WO2024083173A1 - 套管短节以及管状结构 - Google Patents

套管短节以及管状结构 Download PDF

Info

Publication number
WO2024083173A1
WO2024083173A1 PCT/CN2023/125324 CN2023125324W WO2024083173A1 WO 2024083173 A1 WO2024083173 A1 WO 2024083173A1 CN 2023125324 W CN2023125324 W CN 2023125324W WO 2024083173 A1 WO2024083173 A1 WO 2024083173A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
radial
cylinder
casing
casing nipple
Prior art date
Application number
PCT/CN2023/125324
Other languages
English (en)
French (fr)
Inventor
张波
罗方伟
邓金睿
孙秉才
郑钰山
梁爽
姜瑞景
曹立虎
李墨松
Original Assignee
中国石油天然气集团有限公司
中国石油集团安全环保技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司, 中国石油集团安全环保技术研究院有限公司 filed Critical 中国石油天然气集团有限公司
Publication of WO2024083173A1 publication Critical patent/WO2024083173A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening

Definitions

  • the present application relates to the technical field of oil production, and in particular to a casing short section and a tubular structure.
  • Casing nipples can be used to connect oil and gas well casings. Casing nipples play a very important role in oil and gas well casings. High-quality casing nipples can have the functions of leak prevention, shock resistance and pressure resistance, and are important accessories to ensure the progress of oilfield exploitation.
  • the casing and cement ring of oil and gas wells can form a complete system to block the underground high-temperature fluid from entering the annulus, reduce the possibility of high pressure at the wellhead, and thus ensure the safe production of oil and gas wells.
  • the integrity of the oil and gas well casing and cement ring system downhole is prone to failure, so that micro-annuli are formed between the interface of the oil and gas well casing and cement ring, and cracks are formed inside the cement ring, which leads to the formation of high-pressure fluids to the wellhead, posing a safety hazard.
  • the present application provides a casing short joint and a tubular structure, which can solve the problem of micro-annular gaps or cracks in the casing and cement ring system of oil and gas wells causing high-temperature and high-pressure fluid in the formation to leak to the wellhead, posing potential safety hazards.
  • the present application provides a casing nipple, comprising:
  • the cylinder body includes an inner cylinder and an outer cylinder.
  • the outer cylinder is sleeved on the outer side of the inner cylinder along the axial direction of the inner cylinder.
  • a first accommodating space is formed between the inner cylinders, and a flow stopper is protruded from the outside of the outer cylinder;
  • the repair component is located in the first accommodating space.
  • the outer cylinder is provided with a radial through hole. Along the axial direction of the inner cylinder, the radial through hole is arranged corresponding to the lower end of the repair component.
  • the radial through hole is arranged at intervals with the stopper, and the radial through hole is located above the stopper.
  • the casing nipple provided in the present application has a repair component that can be converted from a solid state to a liquid state under certain conditions.
  • the liquid repair component has fluidity, so it can flow into the micro-annular gap between the outer tube and the cement ring through the radial through hole.
  • the flow stop can prevent the liquid repair component from continuing to flow, so that the liquid repair component can accumulate in the micro-annular gap between the outer tube and the cement ring, and the liquid repair component can also flow into the cracks inside the cement ring.
  • the liquid repair component After the liquid repair component enters the micro-annular gap and crack, it can solidify to form a repair barrier that blocks the micro-annular gap and crack, thereby reducing the possibility that underground high-temperature and high-pressure fluids move to the wellhead through micro-annular gaps or cracks, causing high pressure at the wellhead and even causing safety hazards.
  • the casing nipple includes a driving device, which is located in the first accommodating space and is slidably connected to the cylinder along the axial direction. One end of the repair component away from the radial through hole is connected to the driving device.
  • the driving device includes an elastic component and a pushing component
  • the elastic component is connected to the pushing component
  • the elastic component drives the pushing component to slide axially
  • the end surface of the pushing component facing away from the elastic component is connected to the repair component, and along the radial direction of the cylinder
  • the inner surface of the pushing component is slidably connected to the outer surface of the inner cylinder
  • the outer surface of the pushing component is slidably connected to the inner surface of the outer cylinder.
  • the first accommodation space includes a sealed chamber
  • the driving device is located in the sealed chamber
  • high-pressure gas is arranged in the sealed chamber
  • a second accommodating space is formed between the outer tube and the inner tube, and the casing nipple further includes a signal control device, and part of the signal control device is located in the second accommodating space.
  • the signal control device includes a circuit board and a resistance wire, the circuit board is located in the second accommodation space, the resistance wire is electrically connected to the circuit board, and part of the resistance wire is located inside the repair component;
  • the signal control device further includes a signal receiving module, which is located in the second accommodation space and is electrically connected to the circuit board;
  • the signal control device also includes an energy storage component, which is located in the second accommodating space and is electrically connected to the signal receiving module and the circuit board respectively.
  • the cylinder includes a heat insulating portion, which is arranged at the end of the repair component facing away from the driving device, and the heat insulating portion separates the first accommodating space and the second accommodating space.
  • the heat insulation portion includes an inclined guide surface, and the inclined guide surface is arranged facing the radial through hole.
  • the number of the radial through holes is more than three, and the more than three radial through holes are evenly distributed along the circumference of the outer cylinder.
  • the present application provides a tubular structure comprising:
  • Oil and gas well casing multiple in number
  • FIG1 is a schematic diagram of a partial cross-sectional structure of a casing nipple according to an embodiment of the present application
  • FIG2 is a schematic diagram of a partial cross-sectional structure of a cylinder according to an embodiment of the present application.
  • FIG3 is a schematic diagram of a partial cross-sectional structure of a casing nipple in an application environment according to an embodiment of the present application
  • Fig. 4 is a schematic cross-sectional view of the structure along the A-A direction in Fig. 3;
  • Fig. 5 is a schematic cross-sectional view of the structure along the B-B direction in Fig. 1;
  • Fig. 6 is a schematic cross-sectional view of the structure along the C-C direction in Fig. 1;
  • Fig. 7 is a schematic cross-sectional view of the structure along the D-D direction in Fig. 1;
  • Fig. 8 is a schematic diagram of the cross-sectional structure along the E-E direction in Fig. 1.
  • the casing nipple and tubular structure of the present application can be applied to the field of oil production technology.
  • the casing nipple can be used to connect the casing of oil and gas wells.
  • the casing nipple plays a very important role in the casing of oil and gas wells.
  • High-quality casing nipple can have the functions of leak prevention, shock resistance and pressure resistance, and is an important accessory to ensure the progress of oil field production.
  • cement In the process of oil and gas cementing, cement is usually filled into the annular space between the oil and gas well casing and the wellbore. After the cement solidifies, it can form a solid cement ring.
  • the cement ring has the functions of supporting the well wall, protecting the oil and gas well casing, and isolating the oil, gas and water layers.
  • the casing and cement ring of oil and gas wells can form a complete system to block the underground high-temperature fluid from entering the annulus, reduce the possibility of high pressure at the wellhead, and thus ensure the safe production of oil and gas wells.
  • the integrity of the oil and gas well casing and cement ring system downhole is prone to failure, so that micro-annuli are formed between the interface of the oil and gas well casing and cement ring, and cracks are formed inside the cement ring, which leads to the formation of high-pressure fluids to the wellhead, posing a safety hazard.
