WO2024082073A1 - Sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero - Google Patents

Sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero Download PDF

Info

Publication number
WO2024082073A1
WO2024082073A1 PCT/CL2023/050088 CL2023050088W WO2024082073A1 WO 2024082073 A1 WO2024082073 A1 WO 2024082073A1 CL 2023050088 W CL2023050088 W CL 2023050088W WO 2024082073 A1 WO2024082073 A1 WO 2024082073A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
vehicle
parapet
inclination
lidar device
Prior art date
Application number
PCT/CL2023/050088
Other languages
English (en)
French (fr)
Inventor
Gagarin Anibal SEPÚLVEDA LEÓN
Original Assignee
Sepulveda Leon Gagarin Anibal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepulveda Leon Gagarin Anibal filed Critical Sepulveda Leon Gagarin Anibal
Publication of WO2024082073A1 publication Critical patent/WO2024082073A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to the field of mining technologies, and in particular provides a system, mining vehicle and method for detecting and monitoring parapets in a mining environment.
  • a parapet detection and monitoring system for mining vehicles comprises: a LiDAR device; a positioning receiver; an inertial tilt sensor; a processor operatively connected to the LiDAR device, the positioning receiver and the inertial inclination; and a radio frequency transceiver operatively connected to the processor; wherein the processor is configured to: receive data from said LiDAR device, said positioning receiver and said inertial tilt sensor; obtaining a distance to a parapet from said data from said LiDAR device; obtaining a topography of said parapet from said data from said LiDAR device; obtaining a tilt of said vehicle from said inertial tilt sensor data; obtaining a position of said vehicle from said positioning receiver data; transmitting data corresponding to said distance, said topography, said inclination and said position to a remote server by means of said radio frequency transceiver.
  • a mining vehicle that comprises a detection and monitoring system for parapets of the previous object.
  • a method for detecting and monitoring parapets in a mining environment that comprises the steps of:
  • a system comprising: a LiDAR device; a positioning receiver; an inertial tilt sensor; a processor operatively connected to the LiDAR device, the positioning receiver and the inertial tilt sensor; and a radio frequency transceiver operatively connected to the processor;
  • Figure 1 illustrates a schematic diagram of a first embodiment of the system that is the object of the present invention.
  • Figure 2 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in an initial position and before operating the LiDAR device.
  • Figure 3 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in an initial position and after beginning the operation of the LiDAR device.
  • Figure 4 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in a first intermediate position and after beginning the operation of the LiDAR device.
  • Figure 5 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in a second intermediate position and after beginning the operation of the LiDAR device.
  • Figure 6 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in a third intermediate position and after beginning the operation of the LiDAR device.
  • Figure 7 illustrates a schematic view of a first visualized graphical interface of an embodiment of the system that is the object of the present invention with the mining vehicle in a final position after beginning the operation of the LiDAR device.
  • the present invention provides a system (100) for detecting and monitoring parapets for mining vehicles (200) that comprises: -a LiDAR device (1); - a positioning receiver (2); an inertial inclination sensor (3); a processor (4) operatively connected to the LiDAR device (1), the positioning receiver (2) and the inertial inclination sensor (3); and a radio frequency transceiver operatively connected to the processor (2); wherein the processor (2) is configured to: receive data from said LiDAR device (1), said positioning receiver (2) and said inertial inclination sensor (3); obtaining a distance to a parapet from said data from said LiDAR device (1); obtain a topography of said parapet from said data from said LiDAR device (1); obtaining an inclination of said vehicle from said inertial inclination sensor data (3); obtaining a position of said vehicle from said positioning receiver data (2); and transmit data corresponding to said distance, said topography, said inclination and said position to a remote server (6) by means of said radio frequency transcei
  • the processor can be configured to obtain the topography of the parapet when the distance between the vehicle (200) and the parapet is less than a first pre-established threshold distance.
  • the first preset threshold distance may be a distance previously programmed into the processor (4), or may be determined based on other factors.
  • said first threshold distance may be a fraction or a multiple of a length of the mining vehicle (200).
  • said length fraction may be a quarter of the length.
  • the processor can be configured to obtain the inclination of the vehicle (200) when a previously established condition is met.
  • a previously established condition may be that the vehicle (200) is stopped or that its speed is less than a certain threshold value.
  • said pre-established condition may be that the distance between the vehicle (200) and the parapet is less than a second pre-established threshold distance.
  • the second pre-established threshold distance can be a distance previously programmed in the processor (4), or it can be determined based on other factors.
  • said second threshold distance may be a fraction of a length of the mining vehicle (200).
  • said length fraction may be one tenth of the length.
  • said first threshold distance and said second threshold distance may or may not be the same distance without this limiting the scope of the present invention.
  • a LiDAR device (1) will be understood as a device or set of elements that allows determining the distance from a laser emitter to an object or surface. using a pulsed laser beam.
  • said LiDAR device can generate a cloud of points, each with a corresponding distance, by directing the laser beam.
  • a positioning receiver (2) will be understood as a device or set of elements that allows obtaining a position of the mining vehicle (200).
  • the corresponding positioning system can be global or local, as well as a combination between them, without this limiting the scope of the present invention.
  • said positioning system can be an indoor or outdoor positioning system without this limiting the scope of the present invention.
  • said positioning system can be a satellite positioning system (GNSS), such as GPS, Galileo, Glonass or Beidou.
  • GNSS satellite positioning system
  • said positioning system may be a Wi-Fi triangulation positioning system.
  • an inertial inclination sensor will be understood as a device that measures and reports about the speed, orientation and gravitational forces of a device, using a combination of accelerometers and gyroscopes.
  • the system (100) may comprise a display interface (7) operatively connected to the processor (4) and the processor (4) may be additionally configured to display said distance to the parapet, said topography, said inclination or said position, as well as a combination between them, in said visualization interface (7).
  • the system (100) may comprise alarm signaling means (8) operatively connected to the processor (4), said alarm signaling means (8) being selected from the group formed by beacons, sirens , vibrators, as well as a combination between them.
  • said processor (4) can be configured to obtain said distance through a previously trained machine learning algorithm.
  • the specific architecture of said machine learning algorithm, as well as the nature of the data used for its training, do not limit the scope of the present invention.
  • the artificial intelligence algorithms can be previously trained with a set of labeled data corresponding to a LiDAR device, where said data corresponds to different distances between a vehicle (200) and a parapet.
  • the labeled data can include an indicator that shows whether the parapet is in good condition or defective, as well as the type of defect in the topography of the parapet.
  • the artificial intelligence algorithm may have an architecture that is selected from the group formed by neural networks, convolutional neural networks, recurrent convolutional neural networks, decision trees, as well as a combination between them.
  • said processor (4) can be configured to obtain said topography by means of a previously trained machine learning algorithm.
  • the specific architecture of said machine learning algorithm, as well as the nature of the data used for its training, do not limit the scope of the present invention.
  • the artificial intelligence algorithms can be previously trained with a set of labeled data corresponding to a LiDAR device, where said data corresponds to parapets in good condition and defective parapets. Additionally, data labeled as defective may include an indicator that accounts for the type of defect in the parapet topography.
