WO2024083072A1 - 感知配置方法、感知方法、装置、网络侧设备及感知设备 - Google Patents

感知配置方法、感知方法、装置、网络侧设备及感知设备 Download PDF

Info

Publication number
WO2024083072A1
WO2024083072A1 PCT/CN2023/124715 CN2023124715W WO2024083072A1 WO 2024083072 A1 WO2024083072 A1 WO 2024083072A1 CN 2023124715 W CN2023124715 W CN 2023124715W WO 2024083072 A1 WO2024083072 A1 WO 2024083072A1
Authority
WO
WIPO (PCT)
Prior art keywords
perception
signal
sensing
index
network side
Prior art date
Application number
PCT/CN2023/124715
Other languages
English (en)
French (fr)
Inventor
吴建明
李健之
丁圣利
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024083072A1 publication Critical patent/WO2024083072A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application belongs to the technical field of communication perception integration, and specifically relates to a perception configuration method, a perception method, an apparatus, a network side device and a perception device.
  • the new radio has designed different reference signals (RS) for different purposes.
  • the reference signals of NR include NR downlink reference signal, NR uplink reference signal, and NR sidelink reference signal.
  • the NR RS structure design basically follows the reference signal structure of the fourth generation mobile communication technology (4G), while realizing the characteristics of adapting to the operation and changes of various frequency bands and scenarios, and has very high flexibility.
  • the embodiments of the present application provide a perception configuration method, a perception method, an apparatus, a network side device and a perception device, which can solve the problem of how to achieve communication perception integration in a 5G system.
  • a perception configuration method comprising:
  • the network side device configures at least two sensing signals for the sensing device through the reference signal configuration information, and the sensing capability of each sensing signal is indicated by a sensing capability coefficient;
  • the network-side device selects a first perception signal from the at least two perception signals according to a perception service, where the first perception signal is used to perform perception measurement related to the perception device.
  • a perception method comprising:
  • the sensing device receives reference signal configuration information sent by the network side device, where the reference signal configuration information is used to configure at least two sensing signals; the sensing capability of each sensing signal is indicated by a sensing capability coefficient;
  • the perception device performs perception measurement using the first perception signal according to the instruction of the network side device.
  • a perception configuration device including:
  • a configuration module configured to configure at least two perception signals for the perception device through reference signal configuration information, wherein the perception capability of each perception signal is indicated by a perception capability coefficient;
  • the first selection module is used to select a first perception signal from the at least two perception signals according to a perception service, where the first perception signal is used to perform perception measurement related to the perception device.
  • a sensing device comprising:
  • a second receiving module is used to receive reference signal configuration information sent by a network side device, where the reference signal configuration information is used to configure at least two perception signals; the perception capability of each perception signal is indicated by a perception capability coefficient;
  • a perception measurement module is used to perform perception measurement using the first perception signal according to the instruction of the network side device.
  • a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • a network side device comprising a processor and a communication interface, wherein the communication interface is used to configure at least two perception signals for the perception device through reference signal configuration information, and the perception capability of each perception signal is indicated by a perception capability coefficient; the processor is used to select a first perception signal from the at least two perception signals according to the perception service, and the first perception signal is used to perform perception measurements related to the perception device.
  • a perception device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the second aspect are implemented.
  • a perception device comprising a processor and a communication interface, wherein the communication interface is used to receive reference signal configuration information sent by a network side device, and the reference signal configuration information is used to configure at least two perception signals; the perception capability of each perception signal is indicated by a perception capability coefficient; and the processor is used to perform perception measurement using the first perception signal according to the indication of the network side device.
  • a communication system comprising: a network side device and a perception device, wherein the network side device can be used to execute the steps of the method described in the first aspect, and the perception device can be used to execute the steps of the method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect.
  • a network-side device configures a perception signal using existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities and are represented by perception capability coefficients, so that different perception requirements can be achieved based on the perception capabilities of the perception signals.
  • the network end adaptively selects a first perception signal for the perception device to perform perception measurement according to different perception requirements.
  • the embodiment of the present application achieves effective perception of the perception target with little impact on the NR system, that is, communication perception integration can be efficiently achieved in the NR system.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a flowchart showing the steps of the perception configuration method provided in an embodiment of the present application.
  • FIG3 is a diagram showing an example structure of a perception signal provided in an embodiment of the present application.
  • FIG4 is a flowchart showing the steps of the sensing method provided in an embodiment of the present application.
  • FIG5 shows an example flow chart of downlink prediction perception and actual perception provided by an embodiment of the present application
  • FIG6 shows an example flow chart of uplink prediction perception and actual perception provided by an embodiment of the present application
  • FIG. 7 shows one of the schematic diagrams of the configuration of the sensing signal in Example 1 provided in an embodiment of the present application
  • FIG8 shows a second schematic diagram of the configuration of the sensing signal in Example 1 provided in an embodiment of the present application
  • FIG9 is a schematic diagram showing the structure of a sensing configuration device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram showing the structure of a sensing device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram showing the structure of a communication device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram showing the structure of a network side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • the present invention relates to a wireless communication system comprising: a wireless communication system including a wireless communication network, a wireless communication system with a wireless transmission rate of 400 MHz and a wireless transmission rate of 500 MHz.
  • a wireless communication system comprising: a wireless communication system including a wireless communication system with a wireless transmission rate of 400 MHz and a wireless transmission rate of 500 MHz.
  • the present invention relates to a wireless communication system including: ...
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device, a vehicle user equipment (VUE), a pedestrian terminal (PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (smart bracelet, smart bracelet, smart ring
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
  • WLAN wireless local area network
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (L-NEF), Binding Support Function (BSF), Application Function (AF), etc.
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF user
  • CSI-RS Channel State Information Reference Signal
  • DM-RS Demodulation Reference Signal
  • TRS Tracking Reference Signal
  • SRS Sounding Reference Signal
  • the embodiment of the present application provides a perception configuration method, including:
  • Step 201 The network side device configures at least two sensing signals for the sensing device by using reference signal configuration information, and the sensing capability of each sensing signal is indicated by a sensing capability coefficient;
  • Step 202 The network-side device selects a first perception signal from the at least two perception signals according to a perception service, where the first perception signal is used to perform perception measurement related to the perception device.
  • the reference signal configuration information is CSI-RS configuration information or DM-RS configuration information or TRS configuration information or SRS configuration information in an existing 5G system. If the perception signal is a downlink perception signal, the reference signal configuration information is the CSI-RS configuration for the downlink; if the perception signal is an uplink perception signal, the reference signal configuration information is the SRS configuration information for the uplink.
  • the embodiments of the present application are described by taking the CSI-RS configuration information for the uplink and downlink as an example.
  • the network side device determines the first perception signal according to the perception requirements of the perception service, such as the distance of the perception object (equivalent to the delay) and/or the speed of the perception object (equivalent to the Doppler frequency).
  • the sensing is measured by a sensing signal (SS).
  • the sensing signal is composed of resource elements RE, which can be defined and classified into three categories, as shown in Figure 3:
  • SS Type-1 Perception signal of resource elements in the frequency domain based on Orthogonal Frequency Division Multiplexing (OFDM). It is the number of frequency domain resource units of the perception signal in the frequency domain direction.
  • the resource unit may be a resource element (RE), a resource block (RB), or other defined resource units.
  • SS Type-2 Perception signal in the time domain based on OFDM time slots. is the number of time domain resource units of the perception signal in the time domain.
  • SS Type-3 Perception signal based on time-frequency domain. is the frequency domain resource length of the perception signal in the frequency domain, and is the number of time domain resource units of the perception signal in the time domain.
  • the physical resource of the perception signal is implemented by an information element (CSI-RS-ResourceMapping).
  • the information element CSI-RS-ResourceMapping mainly configures the following resource parameters:
  • OFDM frequency domain resource location (frequencyDomainAllocation) is implemented by a bit mapping method, and can indicate any one of the 12 REs according to the density of resources in the RB.
  • the index of the first occupied RE is k 0 .
  • the first OFDM symbol time domain position (firstOFDMSymbolInTimeDomain) in each RB may indicate any one of 14 OFDM symbols.
  • the index of the first OFDM symbol occupied here is l 0 .
  • CDM resource type resources are designed for multiple-in multiple-out (MIMO) reference signals.
  • the density of CSI-RS in each OFDM symbol can be 3, 1 or 0.5, which is represented by parameter ⁇ .
  • perception signal design in this application can be extended to any channel structure and is not specifically limited here.
  • the sensing signal may be configured as a periodic sensing signal or as an aperiodic sensing signal.
  • the sensing signal parameters T CSI-RS and ⁇ CSI-RS may determine the periodicity characteristics of the sensing signal.
  • the CSI-RS time-frequency domain resource configuration is mainly implemented through the RRC information element CSI-RS-ResourceMapping and CSI resource period and offset (CSI-ResourcePeriodicityAndOffset).
  • CSI-RS resources are configured in each time slot, and there are three main parameters related to resource configuration, namely frequencyDomainAllocation, firstOFDMSymbolInTimeDomain and density.
  • the parameter CSI-ResourcePeriodicityAndOffset is used to implement the CSI-RS period and related resource offset.
  • the corresponding downlink control information (DCI) and the offset of sending CSI-RS are determined according to the parameter aperiodicTriggeringOffset in the information element non-zero power CSI-RS resource set (NZP-CSI-RS-ResourceSet).
  • aperiodicTriggeringOffset is the offset between the time slot of the DCI that triggers the aperiodic CSI-RS resource set and the time slot of the sending CSI-RS resource set.
  • SSBs synchronization signal blocks
  • SSBs are system signals related to the cell, i.e., cell specific signals.
  • the SSB signal period can be configured to be 5ms, 10ms, etc. Therefore, if the time slot is pre-configured by SSB, at least part of the resources in the relevant time slot cannot be used by CSI-RS. Configuration.
  • the method further includes:
  • the network side device determines the perception capability coefficient of the perception signal according to the first information; the first information includes at least one of the following:
  • the state indication value of the resource unit is related to the density of the perception signal in the frequency domain and/or time domain, and the state indication value of the resource unit is used to indicate whether the resource unit is configured as a perception signal resource.
