WO2024082589A1 - 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法 - Google Patents

一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法 Download PDF

Info

Publication number
WO2024082589A1
WO2024082589A1 PCT/CN2023/090255 CN2023090255W WO2024082589A1 WO 2024082589 A1 WO2024082589 A1 WO 2024082589A1 CN 2023090255 W CN2023090255 W CN 2023090255W WO 2024082589 A1 WO2024082589 A1 WO 2024082589A1
Authority
WO
WIPO (PCT)
Prior art keywords
mud
antifreeze
thixotropic
pipe
temperature
Prior art date
Application number
PCT/CN2023/090255
Other languages
English (en)
French (fr)
Inventor
赵云飞
巫世奇
罗飞轮
杨志勇
张正勇
熊亮
刘丽
杨一清
李佳
邓健
Original Assignee
中国水利水电第五工程局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国水利水电第五工程局有限公司 filed Critical 中国水利水电第五工程局有限公司
Publication of WO2024082589A1 publication Critical patent/WO2024082589A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • E21D9/002Injection methods characterised by the chemical composition used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/16Clay-containing compositions characterised by the inorganic compounds other than clay
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/20Natural organic compounds or derivatives thereof, e.g. polysaccharides or lignin derivatives
    • C09K8/206Derivatives of other natural products, e.g. cellulose, starch, sugars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes

