WO2024082242A1 - 一种烹饪设备及其阀门装置 - Google Patents

一种烹饪设备及其阀门装置 Download PDF

Info

Publication number
WO2024082242A1
WO2024082242A1 PCT/CN2022/126538 CN2022126538W WO2024082242A1 WO 2024082242 A1 WO2024082242 A1 WO 2024082242A1 CN 2022126538 W CN2022126538 W CN 2022126538W WO 2024082242 A1 WO2024082242 A1 WO 2024082242A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
driving
heat exchange
drive
channel
Prior art date
Application number
PCT/CN2022/126538
Other languages
English (en)
French (fr)
Inventor
范未强
Original Assignee
深圳市虎一科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市虎一科技有限公司 filed Critical 深圳市虎一科技有限公司
Priority to PCT/CN2022/126538 priority Critical patent/WO2024082242A1/zh
Publication of WO2024082242A1 publication Critical patent/WO2024082242A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove

Definitions

  • the present application relates to the technical field of cooking equipment, and in particular to a cooking equipment and a thermal protection valve thereof.
  • the cooking equipment includes a cooking cavity and a refrigeration device.
  • the cooking equipment includes a cooking cavity and a refrigeration device.
  • the refrigeration device exchanges heat with the cooking cavity to refrigerate the food placed in the cooking cavity.
  • the cooking cavity of the cooking equipment often needs to be heated to a very high temperature.
  • the heat exchange component of the refrigeration device is close to the cooking cavity, the heat exchange component is easily damaged at high temperature.
  • the heat exchange component of the refrigeration device is separated from the cooking cavity by a long distance for protection purposes, the heat exchange efficiency is often reduced.
  • the main purpose of the present invention is to provide a valve device for selectively controlling the connection and closing between a cooking cavity and a refrigeration device, and a cooking device with the valve device.
  • an embodiment provides a cooking device, comprising:
  • a main body wherein the main body has a cooking cavity
  • a refrigeration device comprising a heat exchange cavity and a refrigeration element, wherein the refrigeration element is arranged in the heat exchange cavity;
  • the heat exchange port being located at a side of the main body adjacent to the refrigeration device, and the heat exchange port connecting the cooking cavity with the heat exchange cavity;
  • valve device includes a valve core, the valve core can at least partially move in the heat exchange port along the axial direction of the heat exchange port to achieve opening and closing of the heat exchange port.
  • the valve device also includes a valve seat and a drive assembly, the valve seat is connected to the heat exchange port, the valve core is movably connected to the valve seat, the drive assembly is connected to the valve core, and the drive assembly is used to drive the valve core to move axially along the heat exchange port to achieve opening and closing of the heat exchange port.
  • the valve seat has a valve channel extending axially along the heat exchange port, both ends of the valve channel are connected, the valve channel is sealed and connected to the heat exchange port, the valve core is movably connected to the valve channel, and the drive assembly is used to drive the valve core to move axially along the valve channel to achieve opening and closing of the valve channel and the heat exchange port.
  • the valve channel includes an open section and a closed section arranged along the axial direction of the valve channel, the inner wall of the open section is used to form a gap with the valve core for fluid to pass through, and the inner wall of the closed section is used to fit tightly with the valve core to close the valve channel and the heat exchange port; the drive assembly is used to drive the valve core to selectively move to the open section and the closed section along the axial direction of the valve channel.
  • a resistance portion is provided at one end of the valve channel away from the drive assembly, and the resistance portion surrounds the valve channel and extends from the edge of the valve channel to the center along the radial direction of the valve channel to form an annular structure; the drive assembly is used to drive the valve core to selectively move along the axial direction of the valve channel to resist and separate from the resistance portion.
  • the inner wall of the valve channel is used to closely cooperate with the valve core to close the valve channel and the heat exchange port, and the drive assembly is used to drive the valve core to selectively move into and out of the valve channel along the axial direction of the valve channel.
  • the driving assembly includes a driving motor and a transmission mechanism, one end of the transmission mechanism is connected to the driving motor, and the other end is connected to the valve core, and the driving motor is used to drive the transmission mechanism to move, so as to drive the valve core to move axially along the heat exchange port.
  • the driving motor has an output shaft, and the axis of the output shaft extends along the radial direction of the heat exchange port.
  • the transmission mechanism includes a drive rod, a drive gear and a drive rack, the drive rod is arranged radially along the valve channel, the drive gear is coaxially sleeved on the drive rod, the drive rack is arranged axially along the valve channel, the drive rack is meshed with the drive gear, and the drive rack is connected to the valve core, and the drive motor is used to drive the drive rod to rotate, so as to drive the drive rack and the valve core to move axially along the valve channel.
  • the driving component also includes a stroke detection component, which includes a stroke detection gear, a stroke detection rack and a stroke detection switch.
  • the stroke detection gear is coaxially sleeved on the driving rod
  • the stroke detection rack is perpendicular to the driving rod and meshes with the stroke detection gear
  • the stroke detection switch is arranged on the extension line of the stroke detection rack.
  • the valve device includes multiple valve channels and multiple valve cores.
  • the multiple valve channels are connected to the multiple heat exchange ports one-to-one, and the multiple valve cores are arranged in the multiple valve channels one-to-one;
  • the transmission mechanism is connected to the multiple valve cores, and when the drive motor drives the transmission mechanism to move, the transmission mechanism can drive the multiple valve cores to move axially along the heat exchange port.
  • the transmission mechanism includes a driving rod, a plurality of driving gears and a plurality of driving racks, the driving rod is arranged along the radial direction of the valve channel, the plurality of driving gears are coaxially sleeved on the driving rod, the plurality of driving racks are arranged along the axial direction of the valve channel, the plurality of driving racks are connected to the plurality of valve cores one-to-one, and the plurality of driving racks are meshed with the plurality of driving gears one-to-one.
  • the driving assembly further includes a plurality of support seats, the driving rod is rotatably connected to the support seats, and the driving gear and the driving rack are located inside the support seats.
  • the transmission mechanism further includes a first transmission gear and a second transmission gear, the output shaft of the drive motor is coaxially connected to the first transmission gear, the second transmission gear is coaxially sleeved on the drive rod, and the first transmission gear is meshed with the second transmission gear.
  • an embodiment provides a valve device, comprising:
  • valve seat wherein the valve seat has a valve passage with two ends extending therethrough;
  • valve core the valve core being movably connected to the valve seat
  • the driving assembly being used to drive the valve core to at least partially move in the valve channel along the axial direction of the valve channel to realize opening and closing of the valve channel.
  • the valve channel includes an open section and a closed section arranged along the axial direction of the valve channel, the inner wall of the open section is used to form a gap with the valve core for fluid to pass through, and the inner wall of the closed section is used to fit tightly with the valve core to close the valve channel; the drive assembly is used to drive the valve core to selectively move to the open section and the closed section along the axial direction of the valve channel.
  • a resistance portion is provided at one end of the valve channel away from the drive assembly, and the resistance portion surrounds the valve channel and extends from the edge of the valve channel to the center along the radial direction of the valve channel to form an annular structure; the drive assembly is used to drive the valve core to selectively move along the axial direction of the valve channel to resist and separate from the resistance portion.
  • the inner wall of the valve channel is used to closely cooperate with the valve core to close the valve channel and the heat exchange port, and the drive assembly is used to drive the valve core to selectively move into and out of the valve channel along the axial direction of the valve channel.
  • the drive assembly includes a drive motor and a transmission mechanism, one end of the transmission mechanism is connected to the drive motor, and the other end is connected to the valve core, and the drive motor is used to drive the transmission mechanism to move, so as to drive the valve core to move axially along the valve channel.
  • the driving motor has an output shaft, and the axis of the output shaft extends along the radial direction of the heat exchange port.
  • the transmission mechanism includes a drive rod, a drive gear and a drive rack, the drive rod is arranged radially along the valve channel, the drive gear is coaxially sleeved on the drive rod, the drive rack is arranged axially along the valve channel, the drive rack is meshed with the drive gear, and the drive rack is connected to the valve core, and the drive motor is used to drive the drive rod to rotate, so as to drive the drive rack and the valve core to move axially along the valve channel.
  • the driving component also includes a stroke detection component, which includes a stroke detection gear, a stroke detection rack and a stroke detection switch.
  • the stroke detection gear is coaxially sleeved on the driving rod
  • the stroke detection rack is perpendicular to the driving rod and meshes with the stroke detection gear
  • the stroke detection switch is arranged on the extension line of the stroke detection rack.
  • the valve device includes multiple valve channels and multiple valve cores, and the multiple valve cores are arranged in the multiple valve channels one by one; the transmission mechanism is connected to the multiple valve cores, and when the drive motor drives the transmission mechanism to move, the transmission mechanism can drive the multiple valve cores to move axially along the valve channel.
  • the transmission mechanism includes a driving rod, a plurality of driving gears and a plurality of driving racks, the driving rod is arranged along the radial direction of the valve channel, the plurality of driving gears are coaxially sleeved on the driving rod, the plurality of driving racks are arranged along the axial direction of the valve channel, the plurality of driving racks are connected to the plurality of valve cores one-to-one, and the plurality of driving racks are meshed with the plurality of driving gears one-to-one.
  • the driving assembly further includes a plurality of support seats, the driving rod is rotatably connected to the support seats, and the driving gear and the driving rack are located inside the support seats.
