio PTMG」、保土ヶ谷化学社製「バイオ PTG」、Vithal Castor Polyols社製のバイオマスポリポリプロピレングリコール等を市販品として入手することができる。 As the polyether polyol (a1), for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxytetramethylene glycol, polyoxypropylene polyoxytetramethylene glycol, etc. can be used. These polyols may be used alone or in combination of two or more. Among these, polypropylene glycol and/or polytetramethylene glycol are preferred because they provide even better low-temperature flexibility, and polytetramethylene glycol is more preferred because they provide even better heat resistance and wet heat resistance. The polyether polyol may be derived from a plant. As the plant-derived polyether polyol, for example, "Bio PTMG" manufactured by Mitsubishi Chemical Corporation, "Bio PTG" manufactured by Hodogaya Chemical Co., Ltd., biomass polypropylene glycol manufactured by Vithal Castor Polyols, etc. can be obtained as commercially available products.
 前記ポリオール(a)としては、前記ポリエーテルポリオール(a)以外にもその他のポリオールを併用することができる。前記その他のポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、シリコンジオール、アクリルジオールなど市販のポリオールを用いることができる。これらのポリオールは単独でも2種以上を併用してもよく、石油由来のものでも、植物由来のものでもよい。前記その他のポリオールとしては、より一層優れた接着性が得られる点から、ポリエステルポリオールが好ましい。 As the polyol (a), other polyols can be used in combination with the polyether polyol (a). As the other polyols, for example, commercially available polyols such as polyester polyols, polycarbonate polyols, polybutadiene polyols, silicone diols, and acrylic diols can be used. These polyols may be used alone or in combination of two or more, and may be derived from petroleum or plants. As the other polyols, polyester polyols are preferred because they provide even better adhesion.
 前記ポリオール(a)の数平均分子量としては、より一層優れた接着性、低温屈曲性、、耐久性及び、機械的強度が得られる点から、それぞれ200~10,000が好ましく、500~6,000がより好ましい。なお、前記ポリオール(a)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The number average molecular weight of the polyol (a) is preferably 200 to 10,000, more preferably 500 to 6,000, in order to obtain better adhesion, low-temperature flexibility, durability, and mechanical strength. The number average molecular weight of the polyol (a) is a value measured by gel permeation chromatography (GPC).
 前記イソシアネート基を有するホットメルトウレタンプレポリマー(A)は、例えば、前記ポリオール(a)及びポリイソシアネート(b)との反応物を用いることができる。 The hot melt urethane prepolymer (A) having an isocyanate group can be, for example, a reaction product of the polyol (a) and the polyisocyanate (b).
 前記ポリイソシアネート(b)としては、例えば、ポリメチレンポリフェニルポリイソシアネート、ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネートイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環族ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独でも2種以上を併用してもよく、石油由来のものでも、植物由来のものでもよい。これらの中でも、より一層優れた反応性および接着性が得られる点から、芳香族ポリイソシアネートが好ましく、ジフェニルメタンジイソシアネートがより好ましい。 As the polyisocyanate (b), for example, aromatic polyisocyanates such as polymethylene polyphenyl polyisocyanate, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate isocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more, and may be derived from petroleum or plants. Among these, aromatic polyisocyanates are preferred, and diphenylmethane diisocyanate is more preferred, in that they provide even better reactivity and adhesion.
 前記ホットメルトウレタンプレポリマー(A)は、空気中やウレタンプレポリマーが塗布される基材や被着体中に存在する水分と反応して架橋構造を形成しうるイソシアネート基をポリマー末端や分子内に有するものである。 The hot melt urethane prepolymer (A) has isocyanate groups at the polymer terminals or within the molecule that can react with moisture present in the air or in the substrate or adherend to which the urethane prepolymer is applied to form a crosslinked structure.
 前記ホットメルトウレタンプレポリマー(A)の製造方法としては、例えば、前記ポリイソシアネート(b)の入った反応容器に、前記ポリオール(a)を滴下した後に加熱し、前記ポリイソシアネート(b)の有するイソシアネート基が、前記ポリオール(a)の有する水酸基に対して過剰となる条件で反応させることによって製造することができる。 The hot melt urethane prepolymer (A) can be produced, for example, by dropping the polyol (a) into a reaction vessel containing the polyisocyanate (b), heating the vessel, and reacting the polyisocyanate (b) under conditions in which the isocyanate groups of the polyisocyanate (b) are in excess of the hydroxyl groups of the polyol (a).