Definitions

  • the invention relates to the technical field of trenchless pipe jacking engineering, and in particular to a pipe jacking construction method under low temperature environment, antifreeze thixotropic mud and a preparation method thereof.
  • the purpose of the present invention is to provide a pipe jacking construction method, antifreeze thixotropic mud and preparation method under low temperature environment, which can effectively avoid the occurrence of thixotropic mud failure or freezing during pipe jacking construction in low temperature environment, thereby ensuring the continuous operation of pipe jacking in low temperature environment and avoiding the impact of low temperature shutdown on pipe jacking construction.
  • a pipe jacking construction method in a low temperature environment comprises the following steps:
  • Step 1 preparing antifreeze thixotropic mud
  • Step 2 heating the antifreeze thixotropic mud
  • Step 3 conveying antifreeze thixotropic slurry
  • the prepared antifreeze thixotropic mud is passed into a mud pool for storage, and the antifreeze thixotropic mud is heated to the temperature required for normal construction in the mud pool.
  • the heated antifreeze thixotropic mud is passed into a fluid pipe and transported to the construction site to complete grouting; a pipeline heater is also provided on the fluid pipe.
  • the present invention uses antifreeze thixotropic mud to reduce the freezing of mud around the pipe, and at the same time heats the mud in the mud pool and heats the mud entering the fluid pipe.
  • the mud can be effectively prevented from failing or freezing. This is to ensure the continuity of pipe jacking construction in low temperature environments.
  • the mud pool is also provided with a mud temperature control component, and the mud temperature control component controls the temperature of the antifreeze thixotropic mud to be between 25°C and 30°C.
  • the mud temperature control assembly includes a heating rod, a first temperature sensor and a controller, the first temperature sensor is electrically connected to the signal input port of the controller and transmits a temperature signal to the controller, the heating rod is electrically connected to the output port of the controller and receives a control signal from the controller.
  • the heating rod starts to heat the antifreeze thixotropic mud
  • the heating rod stops heating the antifreeze thixotropic mud.
  • the heating rod is arranged in the mud pool
  • a plurality of heating rods are arranged at the bottom, middle and top of the mud pool.
  • the first temperature sensor is arranged at the outlet of the mud pool, and the outer surface of the outlet is covered with a layer of polyurethane foam plastic.
  • the fluid pipe includes a plurality of pipe sections connected through a pipe heater, and each pipe section is provided with a second temperature sensor for detecting the temperature of the antifreeze thixotropic mud;
  • the second temperature sensor is electrically connected to the signal input port of the controller and transmits a temperature signal to the controller
  • the pipeline heater is electrically connected to the output port of the controller and receives a control signal from the controller.
  • the distance between two adjacent pipeline heaters is 80 to 120 m.
  • the invention discloses an antifreeze thixotropic mud for pipe jacking construction in a low temperature environment.
  • the antifreeze thixotropic mud comprises 15% NaCl, 5% expansive soil, 1% attapulgite, 0.5% cmc, 0.5% pac and 0.5% graphite powder.
  • a method for preparing antifreeze thixotropic mud for pipe jacking construction in a low temperature environment comprises the following steps:
  • Step S1 dissolving NaCl in water, adding expansive soil and attapulgite, and stirring for 30 minutes to form a curing base slurry;
  • Step S2 adding CMC, PAC and graphite powder into the curing base slurry and stirring at high speed for 30 minutes;
  • Step S3 testing the funnel viscosity, density, six-speed rotary viscosity, filtration loss, pH value and adhesion coefficient of the mud, and adjusting each parameter to the parameter value required for the work;
  • Step S4 After completing step S3, the slurry is allowed to stand for 24 hours and then the antifreeze performance of the slurry is tested;
  • Step S5 obtaining antifreeze thixotropic mud that meets the construction requirements.
  • the present invention has the following advantages and beneficial effects:
  • the present invention discloses a pipe jacking construction method, antifreeze thixotropic mud and a preparation method in a low-temperature environment.
  • the antifreeze thixotropic mud can reduce the freezing of mud around the pipe.
  • the mud is heated in the mud pool and the mud entering the fluid pipe.
  • the failure or freezing of the mud can be effectively avoided, thereby ensuring the continuous construction of the pipe jacking in a low-temperature environment.
  • Fig. 1 is a construction flow chart of the present invention
  • FIG2 is a schematic diagram of the fluid pipe structure
  • Figure 3 is a schematic diagram of the mud pool structure
  • Fig. 4 is a temperature control circuit diagram
  • Figure 5 is a flow chart for preparing antifreeze thixotropic mud.
  • references to "one embodiment,””anembodiment,””anexample,” or “an example” mean that a particular feature, structure, or characteristic described in conjunction with the embodiment or example is included in at least one embodiment of the present invention. Therefore, the phrases “one embodiment,””anembodiment,””anexample,” or “an example” appearing in various places throughout the specification do not necessarily all refer to the same embodiment or example.
  • particular features, structures, or characteristics may be combined in one or more embodiments or examples in any suitable combination and/or sub-combination.
  • the figures provided herein are for illustrative purposes and that the figures are not necessarily drawn to scale.