  • the transmission mechanism further includes a first transmission gear and a second transmission gear, the output shaft of the drive motor is coaxially connected to the first transmission gear, the second transmission gear is coaxially sleeved on the drive rod, and the first transmission gear is meshed with the second transmission gear.
  • the cooking device includes a main body, a refrigeration device, a heat exchange port and a valve device.
  • the main body has a cooking cavity
  • the refrigeration device includes a heat exchange cavity and a refrigeration element
  • the refrigeration element is arranged in the heat exchange cavity
  • the heat exchange port is located at the side of the main body adjacent to the refrigeration device
  • the heat exchange port connects the cooking cavity with the heat exchange cavity.
  • the valve device includes a valve core, and the valve core can at least partially move in the heat exchange port along the axial direction of the heat exchange port to achieve the opening and closing of the heat exchange port.
  • the valve core When the food needs to be refrigerated, the valve core is at least partially moved in the heat exchange port along the axial direction of the heat exchange port to a position where the heat exchange port is opened, so that the cooking cavity is connected with the heat exchange cavity. At this time, the ambient temperature of the heat exchange cavity is cooled by the refrigeration element, and the heat exchange cavity is refrigerated by air convection with the cooking cavity.
  • the valve core When the cooking cavity heats the food, the valve core is at least partially moved in the heat exchange port along the axial direction of the heat exchange port to a position where the heat exchange port is closed, so as to prevent the refrigeration device from being damaged by the high temperature of the cooking cavity.
  • the heat exchange port can be flexibly opened and closed.
  • the heat exchange port can be kept open to ensure the refrigeration effect.
  • the heat exchange port can be kept closed to avoid damaging the refrigeration device.
  • FIG1 is a schematic diagram of the structure of a cooking device in one embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a refrigeration device and a valve device in one embodiment of the present application
  • FIG3 is an exploded view of the internal structure of a refrigeration device in one embodiment of the present application.
  • FIG4 is a schematic structural diagram of a valve device in one embodiment of the present application.
  • Fig. 5 is a cross-sectional view taken along the section line A-A in Fig. 4 toward the side where the valve core is located;
  • Fig. 6 is a cross-sectional view taken along the section line B-B in Fig. 4 toward the side where the valve core is located;
  • Fig. 7 is a cross-sectional view taken along the section line C-C in Fig. 4 toward the side where the valve core is located;
  • FIG8 is a schematic structural diagram of a valve device in another embodiment of the present application.
  • Fig. 9 is a cross-sectional view taken along the section line D-D in Fig. 8 toward the side where the valve core is located;
  • Figure numerals 100, main body; 110, cooking cavity; 200, refrigeration device; 210, heat exchange cavity; 220, refrigeration element; 300, heat exchange port; 400, valve device; 410, valve core; 420, valve seat; 421, valve channel; 4211, opening section; 4212, closing section; 422, interference part; 430, driving assembly; 431, driving motor; 4311, output shaft; 432, transmission mechanism; 4321, driving rod; 4322, driving gear; 4323, driving rack; 4324, first transmission gear; 4325, second transmission gear; 433, stroke detection assembly; 4331, stroke detection gear; 4332, stroke detection rack; 4333, stroke detection switch; 434, support seat.
  • connection and “coupling” mentioned in this application include direct and indirect connections (couplings) unless otherwise specified.
  • This embodiment provides a cooking device.
  • the cooking device includes a main body 100 , a refrigeration device 200 , a heat exchange port 300 and a valve device 400 .
  • the main body 100 has a cooking cavity 110
  • the refrigeration device 200 includes a heat exchange cavity 210 and a refrigeration element 220
  • the refrigeration element 220 is arranged in the heat exchange cavity 210
  • the heat exchange port 300 is located at the side of the main body 100 adjacent to the refrigeration device 200
  • the heat exchange port 300 connects the cooking cavity 110 with the heat exchange cavity 210.
  • the valve device 400 includes a valve core 410, and the valve core 410 can at least partially move in the heat exchange port 300 along the axial direction of the heat exchange port 300 to realize the opening and closing of the heat exchange port 300.
  • the valve core 410 When food needs to be refrigerated, the valve core 410 is at least partially moved in the heat exchange port 300 along the axial direction of the heat exchange port 300 to a position where the heat exchange port 300 is opened, so that the cooking cavity 110 is connected with the heat exchange cavity 210. At this time, the ambient temperature of the heat exchange cavity 210 is cooled by the refrigeration element 220, and the heat exchange cavity 210 cools the cooking cavity 110 through air convection with the cooking cavity 110. When the cooking cavity 110 heats food, the valve core 410 is at least partially moved in the heat exchange port 300 along the axial direction of the heat exchange port 300 to a position where the heat exchange port 300 is closed, so as to avoid damage to the refrigeration device 200 under the high temperature of the cooking cavity 110.
  • the flexible opening and closing of the heat exchange port 300 is realized.
  • the heat exchange port 300 can be kept open to ensure the refrigeration effect.
  • the heat exchange port 300 can be kept closed to avoid damage to the refrigeration device 200.
  • the axial direction of the heat exchange port 300 refers to the direction of the line connecting the center points at both ends of the heat exchange port 300
  • the radial direction of the heat exchange port 300 refers to the direction perpendicular to the axial direction of the heat exchange port 300
  • the axial direction of the valve channel 421 refers to the direction of the line connecting the center points at both ends of the valve channel 421
  • the radial direction of the valve channel 421 refers to the direction perpendicular to the axial direction of the valve channel 421.
  • the direction shown by the axis L1 in Figure 6 is the axial direction of the valve channel 421
  • the direction shown by the axis L2 in Figure 6 is the radial direction of the valve channel 421. It can be understood that when the valve seat 420 is installed on the heat exchange port 300, the axial direction of the heat exchange port 300 can be the same as the axial direction of the valve channel 421, and the radial direction of the heat exchange port 300 can be the same as the radial direction of the valve channel 421.
  • the valve device 400 also includes a valve seat 420 and a drive assembly 430.
  • the valve seat 420 is connected to the heat exchange port 300.
  • the valve core 410 is movably connected to the valve seat 420.
  • the drive assembly 430 is connected to the valve core 410.
  • the drive assembly 430 is used to drive the valve core 410 to move axially along the heat exchange port 300 to achieve opening and closing of the heat exchange port 300.
  • the movable setting of the valve core 410 in the heat exchange port 300 is realized by the valve seat 420, and the movement of the valve core 410 in the heat exchange port 300 is powered by the drive assembly 430.
  • the valve core 410 is indirectly set in the heat exchange port 300 through the valve seat 420.
  • the valve core 410 can also be directly connected to the heat exchange port 300.
  • the drive assembly 430 is used to provide power for the movement of the valve core 410.
  • the movement of the valve core 410 can also be powered manually by the user.
  • valve core 410 can directly close the heat exchange port 300 , or can indirectly close the heat exchange port 300 by closing the valve channel 421 on the valve seat 420 .
  • the valve seat 420 has a valve channel 421 extending along the axial direction of the heat exchange port 300, both ends of the valve channel 421 are connected, the valve channel 421 is sealed and connected to the heat exchange port 300, the valve core 410 is movably connected to the valve channel 421, and the drive assembly 430 is used to drive the valve core 410 to move axially along the valve channel 421 to realize the opening and closing of the valve channel 421 and the heat exchange port 300.
  • valve core 410 When the heat exchange port 300 needs to be closed, the valve core 410 is driven by the driving assembly 430 to move along the axial direction of the valve channel 421 to open and close the valve channel 421, thereby indirectly opening and closing the heat exchange port 300.
  • the valve core 410 when the valve core 410 is directly and movably connected to the heat exchange port 300, the valve core 410 can also directly open or close the heat exchange port 300.
  • valve core 410 moves along the axial direction of the valve channel 421 , there are multiple optional ways to open and close the valve channel 421 .
  • the valve channel 421 may include at least two sections with different diameters arranged axially, and the valve core 410 cooperates with the at least two sections with different diameters of the valve channel 421 to achieve opening and closing of the valve channel 421.
  • the valve channel 421 includes an opening section 4211 and a closing section 4212 arranged along the axial direction of the valve channel 421, the inner wall of the opening section 4211 is used to form a gap for fluid to pass through with the valve core 410, and the inner wall of the closing section 4212 is used to closely cooperate with the valve core 410 to close the valve channel 421 and the heat exchange port 300.
  • the driving assembly 430 is used to drive the valve core 410 to selectively move to the opening section 4211 and the closing section 4212 along the axial direction of the valve channel 421.
  • valve core 410 When the valve channel 421 needs to be opened, the valve core 410 is driven by the driving assembly 430 to move axially to the opening section 4211, and a gap for fluid to pass through is formed between the inner wall of the opening section 4211 and the valve core 410, thereby realizing the opening of the valve channel 421.
  • the valve core 410 When the valve channel 421 needs to be closed, the valve core 410 is driven by the driving assembly 430 to move axially to the closing section 4212, and the inner wall of the closing section 4212 is tightly matched with the valve core 410, thereby realizing the closing of the valve channel 421.
  • valve core 410 can enter or leave the valve channel 421 along the axial direction to close or open the valve channel 421 .
  • the inner wall of the valve channel 421 is used to closely cooperate with the valve core 410 to close the valve channel 421 and the heat exchange port 300, and the drive assembly 430 is used to drive the valve core 410 to selectively move into and out of the valve channel 421 along the axial direction of the valve channel 421.
  • valve core 410 When the valve channel 421 needs to be opened, the valve core 410 is driven by the driving assembly 430 to move axially to be separated from the valve channel 421, thereby opening the valve channel 421.
  • valve core 410 When the valve channel 421 needs to be closed, the valve core 410 is driven by the driving assembly 430 to move axially into the valve channel 421. At this time, the inner wall of the valve channel 421 is tightly matched with the valve core 410, thereby closing the valve channel 421.