  • the artificial intelligence algorithm may have an architecture that is selected from the group formed by neural networks, convolutional neural networks, recurrent convolutional neural networks, decision trees, as well as a combination between them.
  • said processor (4) can be configured to obtain said inclination through a previously trained machine learning algorithm.
  • the specific architecture of said machine learning algorithm, as well as the nature of the data used for its training, do not limit the scope of the present invention.
  • the artificial intelligence algorithms can be previously trained with a set of labeled data corresponding to an inertial inclination sensor, where said data correspond to different inclinations of the vehicle (200).
  • the labeled data may include an indicator that accounts for whether the vehicle (200) is stopped or moving, as well as the speed of movement of the vehicle (200).
  • the artificial intelligence algorithm may have an architecture that is selected from the group formed by neural networks, convolutional neural networks, recurrent convolutional neural networks, decision trees, as well as a combination between them.
  • the system may additionally comprise a secondary laser sensor (9) operatively connected to the processor (4).
  • This secondary laser sensor serves as a backup in case the LiDAR device fails.
  • said processor (4) may additionally be configured to determine whether a defect exists in the parapet from said topography and to generate an alarm in response to determining that a defect exists in the parapet. For example, and without this limiting the scope of the requested protection, the processor (4) may be configured to determine that a defect exists in the parapet if the height of said parapet is less than a threshold height along a length greater than a threshold length.
  • Said threshold height may be a height previously programmed in the processor (4), or it may be determined based on other factors.
  • said threshold height may be a fraction of a height of a tire, for example a rear tire, of the mining vehicle (200).
  • said height fraction may be half the height.
  • said threshold length may be a length previously programmed in the processor (4), or it may be determined based on other factors.
  • said threshold length may be a fraction of a width of the mining vehicle (200).
  • said width fraction may be half the width.
  • the processor (4) may additionally be configured to generate an alarm if the inclination of the vehicle (200) is greater than a threshold inclination.
  • Said threshold inclination may be an inclination previously programmed in the processor (4), or it may be determined based on other factors without this limiting the scope of the present invention.
  • the system may additionally comprise the remote server (5) and said remote server (5) may be configured to access, read and write a database (6) in which said data corresponding to said distance, said topography, said inclination and said position.
  • the system may additionally comprise a housing that houses said LiDAR device (1), said positioning receiver (2), said inertial inclination sensor (3), said processor (4) and said radio frequency transceiver.
  • a housing that houses said LiDAR device (1), said positioning receiver (2), said inertial inclination sensor (3), said processor (4) and said radio frequency transceiver.
  • the shape, dimensions and materials of said casing do not limit the scope of the present invention.
  • said processor (4) may be configured to detect a reversing operation of said vehicle (200) and to activate the operation of said LiDAR device (1) in response to detecting said reversing operation. Said detection can be carried out, for example and without this limiting the scope of the present invention, by means of said inertial inclination sensor.
  • said processor (4) may receive a reverse indication from the mining vehicle (200), for example, when a reverse gear has been selected.
  • the present invention also provides a mining vehicle (200) that comprises a parapet detection and monitoring system (100) of the present invention. All the options previously described for the system (100) individually are applicable to the system forming part of the mining vehicle (200), without this limiting the scope of the present invention.
  • said system (100) can be mounted in a rear position of said vehicle (200).
  • the positioning receiver (2) of the system (100) can be a positioning receiver of said vehicle (200).
  • the system (100) may comprise a display interface (7) and said display interface (7) may be positioned in a driving cabin of said vehicle (200).
  • system (100) may comprise alarm signaling means (8) and said alarm signaling means (100) may be positioned in a driving cabin of said vehicle.
  • the mining vehicle (200) may additionally comprise a folding hopper.
  • the processor (4) of the system (100) can be configured to control the operation of said folding hopper based on said distance to the parapet, said topography, said inclination or said position, as well as a combination between the themselves.
  • a method for detecting and monitoring parapets in a mining environment which comprises the steps of:
  • a system comprising: a LiDAR device (1); a positioning receiver (2); an inertial inclination sensor (3); a processor (4) operatively connected to the LiDAR device (1), the positioning receiver (2) and the inertial inclination sensor (3); and a radio frequency transceiver operatively connected to the processor (4);
  • the method may additionally comprise the step of determining, through the processor (4), whether there is a defect in the parapet from said topography and generating, through the processor, an alarm in response. to determine that there is a defect in the parapet.
  • the processor (4) can determine that a defect exists in the parapet if the height of said parapet is less than a threshold height over a length greater than a threshold length.
  • the method may additionally comprise the step of generating an alarm, by said processor (4), if the inclination of said vehicle (200) is greater than a threshold inclination.
  • the method may additionally comprise the step of detecting, by means of said processor (4), a reversing operation of said vehicle (200) and to activate the operation of said LiDAR device (1) in response to detect said rollback operation.
  • system (100), mining vehicle (200) and method for detecting and monitoring parapets in a mining environment that allows overcoming the deficiencies of the state of the art.
  • the different options previously described for different technical characteristics of the system (100), the mining vehicle (200) and/or the method of the present invention can be combined with each other, or with other known options for a person normally versed in the matter, in any manner provided without limiting the scope of this application.
  • Figures 2 to 7 illustrate a sequence of use of a first embodiment of the system (100) that is the object of the present invention. Additionally, an illustration of the position of the mining vehicle corresponding to each figure is seen as an insert.
  • Figure 2 illustrates a schematic view of a first graphical display interface of an embodiment of the system that is the object of the present invention with the mining vehicle in an initial position and before operating the LiDAR device.
  • the graphical user interface shows a mapping of the terrain in which the mining vehicle is located.
  • the mining vehicle is in a first intermediate position. In this case, although the system can obtain a distance between the vehicle and the parapet, said distance is greater than the maximum measurable distance, which is expressed by the circle in segmented lines in the lower left position of the image.
  • the mining vehicle is in a second intermediate position. In this case, the distance between the vehicle and the parapet is equal to the maximum average distance, so the interface shows said distance in the lower left position of the image.
  • the mining vehicle has already reached the parapet.
  • the distance between the vehicle and the parapet is shown as equal to 0 in the lower left position of the image.
  • the image shows the height of two points on the parapet, measured from the ground level where the mining vehicle is located.
  • a first stage which is called grounding
  • the mining vehicle approaches the parapet.
  • This stage has a maximum estimated duration of 20 to 30 seconds and, in this time, the system must be able to perform an online analysis of the crown and mantle of the parapet, determine online the distance between the vehicle and the parapet, determine tilt the vehicle in line and activate any alarms that are necessary.
  • This stage culminates with the vehicle stopping near the parapet.
  • a second stage which is called lifting
  • the vehicle lifts the hopper with the content that it wants to unload at the dump.
  • This stage has a minimum estimated duration of 25 seconds and, in this time, the system must be able to determine the vehicle's inclination online and activate any alarm that is necessary.
  • This stage culminates with the total discharge of the contents of the hopper into the dump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