  • the term “and/or” as used herein includes any and all combinations of one or more of the associated listed items.
  • a pipe jacking construction method in a low temperature environment of the present invention comprises the following steps:
  • Step 1 preparing antifreeze thixotropic mud
  • Step 2 heating the antifreeze thixotropic mud
  • Step 3 conveying antifreeze thixotropic slurry
  • the prepared antifreeze thixotropic mud is passed into the mud pool 1 for storage, and the antifreeze thixotropic mud is heated to the temperature required for normal construction in the mud pool 1, and the heated antifreeze thixotropic mud is passed into the fluid pipe 2, and transported to the construction location to complete grouting; the fluid pipe 2 is also provided with a pipeline heater 21.
  • the antifreeze thixotropic mud used can effectively reduce the failure or freezing of the mud in a low temperature environment compared to the traditional thixotropic mud, thereby ensuring the effective and continuous operation of the jacking construction; at the same time, the prepared mud is heated in the mud pool 1 to ensure the effective fluidity of the mud, so that the grouting work can be carried out smoothly.
  • the mud in the fluid pipe 2 can also be heated by the pipeline heater 21, so as to ensure that the mud will not fail and freeze due to low temperature during the grouting process, thereby effectively ensuring the continuity of the jacking construction in a low temperature environment.
  • the mud pool 1 is also provided with a mud temperature control component, which controls the temperature of the antifreeze thixotropic mud between 25°C and 30°C.
  • the optimal grouting temperature of the mud during the pipe jacking construction is 25°C, and considering the heat loss during the grouting process, in this embodiment, in order to ensure the effective and continuous grouting construction, the mud needs to be heated to 30°C by the temperature control component in the mud pool 1.
  • the mud temperature control assembly includes a heating rod 11, a first temperature sensor 12 and a controller 13.
  • the first temperature sensor 12 is electrically connected to the signal input port of the controller 13 and transmits a temperature signal to the controller 13.
  • the heating rod 11 is electrically connected to the output port of the controller 13 and receives a control signal from the controller 13.
  • the mud is heated by arranging a heating rod 11 in the mud pool 1, and the temperature of the mud is monitored in real time by the first temperature sensor 12.
  • the controller 13 transmits a start instruction to the heating rod 11, and the heating rod 11 starts to work to heat the mud;
  • the controller 13 sends a start instruction to the heating rod 11.
  • the heating rod 11 starts to work to heat the mud;
  • the controller 13 sends a start instruction to the heating rod 11.
  • 11 transmits a shutdown command, at which time the heating rod 11 stops heating.
  • the heating rod 11 is arranged in the mud pool 1; a plurality of heating rods 11 are arranged at the bottom, middle and top of the mud pool 1.
  • the heating rods 11 are arranged at the bottom, middle and top of the mud pool 1 to improve the heating effect and efficiency, thereby effectively controlling the temperature of the mud to always be within the normal construction required temperature range.
  • the first temperature sensor 12 is disposed at the outlet 14 of the mud pool 1, and a layer of polyurethane foam is covered on the outer surface of the outlet 14.
  • the first temperature sensor 12 is disposed at the outlet 14, which can effectively monitor the temperature of the mud when it enters the fluid pipe 2, so as to accurately guide the mud temperature control component to control the mud temperature.
  • the fluid pipe 2 includes a plurality of pipe sections connected by a pipe heater 21, and each pipe section is provided with a second temperature sensor 22 for detecting the temperature of the antifreeze thixotropic mud; the second temperature sensor 22 is electrically connected to the signal input port of the controller 13, and transmits a temperature signal to the controller 13, and the pipe heater 21 is electrically connected to the output port of the controller 13, and receives a control signal from the controller 13.
  • the temperature of the mud will be lost during the flow of the mud in the fluid pipe 2
  • the temperature of the mud in the fluid pipe 2 is monitored by the second temperature sensor 22, and the mud in the fluid pipe 2 is heated by the pipe heater 21, so as to ensure that the mud is always in the temperature range required for the effective normal pressure drop.
  • the temperature control principle of the mud in the fluid pipe 2 is the same as the principle of the mud temperature control component in the mud pool 1 to control the mud temperature.
  • this example provides an antifreeze thixotropic mud for pipe jacking construction in a low temperature environment.
  • the antifreeze thixotropic slurry comprises 15% NaCl, 5% expansive soil, 1% attapulgite, 0.5% cmc, 0.5% pac and 0.5% graphite powder.
  • This embodiment provides a method for preparing antifreeze thixotropic mud for pipe jacking construction in a low temperature environment.
  • Step S1 dissolving NaCl in water, adding expansive soil and attapulgite, and stirring for 30 minutes to form a curing base slurry;
  • Step S2 adding CMC, PAC and graphite powder into the curing base slurry and stirring at high speed for 30 minutes;
  • Step S3 testing the funnel viscosity, density, six-speed rotary viscosity, filtration loss, pH value and adhesion coefficient of the mud, and adjusting each parameter to the parameter value required for the work;
  • Step S4 After completing step S3, the slurry is allowed to stand for 24 hours and then the antifreeze performance of the slurry is tested;
  • Step S5 obtaining antifreeze thixotropic mud that meets the construction requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Underground Or Underwater Handling Of Building Materials (AREA)

