WO2024083263A1 - 低温储罐 - Google Patents

低温储罐 Download PDF

Info

Publication number
WO2024083263A1
WO2024083263A1 PCT/CN2023/129120 CN2023129120W WO2024083263A1 WO 2024083263 A1 WO2024083263 A1 WO 2024083263A1 CN 2023129120 W CN2023129120 W CN 2023129120W WO 2024083263 A1 WO2024083263 A1 WO 2024083263A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner container
support members
storage tank
support
cryogenic storage
Prior art date
Application number
PCT/CN2023/129120
Other languages
English (en)
French (fr)
Inventor
海航
罗永欣
周小翔
赵林
蒋平安
沈卫东
张云凯
朱小林
Original Assignee
南通中集能源装备有限公司
中国国际海运集装箱(集团)股份有限公司
中集安瑞科投资控股(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通中集能源装备有限公司, 中国国际海运集装箱(集团)股份有限公司, 中集安瑞科投资控股(深圳)有限公司 filed Critical 南通中集能源装备有限公司
Publication of WO2024083263A1 publication Critical patent/WO2024083263A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present application relates to the field of cryogenic pressure vessels, and in particular to a cryogenic storage tank.
  • the medium temperature of conventional cryogenic storage tanks is generally not lower than -196°C of liquid nitrogen, while the temperature of ultra-low temperature medium reaches below -253°C.
  • Liquid hydrogen and liquid helium media have the characteristics of low boiling point, low density and low latent heat of vaporization, which place more stringent requirements on the insulation of cryogenic storage tanks.
  • a cryogenic storage tank usually includes an outer shell, an inner container, and a support structure. There is a vacuum space between the outer shell and the inner container, and the support structure supports the inner container in the outer shell.
  • the support structure must not only bear the weight of the inner container itself and the liquid medium contained, but also resist the impact from external loads. At the same time, the heat transfer through the support structure cannot be too large to ensure that the overall heat leakage of the cryogenic storage tank meets the insulation requirements.
  • the current support structure usually includes radial support, but the radial support does not constrain the rotation of the inner container around the axis, that is, the rotation of the inner container along the circumferential direction.
  • the radial support does not constrain the rotation of the inner container around the axis, that is, the rotation of the inner container along the circumferential direction.
  • the object of the present invention is to provide a cryogenic storage tank to solve the problem in the prior art that the cryogenic storage tank cannot be used normally due to the circumferential rotation of the inner container.
  • the present invention provides a cryogenic storage tank, comprising: an outer shell, an inner container located in the outer shell, and two support assemblies supported between the inner container and the outer shell, wherein the two support assemblies are arranged at two opposite ends of the inner container in the axial direction;
  • Each of the support assemblies comprises at least four support members, and the number of the support members is an even number; the multiple support members of each of the support assemblies are symmetrically arranged relative to the vertical central axis plane of the inner container, and the support members are arranged on both upper and lower sides of the horizontal central axis plane of the inner container;
  • Each of the support members comprises an inner end and an outer end, the outer end is connected to the inner wall of the outer shell, the inner end is connected to the outer wall of the inner container, and the axis of the support member and the inner container are not in the same plane.
  • each support member is located on the same side of the horizontal central axis plane of the inner container.
  • the inner ends of at least two of the support members and their corresponding outer ends are arranged on both sides of the horizontal central axis plane of the inner container.
  • the inner ends of the plurality of support members are located in different vertical planes and are staggered.
  • inner ends of at least two of the support members are located in the same vertical plane, and are located in a different vertical plane from inner ends of the remaining support members.
  • the space in the cryogenic storage tank is divided into four quadrants with the vertical mid-axis plane and the horizontal mid-axis plane as boundaries, wherein the support members in any quadrant are not connected to the support members in other quadrants.
  • the multiple support members when there are multiple support members located in the same quadrant area, the multiple support members are not connected.
  • the angle between each of the support members and the radial direction of the horizontal central axis plane of the inner container is 30° to 60°.
  • the angle between each of the support members and the axial direction of the horizontal central axis plane of the inner container is 60° to 90°.
  • the plurality of support members of each support assembly are arranged symmetrically with respect to a horizontal central axis of the inner container.
  • the eccentricity of the support member located above the horizontal mid-axis plane of the inner container is the same as or different from the eccentricity of the support member located below the horizontal mid-axis plane of the inner container.
  • the outer end is connected to the cylinder or the head of the shell
  • the inner end is connected to the end cap of the inner container.
  • the support member is in the form of a tube, a rod or a hanging ring;
  • the material of the support member is a fiber-reinforced resin composite material.
  • At least one of the support assemblies further includes at least two radial supports distributed along the circumference of the inner container; the number of the radial supports is an even number, each of the radial supports extends radially along the inner container, and the inner end of each of the radial supports is located on the axis of the inner container, and the outer end is connected to the inner wall of the outer shell.
  • the outer end of the support member is mounted on the housing via an outer mounting seat, and the outer mounting seat is fixed to the inner wall of the housing;
  • the inner end of the support member is mounted on the inner container through an inner mounting seat, and the inner mounting seat is fixed to the outer wall of the inner container.
  • the cryogenic storage tank of the present invention includes an inner container, an outer shell and a support assembly.
  • Each support assembly includes at least four support members, and the multiple support members of each support assembly are symmetrically arranged relative to the vertical central axis of the inner container, and support members are arranged on both the upper and lower sides of the horizontal central axis of the inner container; the support members are not in the same plane as the axis of the inner container. That is, the support members are eccentrically designed, so that the support members can pull the inner container to prevent the inner container from rotating when the inner container is about to rotate in the circumferential direction, thereby ensuring the normal use of the cryogenic storage tank. And the eccentric support members can prevent the inner container from rotating in the circumferential direction without adding an additional anti-deflection structure between the inner container and the outer shell, thereby reducing leakage hot spots and reducing heat loss from the inner container to the outer shell.
  • FIG. 1 is a schematic diagram of the partial structure of one embodiment of a low-temperature storage tank in the present invention.
  • FIG. 2 is a side view of the low-temperature storage tank of the present invention with the outer cover of the outer shell removed.
  • FIG3 is a front view of the low-temperature storage tank of the present invention after removing the outer head of the outer shell.
  • the present invention provides a cryogenic storage tank which is suitable for the storage and transportation of cryogenic liquids such as liquid nitrogen, liquid hydrogen, and liquid helium.
  • the temperature of liquid nitrogen is -196°C
  • the temperature of liquid hydrogen is -253°C
  • the temperature of liquid helium is -267.8°C.
  • the cryogenic storage tank 1 in the present invention is a horizontal cryogenic storage tank. During use, the cryogenic storage tank is placed horizontally, that is, the axis of the cryogenic storage tank extends in the horizontal direction.
  • FIG. 1 shows a schematic diagram of the local structure of a cryogenic storage tank
  • Figure 2 shows a side view of the local structure of the cryogenic storage tank
  • Figure 3 shows a front view of the local structure of the cryogenic storage tank.
  • the cryogenic storage tank 1 includes an outer shell 11, an inner container 12 located in the outer shell 11, and a supporting assembly supported between the inner container 12 and the outer shell 11.