La presente invención se relaciona con el campo de las tecnologías para la minería, y en particular proporciona un sistema para detectar y monitorear pretiles en un entorno minero, el sistema que comprende: un dispositivo LiDAR; un receptor de posicionamiento; un sensor de inclinación inercial; un procesador conectado operativamente al dispositivo LiDAR, al receptor de posicionamiento y al sensor de inclinación inercial; y un transceptor de radiofrecuencia conectado operativamente al procesador; en donde el procesador está configurado para: recibir datos desde dicho dispositivo LiDAR, dicho receptor de posicionamiento y dicho sensor de inclinación inercial; obtener una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR; obtener una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR; obtener una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación inercial; obtener una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento; y transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto mediante dicho transceptor de radiofrecuencia. Se proporciona, además, un vehículo minero y un método para detectar y monitorear pretiles en un entorno minero.

Description

SISTEMA, VEHÍCULO MINERO Y MÉTODO PARA DETECTAR Y MONITOREAR PRETILES EN UN ENTORNO MINERO
CAMPO DE APLICACIÓN
[0001 ]La presente invención se relaciona con el campo de las tecnologías para la minería, y en particular proporciona un sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero.
ANTECEDENTES
[0002]En los entornos mineros, una operación sensible es la aproximación de un vehículo minero al borde de un botadero de descarga. Dichos botaderos, de acuerdo con la normativa chilena, requieren presentar un pretil que funcione como elemento de barrera para permitir una aproximación segura del vehículo minero al borde del botadero. En algunos casos, sin embargo, se verifica que, durante la operación, dichos pretiles no poseen una dimensión acorde con la normativa, por lo que la aproximación del vehículo al botadero se torna riesgosa. Adicionalmente, la detección de dichos pretiles defectuosos requiere detener la operación en el botadero para proceder con su mantenimiento o reparación.
[0003] En ciertos entornos, además, puede existir una debilidad en la compactación del terreno que se manifiesta como una inclinación excesiva cuando el vehículo se encuentra realizando operaciones en el entorno minero, causando pérdida de estabilidad durante la operación.
[0004]Debido a lo anterior, se requiere de una solución que permita automatizar la detección y monitoreo de pretiles en entornos mineros.
RESUMEN DE LA INVENCIÓN
[0005] En un primer objeto, se proporciona un sistema de detección y monitoreo de pretiles para vehículos mineros que comprende: un dispositivo LiDAR; un receptor de posicionamiento; un sensor de inclinación inercial; un procesador conectado operativamente al dispositivo LiDAR, al receptor de posicionamiento y al sensor de inclinación ¡nercial; y un transceptor de radiofrecuencia conectado operativamente al procesador; en donde el procesador está configurado para: recibir datos desde dicho dispositivo LiDAR, dicho receptor de posicionamiento y dicho sensor de inclinación ¡nercial; obtener una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR; obtener una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR; obtener una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación ¡nercial; obtener una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento; transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto mediante dicho transceptor de radiofrecuencia.
[0006]En un segundo objeto, se proporciona un vehículo minero que comprende un sistema de detección y monitoreo de pretiles del objeto anterior.
[0007] En un tercer objeto se proporciona un método para detectar y monitorear pretiles en un entorno minero que comprende los pasos de:
[0008]-proporcionar un sistema que comprende: un dispositivo LiDAR; un receptor de posicionamiento; un sensor de inclinación ¡nercial; un procesador conectado operativamente al dispositivo LiDAR, al receptor de posicionamiento y al sensor de inclinación ¡nercial; y un transceptor de radiofrecuencia conectado operativamente al procesador;
[0009]-recibir, mediante dicho procesador, datos desde dicho dispositivo LiDAR, dicho receptor de posicionamiento y dicho sensor de inclinación ¡nercial;
[0010]-obtener, mediante dicho procesador, una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR;
[0011]-obtener, mediante dicho procesador, una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR;
[0012]-obtener, mediante dicho procesador, una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación ¡nercial; [0013]-obtener, mediante dicho procesador, una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento; y
[0014]-transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto mediante dicho transceptor de radiofrecuencia.
DESCRIPCIÓN DE LAS FIGURAS
[0015]La figura 1 ¡lustra un diagrama esquemático de una primera realización del sistema que es objeto de la presente invención.
[0016] La figura 2 ¡lustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una posición inicial y antes de operar el dispositivo LiDAR.
[0017] La figura 3 ilustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una posición inicial y luego de comenzar la operación del dispositivo LiDAR.
[0018] La figura 4 ¡lustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una primera posición intermedia y luego de comenzar la operación del dispositivo LiDAR.
[0019] La figura 5 ilustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una segunda posición intermedia y luego de comenzar la operación del dispositivo LiDAR.
[0020] La figura 6 ilustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una tercera posición intermedia y luego de comenzar la operación del dispositivo LiDAR. [0021] La figura 7 ¡lustra una vista esquemática de una primera interfaz gráfica de visualizaron de una realización del sistema que es objeto de la presente invención con el vehículo minero en una posición final luego de comenzar la operación del dispositivo LiDAR.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
[0022]La presente invención proporciona un sistema (100) de detección y monitoreo de pretiles para vehículos mineros (200) que comprende: -un dispositivo LiDAR (1 ); - un receptor de posicionamiento (2); un sensor de inclinación inercial (3); un procesador (4) conectado operativamente al dispositivo LiDAR (1 ), al receptor de posicionamiento (2) y al sensor de inclinación inercial (3); y un transceptor de radiofrecuencia conectado operativamente al procesador (2); en donde el procesador (2) está configurado para: recibir datos desde dicho dispositivo LiDAR (1 ), dicho receptor de posicionamiento (2) y dicho sensor de inclinación inercial (3); obtener una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR (1 ); obtener una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR (1 ); obtener una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación inercial (3); obtener una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento (2); y transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto (6) mediante dicho transceptor de radiofrecuencia.