  前記ポリオール(a)及び前記ポリイソシアネート(b)を反応させる際の、前記ポリオール(a)が有する水酸基と、前記ポリイソシアネート(b)含有するイソシアネート基とのモル比[NCO/OH]としては、より一層優れたホットメルト性、接着性、耐久性、及び、低温屈曲性が得られる点から、1.3~2.5が好ましく、1.5~2.0がより好ましい。 When reacting the polyol (a) with the polyisocyanate (b), the molar ratio [NCO/OH] of the hydroxyl groups in the polyol (a) to the isocyanate groups in the polyisocyanate (b) is preferably 1.3 to 2.5, more preferably 1.5 to 2.0, in order to obtain even better hot melt properties, adhesion, durability, and low-temperature flexibility.
 前記ホットメルトウレタンプレポリマー(A)のイソシアネート基含有率(以下、「NCO%」と略記する。)としては、より一層優れたホットメルト性、接着性、耐久性、及び、低温屈曲性が得られる点から、1.2~5.0質量%が好ましく、1.7~3.5質量%がより好ましい。なお、前記ホットメルトウレタンプレポリマー(A)のNCO%は、JISK1603-1:2007に準拠し、電位差滴定法により測定した値を示す。 The isocyanate group content (hereinafter abbreviated as "NCO%) of the hot melt urethane prepolymer (A) is preferably 1.2 to 5.0 mass%, more preferably 1.7 to 3.5 mass%, in order to obtain even better hot melt properties, adhesion, durability, and low-temperature flexibility. The NCO% of the hot melt urethane prepolymer (A) is a value measured by potentiometric titration in accordance with JIS K1603-1:2007.
 前記スルホン酸基を有する化合物(B)は優れた接着性を得るうえで必須の成分であり、また、その含有量としては、優れた接着性と耐久性とを両立するために、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、0.01~1質量部の範囲であることが必須である。前記化合物(B)の含有量としては、接着性、及び、耐久性を高いレベルで維持できる点から、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、0.05~0.6質量部が好ましい。 The compound (B) having a sulfonic acid group is an essential component for obtaining excellent adhesion, and its content must be in the range of 0.01 to 1 part by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to achieve both excellent adhesion and durability. The content of the compound (B) is preferably 0.05 to 0.6 parts by mass per 100 parts by mass of the hot-melt urethane prepolymer (A) in order to maintain high levels of adhesion and durability.
 前記化合物(B)としては、例えば、メタンスルホン酸、エタンスルホン酸、メタンジスルホン酸、2-ヒドロキシ-1-エタンスルホン酸、スルホ酢酸、2-アミノ-1-エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、キシレンスルホン酸、アルキルベンゼンスルホン酸等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、特に、ポリ塩化ビニルへの接着性がより一層向上する点から、メタンスルホン酸が好ましい。 Examples of the compound (B) that can be used include methanesulfonic acid, ethanesulfonic acid, methanedisulfonic acid, 2-hydroxy-1-ethanesulfonic acid, sulfoacetic acid, 2-amino-1-ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, xylenesulfonic acid, and alkylbenzenesulfonic acid. These compounds may be used alone or in combination of two or more. Among these, methanesulfonic acid is particularly preferred because it further improves adhesion to polyvinyl chloride.
 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、前記ホットメルトウレタンプレポリマー(A)及び前記化合物(B)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。 The moisture-curable polyurethane hot-melt resin composition of the present invention contains the hot-melt urethane prepolymer (A) and the compound (B) as essential components, but may contain other additives as necessary.
 前記その他の添加剤としては、例えば、ウレタン化触媒、中和剤、架橋剤、シランカップリング剤、増粘剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、吸水剤、吸湿剤、消臭剤、整泡剤、可塑剤、ブロッキング防止剤、加水分解防止剤等を用いることができる。これらの添加剤は単独で用いても2種以上を併用してもよい。 Examples of the other additives that can be used include urethane catalysts, neutralizing agents, crosslinking agents, silane coupling agents, thickeners, fillers, thixotropic agents, tackifiers, waxes, heat stabilizers, light resistance stabilizers, fluorescent whitening agents, foaming agents, pigments, dyes, conductivity agents, antistatic agents, moisture permeability enhancers, water repellents, oil repellents, hollow foams, water absorbents, moisture absorbents, deodorizers, foam stabilizers, plasticizers, antiblocking agents, hydrolysis inhibitors, etc. These additives may be used alone or in combination of two or more.