  • the inner container 12 is used to store cryogenic liquid.
  • the material of the inner container 12 can be S31608.
  • the inner container 12 includes an inner cylinder and inner heads arranged at both ends of the inner cylinder.
  • the outer shell 11 is wrapped around the outer periphery of the inner container 12, and there is a gap between the inner wall of the outer shell 11 and the outer wall of the inner container 12.
  • the material of the outer shell 11 is 16MnDR.
  • the outer shell 11 and the inner container 12 are concentrically arranged, that is, the axes of the outer shell 11 and the inner container 12 are located on the same straight line.
  • the outer shell 11 includes an outer cylinder and outer heads arranged at both ends of the outer cylinder.
  • the support assembly is disposed between the outer shell 11 and the inner container 12 to support the inner container 12 in the outer shell 11. Specifically, there are two support assemblies, which are arranged at two opposite ends of the inner container 12 in the axial direction.
  • One of the two support components is a fixed support and the other is a movable support.
  • the fixed support fixes the inner container 12 relative to the outer shell 11, preventing the inner container 12 from moving forward and backward along the axial direction, and avoiding the inner container 12 from affecting the accessories due to thermal expansion and contraction.
  • the movable support can move with the inner container 12 when the inner container 12 slides axially relative to the outer shell 11 due to thermal expansion and contraction.
  • Each support assembly includes at least four support members 13.
  • the number of support members 13 is an even number.
  • the support assembly includes four support members 13.
  • the support assembly may also include six support members 13, eight support members 13, or other numbers of support members 13.
  • each support assembly is symmetrically arranged relative to the vertical central axis plane S1 of the inner container 12, and support members 13 are provided on both upper and lower sides of the horizontal central axis plane S2 of the inner container 12.
  • the four support members 13 are symmetrically arranged relative to the vertical central axis plane S1, that is, two support members 13 are respectively provided on both sides of the vertical central axis plane S1, and two support members 13 are respectively provided on the upper and lower sides of the horizontal central axis plane S2.
  • the vertical central axis plane S1 of the inner container 12 refers to a plane passing through the axis of the inner container 12 and extending vertically.
  • the horizontal central axis plane S2 refers to a plane passing through the axis of the inner container 12 and extending horizontally.
  • the axes of the outer shell 11 and the inner container 12 are on the same straight line, therefore, the vertical central axis plane S1 of the outer shell 11 and the inner container 12 are the same plane, and the horizontal central axis plane S2 are also the same plane.
  • the vertical middle axis plane S1 and the horizontal middle axis plane S2 are used as boundaries, and the end point of the inner container 12 is used as the center.
  • the space in the cryogenic storage tank 1 is divided into four quadrants.
  • the number of the support members 13 is four, so a support member 13 is arranged in each quadrant one by one. In other embodiments, the number of the support members 13 in each quadrant can be set according to actual conditions.
  • each support member 13 includes an inner end and an outer end.
  • the outer end is connected to the inner wall of the outer shell 11, and the inner end is connected to the outer wall of the inner container 12.
  • the outer end is connected to the cylinder or the head of the outer shell 11, and the inner end is connected to the head of the inner container 12.
  • the outer ends of the multiple support members 13 in each support assembly are arranged at intervals along the circumference of the outer shell 11, and the outer ends of the multiple support members 13 in each support assembly are arranged symmetrically with respect to the vertical center axis plane S1 of the outer shell 11.
  • the inner ends of the multiple support members 13 in each support assembly are arranged at intervals along the circumference of the inner container 12, and the inner ends of the multiple support members 13 in each support assembly are arranged symmetrically with respect to the vertical center axis plane S1 of the inner container 12.
  • the multiple support members 13 are arranged symmetrically with respect to the vertical center axis plane S1 of the inner container 12.
  • the axes of the support member 13 and the inner container 12 are not in the same plane. Specifically, the axes of the support member 13 and the inner container 12 are not in any plane.
  • the line connecting the vertex of the inner container to any other point on the outer wall of the inner container is defined as the radial direction, and the extension direction of each support member deviates from the radial direction.
  • the vertex of the inner container specifically refers to the vertex of the head.
  • the extension direction of the support member 13 is not the radial direction of the inner container 12, that is, there is an angle between the support member 13 and the radial direction of the inner container 12. Therefore, the support member 13 in the present application is defined as an eccentric design.
  • the support member 13 is designed to be eccentric, so that when the inner container 12 is about to rotate in the circumferential direction, the inner end of the support member 13 moves, thereby stretching the support member 13. When the support member 13 is stretched, it provides a pulling force to pull the inner container 12, so that the inner container 12 cannot rotate in the circumferential direction.
  • the eccentric support member 13 allows the inner container 12 to be compensated by the rotation of the support member 13 when shrinking, thereby reducing the stress on the support member 13.
  • the eccentric support member 13 can prevent the inner container 12 from rotating in the circumferential direction, so there is no need to add an anti-deflection structure between the inner container 12 and the outer shell 11. Therefore, compared with the anti-deflection method in the related art, the cryogenic storage tank 1 in the present application reduces leakage hot spots, reduces heat loss between the inner container 12 and the outer shell 11, and improves the reliability of the cryogenic storage tank 1.
  • each support member 13 and its corresponding outer end are located on the same side of the horizontal central axis plane S2 of the inner container 12. That is, the inner end and outer end of the support member 13 located above the horizontal central axis plane S2 are both located above, and there is a gap between the inner end and the horizontal central axis plane S2.
  • the inner end and outer end of the support member 13 located below the horizontal central axis plane S2 are both located below, and there is a gap between the inner end and the horizontal central axis plane S2.
  • the support members 13 in any quadrant area are aligned with the support members 13 in other quadrant areas.
  • the support members 13 are not connected to each other, that is, any two support members 13 are not connected to each other.
  • the inner ends of the plurality of support members 13 are located in the same vertical plane.
  • the inner ends of at least two support members 13 and their corresponding outer ends may be arranged on both sides of the horizontal central axis plane S2 of the inner container 12.
  • the inner end and outer end of the support member 13 being arranged on both sides means that the inner end of the support member 13 passes through the horizontal central axis plane S2.
  • the support members 13 are symmetrically arranged about the vertical central axis plane S1
  • the inner end and outer end of any one of the support members 13 are arranged on both sides of the horizontal central axis plane S2
  • the inner end and outer end of the support member 13 symmetrically arranged with the support member 13 must also be arranged on both sides of the horizontal central axis plane S2, that is, the inner ends and outer ends of two support members 13 may be arranged on both sides of the horizontal central axis plane S2, or the inner ends and outer ends of four, six or other even numbers of support members 13 may be arranged on both sides of the horizontal central axis plane S2.
  • the two support members 13 symmetrically arranged about the vertical middle axis plane S1 and located above the horizontal middle axis plane S2 have their inner ends passing through the horizontal middle axis plane S2 and located below the horizontal middle axis plane S2.