  • a resistance portion 422 can be set at one end of the valve channel 421, and the valve can move axially to a position where it resists and separates from the resistance portion 422, thereby achieving the closure or opening of the valve channel 421.
  • a resistance part 422 is provided at one end of the valve channel 421 away from the driving assembly 430, which is in resistance around the valve channel 421 and extends from the edge of the valve channel 421 to the center along the radial direction of the valve channel 421 to form an annular structure.
  • the driving assembly 430 is used to drive the valve core 410 to selectively move along the axial direction of the valve channel 421 to resist and separate from the resistance part 422.
  • valve core 410 When the valve channel 421 needs to be opened, the valve core 410 is driven by the driving assembly 430 to move axially away from the abutment portion 422, so that the valve core 410 is separated from the abutment portion 422, thereby opening the valve channel 421.
  • valve core 410 When the valve channel 421 needs to be closed, the valve core 410 is driven by the driving assembly 430 to move axially toward the abutment portion 422, so that the valve core 410 abuts against the abutment portion 422, thereby closing the valve channel 421.
  • valve core 410 opening and closing the valve channel 421 along the axial direction can be used alone, or a plurality of solutions can be used in combination, so as to further improve the reliability of the valve device 400.
  • the driving assembly 430 of the valve device 400 can directly drive the valve core 410 to move, or can indirectly drive the valve core 410 to move through the transmission mechanism 432.
  • the advantage of the driving assembly 430 directly driving the valve core 410 is that it can simplify the structural complexity of the driving assembly 430 and improve the reliability of the driving assembly 430.
  • a cylinder is selected to drive the valve core 410, and the piston rod of the cylinder is directly connected to the valve core 410.
  • the advantage of the driving assembly 430 indirectly driving the valve core 410 to move through the transmission mechanism 432 is that, on the one hand, the number of valve cores 410 that can be driven by a single power source is more flexible, for example, it is convenient to drive multiple valve cores 410 to move at the same time. On the other hand, it is also convenient to optimize the spatial layout of the driving assembly 430, which is conducive to reducing the volume of the valve device 400.
  • the driving component 430 when the driving component 430 is selected to indirectly drive the valve core 410 to move through the transmission mechanism 432, the driving component 430 includes a driving motor 431 and a transmission mechanism 432. One end of the transmission mechanism 432 is connected to the driving motor 431, and the other end is connected to the valve core 410.
  • the driving motor 431 is used to drive the transmission mechanism 432 to move, so as to drive the valve core 410 to move axially along the heat exchange port 300.
  • the transmission mechanism 432 can be connected to the plurality of valve cores 410, so that the driving force of the driving motor 431 can be transmitted to the plurality of valve cores 410 through the transmission mechanism 432, thereby driving the plurality of valve cores 410 to move through one driving motor 431.
  • the transmission direction of the driving force of the driving motor 431 can be changed through the transmission mechanism 432, so that the driving motor 431 can be arranged in a more suitable posture according to actual needs, thereby optimizing the spatial layout of the driving assembly 430.
  • the driving motor 431 has an output shaft 4311 .
  • the axis of the output shaft 4311 extends along the radial direction of the heat exchange port 300 .
  • valve core 410 moves along the axial direction of the heat exchange port 300, a certain amount of movable space needs to be reserved in the axial direction of the heat exchange port 300. If the space occupied by the drive assembly 430 in the axial direction of the heat exchange port 300 is also large, the superposition of the two will cause the valve device 400 to occupy too much space in the axial direction of the heat exchange port 300, which is not conducive to the miniaturization of the valve device 400.
  • the drive motor 431 when the drive motor 431 is placed along the radial direction of the heat exchange port 300, since the drive motor 431 is usually lower in the direction perpendicular to its output shaft 4311, the drive motor 431 occupies less space in the axial direction of the heat exchange port 300, which is conducive to the miniaturization of the valve device 400.
  • the transmission mechanism 432 of the driving assembly 430 can be a gear rack structure, a screw slider structure or other suitable transmission structures.
  • the transmission mechanism 432 when the transmission mechanism 432 adopts a gear rack structure, the transmission mechanism 432 includes a driving rod 4321, a driving gear 4322 and a driving rack 4323.
  • the driving rod 4321 is arranged radially along the valve channel 421
  • the driving gear 4322 is coaxially sleeved on the driving rod 4321
  • the driving rack 4323 is arranged axially along the valve channel 421.
  • the driving rack 4323 is meshed with the driving gear 4322, and the driving rack 4323 is connected to the valve core 410.
  • the driving motor 431 is used to drive the driving rod 4321 to rotate, so as to drive the driving rack 4323 and the valve core 410 to move axially along the valve channel 421.
  • the driving motor 431 is first used to drive the driving rod 4321 to rotate, and the driving rod 4321 drives the driving gear 4322 to rotate, and the driving gear 4322 drives the driving rack 4323 to move axially along the valve channel 421, and then the driving rack 4323 drives the valve core 410 to move axially along the valve channel 421.
  • the gear rack structure may also be replaced by a screw slider structure or other suitable transmission structure.
  • a driving screw can be connected to the output shaft 4311 of the driving motor 431, the driving screw is arranged along the axial direction of the valve channel 421, and a slider is movably sleeved on the driving screw, and the slider extends along the axial direction of the valve channel 421 to connect with the valve core 410.
  • the motor drives the screw to rotate, thereby driving the slider and the valve core 410 to move along the axial direction of the valve channel 421.
  • the driving component 430 also includes a stroke detection component 433.
  • the stroke detection component 433 includes a stroke detection gear 4331, a stroke detection rack 4332 and a stroke detection switch 4333.
  • the stroke detection gear 4331 is coaxially sleeved on the driving rod 4321.
  • the stroke detection rack 4332 is perpendicular to the driving rod 4321 and meshes with the stroke detection gear 4331.
  • the stroke detection switch 4333 is arranged on the extension line of the stroke detection rack 4332.
  • the driving motor 431 drives the driving rod 4321 to rotate, it drives the stroke detection rack 4332 to move along the extension direction of the stroke detection rack 4332, so that the stroke detection rack 4332 contacts and triggers the stroke detection switch 4333.
  • the driving motor 431 drives the valve core 410 to move
  • the driving rod 4321 also drives the stroke detection gear 4331 to rotate
  • the stroke detection gear 4331 drives the stroke detection rack 4332 to move along its own extension line.
  • the stroke detection rack 4332 moves just to contact the stroke detection switch 4333 to trigger the stroke detection switch 4333, thereby providing a reference signal for the electrical control of the driving component 430.
  • the valve device 400 includes multiple valve channels 421 and multiple valve cores 410.
  • the multiple valve channels 421 are connected to the multiple heat exchange ports 300 in a one-to-one correspondence.
  • the multiple valve cores 410 are arranged in the multiple valve channels 421 in a one-to-one correspondence.
  • the transmission mechanism 432 is connected to the multiple valve cores 410. When the drive motor 431 drives the transmission mechanism 432 to move, the transmission mechanism 432 can drive the multiple valve cores 410 to move along the axial direction of the heat exchange port 300. Through the cooperation of the drive motor 431 and the transmission mechanism 432, it is achieved to drive the movement of multiple valve cores 410 at the same time.
  • the transmission mechanism 432 when the transmission mechanism 432 adopts a gear rack structure, the transmission mechanism 432 includes a driving rod 4321, multiple driving gears 4322 and multiple driving racks 4323.
  • the driving rod 4321 is arranged radially along the valve channel 421, and the multiple driving gears 4322 are coaxially sleeved on the driving rod 4321.
  • the multiple driving racks 4323 are arranged axially along the valve channel 421.
  • the multiple driving racks 4323 are connected to the multiple valve cores 410 one by one, and the multiple driving racks 4323 are meshed with the multiple driving gears 4322 one by one.
  • the driving motor 431 drives the driving rod 4321 to rotate, driving the multiple driving gears 4322 on the driving rod 4321 to rotate, and the multiple driving gears 4322 drive the multiple driving racks 4323 to move axially along the valve channel 421, and then the multiple valve cores 410 are driven to move axially along the valve channel 421 through the multiple driving racks 4323.
  • the driving assembly 430 further includes a plurality of support seats 434 .
  • the driving rod 4321 is rotatably connected to the support seats 434 .
  • the driving gear 4322 and the driving rack 4323 are located inside the support seats 434 .
  • the support base 434 is used to support the driving rod 4321 , and on the other hand, the support base 434 can protect and limit the internal driving gear 4322 and driving rack 4323 .
  • the transmission mechanism 432 also includes a first transmission gear 4324 and a second transmission gear 4325.
  • the output shaft 4311 of the driving motor 431 is coaxially connected to the first transmission gear 4324.
  • the second transmission gear 4325 is coaxially sleeved on the driving rod 4321.
  • the first transmission gear 4324 is meshed with the second transmission gear 4325.
  • the first transmission gear 4324 is driven to rotate by the driving motor 431, and the second transmission gear 4325 is driven to rotate by the first transmission gear 4324, and then the transmission shaft is driven to rotate by the second transmission gear 4325.
  • the first transmission gear 4324 and the second transmission gear 4325 can also be used to adjust the rotation speed output by the driving motor 431 to the driving rod 4321.
  • this embodiment further provides a valve device 400, which can be applied to the above-mentioned cooking device.
  • the valve device 400 includes a valve seat 420 , a valve core 410 and a drive assembly 430 .
  • the valve seat 420 has a valve channel 421 with two ends connected therethrough.
  • the valve core 410 is movably connected to the valve seat 420.
  • the driving assembly 430 is connected to the valve core 410.
  • the driving assembly 430 is used to drive the valve core 410 to at least partially move in the valve channel 421 along the axial direction of the valve channel 421 to realize the opening and closing of the valve channel 421.
  • the axial direction of the valve channel 421 can be the same as the axial direction of the heat exchange port 300, and the radial direction of the valve channel 421 can be the same as the radial direction of the heat exchange port 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

