WO2024083824A1 - Procédé de détermination d'une hauteur d'un dispositif mobile - Google Patents

Procédé de détermination d'une hauteur d'un dispositif mobile Download PDF

Info

Publication number
WO2024083824A1
WO2024083824A1 PCT/EP2023/078832 EP2023078832W WO2024083824A1 WO 2024083824 A1 WO2024083824 A1 WO 2024083824A1 EP 2023078832 W EP2023078832 W EP 2023078832W WO 2024083824 A1 WO2024083824 A1 WO 2024083824A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
measured values
determining
pressure sensor
height
Prior art date
Application number
PCT/EP2023/078832
Other languages
German (de)
English (en)
Inventor
Thomas Block
Mathias Winberg
Kaustubh Gandhi
Sara Soltani
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2024083824A1 publication Critical patent/WO2024083824A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Definitions

  • the invention relates to a method for determining a height of a movable device.
  • the invention further relates to a movable device.
  • the present invention provides a method for determining a height of a movable device, comprising the steps
  • the present invention provides a system for determining a height of a movable device, comprising a movable, in particular portable, device, comprising
  • a first pressure sensor for determining an air pressure in the environment of the device, a motion sensor, in particular in the form of an acceleration sensor, a determination device designed to determine a state of movement of the device based on measured values of the motion sensor, a measuring device designed to measure a first air pressure and a second air pressure by means of the first pressure sensor if a standstill of the device was determined as the state of movement by means of the determination device, wherein a movement of the device was determined between the two measurements and an altitude determination device designed to determine an altitude based on a difference in the measured air pressures and a stationary second pressure sensor in an environment of the device, wherein the second pressure sensor is at least temporarily connected to the movable device.
  • the measured values of the first and second pressure sensors are compared at a common height to determine an absolute height. This allows the absolute height to be determined particularly precisely.
  • measured values from the motion sensor and/or the first and/or the second pressure sensor are processed, in particular filtered, before the height is determined.
  • the advantage is that the accuracy of determining the height can be improved because, for example, outliers etc. are not taken into account when calculating the height.
  • the filtering is carried out using a filter with a finite impulse response, FIR filter, in particular a Gaussian FIR filter.
  • FIR filtering the variance can be reduced or the noise in the measured values of the first and/or second pressure sensor can be reduced or removed.
  • the filtering can be used both when calibrating the two pressure sensors and during normal operation.
  • the filtering is carried out by means of a filter with infinite impulse response, IIR filter, in particular with a first-order IIR filter.
  • IIR filter infinite impulse response filter
  • the advantages of 11 R filtering are a reduction in the variance when estimating a calibration constant.
  • the filtering of the measured values of the pressure sensors is carried out using the FIR filter and then the filtered measured values are filtered using the II R filter.
  • the advantage of this is that a particularly accurate estimate of a calibration constant can be achieved.
  • 11 R filtering is only used during the calibration of the two pressure sensors, whereas Fl filtering is used both during operation and during calibration.
  • the motion sensor detects a movement of the device in the z-direction, vertical direction, to determine the movement state.
  • the advantage of this is that measurements are essentially only taken in one spatial direction, which simplifies the calculation and determination of the movement state.
  • the movement state is determined by comparing the measured values of the motion sensor with a threshold value. This ensures a quick and simple determination of the movement state with sufficient accuracy.
  • the second pressure sensor is connected wirelessly to the movable device for transmitting measured values, in particular via mobile radio, WLAN, Bluetooth or the like.
  • the advantage of this is that changed measured values can be easily transmitted for the reference for height calculation, which overall improves the accuracy in determining the height of the movable device.
  • the absolute height is determined based on the determined height and the height of the second pressure sensor. This enables a simple, fast and sufficiently accurate absolute height determination of the movable device.
  • Figure 1 is a flow chart of a method according to an embodiment of the present invention.
  • Figure 2 shows a movement diagram of a movable device according to an embodiment of the present invention
  • Figure 4 shows the determined relative height difference of the movable device for the movement scheme of Figure 2;
  • Figure 5 shows the determined absolute height of the movable device for the movement scheme of Figure 2;
  • Figure 6 is a flow chart of a calibration method according to an embodiment of the present invention.
  • Figure 7 shows a flow chart of a measuring method according to an embodiment of the present invention.
  • Figure 8 shows a system according to an embodiment of the present invention.
  • Figure 1 shows a flow chart of a method according to an embodiment of the present invention.
  • Figure 1 shows a flow chart of a method for determining a floor.
  • the basis for the flow chart is a building with several floors in which a user carries a mobile device in the form of a mobile phone, as shown, for example, in Figure 8.
  • step S1 measured values from an acceleration sensor of a movable device
  • step T1 a pressure sensor of the movable device
  • step VI a pressure sensor arranged stationary in the building
  • an altitude is calculated (step TV3).
  • a movement of the mobile device is also calculated based on the filtered measured values of the acceleration sensor (step S3).
