WO2024080239A1 - 塗液、塗液の製造方法及び複合材料の製造方法 - Google Patents

塗液、塗液の製造方法及び複合材料の製造方法 Download PDF

Info

Publication number
WO2024080239A1
WO2024080239A1 PCT/JP2023/036528 JP2023036528W WO2024080239A1 WO 2024080239 A1 WO2024080239 A1 WO 2024080239A1 JP 2023036528 W JP2023036528 W JP 2023036528W WO 2024080239 A1 WO2024080239 A1 WO 2024080239A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
coating liquid
parts
aerogel
composite material
Prior art date
Application number
PCT/JP2023/036528
Other languages
English (en)
French (fr)
Inventor
直樹 丸山
寛之 泉
元章 荒木
直樹 村田
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024080239A1 publication Critical patent/WO2024080239A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols

Definitions

  • the present invention relates to a coating fluid, a method for producing a coating fluid, and a method for producing a composite material.
  • Aerogel is known as an excellent material for heat insulation. Methods have been proposed in which aerogel is processed into particles and used as a component material for heat insulation (for example, Patent Documents 1 and 2). Patent Document 1 proposes using particulate aerogel as a filler between resin plates that make up heat-insulating windows. Patent Document 2 shows a method for producing a heat insulation material (molded body) by preparing an aqueous dispersion containing aerogel particles and organic fibers, and then evaporating the water to obtain an intermediate product, which is then press-molded.
  • Composite materials in which aerogel particles are dispersed in a binder resin are expected to have a wider range of applications and uses when made into a coating liquid.
  • it can be difficult to uniformly disperse the aerogel particles and binder resin in the coating liquid.
  • the coating liquid In addition, to make the coating liquid applicable to a variety of objects, it is desirable for it to have low corrosiveness to metals such as steel plates.
  • the present invention aims to provide a coating liquid that has excellent dispersibility of aerogel particles and binder resin, is capable of forming a composite material containing aerogel particles and binder resin, and is less corrosive to metals.
  • the present invention also aims to provide a method for producing the coating liquid, and a method for producing a composite material using the coating liquid.
  • the present invention relates to, for example, the following [1] to [16].
  • a method for producing a coating liquid comprising the steps of: [9] the dispersion preparation step is a step of mixing the aerogel particles, the water-soluble polymer, and the second liquid medium to aggregate the aerogel particles; The method for producing a coating liquid according to [8], wherein the coating liquid production step is a step of obtaining a coating liquid containing aggregates of the aerogel particles.
  • a method for producing a composite material comprising: [16] A coating step of applying a coating liquid produced by the production method according to any one of items [8] to [14] onto a support to obtain a coating film; a removing step of removing at least a portion of the liquid medium from the coating to obtain a composite material;
  • a method for producing a composite material comprising: [17] A composite material which is a dried product of the coating liquid according to any one of [1] to [7]. [18] An article comprising the composite material according to [17].
  • the present invention provides a coating liquid that has excellent dispersibility of aerogel particles and binder resin, is capable of forming a composite material containing aerogel particles and binder resin, and is low in corrosiveness to metals.
  • the present invention also provides a method for producing the coating liquid, and a method for producing a composite material using the coating liquid.
  • the coating liquid of the present embodiment contains emulsified particles containing a binder resin and a nonionic emulsifier, aerogel particles, a water-soluble polymer having a hydrophobic group, and a liquid medium.
  • the coating liquid of this embodiment disperses the binder resin as emulsified particles.
  • the coating liquid of this embodiment improves the dispersibility of the aerogel particles by using the water-soluble polymer. Therefore, by applying and drying the coating liquid of this embodiment, a uniform composite material containing aerogel particles and binder resin can be easily formed.
  • a nonionic emulsifier is selected as the emulsifier that emulsifies the binder resin. This significantly reduces the corrosiveness of the coating liquid to metals compared to when other emulsifiers (e.g., anionic emulsifiers) are used. The reason for this is not entirely clear, but it is thought that the selection of a nonionic emulsifier reduces the corrosion of metals caused by the ions contained in other emulsifiers.
  • the aerogel particles may form aggregates.
  • the contact interface between the aerogel particles and the resin component becomes smaller when the composite material is formed, and the penetration of the resin component into the pores of the aerogel particles is suppressed, which tends to result in a composite material with higher thermal insulation properties.
  • the binder resin may be, for example, a polymer of a monomer component having an ethylenically unsaturated bond.
  • a binder resin has a structural unit (also called a monomer unit) derived from the monomer component.
  • the monomer component include an acrylic compound having a (meth)acryloyl group, an aromatic vinyl compound, a heterocyclic vinyl compound, vinyl esters, monoolefins, conjugated diolefins, ⁇ , ⁇ -unsaturated carboxylic acid, vinyl cyanides, and the like. These may be used alone or in combination of two or more.
  • acrylic compounds include (meth)acrylic acid alkyl esters.
  • the alkyl group of the (meth)acrylic acid alkyl ester may be linear, branched, or cyclic.
  • the number of carbon atoms of the alkyl group of the (meth)acrylic acid alkyl ester may be, for example, 1 to 20, 1 to 18, 1 to 16, or 1 to 14.
  • Examples of (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isobornyl (meth)acrylate, etc.
  • acrylic compounds include polar group-containing acrylic compounds having a (meth)acryloyl group and a polar group (a polar group other than a (meth)acryloyl group).
  • polar groups include hydroxyl groups, amino groups, substituted amino groups (e.g., dialkylamino groups, hydroxyalkylamino groups, etc.), amide groups, substituted amide groups (e.g., dialkylamide groups, hydroxyalkylamide groups, etc.), epoxy groups, silyl groups (e.g., trialkoxysilyl groups, etc.), cyano groups, isocyanate groups, phosphate groups, carbonyl groups, etc.
  • polar group-containing acrylic compounds include compounds in which a polar group is substituted on the alkyl group of a (meth)acrylic acid alkyl ester.
  • examples of such compounds include hydroxyalkyl (meth)acrylates (e.g., hydroxyethyl (meth)acrylate, etc.), dialkylaminoalkyl (meth)acrylates (e.g., dimethylaminoethyl (meth)acrylate, etc.), glycidyl (meth)acrylate, trialkoxysilyl alkyl (meth)acrylate, isocyanatoalkyl (meth)acrylates (e.g., 2-isocyanatoethyl (meth)acrylate, etc.), 2-(meth)acryloyloxyethyl acid phosphate, etc.
  • hydroxyalkyl (meth)acrylates e.g., hydroxyethyl (meth)acrylate, etc.
  • a polar group-containing acrylic compound is a compound in which a (meth)acryloyl group is bonded to a polar group.
  • examples of such compounds include (meth)acrylic acid, (meth)acrylamide, n-methylol (meth)acrylamide, and diacetone acrylamide.
  • polar group-containing acrylic compounds include diacetone (meth)acrylate and acetoacetoxyalkyl (meth)acrylate (e.g., acetoacetoxyethyl (meth)acrylate).
  • Acrylic compounds include acrolein and vinyl alkyl ketones (e.g., vinyl methyl ketone, etc.).
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, p-methylstyrene, and ethylvinylbenzene.
  • heterocyclic vinyl compounds examples include vinylpyrrolidone, vinylfuran, vinylthiophene, vinyloxazoline, and vinylpyrrole.
  • vinyl esters examples include vinyl acetate, vinyl alkanoate, and vinyl versatate.
  • monoolefins examples include ethylene, propylene, butylene, and isobutylene.
  • conjugated diolefins examples include butadiene, isoprene, and chloroprene.
  • ⁇ , ⁇ -unsaturated carboxylic acids examples include crotonic acid, itaconic acid, maleic acid, fumaric acid, and their anhydrides.
  • vinyl cyanides examples include acrylonitrile and methacrylonitrile.
  • the monomer component is preferably a compound selected from the group consisting of acrylic compounds, aromatic vinyl compounds, heterocyclic vinyl compounds, and ⁇ , ⁇ -unsaturated carboxylic acids.
  • the monomer component preferably contains an acrylic compound.
  • the content of the acrylic compound may be, for example, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, or may be 100% by mass, based on the total amount of the monomer component. That is, the content of the acrylic compound may be, for example, 50 to 100 mass%, 60 to 100 mass%, 70 to 100 mass%, 80 to 100 mass%, 90 to 100 mass%, or 95 to 100 mass% based on the total amount of the monomer components.
  • the acrylic compound preferably contains a (meth)acrylic acid alkyl ester.
  • the content of the (meth)acrylic acid alkyl ester may be, for example, 50% by mass or more based on the total amount of the monomer components, and from the viewpoint of further improving the water resistance of the composite material, it may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the content of the (meth)acrylic acid alkyl ester may be, for example, 99% by mass or less, 97% by mass or less, or 95% by mass or less based on the total amount of the monomer components.
  • the content of the (meth)acrylic acid alkyl ester may be, for example, 50 to 99 mass%, 50 to 97 mass%, 50 to 95 mass%, 60 to 99 mass%, 60 to 97 mass%, 60 to 95 mass%, 70 to 99 mass%, 70 to 97 mass%, 70 to 95 mass%, 80 to 99 mass%, 80 to 97 mass%, 80 to 95 mass%, 90 to 99 mass%, 90 to 97 mass%, or 90 to 95 mass%, based on the total amount of the monomer components.
  • the acrylic compound may further contain a polar group-containing acrylic compound.
  • the content of the polar group-containing acrylic compound may be, for example, 1% by mass or more, 3% by mass or more, or 5% by mass or more based on the total amount of the monomer components.
  • the content of the polar group-containing acrylic compound may be, for example, 30% by mass or less, 25% by mass or less, 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the monomer components.
  • the content of the polar group-containing acrylic compound may be, for example, 1 to 30 mass%, 1 to 25 mass%, 1 to 20 mass%, 1 to 15 mass%, 1 to 10 mass%, 3 to 30 mass%, 3 to 25 mass%, 3 to 20 mass%, 3 to 15 mass%, 3 to 10 mass%, 5 to 30 mass%, 5 to 25 mass%, 5 to 20 mass%, 5 to 15 mass%, or 5 to 10 mass%, based on the total amount of the monomer components.
  • the monomer component may be selected from the group consisting of, for example, methyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylic acid, and styrene.
  • the monomer components may be appropriately selected so that the glass transition temperature (Tg) of the binder resin falls within the preferred range described below.
  • the glass transition temperature (Tg) of the binder resin can be measured by the method described in the examples described below.
  • the glass transition temperature (Tg) of the binder resin can be estimated using the FOX formula from the weight ratio of each monomer unit constituting the binder resin and the Tg of the homopolymer of each monomer. With reference to the values estimated using the FOX formula, the monomer components can be appropriately selected so that the glass transition temperature (Tg) of the binder resin falls within a suitable range.
  • the glass transition temperature (Tg) of the binder resin may be, for example, 25° C. or lower, and from the viewpoint of further improving the film-forming property, it is preferably 20° C. or lower, and more preferably 15° C. or lower.
  • the glass transition temperature (Tg) of the binder resin is preferably 10° C. or lower, more preferably 8° C. or lower, and may be 6° C. or lower.
  • the lower limit of the glass transition temperature (Tg) of the binder resin there is no particular restriction on the lower limit of the glass transition temperature (Tg) of the binder resin, and it may be, for example, ⁇ 40° C. or higher, or ⁇ 20° C. or higher.
  • the glass transition temperature (Tg) of the binder resin may be, for example, ⁇ 40 to 25° C., ⁇ 40 to 20° C., ⁇ 40 to 15° C., ⁇ 40 to 10° C., ⁇ 40 to 8° C., ⁇ 40 to 6° C., ⁇ 20 to 25° C., ⁇ 20 to 20° C., ⁇ 20 to 15° C., ⁇ 20 to 10° C., ⁇ 20 to 8° C., or ⁇ 20 to 6° C.
  • the binder resin can be produced, for example, by emulsion polymerization of monomer components in a liquid medium (preferably an aqueous solvent) in the presence of a nonionic emulsifier. Through this emulsion polymerization, emulsion particles containing the binder resin and the nonionic emulsifier are formed.
  • a liquid medium preferably an aqueous solvent
  • the nonionic emulsifier may be any nonionic emulsifier capable of emulsifying the binder resin, and may be a known nonionic emulsifier.
  • nonionic emulsifiers include polyoxyalkylene alkyl ethers, polyoxyalkylene alkylphenol ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene sorbitan fatty acid esters, etc., with polyoxyalkylene alkyl ethers being preferred and polyoxyethylene alkyl ethers being more preferred.
  • the HLB value of the nonionic emulsifier is preferably 13 or more, more preferably 14 or more, from the viewpoint of easier emulsification of the binder resin, and is preferably 15 or more, more preferably 16 or more, from the viewpoint of further improving the film-forming properties of the coating liquid. Moreover, the HLB value of the nonionic emulsifier is preferably 19 or less, from the viewpoint of preventing a decrease in the water resistance of the composite material. That is, the HLB value of the nonionic emulsifier may be, for example, 13-19, 14-19, 15-19, or 16-19.
  • the content of the nonionic emulsifier may be, for example, 0.01 parts by mass or more relative to 100 parts by mass of the binder resin, and from the viewpoint of delaying the surface drying of the coating film and improving the film-forming property and the core drying property, it may be 0.1 parts by mass or more, 0.3 parts by mass or more, 0.5 parts by mass or more, 0.7 parts by mass or more, 0.9 parts by mass or more, or 1 part by mass or more.
  • the content of the nonionic emulsifier may be, for example, 20 parts by mass or less relative to 100 parts by mass of the binder resin, and from the viewpoint of further improving the water resistance of the composite material, it may be 15 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, or 8 parts by mass or less.
  • the content of the nonionic emulsifier relative to 100 parts by mass of the binder resin is, for example, 0.01 to 20 parts by mass, 0.01 to 15 parts by mass, 0.01 to 12 parts by mass, 0.01 to 10 parts by mass, 0.01 to 8 parts by mass, 0.1 to 20 parts by mass, 0.1 to 15 parts by mass, 0.1 to 12 parts by mass, 0.1 to 10 parts by mass, 0.1 to 8 parts by mass, 0.3 to 20 parts by mass, 0.3 to 15 parts by mass, 0.3 to 12 parts by mass, 0.3 to 10 parts by mass, 0.3 to 8 parts by mass, 0.
  • the average particle size of the emulsion particles may be, for example, 50 nm or more, 70 nm or more, 90 nm or more, or 100 nm or more.
  • the average particle size of the emulsion particles may be, for example, 400 nm or less, 350 nm or less, or 300 nm or less. That is, the average particle size of the emulsified particles may be, for example, 50 to 400 nm, 50 to 350 nm, 50 to 300 nm, 70 to 400 nm, 70 to 350 nm, 70 to 300 nm, 90 to 400 nm, 90 to 350 nm, 90 to 300 nm, 100 to 400 nm, 100 to 350 nm, or 100 to 300 nm.
  • the content of the emulsified particles in the coating liquid may be, for example, 30% by mass or more, 35% by mass or more, 40% by mass or more, or 45% by mass or more, based on the total amount of the nonvolatile content in the coating liquid.
  • the content of the emulsified particles in the coating liquid may be, for example, 80% by mass or less, 75% by mass or less, or 70% by mass or less, based on the total amount of the nonvolatile content in the coating liquid.
  • the content of the emulsified particles in the coating liquid may be, for example, 30 to 80 mass%, 30 to 75 mass%, 30 to 70 mass%, 35 to 80 mass%, 35 to 75 mass%, 35 to 70 mass%, 40 to 80 mass%, 40 to 75 mass%, 40 to 70 mass%, 45 to 80 mass%, 45 to 75 mass%, or 45 to 70 mass%, based on the total amount of non-volatile content in the coating liquid.
  • the content of emulsified particles in the coating liquid may be adjusted as appropriate so that the content of binder resin and nonionic emulsifier in the composite material falls within the preferred ranges described below.
  • the water-soluble polymer may have a hydrophobic group and is water-soluble.
  • hydrophobic groups examples include alkyl groups (preferably long-chain alkyl groups having 6 to 26 carbon atoms), ester groups, alkoxy groups, halogens, etc.
  • the hydrophobic group is preferably an alkyl group, more preferably a long-chain alkyl group having 6 to 26 carbon atoms, even more preferably a long-chain alkyl group having 8 to 26 carbon atoms, still more preferably a long-chain alkyl group having 10 to 26 carbon atoms, may be a long-chain alkyl group having 12 to 26 carbon atoms, or may be a long-chain alkyl group having 15 to 26 carbon atoms.
  • water-soluble polymers include modified carboxyl vinyl polymers, modified polyether urethane, cellulose-based resins, polyethylene oxide, polyvinyl alcohol, polyacrylates, polyvinylpyrrolidone, dextrin-based resins, chitin-based resins, and chitosan-based resins.
  • a cellulose-based resin can be preferably used as the water-soluble polymer.
  • cellulose-based resins include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, and modified forms of these that have been further modified (e.g., hydrophobized).
  • a cellulose-based resin having an alkyl group is preferable, and a cellulose-based resin having a long-chain alkyl group with 6 to 26 carbon atoms is more preferable. With such a cellulose-based resin, the effects of the present invention are more pronounced.
  • the number of carbon atoms in the long-chain alkyl group is preferably 6 to 26, more preferably 8 to 26, even more preferably 10 to 26, even more preferably 12 to 26, and even more preferably 15 to 26.
  • the content of long-chain alkyl groups having 6 to 26 carbon atoms is preferably 0.01 to 5 mass% based on the total amount of the cellulose-based resin, and more preferably 0.01 to 3 mass%.
  • cellulose-based resin for example, a cellulose-based resin having a structural unit represented by the following formula (A-1) is preferable.
  • R A represents a hydrogen atom, an alkyl group, a hydroxyalkyl group, a group represented by -R A1 -O-R A2 (R A1 represents an alkanediyl group or a hydroxyalkanediyl group, and R A2 represents an alkyl group), or a group represented by -(R A3 O) n H (R A3 represents an alkanediyl group, and n represents an integer of 2 or more).
  • the three R A may be the same or different. However, of the three R A , at least one is an alkyl group or a group represented by -R A1 -O-R A2 .
  • the alkyl group in R A is preferably an alkyl group having 1 to 26 carbon atoms. Moreover, the alkyl group in R A is more preferably a short-chain alkyl group having 1 to 3 carbon atoms or a long-chain alkyl group having 6 to 26 carbon atoms. The number of carbon atoms in the long-chain alkyl group is preferably 8 to 26, more preferably 10 to 26, even more preferably 12 to 26, and even more preferably 15 to 26.
  • the hydroxyalkyl group for R 1 A is preferably a hydroxyalkyl group having 1 to 26 carbon atoms, more preferably a hydroxyalkyl group having 1 to 10 carbon atoms, and even more preferably a hydroxyalkyl group having 1 to 5 carbon atoms.
  • the alkanediyl group in R A1 is preferably an alkanediyl group having 1 to 26 carbon atoms, more preferably an alkanediyl group having 1 to 10 carbon atoms, and even more preferably an alkanediyl group having 1 to 5 carbon atoms.
  • the hydroxyalkanediyl group in R A1 is preferably a hydroxyalkanediyl group having 1 to 26 carbon atoms, more preferably a hydroxyalkanediyl group having 1 to 10 carbon atoms, and even more preferably a hydroxyalkanediyl group having 1 to 5 carbon atoms.
  • R A2 is preferably an alkyl group having 1 to 26 carbon atoms.
  • the alkyl group in R A2 is more preferably a short-chain alkyl group having 1 to 3 carbon atoms or a long-chain alkyl group having 6 to 26 carbon atoms, and more preferably a long-chain alkyl group.
  • the number of carbon atoms in the long-chain alkyl group is preferably 8 to 26, more preferably 10 to 26, even more preferably 12 to 26, and even more preferably 15 to 26.
  • R A3 is preferably an alkanediyl group having 2 to 3 carbon atoms, and more preferably an alkanediyl group having 3 carbon atoms.
  • At least one of the three R A is a long-chain alkyl group, or at least one of the three R A is a group represented by -R A1 -O-R A2 and R A2 is a long-chain alkyl group.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 0.03% by mass or more based on the total amount of non-volatile content in the coating liquid, and from the viewpoint of further improving the dispersibility of the aerogel particles, it may be 0.05% by mass or more, 0.07% by mass or more, 0.09% by mass or more, 0.2% by mass or more, 0.4% by mass or more, 0.6% by mass or more, or 0.8% by mass or more.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 6% by mass or less based on the total amount of non-volatile content in the coating liquid, and from the viewpoint of further improving the water resistance of the composite material, it may be 5% by mass or less, 4% by mass or less, or 3% by mass or less.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 0.03 to 5 mass%, 0.03 to 4 mass%, 0.03 to 3 mass%, 0.05 to 5 mass%, 0.05 to 4 mass%, 0.05 to 3 mass%, 0.07 to 5 mass%, 0.07 to 4 mass%, 0.07 to 3 mass%, 0.09 to 5 mass%, 0.09 to 4 mass%, 0.09 to 3 mass%, 0.2 to 5 mass%, 0.2 to 4 mass%, 0.2 to 3 mass%, 0.4 to 5 mass%, 0.4 to 4 mass%, 0.4 to 3 mass%, 0.6 to 5 mass%, 0.6 to 4 mass%, 0.6 to 3 mass%, 0.8 to 5 mass%, 0.8 to 4 mass%, or 0.8 to 3 mass%, based on the total amount of non-volatile content in the coating liquid.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 0.1 parts by mass or more relative to 100 parts by mass of the aerogel particles, and from the viewpoint of further improving the dispersibility of the aerogel particles, it may be 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more. Furthermore, from the viewpoint of further improving the water resistance of the composite material, the content of the water-soluble polymer in the coating liquid may be, for example, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less relative to 100 parts by mass of the aerogel particles.