  • the network side device determines, according to the first information, a perception capability coefficient of the perception signal, including:
  • the network-side device determines the perception capability coefficient ⁇ [j, N f , N t ] of the j-th perception signal according to a first formula; wherein the first formula is:
  • j is the index of the perception signal
  • N f is the length of the perception signal in the frequency domain
  • N t is the length of the perception signal in the time domain
  • S j (k, l) is a state indication value of a resource unit, which is determined by the density of the perception signal in the frequency domain and/or time domain, S j (k, l) is used to indicate whether the resource unit is configured as a perception signal resource
  • ⁇ (N f ,N t ) is a function of N f and N t
  • the perception capability of the perception signal is associated with the resource density of the configured perception signal.
  • the perception capability of the perception signal can be quantified by the resource density of the perception signal.
  • the perception capability coefficient of the jth perception signal is represented by ⁇ [j,N f ,N t ].
  • the length of the sensing signal in the frequency domain is Nf (sensing signal bandwidth), and the length of the sensing signal in the time domain is Nt (sensing signal time interval), wherein the unit in the frequency domain may be RE, and the unit in the time domain may be a time slot.
  • Nf short signal bandwidth
  • Nt short signal time interval
  • the unit in the frequency domain may be RE
  • the unit in the time domain may be a time slot.
  • the sensing capability of the jth sensing signal can be defined by the sensing capability coefficient ⁇ [j, Nf , Nt ].
  • ⁇ (N f ,N t ) is a function of N f and N t .
  • the N f ⁇ N t time-frequency domain resources of each perception signal can be periodic, semi-static periodic, or non-periodic.
  • the perception operation is performed using the N f ⁇ N t time-frequency domain resources of the perception signal.
  • the perceptual signal type can be considered as SS Type-1
  • the perceptual signal type can be considered as SS Type-2
  • N t > 1 and N f > 1 the perceptual signal type can be considered as SS Type-3.
  • the time-frequency domain resources of the perception signal are configured by the information element (NZP CSI-RS Resource)
  • the time-frequency domain resources of each perception signal are determined by the configuration parameter vector ⁇ , so the time-frequency domain resources of the perception signal can be expressed as R SC,n,m′ ( ⁇ [m]), where m is the perception signal resource index, and m′ is the perception signal resource index in the nth perception signal time-frequency domain resource set.
  • the m′th perception signal resource is arbitrarily selected from the perception signal time-frequency domain resource pool. Therefore, m, n, and m′ must satisfy the following conditions, 0 ⁇ m ⁇ M-1, 0 ⁇ n ⁇ N-1, 0 ⁇ m′ ⁇ M n -1.
  • the network end can pre-configure different perception signals.
  • the network end pre-configures J 1 perception signals, represented by Q j , where 0 ⁇ j ⁇ J 1 -1.
  • the perception signal is a set of CSI-RS time-frequency domain resource sets, and the jth perception signal is expressed as:
  • the S j (k, l) is used to indicate whether the resource unit is configured as a sensing signal resource, including:
  • the method further includes:
  • the network side device determines the index of the perception signal according to the perception capability coefficient ⁇ [j,N f ,N t ] of the perception signal;
  • the configuration of the perceptual signal can be configured according to the perceptual capability coefficient ⁇ [j,N f ,N t ] of the perceptual signal, that is, the perceptual signal with a small j index in Q j can be a perceptual signal with a small perceptual capability, and its corresponding coefficient ⁇ [j,N f ,N t ] is also small; and the perceptual signal with a large j index in Q j can be a perceptual signal with a large perceptual capability, and its corresponding coefficient ⁇ [j,N f ,N t ] is also large.
  • the perceptual signal with a small j index in Q j may be a perceptual signal with a large perceptual capability, and its corresponding coefficient ⁇ [j,N f ,N t ] is also large; and the perceptual signal with a large j index in Q j may be a perceptual signal with a small perceptual capability, and its corresponding coefficient ⁇ [j,N f ,N t ] is also small; no specific limitation is made here.
  • the network may indicate the sensing capability of the sensing signal resource by using the index j of the sensing signal.
  • the method further includes:
  • the network side device generates a first perception signal lookup table (Lookup Table) according to the index of the perception signal, the perception capability coefficient of the perception signal, and the perception requirement corresponding to the characteristics of the perception service;
  • the network side device sends the first perception signal query table to the perception device.
  • the method further includes:
  • the network side device obtains a predefined first perception signal query table, where the first perception signal query table includes: an index of the perception signal, a perception capability coefficient of the perception signal, and a perception requirement corresponding to a feature of a perception service.
  • the perception signal query table may be configured according to different SS types, that is, perception signal query table 1 related to SS type-1, perception signal query table 2 related to SS type-2, and perception signal query table 3 related to SS type-3.
  • the perception signal query table can be configured as a perception signal query table 1-2 according to SS type-1 and SS type-2, and another perception signal query table 3 is configured for the perception signal related to SS type-3.
  • the embodiment of the present application uses 5 bits to represent the combined lookup table of the perception signal and the perception requirement corresponding to the perception capability coefficient ⁇ [j,N f ,N t ].
  • the embodiment of the present application uses 5 bits to represent the lookup table of the perception signal and the perception requirement corresponding to the perception capability coefficient ⁇ [j,N f ,N t ].
  • dj is the maximum perceived distance
  • ⁇ dj is the perceived distance granularity
  • vj is the maximum perceived speed
  • ⁇ vj is the perceived speed granularity
  • the distance in the perception requirement can be replaced by the time delay
  • the speed in the perception requirement can be replaced by the Doppler frequency, without specific limitation here.
  • step 202 includes:
  • the network side device selects a first perception signal from the first perception signal query table according to a perception requirement corresponding to the characteristic of the perception service.
  • the method before step 202, the method further includes:
  • the network side device receives feedback information sent by the perception device after predicting and perceiving using the second perception signal, where the feedback information is used to directly or indirectly indicate an index of the first perception signal expected by the perception device;
  • step 202 includes:
  • the network-side device selects a first perception signal from the first perception signal query table according to the feedback information and the perception requirement corresponding to the characteristic of the perception service.
  • the second perception signal is at least one of the following:
  • the fourth perceptual signal whose length and density are configured only in the time domain is a perceptual signal of SS type-2.
  • the characteristics of the perception signals of SS type-1 and SS type-2 are that the occupied RE resources are relatively small, but the perception capability can only perceive the distance (or delay) of a single target, or the speed (Doppler frequency) of a single target. If the distances or speeds of different perception targets are the same, SS type-1 and SS type-2 cannot distinguish the perception targets. Therefore, in the integrated communication perception measurement, the perception signal of SS type-3 is indispensable. Since SS type-3 will occupy a large amount of time-frequency domain resources, how to reduce the time-frequency domain resources of the perception signal of SS type-3 is the main problem to be solved in this application.
  • the network end can use SS type-1 and/or SS type-2 to predict the perception signal.
  • the perception device side can provide feedback on the prediction results.
  • the network end finally determines the perception signal to be used based on the feedback results of the perception device side.
  • the method further includes:
  • the network side device sends an index of the first perception signal to the perception device
  • the network side device sends the first perception signal.
  • the network side device sending the index of the first perception signal to the perception device includes:
  • the network side device indicates the index of the first perception signal through at least one of layer 1 signaling, layer 2 signaling, and radio resource control RRC signaling.
  • the network may select the first perception signal periodically or non-periodically according to the perception requirement.
  • the network may use control signaling, such as DCI, to notify the UE of a specific index j, that is, the DCI includes csi-ResourceConfigId (or directly uses NZP CSI-RS ResourceSetId) to notify the UE, and the UE may learn the index of the perception signal by demodulating the DCI.
  • the DCI may be set to bits to indicate the perception signal. For example, using the existing parameter csi-ResourceConfigId (or NZP-CSI-RS-ResourceSetId), through configuration bits to indicate the index of the perceived signal.
  • the second perception signal is determined by a second perception signal lookup table
  • the second perception signal lookup table corresponds to the third perception signal and the fourth perception signal.
  • Table 1 for SS type-1 and SS type-2, in the embodiment of the present application, 5 bits are used to represent the combination lookup table of the perception signal and the perception requirement corresponding to the perception capability coefficient ⁇ [j,N f ,N t ].
  • the method further includes:
  • the network side device selects a second perception signal from the second perception signal query table according to a perception requirement corresponding to a characteristic of the perception service
  • the network side device sends an index of a second perception signal to the perception device
  • the network side device sends the second perception signal.
  • the network side device indicates the index of the second perception signal through at least one of layer 1 signaling, layer 2 signaling, and radio resource control RRC signaling.
  • a predictive perception signal (i.e., the second perception signal) is considered.
  • the predictive perception signal is pre-configured by a perception signal of SS type-1 or SS type-2, or a combination of SS type-1 and SS type-2. Indicates that That is, you can set bits to indicate the perception signal. For example, using the existing parameter csi-ResourceConfigId in NR, by configuring bits to indicate the index of the second perception signal.
  • the indication of the predicted perceptual signal may be implemented by looking up the second perceptual signal table as described above.
  • the configuration of the predicted sensing signal may be a periodic sensing signal or a non-periodic sensing signal.
  • the configuration of the predicted sensing signal is generally a periodic sensing signal.
  • an actual perception signal i.e., the first perception signal.
  • the actual perception signal is preconfigured by the perception signal type of SS type-3. Indicates that That is, you can set bits to indicate the perception signal. For example, using the existing parameter csi-ResourceConfigId in NR, by configuring bits to indicate the index of the first perceptual signal.
  • the indication of the actual perception signal may be achieved by looking up the first perception signal table as described above.
  • the configuration of the actual perception signal can be a periodic perception signal or a non-periodic perception signal.
  • the actual perception signal is usually configured as a non-periodic perception signal. It can be triggered and indicated by layer 1 signaling (such as DCI) and/or layer 2 signaling (such as media access control layer control element (MAC CE)) and/or radio resource control (RRC) signaling.
  • layer 1 signaling such as DCI
  • layer 2 signaling such as media access control layer control element (MAC CE)
  • RRC radio resource control
  • the network sends a predicted perception signal to the perception device, and notifies the perception device of the specific perception signal information (i.e., the index j used in the predicted perception signal) through DCI.
  • the perception device performs predicted perception based on the predicted perception signal, and feeds back the required actual perception signal through the uplink control information (Uplink Control Information, UCI) of the Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH) or the Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH).
  • UCI Uplink Control Information
  • the sensing device may also directly sense the target by predicting the sensing signal and feed back the required measurement information to the network end.
