WO2024083002A1 - 储能系统和储能系统的管理方法 - Google Patents

储能系统和储能系统的管理方法 Download PDF

Info

Publication number
WO2024083002A1
WO2024083002A1 PCT/CN2023/123820 CN2023123820W WO2024083002A1 WO 2024083002 A1 WO2024083002 A1 WO 2024083002A1 CN 2023123820 W CN2023123820 W CN 2023123820W WO 2024083002 A1 WO2024083002 A1 WO 2024083002A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
cluster
battery management
battery
management unit
Prior art date
Application number
PCT/CN2023/123820
Other languages
English (en)
French (fr)
Inventor
徐楠
张苗苗
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024083002A1 publication Critical patent/WO2024083002A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage technology, and in particular to an energy storage system and a management method for the energy storage system.
  • Energy storage systems usually adopt a three-level management system, consisting of a battery management unit (BMU), a cluster-level battery management unit (SBMU) and a master battery management unit (MBMU).
  • BMU battery management unit
  • SBMU cluster-level battery management unit
  • MBMU master battery management unit
  • the main function of the main battery management unit is currently only to forward the data collected by the cluster-level battery management unit, and the three-level management system has the problem of wasting hardware costs.
  • the present application provides an energy storage system and a management method of the energy storage system, which can save hardware costs.
  • the present application provides an energy storage system, which includes a battery system, a battery management system and an energy storage inverter.
  • the battery system includes multiple battery clusters
  • the battery management system includes multiple cluster-level battery management units
  • the multiple cluster-level battery management units are communicatively connected to each other, each cluster-level battery management unit is connected to a battery cluster in a one-to-one correspondence, and the energy storage inverter is connected to multiple battery clusters;
  • the energy storage inverter is communicatively connected to at least one cluster-level battery management unit.
  • a cluster-level battery management unit among multiple cluster-level battery management units that is connected to the energy storage inverter is used as a host, and the cluster-level battery management unit serving as the host implements the control and management functions without the need to set up a main battery management unit. Therefore, the battery management architecture can be simplified and hardware costs can be saved.
  • the cluster-level battery management unit is used to receive battery information sent by other cluster-level battery management units while being communicatively connected to the energy storage inverter, and control the operation of other cluster-level battery management units based on the battery information, and/or receive converter information sent by the energy storage inverter, and control the operation of the energy storage inverter based on the converter information.
  • the cluster-level battery management unit can be connected to the energy storage inverter and can be used as a host to implement control and management functions without setting up a main battery management unit. Therefore, the battery management architecture can be simplified and hardware costs can be saved.
  • the cluster-level battery management unit is used to send a first control instruction to the energy storage inverter according to the inverter information after receiving the inverter information, and the first control instruction is used to instruct the energy storage inverter to control the charging and/or discharging of multiple battery clusters.
  • the control function of charging and discharging of the battery cluster is realized by the cluster-level battery management unit as the host.
  • the cluster-level battery management unit is further used to send a second control instruction to the energy storage inverter according to a pre-acquired power regulation curve after being connected to the energy storage inverter for communication, the power regulation curve matches the peak-valley electricity price, and the second control instruction is used to instruct the energy storage inverter to execute a peak-shaving and valley-filling strategy.
  • the peak-shaving and valley-filling of electricity charges is achieved by the cluster-level battery management unit as the host.
  • the cluster-level battery management unit is further used to determine the voltage extremes, current extremes and temperature extremes of multiple battery clusters according to the battery information.
  • the battery status monitoring is realized by the cluster-level battery management unit as a host.
  • the cluster-level battery management unit is also used to send battery information to the cluster-level battery management unit that is in communication connection with the energy storage inverter when no communication connection with the energy storage inverter is detected.
  • multiple cluster-level battery management units cooperate with each other, and the management of the energy storage system can be realized without setting up a main battery management unit, thereby saving hardware costs.
  • each battery cluster includes at least one battery cell
  • the battery management system further includes multiple battery management units, each battery management unit is connected to the battery cell in a one-to-one correspondence, and each cluster-level battery management unit is connected to at least one battery management unit; the cluster-level battery management unit is used to obtain battery information from at least one battery management unit.
  • a two-level battery management architecture is constructed by cluster-level battery management units and battery management units, which can not only realize the functions of the three-level battery management architecture in traditional technology, but also simplify the battery management architecture.
  • the cluster-level battery management unit is also used to store battery information.
  • the stored battery information facilitates subsequent users to perform related statistics and aggregation.
  • connection between multiple cluster-level battery management units is a controller area network.
  • the cluster-level battery management unit is connected to the energy storage converter by Ethernet.
  • the communication between the battery management systems is realized through the CAN bus and Ethernet, thereby realizing the management of the energy storage system.
  • the present application further provides a management method for an energy storage system, which is used for any cluster-level battery management unit in the energy storage system.
  • the energy storage system is as in the first aspect, and the method includes:
  • one of the multiple cluster-level battery management units is used as a host, and the cluster-level battery management unit serving as the host manages the energy storage inverter. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the above-mentioned controlling the operation of the energy storage inverter according to the inverter information includes: sending a first control instruction to the energy storage inverter according to the inverter information, the first control instruction is used to instruct the energy storage inverter to control the charging and/or discharging of multiple battery clusters in the energy storage system.
  • the control of the energy storage inverter is realized by the cluster-level battery management unit as the host, thereby realizing the charging and discharging of the battery cluster.
  • the above-mentioned control of the energy storage converter according to the converter information includes: sending a second control instruction to the energy storage converter according to the pre-acquired power regulation curve, the power regulation curve matches the peak-valley electricity price, and the second control instruction is used to instruct the energy storage converter to execute the peak shaving and valley filling strategy.
  • the method further includes: receiving battery information sent by other cluster-level battery management units, and controlling the operation of other cluster-level battery management units according to the battery information.
  • one of the multiple cluster-level battery management units is used as a host, and the cluster-level battery management unit used as the host manages other cluster-level battery management units. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the method further includes: determining the voltage extremes, current extremes, and temperature extremes of multiple battery clusters in the energy storage system according to the battery information.
  • the battery status monitoring is realized by using the cluster-level battery management unit as the host. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and the hardware cost can be saved.
  • the method further includes: when multiple cluster-level battery management units are connected to the energy storage inverter, screening out a target cluster-level battery management unit from the multiple cluster-level battery management units so that the target cluster-level battery management unit performs the step of receiving the inverter information sent by the energy storage inverter.
  • multiple cluster-level battery management units can be used in turn, and when the current host fails, they are managed by the normal host, thereby improving the reliability of management.
  • the method further comprises: sending battery information to a cluster-level battery management unit in communication with the energy storage converter without establishing a communication connection with the energy storage converter.
  • peak shaving and valley filling are achieved by the cluster-level battery management system as a host.
  • the method further comprises: obtaining battery information from at least one battery management unit in the energy storage system.
  • the battery status monitoring is implemented by a cluster-level battery management unit as a host.
  • the method further includes: storing battery information.
  • the battery information provides a basis for the cluster-level battery management unit to manage the energy storage system, monitor the battery status, perform information statistics, and handle faults.
  • FIG1 is a schematic diagram of the structure of an energy storage system in conventional technology
  • FIG2 is a schematic diagram of a structure of an energy storage system in an embodiment of the present application.
  • FIG3 is one of the structural schematic diagrams of the energy storage system in one embodiment of the present application.
  • FIG4 is a flowchart of one of the steps of a method for managing an energy storage system in an embodiment of the present application
  • FIG5 is a second flowchart of a method for managing an energy storage system in an embodiment of the present application.
  • Battery system 10 battery management system 20, energy storage converter 30;
  • Battery cluster 101 Cluster-level battery management unit 201 , battery unit 102 , battery management unit 202 .
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • energy storage systems usually adopt a three-level management system, which consists of a battery management unit BMU, a cluster-level battery management unit SBMU, and a master battery management unit MBMU.
  • the main function of the master battery management unit MBMU is only to forward the data collected by the cluster-level battery management unit SBMU. Therefore, the three-level management system has the problem of wasting hardware costs.