  • the content of the water-soluble polymer in the coating liquid may be, for example, 0.1 to 20 parts by mass, 0.1 to 15 parts by mass, 0.1 to 10 parts by mass, 0.5 to 20 parts by mass, 0.5 to 15 parts by mass, 0.5 to 10 parts by mass, 1 to 20 parts by mass, 1 to 15 parts by mass, 1 to 10 parts by mass, 2 to 20 parts by mass, 2 to 15 parts by mass, 2 to 10 parts by mass, 3 to 20 parts by mass, 3 to 15 parts by mass, or 3 to 10 parts by mass, relative to 100 parts by mass of the aerogel particles.
  • the content of the water-soluble polymer in the coating liquid may be adjusted as appropriate so that the content of the water-soluble polymer in the composite material falls within the preferred range described below.
  • aerogel refers to aerogel in a broad sense, namely, "gel composed of a microporous solid in which the dispersed phase is a gas”.
  • the aerogel of this embodiment is, for example, a silica aerogel whose main component is silica.
  • silica aerogel include so-called organic-inorganic hybrid silica aerogels in which organic groups (e.g., methyl groups) or organic chains have been introduced.
  • the aerogel of this embodiment may have the following forms, for example. By adopting each form, it is possible to obtain an aerogel that has the insulation properties, flame retardancy, heat resistance, and flexibility that correspond to each form.
  • the aerogel according to the present embodiment may have a structure represented by the following general formula (1):
  • the aerogel according to the present embodiment may have a structure represented by the following general formula (1a) as a structure including the structure represented by formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1s may be the same or different, and similarly, two or more R 2s may be the same or different.
  • two R 3s may be the same or different, and similarly, two R 4s may be the same or different.
  • R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, etc., and the alkyl group includes a methyl group, etc.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, etc., and the alkylene group includes an ethylene group, a propylene group, etc.
  • p can be 2 to 30, or may be 5 to 20.
  • the aerogel of this embodiment has a ladder-type structure including struts and bridges, and the bridges can have a structure represented by the following general formula (2).
  • the "ladder-type structure” refers to a structure having two struts and bridges connecting the struts (having a so-called "ladder" shape).
  • the skeleton of the aerogel may have a ladder-type structure, but the aerogel may also have a ladder-type structure partially.
  • R5 and R6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R5s may be the same or different from each other, and similarly, two or more R6s may be the same or different from each other.
  • the structure that serves as the support portion and its chain length, as well as the interval between the structures that serve as the bridging portions are not particularly limited.
  • the ladder structure may have a ladder structure represented by the following general formula (3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5s may be the same or different from each other, and similarly, two or more R 6s may be the same or different from each other.
  • R 5 , R 6 , R 7 and R 8 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, etc., and examples of the alkyl group include a methyl group, etc.
  • a and c each independently can be 6 to 2000, but may be 10 to 1000.
  • b can be 2 to 30, but may be 5 to 20.
  • the aerogel of this embodiment may be a dried product of a wet gel (obtained by drying a wet gel produced from a sol) which is a condensate of a sol containing at least one selected from the group consisting of a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group.
  • the aerogel described above may also be obtained by drying a wet gel produced from a sol containing a silicon compound or the like in this way.
  • the silicon compound having a hydrolyzable functional group or a condensable functional group a polysiloxane compound can be used. That is, the above sol can contain at least one compound selected from the group consisting of polysiloxane compounds having a hydrolyzable functional group or a condensable functional group, and hydrolysis products of polysiloxane compounds having a hydrolyzable functional group (hereinafter sometimes referred to as the "polysiloxane compound group").
  • the functional groups in the polysiloxane compound are not particularly limited, but may be groups that react with the same functional groups or with other functional groups.
  • hydrolyzable functional groups include alkoxy groups.
  • condensable functional groups include hydroxyl groups, silanol groups, carboxyl groups, and phenolic hydroxyl groups. The hydroxyl groups may be contained in hydroxyl-containing groups such as hydroxyalkyl groups.
  • polysiloxane compounds having hydrolyzable or condensable functional groups may further have reactive groups (functional groups that do not fall under the category of hydrolyzable or condensable functional groups) different from the hydrolyzable and condensable functional groups.
  • reactive groups examples include epoxy groups, mercapto groups, glycidoxy groups, vinyl groups, acryloyl groups, methacryloyl groups, and amino groups.
  • the epoxy groups may be contained in epoxy-containing groups such as glycidoxy groups.
  • Polysiloxane compounds having these functional groups and reactive groups may be used alone or in combination of two or more types.
  • groups that improve the flexibility of the aerogel include alkoxy groups, silanol groups, hydroxyalkyl groups, etc., and among these, alkoxy groups and hydroxyalkyl groups can further improve the compatibility of the sol.
  • the number of carbon atoms of the alkoxy groups and hydroxyalkyl groups can be 1 to 6, but from the viewpoint of further improving the flexibility of the aerogel, it may be 2 to 5 or 2 to 4.
  • the aerogel according to the present embodiment may further contain silica particles in addition to the aerogel component in order to further increase toughness and to achieve even better heat insulation and flexibility.
  • An aerogel containing an aerogel component and silica particles can also be called an aerogel composite.
  • the aerogel composite is a composite of the aerogel component and the silica particles, it has a cluster structure that is characteristic of aerogel and is considered to have a three-dimensional fine porous structure.
  • the aerogel containing the aerogel component and silica particles can be said to be a dried product of a wet gel which is a condensation product of a sol containing silica particles and at least one selected from the group consisting of silicon compounds having hydrolyzable functional groups or condensable functional groups and hydrolysis products of silicon compounds having hydrolyzable functional groups. Therefore, the descriptions regarding the first to third aspects can be appropriately applied mutatis mutandis to the aerogel according to this embodiment.
  • the silica particles can be any type that is not particularly limited, and examples of such particles include amorphous silica particles.
  • amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles.
  • colloidal silica particles have high monodispersity and are easy to suppress from agglomerating in the sol.
  • the silica particles may be silica particles that have a hollow structure, a porous structure, or the like.
  • the shape of the silica particles is not particularly limited, and examples thereof include spherical, cocoon-shaped, and association-shaped. Among these, the use of spherical silica particles as silica particles makes it easier to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles may be 1 nm or more, 5 nm or more, or 20 nm or more, from the viewpoint of easily imparting appropriate strength and flexibility to the aerogel and easily obtaining an aerogel with excellent shrinkage resistance when dried.
  • the average primary particle diameter of the silica particles may be 500 nm or less, 300 nm or less, or 100 nm or less, from the viewpoint of easily suppressing the solid thermal conductivity of the silica particles and easily obtaining an aerogel with excellent heat insulation. From these viewpoints, the average primary particle diameter of the silica particles may be 1 to 500 nm, 5 to 300 nm, or 20 to 100 nm.
  • the average particle size of the aerogel components and the average primary particle size of the silica particles can be obtained by directly observing the aerogel using a scanning electron microscope (hereinafter abbreviated as "SEM").
  • SEM scanning electron microscope
  • the “diameter” here means the diameter when the cross section of the particle exposed on the cross section of the aerogel is regarded as a circle.
  • the “diameter when the cross section is regarded as a circle” means the diameter of the perfect circle when the area of the cross section is replaced with a perfect circle of the same area.
  • the diameters of the circles are obtained for 100 particles and the average is taken.
  • the average particle size of silica particles can also be measured from the raw material.
  • the biaxial average primary particle size is calculated as follows from the results of observing 20 random particles with an SEM. In other words, taking colloidal silica particles dispersed in water, which usually have a solid content concentration of about 5 to 40% by mass, as an example, a chip obtained by cutting a wafer with pattern wiring into 2 cm squares is immersed in a dispersion of colloidal silica particles for about 30 seconds, and then the chip is rinsed with pure water for about 30 seconds and dried with nitrogen blow.
  • the chip is then placed on a sample stage for SEM observation, an accelerating voltage of 10 kV is applied, and the silica particles are observed at a magnification of 100,000 times, and an image is taken. 20 silica particles are arbitrarily selected from the obtained image, and the average particle size of those particles is taken as the average particle size.
  • the aerogel particles in this embodiment can be obtained, for example, by pulverizing a bulk aerogel as described later.
  • the average particle size (D50) of the aerogel particles (also referred to as the average diameter) can be 0.1 to 1000 ⁇ m, but may also be 0.5 to 700 ⁇ m, 1 to 500 ⁇ m, 3 to 100 ⁇ m, or 5 to 50 ⁇ m. If the average particle size (D50) of the aerogel particles is large, it is easier to obtain aerogel particles with excellent dispersibility, ease of handling, etc. On the other hand, if the average particle size (D50) is small, it is easier to obtain aerogel particles with excellent dispersibility.
  • the average particle size (D50) of the aerogel particles can be appropriately adjusted by the grinding method and grinding conditions, sieves, classification method, etc.
  • the average particle diameter (D50) of aerogel particles can be measured by laser diffraction/scattering.
  • aerogel particles are added to a solvent (ethanol) so that the content is 0.05-5% by mass, and the aerogel particles are dispersed by vibrating with a 50W ultrasonic homogenizer for 15-30 minutes. After that, about 10 mL of the dispersion is injected into a laser diffraction/scattering particle size distribution measuring device, and the particle diameter is measured at 25°C, with a refractive index of 1.3 and absorption of 0.
  • the particle diameter at an integrated value of 50% (volume basis) in this particle size distribution is taken as the average particle diameter D50.
  • a Microtrac MT3000 product name, manufactured by Nikkiso Co., Ltd.
  • aerogel particles examples include ENOVA MT1100 (manufactured by CABOT Corporation) and AeroVa (manufactured by JIS AEROGEL CORPORATION).
  • the amount of the aerogel particles in the coating liquid is preferably an amount such that the content of the aerogel particles in the composite material is 70 volume % or more, more preferably 72 volume % or more, and even more preferably 74 volume % or more, based on the total volume of the composite material.
  • the amount of the aerogel particles in the coating liquid may be an amount such that the content of the aerogel particles in the composite material is, for example, 99 volume % or less, 98 volume % or less, or 97 volume % or less, based on the total volume of the composite material.
  • the amount of aerogel particles in the coating liquid may be an amount such that the content of the aerogel particles in the composite material is 70 to 99 volume%, 70 to 98 volume%, 70 to 97 volume%, 72 to 99 volume%, 72 to 98 volume%, 72 to 97 volume%, 74 to 99 volume%, 74 to 98 volume%, or 74 to 97 volume%, based on the total volume of the composite material.
  • the method for producing the aerogel particles is not particularly limited, but for example, the aerogel particles can be produced by the following method.
  • the aerogel particles of this embodiment can be produced by a production method that mainly includes a sol production process, a wet gel production process in which the sol obtained in the sol production process is gelled and then aged to obtain a wet gel, a washing and solvent replacement process in which the wet gel obtained in the wet gel production process is washed and (if necessary) solvent-replaced, a drying process in which the washed and solvent-replaced wet gel is dried, and a crushing process in which the aerogel obtained by drying is crushed.
  • a production method that mainly includes a sol production process, a wet gel production process in which the sol obtained in the sol production process is gelled and then aged to obtain a wet gel, a washing and solvent replacement process in which the wet gel obtained in the wet gel production process is washed and (if necessary) solvent-replaced, a drying process in which the washed and solvent-replaced wet gel is dried, and a crushing process in which the aerogel obtained by drying is crushed.
  • it may be produced by a production method mainly including a sol production process, a wet gel production process, a wet gel crushing process for crushing the wet gel obtained in the wet gel production process, a washing and solvent replacement process, and a drying process.
  • the size of the obtained aerogel particles can be further uniformed by sieving, classification, etc. Uniform particle size can improve dispersibility.
  • "sol” refers to the state before the gelation reaction occurs, and in this embodiment, refers to the state in which the silicon compound and, in some cases, silica particles are dissolved or dispersed in a solvent.
  • a wet gel refers to a gel solid that contains a liquid medium but does not have fluidity.
  • the sol generation process is a process of mixing a silicon compound and, optionally, silica particles (or a solvent containing silica particles) to carry out a hydrolysis reaction, and then generating a sol.
  • an acid catalyst may be further added to the solvent to promote the hydrolysis reaction.
  • a surfactant, a thermally hydrolyzable compound, etc. may be added to the solvent.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to the solvent.
  • solvent for example, water or a mixture of water and alcohol
  • examples of alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol.
  • examples of alcohol with low surface tension and low boiling point that reduce the interfacial tension with the gel wall include methanol, ethanol, and 2-propanol. These may be used alone or in a mixture of two or more types.
  • the amount of alcohol when used as the solvent, can be 4 to 8 moles per mole of the total amount of the silicon compound group and the polysiloxane compound group, but it may also be 4 to 6.5, or 4.5 to 6 moles.
  • the amount of alcohol 4 moles or more it becomes easier to obtain good compatibility, and by making it 8 moles or less, it becomes easier to suppress the shrinkage of the gel.
  • Acid catalysts include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, hypochlorous acid, etc.; acid phosphates such as acid aluminum phosphate, acid magnesium phosphate, acid zinc phosphate, etc.; and organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid, azelaic acid, etc.
  • organic carboxylic acids can be mentioned as acid catalysts that further improve the water resistance of the obtained aerogel.
  • the organic carboxylic acid can be acetic acid, but it can also be formic acid, propionic acid, oxalic acid, malonic acid, etc. These can be used alone or in a mixture of two or more types.
  • the hydrolysis reaction of the silicon compound can be accelerated, allowing the sol to be obtained in a shorter time.
  • the amount of acid catalyst added can be 0.001 to 0.1 parts by mass per 100 parts by mass of the total amount of the polysiloxane compounds and silicon compounds.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant, etc. can be used. These may be used alone or in combination of two or more types.
  • nonionic surfactants examples include compounds that contain a hydrophilic portion such as polyoxyethylene and a hydrophobic portion mainly composed of an alkyl group, and compounds that contain a hydrophilic portion such as polyoxypropylene.
  • examples of compounds that contain a hydrophilic portion such as polyoxyethylene and a hydrophobic portion mainly composed of an alkyl group include polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene alkyl ether.
  • examples of compounds that contain a hydrophilic portion such as polyoxypropylene include polyoxypropylene alkyl ether and block copolymers of polyoxyethylene and polyoxypropylene.
  • Examples of ionic surfactants include cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • Examples of cationic surfactants include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of anionic surfactants include sodium dodecylsulfonate.
  • Examples of amphoteric surfactants include amino acid surfactants, betaine surfactants, and amine oxide surfactants.
  • Examples of amino acid surfactants include acyl glutamic acid.
  • Examples of betaine surfactants include lauryl dimethyl amino acetate betaine and stearyl dimethyl amino acetate betaine.
  • Examples of amine oxide surfactants include lauryl dimethyl amine oxide.
  • surfactants are thought to act to reduce the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the wet gel formation process described below, thereby suppressing phase separation.
  • the amount of surfactant added depends on the type of surfactant or the type and amount of silicon compound, but can be, for example, 1 to 100 parts by mass per 100 parts by mass of the total amount of polysiloxane compounds and silicon compounds. The amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compounds generate a base catalyst through thermal hydrolysis, which makes the reaction solution basic and is thought to promote the sol-gel reaction in the wet gel production process described below. Therefore, the thermohydrolyzable compound is not particularly limited as long as it is a compound that can make the reaction solution basic after hydrolysis, and examples of such compounds include urea; acid amides such as formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, and N,N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine. Among these, urea is particularly likely to provide the above-mentioned promoting effect.
  • the amount of the thermohydrolyzable compound added is not particularly limited, so long as it is an amount that can sufficiently promote the sol-gel reaction in the wet gel generation process described below.
  • the amount added can be 1 to 200 parts by mass per 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group.
  • the amount added may be 2 to 150 parts by mass.
  • the hydrolysis in the sol production process depends on the type and amount of silicon compound, silica particles, acid catalyst, surfactant, etc. in the mixed liquid, but may be carried out, for example, in a temperature environment of 20 to 60°C for 10 minutes to 24 hours, or in a temperature environment of 50 to 60°C for 5 minutes to 8 hours. This allows the hydrolyzable functional groups in the silicon compound to be sufficiently hydrolyzed, making it possible to more reliably obtain the hydrolysis product of the silicon compound.
  • the temperature environment of the sol generation process may be adjusted to a temperature that suppresses hydrolysis of the thermohydrolyzable compound and suppresses gelation of the sol.
  • the temperature at this time may be any temperature that can suppress hydrolysis of the thermohydrolyzable compound.
  • the temperature environment of the sol generation process may be 0 to 40°C, but may also be 10 to 30°C.
  • the wet gel forming step is a step of gelling the sol obtained in the sol forming step, followed by aging to obtain a wet gel.
  • a base catalyst can be used to promote gelling.
  • Basic catalysts include carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate, and silver (I) carbonate; hydrogen carbonates such as calcium hydrogen carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, and ammonium hydrogen carbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; ammonium compounds such as ammonium hydroxide, ammonium fluoride, ammonium chloride, and ammonium bromide; basic sodium phosphates such as sodium metaphosphate, sodium pyrophosphate, and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine, Aliphatic amines such as amine, triethylamine, 2-ethylhexylamine,
  • ammonium hydroxide (aqueous ammonia) is highly volatile and does not easily remain in the aerogel particles after drying, so it is not likely to impair water resistance, and is also excellent in terms of economy.
  • the above-mentioned base catalysts may be used alone or in a mixture of two or more types.
  • a base catalyst By using a base catalyst, it is possible to promote the dehydration condensation reaction or the dealcoholization condensation reaction of the silicon compound and silica particles in the sol, and the gelation of the sol can be carried out in a shorter time. This also makes it possible to obtain a wet gel with greater strength (rigidity). In particular, since ammonia is highly volatile and does not easily remain in the aerogel particles, it is possible to obtain aerogel particles with better water resistance by using ammonia as a base catalyst.
  • the amount of base catalyst added can be 0.5 to 5 parts by mass, but may be 1 to 4 parts by mass, per 100 parts by mass of the total amount of the polysiloxane compound group and the silicon compound group. By using an amount of 0.5 parts by mass or more, gelation can be performed in a shorter time, and by using an amount of 5 parts by mass or less, the decrease in water resistance can be further suppressed.