 以上、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、接着性、低温屈曲性、及び、耐久性に優れるものである。よって、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物は、熱可塑性樹脂を表皮材とする合成皮革の製造に特に好適に用いることができる。 As described above, the moisture-curable polyurethane hot melt resin composition of the present invention has excellent adhesion, low-temperature flexibility, and durability. Therefore, the moisture-curable polyurethane hot melt resin composition of the present invention can be particularly suitably used in the manufacture of synthetic leather that uses a thermoplastic resin as the skin material.
 次に、本発明の合成皮革について説明する。 Next, we will explain the synthetic leather of the present invention.
 前記合成皮革は、少なくとも熱可塑性樹脂層、及び、前記の湿気硬化型ポリウレタンホットメルト樹脂組成物を含有する接着剤層を有するものであり、例えば、基材、前記接着剤層、及び、熱可塑性樹脂層を順次積層したものが挙げられる。 The synthetic leather has at least a thermoplastic resin layer and an adhesive layer containing the moisture-curable polyurethane hot melt resin composition, and may be, for example, a layer of a substrate, the adhesive layer, and a thermoplastic resin layer laminated in that order.
 前記基材としては、例えば、ポリエステル繊維、ポリエチレン繊維、ナイロン繊維、アクリル繊維、ポリウレタン繊維、アセテート繊維、レーヨン繊維、ポリ乳酸繊維、綿、麻、絹、羊毛、グラスファイバー、炭素繊維、それらの混紡繊維等による不織布、織布、編み物などを用いることができる。 The substrate may be, for example, a nonwoven fabric, woven fabric, or knitted fabric made of polyester fiber, polyethylene fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber, cotton, hemp, silk, wool, glass fiber, carbon fiber, or a blend of these fibers.
 前記熱可塑性樹脂層としては、例えば、公知のポリ塩化ビニル、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリスチレン、TPO(Thermoplastic Olefinic Elastomer)、熱可塑性エステル系エラストマー、熱可塑性ポリウレタン等により形成されたものを用いることができる。本発明においては、前記熱可塑性樹脂として、ポリ塩化ビニルを用いた場合であっても優れた接着性を有する。 The thermoplastic resin layer may be formed from, for example, known polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polystyrene, TPO (Thermoplastic Olefinic Elastomer), thermoplastic ester-based elastomer, thermoplastic polyurethane, etc. In the present invention, even when polyvinyl chloride is used as the thermoplastic resin, excellent adhesion is achieved.
 前記接着剤層は、本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物により形成されるが、その形成方法としては、例えば、前記湿気硬化型ポリウレタンホットメルト樹脂組成物を100~140℃で溶融した後、ロールコーター、スプレーコーター、T-ダイコーター、ナイフコーター、コンマコーター等のコーター方式;ディスペンサー、インクジェット印刷、スクリーン印刷、オフセット印刷等の精密方式;ノズル塗布などを使用して前記熱可塑性樹脂層又は前記基材に塗布し、その後貼り合わせる方法が挙げられる。 The adhesive layer is formed from the moisture-curable polyurethane hot melt resin composition of the present invention, and examples of the method for forming the adhesive layer include a method in which the moisture-curable polyurethane hot melt resin composition is melted at 100 to 140°C, and then coated onto the thermoplastic resin layer or the substrate using a coater method such as a roll coater, spray coater, T-die coater, knife coater, or comma coater; a precision method such as a dispenser, inkjet printing, screen printing, or offset printing; or a nozzle coater, and then the layers are bonded together.
 また、前記接着剤により2つの層を貼り合わせた後は、必要に応じて接着剤を乾燥、養生を公知の方法で行うことができる。 In addition, after the two layers are bonded together with the adhesive, the adhesive can be dried and cured as necessary using known methods.