  • the embodiment of the present application discloses an energy storage system, which includes a battery system, a battery management system and an energy storage inverter, wherein the battery management system includes a cluster-level battery management unit SBMU and a battery management unit BMU, and does not include a main battery management unit MBMU. Instead, the cluster-level battery management unit SBMU that is communicatively connected to the energy storage inverter implements the functions of the main battery management unit MBMU. In this way, the management system is simplified from the current three levels to two levels in the embodiment of the present application, thereby saving hardware costs.
  • the energy storage system disclosed in the embodiments of the present application can be used in, but is not limited to, electrical devices such as vehicles, ships, or aircraft.
  • an energy storage system which includes a battery system 10, a battery management system 20 and a power conversion system (PCS) 30, wherein the battery system 10 includes a plurality of battery clusters 101, the battery management system 20 includes a plurality of cluster-level battery management units 201, the plurality of cluster-level battery management units 201 are communicatively connected to each other, each cluster-level battery management unit 201 is connected to a battery cluster 101 in a one-to-one correspondence, the energy storage converter 30 is connected to a plurality of battery clusters 101, and the energy storage converter is communicatively connected to at least one cluster-level battery management unit.
  • PCS power conversion system
  • the energy storage system includes a battery system 10, a battery management system 20 and an energy storage inverter 30.
  • the battery system 10 is composed of a plurality of battery clusters 101 connected in parallel, and each battery cluster 101 may include at least one battery cell.
  • the battery management system 20 includes a plurality of cluster-level battery management units 201, and a cluster-level battery management unit 201 is connected to a battery cluster 101 to manage the batteries in the corresponding cluster.
  • the energy storage inverter 30 is connected to a plurality of battery clusters 101 to control the plurality of battery clusters 101.
  • the straight line is a communication connection
  • the dotted line is an electrical connection.
  • the energy storage converter is connected to at least one cluster-level battery management unit.
  • One cluster-level battery management unit 201 or multiple cluster-level battery management units 202 in the multiple cluster-level battery management units 201 establishes a communication connection with the energy storage converter 30.
  • 201 is used as a host among multiple cluster-level battery management units 201. If other cluster-level battery management units 201 do not establish communication connection with the energy storage inverter 30, then other cluster-level battery management units 201 are used as slaves among multiple cluster-level battery management units 201.
  • the cluster-level battery management unit 201 as a host can manage the energy storage inverter and other cluster-level battery clusters.
  • the embodiment of the present application does not limit the specific management method.
  • the energy storage system includes a battery system, a battery management system and an energy storage inverter.
  • the battery system includes multiple battery clusters.
  • the battery management system includes multiple cluster-level battery management units.
  • the multiple cluster-level battery management units are communicatively connected to each other.
  • Each cluster-level battery management unit is connected to a battery cluster in a one-to-one correspondence.
  • the energy storage inverter is connected to multiple battery clusters, and the energy storage inverter is connected to at least one cluster-level battery management unit.
  • a cluster-level battery management unit that is communicatively connected to the energy storage inverter among multiple cluster-level battery management units is used as a host.
  • the cluster-level battery management unit that is used as a host implements the control and management functions without setting a main battery management unit. Therefore, the battery management architecture can be simplified and hardware costs can be saved.
  • the cluster-level battery management unit 201 is used to receive battery information sent by other cluster-level battery management units 201 when being communicatively connected with the energy storage inverter 30, and control the operation of other cluster-level battery management units 201 according to the battery information, and/or receive converter information sent by the energy storage inverter 30, and control the operation of the energy storage inverter 30 according to the converter information.
  • the cluster-level battery management unit 201 as the host implements the following functions: receiving battery information sent by other cluster-level battery management units 201, and controlling the operation of other cluster-level battery management units 201 according to the battery information.
  • the battery information may include the voltage, current, and temperature of a battery cell, the voltage and current of a battery cluster, etc.
  • the embodiment of the present application does not limit the battery information, and it can be set according to actual conditions.
  • the cluster-level battery management unit A1 as the host receives the battery information, it determines that the battery cluster B1 needs to reduce the output power based on the battery information, and then controls the cluster-level battery management unit A2 connected to the battery cluster B1 to work, so that the cluster-level battery management unit A2 reduces the output power of the battery cluster B1.
  • the cluster-level battery management unit A1 as the host receives the battery information, it determines that the battery cluster B2 has a fault based on the battery information, and then controls the cluster-level battery management unit A3 connected to the battery cluster B2 to work, so that the cluster-level battery management unit A3 executes corresponding protection measures, such as performing a high-voltage operation on the battery cluster B2.
  • the cluster-level battery management as the host can also realize the following functions: receiving the energy storage converter 30
  • the converter information is used to control the energy storage converter 30 to work according to the converter information.
  • the converter information may include the operating power, operating status, whether it is faulty, etc. of the energy storage converter.
  • the embodiment of the present application does not limit the converter information and can be set according to actual conditions.
  • the energy storage inverter 30 sends inverter information to the cluster-level battery management unit A1 as the host, and the cluster-level battery management unit A1 controls the operating power and operating state of the energy storage inverter 30 according to the inverter information, or controls the energy storage inverter 30 to handle faults.
  • control functions that can be realized by the cluster-level battery management unit as a host are not limited to the above description, and the functions of the main battery management unit MBMU and the energy management system EMS used in traditional technologies can also be integrated.
  • identifications are set for the multiple cluster-level battery management units 201 , for example, the multiple cluster-level battery management units 201 are numbered to distinguish the cluster-level battery management units 201 , so as to better control the cluster-level battery management units 201 .
  • the cluster-level battery management unit receives battery information sent by other cluster-level battery management units when communicating with the energy storage inverter, and controls the operation of other cluster-level battery management units according to the battery information, and/or receives converter information sent by the energy storage inverter, and controls the operation of the energy storage inverter according to the converter information.
  • one of the multiple cluster-level battery management units is used as a host, and the cluster-level battery management unit used as a host implements the control and management functions without the need to set up a main battery management unit, thereby simplifying the battery management architecture and saving hardware costs.
  • the cluster-level battery management unit 201 is used to send a first control instruction to the energy storage inverter 30 according to the inverter information after receiving the inverter information, and the first control instruction is used to instruct the energy storage inverter 30 to control the charging and/or discharging of multiple battery clusters 101.
  • one of the functions of the cluster-level battery management unit 201 as a host is to control the charging and/or discharging of the battery cluster 101 through the energy storage inverter 30.
  • the cluster-level battery management unit A1 acts as the host, and the energy storage inverter 30 sends the charging power of the battery cluster B1 to the cluster-level battery management unit A1, and the cluster-level battery management unit A1 sends a first control instruction to the energy storage inverter 30 according to the charging power of the battery cluster B1.
  • the energy storage inverter 30 receives the first control instruction and adjusts the charging power of the battery cluster B1 according to the first control instruction.
  • the energy storage inverter 30 sends the battery cluster B2 to the cluster-level battery management unit A1.
  • the cluster-level battery management unit A1 sends a first control instruction to the energy storage converter 30 according to the discharge power of the battery cluster B2.
  • the energy storage converter 30 receives the first control instruction and adjusts the discharge power of the battery cluster B2 according to the first control instruction.
  • the cluster-level battery management unit after receiving the converter information, the cluster-level battery management unit sends a first control instruction to the energy storage converter according to the converter information, instructing the energy storage converter to control the charging and/or discharging of multiple battery clusters.
  • the embodiment of the present application realizes the control function of charging and discharging of the battery cluster by using the cluster-level battery management unit as the host, and there is no need to set up a main battery management unit, so the battery management architecture can be simplified and the hardware cost can be saved.
  • the cluster-level battery management unit 201 is also used to send a second control instruction to the energy storage inverter 30 according to a pre-acquired power regulation curve after being communicatively connected with the energy storage inverter 30, and the second control instruction is used to instruct the energy storage inverter 30 to execute a peak shaving and valley filling strategy.
  • the power regulation curve matches the peak-valley electricity price, that is, when the electricity price is high, the discharge power in the power regulation curve is large and the charging power is small; when the electricity price is low, the discharge power in the power regulation curve is small and the charging power is large.
  • the peak-valley electricity price and the power regulation curve can be stored in each cluster-level battery management unit 201 in advance, so that when any cluster-level battery management unit 201 is used as a host, corresponding control can be achieved according to the power regulation curve.
  • the cluster-level battery management unit 201 as a host has another function of achieving peak-shaving and valley-filling of electricity charges through the energy storage converter 30.
  • the cluster-level battery management unit 201 as a host sends a second control instruction to the energy storage converter 30 according to the power regulation curve acquired in advance.