Abstract

一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法,顶管施工方法包括如下步骤:步骤一:制备抗冻触变泥浆;步骤二:加热抗冻触变泥浆;步骤三:输送抗冻触变泥浆;将制备完成的抗冻触变泥浆通入泥浆池内进行储存,并在泥浆池内将抗冻触变泥浆加热至正常施工所需温度,将加热完成后的抗冻触变泥浆通入流体管内,并输送至施工位置完成灌浆;流体管上还设置有管路加热器。采用抗冻触变泥浆可降低泥浆在管周结冰的情况,同时在泥浆池中对泥浆进行加热及对进入流体管的泥浆进行加热,能够有效避免泥浆出现失效或结冰情况,以此来保证在低温环境下的顶管连续性施工。

Description

一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法 技术领域
本发明涉及非开挖顶管工程技术领域,具体涉及一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法。
背景技术
在顶管施工技术中,顶管机施工需要消耗大量的水和泥浆。而我国大多数类似的顶管施工工艺都避免在冬季低温环境下施工,直到气候和温度满足施工条件后才继续施工,所以我国在高寒地区冬季施工的案例很少。
但长距离顶管工程一旦开工后遭遇长时间的停滞,会对该工程造成不可逆转的施工难题,停机时间较长,管节周围岩土体坍塌抱死管道,重新启动时顶进力极大甚至超过管节极限承载力,严重时无法再次顶动管节。因此需要考虑一种低温环境下顶管连续施工的方法,确保顶管在冬季低温环境下可以实现连续施工。
当顶管施工温度低于零下十度的时候,泥浆循环管道也容易结冰堵塞,需要额外考虑供水排浆管道的加热保温问题,尤其是长距离顶管隧道。与此同时,管周触变泥浆在低温下也容易失效。因此,在低温时进行顶管施工,面临着诸多难题,研究如何在低温条件下进行连续作业施工是顶管理论技术发展的需要,也是顶管设计的迫切需求。
发明内容
本发明目的在于提供一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法,能够有效的避免低温环境下顶管施工过程中触变泥浆失效或结冰等情况的出现,从而保证顶管在低温环境下进行连续性作业,避免因低温停工而对顶管施工造成影响。
本发明通过下述技术方案实现:
一种低温环境下顶管施工方法,包括如下步骤:
步骤一:制备抗冻触变泥浆;
步骤二:加热抗冻触变泥浆;
步骤三:输送抗冻触变泥浆;
将制备完成的抗冻触变泥浆通入泥浆池内进行储存,并在所述泥浆池内将所述抗冻触变泥浆加热至正常施工所需温度,将加热完成后的抗冻触变泥浆通入流体管内,并输送至施工位置完成灌浆;所述流体管上还设置有管路加热器。为了解决上述技术问题,并实现相应技术效果,本发明,采用抗冻触变泥浆可降低泥浆在管周结冰的情况,同时在泥浆池中对泥浆进行加热及对进入流体管的泥浆进行加热,综上,能够有效避免泥浆出现失效或结冰情况, 以此来保证在低温环境下的顶管连续性施工。
进一步的技术方案:
所述泥浆池还设置有泥浆温度控制组件,所述泥浆温度控制组件将所述抗冻触变泥浆的温度控制在25℃~30℃之间。
进一步的:所述泥浆温度控制组件包括加热棒、第一温度传感器和控制器,所述第一温度传感器与所述控制器的信号输入端口电连接,并向所述控制器输送温度信号,所述加热棒与所述控制器输出端口电连接,并接收来自控制器的控制信号。
进一步的:当所述第一温度传感器检测到抗冻触变泥浆温度低于25℃时,所述加热棒开始对抗冻触变泥浆进行加热;
进一步的:当所述第一温度传感器检测到抗冻触变泥浆温度达到30℃或高于30℃时,所述加热棒停止对抗冻触变泥浆进行加热。
进一步的:所述加热棒设置于所述泥浆池内;
进一步的:在所述泥浆池的底部、中部和顶部均设置有若干加热棒。