 前記合成皮革としては、前記熱可塑性樹脂層のうえに、更に表面処理層を設けてもよい。前記表面処理層としては、例えば、公知の溶剤系ウレタン樹脂、水系ウレタン樹脂、溶剤系アクリル樹脂、水系アクリル樹脂等により形成されたものを用いることができる。 The synthetic leather may further have a surface treatment layer on top of the thermoplastic resin layer. The surface treatment layer may be made of, for example, a known solvent-based urethane resin, water-based urethane resin, solvent-based acrylic resin, water-based acrylic resin, etc.
 以下、実施例を用いて、本発明をより詳細に説明する。 The present invention will be explained in more detail below using examples.
[実施例1]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、ポリテトラメチレングリコール(数平均分子量;2、000、以下「PEt-1」と略記する。)を122質量部、ポリエステルポリオール(1,6-ヘキサンジオール、及びオルトフタル酸を反応させたもの、数平均分子量;2、000、以下「PEs-1」と略記する。)を73質量部、ポリエステルポリオール(1,6-ヘキサンジオール、及びセバシン酸を反応させたもの、数平均分子量;3,500、以下「PEs-2」と略記する。)を49質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融した4,4’-ジフェニルメタンジイソシアネート(以下「MDI」と略記する。)を57質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、メタンスルホン酸(以下「化合物(B1)」と略記する。)0.45質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(1)を得た。
[Example 1]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 122 parts by mass of polytetramethylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-1"), 73 parts by mass of polyester polyol (residual reaction of 1,6-hexanediol and orthophthalic acid, number average molecular weight: 2,000, hereinafter abbreviated as "PEs-1"), and 49 parts by mass of polyester polyol (residual reaction of 1,6-hexanediol and sebacic acid, number average molecular weight: 3,500, hereinafter abbreviated as "PEs-2"), mixed, and heated at 100°C under reduced pressure to dehydrate the water in the flask until the water content was 0.05% by mass or less. The flask was then cooled to 90°C, and 57 parts by mass of 4,4'-diphenylmethane diisocyanate (hereinafter abbreviated as "MDI") melted at 70°C was added, and the mixture was allowed to react at 110°C for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, yielding a hot-melt urethane prepolymer. 0.45 parts by mass of methanesulfonic acid (hereinafter abbreviated as "compound (B1)") was blended with 100 parts by mass of this hot-melt urethane prepolymer to obtain a moisture-curable polyurethane hot-melt resin composition (1).
[実施例2]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を119質量部、PEs-1を50質量部、PEs-2を30質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを44質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.1質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(2)を得た。
[Example 2]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 119 parts by mass of PEt-1, 50 parts by mass of PEs-1, and 30 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 44 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.1 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (2).
[実施例3]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、ポリプロピレングリコール(数平均分子量;2、000、以下「PEt-2」と略記する。)を188質量部、PEs-1を68質量部、ポリエステルポリオール(エチレングリコール、ネオペンチルグリコール、16-ヘキサンジオール、及び、アジピン酸を反応させたもの、数平均分子量;5,500、以下「PEs-3」と略記する。)を85質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを69質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.3質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(3)を得た。
[Example 3]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 188 parts by mass of polypropylene glycol (number average molecular weight: 2,000, hereinafter abbreviated as "PEt-2"), 68 parts by mass of PEs-1, and 85 parts by mass of polyester polyol (ethylene glycol, neopentyl glycol, 16-hexanediol, and adipic acid reacted, number average molecular weight: 5,500, hereinafter abbreviated as "PEs-3") were added, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 69 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.3 parts by mass of compound (B1) was blended with 100 parts by mass of this hot-melt urethane prepolymer to obtain a moisture-curable polyurethane hot-melt resin composition (3).
[実施例4]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を52質量部、PEs-1を22質量部、PEs-2を13質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを19質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.25質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(4)を得た。
[Example 4]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 52 parts by mass of PEt-1, 22 parts by mass of PEs-1, and 13 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 19 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.25 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (4).
[実施例5]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-2を83質量部、PEs-1を19質量部、PEs-3を26質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを28質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.85質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(5)を得た。
[Example 5]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 83 parts by mass of PEt-2, 19 parts by mass of PEs-1, and 26 parts by mass of PEs-3 were added, mixed, and heated under reduced pressure at 100 ° C., and the moisture in the flask was dehydrated to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 28 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.85 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (5).