  • the energy storage converter 30 adjusts the charging power and/or discharging power of the battery according to the second control instruction, so that the battery cluster 101 discharges when the electricity price is high and charges when the electricity price is low. In this way, the electricity cost consumed by the energy storage system can be reduced, and peak-shaving and valley-filling of electricity charges can be achieved.
  • the cluster-level battery management unit after the cluster-level battery management unit is connected to the energy storage inverter, it sends a second control instruction to the energy storage inverter according to the power regulation curve acquired in advance, instructing the energy storage inverter to execute the peak shaving and valley filling strategy.
  • the cluster-level battery management unit as the host realizes the peak shaving and valley filling of the electricity cost. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and the hardware cost can be saved.
  • the cluster-level battery management unit 201 is further configured to determine voltage extremes, current extremes, and temperature extremes of the plurality of battery clusters 101 according to the battery information.
  • the cluster-level battery management unit 201 as the host has another function of realizing battery status monitoring. Specifically, after obtaining battery information from other cluster-level battery management units 201, the cluster-level battery management unit 201 as the host can calculate the maximum and minimum values of the battery voltage, the maximum and minimum values of the battery current, the maximum and minimum values of the battery temperature, and the maximum and minimum values of the cluster voltage, and the maximum and minimum values of the cluster current according to the battery information. In practical applications, the voltage extremes, current extremes, and temperature extremes are not limited to the above description.
  • the cluster-level battery management unit 201 as the host can determine whether the battery cells and the battery cluster 101 are working within the normal range according to the preset threshold value. If the calculated extreme value exceeds the preset threshold value, it indicates that the battery or battery cluster 101 is abnormal and corresponding protective measures need to be taken.
  • the protection measures may include reducing battery voltage, battery current, battery temperature, battery cluster 101 voltage, battery cluster 101 current, and performing high voltage operation on battery cluster 101.
  • the present application does not limit the protection measures, and they may be set according to actual conditions.
  • the cluster-level battery management unit determines the voltage extremes, current extremes and temperature extremes of multiple battery clusters based on the battery information.
  • the embodiment of the present application implements battery status monitoring by using the cluster-level battery management unit as the host. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the cluster-level battery management unit 201 is further configured to send battery information to the cluster-level battery management unit 201 that is communicatively connected to the energy storage inverter 30 when no communication connection with the energy storage inverter 30 is detected.
  • the cluster-level battery management unit 201 if it does not establish a communication connection with the energy storage converter 30, it acts as a slave among the multiple cluster-level battery management units 201.
  • the cluster-level battery management unit 201 as a slave has the main function of collecting battery information and uploading the battery information to the cluster-level battery management unit 201 as a host, so that the cluster-level battery management unit 201 as a host can manage the energy storage system.
  • the cluster-level battery management unit A1 detects a communication connection with the energy storage inverter 30, while the cluster-level battery management units A2, A3... do not detect a communication connection with the energy storage inverter 30, then the cluster-level battery management unit A1 acts as the host, and the cluster-level battery management units A2, A3... act as slaves, and the cluster-level battery management units A2, A3... send all the collected battery information to the cluster-level battery management unit A1.
  • the cluster-level battery management unit sends battery information to the cluster-level battery management unit that is in communication connection with the energy storage inverter when the communication connection with the energy storage inverter is not detected.
  • the cluster-level battery management unit as a slave collects battery information so that the cluster-level battery management unit as a host can manage the energy storage system according to the battery information.
  • Multiple cluster-level battery management units cooperate with each other, so that the management of the energy storage system can be achieved without setting up a master battery management unit, thereby saving hardware costs.
  • each battery cluster 101 includes at least one battery cell 102
  • the battery management system 20 also includes multiple battery management units 202, each battery management unit 202 is connected to the battery cell 102 in a one-to-one correspondence, and each cluster-level battery management unit 201 is connected to at least one battery management unit 202; the cluster-level battery management unit 201 is used to obtain battery information from at least one battery management unit 202.
  • each battery cluster 101 can be composed of multiple battery cells 102 connected in series.
  • Each battery cell 102 can be a battery monomer or a battery box, which is not limited in the embodiment of the present application.
  • the battery management system 20 also includes multiple battery management units 202, each battery management unit 202 is connected to a battery cell 102, and multiple battery management units 202 are connected to the cluster-level battery management unit 201 of the corresponding cluster.
  • the straight line is a communication connection
  • the dotted line is an electrical connection.
  • each battery management unit 202 collects battery information of the corresponding connected battery unit 102, such as the battery voltage, battery current, battery temperature, etc. of the corresponding connected battery unit 102. Afterwards, each battery unit 202 uploads the received battery information to the cluster-level battery management unit 201 of the corresponding cluster. The cluster-level battery management unit 201 receives the battery information uploaded by at least one battery unit 202.
  • each cluster-level battery management unit 201 obtains the battery management unit of the corresponding cluster.
  • the cluster-level battery management unit 201 as the host also obtains the battery information uploaded by the cluster-level battery management unit 201 as the slave.
  • the cluster-level battery management unit 201 is also used to store battery information.
  • Each cluster-level battery management unit 201 can store the battery information after acquiring the battery information.
  • the cluster-level battery management unit 201 as the host can also store the battery information uploaded by the cluster-level battery management unit 201 as the slave. Subsequent users can perform relevant statistics and summaries based on the stored battery information.
  • the battery information can include fault information, abnormal information, etc., and subsequent users can also view the fault information and abnormal information for fault handling.
  • each battery cluster includes at least one battery cell
  • the battery management system also includes multiple battery management units, each battery management unit is connected to the battery cell in a one-to-one correspondence, and each cluster-level battery management unit is connected to at least one battery management unit; the cluster-level battery management unit obtains battery information from at least one battery management unit.
  • the embodiment of the present application constructs a two-level battery management architecture by using cluster-level battery management units and battery management units, which can not only realize the functions of the three-level battery management architecture in traditional technology, but also simplify the battery management architecture.
  • connection method between multiple cluster-level battery management units 201 is a controller area network (CAN) bus connection
  • connection method between the cluster-level battery management unit 201 and the energy storage inverter 30 is an Ethernet connection.
  • CAN controller area network
  • multiple cluster-level battery management units 201 can be connected via a CAN bus, so that the cluster-level battery management unit 201 serving as a slave can upload battery information to the cluster-level battery management unit 201 serving as a host via the CAN bus; and the cluster-level battery management unit 201 serving as the host can also send control instructions to the cluster-level battery management unit 201 serving as a slave via the CAN bus, thereby controlling the cluster-level battery management unit 201 serving as a slave.
  • Each cluster-level battery management unit 201 may be provided with an Ethernet interface. After the user connects the cable connected to the energy storage converter 30 to the Ethernet interface of one cluster-level battery management unit 201, the cluster-level battery management unit 201 may serve as a host, and the other cluster-level battery management units 201 may serve as slaves.
  • multiple cluster-level battery management units are connected via a CAN bus as a cluster of the host.
  • the battery management unit is connected to the energy storage converter via Ethernet.
  • the embodiment of the present application realizes communication between battery management systems via CAN bus and Ethernet, thereby realizing the management of the energy storage system.
  • a management method for an energy storage system is provided, which is applied to any cluster-level battery management unit in the energy storage system.
  • the energy storage system is as described in the above embodiment.
  • the embodiment of the present application may include the following steps:
  • Step 401 receiving converter information sent by the energy storage converter when a communication connection is established with the energy storage converter;
  • Step 402 Control the energy storage converter to operate according to the converter information.
  • the cluster-level battery management unit acts as the host of multiple cluster-level battery management units.
  • the cluster-level battery management unit as the host can receive the inverter information sent by the energy storage inverter and control the operation of the energy storage inverter according to the inverter information.
  • the cluster-level battery management unit A1 as a host can control the operating power and operating state of the energy storage converter, or control the energy storage converter to handle faults, etc.
  • the disclosed embodiment does not limit how to control the energy storage converter, and can be set according to actual conditions.
  • the cluster-level battery management unit in the energy storage system receives the converter information sent by the energy storage converter when establishing a communication connection with the energy storage converter in the energy storage system, and controls the operation of the energy storage converter according to the converter information.