  • the network decides to use the actual sensing signal and notifies the sensing device of the specific sensing signal information through the DCI of the Physical Downlink Control Channel (PDCCH).
  • the sensing device performs actual sensing based on the actual sensing signal and feeds back the sensing measurement information to the network through the UCI of the PUCCH or the PUSCH.
  • the network side device configures the perception signal using the existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities, which are represented by perception capability coefficients, and different perception requirements can be achieved.
  • the network end adaptively selects the first perception signal used by the perception device for perception measurement according to different perception requirements.
  • the embodiment of the present application realizes effective perception of the perception target with little impact on the existing NR system.
  • the embodiment of the present application further provides a perception method, including:
  • Step 401 A sensing device receives reference signal configuration information sent by a network side device, where the reference signal configuration information is used to configure at least two sensing signals; the sensing capability of each sensing signal is indicated by a sensing capability coefficient;
  • Step 402 The perception device performs perception measurement using the first perception signal according to the instruction of the network side device.
  • the above-mentioned reference signal configuration information is CSI-RS configuration information or DM-RS configuration information or TRS configuration information or SRS configuration information in the existing 5G system; for the convenience of expression, the embodiments of the present application are described by taking the CSI-RS configuration information for the downlink as an example.
  • the network side device determines the first perception signal according to the perception requirements of the perception service, such as the distance of the perception object (equivalent to the delay) and/or the speed of the perception object (equivalent to the Doppler frequency).
  • the configuration process of the perception signal is configured by the network side device and will not be repeated here.
  • the method further includes:
  • the sensing device receives a first sensing signal query table sent by the network side device;
  • the sensing device obtains a predefined first sensing signal query table
  • the first perception signal query table includes: an index of the perception signal, a perception capability coefficient of the perception signal, and a perception requirement corresponding to a characteristic of a perception service.
  • step 402 includes:
  • the sensing device receives an index of a first sensing signal sent by a network side device
  • the sensing device searches the first sensing signal query table according to the index of the first sensing signal to obtain the sensing capability coefficient and the sensing requirement of the first sensing signal;
  • the perception device performs perception measurement according to the perception capability coefficient and perception requirement of the first perception signal.
  • the method further includes:
  • the perception device uses the second perception signal to perform predictive perception and sends feedback information to the network side device; the feedback information is used to directly or indirectly indicate the index of the first perception signal expected by the perception device.
  • the method further comprises:
  • the sensing device receives an index of a second sensing signal sent by a network side device
  • the sensing device searches the second sensing signal query table according to the index of the second sensing signal to obtain the sensing capability coefficient and the sensing requirement of the second sensing signal;
  • the perception device performs predictive perception according to the perception capability coefficient and the perception requirement of the second perception signal.
  • the second perception signal is at least one of the following:
  • a perceptual signal whose length and density are configured only in the frequency domain i.e., a perceptual signal of SS type-1;
  • the perceptual signal whose length and density are configured only in the time domain is the perceptual signal of SS type-2.
  • a periodic sensing signal is configured for the predicted sensing signal
  • an aperiodic sensing signal is configured for the actual sensing signal. It is worth noting that when the network configures the predicted sensing signal, the network will configure PUCCH or PUSCH as a feedback channel. This will not be described in detail here.
  • FIG5 shows an embodiment of perception measurement of a UE (i.e., a perception device) and a network according to a predicted perception signal and an actual perception signal in a downlink, specifically:
  • Step 1 The network configures the predicted perception signal and the actual perception signal for the UE.
  • Step 2 The UE predicts the surrounding targets based on the configured periodic prediction perception signal, and predicts the best perception signal type and perception capability coefficient.
  • Step 3 The UE feeds back the expected actual perceived signal index via PUCCH.
  • Step 4 The network demodulates the PUCCH and selects the actual perception signal from the configured actual perception signal query table according to the expected actual perception signal information fed back by the UE.
  • the network can directly determine the actual perception signal based on the feedback information from the UE.
  • the network can also use the feedback information from the UE as a reference and other factors to comprehensively determine the actual perception signal.
  • Step 5 The network triggers the perception measurement of the actual perception signal through the PDCCH, and indicates the information of the actual perception signal to the UE.
  • Step 6 The UE demodulates the PDCCH and obtains information about the actual perceived signal.
  • Step 7 The network sends an actual sensing signal.
  • Step 8 The UE receives the actual sensing signal and senses the surrounding targets.
  • Step 9 The UE reports the sensing target information to the network via PUSCH.
  • the network side device configures the perception signal using the existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities, which are represented by perception capability coefficients, and different perception requirements can be achieved.
  • the network side adaptively selects the first perception signal used for the perception device to perform perception measurement according to different perception requirements.
  • the embodiment of the present application realizes effective perception of the perception target with little impact on the existing NR system.
  • FIG6 shows an embodiment of perception measurement of a UE (i.e., a perception device) and a network according to a predicted perception signal and an actual perception signal in an uplink, specifically:
  • Step 1 The network configures the predicted perception signal and the actual perception signal for the UE.
  • Step 2 The network triggers a prediction perception signal through PDCCH to predict and perceive surrounding targets.
  • Step 3 The UE receives and demodulates the PDCCH and obtains the predicted perception signal.
  • Step 4 The UE sends a prediction perception signal.
  • Step 5 The network side senses the target according to the received predicted sensing signal and determines the actual sensing channel.
  • Step 6 The UE demodulates the PDCCH and obtains information about the actual perceived signal.
  • Step 7 The UE sends an actual perception signal.
  • Step 8 The network receives the actual sensing signal and senses the surrounding targets.
  • This implementation considers the perceptual signal configuration for SS type-2 and SS type-3.
  • CSI-RS resources in the RB of time slot 1 (Slot-1), and each resource occupies 1 RE.
  • the CSI-RS resources in each RB are configured as a resource set (Resource Set), that is, time slot 1 corresponds to resource set 1, and time slot 2 corresponds to resource set 2.
  • the time width of the perception signal in this embodiment is Nt OFDM symbols, and the frequency bandwidth Nf of the perception signal is 1 RE. Therefore, this perception signal belongs to SS type-2.
  • CSI-RS resources in the RB of time slot 1 (Slot-1), and each resource occupies 3 REs.
  • the CSI-RS resources in each RB are configured as a resource set (Resource Set), that is, time slot 1 corresponds to resource set 1, and time slot 2 corresponds to resource set 2.
  • the time width of the perception signal in this embodiment is N t OFDM symbols, and the frequency bandwidth of the perception signal is N f RBs. Therefore, this perception signal belongs to SS type-3.
  • the perception ability coefficient ⁇ [j,N f ,N t ] can be expressed as:
  • the perception capability coefficient ⁇ [j,N f ,N t ] can be expressed as:
  • the network side device configures the perception signal using the existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities, which are represented by perception capability coefficients, and different perception requirements can be achieved.
  • the terminal adaptively selects the first perception signal for the perception device to perform perception measurement according to different perception requirements.
  • the embodiment of the present application realizes effective perception of the perception target under the premise of having little impact on the existing NR system.
  • the perception configuration method and the perception method provided in the embodiment of the present application can be executed by the perception configuration device and the perception device.
  • the perception configuration device and the perception device executing the perception configuration method and the perception method are taken as examples to illustrate the perception configuration device and the perception device provided in the embodiment of the present application.
  • the embodiment of the present application further provides a perception configuration device 800, including:
  • a configuration module 801 is configured to configure at least two perception signals for a perception device through reference signal configuration information, wherein the perception capability of each perception signal is indicated by a perception capability coefficient;
  • the first selection module 802 is configured to select a first perception signal from the at least two perception signals according to a perception service, where the first perception signal is used to perform perception measurement related to the perception device.
  • the device further includes:
  • a first determining module is configured to determine a perception capability coefficient of the perception signal according to first information, wherein the first information includes at least one of the following:
  • the state indication value of the resource unit is related to the density of the perception signal in the frequency domain and/or time domain, and the state indication value of the resource unit is used to indicate whether the resource unit is configured as a perception signal resource.
  • the first determining module is further configured to:
  • the perception capability coefficient ⁇ [j,N f ,N t ] of the j-th perception signal is determined; wherein the first formula is:
  • j is the index of the perception signal
  • N f is the length of the perception signal in the frequency domain
  • N t is the length of the perception signal in the time domain
  • S j (k, l) is a state indication value of a resource unit, which is determined by the density of the perception signal in the frequency domain and/or time domain, S j (k, l) is used to indicate whether the resource unit is configured as a perception signal resource
  • ⁇ (N f ,N t ) is a function of N f and N t
  • the S j (k, l) is used to indicate whether the resource unit is configured with a sensing signal resource, including:
  • the device further includes:
  • a second determining module configured to determine an index of the perception signal according to a perception capability coefficient of the perception signal
  • the device further includes:
  • a generating module configured to generate a first perception signal query table according to the index of the perception signal, the perception capability coefficient of the perception signal, and the perception requirement corresponding to the characteristic of the perception service;
  • the first sending module is used to send the first perception signal query table to the perception device.
  • the device further includes:
  • the acquisition module is used to acquire a predefined first perception signal query table, where the first perception signal query table includes: an index of the perception signal, a perception capability coefficient of the perception signal, and a perception requirement corresponding to a feature of a perception service.
  • the first selection module is further used for:
  • a first perception signal is selected from the first perception signal query table.
  • the device further includes:
  • a first receiving module configured to receive feedback information sent by the perception device after predicting and perceiving the second perception signal, wherein the feedback information is used to directly or indirectly indicate an index of the first perception signal expected by the perception device;
  • the first selection module is further used for:
  • a first perception signal is selected from the first perception signal query table according to the feedback information and the perception requirement corresponding to the characteristic of the perception service.
  • the device further includes:
  • a second sending module configured to send an index of the first perception signal to the perception device
  • the third sending module is used to send the first perception signal at the same time as or after sending the index of the first perception signal.
  • the second sending module is further used for:
  • the index of the first perception signal is indicated by at least one of layer 1 signaling, layer 2 signaling, and radio resource control RRC signaling.
  • the second perception signal is at least one of the following:
  • a third perceptual signal whose length and density are configured only in the frequency domain
  • a fourth perceptual signal whose length and density are configured only in the time domain.
  • the second perception signal is determined by looking up a second perception signal table
  • the second perception signal query table corresponds to the third perception signal and the fourth perception signal.