进一步的:所述第一温度传感器设置于所述泥浆池的出浆口,且所述出浆口外表面覆有一层聚氨酯泡沫塑料。
进一步的:所述流体管包括若干通过管路加热器连通的管段,且每个管段中均设置有用于检测抗冻触变泥浆温度的第二温度传感器;
进一步的:所述第二温度传感器与所述控制器的信号输入端口电连接,并向所述控制器输送温度信号,所述管路加热器与所述控制器输出端口电连接,并接收来自控制器的控制信号。
进一步的:相邻两个所述管路加热器之间的距离为80~120m。
一种低温环境下顶管施工用抗冻触变泥浆,所述抗冻触变泥浆包括15%的NaCl、5%的膨胀土、1%的凹凸棒土、0.5%的cmc,0.5%的pac和0.5%的石墨粉。
一种低温环境下顶管施工用抗冻触变泥浆的制备方法,包括如下步骤:
步骤S1:取NaCl溶于水中,并加入膨胀土和凹凸棒土搅拌30min形成养护基浆;
步骤S2:在养护基浆中加入CMC、PAC和石墨粉并高速搅拌30min;
步骤S3:测试泥浆的漏斗粘度、密度、六速旋转粘度、滤失量、PH值及黏附系数,并将各个参数调整至工作所需参数值;
步骤S4:待完成步骤S3后,将泥浆静止24h后进行泥浆抗冻性能的测试;
步骤S5:得到满足施工所需的抗冻触变泥浆。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法,采用抗冻触变泥浆可降低泥浆在管周结冰的情况,同时在泥浆池中对泥浆进行加热及对进入流体管的泥浆进行加热,综上,能够有效避免泥浆出现失效或结冰情况,以此来保证在低温环境下的顶管连续性施工。
附图说明
为了更清楚地说明本发明示例性实施方式的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。在附图中:
图1为本发明施工流程图;
图2为流体管结构示意图;
图3为泥浆池结构示意图;
图4为温度控制电路图;
图5为抗冻触变泥浆制备流程图。
附图中标记及对应的零部件名称:
1-泥浆池,2-流体管,11-加热棒,12-第一温度传感器,13-控制器,14-出浆口,21-管路
加热器,22-第二温度传感器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的结构、电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
在本发明的描述中,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“高”、“低”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
实施例1
如图1~图4所示,本发明一种低温环境下顶管施工方法,包括如下步骤:
步骤一:制备抗冻触变泥浆;
步骤二:加热抗冻触变泥浆;
步骤三:输送抗冻触变泥浆;
将制备完成的抗冻触变泥浆通入泥浆池1内进行储存,并在所述泥浆池1内将所述抗冻触变泥浆加热至正常施工所需温度,将加热完成后的抗冻触变泥浆通入流体管2内,并输送至施工位置完成灌浆;所述流体管2上还设置有管路加热器21。本实施例中,所采用的抗冻触变泥浆相较于传统的触变泥浆,其能够有效的降低泥浆在低温环境下出现失效或结冰的情况,从而保证顶管施工的有效连续作业;同时在泥浆池1内对制备好的泥浆进行加热处理,保证泥浆的有效流动性,使得压浆工作能够顺利的进行,同时考虑到泥浆在流体管2内输送的过程中会出现热量流失的问题,还可通过管路加热器21对流体管2内的泥浆进行加热,从而确保泥浆在灌注过程中也不会因低温出现失效后结冰的现象,从而有效的保证了低温环境下顶管施工的连续性。
所述泥浆池1还设置有泥浆温度控制组件,所述泥浆温度控制组件将所述抗冻触变泥浆的温度控制在25℃~30℃之间。顶管施工过程中泥浆的最佳压浆温度为25℃,且考虑到压浆过程中的热量损耗,本实施例中,为保证压浆施工有效连续进行需通过泥浆池1内的温度控制组件将泥浆加热至30℃为最佳。