  • one of the multiple cluster-level battery management units is used as the host, and the cluster-level battery management unit as the host manages the energy storage converter. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the above-mentioned process of controlling the operation of the energy storage inverter according to the inverter information may include: sending a first control instruction to the energy storage inverter according to the inverter information, and the first control instruction is used to instruct the energy storage inverter to control the charging and/or discharging of multiple battery clusters in the energy storage system.
  • the cluster-level battery management unit as the host determines to send a first control instruction to the energy storage converter according to the converter information.
  • the energy storage converter receives the first control instruction and controls the charging of multiple battery clusters according to the first control instruction; or According to the first control instruction, a plurality of battery clusters are controlled to discharge; or, a part of the battery clusters are controlled to charge and another part of the battery clusters are controlled to discharge.
  • the cluster-level battery management unit as the host sends a first control instruction to the energy storage inverter according to the inverter information, instructing the energy storage inverter to control the charging and/or discharging of multiple battery clusters in the energy storage system.
  • the cluster-level battery management unit as the host realizes the charging and discharging of the battery cluster. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and the hardware cost can be saved.
  • the above-mentioned process of controlling the operation of the energy storage inverter according to the inverter information may include: sending a second control instruction to the energy storage inverter according to a pre-acquired power regulation curve, the power regulation curve matches the peak-valley electricity price, and the second control instruction is used to instruct the energy storage inverter to execute a peak shaving and valley filling strategy.
  • the cluster-level battery management unit of the host can obtain the peak and valley electricity prices in advance, and then determine the power regulation curve according to the peak and valley electricity prices; it can also directly obtain the power regulation curve formulated by the user according to the peak and valley electricity prices.
  • the cluster-level battery management unit as the host, can send a second control instruction to the energy storage converter according to the power regulation curve.
  • the energy storage converter increases the discharge power and reduces the charging power when the electricity price is high; and reduces the discharge power and increases the charging power when the electricity price is low.
  • the energy storage system can be controlled to mainly discharge when the electricity price is high, and to mainly charge when the electricity price is low, thereby achieving peak shaving and valley filling of electricity charges and saving electricity charges.
  • the cluster-level battery management unit as the host sends a second control instruction to the energy storage inverter according to the pre-acquired power regulation curve, instructing the energy storage inverter to execute the peak shaving and valley filling strategy.
  • the embodiment of the present application realizes peak shaving and valley filling by using the cluster-level battery management system as the host. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the method may further include: receiving battery information sent by other cluster-level battery management units, and controlling the operation of the other cluster-level battery management units according to the battery information.
  • the cluster-level battery management unit as the host can also receive other cluster-level battery
  • the battery management unit determines the working mode of other cluster-level battery management units according to the battery information sent by the battery management unit, and controls the operation of other cluster-level battery management units according to the determined working mode.
  • cluster-level battery management unit A1 as a host can control cluster-level battery management units A2 and A3 to adjust the output power of the battery cluster, monitor the battery cluster, and execute protection measures, etc.
  • the disclosed embodiment does not limit how to control other cluster-level battery management units, and can be set according to actual conditions.
  • the battery information sent by other cluster-level battery management units is received, and the operation of other cluster-level battery management units is controlled according to the battery information.
  • one of the multiple cluster-level battery management units is used as a host, and the cluster-level battery management unit used as the host manages other cluster-level battery management units. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • the method may further include: determining voltage extremes, current extremes, and temperature extremes of multiple battery clusters in the energy storage system according to the battery information.
  • the cluster-level battery management unit as the host obtains the battery information of multiple battery clusters; then, based on the battery information of multiple battery clusters, the maximum and minimum values of the battery voltage of multiple battery cells, the maximum and minimum values of the battery current, the maximum and minimum values of the battery temperature, and the maximum and minimum values of the cluster voltage, the maximum and minimum values of the cluster current, etc. of multiple battery clusters can be calculated.
  • the embodiment of the present application does not limit the calculation of extreme values, and can be set according to actual conditions.
  • the cluster-level battery management unit as the host determines the voltage extremes, current extremes and temperature extremes of multiple battery clusters in the energy storage system according to the battery information.
  • the cluster-level battery management unit as the host realizes battery status monitoring. Since there is no need to set up a main battery management unit, the battery management architecture can be simplified and hardware costs can be saved.
  • it may also include: when multiple cluster-level battery management units are connected to the energy storage inverter, a target cluster-level battery management unit is screened out from the multiple cluster-level battery management units so that the target cluster-level battery management unit executes the step of receiving inverter information sent by the energy storage inverter.
  • the energy storage converter can be connected to multiple cluster-level battery management units.
  • a target cluster-level battery management is selected from a plurality of cluster-level battery management units connected to the energy storage converter, and the target battery management unit executes steps 401 and 402 .
  • the preset rules may be based on the connection time, the serial number of the cluster-level battery management, and the priority of the cluster-level battery management unit.
  • the embodiment of the present application does not limit the preset rules.
  • each cluster-level battery management unit determines the time to establish a communication connection with the energy storage converter, and uses the cluster-level battery management unit with the earliest connection time as the host.
  • a cluster-level battery management unit with a higher sequence number among multiple cluster-level battery management units is used as the host.
  • a cluster-level battery management unit with a higher priority among multiple cluster-level battery management units can also be used as the host.
  • a target cluster-level battery management unit is selected from the multiple cluster-level battery management units so that the target cluster-level battery management unit performs the step of receiving the inverter information sent by the energy storage inverter.
  • multiple cluster-level battery management units can be used in turn, and when the current host fails, they are managed by the normal host, which improves the reliability of management.
  • the embodiment of the present application may further include the following steps:
  • Step 501 detecting whether a communication connection is established with an energy storage converter in an energy storage system.
  • the cluster-level battery management unit detects whether a communication connection is established with the energy storage converter in the energy storage system. Specifically, software can be used to detect whether a connection signal of the energy storage connector is obtained, or hardware can be used to detect whether a cable is connected to the Ethernet interface of the cluster-level battery management unit. It should be noted that the detection method is not limited to the above description and can be set according to actual conditions.
  • Step 502 When a communication connection with the energy storage inverter is not established, the battery information is sent to a cluster-level battery management unit that is in communication connection with the energy storage inverter.
  • the cluster-level battery management unit If the cluster-level battery management unit detects that there is no communication connection with the energy storage converter, it will act as a slave among multiple cluster-level battery management units.
  • the cluster-level battery management unit as a slave can send battery information to the cluster-level battery management unit as a master through the CAN bus, so that the cluster-level battery management unit as a master can manage the energy storage system according to the battery information.
  • the battery information is sent to the cluster-level battery management unit that is in communication connection with the energy storage converter.
  • the cluster-level battery management unit uploads battery information, so that the cluster-level battery management unit as the host can manage the energy storage system according to the battery information.
  • the method may further include: acquiring battery information from at least one battery management unit in the energy storage system.
  • the energy storage system may further include a plurality of battery management units, one battery management unit being connected to a corresponding battery cell, and a plurality of battery cells being connected to a cluster-level battery management unit of a corresponding cluster.
  • Each battery management unit obtains the battery information of the corresponding connected battery unit respectively; then, each battery management unit sends the obtained battery information to the cluster-level battery management unit of the corresponding cluster, so that each cluster-level battery management unit can obtain the battery information.
  • the method may further include: storing battery information.
  • each cluster-level battery management unit can store the battery information. As the host cluster-level battery management unit, it can also store the battery information uploaded from other cluster-level battery management units. Storing battery information can facilitate subsequent statistics, aggregation and viewing.
  • the cluster-level battery management unit obtains battery information from at least one battery management unit in the energy storage system and stores the battery information.
  • the battery information provides a basis for the cluster-level battery management unit to manage the energy storage system, monitor battery status, perform information statistics, and handle faults.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请涉及一种储能系统和储能系统的管理方法。所述储能系统包括电池系统、电池管理系统和储能变流器,所述电池系统包括多个电池簇,所述电池管理系统包括多个簇级电池管理单元,多个所述簇级电池管理单元之间通讯连接,各所述簇级电池管理单元与所述电池簇一一对应连接,所述储能变流器与所述多个电池簇连接,,所述储能变流器与至少一个所述簇级电池管理单元通讯连接。通过本申请提供的储能系统可以节省硬件成本。