[実施例6]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を208質量部、PEs-1を48質量部、PEs-3を64質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを66質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.3質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(6)を得た。
[Example 6]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 208 parts by mass of PEt-1, 48 parts by mass of PEs-1, and 64 parts by mass of PEs-3, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 66 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.3 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (6).
[実施例7]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を29質量部、PEt-2を29質量部、PEs-1を19質量部、PEs-2を19質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを21質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.1質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(7)を得た。
[Example 7]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 29 parts by mass of PEt-1, 29 parts by mass of PEt-2, 19 parts by mass of PEs-1, and 19 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 21 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.1 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (7).
[実施例8]
 PEt-1をバイオマスポリテトラメチレングリコール(三菱ケミカル株式会社製「Bio PTMG」、数平均分子量;2,000)に種類を変更した以外は実施例1と同様にして湿気硬化型ポリウレタンホットメルト樹脂組成物(8)を得た。
[Example 8]
A moisture-curable polyurethane hot melt resin composition (8) was obtained in the same manner as in Example 1, except that PEt-1 was replaced with biomass polytetramethylene glycol ("Bio PTMG" manufactured by Mitsubishi Chemical Corporation, number average molecular weight: 2,000).
[比較例1]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を67質量部、PEs-1を24質量部、PEs-2を18質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを24質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.005質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R1)を得た。
[Comparative Example 1]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 67 parts by mass of PEt-1, 24 parts by mass of PEs-1, and 18 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 24 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.005 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (R1).
[比較例2]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-2を139質量部、PEs-1を58質量部、PEs-2を35質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを52質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)2質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R2)を得た。
[Comparative Example 2]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 139 parts by mass of PEt-2, 58 parts by mass of PEs-1, and 35 parts by mass of PEs-2, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 52 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 2 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (R2).
[比較例3]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を58質量部、PEs-1を58質量部、PEs-3を50質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを32質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得、湿気硬化型ポリウレタンホットメルト樹脂組成物(R3)を得た。
[Comparative Example 3]
In a four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser, 58 parts by mass of PEt-1, 58 parts by mass of PEs-1, and 50 parts by mass of PEs-3 were placed, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 32 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer, and a moisture-curable polyurethane hot melt resin composition (R3) was obtained.
[比較例4]
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四ツ口フラスコに、PEt-1を54質量部、PEs-1を81質量部、PEs-3を45質量部入れ、混合し、100℃で減圧加熱することにより、フラスコ内の水分が0.05質量%以下となるまで脱水した。次いで、フラスコ内を90℃に冷却し、70℃で溶融したMDIを37質量部加え、窒素雰囲気下でイソシアネート基含有量が一定となるまで110℃で約3時間反応させ、ホットメルトウレタンプレポリマーを得た。このホットメルトウレタンプレポリマー100質量部に対し、化合物(B1)0.3質量部を配合し、湿気硬化型ポリウレタンホットメルト樹脂組成物(R4)を得た。
[Comparative Example 4]
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was charged with 54 parts by mass of PEt-1, 81 parts by mass of PEs-1, and 45 parts by mass of PEs-3, mixed, and heated under reduced pressure at 100 ° C. to dehydrate the water content in the flask to 0.05% by mass or less. Next, the flask was cooled to 90 ° C., 37 parts by mass of MDI melted at 70 ° C. was added, and the mixture was reacted at 110 ° C. for about 3 hours under a nitrogen atmosphere until the isocyanate group content became constant, to obtain a hot melt urethane prepolymer. 0.3 parts by mass of the compound (B1) was blended with 100 parts by mass of this hot melt urethane prepolymer to obtain a moisture-curable polyurethane hot melt resin composition (R4).
[数平均分子量、重量平均分子量の測定方法]
実施例および比較例で用いたポリオールの数平均分子量は、ゲル・パーミエーション・カラムクロマトグラフィー(GPC)法により、下記の条件で測定し得られた値を示す。
[Method of measuring number average molecular weight and weight average molecular weight]
The number average molecular weights of the polyols used in the examples and comparative examples are values measured by gel permeation column chromatography (GPC) under the following conditions.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measurement device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were used, connected in series.