  • the device further includes:
  • a second selection module configured to select a second perception signal from the second perception signal query table according to a perception requirement corresponding to a characteristic of the perception service
  • a fourth sending module configured to send an index of the second perception signal to the perception device
  • the fifth sending module is used to send the second perception signal at the same time as or after sending the index of the second perception signal.
  • a network-side device configures a perception signal using existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities, which are represented by perception capability coefficients, and different perception requirements can be achieved.
  • the network end adaptively selects a first perception signal for the perception device to perform perception measurement according to different perception requirements.
  • the embodiment of the present application achieves effective perception of the perception target with little impact on the existing NR system.
  • the perception configuration device provided in the embodiment of the present application is a device capable of executing the above-mentioned perception configuration method. All embodiments of the above-mentioned perception configuration method are applicable to the device and can achieve the same or similar beneficial effects, which will not be repeated here.
  • the embodiment of the present application further provides a sensing device 900, including:
  • the second receiving module 901 is configured to receive reference signal configuration information sent by a network side device, where the reference signal configuration information is used to configure at least two perception signals; the perception capability of each perception signal is indicated by a perception capability coefficient;
  • the perception measurement module 902 is used to perform perception measurement using the first perception signal according to the instruction of the network side device.
  • the device further includes:
  • a third receiving module used to receive a first perception signal query table sent by a network side device
  • An acquisition module used to acquire a predefined first perception signal query table
  • the first perception signal query table includes: an index of the perception signal, a perception capability coefficient of the perception signal, and a perception requirement corresponding to a characteristic of a perception service.
  • the perception measurement module is further used for:
  • the index of the first perception signal query the first perception signal query table to obtain the perception capability coefficient and the perception requirement of the first perception signal
  • Perception measurement is performed according to the perception capability coefficient and the perception requirement of the first perception signal.
  • the device further includes:
  • a feedback sending module is used to use the second perception signal to perform predictive perception and send feedback information to the network side device; the feedback information is used to directly or indirectly indicate the index of the first perception signal expected by the perception device.
  • the device further includes:
  • a fourth receiving module configured to receive an index of a second perception signal sent by a network side device
  • a query module configured to query the second perception signal query table to obtain a perception capability coefficient and a perception requirement of the second perception signal according to the index of the second perception signal;
  • a prediction perception module configured to predict according to the perception capability coefficient and the perception requirement of the second perception signal Perception.
  • the second perception signal is at least one of the following:
  • a perceptual signal whose length and density are configured only in the time domain.
  • a network-side device configures a perception signal using existing reference signal configuration information of NR.
  • Different perception signals are defined to have different perception capabilities, which are represented by perception capability coefficients, and different perception requirements can be achieved.
  • the network end adaptively selects a first perception signal for the perception device to perform perception measurement according to different perception requirements.
  • the embodiment of the present application achieves effective perception of the perception target with little impact on the existing NR system.
  • the sensing device provided in the embodiment of the present application is a device capable of executing the above-mentioned sensing method. All embodiments of the above-mentioned sensing method are applicable to the device and can achieve the same or similar beneficial effects, which will not be repeated here.
  • the perception configuration device or perception device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminals 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the perception configuration device or perception device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 1 to 8 and achieve the same technical effects. To avoid repetition, they will not be repeated here.
  • an embodiment of the present application further provides a communication device 1000, including a processor 1001 and a memory 1002, wherein the memory 1002 stores a program or instruction that can be run on the processor 1001.
  • the communication device 1000 is a network side device
  • the program or instruction is executed by the processor 1001 to implement the various steps of the above-mentioned perception configuration method embodiment, and can achieve the same technical effect.
  • the communication device 1000 is a perception device
  • the program or instruction is executed by the processor 1001 to implement the various steps of the above-mentioned perception method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein the communication interface is used to configure at least two perception signals for the perception device through reference signal configuration information, and the perception capability of each perception signal is indicated by a perception capability coefficient; the processor is used to select a first perception signal from the at least two perception signals according to the perception service, and the first perception signal is used to perform perception measurements related to the perception device.
  • This network side device embodiment corresponds to the above-mentioned network side device method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 111, a radio frequency device 112, a baseband device 113, a processor 114 and a memory 115.
  • the antenna 111 is connected to the radio frequency device 112.
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112.
  • the radio frequency device 112 processes the received information and sends it out through the antenna 111.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 113, which includes a baseband processor.