[0023] En una realización preferida, sin que esto limite el alcance de la protección solicitada, el procesador puede estar configurado para obtener la topografía del pretil cuando la distancia entre el vehículo (200) y el pretil es menor que una primera distancia umbral preestablecida. En estas realizaciones preferidas, la primera distancia umbral preestablecida puede ser una distancia previamente programada en el procesador (4), o puede determinarse en función de otros factores. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha primera distancia umbral puede ser una fracción o un múltiplo de una longitud del vehículo minero (200). En una realización más preferida, sin que esto limite el alcance de la presente invención, dicha fracción de longitud puede ser un cuarto de la longitud. [0024] En otra realización preferida, sin que esto limite el alcance de la protección solicitada, el procesador puede estar configurado para obtener la inclinación del vehículo (200) cuando se cumple una condición previamente establecida. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha condición previamente establecida puede ser que el vehículo (200) se encuentre detenido o que su velocidad sea menor que un cierto valor umbral. En otros ejemplos de realización, dicha condición previamente establecida puede ser que la distancia entre el vehículo (200) y el pretil sea menor que una segunda distancia umbral preestablecida. En una realización más preferida, sin que esto limite el alcance de la protección solicitada, la segunda distancia umbral preestablecida puede ser una distancia previamente programada en el procesador (4), o puede determinarse en función de otros factores. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha segunda distancia umbral puede ser una fracción de una longitud del vehículo minero (200). En una realización más preferida, sin que esto limite el alcance de la presente invención, dicha fracción de longitud puede ser un décimo de la longitud.
[0025] En aquellas realizaciones en las cuales se establece tanto una primera distancia umbral preestablecida como una segunda distancia umbral preestablecida, dicha primera distancia umbral y dicha segunda distancia umbral pueden o no ser la misma distancia sin que esto limite el alcance de la presente invención.
[0026]En el contexto de la presente invención, sin que esto limite el alcance de la misma, se entenderá como dispositivo LiDAR (1 ) a un dispositivo o conjunto de elementos que permite determinar la distancia desde un emisor láser a un objeto o superficie utilizando un haz láser pulsado. Por ejemplo y sin que esto limite el alcance de la presente invención, dicho dispositivo LiDAR puede generar una nube de puntos, cada uno con una correspondiente distancia, mediante el direccionamiento del haz láser.
[0027] En el contexto de la presente invención, sin que esto limite el alcance de la misma, se entenderá como receptor de posicionamiento (2) a un dispositivo o conjunto de elementos que permite obtener una posición del vehículo minero (200). El correspondiente sistema de posicionamiento puede ser global o local, así como una combinación entre los mismos, sin que esto limite el alcance de la presente invención. Además, dicho sistema de posicionamiento puede ser un sistema de posicionamiento en interior o en exterior sin que esto limite el alcance de la presente invención. Por ejemplo y sin que esto limite el alcance de la presente invención, dicho sistema de posicionamiento puede ser un sistema de posicionamiento satelital (GNSS), tales como GPS, Galileo, Glonass o Beidou. En otras realizaciones preferidas, dicho sistema de posicionamiento puede ser un sistema de posicionamiento mediante triangulación Wi-Fi.
[0028]En el contexto de la presente invención, sin que esto limite el alcance de la misma, se entenderá como sensor de inclinación inercial a un dispositivo que mide e informa acerca de la velocidad, orientación y fuerzas gravitacionales de un aparato, usando una combinación de acelerómetros y giróscopos.
[0029]En una realización preferida, el sistema (100) puede comprender una interfaz de visualization (7) conectada operativamente al procesador (4) y el procesador (4) puede estar adicionalmente configurado para desplegar dicha distancia al pretil, dicha topografía, dicha inclinación o dicha posición, así como una combinación entre las mismas, en dicha interfaz de visualization (7).
[0030]En otra realización preferida, el sistema (100) puede comprender medios de señalización de alarma (8) conectados operativamente al procesador (4), dichos medios de señalización de alarma (8) que se seleccionan del grupo formado por balizas, sirenas, vibradores, así como una combinación entre los mismos.
[0031 ]En una realización preferida adicional, dicho procesador (4) puede estar configurado para obtener dicha distancia mediante un algoritmo de aprendizaje de máquina previamente entrenado. La arquitectura específica de dicho algoritmo de aprendizaje de máquina, así como la naturaleza de los datos utilizados para su entrenamiento no limitan el alcance de la presente invención. Para determinar la distancia entre el vehículo (200) y el pretil, por ejemplo y sin que esto limite el alcance de la protección solicitada, los algoritmos de inteligencia artificial pueden encontrarse previamente entrenados con un conjunto de datos etiquetados correspondientes a un dispositivo LiDAR, en donde dichos datos corresponden a diferentes distancias entre un vehículo (200) y un pretil. Adicionalmente, los datos etiquetados pueden incluir un indicador que da cuenta de si el pretil se encuentra en buen estado o defectuoso, así como el tipo de defecto en la topografía del pretil. Para esto, el algoritmo de inteligencia artificial puede poseer una arquitectura que se selecciona del grupo formado por redes neuronales, redes neuronales convolucionales, redes neuronales convolucionales recurrentes, árboles de decisión, así como una combinación entre los mismos.
[0032] En una realización preferida, dicho procesador (4) puede estar configurado para obtener dicha topografía mediante un algoritmo de aprendizaje de máquina previamente entrenado. La arquitectura específica de dicho algoritmo de aprendizaje de máquina, así como la naturaleza de los datos utilizados para su entrenamiento no limitan el alcance de la presente invención. Para determinar la topografía del pretil, por ejemplo y sin que esto limite el alcance de la protección solicitada, los algoritmos de inteligencia artificial pueden encontrarse previamente entrenados con un conjunto de datos etiquetados correspondientes a un dispositivo LiDAR, en donde dichos datos corresponden a pretiles en buen estado y pretiles defectuosos. Adicionalmente, los datos etiquetados como defectuosos pueden incluir un indicador que da cuenta del tipo de defecto en la topografía del pretil. Para esto, el algoritmo de inteligencia artificial puede poseer una arquitectura que se selecciona del grupo formado por redes neuronales, redes neuronales convolucionales, redes neuronales convolucionales recurrentes, árboles de decisión, así como una combinación entre los mismos