  • the gelation of the sol in the wet gel production process may be carried out in a sealed container to prevent the solvent and base catalyst from volatilizing.
  • the gelation temperature may be 30 to 90°C, but may be 40 to 80°C. By setting the gelation temperature at 30°C or higher, gelation can be carried out in a shorter time, and a wet gel with greater strength (rigidity) can be obtained. Furthermore, by setting the gelation temperature at 90°C or lower, it becomes easier to suppress the volatilization of the solvent (especially alcohol), so gelation can be carried out while suppressing volumetric shrinkage.
  • the maturation in the wet gel production process may be carried out in a sealed container to prevent the solvent and base catalyst from volatilizing.
  • the maturation strengthens the bonds between the components that make up the wet gel, resulting in a wet gel with sufficient strength (rigidity) to suppress shrinkage during drying.
  • the maturation temperature may be 30 to 90°C, but may also be 40 to 80°C. By setting the maturation temperature at 30°C or higher, a wet gel with higher strength (rigidity) can be obtained, and by setting the maturation temperature at 90°C or lower, it becomes easier to suppress the evaporation of the solvent (especially alcohol), making it possible to gel while suppressing volumetric shrinkage.
  • the sol gelation and the subsequent aging may be carried out in a continuous series of operations.
  • the gelation time and aging time can be appropriately set depending on the gelation temperature and aging temperature.
  • the gelation time can be particularly shortened compared to when silica particles are not contained. This is presumably because the silanol groups or reactive groups of the silicon compound in the sol form hydrogen bonds or chemical bonds with the silanol groups of the silica particles.
  • the gelation time can be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelation time to 10 minutes or more, it becomes easier to obtain a homogeneous wet gel, and by setting it to 120 minutes or less, it becomes possible to simplify the washing and solvent replacement process to the drying process described below.
  • the total time of the gelation time and aging time as a whole process of gelation and aging can be 4 to 480 hours, but may be 6 to 120 hours.
  • the total of the gelation time and aging time can be 4 to 480 hours, but may be 6 to 120 hours.
  • the gelation temperature and aging temperature may be increased within the above ranges, or the total time of the gelation time and aging time may be increased within the above ranges. Also, in order to increase the density of the resulting aerogel particles or to decrease the average pore size, the gelation temperature and aging temperature may be decreased within the above ranges, or the total time of the gelation time and aging time may be decreased within the above ranges.
  • the wet gel obtained in the wet gel generation step is crushed.
  • the crushing can be performed, for example, by putting the wet gel into a Henshall mixer, or by performing the wet gel generation step in a mixer and operating the mixer under appropriate conditions (rotation speed and time). More simply, the wet gel can be placed in a sealable container, or by performing the wet gel generation step in a sealable container, and shaking for an appropriate time using a shaking device such as a shaker. If necessary, the particle size of the wet gel can also be adjusted using a jet mill, roller mill, bead mill, or the like.
  • the washing and solvent replacement process includes a process of washing the wet gel obtained by the wet gel generation process or the wet gel crushing process (washing process) and a process of replacing the washing liquid in the wet gel with a solvent suitable for drying conditions (drying process described later) (solvent replacement process).
  • the washing and solvent replacement process can be carried out in a form in which only the solvent replacement process is performed without performing the process of washing the wet gel, but from the viewpoint of reducing impurities such as unreacted substances and by-products in the wet gel and enabling the production of aerogel particles with higher purity, the wet gel may be washed.
  • the washing step the wet gel obtained in the wet gel generating step or the wet gel crushing step is washed.
  • This washing can be carried out repeatedly using, for example, water or an organic solvent. In this case, the washing efficiency can be improved by heating.
  • organic solvent various organic solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride, N,N-dimethylformamide, dimethyl sulfoxide, acetic acid, and formic acid can be used.
  • the above organic solvents may be used alone or in a mixture of two or more types.
  • the organic solvent used in the washing process can be a hydrophilic organic solvent that has high mutual solubility with both water and the low surface tension solvent.
  • the hydrophilic organic solvent used in the washing process can serve as a preliminary replacement for the solvent replacement process.
  • examples of hydrophilic organic solvents include methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, etc. Methanol, ethanol, methyl ethyl ketone, etc. are economical.
  • the amount of water or organic solvent used in the washing step can be an amount that can sufficiently replace the solvent in the wet gel and wash it.
  • the amount can be 3 to 10 times the volume of the wet gel. Washing can be repeated until the water content in the wet gel after washing is 10 mass% or less relative to the mass of silica.
  • the temperature environment during the cleaning process can be below the boiling point of the solvent used for cleaning.
  • the temperature can be around 30 to 60°C.
  • the replacement solvent can be a low surface tension solvent as described below when drying is performed at a temperature below the critical point of the solvent used in the drying process under atmospheric pressure.
  • the replacement solvent can be, for example, ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, etc., or a mixture of two or more of these.
  • Low surface tension solvents include those having a surface tension of 30 mN/m or less at 20°C. The surface tension may be 25 mN/m or less, or 20 mN/m or less.
  • Examples of low surface tension solvents include aliphatic hydrocarbons such as pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), 3-methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2), and 1-pentene (16.0); aromatic hydrocarbons such as benzene (28.9), toluene (28.5), m-xylene (28.7), and p-xylene (28.3); and halides such as dichloromethane (27.9), chloroform (27.2), carbon tetrachloride (26.9), 1-chloropropane (21.8), and 2-ch
  • halogenated hydrocarbons such as ethyl ether (17.1), propyl ether (20.5), isopropyl ether (17.7), butyl ethyl ether (20.8), 1,2-dimethoxyethane (24.6); ketones such as acetone (23.3), methyl ethyl ketone (24.6), methyl propyl ketone (25.1), diethyl ketone (25.3); esters such as methyl acetate (24.8), ethyl acetate (23.8), propyl acetate (24.3), isopropyl acetate (21.2), isobutyl acetate (23.7), ethyl butyrate (24.6) (the values in parentheses indicate the surface tension at 20°C, in units of [mN/m]).
  • ethers such as ethyl ether (17.1), propyl ether (20.5), isopropyl ether (17.7), butyl ethyl ether (20.8), 1,2-d
  • aliphatic hydrocarbons hexane, heptane, etc.
  • hydrophilic organic solvents such as acetone, methyl ethyl ketone, and 1,2-dimethoxyethane can be used as the organic solvent in the above-mentioned cleaning step.
  • solvents having a boiling point of 100° C. or less at normal pressure may be used because they are easy to dry in the drying step described below.
  • the above solvents may be used alone or in combination of two or more.
  • the amount of solvent used in the solvent replacement step can be an amount that can fully replace the solvent in the wet gel after washing. This amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement process can be a temperature below the boiling point of the solvent used for replacement.
  • the temperature can be around 30 to 60°C.
  • the solvent replacement process is not essential.
  • the presumed mechanism is as follows: the silica particles function as a support for the three-dimensional mesh-like skeleton, supporting the skeleton and suppressing the shrinkage of the gel during the drying process. Therefore, it is considered possible to directly subject the gel to the drying process without replacing the solvent used for washing. In this way, the use of silica particles makes it possible to simplify the washing and solvent replacement processes through to the drying process.
  • the drying method is not particularly limited, and known methods such as normal pressure drying, supercritical drying, or freeze drying can be used. Among these, normal pressure drying or supercritical drying can be used from the viewpoint of ease of producing low-density aerogel. Furthermore, normal pressure drying can be used from the viewpoint of low-cost production. In this embodiment, normal pressure means 0.1 MPa (atmospheric pressure).
  • Aerogel can be obtained by drying the washed and (if necessary) solvent-substituted wet gel at atmospheric pressure at a temperature below the critical point of the solvent used for drying.
  • the drying temperature varies depending on the type of substituted solvent (or the solvent used for washing if solvent substitution is not performed), but can be set to 20 to 150°C, taking into consideration that drying at high temperatures may accelerate the evaporation rate of the solvent and cause large cracks in the gel.
  • the drying temperature may be 60 to 120°C.
  • the drying time varies depending on the volume of the wet gel and the drying temperature, but can be set to 4 to 120 hours. It should be noted that applying a pressure below the critical point to accelerate the drying within a range that does not impede productivity is also included in normal pressure drying.
  • the aerogel can also be obtained by subjecting the wet gel, which has been washed and (if necessary) solvent-exchanged, to supercritical drying, which can be carried out by known techniques.
  • the supercritical drying method include a method of removing the solvent at a temperature and pressure equal to or higher than the critical point of the solvent contained in the wet gel, or a method of supercritical drying includes a method of immersing the wet gel in liquefied carbon dioxide under conditions of, for example, 20 to 25° C. and about 5 to 20 MPa to replace all or a part of the solvent contained in the wet gel with carbon dioxide having a lower critical point than the solvent, and then removing the carbon dioxide alone or a mixture of carbon dioxide and the solvent.
  • the aerogel obtained by such normal pressure drying or supercritical drying may be further dried at normal pressure at 105 to 200°C for about 0.5 to 2 hours. This makes it easier to obtain an aerogel with low density and small pores.
  • the additional drying may be performed at normal pressure at 150 to 200°C.
  • the aerogel (aerogel block) obtained by drying is crushed to obtain aerogel particles.
  • this can be done by putting the aerogel into a jet mill, roller mill, bead mill, hammer mill, etc., and operating it at an appropriate rotation speed for an appropriate time.
  • the liquid medium is preferably an aqueous solvent containing water.
  • the aqueous solvent may contain an organic solvent other than water.
  • the organic solvent may be any organic solvent that is compatible with water, and examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, and propylene glycol; ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane; ketones such as acetone and methyl ethyl ketone; carboxylic acids such as acetic acid and propionic acid; and nitrogen-containing compounds such as acetonitrile, dimethylformamide, and triethylamine.
  • the amount of liquid medium contained in the coating liquid is not particularly limited and may be changed as appropriate depending on the desired viscosity of the coating liquid.
  • the amount of liquid medium contained may be an amount that brings the non-volatile content of the coating liquid into a suitable range described below.
  • the non-volatile content of the coating liquid may be, for example, 10% by mass or more, preferably 15% by mass or more, and more preferably 20% by mass or more.
  • the non-volatile content of the coating liquid may be, for example, 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less. That is, the non-volatile content concentration of the coating liquid may be, for example, 10 to 70 mass%, 10 to 60 mass%, 10 to 50 mass%, 15 to 70 mass%, 15 to 60 mass%, 15 to 50 mass%, 20 to 70 mass%, 20 to 60 mass%, or 20 to 50 mass%.
  • the coating liquid may further contain other components in addition to those described above.
  • the coating liquid of this embodiment may further contain, for example, a thickener, a fibrous substance, a pigment, a leveling agent, etc.
  • Thickeners include, for example, fine particles of fumed silica, clay minerals, etc.
  • the fibrous material functions as an anchor between the aerogel particles, and can further improve the strength of the composite material.
  • the fibrous material is not particularly limited and may be an organic fiber or an inorganic fiber.
  • organic fibers include polyamide fibers, polyimide fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, polyester fibers, polyacrylonitrile fibers, polyethylene fibers, polypropylene fibers, polyurethane fibers, phenolic fibers, polyether ester fibers, polylactic acid fibers, and polycarbonate fibers.
  • inorganic fibers include glass fibers, carbon fibers, ceramic fibers, and metal fibers.
  • the coating liquid may contain a fibrous material having a fiber length of 1.5 mm or more. This improves the strength of the composite material formed from the coating liquid, and also tends to ensure sufficient heat insulation even when the composite material is in the form of a film. The reason for this is not entirely clear, but the inventors speculate as follows. In general, it is preferable for the fibers to be randomly oriented in the molded body to ensure the strength of the molded body. It is believed that short fibers are used in Patent Document 2 because short fibers are more likely to be randomly oriented than long fibers.
  • the fibrous material contained in the coating liquid is intentionally made to be long fibers (fibrous material having a fiber length of 1.5 mm or more), so that when a thin film-like composite material is formed, the fibrous material is more likely to be oriented in the plane direction, and it is believed that it is possible to improve the strength in the plane direction while ensuring sufficient heat insulation in the thickness direction.
  • the fiber length of the fibrous material may be 2 mm or more, 2.5 mm or more, or 3 mm or more.
  • the fiber length of the fibrous material may be, for example, 20 mm or less, 15 mm or less, or 10 mm or less.
  • the fiber length of the fibrous material may be, for example, 1.5 to 20 mm, 1.5 to 10 mm, 1.5 to 10 mm, 2 to 20 mm, 2 to 15 mm, 2 to 10 mm, 2.5 to 20 mm, 2.5 to 15 mm, 2.5 to 10 mm, 3 to 20 mm, 3 to 15 mm, or 3 to 10 mm.
  • the fiber diameter of the fibrous material may be, for example, 0.01 to 100 ⁇ m from the viewpoint of dispersibility in the coating liquid and obtaining good anchoring function.
  • the content of the fibrous material in the coating liquid may be, for example, 0.1% by mass or more based on the total amount of nonvolatile content in the coating liquid, and from the viewpoint of further improving film formability, may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more.
  • the content of the fibrous material in the coating liquid may be, for example, 20% by mass or less based on the total amount of nonvolatile content in the coating liquid, and from the viewpoint of further improving coating stability, may be, for example, 15% by mass or less, or 10% by mass or less.
  • the content of the fibrous material in the coating liquid may be, for example, 0.1 to 20 mass%, 0.1 to 15 mass%, 0.1 to 10 mass%, 0.5 to 20 mass%, 0.5 to 15 mass%, 0.5 to 10 mass%, 1 to 20 mass%, 1 to 15 mass%, 1 to 10 mass%, 3 to 20 mass%, 3 to 15 mass%, or 3 to 10 mass%, based on the total amount of non-volatile content in the coating liquid.
  • the content of fibers may be, for example, 30% by mass or more, or 50% by mass or more, based on the total amount of fibrous material. There is no particular upper limit to the content, and it may be 100% by mass (i.e., the fiber length of all fibrous material in the coating liquid is 1.5 mm or more).
  • the content of the fibrous material in the coating liquid may be adjusted as appropriate so that the content of the fibrous material in the composite material falls within the preferred range described below.
  • the content of chloride ions in the coating liquid of this embodiment may be, for example, 50 ppm by mass or less, and from the viewpoint of further suppressing corrosiveness to metals, it may be 30 ppm by mass or less, 10 ppm by mass or less, 5 ppm by mass or less, or 1 ppm by mass or less.
  • the content of sulfate ions in the coating liquid of this embodiment may be, for example, 50 ppm by mass or less, and from the viewpoint of further suppressing corrosiveness to metals, it may be 30 ppm by mass or less, 10 ppm by mass or less, 5 ppm by mass or less, or 1 ppm by mass or less.
  • the above-mentioned preferred ranges may be achieved by using components in the coating liquid that have a low (or no) content of chloride ions and sulfate ions.
  • a nonionic emulsifier is used as the emulsifier, so it is easier to adjust the content of chloride ions and sulfate ions to the above-mentioned preferred ranges compared to, for example, the use of an anionic emulsifier.
  • the coating liquid may be produced by a production method including an emulsion preparation step, a dispersion preparation step, and a coating liquid production step.
  • the emulsion preparation process is a process for preparing an emulsion that includes emulsified particles containing a binder resin and a nonionic emulsifier, and a first liquid medium.
  • the emulsion preparation step may be, for example, a step of obtaining the emulsion by emulsion polymerization of the monomer components described above in a first liquid medium in the presence of a nonionic emulsifier.
  • the first liquid medium examples include the same liquid medium as described above.
  • the first liquid medium is preferably an aqueous solvent.
  • the emulsion polymerization may be carried out, for example, by a step (i) of mixing the monomer components and a nonionic emulsifier in a first liquid medium to obtain a monomer emulsion, and a step (ii) of mixing the monomer emulsion with a radical polymerization initiator to perform emulsion polymerization of the monomer components.
  • the amount of the nonionic emulsifier may be, for example, 0.01 parts by mass or more, 0.1 parts by mass or more, 0.3 parts by mass or more, 0.5 parts by mass or more, 0.7 parts by mass or more, 0.9 parts by mass or more, or 1 part by mass or more, relative to 100 parts by mass of the monomer component. Also, in step (i), the amount of the nonionic emulsifier may be, for example, 15 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, 8 parts by mass or less, or 6 parts by mass or less, relative to 100 parts by mass of the monomer component.
  • the amount of the nonionic emulsifier is, for example, 0.01 to 15 parts by mass, 0.01 to 12 parts by mass, 0.01 to 10 parts by mass, 0.01 to 8 parts by mass, 0.01 to 6 parts by mass, 0.1 to 15 parts by mass, 0.1 to 12 parts by mass, 0.1 to 10 parts by mass, 0.1 to 8 parts by mass, 0.1 to 6 parts by mass, 0.3 to 15 parts by mass, 0.3 to 12 parts by mass, 0.3 to 10 parts by mass, 0.3 to 8 parts by mass, 0.3 to 6 parts by mass, parts, 0.5 to 15 parts by weight, 0.5 to 12 parts by weight, 0.5 to 10 parts by weight, 0.5 to 8 parts by weight, 0.5 to 6 parts by weight, 0.7 to 15 parts by weight, 0.7 to 12 parts by weight, 0.7 to 10 parts by weight, 0.7 to 8 parts by weight, 0.7 to 6 parts by weight, 0.9 to 15 parts by weight, 0.9 to 12 parts by weight, 0.9 to 10 parts by weight, 0.9 to 6 parts by weight, 0.9 to
  • the radical polymerization initiator is not particularly limited as long as it is a polymerization initiator that can initiate emulsion polymerization of the monomer components, and may be appropriately selected from known radical polymerization initiators.
  • radical polymerization initiators examples include hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis[N-(2-hydroxyethyl)-2-methylpropanamide], etc.
  • the amount of the radical polymerization initiator may be, for example, 0.001 parts by mass or more, 0.01 parts by mass or more, 0.05 parts by mass or more, or 0.1 parts by mass or more, relative to 100 parts by mass of the monomer component. Also, in step (ii), the amount of the radical polymerization initiator may be, for example, 5 parts by mass or less, 3 parts by mass or less, 2 parts by mass or less, or 1 part by mass or less, relative to 100 parts by mass of the monomer component.
  • the amount of the radical polymerization initiator may be, for example, 0.001 to 5 parts by mass, 0.001 to 3 parts by mass, 0.001 to 2 parts by mass, 0.001 to 1 part by mass, 0.01 to 5 parts by mass, 0.01 to 3 parts by mass, 0.01 to 2 parts by mass, 0.01 to 1 part by mass, 0.05 to 5 parts by mass, 0.05 to 3 parts by mass, 0.05 to 2 parts by mass, 0.05 to 1 part by mass, 0.1 to 5 parts by mass, 0.1 to 3 parts by mass, 0.1 to 2 parts by mass, or 0.1 to 1 part by mass, relative to 100 parts by mass of the monomer component.
  • a reducing agent may be used together with the radical polymerization initiator as necessary. This promotes the generation of radicals from the radical polymerization initiator.
  • reducing agents include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, and glucose, and reducing inorganic compounds such as thiourea dioxide and hydrazine.
  • neutralization may be performed with a neutralizing agent.
  • the neutralizing agent is not particularly limited and may be a known neutralizing agent.
  • Examples of the neutralizing agent include aqueous ammonia, morpholine, 2-amino-2-methyl-1-propanol, triethylamine, triethanolamine, sodium hydroxide, and potassium hydroxide.
  • the amount of the neutralizing agent is not particularly limited and may be appropriately adjusted so that the pH of the resulting emulsion is 7 to 11 (preferably 8 to 10).
  • the emulsion obtained in step (ii) contains emulsified particles containing a binder resin and a nonionic emulsifier.
  • the average particle size of the emulsified particles in the emulsion may be, for example, 50 nm or more, 70 nm or more, 90 nm or more, or 100 nm.