Description

储能系统和储能系统的管理方法
本申请引用于2022年10月19日递交的“储能系统和储能系统的管理方法”的第202211279421.3号中国专利申请,其通过引用被全部并入申请。
技术领域
本申请涉及储能技术领域,具体涉及一种储能系统和储能系统的管理方法。
背景技术
随着新能源技术的飞速发展,储能系统成为了非常重要的研究方向之一。
储能系统通常采用三级管理系统,即由电池管理单元(Battery Management Unit,BMU)、簇级电池管理单元(Slave Battery Management Unit,SBMU)和主电池管理单元(Master Battery Management Unit,MBMU)组成。
但是,主电池管理单元目前的主要功能只是对簇级电池管理单元收集到的数据进行转发,三级管理系统存在浪费硬件成本的问题。
发明内容
基于上述问题,本申请提供一种储能系统和储能系统的管理方法,能够节省硬件成本。
第一方面,本申请提供了一种储能系统,储能系统包括电池系统、电池管理系统和储能变流器,电池系统包括多个电池簇,电池管理系统包括多个簇级电池管理单元,多个簇级电池管理单元之间通讯连接,各簇级电池管理单元与电池簇一一对应连接,储能变流器与多个电池簇连接;储能变流器与至少一个簇级电池管理单元通讯连接。
本申请实施例的技术方案中,将多个簇级电池管理单元中与储能变流器练级连接的一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元实现控制管理功能,而不需要设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
在一些实施例中,簇级电池管理单元,用于在与储能变流器通讯连接的情况下,接收其他簇级电池管理单元发送的电池信息,并根据电池信息控制其他簇级电池管理单元工作,和/或,接收储能变流器发送的变流器信息,并根据变流器信息控制储能变流器工作。
本申请实施例的技术方案中,簇级电池管理单元与储能变流器连接后可以作为主机实现控制管理功能,而不需要设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
在一些实施例中,簇级电池管理单元,用于在接收到变流器信息后,根据变流器信息向储能变流器发送第一控制指令,第一控制指令用于指示储能变流器控制多个电池簇充电和/或放电。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现了电池簇充放电的控制功能。
在一些实施例中,簇级电池管理单元,还用于在与储能变流器通讯连接后,根据预先获取到的功率调节曲线向储能变流器发送第二控制指令,功率调节曲线与峰谷电价匹配,第二控制指令用于指示储能变流器执行削峰填谷策略。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现电费的削峰填谷。
在一些实施例中,簇级电池管理单元,还用于根据电池信息确定多个电池簇的电压极值、电流极值和温度极值。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现了电池的状态监控。
在一些实施例中,簇级电池管理单元,还用于在未检测到与储能变流器通讯连接的情况下,向与储能变流器通讯连接的簇级电池管理单元发送电池信息。本申请实施例的技术方案中,多个簇级电池管理单元互相配合,则无需设置主电池管理单元也可以实现储能系统的管理,因此可以节省硬件成本。
在一些实施例中,各电池簇包括至少一个电池单元,电池管理系统还包括多个电池管理单元,各电池管理单元与电池单元一一对应连接,各簇级电池管理单元与至少一个电池管理单元连接;簇级电池管理单元,用于从至少一个电池管理单元获取电池信息。本申请实施例的技术方案中,通过簇级电池管理单元和电池管理单元构建两级电池管理架构,不仅可以实现传统技术中三级电池管理架构的功能,还简化了电池管理架构。
在一些实施例中,簇级电池管理单元,还用于存储电池信息。本申请实施例的技术方案中,存储的电池信息便于后续用户进行相关的统计和汇总。
在一些实施例中,多个簇级电池管理单元之间的连接方式为控制器局域网 络总线连接,簇级电池管理单元与储能变流器的连接方式为以太网连接。本申请实施例的技术方案中,通过CAN总线和以太网实现了电池管理系统之间的通讯,从而实现了储能系统的管理。
第二方面,本申请还提供了一种储能系统的管理方法,用于储能系统中的任一簇级电池管理单元,储能系统如第一方面,该方法包括:
在与储能系统中的储能变流器建立通讯连接的情况下,接收储能变流器发送的变流器信息,并根据变流器信息控制储能变流器工作。
本申请实施例的技术方案中,将多个簇级电池管理单元中一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元管理储能变流器,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
在一些实施例中,上述根据变流器信息控制储能变流器工作,包括:根据变流器信息向储能变流器发送第一控制指令,第一控制指令用于指示储能变流器控制储能系统中的多个电池簇充电和/或放电。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现储能变流器的控制,从而实现电池簇的充放电。
在一些实施例中,上述根据变流器信息控制储能变流器工作,包括:根据预先获取到的功率调节曲线向储能变流器发送第二控制指令,功率调节曲线与峰谷电价匹配,第二控制指令用于指示储能变流器执行削峰填谷策略。本申请实施例的技术方案中,
在一些实施例中,该方法还包括:接收其他簇级电池管理单元发送的电池信息,并根据电池信息控制其他簇级电池管理单元工作。本申请实施例的技术方案中,将多个簇级电池管理单元中一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元管理其他簇级电池管理单元,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
在一些实施例中,该方法还包括:根据电池信息确定储能系统中多个电池簇的电压极值、电流极值和温度极值。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现电池状态监控,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
在一些实施例中,该方法还包括:在多个簇级电池管理单元均与储能变流器连接的情况下,从多个簇级电池管理单元中筛选出目标簇级电池管理单元,以使目标簇级电池管理单元执行接收储能变流器发送的变流器信息的步骤。本申请实施例的技术方案中,多个簇级电池管理单元可以轮流使用,在当前主机故障时由正常主机管理,提高了管理的可靠性。
在一些实施例中,该方法还包括:在未与储能变流器建立通讯连接的情况下,向与储能变流器通讯连接的簇级电池管理单元发送电池信息。本申请实施例的技术方案中,通过作为主机的簇级电池管理系统实现削峰填谷。
在一些实施例中,该方法还包括:从储能系统中的至少一个电池管理单元获取电池信息。本申请实施例的技术方案中,通过作为主机的簇级电池管理单元实现电池状态监控。
在一些实施例中,该方法还包括:存储电池信息。本申请实施例的技术方案中,电池信息为簇级电池管理单元管理储能系统、监控电池状态、进行信息统计、故障处理提供依据。
附图说明
通过阅读对下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为传统技术中的储能系统的结构示意图;
图2是本申请一实施例中的储能系统的结构示意图之一;
图3是本申请一实施例中的储能系统的结构示意图之一;
图4是本申请一实施例中的储能系统的管理方法的步骤流程图之一;
图5是本申请一实施例中的储能系统的管理方法的步骤流程图之二;
附图标记说明:
电池系统10、电池管理系统20、储能变流器30;
电池簇101、簇级电池管理单元201、电池单元102、电池管理单元202。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解 上述术语在本申请实施例中的具体含义。
目前,参照图1,储能系统通常采用三级管理系统,即由电池管理单元BMU、簇级电池管理单元SBMU和主电池管理单元MBMU组成。但是,主电池管理单元MBMU的主要功能只是对簇级电池管理单元SBMU收集到的数据进行转发,因此,三级管理系统存在浪费硬件成本的问题。
而本申请实施例公开了一种储能系统,该储能系统包括电池系统、电池管理系统和储能变流器,其中,电池管理系统包括簇级电池管理单元SBMU和电池管理单元BMU,并不包括主电池管理单元MBMU,而是由与储能变流器通讯连接的簇级电池管理单元SBMU实现主电池管理单元MBMU的功能,这样,管理系统由目前的三级简化为本申请实施例中的两级,因此可以节省硬件成本。
本申请实施例公开的储能系统可以但不限用于车辆、船舶或飞行器等用电装置中。
根据本申请的一些实施例,参照图2,提供了一种储能系统,该储能系统包括电池系统10、电池管理系统20和储能变流器(Power Conversion System,PCS)30,电池系统10包括多个电池簇101,电池管理系统20包括多个簇级电池管理单元201,多个簇级电池管理单元201之间通讯连接,各簇级电池管理单元201与电池簇101一一对应连接,储能变流器30与多个电池簇101连接,储能变流器与至少一个簇级电池管理单元通讯连接。
本申请实施例中,储能系统包括电池系统10、电池管理系统20和储能变流器30。其中,电池系统10由多个电池簇101并联构成,每个电池簇101中可以包括至少一个电池单元。电池管理系统20包括多个簇级电池管理单元201,一个簇级电池管理单元201与一个电池簇101对应连接,以便管理对应簇中的电池。储能变流器30与多个电池簇101连接,以便控制多个电池簇101。图2中,直线为通讯连接,虚线为电连接。
储能变流器与至少一个簇级电池管理单元通讯连接。多个簇级电池管理单元201中的一个簇级电池管理单元201或多个簇级电池管理单元202与储能变流器30建立通讯连接,将与储能变流器30建立通讯连接的簇级电池管理单元 201作为多个簇级电池管理单元201中的主机,其他簇级电池管理单元201未与储能变流器30建立通讯连接,则将其他簇级电池管理单元201作为多个簇级电池管理单元201中的从机。
作为主机的簇级电池管理单元201可以实现对储能变流器的管理,对其他簇级电池簇的管理,本申请实施例对具体管理方式不做限定。