[0033] En otra realización preferida, dicho procesador (4) puede estar configurado para obtener dicha inclinación mediante un algoritmo de aprendizaje de máquina previamente entrenado. La arquitectura específica de dicho algoritmo de aprendizaje de máquina, así como la naturaleza de los datos utilizados para su entrenamiento no limitan el alcance de la presente invención. Para determinar la inclinación del vehículo (200), por ejemplo y sin que esto limite el alcance de la protección solicitada, los algoritmos de inteligencia artificial pueden encontrarse previamente entrenados con un conjunto de datos etiquetados correspondientes a un sensor de inclinación inercial, en donde dichos datos corresponden a diferentes inclinaciones del vehículo (200). Adicionalmente, los datos etiquetados pueden incluir un indicador que da cuenta de si el vehículo (200) está detenido o en movimiento, así como la velocidad de movimiento del vehículo (200). Para esto, el algoritmo de inteligencia artificial puede poseer una arquitectura que se selecciona del grupo formado por redes neuronales, redes neuronales convolucionales, redes neuronales convolucionales recurrentes, árboles de decisión, así como una combinación entre los mismos.
[0034]En una realización preferida, el sistema puede comprender, adicionalmente, un sensor láser secundario (9) conectado operativamente con el procesador (4). Dicho sensor laser secundario cumple la función de ser un respaldo en caso de que el dispositivo LiDAR presente algún fallo.
[0035] En una realización preferida, dicho procesador (4) adicionalmente puede estar configurado para determinar si existe un defecto en el pretil a partir de dicha topografía y para generar una alarma en respuesta a que se determine que existe un defecto en el pretil. Por ejemplo, y sin que esto limite el alcance de la protección solicitada, el procesador (4) puede estar configurado para determinar que existe un defecto en el pretil si la altura de dicho pretil es menor que una altura umbral a lo largo de una longitud mayor que una longitud umbral. Dicha altura umbral puede ser una altura previamente programada en el procesador (4), o puede determinarse en función de otros factores. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha altura umbral puede ser una fracción de una altura de un neumático, por ejemplo un neumático trasero, del vehículo minero (200). En una realización más preferida, sin que esto limite el alcance de la presente invención, dicha fracción de altura puede ser la mitad de la altura. De manera análoga, dicha longitud umbral puede ser una longitud previamente programada en el procesador (4), o puede determinarse en función de otros factores. Por ejemplo, y sin que esto limite el alcance de la presente invención, dicha longitud umbral puede ser una fracción de una anchura del vehículo minero (200). En una realización más preferida, sin que esto limite el alcance de la presente invención, dicha fracción de anchura puede ser la mitad de la anchura.
[0036] En una realización preferida, el procesador (4) puede, adicionalmente, estar configurado para generar una alarma si la inclinación del vehículo (200) es mayor que una inclinación umbral. Dicha inclinación umbral puede ser una inclinación previamente programada en el procesador (4), o puede determinarse en función de otros factores sin que esto limite el alcance de la presente invención.
[0037]En una realización preferida, el sistema puede comprender, adicionalmente, el servidor remoto (5) y dicho servidor remoto (5) puede estar configurado para acceder, leer y escribir una base de datos (6) en la cual se almacenan dichos datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición.
[0038]En una realización preferida, el sistema puede comprender, adicionalmente, una carcasa que aloja a dicho dispositivo LiDAR (1 ), dicho receptor de posicionamiento (2), dicho sensor de inclinación inercial (3), dicho procesador (4) y dicho transceptor de radiofrecuencia. La forma, dimensiones y materiales de dicha carcasa no limita el alcance de la presente invención.
[0039] En otra realización preferida, dicho procesador (4) puede estar configurado para detectar una operación de retroceso de dicho vehículo (200) y para activar la operación de dicho dispositivo LiDAR (1 ) en respuesta a detectar dicha operación de retroceso. Dicha detección puede realizarse, por ejemplo y sin que esto limite el alcance de la presente invención, mediante dicho sensor de inclinación inercial. Sin embargo, en otras realizaciones preferidas, dicho procesador (4) puede recibir una indicación de retroceso del vehículo minero (200), por ejemplo, cuando se ha seleccionado una marcha atrás.
[0040]La presente invención proporciona, además, un vehículo minero (200) que comprende un sistema (100) de detección y monitoreo de pretiles de la presente invención. Todas las opciones previamente descritas para el sistema (100) de manera individual son aplicables al sistema formando parte del vehículo minero (200), sin que esto limite el alcance de la presente invención.
[0041] En una realización preferida, dicho sistema (100) puede encontrarse montado en una posición trasera de dicho vehículo (200). [0042] En otra realización preferida, el receptor de posicionamiento (2) del sistema (100) puede ser un receptor de posicionamiento de dicho vehículo (200).
[0043]En una realización preferida adicional, el sistema (100) puede comprender una interfaz de visualización (7) y dicha interfaz de visualization (7) puede posicionarse en una cabina de conducción de dicho vehículo (200).
[0044]En otra realización preferida, el sistema (100) puede comprender medios de señalización de alarma (8) y dichos medios de señalización de alarma (100) pueden posicionarse en una cabina de conducción de dicho vehículo.
[0045]En una realización preferida, el vehículo minero (200) puede comprender, adicionalmente, una tolva abatióle. En esta realización preferida, el procesador (4) del sistema (100) puede estar configurado para controlar la operación de dicha tolva abatióle en base a dicha distancia al pretil, dicha topografía, dicha inclinación o dicha posición, así como de una combinación entre las mismas.
[0046] En un tercer objeto de la presente invención, se proporciona un método para detectar y monitorear pretiles en un entorno minero, que comprende los pasos de:
[0047]-proporcionar un sistema (100) que comprende: un dispositivo LiDAR (1 ); un receptor de posicionamiento (2); un sensor de inclinación inertial (3); un procesador (4) conectado operativamente al dispositivo LiDAR (1 ), al receptor de posicionamiento (2) y al sensor de inclinación inertial (3) ; y un transceptor de radiofrecuencia conectado operativamente al procesador (4);