  • the average particle size of the emulsified particles in the emulsion may be, for example, 400 nm or less, 350 nm or less, or 300 nm or less.
  • the average particle size of the emulsified particles in the emulsion may be, for example, 50 to 400 nm, 50 to 350 nm, 50 to 300 nm, 70 to 400 nm, 70 to 350 nm, 70 to 300 nm, 90 to 400 nm, 90 to 350 nm, 90 to 300 nm, 100 to 400 nm, 100 to 350 nm, or 100 to 300 nm.
  • the average particle size of the emulsified particles in the emulsion refers to the value measured by dynamic light scattering (DLS) using a MICROTRAC UPA150 (manufactured by Microtrac Bell Co., Ltd.) at 23°C.
  • the minimum film-forming temperature (MFT) of the emulsion obtained in step (ii) may be, for example, 25°C or lower, and from the viewpoint of further improving film-forming properties, it is preferably 20°C or lower, and more preferably 15°C or lower. Furthermore, from the viewpoint of further improving film-forming properties at low temperatures, the minimum film-forming temperature (MFT) of the emulsion is preferably 10°C or lower, and more preferably 8°C or lower, and may be 6°C or lower. There is no particular lower limit for the minimum film-forming temperature (MFT) of the emulsion. Note that in the case of paints containing aqueous solvents, MFTs below 0°C cannot be measured.
  • the dispersion preparation process is a process in which aerogel particles, a water-soluble polymer, and a second liquid medium are mixed to obtain a dispersion containing aerogel particles, a water-soluble polymer, and a second liquid medium.
  • the dispersion preparation process may be a process of mixing aerogel particles, a water-soluble polymer, and a second liquid medium so that the aerogel particles aggregate, to obtain a dispersion containing aerogel particle aggregates, the water-soluble polymer, and the second liquid medium.
  • the second liquid medium can be the same as the liquid medium described above.
  • the second liquid medium is preferably an aqueous solvent.
  • the amount of the water-soluble polymer may be, for example, 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more, relative to 100 parts by mass of the aerogel particles.
  • the amount of the water-soluble polymer may be, for example, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less, relative to 100 parts by mass of the aerogel particles.
  • the amount of the water-soluble polymer may be, for example, 0.1 to 20 parts by mass, 0.1 to 15 parts by mass, 0.1 to 10 parts by mass, 0.5 to 20 parts by mass, 0.5 to 15 parts by mass, 0.5 to 10 parts by mass, 1 to 20 parts by mass, 1 to 15 parts by mass, 1 to 10 parts by mass, 2 to 20 parts by mass, 2 to 15 parts by mass, 2 to 10 parts by mass, 3 to 20 parts by mass, 3 to 15 parts by mass, or 3 to 10 parts by mass, relative to 100 parts by mass of the aerogel particles.
  • the mixing method is not particularly limited, and may be, for example, mixing by stirring.
  • the stirring speed affects the size of the aggregates.
  • the higher the stirring speed the greater the shear stress, which tends to reduce the size of the aggregates. Therefore, from the perspective of obtaining aggregates of the appropriate size, as described below, it is desirable to mix at a low stirring speed.
  • the viscosity during mixing also affects the size of the aggregates. Even at the same stirring speed, the shear stress changes depending on the viscosity. If the viscosity is high, greater shear stress is applied, and the aggregates will be smaller in size. On the other hand, if the viscosity is low, the shear stress is smaller, and the aggregates tend to be larger. Therefore, the desired aggregate size can be achieved by adjusting the stirring speed depending on the viscosity.
  • the amount of liquid medium used during mixing also affects the size of the aggregates. Even if the final composition is the same, the size of the aggregates will differ between (i) the method of adding the entire amount of liquid medium from the beginning of mixing and (ii) the method of mixing with a small amount of liquid medium at the beginning of mixing and then adding more liquid medium. Method (ii) above has a higher initial viscosity than method (i). For this reason, method (ii) above tends to produce smaller aggregates than method (i) above. By using these methods appropriately depending on the composition, mixing equipment (stirring equipment), etc., aggregates of the desired size can be formed.
  • the size of the aggregates in the dispersion is not particularly limited, and may be appropriately adjusted so that the size of the aggregates in the coating liquid falls within the preferred range described below.
  • the coating liquid manufacturing process involves mixing the emulsion and the dispersion to obtain the coating liquid.
  • the mixing method is not particularly limited, and may be, for example, mixing by stirring.
  • the mixing method in the coating liquid manufacturing process may be adjusted appropriately so that the size of the aerogel particle aggregates falls within the preferred range described below, similar to the mixing method in the dispersion preparation process described above.
  • the average diameter of the aggregates may be, for example, 20 ⁇ m or more, or may be 30 ⁇ m or more. If the average diameter of the aggregates is large, the contact interface between the aerogel and the binder resin becomes smaller, and the penetration of the resin into the pores of the aerogel is further suppressed.
  • the average diameter of the aggregates may be, for example, 300 ⁇ m or less, or may be 200 ⁇ m or less, or 150 ⁇ m or less. If the average diameter of the aggregates is small, the decrease in film strength caused by the continuation of relatively fragile aerogel is suppressed, and a stronger composite material is easily obtained. That is, the average diameter of the aggregates may be, for example, 20 to 300 ⁇ m, 20 to 200 ⁇ m, 20 to 150 ⁇ m, 30 to 300 ⁇ m, 30 to 200 ⁇ m, or 30 to 150 ⁇ m.
  • the average diameter of the aggregates may be two or more times the average diameter of the aerogel particles, or may be three or more times. If the average diameter of the aggregates is large, the contact interface between the aerogel and the binder resin becomes smaller, and the penetration of the resin into the pores of the aerogel is further suppressed. In addition, the average diameter of the aggregates may be 30 or less times the average diameter of the aerogel particles, or may be 20 or less times, or 15 or less times. If the average diameter of the aggregates is small, the decrease in film strength caused by the continuation of relatively fragile aerogel is suppressed, and a stronger composite material is easily obtained. That is, the average diameter of the aggregates may be 2 to 30 times, 2 to 20 times, 2 to 15 times, 3 to 30 times, 3 to 20 times, or 3 to 15 times the average diameter of the aerogel particles.
  • the average diameter of the aggregates indicates a value measured by the following method.
  • Method for measuring the average diameter of aggregates in a coating liquid Approximately 20 g of the coating liquid is placed in a 100 mL polycup, and water is added in 2 g increments while stirring with a spatula, gradually diluting the solution while mixing. The diluted sample is placed on a glass plate, and a micrograph of the sample is obtained using an optical microscope (OLYMPUS, model number: BX51). The obtained micrograph is analyzed using image editing software ImageJ to determine the diameter of multiple aggregates in the micrograph. The average value of the obtained values is taken as the average diameter of the aggregates.
  • the average diameter of the aerogel particles is synonymous with the average particle size (D50) of the aerogel particles described above.
  • the area occupied by aerogel particles (including agglomerates) within the observation field of view is preferably 50% or more, more preferably 60% or more, even more preferably 70% or more, and may be 100%.
  • the diluted solution obtained by diluting the coating solution and the observation method of the diluted solution may be the same as the sample prepared in the above-mentioned [Method for measuring the average diameter of aggregates in the coating solution] and the observation method of the sample.
  • the "area ... within the observation field" is determined by analyzing the micrograph using the image editing software ImageJ.
  • the composite material may be produced by a production method including a coating step of coating the coating liquid on a support to obtain a coating film, and a removal step of removing at least a part of the liquid medium from the coating film to obtain a composite material. That is, the composite material of the present embodiment may be a dried product of the coating liquid.
  • the composite material of this embodiment may be, for example, a composite material including a binder resin, a nonionic emulsifier, aerogel particles, and a water-soluble polymer having a hydrophobic group.
  • the coating liquid by using the coating liquid, a composite material in which the aerogel particles and binder particles are suitably dispersed can be easily obtained.
  • the coating liquid of this embodiment is useful for forming a composite material on the surface of metals such as steel, since corrosion (flash rust) that occurs between application and drying is suppressed. Therefore, the coating liquid and composite material of this embodiment can be suitably used in applications where there is a possibility of contact with metals (e.g., plant piping, industrial equipment, etc.) without concerns about construction management.
  • the support to which the coating liquid is applied is not particularly limited.
  • the support may be peeled off from the composite material after the composite material is produced, or may be used without being peeled off from the composite material.
  • the support may be, for example, the target of application of the composite material.
  • the material constituting the support is not particularly limited, and may be formed, for example, from metal, ceramic, glass, resin, or a mixture of these.
  • the form of the support may be appropriately selected depending on the purpose of use, the material, etc., and may be, for example, a block, sheet, powder, fiber, etc.
  • the method of applying the coating liquid is not particularly limited, and examples include dip coating, spray coating, spin coating, roll coating, etc.
  • a coating method in which the pressure applied to the coating liquid is 1.5 MPa or less is preferable.
  • the break-up of aggregates in the coating liquid due to the load during application is suppressed, and the above-mentioned effects of the aggregates are more pronounced.
  • coating methods such as roller application, trowel application, and air spray are preferable because they make it easy to reduce the pressure applied to the coating liquid.
  • the removal process at least a portion of the liquid medium is removed from the coating film to form a composite material containing the binder resin, the nonionic emulsifier, the aerogel particles, and the water-soluble polymer.
  • the method for removing the liquid medium from the coating is not particularly limited, and examples include heating (e.g., 40 to 150°C), reducing pressure (e.g., 10,000 Pa or less), or both.
  • the thickness of the composite material is not particularly limited and may be, for example, 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, or 1 mm or more.
  • the thickness of the composite material may be, for example, 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less. That is, the thickness of the composite material may be, for example, 0.05-30 mm, 0.05-20 mm, 0.05-10 mm, 0.05-5 mm, 0.1-30 mm, 0.1-20 mm, 0.1-10 mm, 0.1-5 mm, 0.5-30 mm, 0.5-20 mm, 0.5-10 mm, 0.5-5 mm, 1-30 mm, 1-20 mm, 1-10 mm, or 1-5 mm.
  • the composite material has pores due to the aerogel particles.
  • the pore volume of the composite material is preferably 0.15 cm 3 /g or more, more preferably 0.20 cm 3 /g or more, and even more preferably 0.60 cm 3 /g or more.
  • the pore volume of the composite material may be, for example, 5.0 cm 3 /g or less. That is, the pore volume of the composite material may be, for example, from 0.15 to 5.0 cm 3 /g, from 0.20 to 5.0 cm 3 /g, or from 0.60 to 5.0 cm 3 /g.
  • the thermal conductivity of the composite material is, for example, 0.05 W/(m ⁇ K) or less, preferably 0.04 W/(m ⁇ K) or less, more preferably 0.035 W/(m ⁇ K) or less.
  • the thermal conductivity of the composite material may be, for example, 0.01 W/(m ⁇ K) or more. That is, the thermal conductivity of the composite material may be, for example, 0.01 to 0.05 W/(m ⁇ K), 0.01 to 0.04 W/(m ⁇ K), or 0.01 to 0.035 W/(m ⁇ K).
  • the composite material of this embodiment has excellent heat insulating properties derived from the aerogel. Therefore, the composite material can be used as a heat insulating material in cryogenic containers, the space field, the architectural field such as piping and exterior walls, the automotive field such as car air conditioning units and engines, the home appliance field such as refrigerators and freezers, the semiconductor field, and industrial equipment such as piping and tanks.
  • the composite material can also be used as a water repellent material, sound absorbing material, vibration suppressing material, catalyst carrier material, and the like.
  • the composite material of this embodiment also has excellent bending resistance. Therefore, the composite material of this embodiment can be suitably used for application to supports having curved surfaces, application on supports having a surface that is bent, placement on curved surfaces, wrapping around cylindrical parts, and the like.
  • the composite material of this embodiment can be suitably used in applications where it comes into contact with a heat source.
  • the article of this embodiment may include, for example, a heat source and a composite material in thermal contact with the heat source.
  • Example 1 (1) Production of Emulsion Into a reaction vessel equipped with a stirrer, a thermometer, a cooling tube, and a dropping funnel, 160 parts by mass of ion-exchanged water and 1.2 parts by mass of a nonionic emulsifier (EMULGEN 1150S-60, a 60% aqueous solution of polyoxyethylene alkyl ether, manufactured by Kao Corporation, HLB value: 18.5) were charged and stirred. The temperature was raised to 65° C., and then nitrogen was passed through the reaction vessel to remove dissolved oxygen.
  • EMULGEN 1150S-60 a 60% aqueous solution of polyoxyethylene alkyl ether, manufactured by Kao Corporation, HLB value: 18.5
  • Non-volatile content 49.5% by mass
  • the average particle size (d50) of the emulsion particles was measured by dynamic light scattering (DLS) using a MICROTRAC UPA150 (manufactured by Microtrac Bell Co., Ltd.) at 23°C.
  • MFT minimum film formation temperature
  • Glass transition temperature (Tg) of binder resin The glass transition temperature (Tg) of the binder resin was determined by measuring the temperature dependence of the loss tangent using a rheometer (MCR-102, manufactured by Anton Paar). Specifically, a parallel plate with a diameter of 12 mm was used, and the measurement conditions were vibration mode with a frequency of 1 Hz and a strain of 2%. After a small amount of the emulsion was dispensed onto the measurement plate, the plate was brought into contact with the plate, and the temperature was raised from 30°C to 180°C at a rate of 10°C/min, thereby removing the volatile content of the emulsion and adhering the resin to the plate.
  • MCR-102 rheometer
  • the temperature was then lowered from 180°C to 0°C at a rate of 2°C/min, and the loss tangent was measured at intervals of 1 point/°C, and the temperature at which the loss tangent was maximum was taken as the glass transition temperature.
  • the content of the aerogel particles was 84.9% by volume based on the total volume of the solid content in the coating liquid, the content of the water-soluble polymer was 1.5% by mass based on the total amount of the non-volatile content in the coating liquid, and the content of the emulsified particles (total amount of the binder resin and the emulsifier) was 61.5% by mass.
  • the average diameter of the aerogel particle aggregates in the resulting coating liquid was measured by the following method. The results are shown in Table 1.
  • Teflon registered trademark
  • the ion content was measured using an ion chromatography (manufactured by Thermo Fisher Scientific Co., Ltd., product name: ICS-2000) equipped with an anion exchange column (manufactured by Thermo Fisher Scientific Co., Ltd., product name: AS20) under the following conditions: column temperature 30 ° C., flow rate 1.0 mL / min, injection amount 25 ⁇ L, potassium hydroxide solution gradient setting 5 mM at 0 to 5 minutes, 30 mM at 15 minutes, and 55 mM at 20 minutes. Chloride ions were evaluated from the peak detected at a retention time of 10.8 minutes, and the content of sulfate ions was evaluated from the peak detected at a retention time of 16.1 minutes.
  • a composite material was produced as in ⁇ Evaluation of Weather Resistance of Composite Material>, except that the thickness of the composite material was 1 mm or 2 mm, and a stainless steel plate (100 mm x 70 mm x 0.3 mm) was used as the substrate, and used as an evaluation sample.
  • the evaluation sample was folded so as to fit around a cylindrical mandrel with a diameter of 10 mm, and the presence or absence of cracks and peeling was visually confirmed. The case where no cracks or peeling were observed was rated as A, and the case where cracks or peeling were observed was rated as B.
  • Example 2 A coating liquid was prepared in the same manner as in Example 1, except that the mixture was stirred for an additional 3 minutes at 50 rpm using a planetary mixer (Model 2P-1, manufactured by Primix Corporation). The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A coating liquid was prepared in the same manner as in Example 1, except that the mixture was stirred for an additional 5 minutes at 50 rpm using a planetary mixer (Model 2P-1, manufactured by Primix Corporation). The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A coating liquid was prepared in the same manner as in Example 1, except that the mixture was stirred for an additional 15 minutes at 50 rpm using a planetary mixer (2P-1 model, manufactured by Primix Corporation). The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A coating liquid was produced in the same manner as in Example 1, except that the amount of the aerogel particles was changed to 14 parts by mass and the amount of the emulsion was changed to 93 parts by mass. The obtained coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 A coating liquid was produced in the same manner as in Example 1, except that the aerogel particles were changed to those manufactured by JIS Co., Ltd., product name: Aerova (average particle size (D50) 17 ⁇ m). The obtained coating liquid was evaluated in the same manner as in Example 1, and the results are shown in the table.
  • Example 7 (1) Preparation of aerogel particles A 100.0 parts by mass of PL-2L (manufactured by Fuso Chemical Co., Ltd., product name) as a silica particle-containing raw material, 80.0 parts by mass of water, 0.5 parts by mass of acetic acid as an acid catalyst, 1.0 parts by mass of cetyltrimethylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) as a cationic surfactant, and 150.0 parts by mass of urea as a thermal hydrolysis product were mixed, and 60.0 parts by mass of methyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBM-13) as a silicon compound, 20.0 parts by mass of dimethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KMB-22), and 20.0 parts by mass of a bifunctional alkoxy-modified polysiloxane
  • the "polysiloxane compound A” was synthesized as follows. First, in a 1-liter three-neck flask equipped with a stirrer, a thermometer, and a Dimroth condenser, 100.0 parts by mass of dimethylpolysiloxane XC96-723 (product name, manufactured by Momentive Performance Materials Japan LLC) having silanol groups at both ends, 181.3 parts by mass of methyltrimethoxysilane, and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours.
  • this reaction liquid was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile matter, thereby obtaining a polysiloxane compound modified with two functional alkoxy groups at both ends (polysiloxane compound A).
  • the obtained wet gel was then transferred to a plastic bottle, sealed, and pulverized at 27,000 rpm for 10 minutes using an extreme mill (MX-1000XTS, manufactured by AS ONE Corporation) to obtain a particulate wet gel.
  • MX-1000XTS extreme mill
  • the obtained particulate wet gel was immersed in 2500.0 parts by mass of methanol and washed at 25 ° C. for 24 hours. This washing operation was performed a total of three times while replacing with fresh methanol.
  • the washed particulate wet gel was immersed in 2500.0 parts by mass of heptane, a low surface tension solvent, and solvent replacement was performed at 25 ° C. for 24 hours. This solvent replacement operation was performed a total of three times while replacing with fresh heptane.
  • the washed and solvent-replaced particulate wet gel was dried at 40 ° C. for 96 hours under normal pressure, and then further dried at 150 ° C. for 2 hours. Finally, it was sieved (manufactured by Tokyo Screen Co., Ltd., mesh size 45 ⁇ m, line diameter 32 ⁇ m) to obtain aerogel particles A.
  • Example 2 Preparation of Coating Liquid A coating liquid was prepared in the same manner as in Example 1, except that the aerogel particles were changed to aerogel particles A. The obtained coating liquid was evaluated in the same manner as in Example 1, and the results are shown in Table 2.
  • Example 1 A coating liquid was produced in the same manner as in Example 1, except that the emulsion was changed to Boncoat DV759-EF (resin Tg: 15° C.) manufactured by DIC Corporation. The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 2 A coating liquid was produced in the same manner as in Example 1, except that the emulsion was changed to Boncoat DV759-EF (manufactured by DIC Corporation, product name) and additionally stirred at 1500 rpm for 5 minutes with a planetary centrifugal mixer (manufactured by THINKY, product name: THINKY Mixer, model number: ARE-310). The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 3 A coating liquid was produced in the same manner as in Example 1, except that the emulsion was changed to Boncoat DV759-EF (manufactured by DIC Corporation, product name) and additionally stirred at 2000 rpm for 5 minutes with a planetary centrifugal mixer (manufactured by THINKY, product name: THINKY Mixer, model number: ARE-310). The resulting coating liquid was evaluated in the same manner as in Example 1. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、エアロゲル粒子と、疎水性基を有する水溶性高分子と、液状媒体と、を含む、塗液。