  • the baseband device 113 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG12 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 115 through a bus interface to call a program in the memory 115 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 116, which is, for example, a common public radio interface (CPRI).
  • a network interface 116 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 of the embodiment of the present application also includes: instructions or programs stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the instructions or programs in the memory 115 to execute the methods executed by the modules shown in Figure 9 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned perception configuration method or perception method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium may be non-volatile or non-transient.
  • the readable storage medium may include a computer-readable storage medium, such as a computer read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned perception configuration method or perception method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned perception configuration method or perception method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a network side device and a perception device, wherein the network side device can be used to execute the steps of the perception configuration method described above, and the perception device can be used to execute the steps of the perception method described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知配置方法、感知方法、装置、网络侧设备及感知设备,属于感知通信一体化技术领域,本申请实施例的方法包括:网络侧设备通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。

Description

感知配置方法、感知方法、装置、网络侧设备及感知设备
相关申请的交叉引用
本申请主张在2022年10月21日提交的中国专利申请No.202211296067.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信感知一体化技术领域,具体涉及一种感知配置方法、感知方法、装置、网络侧设备及感知设备。
背景技术
目前,根据第五代移动通信技术(5th Generation Mobile Communication Technology,5G)通信系统架构进行技术升级而有望实现通信感知一体化。新空口(New Radio,NR)针对不同目的设计了不同的参考信号(Reference Signal,RS)。NR的参考信号有NR下行(Down-Link)参考信号,NR上行(Up-Link)参考信号,NR侧链路(Sidelink)参考信号。NR RS结构设计基本沿用第四代移动通信技术(4th Generation Mobile Communication Technology,4G)的参考信号结构,同时实现了适应各种频段和场景运行和变化的特征,具有非常高的灵活性。
然而,在引入通信感知一体化后,最大问题是会对相关技术中的NR系统存在影响,进而不利于通信感知一体化在NR系统中实现。因此如何平衡对相关技术中的NR系统的影响并提高感知能力是一个必须解决的关键问题。
发明内容
本申请实施例提供一种感知配置方法、感知方法、装置、网络侧设备及感知设备,能够解决如何在5G系统中实现通信感知一体化的问题。
第一方面,提供了一种感知配置方法,包括:
网络侧设备通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;
所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
第二方面,提供了一种感知方法,包括:
感知设备接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
所述感知设备根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
第三方面,提供了一种感知配置装置,包括:
配置模块,用于通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;
第一选择模块,用于根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
第四方面,提供了一种感知装置,包括:
第二接收模块,用于接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
感知测量模块,用于根据所述网络侧设备的指示,利用第一感知信号进行感知测量。.
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;所述处理器用于根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
第七方面,提供了一种感知设备,该感知设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种感知设备,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;所述处理器用于根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
第九方面,提供了一种通信系统,包括:网络侧设备及感知设备,所述网络侧设备可用于执行如第一方面所述的方法的步骤,所述感知设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的 方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,并通过感知能力系数来表示,从而可以基于感知信号的感知能力来实现不同感知要求;网络端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对NR系统影响小的前提下实现对感知目标进行有效的感知,即可以在NR系统中高效地实现通信感知一体化。
附图说明
图1表示本申请实施例可应用的一种无线通信系统的框图;
图2表示本申请实施例提供的感知配置方法的步骤流程图;
图3表示本申请实施例提供的感知信号的结构示例图;
图4表示本申请实施例提供的感知方法的步骤流程图;
图5表示本申请实施例提供下行预测感知及实际感知示例流程图;
图6表示本申请实施例提供上行预测感知及实际感知示例流程图;
图7表示本申请实施例提供的示例一中感知信号的配置示意图之一;
图8表示本申请实施例提供的示例一中感知信号的配置示意图之二;
图9表示本申请实施例提供的感知配置装置的结构示意图;
图10表示本申请实施例提供的感知装置的结构示意图;
图11表示本申请实施例提供的通信设备的结构示意图;
图12表示本申请实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access, TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、 网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
NR中为了避免指定一个不断发送的参考信号,通过使用多个参考信号来实现不断发送的参考信号的功能。具体而言,分别为:信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DM-RS)、跟踪参考信号(Tracking Reference Signal,TRS)、探测参考信号(Sounding Reference Signal,SRS)等。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知配置方法及感知方法进行详细地说明。
如图2所示,本申请实施例提供一种感知配置方法,包括:
步骤201,网络侧设备通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;
步骤202,所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
可选地,上述参考信号配置信息为现有5G系统中的CSI-RS配置信息或DM-RS配置信息或TRS配置信息或SRS配置信息。其中,如果感知信号为下行感知信号,则上述参考信号配置信息为针对下行链路的CSI-RS配置;如果感知信号为上行感知信号,则上述参考信号配置信息为针对上行链路的SRS配置信息。为了方便表述,本申请实施例中均以针对上下行链路的CSI-RS配置信息为例进行说明。
可选地,步骤202中网络侧设备根据感知业务的感知需求,如感知物体的距离(等同于时延)和/或感知物体的速度(等同于多普勒频率),决定第一感知信号。
本申请实施例中,感知是通过感知信号(Sensing-Signal,SS)来测量。感知信号由资源元素RE组成的,可以被定义并分类为三大类,如图3所示:
SS类型-1:基于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)频域的资源元素的感知信号。其中,是频域方向的感知信号频域资源单元的数量。其中,资源单元可以是资源元素(Resource Element,RE),或资源块(Resource Block,RB),或其他定义的资源单位。
值得注意的是,本申请中的阐述主要是通过资源单元RE来说明的。
SS类型-2:基于OFDM时隙的时域的感知信号。其中,是时域方向的感知信号时域资源单元的数量。
SS类型-3:基于时频域的感知信号。其中,是频域方向的感知信号频域资源长度,而是时域方向的感知信号时域资源单元的数量。
本申请实施例中,感知信号可以被表示为RSC(k0,l0,ρ,TCSI-RSCSI-RS),或被表示为 RSC(Λ),其中,感知信号参数向量Λ被定义为Λ=[k0,l0,ρ,TCSI-RSCSI-RS]。可选地,感知信号的物理资源通过信息元素(CSI-RS-ResourceMapping,CSI-RS资源映射)来实现。信息元素CSI-RS-ResourceMapping主要配置以下资源参数:
OFDM频域资源位置(frequencyDomainAllocation),是通过位映射(Bit Mapping)的方法实现的,根据RB中资源的密度可以指示12个RE中的任何一个。在此被占据的第一个RE的索引是k0
每个RB中的第一个OFDM符号时域位置(firstOFDMSymbolInTimeDomain),可以指示14个OFDM符号中的任何一个。在此被占据的第一个OFDM符号的索引是l0
物理资源的类型(cdm-Type),即非码分多路复用(no Dode Division Multiplexing,noCDM)或CDM。其中,CDM资源类型资源是针对多进多出(multiple-in multipleout,MIMO)参考信号设计的。
CSI-RS在每个OFDM符号中的密度(density),可以是3,1或0.5,用参数ρ表示。
需要说明的是,以上三类不同信道结构的感知信号仅为示例,本申请中的感知信号设计可以被扩展到任何信道结构,在此不做具体限定。
感知信号可以被配置为周期性的感知信号,也可以被配置为非周期性的感知信号。当感知信号被配置为周期性的感知信号的时候,感知信号参数TCSI-RS和ΔCSI-RS可以决定感知信号周期特征。
当感知信号被配置为周期性的感知信号的时候,CSI-RS时频域资源配置主要是通过RRC信息元素CSI-RS-ResourceMapping和CSI资源周期和偏移(CSI-ResourcePeriodicityAndOffset)实现的。在每个时隙中配置CSI-RS资源,相关的资源配置主要参数有3个,即frequencyDomainAllocation,firstOFDMSymbolInTimeDomain和density。另外,时隙中的CSI传输时序配置中,利用参数CSI-ResourcePeriodicityAndOffset来实现CSI-RS的周期和相关的资源偏移。
值得注意的是,除了以上参数以外,还有cdm-Type等参数,而此参数主要是为了MIMO相关CSI-RS配置的,因此在此不作具体限定。但是,本申请感知信号配置方法同样可以被扩展到MIMO感知系统中去。
当感知信号被配置为非周期性的感知信号的时候,根据信息元素非零功率CSI-RS资源集合(NZP-CSI-RS-ResourceSet)中的参数非周期触发偏移(aperiodicTriggeringOffset),来决定相应的下行控制信息(Downlink Control Information,DCI)和发送CSI-RS的偏移。也就是说,aperiodicTriggeringOffset是触发非周期性CSI-RS资源集的DCI的时隙与发送CSI-RS资源集的时隙之间的偏移。
在NR系统中,有些RB或OFDM符号中的一些信道是被系统信号和事先预约的系统信道占据的,如同步信号块(Synchronization Signal Block,SSB)。SSB是与小区Cell相关系统信号,即Cell Specific Signal。SSB信号周期可以被配置为5ms,10ms,等。因此如果时隙被SSB预先配置,那么,相关时隙中的至少一部分资源就无法被CSI-RS再进行 配置。
在本申请的至少一个实施例中,所述方法还包括:
所述网络侧设备根据第一信息,确定所述感知信号的感知能力系数;所述第一信息包括以下至少一项:
所述至少两个感知信号在频域上的长度;
所述至少两个感知信号在时域上的长度;以及,
所述至少两个感知信号的时频资源中每个资源单元的状态指示值;
其中,所述资源单元的状态指示值与所述感知信号在频域和/或时域的密度相关,所述资源单元的状态指示值用于指示所述资源单元是否被配置为感知信号资源。
可选地,所述网络侧设备根据第一信息,确定所述感知信号的感知能力系数,包括:
所述网络侧设备根据第一公式,确定第j个感知信号的感知能力系数γ[j,Nf,Nt];其中,所述第一公式为:
其中,j为感知信号的索引;Nf为据所述感知信号在频域上的长度;Nt为所述感知信号在时域上的长度;Sj(k,l)为一个资源单元的状态指示值,由所述感知信号在频域和/或时域的密度决定,Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,α(Nf,Nt)是Nf和Nt的函数,α(Nf,Nt)≤1。
本申请实施例中,感知信号的感知能力与被配置的感知信号的资源密度相关联。感知信号的感知能力可以通过感知信号的资源密度来进行量化。第j个感知信号的感知能力系数用γ[j,Nf,Nt]表示。