[0048]-recib¡r, mediante dicho procesador (4), datos desde dicho dispositivo LiDAR (1 ), dicho receptor de posicionamiento (2) y dicho sensor de inclinación inertial (3);
[0049]-obtener, mediante dicho procesador (4), una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR (1 );
[0050]-obtener, mediante dicho procesador (4), una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR (1 ); [0051]-obtener, mediante dicho procesador (4), una inclinación de dicho vehículo (200) a partir de dichos datos de sensor de inclinación inercial ;
[0052]-obtener, mediante dicho procesador (4), una posición de dicho vehículo (200) a partir de dichos datos de receptor de posicionamiento; y
[0053]-transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto (5) mediante dicho transceptor de radiofrecuencia.
[0054] En una realización preferida, el método puede, adicionalmente, comprender el paso de determinar, mediante el procesador (4), si existe un defecto en el pretil a partir de dicha topografía y generar, mediante el procesador, una alarma en respuesta a que se determine que existe un defecto en el pretil. En esta realización preferida, el procesador (4) puede determinar que existe un defecto en el pretil si la altura de dicho pretil es menor que una altura umbral a lo largo de una longitud mayor que una longitud umbral.
[0055] En una realización preferida, el método puede, adicionalmente, comprender el paso de generar una alarma, mediante dicho procesador (4), si la inclinación de dicho vehículo (200) es mayor que una inclinación umbral.
[0056]En una realización preferida, el método puede, adicionalmente, comprender el paso de detectar, mediante dicho procesador (4), una operación de retroceso de dicho vehículo (200) y para activar la operación de dicho dispositivo LiDAR (1 ) en respuesta a detectar dicha operación de retroceso.
[0057] De acuerdo con la descripción previamente detallada es posible obtener sistema (100), vehículo minero (200) y método para detectar y monitorear pretiles en un entorno minero que permite superar las deficiencias del estado de la técnica. Debe entenderse que las diferentes opciones previamente descritas para características técnicas diferentes del sistema (100), del vehículo minero (200) y/o del método de la presente invención pueden combinarse entre sí, o con otras opciones conocidas para una persona normalmente versada en la materia, de cualquier manera prevista sin que esto limite el alcance de la presente solicitud.
[0058]En lo sucesivo, se describirán ejemplos de realización de la presente invención. Debe entenderse que dichos ejemplos se describen con el fin de proporcionar un mejor entendimiento de la presente invención, pero de ninguna manera limitan el alcance de la protección solicitada. Adicionalmente, detalles de características técnicas especificadas en ejemplos diferentes pueden combinarse entre sí, o con otras realizaciones preferidas previamente descritas, de cualquier manera prevista sin que esto limite el alcance de la presente invención.
EJEMPLO 1 : SECUENCIA DE USO DEL SISTEMA
[0059]Las Figuras 2 a 7 ¡lustran una secuencia de uso de una primera realización del sistema (100) que es objeto de la presente invención. Además, se observa como inserto una ilustración de la posición del vehículo minero correspondiente a cada figura.
[0060]La figura 2 ¡lustra una vista esquemática de una primera interfaz gráfica de visualización de una realización del sistema que es objeto de la presente invención con el vehículo minero en una posición inicial y antes de operar el dispositivo LiDAR. Tal como se observa, la interfaz gráfica de usuario muestra un mapeo del terreno en el cual se encuentra el vehículo minero.
[0061 ]En la figura 3, el vehículo minero está en la posición inicial de la figura 2, pero el dispositivo LiDAR ha comenzado su operación, lo que se ¡lustra esquemáticamente mediante la banda que se muestra en el centro de la imagen.
[0062]En la figura 4, el vehículo minero está en una primera posición intermedia. En este caso, si bien el sistema puede obtener una distancia entre el vehículo y el pretil, dicha distancia es mayor que la máxima distancia medible, lo que se expresa mediante el círculo en líneas segmentadas en la posición inferior izquierda de la imagen. [0063]En la figura 5, el vehículo minero está en una segunda posición intermedia. En este caso, la distancia entre el vehículo y el pretil es igual a la máxima distancia medióle, por lo que la interfaz muestra dicha distancia en la posición inferior izquierda de la imagen.
[0064]En la figura 6, el vehículo minero está en una tercera posición intermedia. En este caso, la distancia entre el vehículo y el pretil es menor que la máxima distancia medióle, por lo que la interfaz muestra dicha distancia en la posición inferior izquierda de la imagen
[0065]En la figura 7, el vehículo minero ya ha llegado al pretil. En este caso, la distancia entre el vehículo y el pretil se muestra como igual a 0 en la posición inferior izquierda de la imagen. Además, la imagen muestra la altura de dos puntos del pretil, medidos desde el nivel del suelo en el que se encuentra el vehículo minero.
EJEMPLO 2: CONSIDERACIONES DE DISEÑO
[0066] La aproximación del vehículo minero (200) al pretil de un botadero, así como su posterior operación, puede dividirse en tres etapas en las cuales el sistema (100) debe obtener las mediciones de sensor, así como su correspondiente análisis y procesamiento.
[0067]En una primera etapa, que se denomina acuitamiento, el vehículo minero realiza su aproximación hacia el pretil. Esta etapa tiene una duración máxima estimada de 20 a 30 segundos y, en dicho tiempo, el sistema debe ser capaz de realizar un análisis en línea de la corona y manto del pretil, determinar en línea la distancia entre el vehículo y el pretil, determinar la inclinación del vehículo en línea y activar cualquier alarma que sea necesaria. Esta etapa culmina con la detención del vehículo en la proximidad del pretil.
[0068]En una segunda etapa, que se denomina de levante, el vehículo realiza el levantamiento de la tolva con el contenido que se quiere descargar en el botadero. Esta etapa tiene una duración mínima estimada de 25 segundos y, en dicho tiempo, el sistema debe ser capaz de determinar en línea la inclinación del vehículo y activar cualquier alarma que sea necesaria. Esta etapa culmina con la total descarga del contenido de la tolva en el botadero.
[0069]En una tercera etapa, que se denomina de retiro, el vehículo realiza el descenso de la tolva desde la posición elevada en la que se encontraba al final de la etapa anterior. Esta etapa tiene una duración mínima estimada de 14 segundos y, en dicho tiempo, el sistema debe ser capaz de determinar en línea la inclinación del vehículo y activar cualquier alarma que sea necesaria. Esta etapa culmina con el repliegue total de la tolva.