  • micro-annulus refers to the radial gap between the contact surfaces of the oil and gas well casing and the cement ring.
  • the applicant has improved the structure of the casing nipple and the tubular structure.
  • the embodiments of the present application are further described below.
  • the casing nipple 100 of the embodiment of the present application includes a barrel 110 and a repair component 120.
  • the barrel 110 includes an inner barrel 111 and an outer barrel 112.
  • the outer surface of the outer barrel 112 can be used to connect with the cement ring 200.
  • the inner barrel 111 can be used to transport oil and gas.
  • the outer barrel 112 is sleeved on the outside of the inner barrel 111.
  • a first accommodating space 110a is formed between the outer barrel 112 and the inner barrel 111.
  • a stopper 113 is provided on the outside of the outer barrel 112.
  • the repair component 120 is located in the first accommodation space 110a.
  • the outer cylinder 112 is provided with a radial through hole 112a.
  • the radial through hole 112a is connected to the first accommodation space 110a.
  • the radial through hole 112a is arranged corresponding to the lower end of the repair component 120.
  • the radial through hole 112a is arranged at intervals from the stopper 113.
  • the radial through hole 112a is located above the stopper 113.
  • the repair component 120 of the embodiment of the present application can be converted from solid to liquid under certain conditions.
  • the liquid repair component 120 has fluidity, so it can flow into the micro-annular gap 300 between the outer cylinder 112 and the cement ring 200 through the radial through hole 112a.
  • the stopper 113 can block the liquid repair component 120 from continuing to flow, so that the liquid repair component 120 can accumulate in the micro-annular gap 300 between the outer cylinder 112 and the cement ring 200, so that the liquid repair component 120 can also flow into the crack 400 inside the cement ring 200.
  • the liquid repair component 120 After the liquid repair component 120 enters the micro-annular gap 300 and the crack, it can solidify to form a repair barrier that blocks the micro-annular gap 300 and the crack, thereby reducing the possibility that the underground high-temperature and high-pressure fluid moves to the wellhead through the micro-annular gap 300 or the crack 400, causing the wellhead to produce high pressure phenomenon or even cause safety hazards.
  • the radial through hole 112a can be provided corresponding to the lower end of the repair component 120, so that the liquid repair component 120 can flow out through the radial through hole 112a under the action of its own gravity; or the liquid repair component 120 can flow out through the radial through hole 112a driven by other external forces.
  • the specific implementation is not limited in this embodiment.
  • the temperature may be changed to change the repair component 120 from a solid state to a liquid state. It is understandable that the state of the repair component 120 may also be changed in other ways.
  • the repair component 120 can be converted into a liquid state at a high temperature.
  • the repair component 120 can be converted from a solid state to a liquid state to flow into the micro-annulus 300 or the crack 400.
  • the repair component 120 can be converted from a liquid state to a solid state to form a repair barrier.
  • the solid repair component 120 can withstand a pressure of no less than 50 MPa.
  • the staff can lower the heating rod through the oil and gas well casing.
  • the heating rod can be set at a position corresponding to the repair component 120, so that the repair component 120 can be heated to convert it from a solid state to a liquid state.
  • the outer cylinder 112 may be made of steel.
  • the repair component 120 may have good adhesion to the steel and the cement ring 200.
  • the material of the repair component 120 may be, but is not limited to, a resin gel or a low melting point alloy.
  • the low melting point alloy may be an alloy containing bismuth, lead, tin, and cadmium components. This is not limited in the present application.
  • both the inner cylinder 111 and the outer cylinder 112 may be made of steel.
  • Steel has high strength, hydrogen sulfide resistance and corrosion resistance. Steel can withstand a pressure of at least 140 MPa.
  • the steel may be, but is not limited to, a nickel-based alloy.
  • the two ends of the casing nipple 100 can be threadedly connected to the casing of the oil and gas well along the axial direction X of the inner tube 111.
  • the stopper 113 is protrudingly arranged on the outer surface of the outer tube 112, so that the stopper 113 can be stuck in the interior of the cement ring 200, which is conducive to improving the stability of the casing nipple 100.
  • the size of the flow stop portion 113 protruding from the outer surface of the outer cylinder 112 may range from 1/10 to 1/50 of the thickness of the cement ring 200 .
  • the casing nipple 100 of the embodiment of the present application includes a driving device 130.
  • the driving device 130 is located in the first accommodation space 110a.
  • the driving device 130 is slidably connected to the cylinder body 110 along the axial direction X of the inner cylinder 111.
  • One end of the repair component 120 away from the radial through hole 112a is connected to the driving device 130.
  • the driving device 130 can push the liquid repair component 120 to flow out through the radial through hole 112a, thereby increasing the speed at which the liquid repair component 120 flows into the micro-annular gap 300 or the crack 400, which is beneficial to reducing the possibility that the liquid repair component 120 solidifies before it is filled into the micro-annular gap 300 or the crack 400, thereby affecting the possibility of affecting the repair effect.
  • the driving device 130 of the embodiment of the present application includes an elastic component 131 and a pushing component 132.
  • the elastic component 131 is connected to the pushing component 132.
  • the elastic component 131 drives the pushing component 132 to slide along the axial direction X of the inner cylinder 111.
  • the end surface of the pushing component 132 facing away from the elastic component 131 is connected to the repair component 120.
  • the inner surface of the pushing component 132 is slidably connected to the outer surface of the inner cylinder 111.
  • the outer surface of the pushing component 132 is slidably connected to the inner surface of the outer cylinder 112.
  • the inner surface of the outer cylinder 112 and the outer surface of the inner cylinder 111 may form a sliding channel along the axial direction X of the inner cylinder 111 .
  • the pushing component 132 may slide along the sliding channel in a direction away from the elastic component 131 .
  • the pushing component 132 may have a heat insulating effect, thereby helping to reduce the temperature increase of the repair component 120.
  • the heat is transferred to the elastic component 131 through the pushing component 132, causing the elastic component 131 to be deformed or damaged by the heat, thereby affecting the possibility of the driving effect.
  • the elastic component 131 may be a spring.
  • the pushing component 132 may be a piston.
  • the repair component 120 In the initial state, the repair component 120 is in a solid state.
  • the spring can be in a compressed state.
  • the spring can release elastic potential energy to prompt the piston to push the liquid repair component 120 to flow in the direction of the radial through hole 112a, so that the liquid repair component 120 can flow out through the radial through hole 112a.
  • the piston may be an annular structure.
  • the piston may be sleeved on the outside of the inner tube.
  • the first accommodation space 110a of the embodiment of the present application includes a sealed chamber 110aa.
  • the driving device 130 is located in the sealed chamber 110aa.
  • High pressure gas is arranged in the sealed chamber 110aa.
  • the high-pressure gas in the embodiment of the present application can drive the pushing component 132 to move together with the elastic component 131, thereby facilitating the speed at which the repair component 120 flows into the micro-annular gap 300 or the crack 400, and reducing the possibility that the liquid repair component 120 solidifies before being filled into the micro-annular gap 300 or the crack 400, thereby affecting the repair effect. It is also beneficial to improve the repair efficiency.
  • high-pressure gas may refer to gas with a pressure of 10 times or more than atmospheric pressure.
  • High-pressure gas may be, but is not limited to, nitrogen. It should be noted that high-pressure gas cannot be a corrosive gas.
  • high-pressure gas does not contain gases such as oxygen, hydrogen sulfide or carbon dioxide.
  • a second accommodation space 110b is formed between the outer tube 112 and the inner tube 111 of the embodiment of the present application.