一种烹饪设备及其阀门装置(400),烹饪设备包括主体部(100)、制冷装置(200)、换热口(300)和阀门装置(400)。主体部(100)具有烹饪腔体(110),制冷装置(200)包括换热腔体(210)和制冷元件(220),制冷元件(220)设置在换热腔体(210)内,换热口(300)位于主体部(100)与制冷装置(200)相邻的侧部,且换热口(300)将烹饪腔体(110)与换热腔体(210)连通。阀门装置(400)包括阀门芯(410),阀门芯(410)能够至少部分地在换热口(300)内沿换热口(300)的轴向运动,以实现换热口(300)的开启和封闭。实现了换热口(300)的灵活开关,在需要冷藏食品时可以保持换热口(300)的开启,以保证制冷效果,在需要加热食品时,可以保持换热口(300)的关闭,以避免损坏制冷装置(200)。

Description

一种烹饪设备及其阀门装置 技术领域
本申请涉及烹饪设备技术领域,具体涉及一种烹饪设备及其热防护阀。
背景技术
随着人们对生活品质的追求不断提高,市场上用于烹饪食物的烹饪设备(如蒸箱、烤箱、空气炸锅、蒸烤箱等等)不断发展,烹饪设备的功能越来越丰富。例如,有的烹饪设备具有冷藏保鲜功能,即烹饪设备包括烹饪内腔和制冷装置,当需要烹饪食品时,通过烹饪腔体对其内部的食品加热,以实现对烹饪腔体内食品的烹饪。当需要冷藏食品时,通过制冷装置向烹饪腔体换热,以冷藏放置在烹饪腔体内的食品。但是,烹饪设备的烹饪腔体经常需要加热到很高的温度,制冷装置的换热部件与烹饪腔体较为贴近时,换热部件很容易在高温下损坏,而出于保护目的将制冷装置的换热部件与烹饪腔体间隔较远距离时,则往往会降低换热效率。
发明内容
本发明主要目的是提供一种用于可选择性地控制烹饪腔体与制冷装置之间连通和封闭的阀门装置,以及带有该阀门装置的烹饪设备。
第一方面,一种实施例中提供一种烹饪设备,包括:
主体部,所述主体部具有烹饪腔体;
制冷装置,包括换热腔体和制冷元件,所述制冷元件设置在所述换热腔体内;
换热口,所述换热口位于所述主体部与所述制冷装置相邻的侧部,且所述换热口将烹饪腔体与换热腔体连通;
以及阀门装置,所述阀门装置包括阀门芯,所述阀门芯能够至少部分地在所述换热口内沿所述换热口的轴向运动,以实现所述换热口的开启和封闭。
一种实施例中,所述阀门装置还包括阀门座和驱动组件,所述阀门座连接于所述换热口,所述阀门芯与所述阀门座活动连接,所述驱动组 件与所述阀门芯连接,所述驱动组件用于驱动所述阀门芯沿所述换热口的轴向运动,以实现所述换热口的开启和封闭。
一种实施例中,所述阀门座具有沿所述换热口的轴向延伸的阀门通道,所述阀门通道的两端贯通,所述阀门通道与所述换热口密封连接,所述阀门芯与所述阀门通道活动连接,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向运动,以实现所述阀门通道和换热口的开启和封闭。
一种实施例中,所述阀门通道包括沿所述阀门通道的轴向排布的开启段和封闭段,所述开启段的内壁用于与所述阀门芯之间形成供流体通过的间隙,所述封闭段的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至所述开启段和封闭段。
一种实施例中,所述阀门通道远离所述驱动组件的一端设有抵触部,所述抵触围绕所述阀门通道的四周,并沿所述阀门通道的径向从所述阀门通道的边缘向中心延伸,以形成环状结构;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至与所述抵触部抵触和分离。
一种实施例中,所述阀门通道的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至阀门通道内和脱离所述阀门通道。
一种实施例中,所述驱动组件包括驱动电机和传动机构,所述传动机构的一端与所述驱动电机连接,另一端与所述阀门芯连接,所述驱动电机用于驱动所述传动机构运动,以带动所述阀门芯沿所述换热口的轴向运动。
一种实施例中,所述驱动电机具有输出轴,所述输出轴的轴心线沿所述换热口的径向延伸。
一种实施例中,所述传动机构包括驱动杆、驱动齿轮和驱动齿条,所述驱动杆沿所述阀门通道的径向设置,所述驱动齿轮同轴套设于所述驱动杆,所述驱动齿条沿所述阀门通道的轴向设置,所述驱动齿条与所述驱动齿轮啮合,且所述驱动齿条与所述阀门芯连接,所述驱动电机用于驱动所述驱动杆转动,以带动所述驱动齿条和阀门芯沿所述阀门通道的轴向运动。
一种实施例中,所述驱动组件还包括行程检测组件,所述行程检测组件包括行程检测齿轮、行程检测齿条和行程检测开关,所述行程检测齿轮同轴套设于所述驱动杆,所述行程检测齿条与所述驱动杆垂直,且与所述行程检测齿轮啮合,所述行程检测开关设置于所述行程检测齿条的延长线上,所述驱动电机驱动所述驱动杆转动时,带动所述行程检测齿条沿所述行程检测齿条的延伸方向运动,以使所述行程检测齿条接触并触发所述行程检测开关。
一种实施例中,所述换热口为多个,所述阀门装置包括多个阀门通道和多个所述阀门芯,多个所述阀门通道与多个所述换热口一一对应地连接,多个所述阀门芯一一对应地设置于多个所述阀门通道内;所述传动机构与多个所述阀门芯连接,所述驱动电机驱动所述传动机构运动时,所述传动机构能够带动多个所述阀门芯沿所述换热口的轴向运动。
一种实施例中,所述传动机构包括驱动杆、多个驱动齿轮和多个驱动齿条,所述驱动杆沿所述阀门通道的径向设置,多个所述驱动齿轮均同轴套设于所述驱动杆,多个所述驱动齿条均沿所述阀门通道的轴向设置,多个所述驱动齿条与多个所述阀门芯一一对应地连接,且多个所述驱动齿条一一对应地与多个所述驱动齿轮啮合。
一种实施例中,所述驱动组件还包括多个支撑座,所述驱动杆与所述支撑座转动连接,所述驱动齿轮和所述驱动齿条位于所述支撑座内。
一种实施例中,所述传动机构还包括第一传动齿轮和第二传动齿轮,所述驱动电机的输出轴与所述第一传动齿轮同轴连接,所述第二传动齿轮同轴套设于所述驱动杆,所述第一传动齿轮与所述第二传动齿轮啮合。
第二方面,一种实施例中提供一种阀门装置,包括:
阀门座,所述阀门座具有两端贯通的阀门通道;
阀门芯,所述阀门芯与所述阀门座活动连接;
以及驱动组件,所述驱动组件与所述阀门芯连接,所述驱动组件用于驱动所述阀门芯至少部分地在所述阀门通道内沿所述阀门通道的轴向运动,以实现所述阀门通道的开启和封闭。
一种实施例中,所述阀门通道包括沿所述阀门通道的轴向排布的开启段和封闭段,所述开启段的内壁用于与所述阀门芯之间形成供流体通过的间隙,所述封闭段的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可 选择地运动至所述开启段和封闭段。
一种实施例中,所述阀门通道远离所述驱动组件的一端设有抵触部,所述抵触围绕所述阀门通道的四周,并沿所述阀门通道的径向从所述阀门通道的边缘向中心延伸,以形成环状结构;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至与所述抵触部抵触和分离。
一种实施例中,所述阀门通道的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至阀门通道内和脱离所述阀门通道。
一种实施例中,所述驱动组件包括驱动电机和传动机构,所述传动机构的一端与所述驱动电机连接,另一端与所述阀门芯连接,所述驱动电机用于驱动所述传动机构运动,以带动所述阀门芯沿所述阀门通道的轴向运动。
一种实施例中,所述驱动电机具有输出轴,所述输出轴的轴心线沿所述换热口的径向延伸。
一种实施例中,所述传动机构包括驱动杆、驱动齿轮和驱动齿条,所述驱动杆沿所述阀门通道的径向设置,所述驱动齿轮同轴套设于所述驱动杆,所述驱动齿条沿所述阀门通道的轴向设置,所述驱动齿条与所述驱动齿轮啮合,且所述驱动齿条与所述阀门芯连接,所述驱动电机用于驱动所述驱动杆转动,以带动所述驱动齿条和阀门芯沿所述阀门通道的轴向运动。
一种实施例中,所述驱动组件还包括行程检测组件,所述行程检测组件包括行程检测齿轮、行程检测齿条和行程检测开关,所述行程检测齿轮同轴套设于所述驱动杆,所述行程检测齿条与所述驱动杆垂直,且与所述行程检测齿轮啮合,所述行程检测开关设置于所述行程检测齿条的延长线上,所述驱动电机驱动所述驱动杆转动时,带动所述行程检测齿条沿所述行程检测齿条的延伸方向运动,以使所述行程检测齿条接触并触发所述行程检测开关。
一种实施例中,所述阀门装置包括多个阀门通道和多个所述阀门芯,多个所述阀门芯一一对应地设置于多个所述阀门通道内;所述传动机构与多个所述阀门芯连接,所述驱动电机驱动所述传动机构运动时,所述传动机构能够带动多个所述阀门芯沿所述阀门通道的轴向运动。