  • the support members 13 in any quadrant area are not connected to the support members 13 in other quadrant areas, that is, any two support members 13 are not connected.
  • the inner ends of multiple support members 13 are located in the same vertical plane.
  • the inner ends of multiple support members 13 can also be located in different vertical planes.
  • the inner ends of all the support members 13 and their corresponding outer ends are arranged on both sides of the horizontal central axis plane of the inner container 12. That is, the inner end of each support member 13 passes through the horizontal central axis plane S2.
  • the inner ends and outer ends of the support members 13 When the inner ends and outer ends of the support members 13 are arranged on both sides of the horizontal central axis plane S2, the inner ends of the multiple support members 13 can be located in different vertical planes to achieve staggered arrangement, so that the multiple support members 13 are not connected.
  • the inner ends of at least two support members 13 can also be located in the same vertical plane, and the inner ends of the remaining support members 13 are located in different vertical planes to achieve staggered arrangement, so that the multiple support members 13 are not connected.
  • the inner ends of the two support members 13 located above the horizontal central axis plane S2 pass through the horizontal central axis plane S2, and the two support members 13 are arranged on both sides of the vertical central axis plane S1 and are symmetrically arranged, the inner ends of the two support members 13 are located in the same vertical plane, and the inner ends of the two support members 13 and the inner ends of the other support members 13 are located in different vertical planes.
  • the arrangement of the inner end of the support member 13 passing through the horizontal central axis plane S2 increases the length of the support member 13 and further lengthens the heat conduction path, thereby better preventing the cold on the inner container 12 from being transferred to the outer shell 11 through the support member 13 .
  • the quadrant region where most of the support member 13 is located is defined as the quadrant region where the support member 13 is located.
  • the support member 13 is still defined as being located in the first quadrant region.
  • the angle a between each support member 13 and the radial direction of the horizontal central axis plane S2 of the inner container 12 is 30° to 60°, as shown in Figure 2.
  • the angle a within the range of 30° to 60° can better ensure that the support member 13 is in a stretched state, and it can be adjusted according to the size of the load.
  • the angle ⁇ between each support member 13 and the axial direction of the horizontal central axis plane S2 of the inner container 12 is 60° to 90°, as shown in Figure 3.
  • the design of this angle provides an axial sliding distance to avoid excessive stress.
  • the design of the angle makes the cryogenic storage tank 1 particularly suitable for the inner container 12 to shrink when filled with ultra-low temperature liquid medium, and the movable support member 13 can rotate and move with the inner container 12.
  • the angle is reasonably selected to ensure that the support member 13 is always in a tensile state.
  • the temperature of conventional cryogenic media is generally not lower than -196°C of liquid nitrogen
  • ultra-low temperature media refers to media with a temperature lower than -196°C, such as liquid hydrogen and liquid helium.
  • the temperature of liquid hydrogen is -253°C
  • the temperature of liquid helium is -267.8°C.
  • the support member 13 is always kept in a tensioned state and can always hold the inner container 12 , thereby preventing the inner container 12 from rotating in the circumferential direction.
  • the eccentricity of the support member 13 located above the horizontal central axis plane S2 of the inner container 12 is the same as or different from the eccentricity of the support member 13 located below the horizontal central axis plane S2 of the inner container 12.
  • the eccentricity in this application refers to the distance between the intersection of the support member 13 extended to the horizontal central axis plane S2 and the axis.
  • the eccentricity above the horizontal central axis plane S2 is recorded as L1
  • the eccentricity below the horizontal central axis plane is recorded as L2.
  • L1 and L2 may be equal or unequal.
  • the number of support members 13 is four, that is, two support members 13 are arranged on the horizontal central axis plane S2, and the two support members 13 are symmetrically arranged.
  • the eccentricity of each support member 13 is L1; two support members 13 are arranged below the horizontal central axis plane S2, and the two support members 13 are symmetrically arranged.
  • the eccentricity of each support member 13 is L2.
  • the plurality of support members 13 of the support assembly are symmetrically arranged about the horizontal median axis plane S2.
  • the eccentricities of the two symmetrically arranged support members 13 are the same.
  • the number of support members 13 under the horizontal middle axis plane S2 can be two or four.
  • their eccentricities are different from any eccentricity above the horizontal middle axis plane S2, and can also be the same as one of the eccentricities above the horizontal middle axis plane S2.
  • the eccentricity under the horizontal central axis plane S2 can be chosen to be completely different from the eccentricity on the horizontal central axis plane S2, that is, the eccentricity of the entire support assembly has four values, or one of the eccentricities can be equal to one of the eccentricities above the horizontal central axis plane S2, that is, the eccentricity of the entire support group has three values, or the multiple support members 13 of the support assembly are also symmetrically arranged about the horizontal central axis plane S2, that is, the eccentricity of the entire support assembly has two values.
  • the support member 13 is in a tubular shape, a rod shape or a hanging ring shape.
  • the material of the support member 13 is a fiber-reinforced resin composite material.
  • the outer end of the support member 13 is mounted on the outer shell 11 through the outer mounting seat 14, and the outer mounting seat 14 is fixed to the inner wall of the outer shell 11.
  • the inner end of the support member 13 is mounted on the inner container 12 through the inner mounting seat 15, and the inner mounting seat 15 is fixed to the outer wall of the inner container 12.
  • At least one of the support assemblies further includes at least two radial supports distributed along the circumference of the inner container 12.
  • the number of radial supports is an even number, each radial support extends along the radial direction of the inner container 12, and the inner end of each radial support is located on the axis of the inner container 12, and the outer end is connected to the inner wall of the outer shell 11.
  • the plurality of radial supports are evenly distributed along the circumference of the inner container 12.
  • the fixed support or the movable support also includes the radial support, or the fixed support and the movable support also include the radial support.
  • the number of radial supports of the fixed support and the number of radial supports of the movable support may be the same or different.
  • the cryogenic storage tank of the present invention includes an inner container, an outer shell, and a support assembly.
  • Each support assembly includes at least four support members, and the multiple support members of each support assembly are symmetrically arranged relative to the vertical central axis of the inner container, and support members are arranged on both sides of the upper and lower sides of the horizontal central axis of the inner container; the support members are not in the same plane as the axis of the inner container, that is, the support members are eccentrically designed, so that the support members can pull the inner container to prevent the inner container from rotating when the inner container is about to rotate in the circumferential direction, thereby ensuring the normal use of the cryogenic storage tank. And through the eccentric support members, it can The inner container can be prevented from rotating without adding an additional anti-deflection structure between the inner container and the outer shell, thereby reducing leakage hot spots and thus reducing heat loss from the inner container to the outer shell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明提供了一种低温储罐,该低温储罐包括外壳、位于外壳中的内容器以及支撑在内容器和外壳之间的两支撑组件,两支撑组件分列于内容器轴向相对的两端;支撑组件均包括至少四个支撑件,且支撑件的数量为偶数;各支撑组件的多个支撑件相对于内容器的竖向中轴面对称设置,且内容器的水平中轴面的上下两侧均设有支撑件;各支撑件均包括内端和外端,外端与外壳的内壁连接,内端与内容器的外壁连接,支撑件与内容器的轴线异面,即支撑件为偏心设计,而使得支撑件能够在内容器将要沿着周向转动时拉住内容器避免内容器转动,从而保证了低温储罐的正常使用。