  • the casing nipple 100 further includes a signal control device 140. Part of the signal control device 140 is located in the second accommodation space 110b.
  • the second accommodating space 110 b may be located on a side of the repair component 120 facing away from the driving device 130 .
  • the signal control device 140 includes a circuit board 141 and a resistance wire 142.
  • the circuit board 141 is located in the second accommodation space 110 b.
  • the resistance wire 142 is electrically connected to the circuit board 141.
  • Part of the resistance wire 142 is located inside the repair component 120.
  • the resistance wire 142 is electrically connected to the circuit board 141.
  • the resistance wire 142 can generate heat when energized, so that the heat generated by the resistance wire 142 can heat the repair component 120, so that the solid repair component 120 is heated and converted into a liquid repair component 120.
  • the portion of the resistance wire 142 electrically connected to the circuit board 141 may be located in the second accommodation space 110 b , and the portion of the resistance wire 142 located in the first accommodation space 110 a may be in full contact with the repair component 120 .
  • the repair component 120 when the repair component 120 is in a solid state, the repair component 120 may be in a ring structure.
  • the resistance wire 142 may be in a spiral shape.
  • the horizontal projection of the resistance wire 142 may be located in the middle area of the horizontal projection of the repair component 120, thereby facilitating the improvement of the uniformity of heating of the repair component 120.
  • the signal control device 140 further includes a signal receiving module 143 .
  • the signal receiving module 143 is located in the second accommodation space 110 b .
  • the signal receiving module 143 is electrically connected to the circuit board 141 .
  • the staff when high-temperature and high-pressure fluid appears at the wellhead of the oil and gas well and generates high pressure, the staff can carry out the integrity detection of the oil and gas well to determine the location of the micro-annulus 300 or the crack 400. Then, the staff can send instructions to the signal receiving module 143 in the casing short joint 100 located within the failure position range.
  • the signal receiving module 143 can start the circuit board 141 to energize the resistance wire 142 to heat the resistance wire 142, so that the solid repair component 120 can be converted into a liquid state by heating. Under the action of the driving device 130, the liquid repair component 120 can flow into the micro-annulus 300 and the crack 400 through the radial through hole 112a.
  • the liquid repair component 120 flows out of the first accommodating space 110a to the outside of the outer cylinder 112, it is no longer continuously heated by the resistance wire 142.
  • the temperature of the liquid repair component 120 gradually decreases to be converted into a solid repair component 120, thereby blocking the micro-annulus 300 and the crack 400 to form a repair barrier.
  • the signal receiving module 143 may be resistant to high temperatures, so that when the resistance wire 142 heats the repair component 120 , the signal receiving module 143 is not easily affected by the temperature and fails.
  • the signal receiving module 143 can at least meet the requirement of being able to operate normally at a temperature of 200 degrees Celsius.
  • a wireless receiving unit may be disposed inside the signal receiving module 143.
  • the signal receiving module 143 may receive instructions issued by a staff member through the wireless receiving unit.
  • the signal control device 140 further includes an energy storage component 144.
  • the energy storage component 144 is located in the second accommodation space 110b and is electrically connected to the signal receiving module 143 and the circuit board 141 respectively.
  • the energy storage component 144 of the embodiment of the present application can provide electrical energy to the signal receiving module 143 and the circuit board 141, so that, on the one hand, the signal receiving module 143 can operate normally to receive instructions issued by the staff and transmit them to the circuit board 141; on the other hand, the circuit board 141 can energize the resistance wire 142.
  • the energy storage component 144 of the present application may be, but is not limited to, a battery.
  • the energy storage component 144 may be located at the farthest end of the second accommodation space 110b away from the repair component 120.
  • the circuit board 141 may be located in the area of the second accommodation space 110b close to the repair component 120.
  • the signal receiving module 143 may be located between the circuit board 141 and the energy storage component 144.
  • the barrel 110 of the embodiment of the present application includes a heat insulating portion 114.
  • the heat insulating portion 114 is disposed at the end of the repair component 120 facing away from the driving device 130.
  • the heat insulating portion 114 separates the first accommodating space 110a and the second accommodating space 110b.
  • the resistance wire 142 can heat the repair component 120 after being energized.
  • the heat insulation part 114 can block the repair component 120 generates heat, thereby helping to reduce the possibility that the circuit board 141, the signal receiving module 143, and the energy storage component 144 are affected by heat and affect their working performance.
  • the resistance wire 142 may pass through the thermal insulation 114 to be in full contact with the repair component 120 .
  • the heat insulating portion 114 includes an inclined guide surface 1141.
  • the inclined guide surface 1141 is disposed facing the radial through hole 112a.
  • the liquid repair component 120 When the liquid repair component 120 flows toward the radial through hole 112a, the liquid repair component 120 receives the thrust of the pushing component 132 and flows onto the inclined guide surface 1141.
  • the inclined guide surface 1141 can guide the liquid repair component 120 to flow toward the radial through hole 112a, thereby increasing the speed at which the liquid repair component 120 flows out through the radial through hole 112a, which helps to reduce the possibility that the liquid repair component 120 solidifies before filling the micro-annular gap 300 or the crack 400, thereby affecting the repair effect.
  • the inclination angle between the inclined guide surface 1141 and the vertical surface may be 60 degrees.
  • the number of the radial through holes 112 a is more than three, and the more than three radial through holes 112 a are evenly distributed along the circumference of the outer cylinder 112 .
  • the number of radial through holes 112a is small, it is easy to affect the speed of the liquid repair component 120 flowing to the micro-annulus 300 and the crack 400, so that the liquid repair component 120 is easy to solidify before it flows into the micro-annulus 300 or the crack 400 in time, thereby affecting the repair effect. Therefore, setting the number of radial through holes 112a to three or more can effectively solve the above problem.
  • the sum of the diameters of the three or more radial through holes 112 a may be less than one-third of the circumference of the outer cylinder 112 , thereby reducing the possibility that the strength of the outer cylinder 112 is affected by an excessive number of radial through holes 112 a .
  • the embodiment of the present application also provides a tubular structure, which includes an oil and gas well casing and a casing nipple 100.
  • the number of oil and gas well casings can be multiple.
  • Two adjacent oil and gas well casings can be connected by the casing nipple 100.
  • the multiple oil and gas well casings of the embodiment of the present application can be connected by a casing nipple 100 to form a tubular structure that can transport oil and gas.
  • the distance between two adjacent casing pup joints 100 may be 300 meters.
  • the distance between two adjacent casing pup joints 100 may be 1/20 of the entire length of the tubular structure.
  • the devices or elements referred to or implied must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the embodiments of the present application.
  • the meaning of "multiple" is two or more, unless otherwise precisely and specifically specified.
  • plural in this article refers to two or more than two.
  • the term “and/or” in this article is only a description of the association relationship of associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the previous and next associated objects are in an "or” relationship; in a formula, the character "/" indicates that the previous and next associated objects are in a "division" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Pipe Accessories (AREA)
  • Earth Drilling (AREA)