上述实施例中,储能系统包括电池系统、电池管理系统和储能变流器,电池系统包括多个电池簇,电池管理系统包括多个簇级电池管理单元,多个簇级电池管理单元之间通讯连接,各簇级电池管理单元与电池簇一一对应连接,储能变流器与多个电池簇连接,储能变流器与至少一个簇级电池管理单元连接。本申请实施例将多个簇级电池管理单元中与储能变流器通讯连接的一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元实现控制管理功能,而不需要设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
根据本申请的一些实施例,簇级电池管理单元201,用于在与储能变流器30通讯连接的情况下,接收其他簇级电池管理单元201发送的电池信息,并根据电池信息控制其他簇级电池管理单元201工作,和/或,接收储能变流器30发送的变流器信息,并根据变流器信息控制储能变流器30工作。
作为主机的簇级电池管理单元201实现以下功能:接收其他簇级电池管理单元201发送的电池信息,并根据电池信息控制其他簇级电池管理单元201工作。其中,电池信息可以包括电池单体的电压、电流、温度,电池簇的电压、电流等。本申请实施例对电池信息不做限定,可以根据实际情况进行设置。
例如,作为主机的簇级电池管理单元A1接收到电池信息后,根据电池信息确定电池簇B1需要降低输出功率,则控制电池簇B1对应连接的簇级电池管理单元A2工作,使簇级电池管理单元A2降低电池簇B1的输出功率。或者,作为主机的簇级电池管理单元A1接收到电池信息后,根据电池信息确定电池簇B2出现故障,则控制电池簇B2对应连接的簇级电池管理单元A3工作,使簇级电池管理单元A3执行相应的保护措施,比如,对电池簇B2进行下高压操作。
作为主机的簇级电池管理还可以实现以下功能:接收储能变流器30发送的 变流器信息,并根据变流器信息控制储能变流器30工作。其中,变流器信息可以包括储能变流器的运行功率、运行状态、是否故障等。本申请实施例对变流器信息不做限定,可以根据实际情况进行设置。
例如,储能变流器30向作为主机的簇级电池管理单元A1发送变流器信息,簇级电池管理单元A1根据变流器信息控制储能变流器30的运行功率、运行状态,或者控制储能变流器30处理故障等。
需要说明的是,对作为主机的簇级电池管理单元可实现的控制功能不限于上述描述,还可以集成传统技术中所采用的主电池管理单元MBMU的功能以及能量管理系统EMS的功能。
在其中一些实施例中,分别对多个簇级电池管理单元201设置标识,例如,对多个簇级电池管理单元201进行编号,以区分各簇级电池管理单元201,从而更好地对个簇级电池管理单元201进行控制。
上述实施例中,簇级电池管理单元在与储能变流器通讯连接的情况下,接收其他簇级电池管理单元发送的电池信息,并根据电池信息控制其他簇级电池管理单元工作,和/或,接收储能变流器发送的变流器信息,并根据变流器信息控制储能变流器工作。本申请实施例将多个簇级电池管理单元中的一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元实现控制管理功能,而不需要设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
根据本申请的一些实施例,簇级电池管理单元201,用于在接收到变流器信息后,根据变流器信息向储能变流器30发送第一控制指令,第一控制指令用于指示储能变流器30控制多个电池簇101充电和/或放电。
本申请实施例中,作为主机的簇级电池管理单元201,其中一个功能就是通过储能变流器30控制电池簇101的充电和/或放电。例如,簇级电池管理单元A1作为主机,储能变流器30向簇级电池管理单元A1发送电池簇B1的充电功率,簇级电池管理单元A1根据电池簇B1的充电功率向储能变流器30发送第一控制指令。储能变流器30接收第一控制指令,并根据第一控制指令调整电池簇B1的充电功率。或者,储能变流器30向簇级电池管理单元A1发送电池簇B2 的放电功率,簇级电池管理单元A1根据电池簇B2的放电功率向储能变流器30发送第一控制指令。储能变流器30接收第一控制指令,并根据第一控制指令调整电池簇B2的放电功率。
上述实施例中,簇级电池管理单元在接收到变流器信息后,根据变流器信息向储能变流器发送第一控制指令,指示储能变流器控制多个电池簇充电和/或放电。本申请实施例通过作为主机的簇级电池管理单元实现了电池簇充放电的控制功能,并且无需设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
根据本申请的一些实施例,簇级电池管理单元201,还用于在与储能变流器30通讯连接后,根据预先获取到的功率调节曲线,向储能变流器30发送第二控制指令,第二控制指令用于指示储能变流器30执行削峰填谷策略。
其中,功率调节曲线与峰谷电价匹配,即电价较高时,功率调节曲线中的放电功率较大,充电功率较小;电价较低时,功率调节曲线中的放电功率较小,充电功率较大。在实际应用中,可以预先在各簇级电池管理单元201中存储峰谷电价和功率调节曲线,这样,其中任意一个簇级电池管理单元201作为主机时,则可以根据功率调节曲线实现相应控制。
本申请实施例中,作为主机的簇级电池管理单元201,另一个功能是通过储能变流器30实现电费的削峰填谷。具体地,作为主机的簇级电池管理单元201根据预先获取到的功率调节曲线,向储能变流器30发送第二控制指令。储能变流器30根据第二控制指令调节电池的充电功率和/或放电功率,使电池簇101在电价较高时放电,在电价较低时充电,这样,就可以降低储能系统所消耗的电费,实现电费的削峰填谷。
上述实施例中,簇级电池管理单元在与储能变流器通讯连接后,根据预先获取到的功率调节曲线,向储能变流器发送第二控制指令,指示储能变流器执行削峰填谷策略。本申请实施例通过作为主机的簇级电池管理单元实现电费的削峰填谷,由于无需设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
根据本申请的一些实施例,簇级电池管理单元201,还用于根据电池信息确定多个电池簇101的电压极值、电流极值和温度极值。
本申请实施例中,作为主机的簇级电池管理单元201,另一个功能是实现电池的状态监控。具体地,在从其他簇级电池管理单元201获取到电池信息后,作为主机的簇级电池管理单元201,可以根据电池信息计算出电池电压中的最大值和最小值,电池电流中的最大值和最小值,电池温度中的最大值和最小值,以及簇电压中的最大值和最小值,簇电流中的最大值和最小值。在实际应用中,电压极值、电流极值和温度极值不限于上述描述。
作为主机的簇级电池管理单元201计算出各种极值后,可以根据预先设置的阈值判断电池单体和电池簇101是否都工作在正常范围内。如果计算出的极值超出预先设置的阈值,则表明电池或电池簇101出现异常情况,需要采取相应的保护措施。
其中,保护措施可以为降低电池电压,降低电池电流、降低电池温度,降低电池簇101电压,降低电池簇101电流,对电池簇101进行下高压操作等。本申请实施例对保护措施不做限定,可以根据实际情况进行设置。
上述实施例中,簇级电池管理单元根据电池信息确定多个电池簇的电压极值、电流极值和温度极值。本申请实施例通过作为主机的簇级电池管理单元实现了电池的状态监控,由于无需设置主电池管理单元,因此,可以简化电池管理架构,节省硬件成本。
根据本申请的一些实施例,簇级电池管理单元201,还用于在未检测到与储能变流器30通讯连接的情况下,向与储能变流器30通讯连接的簇级电池管理单元201发送电池信息。
本申请实施例中,如果簇级电池管理单元201未与储能变流器30建立通讯连接,则作为多个簇级电池管理单元201中的从机。作为从机的簇级电池管理单元201,主要功能是收集电池信息,并将电池信息上传到作为主机的簇级电池管理单元201,以便作为主机的簇级电池管理单元201可以管理储能系统。
例如,簇级电池管理单元A1检测到与储能变流器30通讯连接,而簇级电池管理单元A2、簇级电池管理单元A3……未检测到与储能变流器30通讯连接,则簇级电池管理单元A1作为主机,簇级电池管理单元A2、簇级电池管理单元A3……作为从机,簇级电池管理单元A2、簇级电池管理单元A3……将收集到的电池信息,都发送到簇级电池管理单元A1。
上述实施例中,簇级电池管理单元在未检测到与储能变流器通讯连接的情况下,向与储能变流器通讯连接的簇级电池管理单元发送电池信息。本申请实施例通过作为从机的簇级电池管理单元收集电池信息,以便作为主机的簇级电池管理单元可以根据电池信息管理储能系统,多个簇级电池管理单元互相配合,则无需设置主电池管理单元也可以实现储能系统的管理,因此可以节省硬件成本。
根据本申请的一些实施例,参照图3,各电池簇101包括至少一个电池单102,电池管理系统20还包括多个电池管理单元202,各电池管理单元202与电池单元102一一对应连接,各簇级电池管理单元201与至少一个电池管理单元202连接;簇级电池管理单元201,用于从至少一个电池管理单元202获取电池信息。
本申请实施例中,每个电池簇101可以由多电池单元102串联构成。每个电池单元102可以为电池单体,也可以为电池箱,本申请实施例对此不做限定。电池管理系统20还包括多个电池管理单元202,每个电池管理单元202与一个电池单元102对应连接,多个电池管理单元202与对应簇的簇级电池管理单元201连接。图3中,直线为通讯连接,虚线为电连接。
在实际应用中,每个电池管理单元202收集对应连接的电池单元102的电池信息,比如收集对应连接的电池单元102的电池电压、电池电流、电池温度等等。之后,每个电池单元202将收到的电池信息上传到对应簇的簇级电池管理单元201。簇级电池管理单元201接收至少一个电池单元202上传的电池信息。
需要说明的是,每个簇级电池管理单元201,不论是作为主机的簇级电池管理单元201还是作为从机的簇级电池管理单元201,都获取对应簇的电池管理单 元202上传的电池信息。而作为主机的簇级电池管理单元201,还获取作为从机的簇级电池管理单元201上传的电池信息。
在其中一些实施例中,簇级电池管理单元201,还用于存储电池信息。
各簇级电池管理单元201,在获取到电池信息后,都可以存储电池信息。作为主机的簇级电池管理单元201还可以存储作为从机的簇级电池管理单元201上传的电池信息。后续用户可以根据存储的电池信息,进行相关的统计和汇总。并且,电池信息中可以包括故障信息、异常信息等,后续用户也可以查看故障信息和异常信息,以便进行故障处理。