一种实施例中,所述传动机构包括驱动杆、多个驱动齿轮和多个驱动齿条,所述驱动杆沿所述阀门通道的径向设置,多个所述驱动齿轮均同轴套设于所述驱动杆,多个所述驱动齿条均沿所述阀门通道的轴向设置,多个所述驱动齿条与多个所述阀门芯一一对应地连接,且多个所述驱动齿条一一对应地与多个所述驱动齿轮啮合。
一种实施例中,所述驱动组件还包括多个支撑座,所述驱动杆与所述支撑座转动连接,所述驱动齿轮和所述驱动齿条位于所述支撑座内。
一种实施例中,所述传动机构还包括第一传动齿轮和第二传动齿轮,所述驱动电机的输出轴与所述第一传动齿轮同轴连接,所述第二传动齿轮同轴套设于所述驱动杆,所述第一传动齿轮与所述第二传动齿轮啮合。
依据上述实施例的烹饪设备及其阀门装置,该烹饪设备包括主体部、制冷装置、换热口和阀门装置。主体部具有烹饪腔体,制冷装置包括换热腔体和制冷元件,制冷元件设置在换热腔体内换热口位于主体部与制冷装置相邻的侧部,且换热口将烹饪腔体与换热腔体连通。阀门装置包括阀门芯,阀门芯能够至少部分地在换热口内沿换热口的轴向运动,以实现换热口的开启和封闭。当需要冷藏食品时,使阀门芯至少部分地在换热口内沿换热口的轴向运动至将换热口开启的位置,以使烹饪腔体与换热腔体连通,此时通过制冷元件对换热腔体的环境温度进行制冷,换热腔体通过与烹饪腔体空气对流以实现对烹饪腔体的制冷。当烹饪腔体加热食物时,使阀门芯至少部分地在换热口内沿换热口的轴向运动至将换热口封闭的位置,避免制冷装置在烹饪腔体的高温作用下损坏。从而实现了换热口的灵活开关,在需要冷藏食品时可以保持换热口的开启,以保证制冷效果,在需要加热食品时,可以保持换热口的关闭,以避免损坏制冷装置。
附图说明
图1为本申请一种实施例中烹饪设备的结构示意图;
图2为本申请一种实施例中制冷装置和阀门装置的结构示意图;
图3为本申请一种实施例中制冷装置内部结构的爆炸图;
图4为本申请一种实施例中阀门装置的结构示意图;
图5为图4中沿剖面线A-A向阀门芯所在一侧作的剖视图;
图6为图4中沿剖面线B-B向阀门芯所在一侧作的剖视图;
图7为图4中沿剖面线C-C向阀门芯所在一侧作的剖视图;
图8为本申请另一种实施例中阀门装置的结构示意图;
图9为图8中沿剖面线D-D向阀门芯所在一侧作的剖视图;
附图标记:100、主体部;110、烹饪腔体;200、制冷装置;210、换热腔体;220、制冷元件;300、换热口;400、阀门装置;410、阀门芯;420、阀门座;421、阀门通道;4211、开启段;4212、封闭段;422、抵触部;430、驱动组件;431、驱动电机;4311、输出轴;432、传动机构;4321、驱动杆;4322、驱动齿轮;4323、驱动齿条;4324、第一传动齿轮;4325、第二传动齿轮;433、行程检测组件;4331、行程检测齿轮;4332、行程检测齿条;4333、行程检测开关;434、支撑座。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本实施例提供一种烹饪设备。
请参考图1-9,该烹饪设备包括主体部100、制冷装置200、换热口300和阀门装置400。
请参考图1-5,主体部100具有烹饪腔体110,制冷装置200包括换热腔体210和制冷元件220,制冷元件220设置在换热腔体210内换热口300位于主体部100与制冷装置200相邻的侧部,且换热口300将烹饪腔体110与换热腔体210连通。阀门装置400包括阀门芯410,阀门芯410能够至少部分地在换热口300内沿换热口300的轴向运动,以实现换热口300的开启和封闭。
当需要冷藏食品时,使阀门芯410至少部分地在换热口300内沿换热口300的轴向运动至将换热口300开启的位置,以使烹饪腔体110与换热腔体210连通,此时通过制冷元件220对换热腔体210的环境温度进行制冷,换热腔体210通过与烹饪腔体110空气对流以实现对烹饪腔体110的制冷。当烹饪腔体110加热食物时,使阀门芯410至少部分地在换热口300内沿换热口300的轴向运动至将换热口300封闭的位置,避免制冷装置200在烹饪腔体110的高温作用下损坏。从而实现了换热口300的灵活开关,在需要冷藏食品时可以保持换热口300的开启,以保证制冷效果,在需要加热食品时,可以保持换热口300的关闭,以避免损坏制冷装置200。
需要说明的是,换热口300的轴向指的是换热口300两端中心点连线的方向,换热口300的径向指的是垂直于换热口300的轴向的方向。同理,阀门通道421的轴向指的是阀门通道421两端中线点连线的方向,阀门通道421的径向指的是垂直于阀门通道421的轴向的方向。具体地,请参考图6,图6中轴线L1所示的方向为阀门通道421的轴向,图6中轴线L2所示的方向为阀门通道421的径向。可以理解的是,当阀门座420安装于换热口300时,换热口300的轴向可以与阀门通道421的轴向相同,换热口300的径向可以与阀门通道421的径向相同。
请参考图1-6,在一种实施例中,阀门装置400还包括阀门座420和驱动组件430,阀门座420连接于换热口300,阀门芯410与阀门座420活动连接,驱动组件430与阀门芯410连接,驱动组件430用于驱动阀门芯410沿换热口300的轴向运动,以实现换热口300的开启和封闭。
通过阀门座420实现阀门芯410在换热口300内的活动设置,通过驱动组件430为阀门芯410在换热口300内的运动提供动力。需要说明的是,本实施例中阀门芯410通过阀门座420间接地设置在换热口300 内。在其他实施例中,阀门芯410也可以直接与换热口300活动连接。本实施例中通过驱动组件430为阀门芯410的运动提供动力,在其他实施例中,阀门芯410的运动也可以是由使用者手动提供动力。
在实际应用场景中,阀门芯410可以是直接对换热口300进行封闭,也可以通过封闭阀门座420上阀门通道421的方式间接地实现对换热口300的封闭。
具体地,当选用间接封闭换热口300的方式时,请参考图1、4和5,在一种实施例中,阀门座420具有沿换热口300的轴向延伸的阀门通道421,阀门通道421的两端贯通,阀门通道421与换热口300密封连接,阀门芯410与阀门通道421活动连接,驱动组件430用于驱动阀门芯410沿阀门通道421的轴向运动,以实现阀门通道421和换热口300的开启和封闭。
当需要封闭换热口300时,通过驱动组件430驱动阀门芯410沿阀门通道421的轴向运动,以实现对阀门通道421的开启和封闭,从而间接实现对换热口300的开启和封闭。在其他实施例中,当阀门芯410直接与换热口300活动连接时,阀门芯410也可以是直接开启或封闭换热口300。
阀门芯410沿阀门通道421的轴向运动时,有多种可选的方式实现对阀门通道421的开启和封闭。
请参考图5,在第一种可选方式的实施例中,阀门通道421可以包括沿轴向设置的至少两段直径不同的部分,阀门芯410通过与阀门通道421的至少两段直径不同的部分配合,以实现对阀门通道421的开启和封闭。
具体地,请参考图5,在一种实施例中,阀门通道421包括沿阀门通道421的轴向排布的开启段4211和封闭段4212,开启段4211的内壁用于与阀门芯410之间形成供流体通过的间隙,封闭段4212的内壁用于与阀门芯410紧密配合,以封闭阀门通道421和换热口300。驱动组件430用于驱动阀门芯410沿阀门通道421的轴向可选择地运动至开启段4211和封闭段4212。
当需要开启阀门通道421时,通过驱动组件430驱动阀门芯410沿轴向运动至开启段4211,开启段4211的内壁与阀门芯410之间形成供流体通过的间隙,从而实现阀门通道421的开启。当需要关闭阀门通道 421时,通过驱动组件430驱动阀门芯410沿轴向运动至封闭段4212,封闭段4212的内壁与阀门芯410紧密配合,从而实现对阀门通道421的封闭。
在第二种可选方式的实施例中,阀门芯410可以沿轴向进入或脱离阀门通道421,以实现对阀门通道421的封闭或开启。
具体地,在一种实施例中,阀门通道421的内壁用于与阀门芯410紧密配合,以封闭阀门通道421和换热口300,驱动组件430用于驱动阀门芯410沿阀门通道421的轴向可选择地运动至阀门通道421内和脱离阀门通道421。
当需要开启阀门通道421时,通过驱动组件430驱动阀门芯410沿轴向运动至脱离阀门通道421,从而实现阀门通道421的开启。当需要关闭阀门通道421时,通过驱动组件430驱动阀门芯410沿轴向运动至阀门通道421内,此时阀门通道421的内壁与阀门芯410紧密配合,从而实现阀门通道421的封闭。
请参考图8和9,在第三种可选方式的实施例中,可以在阀门通道421的一端设置抵触部422,阀门可以沿轴向运动至与抵触部422抵触和分离的位置,从而实现对阀门通道421的封闭或开启。