Abstract

本申请提供一种套管短节以及管状结构。套管短节包括筒体和修复部件。筒体包括内筒和外筒。沿内筒的轴向,外筒套设于内筒的外部。外筒和内筒之间形成第一容纳空间。外筒的外部凸出设置有止流部。修复部件位于第一容纳空间。外筒开设有径向通孔。沿内筒的轴向,径向通孔对应修复部件的下端部设置。径向通孔与止流部间隔设置。径向通孔位于止流部的上方。本申请的套管短节可以解决油气井套管-水泥环体系存在微环隙或水泥环裂隙导致地层高温高压的流体窜至井口,产生潜在安全隐患的问题。

Description

套管短节以及管状结构
本申请要求于2022年10月19日提交中国专利局、申请号为202211281551.0、申请名称为“套管短节以及管状结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及石油开采技术领域,具体涉及一种套管短节以及管状结构。
背景技术
随着油田勘探开采的范围越来越广泛,用于油田开采的设备也逐渐成熟,油气井套管的使用也随之不断增大。套管短节可以用于连接油气井套管。套管短节对于油气井套管来说具有非常重要的作用。优质的套管短节可以具有防漏、防震和抗压等作用,是保证油田开采进程的重要配件。
油气井套管和水泥环可以构成一个完整的体系以封堵地下高温流体进入环空,降低井口处产生高压的可能性,从而保证油气井可以安全生产。然而,在实际生产中,由于井内的压力波动、固井质量低下、地层流体腐蚀以及水泥石强度的退化等因素,井下的油气井套管和水泥环体系的完整性容易失效,以使油气井套管和水泥环界面之间形成微环隙,水泥环内部形成裂隙,从而导致地层高压流体窜至井口,存在安全隐患。
相关技术中,受限于井下条件和埋深等因素,用于封堵微环隙和裂隙的材料难以注入井下。工作人员通常采用二次固井和挤水泥等措施进行修复,其修复的施工难度较大。并且,在井口进行封堵的方式,高温高压的流体仍然可以通过微环隙和裂隙向井口方向运动,安全风险仍然较高。
发明内容
本申请提供一种套管短节以及管状结构,可以解决油气井套管和水泥环体系存在微环隙或裂隙导致地层高温高压的流体窜至井口,潜在安全隐患的问题。
一方面,本申请提供一种套管短节,其包括,
筒体,包括内筒和外筒,沿内筒的轴向,外筒套设于内筒的外部,外筒和 内筒之间形成第一容纳空间,外筒的外部凸出设置有止流部;
修复部件,位于第一容纳空间,外筒开设有径向通孔,沿内筒的轴向,径向通孔对应修复部件的下端部设置,径向通孔与止流部间隔设置,径向通孔位于止流部的上方。
本申请提供的套管短节,修复部件在一定条件下可以由固态转化为液态。液态的修复部件具有流动性,因此可以通过径向通孔流入外筒与水泥环之间的微环隙中。止流部可以阻挡液态的修复部件继续流动,以使液态的修复部件可以在外筒与水泥环之间的微环隙中积聚,从而液态的修复部件也可以流入水泥环内部的裂隙中。液态的修复部件进入微环隙和裂缝中后,可以固化以形成封堵微环隙和裂缝的修复屏障,从而可以降低地下高温高压的流体通过微环隙或者裂隙运动至井口处,导致井口产生高压现象甚至引发安全隐患的可能性。
根据本申请的一个实施例,套管短节包括驱动装置,驱动装置位于第一容纳空间,沿轴向,驱动装置可滑动连接于筒体,修复部件远离径向通孔的一端与驱动装置连接。
根据本申请的一个实施例,驱动装置包括弹性部件和推动部件,弹性部件与推动部件连接,弹性部件驱动推动部件沿轴向滑动,推动部件背向弹性部件的端面与修复部件连接,沿筒体的径向,推动部件的内表面与内筒的外表面可滑动连接,推动部件的外表面与外筒的内表面可滑动连接。
根据本申请的一个实施例,第一容纳空间包括密闭腔室,驱动装置位于密闭腔室,密闭腔室内设置有高压气体。
根据本申请的一个实施例,外筒和内筒之间还形成有第二容纳空间,套管短节还包括信控装置,部分信控装置位于第二容纳空间。
根据本申请的一个实施例,信控装置包括电路板和电阻丝,电路板位于第二容纳空间,电阻丝与电路板电连接,部分电阻丝位于修复部件的内部;
信控装置还包括信号接收模块,信号接收模块位于第二容纳空间,信号接收模块与电路板电连接;
信控装置还包括储能部件,储能部件位于第二容纳空间,储能部件分别与信号接收模块和电路板电连接。
根据本申请的一个实施例,筒体包括隔热部,隔热部设置于修复部件背向驱动装置的端部,隔热部分隔第一容纳空间和第二容纳空间。
根据本申请的一个实施例,隔热部包括倾斜导向面,倾斜导向面面向径向通孔设置。
根据本申请的一个实施例,径向通孔的数量为三个以上,三个以上的径向通孔沿外筒的周向均匀分布。
另一方面,本申请提供一种管状结构,其包括,
油气井套管,数量为多个;
如上述实施例的套管短节,相邻两个油气井套管通过套管短节连接。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请一实施例的套管短节的局部剖视结构示意图;
图2为本申请一实施例的筒体的局部剖视结构示意图;
图3为本申请一实施例的套管短节应用环境下的局部剖视结构示意图;
图4为图3中沿A-A方向的剖视结构示意图;
图5为图1中沿B-B方向的剖视结构示意图;
图6为图1中沿C-C方向的剖视结构示意图;
图7为图1中沿D-D方向的剖视结构示意图;
图8为图1中沿E-E方向的剖视结构示意图。
附图标记说明:
100、套管短节;
110、筒体;
110a、第一容纳空间;110aa、密闭腔室;
110b、第二容纳空间;
111、内筒;
112、外筒;112a、径向通孔;
113、止流部;
114、隔热部;1141、倾斜导向面;
120、修复部件;
130、驱动装置;
131、弹性部件;132、推动部件;
140、信控装置;
141、电路板;142、电阻丝;143、信号接收模块;144、储能部件;
200、水泥环;
300、微环隙;
400、裂隙;
X、轴向。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
本申请的套管短节以及管状结构可以应用于石油开采技术领域。套管短节可以用于连接油气井套管。套管短节对于油气井套管来说具有非常重要的作用。优质的套管短节可以具有防漏、防震和抗压等作用,是保证油田开采进程的重要配件。
油气固井过程中,通常将水泥充填于油气井套管与井眼之间的环形空间内。水泥凝结固化后可以形成固态的水泥环。水泥环具有支撑井壁、保护油气井套管、封隔油气水层的作用。