"TSKgel G5000" (7.8mm I.D. x 30cm) x 1 "TSKgel G4000" (7.8mm I.D. x 30cm) x 1 "TSKgel G3000" (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D. x 30cm) x 1 Detector: RI (differential refractometer)
Column temperature: 40°C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL/min Injection volume: 100 μL (sample concentration 0.4% by mass in tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
[合成皮革の作製方法]
 温度23℃、湿度50±5%に調整された恒温恒湿室にて、ポリ塩化ビニルシートにグラビアコーターを用いて、実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物を40±5g/mとなるように間欠塗布し、ポリエステル系生地と貼り合わせしたものを温度23℃、湿度50±5%の条件で24時間熟成させることで合成皮革を得た。
[Method of producing synthetic leather]
In a constant temperature and humidity chamber adjusted to a temperature of 23°C and a humidity of 50±5%, a polyvinyl chloride sheet was intermittently coated with a gravure coater to give a coating of 40±5 g/ m2 of the moisture-curable polyurethane hot-melt resin composition obtained in the Examples and Comparative Examples. The sheet was then laminated with a polyester fabric and aged for 24 hours at a temperature of 23°C and a humidity of 50±5%, to obtain synthetic leather.
[接着性の評価方法]
 得られたそれぞれの合成皮革に対して、テンシロン(オリエンテック株式会社製テンシロン万能試験機「RTC-1210A」)を使用して、クロスヘッド測度;200mm/分の条件で剥離強度を測定し、6N/cm以上を「○」、6N/cm未満を「×」と評価した。
[Method for evaluating adhesiveness]
For each of the obtained synthetic leathers, the peel strength was measured using a Tensilon (Tensilon universal testing machine "RTC-1210A" manufactured by Orientec Co., Ltd.) under the condition of a crosshead measurement of 200 mm/min, and a value of 6 N/cm or more was evaluated as "○", and a value of less than 6 N/cm was evaluated as "×".
[低温屈曲性の評価方法]
 得られたそれぞれの合成皮革をフレキソメーターでの屈曲性試験(-10℃、100回/毎分)を行い、合成皮革の表面に割れが生じるまでの回数を測定し、20,000回以上を「○」、20,000回未満を「×」と評価した。
[Method for evaluating low-temperature flexibility]
Each of the obtained synthetic leathers was subjected to a bending test using a flexometer (−10° C., 100 times/min) to measure the number of times until cracks appeared on the surface of the synthetic leather. 20,000 times or more was evaluated as "○", and less than 20,000 times was evaluated as "×".
[耐久性の評価方法]
 実施例及び比較例で得られた湿気硬化型ポリウレタンホットメルト樹脂組成物をロールコーターにて厚さ30ミクロンになるように塗布し、その後、温度23℃、湿度50±5%の条件で24時間以上熟成させて皮膜を作製した。次いで、得られた皮膜を幅5mm、長さ50mmの短冊状に裁断し、引張試験機「オートグラフAG-i」(株式会社島津製作所製)を用いて、温度23℃の雰囲気下で、クロスヘッドスピード10mm/秒の条件で引張り、試験片の100%モジュラス(MPa)を測定した。この時のチャック間距離は40mmとした。さらに、作製した皮膜を耐久性試験として温度70℃、湿度95±5%の条件で5週間静置したものの皮膜強度を測定し、その際の100%モジュラス(MPa)の値を測定し、この値を耐久試験前の試験片の100%モジュラス(MPa)の値で除した値を100%モジュラスの保持率とした。この保持率が30%以上を「○」、10%以上、30%未満を「△」、10%未満を「×」とした。
[Durability evaluation method]
The moisture-curable polyurethane hot melt resin composition obtained in the examples and comparative examples was applied to a thickness of 30 microns using a roll coater, and then aged for 24 hours or more under conditions of a temperature of 23 ° C. and a humidity of 50 ± 5% to produce a film. Next, the obtained film was cut into strips with a width of 5 mm and a length of 50 mm, and the film was stretched at a crosshead speed of 10 mm / sec under an atmosphere of a temperature of 23 ° C. using a tensile tester "Autograph AG-i" (manufactured by Shimadzu Corporation), and the 100% modulus (MPa) of the test piece was measured. The chuck distance at this time was 40 mm. Furthermore, the film strength of the film prepared was measured after leaving it for 5 weeks under conditions of a temperature of 70 ° C. and a humidity of 95 ± 5% as a durability test, and the value of the 100% modulus (MPa) at that time was measured, and the value divided by the value of the 100% modulus (MPa) of the test piece before the durability test was taken as the 100% modulus retention rate. A retention rate of 30% or more was evaluated as "◯", a retention rate of 10% or more but less than 30% was evaluated as "Δ", and a retention rate of less than 10% was evaluated as "×".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 本発明の湿気硬化型ポリウレタンホットメルト樹脂組成物である実施例1~8は、接着性、低温屈曲性、及び、耐久性に優れることが分かった。 The moisture-curable polyurethane hot melt resin compositions of the present invention, Examples 1 to 8, were found to have excellent adhesion, low-temperature flexibility, and durability.