Claims

REIVINDICACIONES
1. Un sistema de detección y monitoreo de pretiles para vehículos mineros, que comprende:
- un dispositivo LiDAR;
- un receptor de posicionamiento;
- un sensor de inclinación inercial ;
- un procesador conectado operativamente al dispositivo LiDAR, al receptor de posicionamiento y al sensor de inclinación inercial; y
- un transceptor de radiofrecuencia conectado operativamente al procesador; en donde el procesador está configurado para:
- recibir datos desde dicho dispositivo LiDAR, dicho receptor de posicionamiento y dicho sensor de inclinación inercial;
- obtener una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR;
- obtener una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR;
- obtener una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación inercial;
- obtener una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento; y
- transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto mediante dicho transceptor de radiofrecuencia.
2. El sistema de acuerdo con la reivindicación 1 , que además comprende una interfaz de visualization conectada operativamente al procesador, en donde el procesador está adicionalmente configurado para desplegar dicha distancia al pretil, dicha topografía, dicha inclinación o dicha posición, así como una combinación entre las mismas, en dicha interfaz de visualization.
3. El sistema de acuerdo con la reivindicación 1 , que además comprende medios de señalización de alarma conectados operativamente al procesador, dichos medios de señalización de alarma que se seleccionan del grupo formado por balizas, sirenas, vibradores, así como una combinación entre los mismos.
3. El sistema de acuerdo con la reivindicación 1 , en donde dicho procesador está configurado para obtener dicha distancia mediante un algoritmo de aprendizaje de máquina previamente entrenado.
4. El sistema de acuerdo con la reivindicación 1 , en donde dicho procesador está configurado para obtener dicha topografía mediante un algoritmo de aprendizaje de máquina previamente entrenado.
5. El sistema de acuerdo con la reivindicación 1 , en donde dicho procesador está configurado para obtener dicha inclinación mediante un algoritmo de aprendizaje de máquina previamente entrenado.
6. El sistema de acuerdo con la reivindicación 1 , que además comprende un sensor láser secundario conectado operativamente con el procesador.
7. El sistema de acuerdo con la reivindicación 1 , en donde el procesador adicionalmente está configurado para determinar si existe un defecto en el pretil a partir de dicha topografía y para generar una alarma en respuesta a que se determine que existe un defecto en el pretil.
8. El sistema de acuerdo con la reivindicación 7, en donde el procesador está configurado para determinar que existe un defecto en el pretil si la altura de dicho pretil es menor que una altura umbral a lo largo de una longitud mayor que una longitud umbral.
9. El sistema de acuerdo con la reivindicación 1 , en donde el procesador adicionalmente está configurado para generar una alarma si la inclinación de dicho vehículo es mayor que una inclinación umbral.
10. El sistema de acuerdo con la reivindicación 1 , en donde dicho servidor remoto, dicho servidor remoto que está configurado para acceder, leer y escribir una base de datos en la cual se almacenan dichos datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición.
11 . El sistema de acuerdo con la reivindicación 1 , que además comprende una carcasa que aloja a dicho dispositivo LiDAR, dicho receptor de posicionamiento, dicho un sensor de inclinación ¡nercial, dicho procesador y dicho transceptor de radiofrecuencia.
12. El sistema de acuerdo con la reivindicación 1 , en donde dicho procesador está configurado para detectar una operación de retroceso de dicho vehículo y para activar la operación de dicho dispositivo LiDAR en respuesta a detectar dicha operación de retroceso.
13. Un vehículo minero, que comprende un sistema de detección y monitoreo de pretiles de acuerdo con una cualquiera de las reivindicaciones 1 a 12.
14. El vehículo minero de acuerdo con la reivindicación 13, en donde dicho sistema se encuentra montado en una posición trasera de dicho vehículo.
15. El vehículo minero de acuerdo con la reivindicación 13, en donde el receptor de posicionamiento del sistema es un receptor de posicionamiento de dicho vehículo.
16. El vehículo minero de acuerdo con la reivindicación 13, en donde el sistema comprende una interfaz de visualizaton y porque dicha interfaz de visualization se posiciona en una cabina de conducción de dicho vehículo.
17. El vehículo minero de acuerdo con la reivindicación 13, que además comprende medios de señalización de alarma y porque dichos medios de señalización de alarma se posicionan en una cabina de conducción de dicho vehículo.
18. El vehículo minero de acuerdo con la reivindicación 13, en donde el procesador del sistema está configurado para detectar que existe un defecto en el pretil si la altura de dicho pretil es menor que una altura umbral a lo largo de una longitud mayor que una longitud umbral y porque dicha altura umbral es mayor o igual que la mitad de la altura de un neumático trasero de dicho vehículo.
19. El vehículo minero de acuerdo con la reivindicación 18, en donde dicha longitud umbral es mayor o igual que la mitad de una anchura trasera de dicho vehículo.
20. El vehículo minero de acuerdo con la reivindicación 13, que además comprende una tolva abatióle y porque el procesador del sistema se encuentra adicionalmente configurado para controlar la operación de dicha tolva abatióle en base a dicha distancia al pretil, dicha topografía, dicha inclinación o posición, así como de una combinación entre las mismas.
21. Un método para detectar y monitorear pretiles en un entorno minero, que comprende los pasos de:
- proporcionar un sistema que comprende: un dispositivo LiDAR; un receptor de posicionamiento; un sensor de inclinación inercial; un procesador conectado operativamente al dispositivo LiDAR, al receptor de posicionamiento y al sensor de inclinación inercial; y un transceptor de radiofrecuencia conectado operativamente al procesador;
- recibir, mediante dicho procesador, datos desde dicho dispositivo LiDAR, dicho receptor de posicionamiento y dicho sensor de inclinación inercial;
- obtener, mediante dicho procesador, una distancia a un pretil a partir de dichos datos de dicho dispositivo LiDAR;
- obtener, mediante dicho procesador, una topografía de dicho pretil a partir de dichos datos de dicho dispositivo LiDAR;
- obtener, mediante dicho procesador, una inclinación de dicho vehículo a partir de dichos datos de sensor de inclinación inercial;
- obtener, mediante dicho procesador, una posición de dicho vehículo a partir de dichos datos de receptor de posicionamiento; y
- transmitir datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición a un servidor remoto mediante dicho transceptor de radiofrecuencia.
22. El método de acuerdo con la reivindicación 21 , en donde dicha distancia se obtiene mediante un algoritmo de aprendizaje de máquina previamente entrenado.
23. El método de acuerdo con la reivindicación 21 , en donde dicha topografía se obtiene mediante un algoritmo de aprendizaje de máquina previamente entrenado.
24. El método de acuerdo con la reivindicación 21 , en donde dicha inclinación se obtiene mediante un algoritmo de aprendizaje de máquina previamente entrenado.
25. El método de acuerdo con la reivindicación 21 , que además comprende determinar, mediante el procesador, si existe un defecto en el pretil a partir de dicha topografía y generar, mediante el procesador, una alarma en respuesta a que se determine que existe un defecto en el pretil.
26. El método de acuerdo con la reivindicación 25, en donde el procesador determina que existe un defecto en el pretil si la altura de dicho pretil es menor que una altura umbral a lo largo de una longitud mayor que una longitud umbral.
27. El método de acuerdo con la reivindicación 21 , que además comprende generar una alarma, mediante dicho procesador, si la inclinación de dicho vehículo es mayor que una inclinación umbral.
28. El método de acuerdo con la reivindicación 21 , en donde el sistema adicionalmente comprende dicho servidor remoto, y porque el método adicionalmente comprende acceder, leer y escribir, mediante dicho servidor remoto, una base de datos en la cual se almacenan dichos datos correspondientes a dicha distancia, dicha topografía, dicha inclinación y dicha posición.
29. El método de acuerdo con la reivindicación 21 , que además comprende detectar, mediante dicho procesador, una operación de retroceso de dicho vehículo y para activar la operación de dicho dispositivo LiDAR en respuesta a detectar dicha operación de retroceso.
PCT/CL2023/050088 2022-10-17 2023-09-26 Sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero WO2024082073A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263379809P 2022-10-17 2022-10-17
US63/379,809 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024082073A1 true WO2024082073A1 (es) 2024-04-25