油气井套管和水泥环可以构成一个完整的体系以封堵地下高温流体进入环空,降低井口处产生高压的可能性,从而保证油气井可以安全生产。然而,在实际生产中,由于井内的压力波动、固井质量低下、地层流体腐蚀以及水泥石强度的退化等因素,井下的油气井套管和水泥环体系的完整性容易失效,以使油气井套管和水泥环界面之间形成微环隙,水泥环内部形成裂隙,从而导致地层高压流体窜至井口,存在安全隐患。
需要说明的是,微环隙是指油气井套管与水泥环相互接触面之间产生的径向间隙。
相关技术中,受限于井下条件和埋深等因素,用于封堵微环隙和裂隙的材料难以注入井下。工作人员通常采用二次固井和挤水泥等措施进行修复,其修复的施工难度大。并且,在井口进行封堵并未阻断高压流体运移通道,安全风险仍然较高。
基于上述问题,申请人对套管短节以及管状结构的结构进行改进。下面对本申请实施例进行进一步描述。
参见图1至图4所示,本申请实施例的套管短节100包括筒体110和修复部件120。筒体110包括内筒111和外筒112。外筒112的外表面可以用于与水泥环200连接。内筒111可以用于输送油气。沿内筒111的轴向X,外筒112套设于内筒111的外部。外筒112和内筒111之间形成第一容纳空间110a。外筒112的外部凸出设置有止流部113。
修复部件120位于第一容纳空间110a。外筒112开设有径向通孔112a。径向通孔112a与第一容纳空间110a相连通。沿内筒111的轴向X,径向通孔112a对应修复部件120的下端部设置。径向通孔112a与止流部113间隔设置。径向通孔112a位于止流部113的上方。
本申请实施例的修复部件120在一定条件下可以由固态转化为液态。液态的修复部件120具有流动性,因此可以通过径向通孔112a流入外筒112与水泥环200之间的微环隙300中。止流部113可以阻挡液态的修复部件120继续流动,以使液态的修复部件120可以在外筒112与水泥环200之间的微环隙300中积聚,从而液态的修复部件120也可以流入水泥环200内部的裂隙400中。液态的修复部件120进入微环隙300和裂缝中后,可以固化以形成封堵微环隙300和裂缝的修复屏障,从而可以降低地下高温高压的流体通过微环隙300或者裂隙400运动至井口处,导致井口产生高压现象甚至引发安全隐患的可能性。
在一些示例中,径向通孔112a可以对应修复部件120的下端部设置,因此液态的修复部件120可以在自身重力的作用下通过径向通孔112a流出;或者也可以在其他外力的驱动下促使液态的修复部件120通过径向通孔112a流出。具体实施方式在本实施例中不作限定。
在一些示例中,可以通过改变温度以使修复部件120由固态转化为液态。可以理解地,也可以通过其他方式改变修复部件120的状态。
示例性地,修复部件120可以在高温状态下转化为液态。例如,当温度升高至450摄氏度以上时,修复部件120可以由固态转化为液态,以流入微环隙300或裂隙400。当温度降低至250摄氏度以下时,修复部件120可以由液态转化为固态,以形成修复屏障。固态的修复部件120耐压可以不低于50兆帕。
在一些示例中,需要对微环隙300或裂隙400进行修补时,工作人员可以通过油气井套管下放加热棒。加热棒可以设置于与修复部件120相对应的位置,从而可以对修复部件120进行加热以将其由固态转化为液态。
在一些示例中,外筒112可以采用钢材。修复部件120可以与钢材和水泥环200之间具有较好的贴合性。示例性地,修复部件120的材料可以但不限于是树脂凝胶或者低熔点合金。例如,低熔点合金可以是一种含有铋铅锡镉成分的合金。在本申请中不作限定。
在一些示例中,内筒111和外筒112均可以采用钢材。钢材具有高强度、抗硫化氢和抗腐蚀的能力。钢材的至少可以承受140兆帕的压力。示例性地,钢材可以但不限于是镍基合金。
在一些示例中,沿内筒111的轴向X,套管短节100的两端可以与油气井套管螺纹连接。止流部113凸出设置于外筒112的外表面,从而止流部113可以卡入水泥环200的内部,有利于提高套管短节100的稳固性。
示例性地,参见图1和图5所示,沿内筒111的周向,止流部113凸出于外筒112外表面的尺寸的取值范围可以是水泥环200厚度的1/10至1/50之间。
在一些可实现的方式中,参见图1至图3所示,本申请实施例的套管短节100包括驱动装置130。驱动装置130位于第一容纳空间110a。沿内筒111的轴向X,驱动装置130可滑动连接于筒体110。修复部件120远离径向通孔112a的一端与驱动装置130连接。
本申请实施例的修复部件120由固态转化为液态后,驱动装置130可以推动液态的修复部件120通过径向通孔112a流出,从而可以提高液态修复部件120流入微环隙300或裂隙400的速度,有利于降低液态的修复部件120还未填充至微环隙300或裂隙400中,液态的修复部件120即发生固化,而影响修复效果的可能性。
在一些可实现的方式中,参见图1和图3所示,本申请实施例的驱动装置130包括弹性部件131和推动部件132。弹性部件131与推动部件132连接。弹性部件131驱动推动部件132沿内筒111的轴向X滑动。推动部件132背向弹性部件131的端面与修复部件120连接。沿筒体110的径向,推动部件132的内表面与内筒111的外表面可滑动连接。推动部件132的外表面与外筒112的内表面可滑动连接。
在一些示例中,外筒112的内表面与内筒111的外表面可以形成沿内筒111轴向X的滑动通道。推动部件132可以沿滑动通道向背离弹性部件131的方向滑动。
在一些示例中,推动部件132可以具有隔热作用,从而有利于降低修复部件120温度升高,热量通过推动部件132传递至弹性部件131,导致弹性部件131受热产生形变或损坏,影响驱动效果的可能性。
在一些示例中,参见图1和图6所示,弹性部件131可以是弹簧。推动部件132可以是活塞。初始状态下,修复部件120处于固体状态,固体状态的修复部件120 可以使弹簧处于压缩状态。当修复部件120液化时,弹簧可以释放弹性势能以促使活塞推动液态的修复部件120向径向通孔112a的方向流动,从而液态的修复部件120可以通过径向通孔112a流出。
在一些示例中,活塞可以是环形结构。活塞可以套设于内管的外部。
在一些可实现的方式中,参见图2和图3所示,本申请实施例的第一容纳空间110a包括密闭腔室110aa。驱动装置130位于密闭腔室110aa。密闭腔室110aa内设置有高压气体。
本申请实施例的高压气体可以与弹性部件131共同驱动推动部件132运动,从而有利于提高修复部件120流入微环隙300或裂隙400的速度,降低液态的修复部件120还未填充至微环隙300或裂隙400中,液态的修复部件120即发生固化,而影响修复效果的可能性。同时也有利于提高修复效率。