Description

低温储罐
本申请要求于2022年10月18日提交中国专利局、申请号为202211277061.3、申请名称为“低温储罐”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及低温压力容器领域,特别涉及一种低温储罐。
背景技术
常规低温储罐介质温度一般不低于液氮的-196℃,而超低温介质温度达到-253℃以下,其中液氢、液氦介质具有沸点低、密度小、气化潜热小的特点,对低温储罐的保温要求更为严苛。
低温储罐通常包括外壳、内容器以及支撑结构,外壳和内容器之间为真空空间,支撑结构将内容器支撑在外壳中。支撑结构不仅要承受内容器本身以及所盛装液体介质的重量,还要抵抗来自外载荷的冲击。同时,通过支撑结构的传热不能过大,以保证低温储罐整体漏热满足绝热要求。
目前的支撑结构通常包括径向支撑,但是径向支撑并未约束内容器绕轴线的转动即内容器沿周向的转动。内容器发生周向转动时,易导致内容器和外壳之间的夹层管路损坏或失效,而使低温储罐无法正常使用。
发明内容
本发明的目的在于提供一种低温储罐,以解决现有技术中内容器周向转动导致低温储罐无法正常使用的问题。
为解决上述技术问题,本发明提供一种低温储罐,包括:外壳、位于所述外壳中的内容器以及支撑在所述内容器和所述外壳之间的两支撑组件,两所述支撑组件分列于所述内容器轴向相对的两端;
所述支撑组件均包括至少四个支撑件,且所述支撑件的数量为偶数;各所述支撑组件的多个所述支撑件相对于所述内容器的竖向中轴面对称设置,且所述内容器的水平中轴面的上下两侧均设有所述支撑件;
各所述支撑件均包括内端和外端,所述外端与所述外壳的内壁连接,所述内端与所述内容器的外壁连接,所述支撑件与所述内容器的轴线异面。
在其中一实施方式中,各所述支撑件的内端和外端位于所述内容器的水平中轴面的同一侧。
在其中一实施方式中,至少两所述支撑件的内端以及其对应的外端分列于所述内容器的水平中轴面的两侧。
在其中一实施方式中,多个所述支撑件的内端位于不同的竖向平面而错位设置。
在其中一实施方式中,至少两所述支撑件的内端位于同一竖向平面,并与其余支撑件的内端位于不同的竖向平面。
在其中一实施方式中,以所述竖向中轴面和所述水平中轴面为界限,将所述低温储罐内的空间划分为四个象限区域,其中任意一所述象限区域内的所述支撑件与其他所述象限区域内的支撑件均不相连。
在其中一实施方式中,位于同一所述象限区域内的支撑件的数量为多个时,多个所述支撑件均不相连。
在其中一实施方式中,各所述支撑件与所述内容器的水平中轴面的径向之间的夹角为30°~60°。
在其中一实施方式中,各所述支撑件与所述内容器的水平中轴面的轴向之间的夹角为60°~90°。
在其中一实施方式中,各所述支撑组件的多个所述支撑件相对于所述内容器的水平中轴面对称设置。
在其中一实施方式中,位于所述内容器的水平中轴面以上的所述支撑件的偏心距与位于所述内容器的水平中轴面以下的所述支撑件的偏心距相同或不同。
在其中一实施方式中,所述外端与所述外壳的筒体或封头连接;
所述内端与所述内容器的封头连接。
在其中一实施方式中,所述支撑件呈管状、棒状或悬挂环式;
所述支撑件呈悬挂环式时,所述支撑件的材质为纤维增强树脂复合材料。
在其中一实施方式中,其中至少一所述支撑组件还包括沿所述内容器的周向分布的至少两个径向支撑;所述径向支撑的数量为偶数,各所述径向支撑沿所述内容器的径向延伸,且各所述径向支撑的内端位于所述内容器的轴线上,外端与所述外壳的内壁连接。
在其中一实施方式中,所述支撑件的外端通过外安装座安装于所述外壳上,所述外安装座固定于所述外壳的内壁;
所述支撑件的内端通过内安装座安装于所述内容器上,所述内安装座固定于所述内容器的外壁。
由上述技术方案可知,本发明的优点和积极效果在于:
本发明的低温储罐包括内容器、外壳和支撑组件。支撑组件均包括至少四个支撑件,各支撑组件的多个支撑件相对于内容器的竖向中轴面对称设置,且内容器的水平中轴面的上下两侧均设有支撑件;支撑件与内容器的轴线异面。即支撑件为偏心设计,而使得支撑件能够在内容器要沿周向转动时拉住内容器避免内容器转动,从而保证了低温储罐的正常使用。且通过偏心的支撑件即能够避免内容器沿周向的转动,而无需额外在内容器和外壳之间增加防偏转的结构,进而减少了漏热点,从而降低了内容器至外壳之间的热量损失。
附图说明
图1是本发明中低温储罐其中一实施例的局部结构示意图。
图2是本发明中低温储罐去掉外壳的外封头之后的侧视图。
图3是本发明中低温储罐去掉外壳的外封头之后的主视图。
附图标记说明如下:1、低温储罐;11、外壳;12、内容器;13、支撑件;14、外安装座;15、内安装座。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
为了进一步说明本发明的原理和结构,现结合附图对本发明的优选实施例进行详细说明。
本发明提供一种低温储罐,适用于液氮、液氢、液氦等低温液体的储存和运输。
其中,液氮的温度为-196℃、液氢的温度为-253℃,液氦的温度为-267.8℃。
本发明中的低温储罐1为卧式低温储罐,在使用过程中,低温储罐卧置,即低温储罐的轴线沿水平方向延伸。
图1示出了低温储罐的局部结构示意图,图2示出了低温储罐的局部结构的侧视图,图3示出了低温储罐的局部结构的主视图,结合图1、图2和图3,低温储罐1包括外壳11、位于外壳11中的内容器12以及支撑在内容器12和外壳11之间的支撑组件。