Description

塗液、塗液の製造方法及び複合材料の製造方法
 本発明は、塗液、塗液の製造方法及び複合材料の製造方法に関する。
 断熱材に優れる材料として、エアロゲルが知られている。また、エアロゲルを粒子状に加工し、断熱材の構成材料として用いる方法が提案されている(例えば、特許文献1及び2)。特許文献1では、粒子状のエアロゲルを、断熱窓を構成する樹脂板等の間の充填剤として用いることが提案されている。特許文献2では、エアロゲル粒子と有機繊維とを含む水分散液を調製した後、水を蒸発させることにより得られる中間生成物をさらにプレス成型することで、断熱材(成型体)を製造する方法が示されている。
特開2012-091943号公報 特開2014-035044号公報
 エアロゲル粒子をバインダ樹脂に分散させた複合材料は、塗液化することで適用対象の拡大、用途の拡大が期待される。しかし、複合材料を塗液化しようとすると、エアロゲル粒子とバインダ樹脂とを塗液中に均一に分散させることが困難となる場合があった。
 また、塗液を様々な対象に適用可能とするためには、鉄板等の金属に対する腐食性が低いことが望まれる。
 そこで本発明は、エアロゲル粒子及びバインダ樹脂の分散性に優れ、エアロゲル粒子及びバインダ樹脂を含有する複合材料を形成可能であり、且つ、金属に対する腐食性の低い塗液を提供することを目的とする。また本発明は、当該塗液の製造方法、及び、当該塗液を用いた複合材料の製造方法を提供することを目的とする。
 本発明は、例えば、以下の[1]~[16]に関する。
[1]
 バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、
 エアロゲル粒子と、
 疎水性基を有する水溶性高分子と、
 液状媒体と、
を含む、塗液。
[2]
 前記エアロゲル粒子の少なくとも一部が凝集体を形成している、[1]に記載の塗液。
[3]
 前記凝集体の平均直径が、前記エアロゲル粒子の平均直径の2~40倍である、[2]に記載の塗液。
[4]
 前記ノニオン性乳化剤の含有量が、前記バインダ樹脂100質量部に対して、0.5~10質量部である、[1]~[3]のいずれか一つに記載の塗液。
[5]
 前記ノニオン性乳化剤のHLB値が、13~19である、[1]~[4]のいずれか一つに記載の塗液。
[6]
 前記ノニオン性乳化剤が、ポリオキシエチレンアルキルエーテルである、[1]~[5]のいずれか一つに記載の塗液。
[7]
 前記疎水性基が、炭素数6~26のアルキル基である、[1]~[6]のいずれか一つに記載の塗液。
[8]
 バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、第一の液状媒体と、を含むエマルションを準備するエマルション準備工程と、
 エアロゲル粒子と、疎水性基を有する水溶性高分子と、第二の液状媒体とを混合して、前記エアロゲル粒子、前記水溶性高分子及び前記第二の液状媒体を含有する分散液を得る分散液準備工程と、
 前記エマルションと前記分散液とを混合して、塗液を得る塗液製造工程と、
を含む、塗液の製造方法。
[9]
 前記分散液準備工程が、前記エアロゲル粒子と、前記水溶性高分子と、前記第二の液状媒体とを混合して、前記エアロゲル粒子を凝集させる工程であり、
 前記塗液製造工程が、前記エアロゲル粒子の凝集体を含有する塗液を得る工程である、[8]に記載の塗液の製造方法。
[10]
 前記凝集体の平均直径が、前記エアロゲル粒子の平均直径の2~40倍である、[9]に記載の塗液の製造方法。
[11]
 前記ノニオン性乳化剤の含有量が、前記バインダ樹脂100質量部に対して、0.5~10質量部である、[8]~[10]のいずれか一つに記載の塗液の製造方法。
[12]
 前記ノニオン性乳化剤のHLB値が、13~19である、[8]~[11]のいずれか一つに記載の塗液の製造方法。
[13]
 前記ノニオン性乳化剤が、ポリオキシエチレンアルキルエーテルである、[8]~[12]のいずれか一つに記載の塗液の製造方法。
[14]
 前記疎水性基が、炭素数6~26のアルキル基である、[8]~[13]のいずれか一つに記載の塗液の製造方法。
[15]
 [1]~[7]のいずれか一つに記載の塗液を支持体上に塗布して、塗膜を得る塗布工程と、
 前記塗膜から前記液状媒体の少なくとも一部を除去して複合材料を得る除去工程と、
を含む、複合材料の製造方法。
[16]
 [8]~[14]のいずれか一つに記載の製造方法で製造された塗液を支持体上に塗布して、塗膜を得る塗布工程と、
 前記塗膜から前記液状媒体の少なくとも一部を除去して複合材料を得る除去工程と、
を含む、複合材料の製造方法。
[17]
 [1]~[7]のいずれか一つに記載の塗液の乾燥物である、複合材料。
[18]
 [17]に記載の複合材料を含む、物品。
 本発明によれば、エアロゲル粒子及びバインダ樹脂の分散性に優れ、エアロゲル粒子及びバインダ樹脂を含有する複合材料を形成可能であり、且つ、金属に対する腐食性の低い塗液が提供される。また本発明によれば、当該塗液の製造方法、及び、当該塗液を用いた複合材料の製造方法が提供される。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
[塗液]
 本実施形態の塗液は、バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、エアロゲル粒子と、疎水性基を有する水溶性高分子と、液状媒体と、を含む。
 本実施形態の塗液は、バインダ樹脂を乳化粒子として分散させている。また、本実施形態の塗液は、上記水溶性高分子により、エアロゲル粒子の分散性を向上させている。このため、本実施形態の塗液の塗布及び乾燥によって、エアロゲル粒子及びバインダ樹脂を含有する均一な複合材料を容易に形成することができる。
 また、本実施形態の塗液は、バインダ樹脂を乳化させる乳化剤としてノニオン性乳化剤が選択されている。これにより、他の乳化剤(例えば、アニオン性乳化剤)を用いた場合と比較して、塗液の金属に対する腐食性が顕著に抑制される。この理由は必ずしも明らかではないが、ノニオン性乳化剤を選択することで、他の乳化剤が有するイオンに起因する金属の腐食が抑制されるため、と考えられる。
 本実施形態において、エアロゲル粒子は凝集体を形成していてよい。
 エアロゲル粒子が凝集体を形成することで、複合材料形成時に、エアロゲル粒子と樹脂成分(バインダ樹脂)との接触界面が小さくなり、エアロゲル粒子の細孔内への樹脂成分の浸透が抑制されて、より高い断熱性を有する複合材料が得られる傾向がある。
<乳化粒子>
 バインダ樹脂は、例えば、エチレン性不飽和結合を有する単量体成分の重合体であってよい。このようなバインダ樹脂は、単量体成分に由来する構造単位(単量体単位ともいう)を有する。単量体成分としては、例えば、(メタ)アクリロイル基を有するアクリル系化合物、芳香族ビニル化合物、複素環式ビニル化合物、ビニルエステル類、モノオレフィン類、共役ジオレフィン類、α,β-不飽和カルボン酸、シアン化ビニル類、等が挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 アクリル系化合物としては、例えば、(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルが有するアルキル基は、直鎖状、分岐状又は環状であってもよい。(メタ)アクリル酸アルキルエステルが有するアルキル基の炭素数は、例えば、1~20、1~18、1~16又は1~14であってもよい。(メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシルアクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボロニル(メタ)アクリレート等が挙げられる。
 アクリル系化合物としては、(メタ)アクリロイル基及び極性基((メタ)アクリロイル基以外の極性基)を有する極性基含有アクリル系化合物も例示できる。極性基としては、例えば、ヒドロキシ基、アミノ基、置換アミノ基(例えばジアルキルアミノ基、ヒドロキシアルキルアミノ基等)、アミド基、置換アミド基(例えばジアルキルアミド基、ヒドロキシアルキルアミド基等)、エポキシ基、シリル基(例えばトリアルコキシシリル基等)、シアノ基、イソシアネート基、リン酸基、カルボニル基等が挙げられる。
 極性基含有アクリル系化合物としては、例えば、(メタ)アクリル酸アルキルエステルのアルキル基上に極性基が置換した化合物が上げられる。このような化合物としては、例えば、ヒドロキシアルキル(メタ)アクリレート(例えば、ヒドロキシエチル(メタ)アクリレート等)、ジアルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレート等)、グリシジル(メタ)アクリレート、トリアルコキシシリルアルキル(メタ)アクリレート、イソシアナトアルキル(メタ)アクリレート(例えば、2-イソシアナトエチル(メタ)アクリレート等)、2-(メタ)アクリロイルオキシエチルアシッドホスフェート等が挙げられる。
 極性基含有アクリル系化合物としては、また、(メタ)アクリロイル基と極性基とが結合した化合物も挙げられる。このような化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリルアミド、n-メチロール(メタ)アクリルアミド、ジアセトンアクリルアミド等が挙げられる。
 極性基含有アクリル系化合物としては、また、ダイアセトン(メタ)アクリレート、アセトアセトキシアルキル(メタ)アクリレート(例えば、アセトアセトキシエチル(メタ)アクリレート)等も挙げられる。
 アクリル系化合物としては、アクロレイン、ビニルアルキルケトン(例えば、ビニルメチルケトン等)等も挙げられる。
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン等が挙げられる。
 複素環式ビニル化合物としては、例えば、ビニルピロリドン、ビニルフラン、ビニルチオフェン、ビニルオキサゾリン、ビニルピロール等が挙げられる。
 ビニルエステル類としては、例えば、酢酸ビニル、アルカン酸ビニル、バーサチック酸ビニル等が挙げられる。
 モノオレフィン類としては、例えば、エチレン、プロピレン、ブチレン、イソブチレン等が挙げられる。
 共役ジオレフィン類としては、例えば、ブタジエン、イソプレン、クロロプレン等が挙げられる。
 α,β-不飽和カルボン酸としては、例えば、クロトン酸、イタコン酸、マレイン酸、フマル酸及びこれらの無水物等が挙げられる。
 シアン化ビニル類としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
 単量体成分としては、本発明の効果がより顕著に奏される観点から、アクリル系化合物、芳香族ビニル化合物、複素環式ビニル化合物及びα,β-不飽和カルボン酸からなる群より選択される化合物が好ましい。
 単量体成分は、本発明の効果がより顕著に奏される観点から、アクリル系化合物を含むことが好ましい。アクリル系化合物の含有量は、単量体成分の全量基準で、例えば50質量%以上であってよく、60質量%以上、70質量%以上、80質量%以上、90質量%以上又は95質量%以上であってもよく、100質量%であってもよい。
 すなわち、アクリル系化合物の含有量は、単量体成分の全量基準で、例えば50~100質量%、60~100質量%、70~100質量%、80~100質量%、90~100質量%、又は95~100質量%であってもよい。
 アクリル系化合物は、本発明の効果がより顕著に奏される観点から、(メタ)アクリル酸アルキルエステルを含むことが好ましい。(メタ)アクリル酸アルキルエステルの含有量は、単量体成分の全量基準で、例えば50質量%以上であってよく、複合材料の耐水性がより向上する観点からは、60質量%以上、70質量%以上、80質量%以上又は90質量%以上であってもよい。また、(メタ)アクリル酸アルキルエステルの含有量は、単量体成分の全量基準で、例えば99質量%以下であってよく、97質量%以下又は95質量%以下であってもよい。
 すなわち、(メタ)アクリル酸アルキルエステルの含有量は、単量体成分の全量基準で、例えば50~99質量%、50~97質量%、50~95質量%、60~99質量%、60~97質量%、60~95質量%、70~99質量%、70~97質量%、70~95質量%、80~99質量%、80~97質量%、80~95質量%、90~99質量%、90~97質量%、又は90~95質量%であってもよい。
 アクリル系化合物は、極性基含有アクリル系化合物を更に含んでいてもよい。極性基含有アクリル系化合物の含有量は、単量体成分の全量基準で、例えば1質量%以上であってよく、3質量%以上又は5質量%以上であってもよい。また、極性基含有アクリル系化合物の含有量は、単量体成分の全量基準で、例えば30質量%以下であってよく、25質量%以下、20質量%以下、15質量%以下又は10質量%以下であってもよい。
 すなわち、極性基含有アクリル系化合物の含有量は、単量体成分の全量基準で、例えば1~30質量%、1~25質量%、1~20質量%、1~15質量%、1~10質量%、3~30質量%、3~25質量%、3~20質量%、3~15質量%、3~10質量%、5~30質量%、5~25質量%、5~20質量%、5~15質量%又は5~10質量%であってもよい。
 単量体成分は、例えば、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸及びスチレンからなる群より選択されてもよい。
 単量体成分は、バインダ樹脂のガラス転移温度(Tg)が後述の好適な範囲内となるように適宜選択してよい。バインダ樹脂のガラス転移温度(Tg)は、後述の実施例に記載の方法で測定できる。
 なお、バインダ樹脂のガラス転移温度(Tg)は、バインダ樹脂を構成する各単量体単位の重量比率と、各単量体のホモポリマーのTgとから、FOXの式により推算できる。FOXの式により推算された数値を参考に、バインダ樹脂のガラス転移温度(Tg)が好適な範囲内となるように単量体成分を適宜選択してよい。
 バインダ樹脂のガラス転移温度(Tg)は、例えば25℃以下であってよく、成膜性がより向上する観点からは、20℃以下であることが好ましく、15℃以下であることがより好ましい。また、バインダ樹脂のガラス転移温度(Tg)は、低温での成膜性に更に優れる観点からは、10℃以下であることが好ましく、8℃以下であることがより好ましく、6℃以下であってもよい。バインダ樹脂のガラス転移温度(Tg)は、下限値に特に制限はなく、例えば-40℃以上であってよく、-20℃以上であってもよい。
 すなわち、バインダ樹脂のガラス転移温度(Tg)は、例えば-40~25℃、-40~20℃、-40~15℃、-40~10℃、-40~8℃、-40~6℃、-20~25℃、-20~20℃、-20~15℃、-20~10℃、-20~8℃、又は-20~6℃であってもよい。
 バインダ樹脂は、例えば、液状媒体(好ましくは水系溶媒)中、ノニオン性乳化剤の存在下での単量体成分の乳化重合により、製造することができる。当該乳化重合によって、バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子が形成される。
 ノニオン性乳化剤は、バインダ樹脂を乳化可能なノニオン性乳化剤であればよく、公知のノニオン性乳化剤であってよい。ノニオン性乳化剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル等が挙げられ、ポリオキシアルキレンアルキルエーテルが好ましく、ポリオキシエチレンアルキルエーテルがより好ましい。
 ノニオン性乳化剤のHLB値は、バインダ樹脂の乳化がより容易となる観点から、好ましくは13以上であり、より好ましくは14以上であり、塗液の成膜性がより向上する観点からは、好ましくは15以上であり、より好ましくは16以上である。また、ノニオン性乳化剤のHLB値は、複合材料の耐水性の低下を防ぐ観点からは、19以下であることが好ましい。
 すなわち、ノニオン性乳化剤のHLB値は、例えば13~19、14~19、15~19、又は16~19であってもよい。
 ノニオン性乳化剤の含有量は、バインダ樹脂100質量部に対して、例えば0.01質量部以上であってよく、塗膜の表面乾燥が遅延して成膜性及び芯乾き性が向上する観点からは、0.1質量部以上、0.3質量部以上、0.5質量部以上、0.7質量部以上、0.9質量部以上又は1質量部以上であってもよい。また、ノニオン性乳化剤の含有量は、バインダ樹脂100質量部に対して、例えば20質量部以下であってよく、複合材料の耐水性がより向上する観点からは、15質量部以下、12質量部以下、10質量部以下又は8質量部以下であってもよい。
 すなわち、ノニオン性乳化剤の含有量は、バインダ樹脂100質量部に対して、例えば0.01~20質量部、0.01~15質量部、0.01~12質量部、0.01~10質量部、0.01~8質量部、0.1~20質量部、0.1~15質量部、0.1~12質量部、0.1~10質量部、0.1~8質量部、0.3~20質量部、0.3~15質量部、0.3~12質量部、0.3~10質量部、0.3~8質量部、0.5~20質量部、0.5~15質量部、0.5~12質量部、0.5~10質量部、0.5~8質量部、0.7~20質量部、0.7~15質量部、0.7~12質量部、0.7~10質量部、0.7~8質量部、0.9~20質量部、0.9~15質量部、0.9~12質量部、0.9~10質量部、0.9~8質量部、1~20質量部、1~15質量部、1~12質量部、1~10質量部、又は1~8質量部であってもよい。
 乳化粒子の平均粒子径は、例えば50nm以上であってよく、70nm以上、90nm以上又は100nm以上であってもよい。また、乳化粒子の平均粒子径は、例えば400nm以下であってよく、350nm以下又は300nm以下であってもよい。
 すなわち、乳化粒子の平均粒子径は、例えば50~400nm、50~350nm、50~300nm、70~400nm、70~350nm、70~300nm、90~400nm、90~350nm、90~300nm、100~400nm、100~350nm、又は100~300nmであってもよい。
 塗液中の乳化粒子の含有量(バインダ樹脂及びノニオン性乳化剤の合計量)は、塗液中の不揮発分の全量基準で、例えば30質量%以上であってよく、35質量%以上、40質量%以上又は45質量%以上であってもよい。また、塗液中の乳化粒子の含有量は、塗液中の不揮発分の全量基準で、例えば80質量%以下であってよく、75質量%以下又は70質量%以下であってもよい。
 塗液中の乳化粒子の含有量は、塗液中の不揮発分の全量基準で、例えば30~80質量%、30~75質量%、30~70質量%、35~80質量%、35~75質量%、35~70質量%、40~80質量%、40~75質量%、40~70質量%、45~80質量%、45~75質量%、又は45~70質量%であってもよい。
 塗液中の乳化粒子の含有量は、複合材料中のバインダ樹脂及びノニオン性乳化剤の含有量が、後述の好適な範囲内となるように適宜調整してもよい。
<水溶性高分子>
 水溶性高分子は、疎水性基を有し、且つ、水溶性を有していればよい。
 疎水性基としては、例えば、アルキル基(好ましくは、炭素数6~26の長鎖のアルキル基)、エステル基、アルコキシ基、ハロゲン等が挙げられる。これらのうち、疎水性基としては、アルキル基が好ましく、炭素数6~26の長鎖のアルキル基がより好ましく、炭素数8~26の長鎖のアルキル基が更に好ましく、炭素数10~26の長鎖のアルキル基が一層好ましく、炭素数12~26の長鎖のアルキル基であってもよく、炭素数15~26の長鎖のアルキル基であってもよい。
 水溶性高分子としては、例えば、変性カルボキシルビニルポリマー、変性ポリエーテルウレタン、セルロース系樹脂、ポリエチレンオキシド、ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、デキストリン系樹脂、キチン系樹脂、キトサン系樹脂等が挙げられる。
 水溶性高分子としては、セルロース系樹脂を好適に用いることができる。セルロース系樹脂としては、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、及び、これらを更に変性(例えば、疎水化)した変性体、等が挙げられる。
 セルロース系樹脂としては、アルキル基を有するセルロース系樹脂が好ましく、炭素数6~26の長鎖アルキル基を有するセルロース系樹脂がより好ましい。このようなセルロース系樹脂によれば、本発明の効果がより顕著に奏される。長鎖アルキル基の炭素数は、好ましくは6~26、より好ましくは8~26、更に好ましくは10~26、一層好ましくは12~26、より一層好ましくは15~26である。
 セルロース系樹脂において、炭素数6~26の長鎖アルキル基の含有量は、セルロース系樹脂の全量基準で0.01~5質量%であることが好ましく、0.01~3質量%であることがより好ましい。
 セルロース系樹脂としては、例えば、下記式(A-1)で表される構造単位を有するセルロース系樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)中、Rは、水素原子、アルキル基、ヒドロキシアルキル基、-RA1-O-RA2で表される基(RA1はアルカンジイル基又はヒドロキシアルカンジイル基を示し、RA2はアルキル基を示す。)、又は、-(RA3O)Hで表される基(RA3はアルカンジイル基を示し、nは2以上の整数を示す。)を示す。3個のRは、互いに同一でも異なっていてもよい。但し、3個のRのうち、少なくとも一つは、アルキル基又は-RA1-O-RA2で表される基である。
 式(A-1)中、Rにおけるアルキル基としては、炭素数1~26のアルキル基が好ましい。また、Rにおけるアルキル基は、炭素数1~3の短鎖アルキル基、又は、炭素数6~26の長鎖アルキル基であることがより好ましい。長鎖アルキル基の炭素数は、好ましくは8~26、より好ましくは10~26、更に好ましくは12~26、一層好ましくは15~26である。
 式(A-1)中、Rにおけるヒドロキシアルキル基としては、炭素数1~26のヒドロキシアルキル基が好ましく、炭素数1~10のヒドロキシアルキル基がより好ましく、炭素数1~5のヒドロキシアルキル基が更に好ましい。
 式(A-1)中、RA1におけるアルカンジイル基は、好ましくは炭素数1~26のアルカンジイル基であり、より好ましくは炭素数1~10のアルカンジイル基であり、更に好ましくは炭素数1~5のアルカンジイル基である。また、RA1におけるヒドロキシアルカンジイル基は、好ましくは炭素数1~26のヒドロキシアルカンジイル基であり、より好ましくは炭素数1~10のヒドロキシアルカンジイル基であり、更に好ましくは炭素数1~5のヒドロキシアルカンジイル基である。
 式(A-1)中、RA2としては、炭素数1~26のアルキル基が好ましい。また、RA2におけるアルキル基は、炭素数1~3の短鎖アルキル基、又は、炭素数6~26の長鎖アルキル基であることがより好ましく、長鎖アルキル基であることがより好ましい。長鎖アルキル基の炭素数は、好ましくは8~26、より好ましくは10~26、更に好ましくは12~26、一層好ましくは15~26である。
 式(A-1)中、RA3としては、炭素数2~3のアルカンジイル基が好ましく、炭素数3のアルカンジイル基がより好ましい。
 式(A-1)において、3個のRのうち少なくとも一つが長鎖アルキル基であるか、3個のRのうち少なくとも一つが-RA1-O-RA2で表される基であり且つRA2が長鎖アルキル基であることが好ましい。
 塗液中の水溶性高分子の含有量は、塗液中の不揮発分の全量基準で、例えば0.03質量%以上であってよく、エアロゲル粒子の分散性がより向上する観点からは、0.05質量%以上、0.07質量%以上、0.09質量%以上、0.2質量%以上、0.4質量%以上、0.6質量%以上又は0.8質量%以上であってもよい。また、塗液中の水溶性高分子の含有量は、塗液中の不揮発分の全量基準で、例えば6質量%以下であってよく、複合材料の耐水性がより向上する観点からは、5質量%以下、4質量%以下又は3質量%以下であってもよい。
 すなわち、塗液中の水溶性高分子の含有量は、塗液中の不揮発分の全量基準で、例えば0.03~5質量%、0.03~4質量%、0.03~3質量%、0.05~5質量%、0.05~4質量%、0.05~3質量%、0.07~5質量%、0.07~4質量%、0.07~3質量%、0.09~5質量%、0.09~4質量%、0.09~3質量%、0.2~5質量%、0.2~4質量%、0.2~3質量%、0.4~5質量%、0.4~4質量%、0.4~3質量%、0.6~5質量%、0.6~4質量%、0.6~3質量%、0.8~5質量%、0.8~4質量%、又は0.8~3質量%であってもよい。
 塗液中の水溶性高分子の含有量は、エアロゲル粒子100質量部に対して、例えば0.1質量部以上であってよく、エアロゲル粒子の分散性がより向上する観点からは、0.5質量部以上、1質量部以上、2質量部以上又は3質量部以上であってもよい。また、塗液中の水溶性高分子の含有量は、複合材料の耐水性がより向上する観点からは、エアロゲル粒子100質量部に対して、例えば20質量部以下であってよく、15質量部以下又は10質量部以下であってもよい。