在一些示例中,高压气体可以是指大气压强10倍及以上压力的气体。高压气体可以但不限于是氮气。需要说明的是,高压气体不能是具有腐蚀性的气体。例如,高压气体中不含有氧气、硫化氢或者二氧化碳等气体。
在一些可实现的方式中,参见图2和图3所示,本申请实施例的外筒112和内筒111之间还形成有第二容纳空间110b。套管短节100还包括信控装置140。部分信控装置140位于第二容纳空间110b。
在一些示例中,沿内筒111的轴向X,第二容纳空间110b可以位于修复部件120背向驱动装置130的一侧。
在一些可实现的方式中,参见图1和图3所示,信控装置140包括电路板141和电阻丝142。电路板141位于第二容纳空间110b。电阻丝142与电路板141电连接。部分电阻丝142位于修复部件120的内部。
在一些示例中,电阻丝142与电路板141电连接。电阻丝142通电后可以产生热量,从而电阻丝142产生的热量可以对修复部件120进行加热,以使固态的修复部件120受热而转化为液态的修复部件120。
在一些示例中,电阻丝142与电路板141电连接的部分可以位于第二容纳空间110b内。电阻丝142位于第一容纳空间110a的部分可以与修复部件120充分接触。
示例性地,修复部件120处于固态时,修复部件120可以呈环状结构。参见图1和图7所示,电阻丝142可以呈螺旋状。电阻丝142在水平方向上的投影可以位于修复部件120在水平方向上的投影的中间区域,从而有利于提高修复部件120的受热均匀性。
在一些可实现的方式中,参见图1所示,信控装置140还包括信号接收模块143。信号接收模块143位于第二容纳空间110b。信号接收模块143与电路板141电连接。
在一些示例中,当油气井井口出现地层高温高压的流体并产生高压后,工作人员可以开展油气井完整性检测,以确定微环隙300或裂隙400发生的位置。然后,工作人员可以对位于失效位置范围内的套管短节100内的信号接收模块143发送指令。信号接收模块143可以启动电路板141对电阻丝142进行通电,以对电阻丝142进行加热,从而固态的修复部件120受热可以转化为液态。在驱动装置130的作用下,液态的修复部件120可以通过径向通孔112a流入微环隙300和裂隙400。液态的修复部件120从第一容纳空间110a流出至外筒112的外部后,不再受到电阻丝142的持续加热。液态的修复部件120的温度逐渐降低,以转化成固态的修复部件120,从而对微环隙300和裂隙400进行封堵,形成修复屏障。
在一些示例中,信号接收模块143可以具有耐高温性,从而电阻丝142对修复部件120加热过程中,信号接收模块143不易受温度影响而发生故障。
示例性地,信号接收模块143至少可以满足在200摄氏度温度下可以正常运行。
在一些示例中,信号接收模块143内部可以设置有无线接收单元。信号接收模块143可以通过无线接收单元接收工作人员发出的指令。
在一些可实现的方式中,参见图1所示,信控装置140还包括储能部件144。储能部件144位于第二容纳空间110b。储能部件144分别与信号接收模块143和电路板141电连接。
本申请实施例的储能部件144可以为信号接收模块143和电路板141提供电能,从而,一方面可以使信号接收模块143正常运行以接收工作人员发出的指令,并传递至电路板141;另一方面,可以使电路板141为电阻丝142通电。
在一些示例中,本申请的储能部件144可以但不限于是蓄电池。
在一些示例中,沿内筒111的轴向X,储能部件144可以位于第二容纳空间110b内远离修复部件120的最远端。电路板141可以位于第二容纳空间110b靠近修复部件120的区域。信号接收模块143可以位于电路板141和储能部件144之间。
在一些可实现的方式中,参见图2所示,本申请实施例的筒体110包括隔热部114。隔热部114设置于修复部件120背向驱动装置130的端部。隔热部114分隔第一容纳空间110a和第二容纳空间110b。
电阻丝142通电后可以对修复部件120加热。隔热部114可以阻隔修复部件 120产生的热量,从而有利于降低电路板141、信号接收模块143以及储能部件144受热影响工作性能的可能性。
在一些示例中,电阻丝142可以穿过隔热部114以与修复部件120充分接触。
在一些可实现的方式中,参见图2所示,隔热部114包括倾斜导向面1141。倾斜导向面1141面向径向通孔112a设置。
液态的修复部件120向径向通孔112a处流动的过程中,液态的修复部件120受到推动部件132的推力后而流动至倾斜导向面1141上。倾斜导向面1141可以引导液态的修复部件120向径向通孔112a的方向流动,从而可以提高液态修复部件120通过径向通孔112a流出的速度,有利于降低液态的修复部件120还未填充至微环隙300或裂隙400中,液态的修复部件120即发生固化,而影响修复效果的可能性。
在一些示例中,参考图2所示的方向,倾斜导向面1141与竖直面之间可以具有倾斜角。示例性地,倾斜导向面1141与竖直面之间的倾斜角度可以是60度。
在一些可实现的方式中,参见图1和图8所示,径向通孔112a的数量为三个以上。三个以上的径向通孔112a沿外筒112的周向均匀分布。
在一些示例中,如果径向通孔112a的数量较少,容易影响液态的修复部件120流向微环隙300和裂隙400的速度,从而容易出现液态的修复部件120还未及时流入微环隙300或裂隙400,液态的修复部件120即发生固化,而影响修复效果的现象。因此,径向通孔112a的数量设置为三个以上可以有效解决上述问题。
在一些示例中,三个以上的径向通孔112a的直径之和可以小于外筒112周长的三分之一,从而可以降低径向通孔112a的数量过多影响外筒112的强度的可能性。
本申请实施例还提供一种管状结构,管状结构包括油气井套管和套管短节100。油气井套管的数量可以是多个。相邻两个油气井套管可以通过套管短节100连接。
本申请实施例的多个油气井套管之间可以通过套管短节100连接,以形成可以输送油气的管状结构。
在一些示例中,相邻两个套管短节100之间的距离可以是300米。或者,相邻两个套管短节100之间的距离可以是管状结构整体长度的1/20。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的 相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (10)