具体地,请参考图9,在一种实施例中,阀门通道421远离驱动组件430的一端设有抵触部422,抵触围绕阀门通道421的四周,并沿阀门通道421的径向从阀门通道421的边缘向中心延伸,以形成环状结构。驱动组件430用于驱动阀门芯410沿阀门通道421的轴向可选择地运动至与抵触部422抵触和分离。
当需要开启阀门通道421时,通过驱动组件430驱动阀门芯410沿轴向远离抵触部422运动,使阀门芯410与抵触部422分离,从而实现阀门通道421的开启。当需要关闭阀门通道421时,通过驱动组件430驱动阀门芯410沿轴向靠近抵触部422运动,使阀门芯410与抵触部422抵触,从而实现阀门通道421的封闭。
可以理解的是,上述三种阀门芯410沿轴向开启和封闭阀门通道421的方案可以单独使用,也可以将多种方案结合起来使用,从而进一步提升阀门装置400的可靠性。
需要说明的是,阀门装置400的驱动组件430可以是直接驱动阀门芯410运动,也可以是通过传动机构432间接驱动阀门芯410运动。驱 动组件430直接驱动阀门芯410的好处在于,能够简化驱动组件430的结构复杂度和提高驱动组件430的可靠性,例如,选用气缸驱动阀门芯410,气缸的活塞杆与阀门芯410直接连接。驱动组件430通过传动机构432间接驱动阀门芯410运动的好处在于,一方面,单个动力源能驱动的阀门芯410的数量更灵活,例如,便于同时驱动多个阀门芯410运动。另一方面,也便于优化驱动组件430的空间布局,从而有利于缩小阀门装置400的体积。
请参考图4和5,在一种实施例中,当选择驱动组件430通过传动机构432间接驱动阀门芯410运动的方案时,驱动组件430包括驱动电机431和传动机构432,传动机构432的一端与驱动电机431连接,另一端与阀门芯410连接,驱动电机431用于驱动传动机构432运动,以带动阀门芯410沿换热口300的轴向运动。
一方面,传动机构432可以与多个阀门芯410连接,以便于通过传动机构432将驱动电机431的驱动力传递给多个阀门芯410,从而实现通过一个驱动电机431驱动多个阀门芯410运动。另一方面,可以通过传动机构432改变驱动电机431的驱动力的传递方向,使得驱动电机431可以根据实际需求排布成更合适的姿态,从而实现对驱动组件430的空间布局的优化。
具体地,请参考图4和5,在一种实施例中,驱动电机431具有输出轴4311,输出轴4311的轴心线沿换热口300的径向延伸。
由于阀门芯410沿换热口300的轴向运动,因此需要在换热口300的轴向上预留一定的活动空间,如果驱动组件430在换热口300的轴向上占用的空间也较大,二者叠加会使得阀门装置400在换热口300轴向上占用的空间过大,不利于实现阀门装置400的小型化。而本实施例中,当驱动电机431沿换热口300的径向放置时,由于驱动电机431通常在垂直于其输出轴4311的方向上高度较低,使得驱动电机431在换热口300的轴向上占用的空间较小,从而有利于实现阀门装置400的小型化。
驱动组件430的传动机构432可以选用齿轮齿条结构、丝杆滑块结构或其他合适的传动结构。
请参考图4-6,在一种实施例中,当传动机构432选用齿轮齿条结构时,传动机构432包括驱动杆4321、驱动齿轮4322和驱动齿条4323,驱动杆4321沿阀门通道421的径向设置,驱动齿轮4322同轴套设于驱 动杆4321,驱动齿条4323沿阀门通道421的轴向设置,驱动齿条4323与驱动齿轮4322啮合,且驱动齿条4323与阀门芯410连接,驱动电机431用于驱动驱动杆4321转动,以带动驱动齿条4323和阀门芯410沿阀门通道421的轴向运动。
当需要驱动阀门芯410运动时,先通过驱动电机431驱动驱动杆4321转动,通过驱动杆4321带动驱动齿轮4322转动,通过驱动齿轮4322带动驱动齿条4323沿阀门通道421的轴向运动,进而通过驱动齿条4323带动阀门芯410沿阀门通道421的轴向运动。
在其他实施例中,也可以通过丝杆滑块结构或其他合适的传动结构替换齿轮齿条结构。例如,当选用丝杆滑块结构替换齿轮齿条结构时,可以在驱动电机431的输出轴4311上连接驱动丝杆,驱动丝杆沿阀门通道421的轴向设置,驱动丝杆上活动套设一个滑块,滑块沿阀门通道421的轴向延伸至与阀门芯410连接。当需要驱动阀门芯410运动时,通过电机驱动丝杆转动,进而带动滑块和阀门芯410沿阀门通道421的轴向运动。
请参考图4和7,在一种实施例中,驱动组件430还包括行程检测组件433,行程检测组件433包括行程检测齿轮4331、行程检测齿条4332和行程检测开关4333,行程检测齿轮4331同轴套设于驱动杆4321,行程检测齿条4332与驱动杆4321垂直,且与行程检测齿轮4331啮合,行程检测开关4333设置于行程检测齿条4332的延长线上,驱动电机431驱动驱动杆4321转动时,带动行程检测齿条4332沿行程检测齿条4332的延伸方向运动,以使行程检测齿条4332接触并触发行程检测开关4333。
当驱动电机431驱动阀门芯410运动时,驱动杆4321同时带动行程检测齿轮4331转动,行程检测齿轮4331带动行程检测齿条4332沿自身的延长线运动,当阀门运动至封闭或开启阀门通道421的位置时,行程检测齿条4332恰好运动至与行程检测开关4333接触,以触发行程检测开关4333,从而为驱动组件430的电控提供参考信号。
请参考图4和5,在一种实施例中,换热口300为多个,阀门装置400包括多个阀门通道421和多个阀门芯410,多个阀门通道421与多个换热口300一一对应地连接,多个阀门芯410一一对应地设置于多个阀门通道421内传动机构432与多个阀门芯410连接,驱动电机431驱动传动机构432运动时,传动机构432能够带动多个阀门芯410沿换热 口300的轴向运动。通过驱动电机431与传动机构432的配合,实现了同时驱动多个阀门芯410运动。
具体地,请参考图4和5,在一种实施例中,当传动机构432选用齿轮齿条结构时,传动机构432包括驱动杆4321、多个驱动齿轮4322和多个驱动齿条4323,驱动杆4321沿阀门通道421的径向设置,多个驱动齿轮4322均同轴套设于驱动杆4321,多个驱动齿条4323均沿阀门通道421的轴向设置,多个驱动齿条4323与多个阀门芯410一一对应地连接,且多个驱动齿条4323一一对应地与多个驱动齿轮4322啮合。
当需要驱动多个阀门芯410运动时,通过驱动电机431驱动驱动杆4321转动,带动驱动杆4321上的多个驱动齿轮4322转动,通过多个驱动齿轮4322带动多个驱动齿条4323沿阀门通道421的轴向运动,进而通过多个驱动齿条4323带动多个阀门芯410沿阀门通道421的轴向运动。
请参考图4和5,在一种实施例中,驱动组件430还包括多个支撑座434,驱动杆4321与支撑座434转动连接,驱动齿轮4322和驱动齿条4323位于支撑座434内。
一方面,通过支撑座434实现了对驱动杆4321的支撑,另一方面,支撑座434可以对内部的驱动齿轮4322和驱动齿条4323起到保护和限位的作用。
请参考图4和5,在一种实施例中,传动机构432还包括第一传动齿轮4324和第二传动齿轮4325,驱动电机431的输出轴4311与第一传动齿轮4324同轴连接,第二传动齿轮4325同轴套设于驱动杆4321,第一传动齿轮4324与第二传动齿轮4325啮合。
当需要驱动传动杆转动时,通过驱动电机431驱动第一传动齿轮4324转动,通过第一传动齿轮4324带动第二传动齿轮4325转动,进而通过第二传动齿轮4325带动传动轴转动。可以理解的是,当第一传动齿轮4324和第二传动齿轮4325的模数不同时,第一传动齿轮4324和第二传动齿轮4325还可以用于调节驱动电机431输出给驱动杆4321的转速。
另一方面,本实施例还提供一种阀门装置400,该阀门装置400可以应用于上述的烹饪设备。
请参考图1-7,该阀门装置400包括阀门座420、阀门芯410和驱动 组件430。
阀门座420具有两端贯通的阀门通道421,阀门芯410与阀门座420活动连接驱动组件430与阀门芯410连接,驱动组件430用于驱动阀门芯410至少部分地在阀门通道421内沿阀门通道421的轴向运动,以实现阀门通道421的开启和封闭。
可以理解的是,当阀门装置400应用于上述的烹饪设备,并安装于换热口300时,阀门通道421的轴向可以与换热口300的轴向相同,阀门通道421的径向可以与换热口300的径向相同。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (26)