 すなわち、塗液中の水溶性高分子の含有量は、エアロゲル粒子100質量部に対して、例えば0.1~20質量部、0.1~15質量部、0.1~10質量部、0.5~20質量部、0.5~15質量部、0.5~10質量部、1~20質量部、1~15質量部、1~10質量部、2~20質量部、2~15質量部、2~10質量部、3~20質量部、3~15質量部、又は3~10質量部であってもよい。
 塗液中の水溶性高分子の含有量は、複合材料中の水溶性高分子の含有量が、後述の好適な範囲内となるように適宜調整してもよい。
<エアロゲル>
 本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。
 本実施形態のエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
 本実施形態のエアロゲルとしては、例えば、以下の態様が挙げられる。各々の態様を採用することで、各々の態様に応じた断熱性、難燃性、耐熱性及び柔軟性を有するエアロゲルを得ることができる。
(第一の態様)
 本実施形態のエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。
(第二の態様)
 本実施形態のエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルよりも優れた柔軟性を有するエアロゲルとなる。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
(第三の態様)
 本実施形態のエアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの)であってもよい。なお、これまで述べてきたエアロゲルも、このように、ケイ素化合物等を含有するゾルから生成された湿潤ゲルを乾燥することで得られるものであってもよい。
 加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 ポリシロキサン化合物における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基は、ゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~5であってもよく、2~4であってもよい。
(第四の態様)
 本実施形態に係るエアロゲルは、さらに強靱化する観点並びにさらに優れた断熱性及び柔軟性を達成する観点から、エアロゲル成分に加え、さらにシリカ粒子を含有していてもよい。エアロゲル成分及びシリカ粒子を含有するエアロゲルを、エアロゲル複合体ということもできる。エアロゲル複合体は、エアロゲル成分とシリカ粒子とが複合化されていながらも、エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有していると考えられる。
 エアロゲル成分及びシリカ粒子を含有するエアロゲルは、上述の、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルの縮合物である湿潤ゲルの乾燥物ということができる。したがって、第一の態様~第三の態様に関する記載は、本実施形態に係るエアロゲルに対しても適宜準用することができる。
 シリカ粒子としては、特に制限なく用いることができ、非晶質シリカ粒子等が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子、コロイダルシリカ粒子等が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易く、乾燥時の耐収縮性に優れるエアロゲルが得易い観点から、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、20~100nmであってもよい。
 本実施形態において、エアロゲル成分の平均粒子径及びシリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲルを直接観察することにより得ることができる。ここでいう「直径」とは、エアロゲルの断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料からも測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常固形分濃度が5~40質量%程度で、水中に分散しているコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。
<エアロゲル粒子>
 本実施形態におけるエアロゲル粒子は、例えば後述のとおりバルクのエアロゲルを粉砕することにより得ることができる。
 エアロゲル粒子の平均粒子径(D50)(平均直径ともいう。)は0.1~1000μmとすることができるが、0.5~700μmであってもよく、1~500μmであってもよく、3~100μmであってもよく、5~50μmであってもよい。エアロゲル粒子の平均粒子径(D50)が大きいと、分散性、取り扱い性等に優れるエアロゲル粒子が得易くなる。一方、平均粒子径(D50)が小さいと、分散性に優れるエアロゲル粒子が得易くなる。エアロゲル粒子の平均粒子径(D50)は、粉砕方法及び粉砕条件、ふるい、分級の仕方等により適宜調整することができる。
 エアロゲル粒子の平均粒子径(D50)はレーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、エアロゲル粒子の含有量が0.05~5質量%となるように添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、エアロゲル粒子の分散を行う。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。
 また、エアロゲル粒子としては、市販品を用いることもできる。エアロゲル粒子の市販品としては、例えば、ENOVA MT1100(CABOT社製)、AeroVa(JIOS AEROGEL CORPORATION社製)等が挙げられる。
 本実施形態において、塗液中のエアロゲル粒子の量は、複合材料におけるエアロゲル粒子の含有量が、複合材料の全体積基準で、70体積%以上となる量であることが好ましく、72体積%以上となる量であることがより好ましく、74体積%以上となる量であることが更に好ましい。また、塗液中のエアロゲル粒子の量は、複合材料におけるエアロゲル粒子の含有量が、複合材料の全体積基準で、例えば99体積%以下、98体積%以下又は97体積%以下となる量であってもよい。
 すなわち、塗液中のエアロゲル粒子の量は、複合材料におけるエアロゲル粒子の含有量が、複合材料の全体積基準で、70~99体積%、70~98体積%、70~97体積%、72~99体積%、72~98体積%、72~97体積%、74~99体積%、74~98体積%、又は74~97体積%となる量であってもよい。
<エアロゲル粒子の製造方法>
 エアロゲル粒子の製造方法は、特に限定されないが、例えば以下の方法により製造することができる。
 本実施形態のエアロゲル粒子は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲルを粉砕する粉砕工程とを主に備える製造方法により製造することができる。
 また、ゾル生成工程と、湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、洗浄及び溶媒置換工程と、乾燥工程とを主に備える製造方法により製造してもよい。
 得られたエアロゲル粒子は、ふるい、分級等によって大きさをさらに揃えることができる。粒子の大きさを整えることで分散性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては上記ケイ素化合物と、場合によりシリカ粒子と、が溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、ケイ素化合物と、場合によりシリカ粒子(シリカ粒子を含む溶媒であってもよい)と、を混合して加水分解反応を行った後、ゾルを生成する工程である。本工程においては、加水分解反応を促進させるため、溶媒中にさらに酸触媒を添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 溶媒としては、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば溶媒としてアルコールを用いる場合、アルコールの量は、ケイ素化合物群及びポリシロキサン化合物群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコールの量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸が挙げられる。当該有機カルボン酸としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.001~0.1質量部とすることができる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類及び量にも左右されるが、例えばポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル粒子中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物、及びシリカ粒子の、脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル粒子中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル粒子を得ることができる。
 塩基触媒の添加量は、ポリシロキサン化合物群及びケイ素化合物群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により適宜設定することができる。ゾル中にシリカ粒子が含まれている場合は、含まれていない場合と比較して、特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル粒子の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル粒子の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル粒子の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。
 洗浄工程では、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲルの収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、シリカ粒子を用いることで、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル(エアロゲルブロック又はエアロゲル粒子)を得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 エアロゲルは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 エアロゲルは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。
超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルをさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
(粉砕工程)
 湿潤ゲル粉砕工程を行わない場合は、乾燥により得られたエアロゲル(エアロゲルブロック)を粉砕することによりエアロゲル粒子を得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲルを入れ、適度な回転数と時間で運転することにより行うことができる。
<液状媒体>
 液状媒体としては、水を含む水系溶媒が好ましい。水系溶媒には、水以外に有機溶媒が含まれていてもよい。有機溶媒は、水との相溶性を有するものであればよく、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸、プロピオン酸等のカルボン酸;アセトニトリル、ジメチルホルムアミド、トリエチルアミン等の窒素含有化合物等が挙げられる。
 本実施形態において、塗液中の液状媒体の含有量は特に限定されず、所望の塗液の粘度等に応じて適宜変更してよい。例えば、液状媒体の含有量は、塗液の不揮発分濃度が後述の好適な範囲となる量であってよい。
 塗液の不揮発分濃度は、例えば、10質量%以上であってよく、好ましくは15質量%以上、より好ましくは20質量%以上である。また、塗液の不揮発分濃度は、例えば、70質量%以下であってよく、好ましくは60質量%以下、より好ましくは50質量%以下である。
 すなわち、塗液の不揮発分濃度は、例えば10~70質量%、10~60質量%、10~50質量%、15~70質量%、15~60質量%、15~50質量%、20~70質量%、20~60質量%、又は20~50質量%であってもよい。
<その他の成分>
 本実施形態において、塗液は、上記以外の他の成分を更に含有していてもよい。
 本実施形態の塗液は、例えば、増粘剤、繊維状物質、顔料、レベリング剤等を更に含有していてもよい。
 増粘剤としては、例えば、フュームドシリカ、粘土鉱物等の微粒子が挙げられる。
 繊維状物質は、エアロゲル粒子間のアンカーとして機能し、複合材料の強度をより向上させることができる。繊維状物質は特に限定されず、有機繊維又は無機繊維であってよい。有機繊維としては、例えば、ポリアミド系繊維、ポリイミド系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリウレタン系繊維、フェノール系繊維、ポリエーテルエステル系繊維、ポリ乳酸系繊維、ポリカーボネート系繊維等が挙げられる。無機繊維としては、例えば、ガラス繊維、炭素繊維、セラミック繊維、金属繊維等が挙げられる。
 本実施形態において、塗液は、繊維長が1.5mm以上の繊維状物質を含んでもよいこれにより、塗液から形成される複合材料の強度が向上し、且つ、複合材料が膜状である場合でも十分な断熱性が確保される傾向がある。この理由は必ずしも定かではないが、本発明者らは次の様に推察している。一般に、成形体の強度確保のためには成形体内で繊維がランダムに配向していることが好ましい。特許文献2において短繊維が用いられているのは、長繊維に比べて短繊維がランダムに配向しやすいためと考えられる。しかし、厚みの薄い膜状の成形体を作製した場合、短繊維をランダムに配向させると、厚み方向(断熱したい方向)において繊維による熱伝導路(熱パス)が形成しやすく、厚み方向の断熱性が損なわれる場合がある。本実施形態では、塗液に含まれる繊維状物質を敢えて長繊維(繊維長が1.5mm以上の繊維状物質)にすることで、薄い膜状の複合材料を形成した際に、繊維状物質が面方向に配向しやすくなり、面方向における強度を向上させつつ、厚み方向における断熱性を十分に確保することが可能になると考える。
 上記効果がより顕著に得られる観点からは、繊維状物質の繊維長は2mm以上、2.5mm以上又は3mm以上であってもよい。一方、塗液中での分散性、及び、スプレー等による吐出性の観点からは、繊維状物質の繊維長は、例えば20mm以下であってよく、15mm以下又は10mm以下であってもよい。
 すなわち、繊維状物質の繊維長は、例えば1.5~20mm、1.5~10mm、1.5~10mm、2~20mm、2~15mm、2~10mm、2.5~20mm、2.5~15mm、2.5~10mm、3~20mm、3~15mm、又は3~10mmであってもよい。
 繊維状物質の繊維径は、塗液中での分散性、及び、良好なアンカー機能を得る観点から、例えば0.01~100μmであってよい。
 塗液中の繊維状物質の含有量は、塗液中の不揮発分の全量基準で、例えば0.1質量%以上であってよく、成膜性がより向上する観点からは、0.5質量%以上、1質量%以上又は3質量%以上であってもよい。また、塗液中の繊維状物質の含有量は、塗液中の不揮発分の全量基準で、例えば20質量%以下であってよく、塗布安定性がより向上する観点からは、例えば15質量%以下又は10質量%以下であってもよい。
 すなわち、塗液中の繊維状物質の含有量は、塗液中の不揮発分の全量基準で、例えば0.1~20質量%、0.1~15質量%、0.1~10質量%、0.5~20質量%、0.5~15質量%、0.5~10質量%、1~20質量%、1~15質量%、1~10質量%、3~20質量%、3~15質量%、又は3~10質量%であってもよい。
 また、繊維(繊維長が1.5mm以上の繊維状物質)の含有量は、繊維状物質の全量基準で、例えば30質量%以上であってよく、50質量%以上であってもよい。当該含有量の上限は特に限定されず、100質量%(すなわち、塗液中の全繊維状物質の繊維長が1.5mm以上)であってもよい。
 塗液中の繊維状物質の含有量は、複合材料中の繊維状物質の含有量が、後述の好適な範囲内となるように適宜調整してもよい。
 本実施形態の塗液中の塩化物イオンの含有量は、例えば50質量ppm以下であってよく、金属に対する腐食性がより抑制される観点からは、30質量ppm以下、10質量ppm以下、5質量ppm以下又は1質量ppm以下であってもよい。
 本実施形態の塗液中の硫酸イオンの含有量は、例えば50質量ppm以下であってよく、金属に対する腐食性がより抑制される観点からは、30質量ppm以下、10質量ppm以下、5質量ppm以下又は1質量ppm以下であってもよい。
 本実施形態では、塗液中の各成分について塩化物イオン及び硫酸イオンの含有量が少ない(又は含まない)ものを用いることで、上述の好適な範囲を達成してよい。また本実施形態では、乳化剤としてノニオン性乳化剤を用いているため、例えばアニオン性乳化剤を用いた場合と比較して、塩化物イオン及び硫酸イオンの含有量を上述の好適な範囲に調整しやすい。
[塗液の製造方法]
 本実施形態において、塗液は、エマルション準備工程と、分散液準備工程と、塗液製造工程と、を含む製造方法によって製造してよい。
 エマルション準備工程は、バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、第一の液状媒体と、を含むエマルションを準備する工程である。
 エマルション準備工程は、例えば、第一の液状媒体中、ノニオン性乳化剤の存在下で、上述の単量体成分の乳化重合を行って、上記エマルションを得る工程であってよい。
 第一の液状媒体としては、上述の液状媒体と同じものが例示できる。第一の液状媒体は、水系溶媒であることが好ましい。
 乳化重合は、例えば、第一の液状媒体中、単量体成分とノニオン性乳化剤とを混合して、単量体乳化液を得る工程(i)と、単量体乳化液とラジカル重合開始剤とを混合して、単量体成分の乳化重合を行う工程(ii)と、により実施してよい。
 工程(i)において、ノニオン性乳化剤の量は、単量体成分100質量部に対して、例えば0.01質量部以上であってよく、0.1質量部以上、0.3質量部以上、0.5質量部以上、0.7質量部以上、0.9質量部以上又は1質量部以上であってもよい。また、工程(i)において、ノニオン性乳化剤の量は、単量体成分100質量部に対して、例えば15質量部以下であってよく、12質量部以下、10質量部以下、8質量部以下又は6質量部以下であってもよい。
 すなわち、工程(i)において、ノニオン性乳化剤の量は、単量体成分100質量部に対して、例えば0.01~15質量部、0.01~12質量部、0.01~10質量部、0.01~8質量部、0.01~6質量部、0.1~15質量部、0.1~12質量部、0.1~10質量部、0.1~8質量部、0.1~6質量部、0.3~15質量部、0.3~12質量部、0.3~10質量部、0.3~8質量部、0.3~6質量部、0.5~15質量部、0.5~12質量部、0.5~10質量部、0.5~8質量部、0.5~6質量部、0.7~15質量部、0.7~12質量部、0.7~10質量部、0.7~8質量部、0.7~6質量部、0.9~15質量部、0.9~12質量部、0.9~10質量部、0.9~8質量部、0.9~6質量部、1~15質量部、1~12質量部、1~10質量部、1~8質量部、又は1~6質量部であってもよい。
 ラジカル重合開始剤は、単量体成分の乳化重合を開始できる重合開始剤であれば特に制限されず、公知のラジカル重合開始剤から適宜選択してよい。
 ラジカル重合開始剤としては、例えば、過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロパンアミド]等が挙げられる。
 工程(ii)において、ラジカル重合開始剤の量は、単量体成分100質量部に対して、例えば0.001質量部以上であってよく、0.01質量部以上、0.05質量部以上又は0.1質量部以上であってもよい。また、工程(ii)において、ラジカル重合開始剤の量は、単量体成分100質量部に対して、例えば5質量部以下であってよく、3質量部以下、2質量部以下又は1質量部以下であってもよい。
 すなわち、工程(ii)において、ラジカル重合開始剤の量は、単量体成分100質量部に対して、例えば0.001~5質量部、0.001~3質量部、0.001~2質量部、0.001~1質量部、0.01~5質量部、0.01~3質量部、0.01~2質量部、0.01~1質量部、0.05~5質量部、0.05~3質量部、0.05~2質量部、0.05~1質量部、0.1~5質量部、0.1~3質量部、0.1~2質量部、又は0.1~1質量部であってもよい。
 工程(ii)では、必要に応じて、ラジカル重合開始剤と共に還元剤を使用してもよい。これにより、ラジカル重合開始剤のラジカル発生が促進される。還元剤としては、例えば、アスコルビン酸、酒石酸、クエン酸、ブドウ糖等の還元性有機化合物、二酸化チオ尿素、ヒドラジン等の還元性無機化合物等が挙げられる。
 工程(ii)では、乳化重合の終了後に、中和剤で中和してもよい。中和剤は特に限定されず、公知の中和剤であってよい。中和剤としては、例えば、アンモニア水、モルホリン、2-アミノ-2-メチル-1-プロパノール、トリエチルアミン、トリエタノールアミン、水酸化ナトリウム、水酸化カリウム等が挙げられる。中和剤の量は、特に限定されず、例えば、得られるエマルションのpHが7~11(好ましくは8~10)となるように適宜調整してよい。
 工程(ii)で得られるエマルションは、バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子を含む。エマルション中の乳化粒子の平均粒子径は、例えば50nm以上であってよく、70nm以上、90nm以上又は100nmであってもよい。また、エマルション中の乳化粒子の平均粒子径は、例えば400nm以下であってよく、350nm以下又は300nm以下であってもよい。
 すなわち、エマルション中の乳化粒子の平均粒子径は、例えば50~400nm、50~350nm、50~300nm、70~400nm、70~350nm、70~300nm、90~400nm、90~350nm、90~300nm、100~400nm、100~350nm、又は100~300nmであってもよい。
 本明細書中、エマルション中の乳化粒子の平均粒子径は、23℃において、MICROTRAC UPA150(マイクロトラック・ベル株式会社製)を用いた動的光散乱法(DLS)により測定される値を示す。
 工程(ii)で得られるエマルションの最低造膜温度(MFT)は、例えば25℃以下であってよく、成膜性がより向上する観点からは、20℃以下であることが好ましく、15℃以下であることがより好ましい。また、エマルションの最低造膜温度(MFT)は、低温での成膜性に更に優れる観点からは、10℃以下であることが好ましく、8℃以下であることがより好ましく、6℃以下であってもよい。エマルションの最低造膜温度(MFT)の下限は特に限定されない。なお、水系溶媒を含む塗料の場合、0℃以下のMFTは測定できない。
 分散液準備工程は、エアロゲル粒子と、水溶性高分子と、第二の液状媒体とを混合して、エアロゲル粒子、水溶性高分子及び第二の液状媒体を含有する分散液を得る工程である。
 分散液準備工程は、エアロゲル粒子と、水溶性高分子と、第二の液状媒体とを、エアロゲル粒子が凝集するように混合して、エアロゲル粒子の凝集体、水溶性高分子及び第二の液状媒体を含有する分散液を得る工程であってもよい。
 第二の液状媒体は、上述の液状媒体と同じものが例示できる。第二の液状媒体は、水系溶媒であることが好ましい。
 分散液準備工程において、水溶性高分子の量は、エアロゲル粒子100質量部に対して、例えば0.1質量部以上であってよく、0.5質量部以上、1質量部以上、2質量部以上又は3質量部以上であってもよい。また、分散液準備工程において、水溶性高分子の量は、エアロゲル粒子100質量部に対して、例えば20質量部以下であってよく、15質量部以下または10質量部以下であってもよい。