例如,假设感知信号在频域上的长度为Nf(感知信号频带宽度,Sensing Signal Bandwidth),感知信号在时域上的长度为Nt(感知信号时间宽度,Sensing Signal Time Interval),其中频域上的单位可以是RE,而时域上的单位可以是时隙。另外,在第j个感知信号的Nf×Nt时频域资源中,每个RE是否被CSI-RS配置为参考信号资源,其状态被表示为Sj(k,l),。因此,第j个感知信号的感知能力可以通过感知能力系数γ[j,Nf,Nt]被定义。
需要说明的是,α(Nf,Nt)是Nf和Nt的函数,Nf和/或Nt越大,α(Nf,Nt)也就越大,因此感知能力越强;反之,Nf和/或Nt越小,α(Nf,Nt)也就越小,因此感知能力越弱。
进一步需要说明的是,感知能力系数γ[j,Nf,Nt]越大,所占用的感知资源就越多,因此感知能力越强。每个感知信号的Nf×Nt时频域资源可以是周期性的,半静态周期性的,也可以是非周期性的。感知运算是通过感知信号的Nf×Nt时频域资源来进行的。
特殊地,当Nt=1的时候,感知信号类型可以被认为SS类型-1,当Nf=1的时候,感知信号类型可以被认为SS类型-2,而Nt>1和Nf>1的时候,感知信号类型可以被认为SS类型-3。
作为一个可选实施例,由于感知信号的时频域资源是由信息元素(NZP CSI-RS Resource)来配置的,每个感知信号的时频域资源是由配置参数向量Λ决定,因此感知信号的时频域资源可以被表示为RSC,n,m′(Λ[m]),其中m是感知信号资源索引,而m′是第n个感知信号时频域资源集中的感知信号资源索引。值得注意的是,第m′个感知信号资源是从感知信号时频域资源池中任意挑选的。因此,m,n,和m′必须满足以下条件,0≤m≤M-1,0≤n≤N-1,0≤m′≤Mn-1。
因此根据不同的感知要求,网络端可以预先配置好不同的感知信号。在此假设网络端预先配置J1个感知信号,用Qj表示,其中0≤j≤J1-1。
具体地,感知信号是CSI-RS时频域资源集的集合,第j个感知信号被表示为:
可选地,所述Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,包括:
Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源,也可以理解为:Sj(k,l)=0指示所述资源单元被其他信号或信道配置为其他资源;或者,
Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源,也可以理解为:Sj(k,l)=1指示所述资源单元被其他信号或信道配置为其他资源。
在本申请的至少一个实施例中,所述方法还包括:
所述网络侧设备根据所述感知信号的感知能力系数γ[j,Nf,Nt],确定所述感知信号的索引;其中,
当Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成正比,或者,
当Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成反比。
换言之,感知信号的配置可以根据感知信号的感知能力系数γ[j,Nf,Nt]来配置,即,Qj中j索引小的感知信号可以是感知能力小的感知信号,其相应的系数γ[j,Nf,Nt]也小;而Qj中j索引大的感知信号可以是感知能力大的感知信号,其相应的系数γ[j,Nf,Nt]也大。
可选的,Qj中j索引小的感知信号可以是感知能力大的感知信号,其相应的系数γ[j,Nf,Nt]也大;而Qj中j索引大的感知信号可以是感知能力小的感知信号,其相应的系数γ[j,Nf,Nt]也小;在此不做具体限定。
可选地,网络端可以通过感知信号的索引j来指示感知信号资源的感知能力。
在本申请的至少一个实施例中,所述方法还包括:
所述网络侧设备根据所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求,生成第一感知信号查询表(Lookup Table);
所述网络侧设备向所述感知设备发送所述第一感知信号查询表。
或者,本申请的至少一个实施例中,所述方法还包括:
所述网络侧设备获取预先定义的第一感知信号查询表,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
可选地,感知信号查询表可以根据不同的SS类型分别配置,即,SS类型-1相关的感知信号查询表1,SS类型-2相关的感知信号查询表2,SS类型-3相关的感知信号查询表3。
可选的,感知信号查询表根据SS类型-1和SS类型-2可以配置为一个感知信号查询表1-2,而SS类型-3相关的感知信号配置另一个感知信号查询表3。
例如,如表1所示,针对SS类型-1和SS类型-2,本申请实施例中采用5个比特来表示感知能力系数γ[j,Nf,Nt]所对应的感知信号和感知要求的组合查询表。
表1,SS类型-1和SS类型-2对应的感知信号查询表
再例如,如表2所示,针对SS类型-3,本申请实施例中采用5个比特来表示感知能力系数γ[j,Nf,Nt]所对应的感知信号和感知要求的查询表。
表2,SS类型-3对应的感知信号查询表
其中,dj是感知最大距离,Δdj是感知距离粒度,vj是感知最大速度,Δvj是感知速度粒度。
值得注意的是,感知要求中的距离可以被时延同等代替,而感知要求中的速度可以被多普勒频率同等代替,在此不做具体限定。
在本申请的一个可选实施例中,步骤202包括:
所述网络侧设备根据所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
在本申请的另一个可选实施例中,步骤202之前,所述方法还包括:
所述网络侧设备接收所述感知设备利用第二感知信号进行预测感知后发送的反馈信息,所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引;
相应的,步骤202包括:
所述网络侧设备根据所述反馈信息以及所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
可选地,第二感知信号为以下至少一项:
仅在频域上的长度和密度被配置的第三感知信号,即SS类型-1的感知信号;
仅在时域上的长度和密度被配置的第四感知信号,即SS类型-2的感知信号。
SS类型-1和SS类型-2的感知信号特点是,所占用RE资源相应比较少,但是感知能力只能针对单目标的距离(或时延),或单目标的速度(多普勒频率)进行感知。如果不同感知目标的距离或速度是相同的话,SS类型-1和SS类型-2是无法区分感知目标的。因此在通信感知一体化测量中,SS类型-3的感知信号是不可缺少的。由于SS类型-3会占用大量的时频域资源,如何减小SS类型-3的感知信号的时频域资源是本申请中主要解决的问题。为了减少感知资源开销,网络端可以使用SS类型-1和/或SS类型-2对感知信号进行预测。感知设备侧可以针对预测的结果进行反馈。网络端根据感知设备侧的反馈结果最后判断所使用的感知信号。
在本申请的至少一个实施例中,所述方法还包括:
所述网络侧设备向所述感知设备发送第一感知信号的索引;
在发送第一感知信号的索引同时或之后,所述网络侧设备发送所述第一感知信号。
其中,所述网络侧设备向所述感知设备发送第一感知信号的索引,包括:
所述网络侧设备通过层1信令,层2信令,无线资源控制RRC信令中的至少一个信令指示所述第一感知信号的索引。
例如,网络端可以根据感知的要求周期的或非周期的选择第一感知信号。可选的,网络端可以利用控制信令,如DCI通知UE端具体的索引j,即,DCI中包含csi-ResourceConfigId(或直接使用NZP CSI-RS ResourceSetId)来通知UE,UE端可以根据对DCI的解调获知感知信号的索引。具体地,在DCI中可以设定个比特对感知信号进行指示。如利用NR中现有的参数csi-ResourceConfigId(或 NZP-CSI-RS-ResourceSetId),通过配置个比特来指示知感知信号的索引。
可选地,所述第二感知信号通过第二感知信号查询表确定;
其中,所述第二感知信号查询表与所述第三感知信号和所述第四感知信号对应。例如,如表1所示,针对SS类型-1和SS类型-2,本申请实施例中采用5个比特来表示感知能力系数γ[j,Nf,Nt]所对应的感知信号和感知要求的组合查询表。
作为一个可选实施例,所述方法还包括:
所述网络侧设备根据所述感知业务的特征对应的感知要求,在所述第二感知信号查询表中选择第二感知信号;
所述网络侧设备向所述感知设备发送第二感知信号的索引;
在发送第二感知信号的索引同时或之后,所述网络侧设备发送所述第二感知信号。
可选地,所述网络侧设备通过层1信令,层2信令,无线资源控制RRC信令中的至少一个信令指示所述第二感知信号的索引。
具体地,考虑一种预测(Predicative)感知信号(即第二感知信号)。通过SS类型-1或SS类型-2,或SS类型-1和SS类型-2的组合的感知信号预先配置预测感知信号,用表示,其中也就是说,可以设定个比特对感知信号进行指示。例如,利用NR中现有的参数csi-ResourceConfigId,通过配置个比特来指示第二感知信号的索引。
更具体地,预测感知信号的指示可以通过如上所述的第二感知信号查询表来实现。
可选的,预测感知信号的配置可以是周期感知信号,也可以是非周期感知信号。但是考虑到预测感知信号资源开销较小,预测感知信号的配置一般为周期感知信号。
具体地,考虑一种实际(Actual)感知信号(即第一感知信号)。通过SS类型-3的感知信号类型预先配置实际感知信号,用表示,其中也就是说,可以设定个比特对感知信号进行指示。例如,利用NR中现有的参数csi-ResourceConfigId,通过配置个比特来指示第一感知信号的索引。
更具体地,实际感知信号的指示可以通过如上所述的第一感知信号查询表来实现。
可选的,实际感知信号的配置可以是周期感知信号,也可以是非周期感知信号。但是考虑到感知信号资源开销较大,通常实际感知信号的配置一般为非周期感知信号。可以通过层1信令(如DCI)和/或层2信令(如媒体介入控制层控制单元(Media Access Control Control Element,MAC CE))和/或无线资源控制(Radio Resource Control,RRC)信令触发和指示。
更具体地,网络端发送种预测感知信号给感知设备,并通过DCI通知感知设备具体感知信号的信息(即预测感知信号中的所使用的索引j)。感知设备根据预测感知信号进行预测感知,通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)的上行控制信息(Uplink Control Information,UCI)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)反馈所需的实际感知信号。
可选地,感知设备也可以通过预测感知信号直接感知目标,并反馈所需测量信息给网络端。
根据感知设备反馈的UCI信息,网络端决定使用种实际感知信号,并通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)的DCI通知感知设备具体感知信号的信息。感知设备根据实际感知信号进行实际感知,通过PUCCH的UCI或PUSCH反馈感知测量信息给网络端。
值得注意的是,区分预测感知信号和实际感知信号只需要1比特的指示,即,在DCI中放置1比特即可。因此相同的DCI格式可以被预测感知信号和实际感知信号使用。
综上,在本申请实施例中,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,用感知能力系数表示,可以实现不同感知要求;网络端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对现有NR系统影响小的前提下实现对感知目标进行有效的感知。
如图4所示,本申请实施例还提供一种感知方法,包括:
步骤401,感知设备接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
步骤402,所述感知设备根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
可选地,上述参考信号配置信息为现有5G系统中的CSI-RS配置信息或DM-RS配置信息或TRS配置信息或SRS配置信息;为了方便表述,本申请实施例中均以针对下行链路的CSI-RS配置信息为例进行说明。
可选地,步骤402中网络侧设备根据感知业务的感知需求,如感知物体的距离(等同于时延)和/或感知物体的速度(等同于多普勒频率),决定第一感知信号。
感知信号的配置过程由网络侧设备配置,在此不做重复赘述。
在本申请的至少一个实施例中,所述方法还包括:
所述感知设备接收网络侧设备发送的第一感知信号查询表;
或者,
所述感知设备获取预先定义的第一感知信号查询表;
其中,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
相应的,步骤402包括:
所述感知设备接收网络侧设备发送的第一感知信号的索引;
所述感知设备根据所述第一感知信号的索引,在所述第一感知信号查询表中查询得到第一感知信号的感知能力系数以及感知要求;
所述感知设备根据所述第一感知信号的感知能力系数以及感知要求,进行感知测量。
或者,步骤402之前,所述方法还包括:
所述感知设备利用第二感知信号进行预测感知,并向网络侧设备发送反馈信息;所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引。
其中,所述方法还包括:
所述感知设备接收网络侧设备发送的第二感知信号的索引;
所述感知设备根据所述第二感知信号的索引,在所述第二感知信号查询表中查询得到第二感知信号的感知能力系数以及感知要求;
所述感知设备根据所述第二感知信号的感知能力系数以及感知要求,进行预测感知。
可选地,第二感知信号为以下至少一项:
仅在频域上的长度和密度被配置的感知信号,即SS类型-1的感知信号;
仅在时域上的长度和密度被配置的感知信号,即SS类型-2的感知信号。
例如,首先对预测感知信号配置周期感知信号,而对实际感知信号配置非周期感知信号。值得注意的是,网络端在配置预测感知信号的同时,网络端会配置PUCCH或PUSCH作为反馈信道使用。在此不作具体叙述。
图5所示为下行链路中,UE端(即感知设备)和网络端根据预测感知信号和实际感知信号的感知测量的实施例,具体地:
步骤1,网络端为UE端配置预测感知信号和实际感知信号。
步骤2,UE端根据配置的周期预测感知信号预测感知周围目标,并预测最佳的感知信号种类和感知能力系数。
步骤3,UE端通过PUCCH反馈期待的实际感知信号索引。
步骤4,网络端解调PUCCH,根据UE端反馈的实际感知信号期待信息在配置的实际感知信号查询表中选择实际感知信号。
值得注意的是,网络端可以根据UE端的反馈信息直接决定实际感知信号。可选的,网络端也可以根据UE端的反馈信息作为参考和其他因素综合地决定实际感知信号。
步骤5,网络端通过PDCCH触发实际感知信号的感知测量,并指示UE端实际感知信号的信息。
步骤6,UE端解调PDCCH,并获取实际感知信号的信息。
步骤7,网络端发送实际感知信号。
步骤8,UE端接收实际感知信号,并感知周围目标。
步骤9,UE端通过PUSCH上报感知目标信息给网络端。
综上,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,用感知能力系数表示,可以实现不同感知要求;网络端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对现有NR系统影响小的前提下实现对感知目标进行有效的感知。
图6所示为上行链路中,UE端(即感知设备)和网络端根据预测感知信号和实际感知信号的感知测量的实施例,具体地:
步骤1,网络端为UE端配置预测感知信号和实际感知信号。
步骤2,网络端通过PDCCH触发预测感知信号预测感知周围目标。
步骤3,UE端接收解调PDCCH,并获取预测感知信号。
步骤4,UE端发送预测感知信号。
步骤5,网络端根据接收预测感知信号感知目标并决定实际感知信道。
步骤6,UE端解调PDCCH,并获取实际感知信号的信息。
步骤7,UE端发送种实际感知信号。
步骤8,网络端接收实际感知信号,并感知周围目标。
为了更清楚的描述本申请实施例提供的感知配置方法,下面结合一个示例进行说明。
示例一
本实施针对SS类型-2和SS类型-3考虑感知信号配置。本实施例考虑no-CDM,频域密度ρ=1,在相同时隙的RB中所配置的CSI-RS模式是相同的,但是前后时隙的RB中所配置的CSI-RS模式是不同的,但是在时域上每两个时隙的CSI-RS模式是周期性变化的。