内容器12用于储存低温液体。本实施例中,内容器12材料可选用S31608。
具体地,内容器12包括内筒体以及设置于内筒体两端的内封头。
外壳11包裹于内容器12的外周,并且外壳11的内壁与内容器12的外壁之间具有间隔。本实施例中,外壳11材料选用16MnDR。
其中,外壳11和内容器12的同心设置,即外壳11和内容器12的轴线位于同一直线上。
具体地,外壳11包括外筒体以及设置于外筒体两端的外封头。
支撑组件设置于外壳11与内容器12之间,以将内容器12支撑于外壳11内。具体地,支撑组件的数量为两个,两支撑组件分列于内容器12的轴向相对的两端。
两支撑组件中,其中之一为固定支撑,另一为活动支撑。固定支撑使内容器12与外壳11相对固定,防止内容器12沿轴向前后移动,避免内容器12因热胀冷缩移动而对附件造成影响。活动支撑能够在内容器12因热胀冷缩而相对于外壳11发生轴向相对滑动时,随着内容器12移动。
各支撑组件均包括至少四个支撑件13。且支撑件13的数量为偶数。本实施例中,支撑组件包括四个支撑件13,其他实施例中,支撑组件还可以包括六个支撑件13、八个支撑件13等其他数量的支撑件13。
各支撑组件的多个支撑件13相对于内容器12的竖向中轴面S1对称设置,且内容器12的水平中轴面S2的上下两侧均设有支撑件13。具体在本实施例中,四个支撑件13关于竖向中轴面S1对称设置,即竖向中轴面S1的两侧分别设有两个支撑件13,且水平中轴面S2的上下两侧分别设置两个支撑件13。其中,内容器12的竖向中轴面S1是指经过内容器12的轴线并且竖向延伸的平面。水平中轴面S2是指经过内容器12的轴线并且水平延伸的平面。外壳11和内容器12的轴线在同一直线上,因此,外壳11和内容器12的竖向中轴面S1为同一个面,水平中轴面S2也为同一个平面。
以竖向中轴面S1和水平中轴面S2为界限,以内容器12端部的端点为中 心,将低温储罐1内的空间划分为四个象限区域。本实施例中,支撑件13的数量为四个,因此,各象限区域内一一对应设置一支撑件13。在其他实施例中,每个象限区域内的支撑件13的数量可以依据实际情况而设置。
具体地,各支撑件13均包括内端和外端。其中,外端与外壳11的内壁连接,内端与内容器12的外壁连接。具体地,外端与外壳11的筒体或封头连接。内端与内容器12的封头连接。
各支撑组件中的多个支撑件13的外端沿外壳11的周向间隔设置,且各支撑组件中的多个支撑件13的外端相对于外壳11的竖向中轴面S1对称设置。各支撑组件的多个支撑件13的内端沿内容器12的周向间隔设置,且各支撑组件中的多个支撑件13的内端相对于内容器12的竖向中轴面S1对称设置。从而形成多个支撑件13相对于内容器12的竖向中轴面S1对称设置。
支撑件13与内容器12的轴线异面。具体是指支撑件13与内容器12的轴线不同在任何一个平面内。
换个方式,定义内容器的顶点至内容器外壁上的其他任意一点之间的连线为径向,各支撑件的延伸方向偏离径向。内容器的顶点具体指封头的顶点。
即,支撑件13的延伸方向不是内容器12的径向,也即支撑件13与内容器12的径向之间具有夹角。因此,本申请中的支撑件13定义为偏心设计。
将支撑件13偏心设计,使得内容器12欲沿周向转动时,导致支撑件13的内端发生移动,从而使支撑件13拉伸,支撑件13拉伸时会提供拉力拉住内容器12而使内容器12无法沿周向转动。且偏心的支撑件13使得内容器12在收缩时能够通过支撑件13的旋转来补偿,减小支撑件13上应力。
同时,偏心的支撑件13可避免内容器12沿周向的转动,从而无需额外在内容器12和外壳11之间增加防偏转的结构,因此,相对于相关技术中的防偏转方式,本申请中的低温储罐1减少了漏热点,降低了内容器12至外壳11之间的热量损失,提高了低温储罐1的可靠性。
具体在本实施例中,各支撑件13的内端与其对应的外端位于内容器12的水平中轴面S2的同一侧。即,位于水平中轴面S2上方的支撑件13的内端和外端均位于上方,且内端与水平中轴面S2之间具有间隔。位于水平中轴面S2下方的支撑件13的内端和外端均位于下方,且内端与水平中轴面S2之间具有间隔。此时,其中任意一象限区域内的支撑件13与其他象限区域内的支 撑件13均不相连,也即任意两支撑件13之间不相连。且多个支撑件13的内端位于同一竖向平面内。
其他实施例中,还可以是至少两支撑件13的内端以及其对应的外端分列于内容器12的水平中轴面S2的两侧。支撑件13的内端和外端分列于两侧是指支撑件13的内端穿过水平中轴面S2。由于支撑件13关于竖向中轴面S1对称设置,因此,在其中任意一支撑件13的内端与外端分列于水平中轴面S2的两侧时,与该支撑件13对称设置的支撑件13的内端与外端也必然分列于水平中轴面S2的两侧,即可以是两个支撑件13的内端和外端分列于水平中轴面S2的两侧,也可以是四个、六个或其他偶数个的支撑件13的内端和外端分列于水平中轴面S2的两侧。
示例性地,位于水平中轴面S2上方的关于竖向中轴面S1对称设置的两支撑件13,各支撑件13的内端均穿过水平中轴面S2而位于水平中轴面S2的下方。此时,其中任意一象限区域内的支撑件13与其他象限区域内的支撑件13均不相连,也即任意两支撑件13之间不相连。且多个支撑件13的内端位于同一竖向平面内。多个支撑件13的内端也可以位于不同的竖向平面。