所述泥浆温度控制组件包括加热棒11、第一温度传感器12和控制器13,所述第一温度传感器12与所述控制器13的信号输入端口电连接,并向所述控制器13输送温度信号,所述加热棒11与所述控制器13输出端口电连接,并接收来自控制器13的控制信号。当所述第一温度传感器12检测到抗冻触变泥浆温度低于25℃时,所述加热棒11开始对抗冻触变泥浆进行加热;当所述第一温度传感器12检测到抗冻触变泥浆温度达到30℃或高于30℃时,所述加热棒11停止对抗冻触变泥浆进行加热。本实施例中,通过在泥浆池1内设置加热棒11的方式对泥浆进行加热,并且通过第一温度传感器12来实时监控泥浆的温度,当检测到泥浆温度低于预设温度(25℃)时,控制器13向加热棒11输送启动指令,此时加热棒11开始工作对泥浆进行加热;当检测到泥浆温度达到或高于预设温度(30℃)时,控制器13向加热棒 11输送停机指令,此时加热棒11停止加热。通过上述方式来确保进入流体管2的泥浆温度始终处于能够正常完成压降工作的温度。
所述加热棒11设置于所述泥浆池1内;在所述泥浆池1的底部、中部和顶部均设置有若干加热棒11。且在所述泥浆池1的底部、中部和顶部均设置加热棒11能够提高加热效果及效率,从而有效的控制泥浆的温度始终处于正常施工需求温度范围内。
所述第一温度传感器12设置于所述泥浆池1的出浆口14,且所述出浆口14外表面覆有一层聚氨酯泡沫塑料。本实施例中,将第一温度传感器12设置于出浆口14,能够有效的监测泥浆在进入流体管2时的温度,从而能够准确的指导泥浆温度控制组件对泥浆温度进行控制。
所述流体管2包括若干通过管路加热器21连通的管段,且每个管段中均设置有用于检测抗冻触变泥浆温度的第二温度传感器22;所述第二温度传感器22与所述控制器13的信号输入端口电连接,并向所述控制器13输送温度信号,所述管路加热器21与所述控制器13输出端口电连接,并接收来自控制器13的控制信号。本实施例中,因为泥浆在流体管2内流动过程中会出现温度的损耗,故而通过第二温度传感器22来监测流体管2内泥浆的温度,并且通过管路加热器21来对流体管2内的泥浆进行加热,从而确保泥浆始终处于有效正常压降所需的温度范围。且流体管2内泥浆的温度控制原理与泥浆池1中泥浆温度控制组件对泥浆温度控制的原理相同。
在日常施工作业中总结出,相邻两个所述管路加热器21之间的距离为80~120m。
实施例2
本实施例在实施例1的基础上提供了一种低温环境下顶管施工用抗冻触变泥浆。
所述抗冻触变泥浆包括15%的NaCl、5%的膨胀土、1%的凹凸棒土、0.5%的cmc,0.5%的pac和0.5%的石墨粉。
实施例3
本实施例提供了一种低温环境下顶管施工用抗冻触变泥浆的制备方法。
如图5所示,具体制备步骤如下:
步骤S1:取NaCl溶于水中,并加入膨胀土和凹凸棒土搅拌30min形成养护基浆;
步骤S2:在养护基浆中加入CMC、PAC和石墨粉并高速搅拌30min;
步骤S3:测试泥浆的漏斗粘度、密度、六速旋转粘度、滤失量、PH值及黏附系数,并将各个参数调整至工作所需参数值;
步骤S4:待完成步骤S3后,将泥浆静止24h后进行泥浆抗冻性能的测试;
步骤S5:得到满足施工所需的抗冻触变泥浆。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低温环境下顶管施工方法,其特征在于,包括如下步骤:
    步骤一:制备抗冻触变泥浆;
    步骤二:加热抗冻触变泥浆;
    步骤三:输送抗冻触变泥浆;
    将制备完成的抗冻触变泥浆通入泥浆池(1)内进行储存,并在所述泥浆池(1)内将所述抗冻触变泥浆加热至正常施工所需温度,将加热完成后的抗冻触变泥浆通入流体管(2)内,并输送至施工位置完成灌浆;