 一方、比較例1は、化合物(B)の含有量が、本発明で規定する範囲を下回る態様であるが、接着性が不良であった。 On the other hand, in Comparative Example 1, the content of compound (B) was below the range specified in the present invention, but the adhesion was poor.
 比較例2は、化合物(B)の含有量が、本発明で規定する範囲を超える態様であるが、耐久性が不良であった。 Comparative Example 2 is an embodiment in which the content of compound (B) exceeds the range specified in the present invention, but the durability was poor.
 比較例3は、ポリエーテルポリオール(a1)の使用量が、本発明で規定する範囲を下回り、かつ化合物(B)を用いない態様であるが、接着性、及び、低温屈曲性が不良であった。 Comparative Example 3 is an embodiment in which the amount of polyether polyol (a1) used is below the range specified in the present invention and compound (B) is not used, but the adhesion and low-temperature flexibility were poor.
 比較例4は、ポリエーテルポリオール(a1)の使用量が、本発明で規定する範囲を下回る態様であるが、低温屈曲性が不良であった。 Comparative Example 4 is an embodiment in which the amount of polyether polyol (a1) used is below the range specified in the present invention, but the low-temperature flexibility was poor.

Claims (5)

  1. イソシアネート基を有するホットメルトウレタンプレポリマー(A)、及び、スルホン酸基を有する化合物(B)を含有する湿気硬化型ポリウレタンホットメルト樹脂組成物であって、
    前記ホットメルトプレポリマー(A)が、ポリエーテルポリオール(a1)を50質量%以上含むポリオール(a)を原料とするものであり、
    前記化合物(B)の含有量が、前記ホットメルトウレタンプレポリマー(A)100質量部に対して、0.01~1質量部の範囲であることを特徴とする湿気硬化型ポリウレタンホットメルト樹脂組成物。
    A moisture-curable polyurethane hot-melt resin composition comprising a hot-melt urethane prepolymer (A) having an isocyanate group and a compound (B) having a sulfonic acid group,
    The hot melt prepolymer (A) is made from a polyol (a) containing 50% by mass or more of a polyether polyol (a1),
    The content of the compound (B) is in the range of 0.01 to 1 part by mass per 100 parts by mass of the hot-melt urethane prepolymer (A).
  2. 前記化合物(B)が、メタンスルホン酸である請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物。 The moisture-curable polyurethane hot melt resin composition according to claim 1, wherein the compound (B) is methanesulfonic acid.
  3. 請求項1記載の湿気硬化型ポリウレタンホットメルト樹脂組成物を含有することを特徴とする接着剤。 An adhesive comprising the moisture-curable polyurethane hot melt resin composition according to claim 1.
  4. 少なくとも、熱可塑性樹脂層、及び、請求項3記載の接着剤層とを有することを特徴とする合成皮革。 Synthetic leather characterized by having at least a thermoplastic resin layer and the adhesive layer described in claim 3.
  5. 前記熱可塑性樹脂が、ポリ塩化ビニルである請求項4記載の合成皮革。 The synthetic leather according to claim 4, wherein the thermoplastic resin is polyvinyl chloride.