  • the determined value for the movement is then compared with a threshold value (step S4). If this is above a threshold value (step S5), step S4 is carried out again. If this is below a threshold value, i.e. the mobile device is stationary, the floor on which the mobile device is located is determined based on the determined height (step TV3).
  • the movement can only be based on a movement in the z-direction, ie in the vertical direction, since a movement of the mobile device in one plane, ie on the same floor, does not allow a change of floor.
  • this can measure an acceleration of the mobile device in all three spatial directions.
  • a threshold value can be specified in each spatial direction, from which a movement of the mobile device is then "recognized" or not.
  • Figure 2 shows a movement diagram of a movable device according to an embodiment of the present invention.
  • FIG 2 shows an example of a vertical movement VB of a mobile radio device M over various parallel planes E1-E4 (reference number 202) over time 201.
  • the mobile radio device here comprises a pressure sensor and a three-dimensional acceleration sensor.
  • the planes El-E4 are chosen to be equidistant with a distance of 20 cm. However, any other desired distance is also conceivable.
  • the movement pattern of the mobile device M according to Figure 2 passes through the planes E1-E4 in the following sequences, whereby a horizontal movement of the mobile device takes place in a respective plane E1-E4.
  • Figure 3 shows measured values of the pressure sensors according to the movement pattern in Figure 2
  • Figure 4 shows a determined relative height difference of the movable device for the movement pattern in Figure 2
  • Figure 5 shows the determined absolute height of the movable device for the movement pattern in Figure 2.
  • Figure 3 shows the already filtered measured values 302 of the pressure sensor in the unit hPa in the mobile device - curve Ml - and the measured values of the stationary pressure sensor - curve M2 over time 301 - here as “sample no.”
  • Figure 4 shows the relative heights 402 calculated from the filtered measured values in the unit meters over time 401 - here as “sample no.”
  • the vertical flanks represent vertical movements VB of the mobile device, the horizontal curves horizontal movements HB.
  • Figure 5 shows the Absolute heights 502 calculated from the filtered measured values in the unit meters over time 501 - here as "sample number.” - are shown.
  • the vertical flanks represent vertical movements VB of the mobile device, the horizontal courses horizontal movements HB.
  • the different levels E1-E4 can be assigned to the respective horizontal movements HB where no movement occurs in the vertical direction.
  • Figure 6 shows a flow chart of a calibration method according to an embodiment of the present invention.
  • Figure 6 shows a calibration procedure for comparing the measured values of the two pressure sensors. Both pressure sensors are arranged at the same height.
  • the respective measured values of the pressure sensors are first read out (steps Al, Bl) and then filtered, for example with an FIR filter.
  • the difference between the filtered values is then calculated (step AB3) and filtered with an II R filter, in particular a first-order II R filter with filter constant a (step AB4) and a calibration constant C is determined (step AB5).
  • This calibration constant C is used to determine the absolute height. If only a relative height is determined, the calibration procedure can be omitted and the constant C can be set to 0. The calibration procedure is only carried out for a few seconds until a calibration constant that is stable over time is available.
  • the variable "x" generally determines the location or position.
  • Figure 7 shows a flow chart of a method for determining an altitude according to an embodiment of the present invention.
  • the respective measured values of the pressure sensors are first read out (steps Al, Bl) and then filtered, for example with an FIR filter.
  • the difference between the filtered values is then taking into account the constant determined from the calibration process according to Figure 6 (step A3).
  • measured values from the acceleration sensor of the mobile device are used to determine whether there is movement (step CI) or not. If there is no movement (step A4), a height is determined based on the difference and a factor (step A5) and output (step A6)
  • Figure 8 shows a system according to an embodiment of the present invention.
  • Figure 8 shows a building H with five sections E1-E5.
  • a stationary pressure sensor D1 is provided on the ground floor El.
  • a user N can move between the floors E1-E5 using an elevator A.
  • the user N carries a mobile device M with him, which has a pressure sensor D2 and an acceleration sensor.
  • the mobile device also has a computing device such as a processor and a memory, which comprise the following units: a determination device 10 designed to determine a state of motion of the device based on measured values from the motion sensor, a measuring device 11 designed to measure a first air pressure and a second air pressure using the first pressure sensor if a standstill of the device was determined as the state of motion using the determination device, and an altitude determination device 12 designed to determine an altitude based on a difference in the measured air pressures.
  • a computing device such as a processor and a memory, which comprise the following units: a determination device 10 designed to determine a state of motion of the device based on measured values from the motion sensor, a measuring device 11 designed to measure a first air pressure and a second air pressure using the first pressure sensor if a standstill of the device was determined as the state of motion using the determination device, and an altitude determination device 12 designed to determine an altitude based on a difference in the measured air pressures.
  • At least one of the embodiments of the invention can provide at least one of the following advantages and/or have the following features: accurate height estimation or calculation efficient filtering of measured values for height calculation high accuracy, especially in the cm range when determining height Applicable in many different areas such as