    所述流体管(2)上还设置有管路加热器(21)。
  2. 根据权利要求1所述的一种低温环境下顶管施工方法,其特征在于,所述泥浆池(1)还设置有泥浆温度控制组件,所述泥浆温度控制组件将所述抗冻触变泥浆的温度控制在25℃~30℃之间。
  3. 根据权利要求2所述的一种低温环境下顶管施工方法,其特征在于,所述泥浆温度控制组件包括加热棒(11)、第一温度传感器(12)和控制器(13),所述第一温度传感器(12)与所述控制器(13)的信号输入端口电连接,并向所述控制器(13)输送温度信号,所述加热棒(11)与所述控制器(13)输出端口电连接,并接收来自控制器(13)的控制信号。
  4. 根据权利要求3所述的一种低温环境下顶管施工方法,其特征在于,当所述第一温度传感器(12)检测到抗冻触变泥浆温度低于25℃时,所述加热棒(11)开始对抗冻触变泥浆进行加热;
    当所述第一温度传感器(12)检测到抗冻触变泥浆温度达到30℃或高于30℃时,所述加热棒(11)停止对抗冻触变泥浆进行加热。
  5. 根据权利要求3所述的一种低温环境下顶管施工方法,其特征在于,所述加热棒(11)设置于所述泥浆池(1)内;
    在所述泥浆池(1)的底部、中部和顶部均设置有若干加热棒(11)。
  6. 根据权利要求3所述的一种低温环境下顶管施工方法,其特征在于,所述第一温度传感器(12)设置于所述泥浆池(1)的出浆口(14),且所述出浆口(14)外表面覆有一层聚氨酯泡沫塑料。
  7. 根据权利要求3所述的一种低温环境下顶管施工方法,其特征在于,所述流体管(2)包括若干通过管路加热器(21)连通的管段,且每个管段中均设置有用于检测抗冻触变泥浆温度的第二温度传感器(22);
    所述第二温度传感器(22)与所述控制器(13)的信号输入端口电连接,并向所述控制器(13)输送温度信号,所述管路加热器(21)与所述控制器(13)输出端口电连接,并接 收来自控制器(13)的控制信号。
  8. 根据权利要求3所述的一种低温环境下顶管施工方法,其特征在于,相邻两个所述管路加热器(21)之间的距离为80~120m。
  9. 一种低温环境下顶管施工用抗冻触变泥浆,其特征在于,所述抗冻触变泥浆包括15%的NaCl、5%的膨胀土、1%的凹凸棒土、0.5%的cmc,0.5%的pac和0.5%的石墨粉。
  10. 一种低温环境下顶管施工用抗冻触变泥浆的制备方法,其特征在于,包括如下步骤:
    步骤S1:取NaCl溶于水中,并加入膨胀土和凹凸棒土搅拌30min形成养护基浆;
    步骤S2:在养护基浆中加入CMC、PAC和石墨粉并高速搅拌30min;
    步骤S3:测试泥浆的漏斗粘度、密度、六速旋转粘度、滤失量、PH值及黏附系数,并将各个参数调整至工作所需参数值;
    步骤S4:待完成步骤S3后,将泥浆静止24h后进行泥浆抗冻性能的测试;
    步骤S5:得到满足施工所需的抗冻触变泥浆。
PCT/CN2023/090255 2022-10-18 2023-04-24 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法 WO2024082589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211276931.5A CN115467671A (zh) 2022-10-18 2022-10-18 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法
CN202211276931.5 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024082589A1 true WO2024082589A1 (zh) 2024-04-25