上述实施例中,各电池簇包括至少一个电池单元,电池管理系统还包括多个电池管理单元,各电池管理单元与电池单元一一对应连接,各簇级电池管理单元与至少一个电池管理单元连接;簇级电池管理单元从至少一个电池管理单元获取电池信息。本申请实施例通过簇级电池管理单元和电池管理单元构建两级电池管理架构,不仅可以实现传统技术中三级电池管理架构的功能,还简化了电池管理架构。
根据本申请的一些实施例,多个簇级电池管理单元201之间的连接方式为控制器局域网络(Controller Area Network,CAN)总线连接,簇级电池管理单元201与储能变流器30的连接方式为以太网连接。
本申请实施例中,多个簇级电池管理单元201之间可以通过CAN总线连接,这样,作为从机的簇级电池管理单元201可以通过CAN总线将电池信息上传到作为主机的簇级电池管理单元201;而作为主机的簇级电池管理单元201,也可以通过CAN总线将控制指令发送到作为从机的簇级电池管理单元201,从而控制作为从机的簇级电池管理单元201。
各簇级电池管理单元201都可以设置以太网接口。在用户将与储能变流器30连接的线缆连接到其中一个簇级电池管理单元201的以太网接口上之后,该簇级电池管理单元201则可以作为主机,其他簇级电池管理单元201则作为从机。
上述实施例中,多个簇级电池管理单元通过CAN总线连接,作为主机的簇 级电池管理单元通过以太网与储能变流器连接。本申请实施例通过CAN总线和以太网实现了电池管理系统之间的通讯,从而实现了储能系统的管理。
根据本申请的一些实施例,参照图4,提供了一种储能系统的管理方法,应用于储能系统中的任一簇级电池管理单元,储能系统如上述实施例所描述的,本申请实施例可以包括如下步骤:
步骤401,在与储能变流器建立通讯连接的情况下,接收储能变流器发送的变流器信息;
步骤402,根据变流器信息控制储能变流器工作。
簇级电池管理单元如果与储能变流器建立有通讯连接,则该簇级电池管理单元作为多个簇级电池管理单元的主机。作为主机的簇级电池管理单元,可以接收储能变流器发送的变流器信息,根据变流器信息控制储能变流器的工作。
例如,作为主机的簇级电池管理单元A1可以控制储能变流器的运行功率、运行状态,或者控制储能变流器处理故障等。本公开实施例对如何控制储能变流器不做限定,可以根据实际情况进行设置。
上述实施例中,储能系统中的簇级电池管理单元在与储能系统中的储能变流器建立通讯连接的情况下,接收储能变流器发送的变流器信息,并根据变流器信息控制储能变流器工作。本申请实施例将多个簇级电池管理单元中一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元管理储能变流器,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
根据本申请的一些实施例,上述根据变流器信息控制储能变流器工作的过程,可以包括:根据变流器信息向储能变流器发送第一控制指令,第一控制指令用于指示储能变流器控制储能系统中的多个电池簇充电和/或放电。
本申请实施例中,作为主机的簇级电池管理单元在接收到储能变流器发送的变流器信息后,根据变流器信息确定向储能变流器发送第一控制指令。储能变流器接收第一控制指令,根据第一控制指令控制多个电池簇充电;或者,根 据第一控制指令控制多个电池簇放电;或者,控制一部分电池簇充电,控制另一部分电池簇放电。
上述实施例中,作为主机的簇级电池管理单元根据变流器信息向储能变流器发送第一控制指令,指示储能变流器控制储能系统中的多个电池簇充电和/或放电。本申请实施例通过作为主机的簇级电池管理单元实现电池簇的充放电,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
根据本申请的一些实施例,上述根据变流器信息控制储能变流器工作的过程,可以包括:根据预先获取到的功率调节曲线,向储能变流器发送第二控制指令,功率调节曲线与峰谷电价匹配,第二控制指令用于指示储能变流器执行削峰填谷策略。
本申请实施例中,作为主机的簇级电池管理单元,可以预先获取峰谷电价,然后根据峰谷电价确定功率调节曲线;也可以直接获取用户根据峰谷电价制定的功率调节曲线。
之后,作为主机的簇级电池管理单元,可以根据功率调节曲线向储能变流器发送第二控制指令。储能变流器接收到第二控制指令后,根据第二控制指令,在电价较高时,增大放电功率,减小充电功率;在电价较低时,减小放电功率,增大充电功率。这样,就可以在电价较高时控制储能系统主要进行放电,在电价较低时控制储能系统主要进行充电,从而实现电费的削峰填谷,节省电费。
上述实施例中,作为主机的簇级电池管理单元根据预先获取到的功率调节曲线,向储能变流器发送第二控制指令,指示储能变流器执行削峰填谷策略。本申请实施例通过作为主机的簇级电池管理系统实现削峰填谷,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
根据本申请的一些实施例,还可以包括:接收其他簇级电池管理单元发送的电池信息,并根据电池信息控制其他簇级电池管理单元工作。
本申请实施例中,作为主机的簇级电池管理单元,还可以接收其他簇级电 池管理单元发送的电池信息,根据电池信息确定其他簇级电池管理单元的工作方式,并根据确定出的工作方式控制其他簇级电池管理单元工作。
例如,作为主机的簇级电池管理单元A1,可以控制簇级电池管理单元A2、A3调整电池簇的输出功率、对电池簇进行监控以及执行保护措施等。本公开实施例对如何控制其他簇级电池管理单元不做限定,可以根据实际情况进行设置。
上述实施例中,接收其他簇级电池管理单元发送的电池信息,并根据电池信息控制其他簇级电池管理单元工作。本申请实施例将多个簇级电池管理单元中一个簇级电池管理单元作为主机,由作为主机的簇级电池管理单元管理其他簇级电池管理单元,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
根据本申请的一些实施例,还可以包括:根据电池信息确定储能系统中多个电池簇的电压极值、电流极值和温度极值。
本申请实施例中,作为主机的簇级电池管理单元获取多个电池簇的电池信息;然后,根据多个电池簇的电池信息,可以计算出多个电池单体的电池电压最大值和最小值、电池电流的最大值和最小值、电池温度的最大值和最小值,也可以计算出多个电池簇的簇电压的最大值和最小值、簇电流的最大值和最小值等。本申请实施例对极值的计算不做限定,可以根据实际情况进行设置。
上述实施例中,作为主机的簇级电池管理单元根据电池信息确定储能系统中多个电池簇的电压极值、电流极值和温度极值。本申请实施例通过作为主机的簇级电池管理单元实现电池状态监控,由于无需再设置主电池管理单元,因此,可以简化电池管理架构,并节省硬件成本。
根据本申请的一些实施例,还可以包括:在多个簇级电池管理单元均与储能变流器连接的情况下,从多个簇级电池管理单元中筛选出目标簇级电池管理单元,以使目标簇级电池管理单元执行接收储能变流器发送的变流器信息的步骤。
在实际应用中,可以将储能变流器与多个簇级电池管理单元连接,可以按 照预设规则从多个与储能变流器连接的簇级电池管理单元中筛选出目标簇级电池管理,由目标电池管理单元执行步骤401、步骤402。
其中,预设规则可以是按照连接时间、簇级电池管理的序号、簇级电池管理单元的优先级,本申请实施例对预设规则不做限定。
例如,各簇级电池管理单元确定与储能变流器建立通讯连接的时间,将连接时间最早的一个簇级电池管理单元作为主机。或者,将多个簇级电池管理单元中序号考前的一个簇级电池管理单元作为主机。还可以将多个簇级电池管理单元中优先级高的一个簇级电池管理单元作为主机。
上述实施例中,在多个簇级电池管理单元均与储能变流器连接的情况下,从多个簇级电池管理单元中筛选出目标簇级电池管理单元,以使目标簇级电池管理单元执行接收储能变流器发送的变流器信息的步骤。本申请实施例的技术方案中,多个簇级电池管理单元可以轮流使用,在当前主机故障时由正常主机管理,提高了管理的可靠性。
根据本申请的一些实施例,参照图5,本申请实施例还可以包括如下步骤:
步骤501,检测是否与储能系统中的储能变流器建立有通讯连接。
簇级电池管理单元检测是否与储能系统中的储能变流器建立有通讯连接。具体地,可以通过软件检测是否获取到储能连接器的连接信号,也可以通过硬件检测簇级电池管理单元的以太网接口是否连接有线缆。需要说明的是,检测方式不限于上述描述,可以根据实际情况进行设置。
步骤502,在未与储能变流器建立通讯连接的情况下,向与储能变流器通讯连接的簇级电池管理单元发送电池信息。
如果簇级电池管理单元检测到未与储能变流器建立有通讯连接,则作为多个簇级电池管理单元中的从机。作为从机的簇级电池管理单元,可以通过CAN总线向作为主机的簇级电池管理单元发送电池信息,供作为主机的簇级电池管理单元根据电池信息管理储能系统。
上述实施例中,在未与储能变流器建立有通讯连接的情况下,向与储能变流器通讯连接的簇级电池管理单元发送电池信息。本申请实施例通过作为从机 的簇级电池管理单元上传电池信息,可以供作为主机的簇级电池管理单元根据电池信息管理储能系统。
根据本申请的一些实施例,还可以包括:从储能系统中的至少一个电池管理单元获取电池信息。
储能系统还可以包括多个电池管理单元,一个电池管理单元与一个电池单元对应连接,且多个电池单元与对应簇的簇级电池管理单元连接。
各电池管理单元分别获取对应连接的电池单元的电池信息;然后,各电池管理单元将获取到的电池信息发送到对应簇的簇级电池管理单元,则各簇级电池管理单元可以获取到电池信息。
根据本申请的一些实施例,还可以包括:存储电池信息。
各簇级电池管理单元在获取到电池信息后,可以存储电池信息。作为主机的簇级电池管理单元,还可以存储从其他簇级电池管理单元上传的电池信息。存储电池信息可以便于后续统计、汇总和查看。
上述实施例中,簇级电池管理单元从储能系统中的至少一个电池管理单元获取电池信息,并存储电池信息,这些电池信息为簇级电池管理单元管理储能系统、监控电池状态、进行信息统计、故障处理提供依据。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,便于具体和详细地理解本申请的技术方案,但并不能因此而理解为对发明专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。应当理解,本领域技术人员在本申请提供的技术方案的基础上,通过合乎逻辑的分析、推理或者有限的试验得到的技术方案,均在本申请所述附权利要求的保护范围内。因此,本申请专利的保护范围应以所附权利要求的内容为准,说明书及附图可以用于解释权利要求的内容。