如图7所示,在时隙1(Slot-1)的RB中占有6个CSI-RS资源,每个资源占据了1个RE。在时隙2(Slot-2)的RB中占有5个CSI-RS资源,每个资源占据了1个RE。每个RB中的CSI-RS资源被配置成一个资源集(Resource Set),即,时隙1对应的是资源集1,而时隙2对应的是资源集2。另外,本实施例感知信号的时间宽度为Nt个OFDM符号,而感知信号的频带宽度Nf为1个RE。因此,此感知信号属于SS类型-2。
如图8所示,在时隙1(Slot-1)的RB中占有3个CSI-RS资源,每个资源占据了3个RE。在时隙2(Slot-2)的RB中占有4个CSI-RS资源,每个资源占据了1个RE。每个RB中的CSI-RS资源被配置成一个资源集(Resource Set),即,时隙1对应的是资源集1,而时隙2对应的是资源集2。另外,本实施例感知信号的时间宽度为Nt个OFDM符号,而感知信号的频带宽度为Nf个RBs。因此,此感知信号属于SS类型-3。
如图7所示,假设时频域感知信号的索引j的α(Nf,Nt)=0.05,(即,Nf的取值非常大,Nt的取值等于1),感知能力系数γ[j,Nf,Nt]可以被表示为:
如图8所示,假设时频域感知信号的索引j的α(Nf,Nt)=1(即,Nf和Nt取值都非常大),感知能力系数γ[j,Nf,Nt]可以被表示为:
本申请实施例中,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,用感知能力系数表示,可以实现不同感知要求;网络 端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对现有NR系统影响小的前提下实现对感知目标进行有效的感知。
本申请实施例提供的感知配置方法及感知方法,执行主体可以为感知配置装置及感知装置。本申请实施例中以感知配置装置及感知装置执行感知配置方法及感知方法为例,说明本申请实施例提供的感知配置装置及感知装置。
如图9所示,本申请实施例还提供一种感知配置装置800,包括:
配置模块801,用于通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;
第一选择模块802,用于根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
作为一个可选实施例,所述装置还包括:
第一确定模块,用于根据第一信息,确定所述感知信号的感知能力系数;所述第一信息包括以下至少一项:
所述至少两个感知信号在频域上的长度;
所述至少两个感知信号在时域上的长度;以及,
所述至少两个感知信号的时频资源中每个资源单元的状态指示值;
其中,所述资源单元的状态指示值与所述感知信号在频域和/或时域的密度相关,所述资源单元的状态指示值用于指示所述资源单元是否被配置为感知信号资源。
作为一个可选实施例,所述第一确定模块进一步用于:
根据第一公式,确定第j个感知信号的感知能力系数γ[j,Nf,Nt];其中,所述第一公式为:
其中,j为感知信号的索引;Nf为据所述感知信号在频域上的长度;Nt为所述感知信号在时域上的长度;Sj(k,l)为一个资源单元的状态指示值,由所述感知信号在频域和/或时域的密度决定,Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,α(Nf,Nt)是Nf和Nt的函数,α(Nf,Nt)≤1。
作为一个可选实施例,所述Sj(k,l)用于指示所述资源单元是否被配置感知信号资源,包括:
Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源;或者,
Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源。
作为一个可选实施例,所述装置还包括:
第二确定模块,用于根据所述感知信号的感知能力系数,确定所述感知信号的索引; 其中,
当Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成正比,或者,
当Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成反比。
作为一个可选实施例,所述装置还包括:
生成模块,用于根据所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求,生成第一感知信号查询表;
第一发送模块,用于向所述感知设备发送所述第一感知信号查询表。
作为一个可选实施例,所述装置还包括:
获取模块,用于获取预先定义的第一感知信号查询表,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
作为一个可选实施例,所述第一选择模块进一步用于:
根据所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
作为一个可选实施例,所述装置还包括:
第一接收模块,用于接收所述感知设备利用第二感知信号进行预测感知后发送的反馈信息,所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引;
所述第一选择模块进一步用于:
根据所述反馈信息以及所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
作为一个可选实施例,所述装置还包括:
第二发送模块,用于向所述感知设备发送第一感知信号的索引;
第三发送模块,用于在发送第一感知信号的索引同时或之后,发送所述第一感知信号。
作为一个可选实施例,所述第二发送模块进一步用于:
通过层1信令,层2信令,无线资源控制RRC信令中的至少一个信令指示所述第一感知信号的索引。
作为一个可选实施例,第二感知信号为以下至少一项:
仅在频域上的长度和密度被配置的第三感知信号;
仅在时域上的长度和密度被配置的第四感知信号。
作为一个可选实施例,所述第二感知信号通过第二感知信号查询表确定;
其中,所述第二感知信号查询表与所述第三感知信号和所述第四感知信号对应。
作为一个可选实施例,所述装置还包括:
第二选择模块,用于根据所述感知业务的特征对应的感知要求,在所述第二感知信号查询表中选择第二感知信号;
第四发送模块,用于向所述感知设备发送第二感知信号的索引;
第五发送模块,用于在发送第二感知信号的索引同时或之后,发送所述第二感知信号。
本申请实施例中,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,用感知能力系数表示,可以实现不同感知要求;网络端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对现有NR系统影响小的前提下实现对感知目标进行有效的感知。
需要说明的是,本申请实施例提供的感知配置装置是能够执行上述感知配置方法的装置,则上述感知配置方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果,在此不做重复赘述。
如图10所示,本申请实施例还提供一种感知装置900,包括:
第二接收模块901,用于接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
感知测量模块902,用于根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
作为一个可选实施例,所述装置还包括:
第三接收模块,用于接收网络侧设备发送的第一感知信号查询表;
或者,
获取模块,用于获取预先定义的第一感知信号查询表;
其中,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
作为一个可选实施例,所述感知测量模块进一步用于:
接收网络侧设备发送的第一感知信号的索引;
根据所述第一感知信号的索引,在所述第一感知信号查询表中查询得到第一感知信号的感知能力系数以及感知要求;
根据所述第一感知信号的感知能力系数以及感知要求,进行感知测量。
作为一个可选实施例,所述装置还包括:
反馈发送模块,用于利用第二感知信号进行预测感知,并向网络侧设备发送反馈信息;所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引。
作为一个可选实施例,所述装置还包括:
第四接收模块,用于接收网络侧设备发送的第二感知信号的索引;
查询模块,用于根据所述第二感知信号的索引,在所述第二感知信号查询表中查询得到第二感知信号的感知能力系数以及感知要求;
预测感知模块,用于根据所述第二感知信号的感知能力系数以及感知要求,进行预测 感知。
作为一个可选实施例,第二感知信号为以下至少一项:
仅在频域上的长度和密度被配置的感知信号;
仅在时域上的长度和密度被配置的感知信号。
本申请实施例中,网络侧设备利用NR现有参考信号配置信息配置感知信号,不同的感知信号被定义拥有不同感知能力,用感知能力系数表示,可以实现不同感知要求;网络端根据不同的感知要求,自适应地选择用于感知设备进行感知测量的第一感知信号,本申请实施例在对现有NR系统影响小的前提下实现对感知目标进行有效的感知。
需要说明的是,本申请实施例提供的感知装置是能够执行上述感知方法的装置,则上述感知方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果,在此不做重复赘述。
本申请实施例中的感知配置装置或感知装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的感知配置装置或感知装置能够实现图1至图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图11所示,本申请实施例还提供一种通信设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述感知配置方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1000为感知设备时,该程序或指令被处理器1001执行时实现上述感知方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,所述通信接口用于通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;所述处理器用于根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1100包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口116,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1100还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知配置方法或感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,可以是非易失性的,也可以是非瞬态的。可读存储介质,可以包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知配置方法或感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述感知配置方法或感知方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:网络侧设备及感知设备,所述网络侧设备可用于执行如上所述的感知配置方法的步骤,所述感知设备可用于执行如上所述的感知方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同 于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种感知配置方法,包括:
    网络侧设备通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感知信号的感知能力通过感知能力系数指示;
    所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述网络侧设备根据第一信息,确定所述感知信号的感知能力系数;所述第一信息包括以下至少一项:
    所述至少两个感知信号在频域上的长度;
    所述至少两个感知信号在时域上的长度;以及,
    所述至少两个感知信号的时频资源中每个资源单元的状态指示值;
    其中,所述资源单元的状态指示值与所述感知信号在频域和/或时域的密度相关,所述资源单元的状态指示值用于指示所述资源单元是否被配置为感知信号资源。
  3. 根据权利要求2所述的方法,其中,所述网络侧设备根据第一信息,确定所述感知信号的感知能力系数,包括:
    所述网络侧设备根据第一公式,确定第j个感知信号的感知能力系数γ[j,Nf,Nt];其中,所述第一公式为:
    其中,j为感知信号的索引;Nf为据所述感知信号在频域上的长度;Nt为所述感知信号在时域上的长度;Sj(k,l)为一个资源单元的状态指示值,由所述感知信号在频域和/或时域的密度决定,Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,α(Nf,Nt)是Nf和Nt的函数,α(Nf,Nt)≤1。
  4. 根据权利要求3所述的方法,其中,所述Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,包括:
    Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源;或者,
    Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述感知信号的感知能力系数,确定所述感知信号的索引;其中,
    当Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成正比, 或者,
    当Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成反比。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求,生成第一感知信号查询表;
    所述网络侧设备向所述感知设备发送所述第一感知信号查询表。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述网络侧设备获取预先定义的第一感知信号查询表,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
  8. 根据权利要求6或7所述的方法,其中,所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,包括:
    所述网络侧设备根据所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
  9. 根据权利要求6或7所述的方法,其中,所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号之前,所述方法还包括:
    所述网络侧设备接收所述感知设备利用第二感知信号进行预测感知后发送的反馈信息,所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引;
    所述网络侧设备根据感知业务从所述至少两个感知信号中选择第一感知信号,包括:
    所述网络侧设备根据所述反馈信息以及所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
  10. 根据权利要求8或9所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述感知设备发送第一感知信号的索引;
    在发送第一感知信号的索引同时或之后,所述网络侧设备发送所述第一感知信号。
  11. 根据权利要求10所述的方法,其中,所述网络侧设备向所述感知设备发送第一感知信号的索引,包括:
    所述网络侧设备通过层1信令,层2信令,无线资源控制RRC信令中的至少一个信令指示所述第一感知信号的索引。
  12. 根据权利要求9所述的方法,其中,第二感知信号为以下至少一项:
    仅在频域上的长度和密度被配置的第三感知信号;