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

L'invention concerne un procédé de détermination d'une hauteur d'un dispositif mobile, comprenant les étapes consistant à fournir le dispositif mobile, en particulier portable, ayant un premier capteur de pression pour déterminer une pression d'air de l'environnement du dispositif, fournir un deuxième capteur de pression fixe dans un environnement du dispositif, en particulier sur une paroi ou similaire, fournir un capteur de mouvement, en particulier sous la forme d'un capteur d'accélération, dans le dispositif, déterminer un état de mouvement du dispositif sur la base de valeurs mesurées provenant du capteur de mouvement, mesurer une première pression d'air et une deuxième pression d'air au moyen du premier capteur de pression si une immobilisation du dispositif a été déterminée en tant qu'état de mouvement, un mouvement du dispositif ayant été déterminé entre les deux mesures, et déterminer une hauteur relative et/ou absolue au moins sur la base d'une différence entre les pressions d'air mesurées.
PCT/EP2023/078832 2022-10-18 2023-10-17 Procédé de détermination d'une hauteur d'un dispositif mobile WO2024083824A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022211030.7A DE102022211030A1 (de) 2022-10-18 2022-10-18 Verfahren zum Ermitteln einer Höhe eines bewegbaren Geräts
DE102022211030.7 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024083824A1 true WO2024083824A1 (fr) 2024-04-25

Family

ID=88505091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/078832 WO2024083824A1 (fr) 2022-10-18 2023-10-17 Procédé de détermination d'une hauteur d'un dispositif mobile

Country Status (2)