Family

ID=84337864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090255 WO2024082589A1 (zh) 2022-10-18 2023-04-24 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法

Country Status (2)

Country Link
CN (1) CN115467671A (zh)
WO (1) WO2024082589A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467671A (zh) * 2022-10-18 2022-12-13 中国水利水电第五工程局有限公司 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279655B1 (en) * 1995-01-04 2001-08-28 Schlumberger Technology Corporation Thixotropic materials
CN102278117A (zh) * 2011-04-29 2011-12-14 上海交通大学 平行顶管顶进施工模拟装置
JP2012211056A (ja) * 2011-03-31 2012-11-01 Ube Industries Ltd グラウト組成物の施工方法
CN203035135U (zh) * 2013-01-20 2013-07-03 湖北四钻石油设备股份有限公司 一种带有加热盘管的泥浆净化装置
CN105601251A (zh) * 2015-12-17 2016-05-25 中国二十二冶集团有限公司 防冻泥浆的制备方法
US20200217200A1 (en) * 2019-01-08 2020-07-09 Southwest Jiaotong University Frost-resistant Assembled Initial Support Structure of Tunnel and Construction Method Thereof
CN111609210A (zh) * 2020-05-20 2020-09-01 中电建十一局工程有限公司 一种顶管施工触变泥浆置换施工方法
CN111852508A (zh) * 2020-06-12 2020-10-30 中铁十四局集团第二工程有限公司 一种顶管注浆装置和注浆方法
CN115467671A (zh) * 2022-10-18 2022-12-13 中国水利水电第五工程局有限公司 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279655B1 (en) * 1995-01-04 2001-08-28 Schlumberger Technology Corporation Thixotropic materials
JP2012211056A (ja) * 2011-03-31 2012-11-01 Ube Industries Ltd グラウト組成物の施工方法
CN102278117A (zh) * 2011-04-29 2011-12-14 上海交通大学 平行顶管顶进施工模拟装置
CN203035135U (zh) * 2013-01-20 2013-07-03 湖北四钻石油设备股份有限公司 一种带有加热盘管的泥浆净化装置
CN105601251A (zh) * 2015-12-17 2016-05-25 中国二十二冶集团有限公司 防冻泥浆的制备方法
US20200217200A1 (en) * 2019-01-08 2020-07-09 Southwest Jiaotong University Frost-resistant Assembled Initial Support Structure of Tunnel and Construction Method Thereof
CN111609210A (zh) * 2020-05-20 2020-09-01 中电建十一局工程有限公司 一种顶管施工触变泥浆置换施工方法
CN111852508A (zh) * 2020-06-12 2020-10-30 中铁十四局集团第二工程有限公司 一种顶管注浆装置和注浆方法
CN115467671A (zh) * 2022-10-18 2022-12-13 中国水利水电第五工程局有限公司 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法

Also Published As

Publication number Publication date
CN115467671A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2024082589A1 (zh) 一种低温环境下顶管施工方法、抗冻触变泥浆及制备方法
CN108716404B (zh) 一种季节冻土区隧道冻害防治装置及安装方法
CN110904782A (zh) 一种大型人工室内冰场及其施工方法
CN204609889U (zh) 一种盾构隧道端头垂直杯型冻结加固结构
CN205260038U (zh) 盾构隧道端头箱型冻结壁加固结构
Zhu et al. Thermal performances study on a façade-built-in two-phase thermosyphon loop for passive thermo-activated building system
CN108486989A (zh) 被动地热式融雪融冰装置及其施工工艺
WO2020029516A1 (zh) 一种薄壳式换热器、地铁废热源热泵系统及方法
CN110847151B (zh) 一种冻结法修复隧道下穿空洞方法
CN109579180A (zh) 一种利用废弃油气钻井孔改造的复合式土壤源热泵供能系统
CN111763099B (zh) 压型钢板组合楼板的低温热水养护系统及冬期施工方法
CN109556658A (zh) 一种能源桩群桩效应试验装置
CN100513928C (zh) 地源热泵地下热换器的强化换热方法及其装置
CN110043296B (zh) 一种适用于寒区隧道的耐冻型防排水板及其施工方法
KR20150094040A (ko) 지열을 이용한 냉난방 지중열교환 시스템
CN207300015U (zh) 一种矿井井口防冻加热装置
CN201407768Y (zh) 利用人防工程做冷源或热源的地源热泵
CN113339873B (zh) 一种寒区高地温隧道新型防寒抗冻系统及方法
CN114484902A (zh) 一种基于太阳能集热的管中管伴热防冻与冻土防融系统
Qin et al. Airtightness of a flexible sealed compressed air storage energy (CAES) tunnel considering the permeation accumulation of high-pressure air
CN108758778B (zh) 多能源互补的矿区供热系统
US20160223270A1 (en) Methods and systems to convert passive cooling to active cooling
CN102032697A (zh) 一种利用土钉实现浅层地热交换的工艺
CN206221872U (zh) 一种冬季室外供水管道防冻装置
CN219450821U (zh) 一种lng储罐桩基换热器地面回路系统的检查井