  1. 一种套管短节,其特征在于,包括:
    筒体,包括内筒和外筒,沿所述内筒的轴向,所述外筒套设于所述内筒的外部,所述外筒和所述内筒之间形成第一容纳空间,所述外筒的外部凸出设置有止流部;
    修复部件,位于所述第一容纳空间,所述外筒开设有径向通孔,沿所述轴向,所述径向通孔对应所述修复部件的下端部设置,所述径向通孔与所述止流部间隔设置,所述径向通孔位于所述止流部的上方。
  2. 根据权利要求1所述的套管短节,其特征在于,包括驱动装置,所述驱动装置位于所述第一容纳空间,沿所述轴向,所述驱动装置可滑动连接于所述筒体,所述修复部件远离所述径向通孔的一端与所述驱动装置连接。
  3. 根据权利要求2所述的套管短节,其特征在于,所述驱动装置包括弹性部件和推动部件,所述弹性部件与所述推动部件连接,所述弹性部件驱动所述推动部件沿所述轴向滑动,所述推动部件背向所述弹性部件的端面与所述修复部件连接,沿所述筒体的径向,所述推动部件的内表面与所述内筒的外表面可滑动连接,所述推动部件的外表面与所述外筒的内表面可滑动连接。
  4. 根据权利要求3所述的套管短节,其特征在于,所述第一容纳空间包括密闭腔室,所述驱动装置位于所述密闭腔室,所述密闭腔室内设置有高压气体。
  5. 根据权利要求2至4任一项所述的套管短节,其特征在于,所述外筒和所述内筒之间还形成有第二容纳空间,所述套管短节还包括信控装置,部分所述信控装置位于所述第二容纳空间。
  6. 根据权利要求5所述的套管短节,其特征在于,所述信控装置包括电路板和电阻丝,所述电路板位于所述第二容纳空间,所述电阻丝与所述电路板电连接,部分所述电阻丝位于所述修复部件的内部;
    所述信控装置还包括信号接收模块,所述信号接收模块位于所述第二容纳空间,所述信号接收模块与所述电路板电连接;
    所述信控装置还包括储能部件,所述储能部件位于所述第二容纳空间,所述储能部件分别与所述信号接收模块和所述电路板电连接。
  7. 根据权利要求5所述的套管短节,其特征在于,所述筒体包括隔热部, 所述隔热部设置于所述修复部件背向所述驱动装置的端部,所述隔热部分隔所述第一容纳空间和所述第二容纳空间。
  8. 根据权利要求7所述的套管短节,其特征在于,所述隔热部包括倾斜导向面,所述倾斜导向面面向所述径向通孔设置。
  9. 根据权利要求1至4任一项所述的套管短节,其特征在于,所述径向通孔的数量为三个以上,三个以上的所述径向通孔沿所述外筒的周向均匀分布。
  10. 一种管状结构,其特征在于,包括:
    油气井套管,数量为多个;
    如权利要求1至9任一项所述的套管短节,相邻两个所述油气井套管通过所述套管短节连接。
PCT/CN2023/125324 2022-10-19 2023-10-19 套管短节以及管状结构 WO2024083173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211281551.0 2022-10-19
CN202211281551.0A CN117948074A (zh) 2022-10-19 2022-10-19 套管短节以及管状结构