Claims (18)

  1. 一种储能系统,其中,所述储能系统包括电池系统、电池管理系统和储能变流器,所述电池系统包括多个电池簇,所述电池管理系统包括多个簇级电池管理单元,多个所述簇级电池管理单元之间通讯连接,各所述簇级电池管理单元与所述电池簇一一对应连接,所述储能变流器与所述多个电池簇连接,所述储能变流器与至少一个所述簇级电池管理单元通讯连接。
  2. 根据权利要求1所述的储能系统,其中,所述簇级电池管理单元,用于在与所述储能变流器通讯连接的情况下,接收其他簇级电池管理单元发送的电池信息,并根据所述电池信息控制所述其他簇级电池管理单元工作,和/或,接收所述储能变流器发送的变流器信息,并根据所述变流器信息控制所述储能变流器工作。
  3. 根据权利要求1所述的储能系统,其中,所述簇级电池管理单元,用于在接收到所述变流器信息后,根据所述变流器信息向所述储能变流器发送第一控制指令,所述第一控制指令用于指示所述储能变流器控制多个所述电池簇充电和/或放电。
  4. 根据权利要求1所述的储能系统,其中,所述簇级电池管理单元,还用于在与所述储能变流器通讯连接后,根据预先获取到的功率调节曲线向所述储能变流器发送第二控制指令,所述功率调节曲线与峰谷电价匹配,所述第二控制指令用于指示所述储能变流器执行削峰填谷策略。
  5. 根据权利要求1所述的储能系统,其中,所述簇级电池管理单元,还用于根据所述电池信息确定多个所述电池簇的电压极值、电流极值和温度极值。
  6. 根据权利要求1-5任一项所述的储能系统,其中,所述簇级电池管理单元,还用于在未检测到与所述储能变流器通讯连接的情况下,向与所述储能变流器通讯连接的簇级电池管理单元发送所述电池信息。
  7. 根据权利要求6所述的储能系统,其中,各所述电池簇包括至少一个电池单元,所述电池管理系统还包括多个电池管理单元,各所述电池管理单元与所述电池单元一一对应连接,各所述簇级电池管理单元与至少一个所述电池管理单元连接;
    所述簇级电池管理单元,用于从至少一个所述电池管理单元获取所述电池 信息。
  8. 根据权利要求6所述的储能系统,其中,所述簇级电池管理单元,还用于存储所述电池信息。
  9. 根据权利要求8所述的储能系统,其中,所述多个簇级电池管理单元之间的连接方式为控制器局域网络总线连接,所述簇级电池管理单元与所述储能变流器的连接方式为以太网连接。
  10. 一种储能系统的管理方法,其中,用于储能系统中的任一簇级电池管理单元,所述储能系统如权利要求1-9任一项所述,所述方法包括:
    在与所述储能系统中的储能变流器建立通讯连接的情况下,接收所述储能变流器发送的变流器信息;
    根据所述变流器信息控制所述储能变流器工作。
  11. 根据权利要求10所述的方法,其中,所述根据所述变流器信息控制所述储能变流器工作,包括:
    根据所述变流器信息向所述储能变流器发送第一控制指令,所述第一控制指令用于指示所述储能变流器控制所述储能系统中的多个电池簇充电和/或放电。
  12. 根据权利要求10所述的方法,其中,所述根据所述变流器信息控制所述储能变流器工作,包括:
    根据预先获取到的功率调节曲线向所述储能变流器发送第二控制指令,所述功率调节曲线与峰谷电价匹配,所述第二控制指令用于指示所述储能变流器执行削峰填谷策略。
  13. 根据权利要求10所述的方法,其中,所述方法还包括:
    接收其他簇级电池管理单元发送的电池信息,并根据所述电池信息控制其他簇级电池管理单元工作。
  14. 根据权利要求10所述的方法,其中,所述方法还包括:
    根据所述电池信息确定所述储能系统中多个电池簇的电压极值、电流极值和温度极值。
  15. 根据权利要求10所述的方法,其中,所述方法还包括:
    在多个所述簇级电池管理单元均与所述储能变流器连接的情况下,从多个所述簇级电池管理单元中筛选出目标簇级电池管理单元,以使所述目标簇级电池管理单元执行所述接收所述储能变流器发送的变流器信息的步骤。
  16. 根据权利要求10-15任一项所述的方法,其中,所述方法还包括:
    在未与所述储能变流器建立通讯连接的情况下,向与所述储能变流器通讯连接的簇级电池管理单元发送所述电池信息。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    从所述储能系统中的至少一个电池管理单元获取所述电池信息。
  18. 根据权利要求16所述的方法,其中,所述方法还包括:
    存储所述电池信息。
PCT/CN2023/123820 2022-10-19 2023-10-10 储能系统和储能系统的管理方法 WO2024083002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211279421.3A CN115842176A (zh) 2022-10-19 2022-10-19 储能系统和储能系统的管理方法
CN202211279421.3 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024083002A1 true WO2024083002A1 (zh) 2024-04-25

Family

ID=85576399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123820 WO2024083002A1 (zh) 2022-10-19 2023-10-10 储能系统和储能系统的管理方法

Country Status (2)

Country Link
CN (1) CN115842176A (zh)
WO (1) WO2024083002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842176A (zh) * 2022-10-19 2023-03-24 宁德时代新能源科技股份有限公司 储能系统和储能系统的管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994131A (zh) * 2019-12-16 2021-06-18 北京天诚同创电气有限公司 电池簇控制系统及其控制方法
CN215498362U (zh) * 2021-08-27 2022-01-11 华能烟台新能源有限公司 一种储能电池系统通讯架构
CN215646237U (zh) * 2021-06-22 2022-01-25 西安西热锅炉环保工程有限公司 一种储能装置的电池管理系统
CN114006060A (zh) * 2021-10-29 2022-02-01 蜂巢能源科技(无锡)有限公司 一种储能电池管理系统
CN114050621A (zh) * 2021-07-30 2022-02-15 量道(深圳)储能科技有限公司 一种分布式储能功率分配系统及方法
CN115842176A (zh) * 2022-10-19 2023-03-24 宁德时代新能源科技股份有限公司 储能系统和储能系统的管理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994131A (zh) * 2019-12-16 2021-06-18 北京天诚同创电气有限公司 电池簇控制系统及其控制方法
CN215646237U (zh) * 2021-06-22 2022-01-25 西安西热锅炉环保工程有限公司 一种储能装置的电池管理系统
CN114050621A (zh) * 2021-07-30 2022-02-15 量道(深圳)储能科技有限公司 一种分布式储能功率分配系统及方法
CN215498362U (zh) * 2021-08-27 2022-01-11 华能烟台新能源有限公司 一种储能电池系统通讯架构
CN114006060A (zh) * 2021-10-29 2022-02-01 蜂巢能源科技(无锡)有限公司 一种储能电池管理系统
CN115842176A (zh) * 2022-10-19 2023-03-24 宁德时代新能源科技股份有限公司 储能系统和储能系统的管理方法

Also Published As

Publication number Publication date
CN115842176A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
KR101398583B1 (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
EP2717423B1 (en) Power storage system having modularized bms connection structure and method for controlling the system
US7956579B2 (en) Battery charge management system for charging a battery bank that includes a plurality of batteries
WO2021190196A1 (zh) 并联电池组充放电管理方法、电子装置及电气系统
JP5838313B2 (ja) 蓄電池充放電制御装置および蓄電池充放電制御方法
WO2024083002A1 (zh) 储能系统和储能系统的管理方法
US11949273B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
CN112600264B (zh) 并联电池包的控制方法、系统、电子设备及车辆
EP4303601A1 (en) Energy storage system control method and energy storage system
CN113659681A (zh) 一种从控模块、电池管理系统、方法及存储介质
JP2023514885A (ja) 充電方法及び電力変換装置
JP2023514886A (ja) 充電方法、駆動用電池の電池管理システム及び充電スタンド
CN113054701A (zh) 一种内置的多电池并联管理系统及其管理方法
CN115800422A (zh) 储能系统和储能系统的调节方法
EP4152555A1 (en) Charging and discharging device and battery charging method
CN213213117U (zh) 一种火电机组调频控制系统
CN114844172A (zh) 用于无人车的电池切换系统
CN114597941A (zh) 模块化储能变流器以及控制方法、装置及电子设备
CN206834771U (zh) 直流后备电源供电保障及蓄电池保护系统
WO2018157534A1 (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
CN116476686B (zh) 一种换电系统、换电系统控制方法、控制装置及存储介质
CN115800420B (zh) 储能系统和储能系统的调节方法
CN115800423B (zh) 储能系统和储能系统的调节方法
WO2023000869A1 (zh) 一种电池均流方法、电子设备及计算机可读存储介质
CN117013669A (zh) 一种便携式光储系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878994

Country of ref document: EP

Kind code of ref document: A1