    仅在时域上的长度和密度被配置的第四感知信号。
  13. 根据权利要求12所述的方法,其中,所述第二感知信号通过第二感知信号查询表确定;
    其中,所述第二感知信号查询表与所述第三感知信号和所述第四感知信号对应。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述网络侧设备根据所述感知业务的特征对应的感知要求,在所述第二感知信号查询表中选择第二感知信号;
    所述网络侧设备向所述感知设备发送第二感知信号的索引;
    在发送第二感知信号的索引同时或之后,所述网络侧设备发送所述第二感知信号。
  15. 一种感知方法,包括:
    感知设备接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
    所述感知设备根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述感知设备接收网络侧设备发送的第一感知信号查询表;
    或者,
    所述感知设备获取预先定义的第一感知信号查询表;
    其中,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
  17. 根据权利要求16所述的方法,其中,所述感知设备根据所述网络侧设备的指示,利用第一感知信号进行感知测量,包括:
    所述感知设备接收网络侧设备发送的第一感知信号的索引;
    所述感知设备根据所述第一感知信号的索引,在所述第一感知信号查询表中查询得到第一感知信号的感知能力系数以及感知要求;
    所述感知设备根据所述第一感知信号的感知能力系数以及感知要求,进行感知测量。
  18. 根据权利要求15所述的方法,其中,所述感知设备根据所述网络侧设备的指示,利用第一感知信号进行感知测量之前,所述方法还包括:
    所述感知设备利用第二感知信号进行预测感知,并向网络侧设备发送反馈信息;所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述感知设备接收网络侧设备发送的第二感知信号的索引;
    所述感知设备根据所述第二感知信号的索引,在所述第二感知信号查询表中查询得到第二感知信号的感知能力系数以及感知要求;
    所述感知设备根据所述第二感知信号的感知能力系数以及感知要求,进行预测感知。
  20. 根据权利要求18或19所述的方法,其中,第二感知信号为以下至少一项:
    仅在频域上的长度和密度被配置的感知信号;
    仅在时域上的长度和密度被配置的感知信号。
  21. 一种感知配置装置,包括:
    配置模块,用于通过参考信号配置信息,为感知设备配置至少两个感知信号,每个感 知信号的感知能力通过感知能力系数指示;
    第一选择模块,用于根据感知业务从所述至少两个感知信号中选择第一感知信号,所述第一感知信号用于进行与所述感知设备相关的感知测量。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    第一确定模块,用于根据第一信息,确定所述感知信号的感知能力系数;所述第一信息包括以下至少一项:
    所述至少两个感知信号在频域上的长度;
    所述至少两个感知信号在时域上的长度;以及,
    所述至少两个感知信号的时频资源中每个资源单元的状态指示值;
    其中,所述资源单元的状态指示值与所述感知信号在频域和/或时域的密度相关,所述资源单元的状态指示值用于指示所述资源单元是否被配置为感知信号资源。
  23. 根据权利要求22所述的装置,其中,所述第一确定模块进一步用于:
    根据第一公式,确定第j个感知信号的感知能力系数γ[j,Nf,Nt];其中,所述第一公式为:
    其中,j为感知信号的索引;Nf为据所述感知信号在频域上的长度;Nt为所述感知信号在时域上的长度;Sj(k,l)为一个资源单元的状态指示值,由所述感知信号在频域和/或时域的密度决定,Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,α(Nf,Nt)是Nf和Nt的函数,α(Nf,Nt)≤1。
  24. 根据权利要求23所述的装置,其中,所述Sj(k,l)用于指示所述资源单元是否被配置为感知信号资源,包括:
    Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源;或者,
    Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源。
  25. 根据权利要求24所述的装置,其中,所述装置还包括:
    第二确定模块,用于根据所述感知信号的感知能力系数,确定所述感知信号的索引;其中,
    当Sj(k,l)=1指示所述资源单元被配置为感知信号资源;Sj(k,l)=0指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成正比,或者,
    当Sj(k,l)=0指示所述资源单元被配置为感知信号资源;Sj(k,l)=1指示所述资源单元未被配置为感知信号资源的情况下,所述感知能力系数的大小与所述索引的大小成反比。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    生成模块,用于根据所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求,生成第一感知信号查询表;
    第一发送模块,用于向所述感知设备发送所述第一感知信号查询表。
  27. 根据权利要求25所述的装置,其中,所述装置还包括:
    获取模块,用于获取预先定义的第一感知信号查询表,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
  28. 根据权利要求26或27所述的装置,其中,所述第一选择模块进一步用于:
    根据所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
  29. 根据权利要求26或27所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收所述感知设备利用第二感知信号进行预测感知后发送的反馈信息,所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引;
    所述第一选择模块进一步用于:
    根据所述反馈信息以及所述感知业务的特征对应的感知要求,在所述第一感知信号查询表中选择第一感知信号。
  30. 根据权利要求28或29所述的装置,其中,所述装置还包括:
    第二发送模块,用于向所述感知设备发送第一感知信号的索引;
    第三发送模块,用于在发送第一感知信号的索引同时或之后,发送所述第一感知信号。
  31. 根据权利要求30所述的装置,其中,所述第二发送模块进一步用于:
    通过层1信令,层2信令,无线资源控制RRC信令中的至少一个信令指示所述第一感知信号的索引。
  32. 根据权利要求29所述的装置,其中,第二感知信号为以下至少一项:
    仅在频域上的长度和密度被配置的第三感知信号;
    仅在时域上的长度和密度被配置的第四感知信号。
  33. 根据权利要求32所述的装置,其中,所述第二感知信号通过第二感知信号查询表确定;
    其中,所述第二感知信号查询表与所述第三感知信号和所述第四感知信号对应。
  34. 根据权利要求33所述的装置,其中,所述装置还包括:
    第二选择模块,用于根据所述感知业务的特征对应的感知要求,在所述第二感知信号查询表中选择第二感知信号;
    第四发送模块,用于向所述感知设备发送第二感知信号的索引;
    第五发送模块,用于在发送第二感知信号的索引同时或之后,发送所述第二感知信号。
  35. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述 的感知配置方法的步骤。
  36. 一种感知装置,包括:
    第二接收模块,用于接收网络侧设备发送的参考信号配置信息,所述参考信号配置信息用于配置至少两个感知信号;每个感知信号的感知能力通过感知能力系数指示;
    感知测量模块,用于根据所述网络侧设备的指示,利用第一感知信号进行感知测量。
  37. 根据权利要求36所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收网络侧设备发送的第一感知信号查询表;
    或者,
    获取模块,用于获取预先定义的第一感知信号查询表;
    其中,所述第一感知信号查询表包括:所述感知信号的索引,所述感知信号的感知能力系数,以及感知业务的特征对应的感知要求。
  38. 根据权利要求37所述的装置,其中,所述感知测量模块进一步用于:
    接收网络侧设备发送的第一感知信号的索引;
    根据所述第一感知信号的索引,在所述第一感知信号查询表中查询得到第一感知信号的感知能力系数以及感知要求;
    根据所述第一感知信号的感知能力系数以及感知要求,进行感知测量。
  39. 根据权利要求36所述的装置,其中,所述装置还包括:
    反馈发送模块,用于利用第二感知信号进行预测感知,并向网络侧设备发送反馈信息;所述反馈信息用于直接或间接指示所述感知设备期待的第一感知信号的索引。
  40. 根据权利要求39所述的装置,其中,所述装置还包括:
    第四接收模块,用于接收网络侧设备发送的第二感知信号的索引;
    查询模块,用于根据所述第二感知信号的索引,在所述第二感知信号查询表中查询得到第二感知信号的感知能力系数以及感知要求;
    预测感知模块,用于根据所述第二感知信号的感知能力系数以及感知要求,进行预测感知。
  41. 根据权利要求39或40所述的装置,其中,第二感知信号为以下至少一项:
    仅在频域上的长度和密度被配置的感知信号;
    仅在时域上的长度和密度被配置的感知信号。
  42. 一种感知设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至20任一项所述的感知方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-14任一项所述的感知配置方法的步骤,或者实现如权利要求15至20任一项所述的感知方法的步骤。
PCT/CN2023/124715 2022-10-21 2023-10-16 感知配置方法、感知方法、装置、网络侧设备及感知设备 WO2024083072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211296067.5 2022-10-21
CN202211296067.5A CN117917906A (zh) 2022-10-21 2022-10-21 感知配置方法、感知方法、装置、网络侧设备及感知设备

Publications (1)

Publication Number Publication Date
WO2024083072A1 true WO2024083072A1 (zh) 2024-04-25

Family

ID=90729734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124715 WO2024083072A1 (zh) 2022-10-21 2023-10-16 感知配置方法、感知方法、装置、网络侧设备及感知设备

Country Status (2)

Country Link
CN (1) CN117917906A (zh)
WO (1) WO2024083072A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271021A (zh) * 2010-06-02 2011-12-07 华为技术有限公司 协同频谱感知方法、基站和终端
CN113727448A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种边链路感知资源配置方法和设备
US20220272506A1 (en) * 2021-02-22 2022-08-25 Nokia Technologies Oy Managing network sensing capabilities in a wireless network
CN115134845A (zh) * 2021-03-25 2022-09-30 华为技术有限公司 通信方法以及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102271021A (zh) * 2010-06-02 2011-12-07 华为技术有限公司 协同频谱感知方法、基站和终端
US20220272506A1 (en) * 2021-02-22 2022-08-25 Nokia Technologies Oy Managing network sensing capabilities in a wireless network
CN115134845A (zh) * 2021-03-25 2022-09-30 华为技术有限公司 通信方法以及通信装置
CN113727448A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种边链路感知资源配置方法和设备

Also Published As

Publication number Publication date
CN117917906A (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US11777565B2 (en) Downlink multiple input multiple output enhancements for single-cell with remote radio heads
CN108768599B (zh) 上行信号的发送、接收方法及装置、存储介质、电子设备
CA3047490C (en) Data transmission method and apparatus
CN108024364A (zh) 一种上行测量参考信号传输方法、装置和系统
US20130201946A1 (en) Transmission of Reference Signals
CN109845205B (zh) 一种用于降低频域信号密度的系统和方法
CN108882382B (zh) 传输方法、终端和网络设备
JP2020508011A (ja) 5g nrのための拡張されたsrs周波数ホッピング方式
JP2020508011A5 (zh)
CN115175336A (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
CN113872647B (zh) 探测参考信号srs传输方法及通信装置
CN114126057A (zh) 传输方法、装置、通信设备及终端
EP3550734A1 (en) Configuration method for channel state information measurement, and related device
CN114501629A (zh) 资源配置方法、装置、设备及可读存储介质
WO2024083072A1 (zh) 感知配置方法、感知方法、装置、网络侧设备及感知设备
WO2024027537A1 (zh) 感知方法、装置、通信设备及可读存储介质
WO2024114490A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2024114491A1 (zh) 上行参考信号资源传输方法、装置、终端及网络侧设备
CN115208526B (zh) 信号传输方法、装置及终端
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
JP7481454B2 (ja) 基準信号構成のための方法
WO2024114515A2 (zh) 上行传输的发射功率确定方法、装置、终端及网络侧设备
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2022253271A1 (zh) Srs资源发送方法、装置、用户设备及存储介质
WO2024114492A1 (zh) 测量方法、装置、终端及网络侧设备