Publications (1)

Publication Number Publication Date
WO2024083173A1 true WO2024083173A1 (zh) 2024-04-25

Family

ID=90736949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125324 WO2024083173A1 (zh) 2022-10-19 2023-10-19 套管短节以及管状结构

Country Status (2)

Country Link
CN (1) CN117948074A (zh)
WO (1) WO2024083173A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047708A1 (en) * 2006-06-24 2008-02-28 Spencer Homer L Method and apparatus for plugging perforations
US20080190612A1 (en) * 2005-03-14 2008-08-14 Triangle Technology As Method and a Device for in Situ Formation of a Seal in an Annulus in a Well
US20160040502A1 (en) * 2014-08-11 2016-02-11 Stephen C. Robben Fluid and crack containment collar for well casings
US20180148991A1 (en) * 2016-09-30 2018-05-31 Conocophillips Company Tool for metal plugging or sealing of casing
US20180298720A1 (en) * 2017-04-17 2018-10-18 Schlumberger Technology Corporation Systems and methods for remediating a microannulus in a wellbore
CN110821415A (zh) * 2019-12-03 2020-02-21 中石化石油工程技术服务有限公司 一种固井用组合式套管短节及固井的方法
US20200248526A1 (en) * 2017-04-04 2020-08-06 Bisn Tec Ltd Improvements to thermally deforimable annular packers
US20210222512A1 (en) * 2020-01-17 2021-07-22 Halliburton Energy Services, Inc. Wellbore remedial operations with no-heat liquid solder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190612A1 (en) * 2005-03-14 2008-08-14 Triangle Technology As Method and a Device for in Situ Formation of a Seal in an Annulus in a Well
US20080047708A1 (en) * 2006-06-24 2008-02-28 Spencer Homer L Method and apparatus for plugging perforations
US20160040502A1 (en) * 2014-08-11 2016-02-11 Stephen C. Robben Fluid and crack containment collar for well casings
US20180148991A1 (en) * 2016-09-30 2018-05-31 Conocophillips Company Tool for metal plugging or sealing of casing
US20200248526A1 (en) * 2017-04-04 2020-08-06 Bisn Tec Ltd Improvements to thermally deforimable annular packers
US20180298720A1 (en) * 2017-04-17 2018-10-18 Schlumberger Technology Corporation Systems and methods for remediating a microannulus in a wellbore
CN110821415A (zh) * 2019-12-03 2020-02-21 中石化石油工程技术服务有限公司 一种固井用组合式套管短节及固井的方法
US20210222512A1 (en) * 2020-01-17 2021-07-22 Halliburton Energy Services, Inc. Wellbore remedial operations with no-heat liquid solder

Also Published As

Publication number Publication date
CN117948074A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN109707333B (zh) 一种油井套管自膨胀补贴方法
CN105443064B (zh) 一种井下可控式自膨胀套管补贴管
CN103459765A (zh) 钻孔金属构件结合系统及其方法
WO2016101680A1 (zh) 地下气化固井方法、井结构
CN206816226U (zh) 一种速钻大通径桥塞
CN108194045B (zh) 一种套管修复装置
CN109403902B (zh) 一种用于套损井复合材料补贴的一体化装置
CN202531139U (zh) 油田环空隔热式热水驱油注入井管柱
NO20141114A1 (no) System og fremgangsmåte for forbedret forsegling av brønnrør
EP3123071A1 (en) Coupling assembly and protective ring therefor
CN105298445A (zh) 减缓油气井环空带压的方法及装置
CN205445522U (zh) 一种井下可控式自膨胀套管补贴管
WO2024083173A1 (zh) 套管短节以及管状结构
CN110469325A (zh) 一种油气田注气管柱找漏方法
CN108457612B (zh) 一种石油套管化学法修复方法
CN101892806A (zh) 高温高压空气喷射破岩钻井的方法及装置
CN108952688B (zh) 一种深水高温高压油气井测试管柱及其测试方法
CN101173605A (zh) 分层定量注汽装置
CN104074487B (zh) 拖动式封隔器
CN206554903U (zh) 热采井套管热应力补偿器
CN101324178B (zh) 套管增高井口安全补偿装置
US20210324697A1 (en) Thermal apparatus and associated methods
CN205135568U (zh) 减缓油气井环空带压的装置
CN109630051B (zh) 一种石油套管化学法修复装置
US3502150A (en) Method of joining oil well casing and tubing with adhesive