 すなわち、分散液準備工程において、水溶性高分子の量は、エアロゲル粒子100質量部に対して、例えば0.1~20質量部、0.1~15質量部、0.1~10質量部、0.5~20質量部、0.5~15質量部、0.5~10質量部、1~20質量部、1~15質量部、1~10質量部、2~20質量部、2~15質量部、2~10質量部、3~20質量部、3~15質量部、又は3~10質量部であってもよい。
 分散液準備工程において、混合方法は特に限定されず、例えば、撹拌による混合であってよい。
 撹拌速度は、凝集体のサイズに影響する。撹拌速度が大きいほどせん断応力がかかるため、凝集体のサイズは低下する傾向がある。したがって、後述の好適なサイズの凝集体を得る観点からは、小さな撹拌速度で混合することが望ましい。
 また、混合時の粘度も凝集体のサイズに影響する。同一の撹拌速度であっても、粘度に応じて、せん断応力は変化する。粘度が高ければ、より大きなせん断応力がかかり、凝集体は低サイズ化する。一方、粘度が低ければ、せん断応力は小さくなり、凝集体は大きくなる傾向がある。したがって、粘度に応じて撹拌速度を調整することで、所望の凝集体のサイズを実現することができる。
 また、混合時の液状媒体の量も凝集体のサイズに影響する。最終的な組成が同一であっても、(i)混合初期から液状媒体を全量投入する方法と、(ii)混合初期は少ない液状媒体量で混合し、その後に液状媒体を追加する方法と、では、凝集体のサイズが異なる。上記(ii)の方法は、上記(i)の方法に比べて、初期の粘度が高くなる。このため、上記(ii)の方法は、上記(i)の方法に比べて、凝集体が低サイズ化する傾向がある。組成、混合装置(撹拌装置)等の条件に合わせてこれらの方法を使い分けることで、所望のサイズの凝集体を形成することができる。
 分散液中の凝集体のサイズは特に限定されず、塗液における凝集体のサイズが後述の好適な範囲内となるよう適宜調整してよい。
 塗液製造工程は、エマルションと分散液とを混合して、塗液を得る工程である。
 塗液製造工程において、混合方法は特に限定されず、例えば、撹拌による混合であってよい。
 塗液製造工程における混合方法は、上述の分散液準備工程における混合方法と同様に、エアロゲル粒子の凝集体のサイズが後述の好適な範囲内となるよう適宜調整してよい。
 凝集体の平均直径は、例えば20μm以上であってよく、30μm以上であってもよい。凝集体の平均直径が大きいと、エアロゲルとバインダ樹脂との接触界面がより小さくなって、エアロゲルの細孔内への樹脂の浸透が一層抑制される。凝集体の平均直径は、例えば300μm以下であってよく、200μm以下又は150μm以下であってもよい。凝集体の平均直径が小さいと、比較的脆いエアロゲルが連続することによる膜強度の低下が抑制され、より強固な複合材料が得られやすくなる。
 すなわち、凝集体の平均直径は、例えば20~300μm、20~200μm、20~150μm、30~300μm、30~200μm、又は30~150μmであってもよい。
 凝集体の平均直径は、エアロゲル粒子の平均直径に対して、2倍以上であってよく、3倍以上であってもよい。凝集体の平均直径が大きいと、エアロゲルとバインダ樹脂との接触界面がより小さくなって、エアロゲルの細孔内への樹脂の浸透が一層抑制される。また、凝集体の平均直径は、エアロゲル粒子の平均直径に対して、30倍以下であってよく、20倍以下又は15倍以下であってもよい。凝集体の平均直径が小さいと、比較的脆いエアロゲルが連続することによる膜強度の低下が抑制され、より強固な複合材料が得られやすくなる。
 すなわち、凝集体の平均直径は、エアロゲル粒子の平均直径に対して、2~30倍、2~20倍、2~15倍、3~30倍、3~20倍、又は3~15倍であってもよい。
 なお、本明細書中、凝集体の平均直径は、以下の方法で測定される値を示す。
[塗液中の凝集体の平均直径の測定方法]
 100mLポリカップに塗液を20g程度とり、スパチュラを用いて撹拌しながら水を2gずつ加えることで、徐々になじませながら希釈する。希釈したサンプルをガラスプレート上にとり、光学顕微鏡(OLYMPUS製、型番:BX51)を用いてサンプルの顕微鏡写真を取得する。得られた顕微鏡写真を、画像編集ソフトImageJを用いて解析し、顕微鏡写真内の複数の凝集体の直径を求める。得られた値の平均値を、凝集体の平均直径とする。
 また、本明細書中、エアロゲル粒子の平均直径とは、上述のエアロゲル粒子の平均粒子径(D50)と同義である。
 本実施形態では、塗液を希釈した希釈液を光学顕微鏡によって観察したとき、観察視野内のエアロゲル粒子(凝集体を含む)が占める面積のうち、直径20μm以上の凝集体(より好ましくは直径50μm以上の凝集体)が占める面積が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好まく、100%であってもよい。
 なお、本明細書中、塗液を希釈した希釈液及び当該希釈液の観察方法は、上述の[塗液中の凝集体の平均直径の測定方法]で調製したサンプル及び当該サンプルの観察方法と同じであってよい。また、「観察視野内の…面積」は、顕微鏡写真を画像編集ソフトImageJを用いて解析して求められる。
<複合材料の製造方法>
 本実施形態において、複合材料は、上記塗液を支持体上に塗布して、塗膜を得る塗布工程と、塗膜から液状媒体の少なくとも一部を除去して複合材料を得る除去工程と、を含む製造方法により製造されてよい。すなわち、本実施形態の複合材料は、上記塗液の乾燥物であってよい。
 本実施形態の複合材料は、例えば、バインダ樹脂と、ノニオン性乳化剤と、エアロゲル粒子と、疎水性基を有する水溶性高分子と、を含む、複合材料であってよい。
 本実施形態では、上記塗液の使用により、エアロゲル粒子及びバインダ粒子が好適に分散した複合材料を容易に得ることができる。また、本実施形態の塗液は、塗布から乾燥までの間に発生する腐食(フラッシュラスト)が抑制されるため、鉄鋼等の金属表面における複合材料の形成に有用である。このため、本実施形態の塗液及び複合材料は、金属と接触する可能性のある用途(例えば、プラント配管、産業設備等)に施工管理上の懸念なく好適に用いることができる。
 塗液を塗布する支持体は特に限定されない。支持体は、複合材料の製造後に複合材料から剥離されてよく、複合材料から剥離することなく使用されてもよい。支持体は、例えば、複合材料の適用対象であってもよい。支持体を構成する材料は特に限定されず、例えば、金属、セラミック、ガラス、樹脂、これらの混合物から形成されるものであってよい。また、支持体の形態は、使用目的、材質等に応じて適宜選択してよく、例えば、ブロック状、シート状、パウダー状、繊維状等であってよい。
 塗液の塗布方法は特に制限されず、例えば、ディップコート、スプレーコート、スピンコート、ロールコート等が挙げられる。
 塗液の塗布方法としては、塗液にかかる圧力が1.5MPa以下の塗布方法が好ましい。このような塗布方法によれば、塗布時の負荷による塗液中の凝集体の解砕が抑制され、凝集体による上述の効果がより顕著に奏される。例えばローラー塗り、コテ塗り、エアスプレー等の塗布方法は、塗液にかかる圧力を低減しやすいため好ましい。
 除去工程では、塗膜から液状媒体の少なくとも一部を除去することで、バインダ樹脂、ノニオン性乳化剤、エアロゲル粒子及び水溶性高分子を含有する複合材料が形成される。
 塗膜から液状媒体を除去する方法は特に制限されず、例えば、加熱(例えば、40~150℃)処理、減圧(例えば、10000Pa以下)処理、又はそれらの両処理を行う方法が挙げられる。
 複合材料の厚さは特に限定されず、例えば0.05mm以上であってよく、0.1mm以上、0.5mm以上又は1mm以上であってもよい。また、複合材料の厚さは、例えば30mm以下であってよく、20mm以下、10mm以下又は5mm以下であってもよい。
 すなわち、複合材料の厚さは、例えば0.05~30mm、0.05~20mm、0.05~10mm、0.05~5mm、0.1~30mm、0.1~20mm、0.1~10mm、0.1~5mm、0.5~30mm、0.5~20mm、0.5~10mm、0.5~5mm、1~30mm、1~20mm、1~10mm、又は1~5mmであってもよい。
 複合材料は、エアロゲル粒子に起因する細孔を有している。複合材料の細孔容積は、より高い断熱性が得られる観点から、0.15cm/g以上が好ましく、0.20cm/g以上がより好ましく、0.60cm/g以上が更に好ましい。複合材料の細孔容積の上限は特に限定されない。複合材料の細孔容積は、例えば5.0cm/g以下であってよい。
 すなわち、複合材料の細孔容積は、例えば0.15~5.0cm/g、0.20~5.0cm/g、又は0.60~5.0cm/gであってもよい。
 複合材料の熱伝導率は、例えば0.05W/(m・K)以下であり、好ましくは0.04W/(m・K)以下、より好ましくは0.035W/(m・K)以下である。複合材料の熱伝導率の下限は特に限定されない。複合材料の熱伝導率は、例えば0.01W/(m・K)以上であってよい。
 すなわち、複合材料の熱伝導率は、例えば0.01~0.05W/(m・K)、0.01~0.04W/(m・K)、又は0.01~0.035W/(m・K)であってもよい。
 本実施形態の複合材料は、エアロゲルに由来する優れた断熱性を有する。このため、当該複合材料は、極低温容器、宇宙分野、配管、外壁等の建築分野、カーエアコンユニット、エンジン等の自動車分野、冷蔵庫、冷凍庫等の家電分野、半導体分野、配管、タンク等の産業用設備等における断熱材としての用途等に適用できる。また、複合材料は、断熱材としての用途の他に、撥水材、吸音材、静振材、触媒担持材等としても利用することができる。また、本実施形態の複合材料は、耐屈曲性に優れる。このため、本実施形態の複合材料は、曲面を有する支持体への適用、屈曲される面を有する支持体上への適用、曲面上への配置、筒状部への巻き付け等に好適に用いることができる。
 本実施形態の複合材料は、熱源と接触する用途に好適に使用することができる。
 本実施形態の物品は、例えば、熱源と、熱源に熱的に接触している複合材料と、を備えていてよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
(1)エマルションの製造
 撹拌装置、温度計、冷却管及び滴下ロートを備えた反応容器に、イオン交換水160質量部と、ノニオン性乳化剤(エマルゲン1150S-60、ポリオキシエチレンアルキルエーテルの60%水溶液、花王株式会社製、HLB値:18.5)1.2質量部とを仕込み、撹拌し、65℃に昇温した後に反応容器への窒素通気により溶存酸素を除去した。
 次いで、274質量部のアクリル酸ブチルと、173.5質量部のメタクリル酸メチルと、24質量部のメタクリル酸2-ヒドロキシエチルと、9質量部のメタクリル酸と、215質量部のイオン交換水と、48.8質量部のノニオン性乳化剤(エマルゲン1150S-60、ポリオキシエチレンアルキルエーテルの60%水溶液、花王株式会社製、HLB値:18.5)とを、ホモミキサーで混合乳化し、単量体乳化液を得た。
 この単量体乳化液の3%を上記反応容器に攪拌下で投入し、ラジカル重合開始剤として0.7質量部の「トリゴノックスA-W70」(化薬ヌーリオン株式会社製、tert-ブチルハイドロパーオキサイドの70%水溶液)及び0.23質量部のアスコルビン酸を投入し、15分間反応させた。次いで、残った97%の単量体乳化液と、0.9質量部の「トリゴノックスA-W70」を60質量部のイオン交換水に溶解した溶液と、0.37質量部のアスコルビン酸を60質量部のイオン交換水に溶解した溶液と、を、それぞれ4時間かけて反応容器に滴下して反応させた。滴下終了後、更に65℃で1時間撹拌した後、40℃以下に冷却し、中和剤として濃度26%のアンモニア水を2.9質量部添加した。これにより、バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と水とを含むエマルションを得た。
 エマルションの性状は以下のとおりであった。
  ・不揮発分濃度:49.5質量%
  ・23℃における粘度:35mPa・s
  ・23℃におけるpH:8.6
  ・最低造膜温度(MFT):5℃
  ・バインダ樹脂のガラス転移温度:9℃
  ・エマルション粒子の平均粒子径:210nm
[エマルションの不揮発分濃度の測定]
 エマルションを1g秤量し、直径5cmのアルミニウム皿上に載置し、乾燥器内に入れた。乾燥機内の空気を循環させながら、1気圧(1013hPa)、温度105℃で1時間乾燥させ、残った成分の質量を測定した。乾燥前のエマルションの質量(1g)に対する、乾燥後に残った上記成分の質量割合(質量%)を算出し、不揮発分濃度(質量%)とした。
[エマルションの粘度の測定]
 測定機器としてBL型粘度計を用いて、温度23℃、回転数60rpmの条件で測定した。
[エマルションのpHの測定]
 pHメーター(東亜ディーケーケー株式会社製、ガラス電極式水素イオン濃度指示計HM-30G)を用いて、23℃におけるpHを測定した。
[乳化粒子の平均粒子径の測定]
 23℃において、MICROTRAC UPA150(マイクロトラック・ベル株式会社製)を用いた動的光散乱法(DLS)により、乳化粒子の平均粒子径(d50)を測定した。
[最低造膜温度(MFT)の測定]
 熱勾配式MFT測定器の測定面に0.3mmアプリケーターを用いてエマルションを塗布し、無風下で乾燥させた。乾燥皮膜の成膜不良クラックを目視観測し、MFTを測定した。
[バインダ樹脂のガラス転移温度(Tg)]
 バインダ樹脂のガラス転移温度(Tg)は、レオメータ(МCR-102、アントンパール社製)により損失正接の温度依存性を測定して求めた。具体的には、直径12mmの平行平板プレートを用い、測定条件は、振動モードで周波数1Hz、ひずみ2%とした。エマルションを測定プレートに少量分取した後、プレートを接触させ、30℃から180℃まで10℃/分の速度で昇温させることで、エマルションの揮発分を除去するとともに樹脂をプレートに密着した。次いで180℃から0℃まで2℃/分の速度で降温し、損失正接を1点/℃の間隔で測定し、損失正接が最大となる温度をガラス転移温度とした。
(2)塗液の製造
 500mLセパラブルフラスコに、水溶性高分子としてサンジェロース90L(大同化成工業株式会社製)1質量部、イソプロピルアルコール(富士フィルム和光純薬工業株式会社製、試薬)9質量部、熱水179質量部、ガラス繊維(日東紡績株式会社製、製品名:CS 3J-891)4質量部をとり、メカニカルスターラを用いて200rpmで1分間撹拌し、分散液を得た。続いて、フラスコを氷水浴で冷却しながら、メカニカルスターラを用いて200rpmで撹拌してサンジェロース90Lを溶解して、サンジェロース90Lの水溶液であるプレゲルを得た。プラネタリーミキサー(プライミクス社製、2P-1型)に、上記プレゲル188質量部とエアロゲル粒子(CABOT製、製品名:ENOVA MT1100、粒子直径2~24μm、平均粒子径(D50)10μm)21質量部を添加し、25rpmで10分間撹拌した。続いて(1)で得たエマルション86質量部を添加し、25rpmで15分間撹拌して塗液を得た。
 なお、塗液中、固形分の全体積基準で、エアロゲル粒子の含有量は84.9体積%であった。また、塗液中、不揮発分の全量基準で、水溶性高分子の含有量は1.5質量%、乳化粒子の含有量(バインダ樹脂及び乳化剤の合計量)は61.5質量%であった。
 得られた塗液中のエアロゲル粒子の凝集体の平均直径を、以下の方法で測定した。結果を表1に示す。
<エアロゲル粒子の凝集体の平均直径の測定>
 100mLのポリカップに塗液を20g程度とり、スパチュラを用いて撹拌しながら水を2gずつ加え、徐々になじませながら希釈した。希釈したサンプルをガラスプレート上にとり、光学顕微鏡(OLYMPUS製、型番:BX51)を用いて、塗液中のエアロゲル粒子の凝集体を観察し、顕微鏡写真を得た。得られた顕微鏡写真について画像編集ソフトImageJを用いて解析し、エアロゲル粒子の凝集体の平均直径を求めた。
<塩化物イオン及び硫酸イオンの含有量の測定>
 テフロン(登録商標)容器に約2.0gの塗液と約20.0gの超純水とを入れ、100℃で2時間加熱抽出した。放冷後、遠心分離を15000rpmで1時間行い、上澄みを固相抽出後、限外濾過して測定試料とした。イオン含有量の測定を、陰イオン交換カラム(サーモフィッシャーサイエンティフィック株式会社製、製品名:AS20)を備えたイオンクロマトグラフィー(サーモフィッシャーサイエンティフィック株式会社製、製品名:ICS-2000)を用いて、カラム温度30℃、流速1.0mL/分、注入量25μL、水酸化カリウム溶液のグラジエント設定0~5分時点で5mM、15分時点で30mM、20分時点で55mMの条件にて行った。保持時間10.8分で検出されるピークから塩化物イオンを評価し、保持時間16.1分で検出されるピークから硫酸イオンの含有量を評価した。
<23℃での複合材料のひび割れ評価>
 アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上にフッ素樹脂で作製した縦横40mm、厚み2mmの枠を用意し、ヘラを用いてその枠内に塗液を塗布し、評価試料とした。評価試料を、23℃60%RHに設定した低温恒温恒湿機(楠本化成株式会社製HIFLEX FX411N)の槽内に12時間放置して塗液から液状媒体を除去し、複合材料を得た。得られた複合材料に関して、全体にヒビが無い場合をA、一部にヒビがある場合をB、全体にヒビがある場合をCとして、ひび割れ具合を評価した。
<10℃での複合材料のひび割れ評価>
 アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上にフッ素樹脂で作製した縦横40mm、厚み2mmの枠を用意し、ヘラを用いてその枠内に塗液を塗布し、評価試料とした。評価試料を、10℃60%RHに設定した低温恒温恒湿機(楠本化成株式会社製HIFLEX FX411N)の槽内に24時間放置して塗液から液状媒体を除去し、複合材料を得た。得られた複合材料に関して、全体にヒビが無い場合をA、一部にヒビがある場合をB、全体にヒビがある場合をCとして、ひび割れ具合を評価した。
<複合材料の細孔容積の評価>
 上記<23℃での複合材料のひび割れ評価>と同じ方法で複合材料を作製した。得られた複合材料を100mg採取し、高感度ガス吸着アナライザー(Quantachrome社製、AutoSorb iQ)を用いて、細孔容積を算出した。
<複合材料の熱伝導率の評価>
 アルミ箔(株式会社UACJ製、製品名:マイホイル厚型50、厚さ:50μm)上にフッ素樹脂で作製した縦横200mm、厚み3mmの枠を用意し、ヘラを用いてその枠内に塗液を塗布した。室温23℃で12時間放置して塗液から液状媒体を除去し、1.5mm厚の複合材料を得た。さらに、この操作を繰り返して3.0m厚の複合材料を得た。得られた複合材料の熱伝導率を、熱伝導率測定装置「HFM-446」(NETZSCH社製、製品名)により定常法で測定した。
<複合材料の腐食性の評価>
 炭素鋼板(100mm×70mm×0.8mm)上に塗液を数mL滴下し、室温23℃で12時間放置して塗液から液状媒体を除去し、塗膜を形成した。次いで、塗膜を除去して炭素鋼板表面を露出させ、錆びの有無を目視し、錆びのないものをA、塗膜領域の10%未満に錆びが発生したものをB、10%以上発生したものをCとして、腐食性(フラッシュラスト)を評価した。
<複合材料の耐候性の評価>
 炭素鋼板(100mm×70mm×0.8mm)上に塗液をエアスプレーで2mm厚で塗布し、室温23℃で12時間放置して塗液から液状媒体を除去し、1mm厚の複合材料付き炭素鋼板を得た。次いで、下記に示す条件で240サイクル、1920hの促進耐候試験を行った後、白亜化を評価した。
 ・サイクル条件(1サイクル)
   (1)照射時60±3℃ 4時間
   (2)暗黒・湿潤時50±2℃ 4時間
 ・白亜化評価
   粘着テープを複合材料に強く押し付けた後はがし、テープに付着した微粉の量を観察し、JIS-K5600-8-6を参照して等級を判断した(付着がないものが1級、テープ全面に微粉が隙間なく転写されるものを5級とし、その中間のものを付着量が少ない方から2級、3級、4級とした)。
<複合材料の耐屈曲性の評価>
 複合材料の厚さを1mm又は2mmとし,基材としてステンレス板(100mm×70mm×0.3mm)を用いたこと以外は、<複合材料の耐候性の評価>と同様にして複合材料を製造し、評価試料とした。評価試料を径10mmの円筒形マンドレルに沿うように折り曲げて、割れ及び剥がれの有無を目視で確認した。割れ及び剥がれが確認されなかった場合をA、割れ又は剥がれが確認された場合をBとして評価した。
(実施例2)
 プラネタリーミキサー(プライミクス社製、2P-1型)で50rpmで3分間追加撹拌したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表1に示す。
(実施例3)
 プラネタリーミキサー(プライミクス社製、2P-1型)で50rpmで5分間追加撹拌したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表1に示す。
(実施例4)
 プラネタリーミキサー(プライミクス社製、2P-1型)で50rpmで15分間追加撹拌したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表1に示す。
(実施例5)
 エアロゲル粒子の量を14質量部、エマルションの量を93質量部に変更したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表2に示す。
(実施例6)
 エアロゲル粒子を、JIOS社製、製品名:Aerova(平均粒子径(D50)17μm)に変更したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した結果を表に示す。
(実施例7)
(1)エアロゲル粒子Aの作製
 シリカ粒子含有原料としてPL-2L(扶桑化学工業株式会社製、製品名)を100.0質量部、水を80.0質量部、酸触媒として酢酸を0.5質量部、カチオン性界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製)を1.0質量部、及び熱加水分解性生成物として尿素を150.0質量部混合し、これにケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-13)を60.0質量部、ジメチルジメトキシシラン(信越化学工業株式会社製:KMB-22)を20.0質量部、両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃でゲル化した後、60℃で48時間熟成して湿潤ゲルを得た。
 なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサンXC96-723(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
 その後、得られた湿潤ゲルをプラスチック製ボトルに移し、密閉後、エクストリームミル(アズワン株式会社製、MX-1000XTS)を用いて、27,000rpmで10分間粉砕し、粒子状の湿潤ゲルを得た。得られた粒子状の湿潤ゲルをメタノール2500.0質量部に浸漬し、25℃で24時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら合計3回行った。次に、洗浄した粒子状の湿潤ゲルを、低表面張力溶媒であるヘプタン2500.0質量部に浸漬し、25℃で24時間かけて溶媒置換を行った。この溶媒置換操作を、新しいへプタンに交換しながら合計3回行った。洗浄及び溶媒置換された粒子状の湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、その後さらに150℃で2時間乾燥した。最後に、ふるい(東京スクリーン株式会社製、目開き45μm、線径32μm)にかけ、エアロゲル粒子Aを得た。
(2)塗液の製造
 エアロゲル粒子を、エアロゲル粒子Aに変更したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した結果を表2に示す。
(比較例1)
 エマルションを、DIC株式会社製、製品名:ボンコートDV759-EF(樹脂のTg:15℃)に変更したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表3に示す。
(比較例2)
 エマルションを、DIC株式会社製、製品名:ボンコートDV759-EF変更し、自転公転撹拌ミキサ(THINKY製、製品名:あわとり練太郎、型番:ARE-310)で1500rpm5分間追加撹拌したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表3に示す。
(比較例3)
 エマルションを、DIC株式会社製、製品名:ボンコートDV759-EF変更し、自転公転撹拌ミキサ(THINKY製、製品名:あわとり練太郎、型番:ARE-310)で2000rpm5分間追加撹拌したこと以外は、実施例1と同様にして塗液を製造した。得られた塗液について、実施例1と同様の方法で評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008