Country Link
DE (1) DE102022211030A1 (fr)
WO (1) WO2024083824A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851577A (zh) * 2017-02-21 2017-06-13 北京邮电大学 基于差分气压测高确定移动目标所处楼层的方法及装置
US20180058967A1 (en) * 2016-08-23 2018-03-01 Samsung Electronics Co., Ltd. Method for providing location information of an external device and electronic device thereof
US20180372836A1 (en) * 2015-08-27 2018-12-27 Huawei Technologies Co., Ltd. Floor Determining Method and System, and Related Device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120290253A1 (en) 2011-05-10 2012-11-15 Qualcomm Incorporated Apparatus and methods for height determination
FI124586B (fi) 2012-02-03 2014-10-31 Suunto Oy Menetelmä ja laite korkeuden määrittämiseksi
JP6605743B2 (ja) 2016-08-29 2019-11-13 京セラ株式会社 携帯電子機器、路側機、携帯電子機器制御プログラム及び路側機制御プログラム
GB2578652B (en) 2018-10-30 2022-08-24 Navenio Ltd Floor assignment
US11143506B2 (en) 2019-10-11 2021-10-12 Verizon Patent And Licensing Inc. Systems and methods for determining a barometric pressure bias of a mobile device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372836A1 (en) * 2015-08-27 2018-12-27 Huawei Technologies Co., Ltd. Floor Determining Method and System, and Related Device
US20180058967A1 (en) * 2016-08-23 2018-03-01 Samsung Electronics Co., Ltd. Method for providing location information of an external device and electronic device thereof
CN106851577A (zh) * 2017-02-21 2017-06-13 北京邮电大学 基于差分气压测高确定移动目标所处楼层的方法及装置

Also Published As

Publication number Publication date
DE102022211030A1 (de) 2024-04-18

Similar Documents

Publication Publication Date Title
WO1998012505A1 (fr) Procede et dispositif pour etalonner automatiquement un odometre
DE102008052954A1 (de) Verfahren zur Schwingungsunterdrückung und Vorrichtung hierfür
EP0741299B1 (fr) Circuit de détermination des différences de capacité
DE102012014313A1 (de) Numerische steuervorrichtung eines maschinenwerkzeugs mit tonumwandlungseinheit
WO2018162152A2 (fr) Définition d'une orientation spatiale
EP1659683A1 (fr) Dispositif et méthode destinés à determiner le composant alternatif d'un courant produit par la commutation mécanique d'un moteur à courant continu
DE112005000698B4 (de) Messvorrichtung und Messverfahren zur Bestimmung von Batteriezellenspannungen
DE2827669C2 (de) Verfahren zur Ermittlung der Größe und Phasenlage von durch Meßwertaufnehmer erfaßten Schwingungen, insbesondere in der Auswuchttechnik
DE102016123629A1 (de) Regelsystem für einen Lenkungsprüfstand
WO2024083824A1 (fr) Procédé de détermination d'une hauteur d'un dispositif mobile
EP3123185A1 (fr) Capteur de batterie électronique et procédé de détermination de la résistance interne d'une batterie
DE102011106924B4 (de) Codierer mit einer Funktion zum Erfasssen eines Betrags von Störsignalen
DE102005004568A1 (de) Verfahren zur Berücksichtigung von Messwerten von kalibrierten Sensoren in einme Kalmanfilter
EP3491335B1 (fr) Procédé et dispositif pour déterminer la position absolue d'un véhicule à moteur, système de localisation, véhicule à moteur
DE4028656A1 (de) Verfahren und einrichtung zum selbsttaetigen erkennen von resonanzueberhoehungen beim auswuchtvorgang
EP0429472B1 (fr) Procede perfectionne de reglage automatique sur le nord
EP3529568B1 (fr) Procédé permettant d'améliorer la précision de mesure d'un système de mesure de débit
DE2312356A1 (de) Verfahren und vorrichtung zur bestimmung der grundfrequenz von sprachsignalen
WO2006029612A1 (fr) Systeme de diagnostic pour vehicules automobiles
WO2020074415A1 (fr) Procédé de détermination de l'état d'occupation d'un emplacement de stationnement
DE102018222584A1 (de) Verfahren zum Ermitteln von Schritten eines Lebewesens, insbesondere einer Person
DE102008039297A1 (de) Verfahren zum Bestimmen eines systematischen Abweichungsfehlers in den Messwerten eines Beschleunigungssensors und dessen Umsetzung in einem Fahrzeug mit einer Sensoreinheit
DE10153212A1 (de) Navigationssystem zur Kursbestimmung eines Fahrzeugs
EP2820431B1 (fr) Procédé et dispositif de représentation de paires de valeurs d'ordonnées et d'abscisses sur un système d'affichage
DE102015218797A1 (de) Verfahren zum Bestimmen eines Realteils eines komplexen Innenwiderstands einer Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792940

Country of ref document: EP

Kind code of ref document: A1