  1. 一种烹饪设备,其特征在于,包括:
    主体部,所述主体部具有烹饪腔体;
    制冷装置,包括换热腔体和制冷元件,所述制冷元件设置在所述换热腔体内;
    换热口,所述换热口位于所述主体部与所述制冷装置相邻的侧部,且所述换热口将烹饪腔体与换热腔体连通;
    以及阀门装置,所述阀门装置包括阀门芯,所述阀门芯能够至少部分地在所述换热口内沿所述换热口的轴向运动,以实现所述换热口的开启和封闭。
  2. 如权利要求1所述的烹饪设备,其特征在于,所述阀门装置还包括阀门座和驱动组件,所述阀门座连接于所述换热口,所述阀门芯与所述阀门座活动连接,所述驱动组件与所述阀门芯连接,所述驱动组件用于驱动所述阀门芯沿所述换热口的轴向运动,以实现所述换热口的开启和封闭。
  3. 如权利要求2所述的烹饪设备,其特征在于,所述阀门座具有沿所述换热口的轴向延伸的阀门通道,所述阀门通道的两端贯通,所述阀门通道与所述换热口密封连接,所述阀门芯与所述阀门通道活动连接,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向运动,以实现所述阀门通道和换热口的开启和封闭。
  4. 如权利要求3所述的烹饪设备,其特征在于,所述阀门通道包括沿所述阀门通道的轴向排布的开启段和封闭段,所述开启段的内壁用于与所述阀门芯之间形成供流体通过的间隙,所述封闭段的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至所述开启段和封闭段。
  5. 如权利要求3所述的烹饪设备,其特征在于,所述阀门通道远离所述驱动组件的一端设有抵触部,所述抵触围绕所述阀门通道的四周,并沿所述阀门通道的径向从所述阀门通道的边缘向中心延伸,以形成环状结构;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至与所述抵触部抵触和分离。
  6. 如权利要求3所述的烹饪设备,其特征在于,所述阀门通道的 内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至阀门通道内和脱离所述阀门通道。
  7. 如权利要求2所述的烹饪设备,其特征在于,所述驱动组件包括驱动电机和传动机构,所述传动机构的一端与所述驱动电机连接,另一端与所述阀门芯连接,所述驱动电机用于驱动所述传动机构运动,以带动所述阀门芯沿所述换热口的轴向运动。
  8. 如权利要求7所述的烹饪设备,其特征在于,所述驱动电机具有输出轴,所述输出轴的轴心线沿所述换热口的径向延伸。
  9. 如权利要求7所述的烹饪设备,其特征在于,所述传动机构包括驱动杆、驱动齿轮和驱动齿条,所述驱动杆沿所述阀门通道的径向设置,所述驱动齿轮同轴套设于所述驱动杆,所述驱动齿条沿所述阀门通道的轴向设置,所述驱动齿条与所述驱动齿轮啮合,且所述驱动齿条与所述阀门芯连接,所述驱动电机用于驱动所述驱动杆转动,以带动所述驱动齿条和阀门芯沿所述阀门通道的轴向运动。
  10. 如权利要求9所述的烹饪设备,其特征在于,所述驱动组件还包括行程检测组件,所述行程检测组件包括行程检测齿轮、行程检测齿条和行程检测开关,所述行程检测齿轮同轴套设于所述驱动杆,所述行程检测齿条与所述驱动杆垂直,且与所述行程检测齿轮啮合,所述行程检测开关设置于所述行程检测齿条的延长线上,所述驱动电机驱动所述驱动杆转动时,带动所述行程检测齿条沿所述行程检测齿条的延伸方向运动,以使所述行程检测齿条接触并触发所述行程检测开关。
  11. 如权利要求7所述的烹饪设备,其特征在于,所述换热口为多个,所述阀门装置包括多个阀门通道和多个所述阀门芯,多个所述阀门通道与多个所述换热口一一对应地连接,多个所述阀门芯一一对应地设置于多个所述阀门通道内;所述传动机构与多个所述阀门芯连接,所述驱动电机驱动所述传动机构运动时,所述传动机构能够带动多个所述阀门芯沿所述换热口的轴向运动。
  12. 权利要求11所述的烹饪设备,其特征在于,所述传动机构包括驱动杆、多个驱动齿轮和多个驱动齿条,所述驱动杆沿所述阀门通道的径向设置,多个所述驱动齿轮均同轴套设于所述驱动杆,多个所述驱动齿条均沿所述阀门通道的轴向设置,多个所述驱动齿条与多个所述阀 门芯一一对应地连接,且多个所述驱动齿条一一对应地与多个所述驱动齿轮啮合。
  13. 如权利要求8-12任一项所述的烹饪设备,其特征在于,所述驱动组件还包括多个支撑座,所述驱动杆与所述支撑座转动连接,所述驱动齿轮和所述驱动齿条位于所述支撑座内。
  14. 如权利要求8-12任一项所述的烹饪设备,其特征在于,所述传动机构还包括第一传动齿轮和第二传动齿轮,所述驱动电机的输出轴与所述第一传动齿轮同轴连接,所述第二传动齿轮同轴套设于所述驱动杆,所述第一传动齿轮与所述第二传动齿轮啮合。
  15. 一种阀门装置,其特征在于,包括:
    阀门座,所述阀门座具有两端贯通的阀门通道;
    阀门芯,所述阀门芯与所述阀门座活动连接;
    以及驱动组件,所述驱动组件与所述阀门芯连接,所述驱动组件用于驱动所述阀门芯至少部分地在所述阀门通道内沿所述阀门通道的轴向运动,以实现所述阀门通道的开启和封闭。
  16. 如权利要求15所述的阀门装置,其特征在于,所述阀门通道包括沿所述阀门通道的轴向排布的开启段和封闭段,所述开启段的内壁用于与所述阀门芯之间形成供流体通过的间隙,所述封闭段的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至所述开启段和封闭段。
  17. 如权利要求15所述的阀门装置,其特征在于,所述阀门通道远离所述驱动组件的一端设有抵触部,所述抵触围绕所述阀门通道的四周,并沿所述阀门通道的径向从所述阀门通道的边缘向中心延伸,以形成环状结构;所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至与所述抵触部抵触和分离。
  18. 如权利要求15所述的阀门装置,其特征在于,所述阀门通道的内壁用于与所述阀门芯紧密配合,以封闭所述阀门通道和换热口,所述驱动组件用于驱动所述阀门芯沿所述阀门通道的轴向可选择地运动至阀门通道内和脱离所述阀门通道。
  19. 如权利要求15所述的阀门装置,其特征在于,所述驱动组件包括驱动电机和传动机构,所述传动机构的一端与所述驱动电机连接, 另一端与所述阀门芯连接,所述驱动电机用于驱动所述传动机构运动,以带动所述阀门芯沿所述阀门通道的轴向运动。
  20. 如权利要求19所述的阀门装置,其特征在于,所述驱动电机具有输出轴,所述输出轴的轴心线沿所述换热口的径向延伸。
  21. 如权利要求19所述的阀门装置,其特征在于,所述传动机构包括驱动杆、驱动齿轮和驱动齿条,所述驱动杆沿所述阀门通道的径向设置,所述驱动齿轮同轴套设于所述驱动杆,所述驱动齿条沿所述阀门通道的轴向设置,所述驱动齿条与所述驱动齿轮啮合,且所述驱动齿条与所述阀门芯连接,所述驱动电机用于驱动所述驱动杆转动,以带动所述驱动齿条和阀门芯沿所述阀门通道的轴向运动。
  22. 如权利要求21所述的阀门装置,其特征在于,所述驱动组件还包括行程检测组件,所述行程检测组件包括行程检测齿轮、行程检测齿条和行程检测开关,所述行程检测齿轮同轴套设于所述驱动杆,所述行程检测齿条与所述驱动杆垂直,且与所述行程检测齿轮啮合,所述行程检测开关设置于所述行程检测齿条的延长线上,所述驱动电机驱动所述驱动杆转动时,带动所述行程检测齿条沿所述行程检测齿条的延伸方向运动,以使所述行程检测齿条接触并触发所述行程检测开关。
  23. 如权利要求19所述的阀门装置,其特征在于,所述阀门装置包括多个阀门通道和多个所述阀门芯,多个所述阀门芯一一对应地设置于多个所述阀门通道内;所述传动机构与多个所述阀门芯连接,所述驱动电机驱动所述传动机构运动时,所述传动机构能够带动多个所述阀门芯沿所述阀门通道的轴向运动。
  24. 如权利要求23所述的阀门装置,其特征在于,所述传动机构包括驱动杆、多个驱动齿轮和多个驱动齿条,所述驱动杆沿所述阀门通道的径向设置,多个所述驱动齿轮均同轴套设于所述驱动杆,多个所述驱动齿条均沿所述阀门通道的轴向设置,多个所述驱动齿条与多个所述阀门芯一一对应地连接,且多个所述驱动齿条一一对应地与多个所述驱动齿轮啮合。
  25. 如权利要求21-24任一项所述的阀门装置,其特征在于,所述驱动组件还包括多个支撑座,所述驱动杆与所述支撑座转动连接,所述驱动齿轮和所述驱动齿条位于所述支撑座内。
  26. 如权利要求21-24任一项所述的阀门装置,其特征在于,所述 传动机构还包括第一传动齿轮和第二传动齿轮,所述驱动电机的输出轴与所述第一传动齿轮同轴连接,所述第二传动齿轮同轴套设于所述驱动杆,所述第一传动齿轮与所述第二传动齿轮啮合。
PCT/CN2022/126538 2022-10-20 2022-10-20 一种烹饪设备及其阀门装置 WO2024082242A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126538 WO2024082242A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其阀门装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126538 WO2024082242A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其阀门装置