Claims (18)

  1.  バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、
     エアロゲル粒子と、
     疎水性基を有する水溶性高分子と、
     液状媒体と、
    を含む、塗液。
  2.  前記エアロゲル粒子の少なくとも一部が凝集体を形成している、請求項1に記載の塗液。
  3.  前記凝集体の平均直径が、前記エアロゲル粒子の平均直径の2~40倍である、請求項2に記載の塗液。
  4.  前記ノニオン性乳化剤の含有量が、前記バインダ樹脂100質量部に対して、0.5~10質量部である、請求項1に記載の塗液。
  5.  前記ノニオン性乳化剤のHLB値が、13~19である、請求項1に記載の塗液。
  6.  前記ノニオン性乳化剤が、ポリオキシエチレンアルキルエーテルである、請求項1に記載の塗液。
  7.  前記疎水性基が、炭素数6~26のアルキル基である、請求項1に記載の塗液。
  8.  バインダ樹脂及びノニオン性乳化剤を含有する乳化粒子と、第一の液状媒体と、を含むエマルションを準備するエマルション準備工程と、
     エアロゲル粒子と、疎水性基を有する水溶性高分子と、第二の液状媒体とを混合して、前記エアロゲル粒子、前記水溶性高分子及び前記第二の液状媒体を含有する分散液を得る分散液準備工程と、
     前記エマルションと前記分散液とを混合して、塗液を得る塗液製造工程と、
    を含む、塗液の製造方法。
  9.  前記分散液準備工程が、前記エアロゲル粒子と、前記水溶性高分子と、前記第二の液状媒体とを混合して、前記エアロゲル粒子を凝集させる工程であり、
     前記塗液製造工程が、前記エアロゲル粒子の凝集体を含有する塗液を得る工程である、請求項8に記載の塗液の製造方法。
  10.  前記凝集体の平均直径が、前記エアロゲル粒子の平均直径の2~40倍である、請求項9に記載の塗液の製造方法。
  11.  前記ノニオン性乳化剤の含有量が、前記バインダ樹脂100質量部に対して、0.5~10質量部である、請求項8に記載の塗液の製造方法。
  12.  前記ノニオン性乳化剤のHLB値が、13~19である、請求項8に記載の塗液の製造方法。
  13.  前記ノニオン性乳化剤が、ポリオキシエチレンアルキルエーテルである、請求項8に記載の塗液の製造方法。
  14.  前記疎水性基が、炭素数6~26のアルキル基である、請求項8に記載の塗液の製造方法。
  15.  請求項1~7のいずれか一項に記載の塗液を支持体上に塗布して、塗膜を得る塗布工程と、
     前記塗膜から前記液状媒体の少なくとも一部を除去して複合材料を得る除去工程と、
    を含む、複合材料の製造方法。
  16.  請求項8~14のいずれか一項に記載の製造方法で製造された塗液を支持体上に塗布して、塗膜を得る塗布工程と、
     前記塗膜から液状媒体の少なくとも一部を除去して複合材料を得る除去工程と、
    を含む、複合材料の製造方法。
  17.  請求項1~7のいずれか一項に記載の塗液の乾燥物である、複合材料。
  18.  請求項17に記載の複合材料を含む、物品。
PCT/JP2023/036528 2022-10-11 2023-10-06 塗液、塗液の製造方法及び複合材料の製造方法 WO2024080239A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163419 2022-10-11
JP2022163419 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080239A1 true WO2024080239A1 (ja) 2024-04-18

Family

ID=90669260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036528 WO2024080239A1 (ja) 2022-10-11 2023-10-06 塗液、塗液の製造方法及び複合材料の製造方法

Country Status (1)

Country Link
WO (1) WO2024080239A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520219A (ja) * 2011-05-26 2014-08-21 エレクトリシテ・ドゥ・フランス 大気圧において超断熱性を有するエアロゲル系材料
WO2015156311A1 (ja) * 2014-04-09 2015-10-15 株式会社クラレ ビニル樹脂の製造方法
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層
JP2018145331A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 エアロゲルパウダー分散液
JP2020029528A (ja) * 2018-08-24 2020-02-27 住友理工株式会社 断熱材用塗料および断熱材
JP2020122544A (ja) * 2019-01-31 2020-08-13 住友理工株式会社 断熱材およびその製造方法
WO2022190209A1 (ja) * 2021-03-09 2022-09-15 昭和電工マテリアルズ株式会社 塗液の製造方法及び断熱材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520219A (ja) * 2011-05-26 2014-08-21 エレクトリシテ・ドゥ・フランス 大気圧において超断熱性を有するエアロゲル系材料
WO2015156311A1 (ja) * 2014-04-09 2015-10-15 株式会社クラレ ビニル樹脂の製造方法
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層
JP2018145331A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 エアロゲルパウダー分散液
JP2020029528A (ja) * 2018-08-24 2020-02-27 住友理工株式会社 断熱材用塗料および断熱材
JP2020122544A (ja) * 2019-01-31 2020-08-13 住友理工株式会社 断熱材およびその製造方法
WO2022190209A1 (ja) * 2021-03-09 2022-09-15 昭和電工マテリアルズ株式会社 塗液の製造方法及び断熱材の製造方法

Similar Documents

Publication Publication Date Title
JP7196854B2 (ja) 塗液、塗膜の製造方法及び塗膜
TWI829911B (zh) 塗液、複合材料及塗膜
TWI787318B (zh) 塗液、塗膜的製造方法及塗膜
WO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
EP4289911A1 (en) Method for producing coating liquid and method for producing thermal insulation material
KR20200033227A (ko) 막 증류용 다공질막, 막 모듈 및 막 증류 장치
CN114945640A (zh) 涂液的制造方法及绝热材料的制造方法
CN115052940A (zh) 绝热材料的制造方法
WO2024080239A1 (ja) 塗液、塗液の製造方法及び複合材料の製造方法
WO2024080254A1 (ja) 塗液、塗液の製造方法及び複合材料の製造方法
WO2024080252A1 (ja) 塗液、塗液の製造方法及び複合材料の製造方法
JP7196907B2 (ja) 保温材下腐食の抑制方法、及び保温材下腐食抑制用ペースト
WO2019069493A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP2022059803A (ja) 塗液の製造方法及び断熱材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877243

Country of ref document: EP

Kind code of ref document: A1