又例如,所有支撑件13的内端以及其对应的外端均分列于内容器12的水平中轴面的两侧。即,各支撑件13的内端均穿过水平中轴面S2。
其中,在支撑件13的内端和外端分列于水平中轴面S2的两侧时,可以通过多个支撑件13的内端位于不同的竖向平面实现错位设置,而使多个支撑件13不相连。还可以通过至少两支撑件13的内端位于同一竖向平面,并与其余支撑件13的内端位于不同的竖向平面实现错位设置,进而使多个支撑件13不相连。
示例性地,位于水平中轴面S2上方的两个支撑件13的内端穿过水平中轴面S2,且该两个支撑件13分列于竖向中轴面S1的两侧并对称设置,上述两支撑件13的内端位于同一竖向平面内,且该两支撑件13的内端与其余支撑件13的内端位于不同的竖向平面内。
支撑件13的内端穿过水平中轴面S2的设置增加了支撑件13的长度,进而延长了热传导路径,从而能够更好的避免内容器12上的冷量传递通过支撑件13传递至外壳11处。
实际使用中,支撑件13的内端是否穿过水平中轴面S2依据具体情况而设 置。
其中,在支撑件13的内端和外端分列于水平中轴面S2两侧时,定义该支撑件13的大部分所在的象限区域为该支撑件13所在象限区域。示例性地,其中一支撑件13的大部分位于其中一象限区域例如第一象限区域,即使该支撑件13的内端穿过水平中轴面S2而位于另一象限区域内了,依然定义该支撑件13位于第一象限区域内。
各支撑件13与内容器12的水平中轴面S2的径向之间的夹角a为30°~60°,如图2所示。夹角a在30°~60°的范围内能够更好的保证支撑件13处于拉伸状态,其具体可根据受力载荷大小不同而调整。
且各支撑件13与内容器12的水平中轴面S2的轴向之间的夹角β为60°~90°,如图3所示。该夹角的设计提供轴向滑动距离,避免过大的应力。
且该夹角的设计使低温储罐1特别适用于在充装超低温液体介质时,内容器12进行收缩,活动支撑的支撑件13可旋转,并跟随内容器12移动。具体应用时通过合理选择该角度以保证支撑件13始终处于受拉状态。其中,常规的低温介质的温度一般不低于液氮的-196℃,超低温介质是指温度低于-196℃的介质,例如液氢和液氦,液氢的温度为-253℃,液氦的温度为-267.8℃。
支撑件13始终保持受拉状态而能够始终拉住内容器12,从而避免内容器12的周向转动。
位于内容器12的水平中轴面S2以上的支撑件13的偏心距与位于内容器12的水平中轴面S2以下的支撑件13的偏心距相同或不同。以位于水平中轴面S2以上的支撑件13为例,本申请中的偏心距是指支撑件13延长至水平中轴面S2上的交点与轴线之间的距离。如图2所示,水平中轴面S2以上的偏心距记为L1,水平中轴面以下的偏心距记为L2,L1和L2可以相等,也可以不相等。
本实施例中,支撑件13的数量为四个,即水平中轴面S2上设置有两个支撑件13,两支撑件13对称设置,此时各支撑件13的偏心距均为L1;水平中轴面S2下设置有两个支撑件13,两支撑件13对称设置,此时各支撑件13的偏心距均为L2。
在L1和L2相等时,支撑组件的多个支撑件13关于水平中轴面S2对称设置。
其他实施例中,在水平中轴面S2上的支撑件13数量为四个时,对称设置的两支撑件13的偏心距相同。此时,水平中轴面S2下的支撑件13数量可为两个,也可以为四个,支撑件13为两个时,其偏心距与水平中轴面S2以上的任意一偏心距均不相同,也可以与水平中轴面S2以上的其中一偏心距相同。
水平中轴面S2下的支撑件13为四个时,水平中轴面S2下的偏心距可以选择与水平中轴面S2上的偏心距完全不同,即整个支撑组件的偏心距有四个数值,也可以是其中一偏心距与水平中轴面S2以上的其中一偏心距相等,即整个支撑组的偏心距有三个数值,也可以是支撑组件的多个支撑件13还关于水平中轴面S2对称设置,即整个支撑组件的偏心距就两个数值。
具体地,支撑件13呈管状、棒状或悬挂环式。支撑件13呈悬挂环式时,支撑件13的材质为纤维增强树脂复合材料。
支撑件13的外端通过外安装座14安装于外壳11上,外安装座14固定于外壳11的内壁。支撑件13的内端通过内安装座15安装于内容器12上,内安装座15固定于内容器12的外壁。
其中,支撑件13的内端位于不同的竖向平面时,通过内安装座15不同的规格实现。
进一步地,其中至少一支撑组件还包括沿内容器12的周向分布的至少两个径向支撑。径向支撑的数量为偶数,各径向支撑沿内容器12的径向延伸,且各径向支撑的内端位于内容器12的轴线上,外端与外壳11的内壁连接。本实施例中,多个径向支撑沿内容器12的周向均匀分布。
即固定支撑或者活动支撑还包括径向支撑,还可以是固定支撑和活动支撑同时包括径向支撑。
固定支撑的径向支撑数量和活动支撑的径向支撑数量可以相同,也可以不相同。
由上述技术方案可知,本发明的优点和积极效果在于:
本发明的低温储罐包括内容器、外壳和支撑组件。支撑组件均包括至少四个支撑件,各支撑组件的多个支撑件相对于内容器的竖向中轴面对称设置,且内容器的水平中轴面的上下两侧均设有支撑件;支撑件与内容器的轴线异面,即支撑件为偏心设计,而使得支撑件能够在内容器要沿周向转动时拉住内容器避免内容器转动,从而保证了低温储罐的正常使用。且通过偏心的支撑件即能 够避免内容器转动,而无需额外在内容器和外壳之间增加防偏转的结构,进而减少了漏热点,从而降低了内容器至外壳之间的热量损失。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (15)