PCT/JP2023/024119 2022-11-01 2023-06-29 Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather WO2024095530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022175435 2022-11-01
JP2022-175435 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024095530A1 true WO2024095530A1 (en) 2024-05-10

Family

ID=90930154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024119 WO2024095530A1 (en) 2022-11-01 2023-06-29 Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather

Country Status (1)

Country Link
WO (1) WO2024095530A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624425A (en) * 1979-08-03 1981-03-09 Mitui Toatsu Chem Inc Bonding of polyurethane elastomer to metal
JP2003049147A (en) * 2001-08-08 2003-02-21 Dainippon Ink & Chem Inc Nonsolvent-type hot-melt urethane resin adhesive curable by moisture for synthetic leather, and synthetic leather structure using the same
WO2017038195A1 (en) * 2015-09-02 2017-03-09 Dic株式会社 Moisture curable hot melt urethane composition, method for producing cured foam of same, synthetic leather and method for producing synthetic leather
WO2018173768A1 (en) * 2017-03-24 2018-09-27 Dic株式会社 Moisture-curable hot-melt polyurethane resin composition and laminate
WO2019123968A1 (en) * 2017-12-20 2019-06-27 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition and article obtained using same
JP2020002262A (en) * 2018-06-28 2020-01-09 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition
CN113683951A (en) * 2021-09-07 2021-11-23 建国伟业防水科技望都有限公司 Environment-friendly single-component polyurethane coating and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624425A (en) * 1979-08-03 1981-03-09 Mitui Toatsu Chem Inc Bonding of polyurethane elastomer to metal
JP2003049147A (en) * 2001-08-08 2003-02-21 Dainippon Ink & Chem Inc Nonsolvent-type hot-melt urethane resin adhesive curable by moisture for synthetic leather, and synthetic leather structure using the same
WO2017038195A1 (en) * 2015-09-02 2017-03-09 Dic株式会社 Moisture curable hot melt urethane composition, method for producing cured foam of same, synthetic leather and method for producing synthetic leather
WO2018173768A1 (en) * 2017-03-24 2018-09-27 Dic株式会社 Moisture-curable hot-melt polyurethane resin composition and laminate
WO2019123968A1 (en) * 2017-12-20 2019-06-27 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition and article obtained using same
JP2020002262A (en) * 2018-06-28 2020-01-09 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition
CN113683951A (en) * 2021-09-07 2021-11-23 建国伟业防水科技望都有限公司 Environment-friendly single-component polyurethane coating and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101934662B1 (en) Manufacturing method of leather-like sheet
CN111108244B (en) Synthetic leather
CN110418809B (en) Moisture-curable polyurethane hot-melt resin composition and laminate
KR102623240B1 (en) Moisture curing polyurethane adhesive composition
KR102102265B1 (en) One-component aqueous resin composition, and fiber laminate
KR101514107B1 (en) Urethane Prepolymer
CN111868195B (en) Adhesive and synthetic leather
KR102428612B1 (en) Synthetic leather manufacturing method
KR102522431B1 (en) Synthetic Leather
CN112673130B (en) Synthetic leather
TW202348669A (en) Moisture-curable urethane hot melt resin composition, multilayer body and synthetic artificial leather
WO2024095530A1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
CN114222772B (en) Moisture-curable polyurethane hot-melt resin composition, adhesive, and laminate
WO2019163621A1 (en) Moisture-curable polyurethane hot melt resin composition, and cured product thereof
JP6836735B2 (en) Synthetic leather
JP6485726B1 (en) Synthetic leather manufacturing method
CN116390856A (en) Laminate and synthetic leather
CN116333662A (en) Moisture-curable polyurethane hot-melt resin composition, adhesive, and synthetic leather
WO2024084729A1 (en) Moisture-curable polyurethane hot melt resin composition, adhesive, and synthetic leather
WO2024116443A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
JP7517622B2 (en) Method for manufacturing polyurethane foam sheet and method for manufacturing synthetic leather
CN114729181B (en) Aqueous urethane resin dispersion, synthetic leather, and method for producing synthetic leather
WO2024122083A1 (en) Moisture-curable polyurethane resin composition, adhesive, and laminate
WO2024122084A1 (en) Manufacturing method for polyurethane foam sheet and manufacturing method for synthetic leather
TW202424030A (en) Moisture-curing polyurethane resin composition, adhesive and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885303

Country of ref document: EP

Kind code of ref document: A1