Publications (1)

Publication Number Publication Date
WO2024082242A1 true WO2024082242A1 (zh) 2024-04-25

Family

ID=90736617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126538 WO2024082242A1 (zh) 2022-10-20 2022-10-20 一种烹饪设备及其阀门装置

Country Status (1)

Country Link
WO (1) WO2024082242A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320609A1 (de) * 1983-06-08 1984-12-13 BKS GmbH, 5620 Velbert Selbsttaetiger tuerschliesser mit elektro-hydraulischer feststelleinrichtung
EP1120553A2 (de) * 2000-01-26 2001-08-01 Gustav Wahler GmbH u. Co.KG Ventil, insbesondere thermostatisches Ventil
CN204459369U (zh) * 2015-01-26 2015-07-08 毛德涛 一种气体流量调节阀
CN111928566A (zh) * 2020-08-05 2020-11-13 安徽康佳同创电器有限公司 一种具有加热和冷藏的冰箱
CN216715238U (zh) * 2021-10-11 2022-06-10 广东万和新电气股份有限公司 一种燃气调节阀、阀体总成及燃气灶

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320609A1 (de) * 1983-06-08 1984-12-13 BKS GmbH, 5620 Velbert Selbsttaetiger tuerschliesser mit elektro-hydraulischer feststelleinrichtung
EP1120553A2 (de) * 2000-01-26 2001-08-01 Gustav Wahler GmbH u. Co.KG Ventil, insbesondere thermostatisches Ventil
CN204459369U (zh) * 2015-01-26 2015-07-08 毛德涛 一种气体流量调节阀
CN111928566A (zh) * 2020-08-05 2020-11-13 安徽康佳同创电器有限公司 一种具有加热和冷藏的冰箱
CN216715238U (zh) * 2021-10-11 2022-06-10 广东万和新电气股份有限公司 一种燃气调节阀、阀体总成及燃气灶

Similar Documents

Publication Publication Date Title
EP3401623B1 (en) Refrigerator and multipath air supply apparatus for refrigerator
WO2024082242A1 (zh) 一种烹饪设备及其阀门装置
JP6533111B2 (ja) 冷媒切換弁
WO2020073848A1 (zh) 断路器
RU2653707C1 (ru) Центробежный компрессор и центробежное устройство охлаждения воды
CN115633884A (zh) 食材烹饪设备及其制冷组件
CN110313816A (zh) 可实现有压烹饪与无压烹饪的烹饪器具
JP4574425B2 (ja) バイパス切替バルブ付熱交換器
CN115654161A (zh) 食材烹饪设备的冷热隔离装置及隔离阀组件
CN109989631B (zh) 一种电蒸箱门锁
CN114744813B (zh) 一种自散热式起动机
CN115624278A (zh) 食材烹饪设备及其冷热隔离装置
CN111473521A (zh) 燃气分配器及应用有该燃气分配器的燃气热水器
KR100712971B1 (ko) 냉장 기능을 갖는 식탁
WO2024082239A1 (zh) 食材烹饪设备及其冷热隔离装置
WO2024082249A1 (zh) 食材烹饪设备的冷热隔离装置及隔离阀组件
WO2024082240A1 (zh) 食材烹饪设备的冷热隔离装置及隔离阀组件
CN112833222A (zh) 温控转换阀
WO2024082247A1 (zh) 食材烹饪设备及其制冷组件
CN220355858U (zh) 用于制冷设备的门体组件及制冷设备
CN113028471A (zh) 一种菜品保温油烟机
CN208941730U (zh) 可实现有压烹饪与无压烹饪的烹饪器具
WO2024082250A1 (zh) 一种烹饪设备和阀门装置
CN112134167A (zh) 一种自动化高效降温电力电气控制柜
CN111750597A (zh) 制冷器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962429

Country of ref document: EP

Kind code of ref document: A1