  1. 一种低温储罐,包括:外壳、位于所述外壳中的内容器以及支撑在所述内容器和所述外壳之间的两支撑组件,其特征在于,两所述支撑组件分列于所述内容器轴向相对的两端;
    所述支撑组件均包括至少四个支撑件,且所述支撑件的数量为偶数;各所述支撑组件的多个所述支撑件相对于所述内容器的竖向中轴面对称设置,且所述内容器的水平中轴面的上下两侧均设有所述支撑件;
    各所述支撑件均包括内端和外端,所述外端与所述外壳的内壁连接,所述内端与所述内容器的外壁连接,所述支撑件与所述内容器的轴线异面。
  2. 根据权利要求1所述的低温储罐,其特征在于,各所述支撑件的内端和外端位于所述内容器的水平中轴面的同一侧。
  3. 根据权利要求1所述的低温储罐,其特征在于,至少两所述支撑件的内端以及其对应的外端分列于所述内容器的水平中轴面的两侧。
  4. 根据权利要求3所述的低温储罐,其特征在于,多个所述支撑件的内端位于不同的竖向平面而错位设置。
  5. 根据权利要求3所述的低温储罐,其特征在于,至少两所述支撑件的内端位于同一竖向平面,并与其余支撑件的内端位于不同的竖向平面。
  6. 根据权利要求1~5任意一项所述的低温储罐,其特征在于,以所述竖向中轴面和所述水平中轴面为界限,将所述低温储罐内的空间划分为四个象限区域,其中任意一所述象限区域内的所述支撑件与其他所述象限区域内的支撑件均不相连。
  7. 根据权利要求6所述的低温储罐,其特征在于,位于同一所述象限区域内的支撑件的数量为多个时,多个所述支撑件均不相连。
  8. 根据权利要求1~7任意一项所述的低温储罐,其特征在于,各所述支撑件与所述内容器的水平中轴面的径向之间的夹角为30°~60°。
  9. 根据权利要求1~8任意一项所述的低温储罐,其特征在于,各所述支撑件与所述内容器的水平中轴面的轴向之间的夹角为60°~90°。
  10. 根据权利要求1~9任意一项所述的低温储罐,其特征在于,各所述支撑组件的多个所述支撑件相对于所述内容器的水平中轴面对称设置。
  11. 根据权利要求1~10任意一项所述的低温储罐,其特征在于,位于所 述内容器的水平中轴面以上的所述支撑件的偏心距与位于所述内容器的水平中轴面以下的所述支撑件的偏心距相同或不同。
  12. 根据权利要求1~11任意一项所述的低温储罐,其特征在于,所述外端与所述外壳的筒体或封头连接;
    所述内端与所述内容器的封头连接。
  13. 根据权利要求1~12任意一项所述的低温储罐,其特征在于,所述支撑件呈管状、棒状或悬挂环式;
    所述支撑件呈悬挂环式时,所述支撑件的材质为纤维增强树脂复合材料。
  14. 根据权利要求1~13任意一项所述的低温储罐,其特征在于,其中至少一所述支撑组件还包括沿所述内容器的周向分布的至少两个径向支撑;所述径向支撑的数量为偶数,各所述径向支撑沿所述内容器的径向延伸,且各所述径向支撑的内端位于所述内容器的轴线上,外端与所述外壳的内壁连接。
  15. 根据权利要求1~14任意一项所述的低温储罐,其特征在于,所述支撑件的外端通过外安装座安装于所述外壳上,所述外安装座固定于所述外壳的内壁;
    所述支撑件的内端通过内安装座安装于所述内容器上,所述内安装座固定于所述内容器的外壁。
PCT/CN2023/129120 2022-10-18 2023-11-01 低温储罐 WO2024083263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211277061.3 2022-10-18
CN202211277061.3A CN115479207B (zh) 2022-10-18 2022-10-18 低温储罐