Family

ID=90736498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2023/050088 WO2024082073A1 (es) 2022-10-17 2023-09-26 Sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero

Country Status (2)

Country Link
CL (1) CL2023002949A1 (es)
WO (1) WO2024082073A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130006482A1 (en) * 2011-06-30 2013-01-03 Ramadev Burigsay Hukkeri Guidance system for a mobile machine
US8670906B2 (en) * 2009-12-10 2014-03-11 Hitachi Construction Machinery Co., Ltd. Dump vehicle overturn preventing device
US20160264032A1 (en) * 2015-03-12 2016-09-15 Hitachi Construction Machinery Co., Ltd. Dumping work determination system for haulage vehicle
US9842501B2 (en) * 2015-08-31 2017-12-12 Komatsu Ltd. Mine management system
US20180059668A1 (en) * 2016-08-25 2018-03-01 Caterpillar Inc. System and method for controlling edge dumping of mobile machines
US20190367030A1 (en) * 2017-02-27 2019-12-05 Hitachi Construction Machinery Co., Ltd. Dump truck and reversing assistance device
US20200180507A1 (en) * 2017-09-07 2020-06-11 Hitachi Construction Machinery Co., Ltd. Safe driving assistance device
WO2022024122A1 (en) * 2020-07-28 2022-02-03 Ception Technologies Ltd. Onboard hazard detection system for a vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670906B2 (en) * 2009-12-10 2014-03-11 Hitachi Construction Machinery Co., Ltd. Dump vehicle overturn preventing device
US20130006482A1 (en) * 2011-06-30 2013-01-03 Ramadev Burigsay Hukkeri Guidance system for a mobile machine
US20160264032A1 (en) * 2015-03-12 2016-09-15 Hitachi Construction Machinery Co., Ltd. Dumping work determination system for haulage vehicle
US9842501B2 (en) * 2015-08-31 2017-12-12 Komatsu Ltd. Mine management system
US20180059668A1 (en) * 2016-08-25 2018-03-01 Caterpillar Inc. System and method for controlling edge dumping of mobile machines
US20190367030A1 (en) * 2017-02-27 2019-12-05 Hitachi Construction Machinery Co., Ltd. Dump truck and reversing assistance device
US20200180507A1 (en) * 2017-09-07 2020-06-11 Hitachi Construction Machinery Co., Ltd. Safe driving assistance device
WO2022024122A1 (en) * 2020-07-28 2022-02-03 Ception Technologies Ltd. Onboard hazard detection system for a vehicle

Also Published As

Publication number Publication date
CL2023002949A1 (es) 2024-05-24

Similar Documents

Publication Publication Date Title
US10351237B2 (en) Systems and methods for utilizing unmanned aerial vehicles to monitor hazards for users
ES2552309T3 (es) Sistemas de guiado de atraque y de identificación de aeronaves
US7839322B2 (en) System for detecting obstacles in the vicinity of a touchdown point
EP1794621B1 (fr) Systeme d'alerte anticollision pour vehicule marin et procede d'analyse anticollision
ES2327938T3 (es) Control de errores en un sistema de gestion de trafico aereo.
US8150568B1 (en) Rail synthetic vision system
CN106560347A (zh) 停车障碍物定位器和高度估计器
CN106093954A (zh) 一种二维码激光测距车辆定位方法及其设备
CN110176156A (zh) 一种机载地面预警系统
KR101785401B1 (ko) 무인비행체를 이용한 적재불량 차량 단속 시스템 및 그 방법
JP6078804B2 (ja) システム及びプログラム
CN109144060A (zh) 一种船舶航线的危险识别方法及系统
EP3776108B1 (en) Tracking stolen robotic vehicles
CN105513247B (zh) 一种基于浮空系留艇的火灾监测定位系统及方法
WO2011038764A1 (en) System for monitoring the position of vehicle components
JP2007178310A (ja) 車載システムおよびレーダ故障診断方法
CN110045669A (zh) 一种船舶航行状态监控及报警系统
KR20200064343A (ko) 해양교통시설 통합 안전관리시스템 및 그 방법
CN112082563A (zh) 识别一道路等级的方法
JPH03502142A (ja) 大災害の防止と環境の保護に対する誘導方法とその装置
JP2018155694A (ja) 凹型障害物検出装置と方法
WO2024082073A1 (es) Sistema, vehículo minero y método para detectar y monitorear pretiles en un entorno minero
US11313974B2 (en) GNSS spoofing detection using terrain mapping
FR2928021A1 (fr) Procede et dispositif de detection d'un aeronef environnant.
ES2373673T3 (es) Procedimiento y sistema para determinar datos de posición de un objeto.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878460

Country of ref document: EP

Kind code of ref document: A1