Publications (1)

Publication Number Publication Date
WO2024083263A1 true WO2024083263A1 (zh) 2024-04-25

Family

ID=84396561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129120 WO2024083263A1 (zh) 2022-10-18 2023-11-01 低温储罐

Country Status (2)

Country Link
CN (1) CN115479207B (zh)
WO (1) WO2024083263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479207B (zh) * 2022-10-18 2024-05-14 南通中集能源装备有限公司 低温储罐

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126297A (ja) * 1991-10-29 1993-05-21 Furukawa Electric Co Ltd:The クライオスタツト
CN106122767A (zh) * 2016-08-26 2016-11-16 广东建成机械设备有限公司 一种新式拉带支承结构
US20210164614A1 (en) * 2018-03-08 2021-06-03 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Container for storing and transporting liquefied gas
CN113551147A (zh) * 2021-07-05 2021-10-26 江西制氧机有限公司 一种超低温介质用夹层低热传导支撑结构及超低温介质容器
CN215636502U (zh) * 2021-09-16 2022-01-25 南通中集能源装备有限公司 低温容器
CN115479207A (zh) * 2022-10-18 2022-12-16 南通中集能源装备有限公司 低温储罐

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178378A (ja) * 1991-12-26 1993-07-20 Mitsubishi Heavy Ind Ltd 耐振用二重殻断熱容器
GB2449652B (en) * 2007-05-30 2009-06-10 Siemens Magnet Technology Ltd Suspension rod tensioning arrangements
GB2517746B (en) * 2013-08-30 2016-09-14 Ubh Int Ltd Storage tank suspension member and storage tank for storage of cryogenic liquid
ES2816126T3 (es) * 2016-05-04 2021-03-31 Linde Gmbh Contenedor de transporte
CN109519703B (zh) * 2018-10-25 2021-04-13 中国运载火箭技术研究院 一种适应贮箱低温变形的弹性杆支撑装置
CN112664822A (zh) * 2020-12-29 2021-04-16 西南石油大学 一种公路运输式液氦储槽支撑系统
CN217109115U (zh) * 2021-07-28 2022-08-02 查特深冷工程系统(常州)有限公司 一种深冷液体移动式压力容器内容器防扭转装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126297A (ja) * 1991-10-29 1993-05-21 Furukawa Electric Co Ltd:The クライオスタツト
CN106122767A (zh) * 2016-08-26 2016-11-16 广东建成机械设备有限公司 一种新式拉带支承结构
US20210164614A1 (en) * 2018-03-08 2021-06-03 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Container for storing and transporting liquefied gas
CN113551147A (zh) * 2021-07-05 2021-10-26 江西制氧机有限公司 一种超低温介质用夹层低热传导支撑结构及超低温介质容器
CN215636502U (zh) * 2021-09-16 2022-01-25 南通中集能源装备有限公司 低温容器
CN115479207A (zh) * 2022-10-18 2022-12-16 南通中集能源装备有限公司 低温储罐

Also Published As

Publication number Publication date
CN115479207A (zh) 2022-12-16
CN115479207B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2024083263A1 (zh) 低温储罐
US4082967A (en) Uniformly-cooled superconducting rotor
CN102997034B (zh) 一种低温贮运容器
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
JP7279058B2 (ja) 液化ガスを保存して輸送するための容器
JP4587136B2 (ja) 超伝導マグネット懸架アセンブリ
US4516404A (en) Foam filled insert for horizontal cryostat penetrations
EP0135185B1 (en) Cryostat for nmr magnet
US2467428A (en) Portable container for liquefied gases
US5083105A (en) Axial support system for a mr magnet
US3866785A (en) Liquefied gas container
JPH0559567B2 (zh)
CN103411126B (zh) 一种采用弹性悬吊支承结构的低温容器
CN202244799U (zh) 一种低温贮运容器
US4184089A (en) Multiple plane spoke structure for a superconducting dynamoelectric machine
JPH04252004A (ja) Mr磁石の軸方向熱遮蔽部支持体
US3948411A (en) Liquefied gas container
CA1319263C (en) Support system for vacuum insulated cylindrical cryogenic vessels
CN116164225A (zh) 一种液氦储罐
Brunet et al. Design of LHC prototype dipole cryostats
US4622824A (en) Cryostat suspension system
JPH046883A (ja) クライオスタット
CN116734158B (zh) 一种支撑结构及低温容器
CN114823036B (zh) 一种超导磁体绝热支撑装置
US3127750A (en) Low temperature storage facilities for liquefied gases

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023861680

Country of ref document: EP

Effective date: 20240314