WO2024080149A1 - Anti-reflection film, liquid composition, liquid composition group, and method for manufacturing anti-reflection film - Google Patents

Anti-reflection film, liquid composition, liquid composition group, and method for manufacturing anti-reflection film Download PDF

Info

Publication number
WO2024080149A1
WO2024080149A1 PCT/JP2023/035315 JP2023035315W WO2024080149A1 WO 2024080149 A1 WO2024080149 A1 WO 2024080149A1 JP 2023035315 W JP2023035315 W JP 2023035315W WO 2024080149 A1 WO2024080149 A1 WO 2024080149A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid composition
fine particles
refractive index
thickness
Prior art date
Application number
PCT/JP2023/035315
Other languages
French (fr)
Japanese (ja)
Inventor
寿雄 今井
一瞳 増田
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2024080149A1 publication Critical patent/WO2024080149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to an anti-reflective film, a liquid composition, a group of liquid compositions, and a method for producing an anti-reflective film.
  • Patent Document 1 describes a substrate on whose surface a coating containing specific hollow spherical silica-based particles and a matrix for forming a coating is formed.
  • the silica-based particles have a cavity formed inside an outer shell having fine pores, and a solvent or gas is contained within the cavity. Since the silica-based particles have a low refractive index, the coating also has a low refractive index, and the coating has excellent anti-reflection performance.
  • Patent Document 2 describes an anti-reflection film having a hard coat layer, a high refractive index layer, and a low refractive index layer from the lower layer side on the surface of an organic film.
  • the high refractive index layer is a synthetic resin thin film containing fine particles of a metal oxide such as ZrO2 .
  • the synthetic resin is an ultraviolet or electron beam curable synthetic resin.
  • Patent Document 3 describes an anti-reflection laminate including a coating film formed in one coat using a coating composition in which low refractive index particles and medium to high refractive index particles are dispersed in a binder resin. Silica particles treated with a fluorine-based compound are used as the low refractive index particles. As a result, due to the difference in specific gravity, the low refractive index particles are unevenly distributed in the upper and middle parts of the coating film, and the medium to high refractive index particles are unevenly distributed in the middle and lower parts.
  • Patent Documents 1 to 3 have room for reexamination from the viewpoint of anti-reflection performance.
  • the present invention provides a novel anti-reflection film that is advantageous from the viewpoint of anti-reflection performance.
  • the present invention relates to An anti-reflection film provided on a substrate,
  • the antireflection film includes a first layer and a second layer in this order from a front surface side of the antireflection film,
  • the first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
  • the second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less.
  • the above anti-reflective coating is advantageous in terms of anti-reflective performance.
  • FIG. 1 is a cross-sectional view showing an example of an anti-reflection film according to the present invention.
  • FIG. 2 is a side view showing an example of an optical component provided with an anti-reflection coating according to the present invention.
  • FIG. 3A is a cross-sectional view showing another example of the antireflection film according to the present invention.
  • FIG. 3B is a cross-sectional view showing still another example of the antireflection film according to the present invention.
  • FIG. 3C is a cross-sectional view showing a state of first hollow fine particles in the antireflection coating shown in FIG. 3A.
  • FIG. 3D is a cross-sectional view showing a state of first hollow fine particles in the antireflection coating shown in FIG. 3A.
  • FIG. 4 is a cross-sectional view showing still another example of the antireflection film according to the present invention.
  • FIG. 5 is a graph showing the reflection spectrum of the antireflection film according to Example 1.
  • FIG. 6 is a graph showing the reflection spectrum of the antireflection film according to Example 4.
  • FIG. 7 is a graph showing the reflection spectrum of the antireflection film according to Example 5.
  • FIG. 8 is a graph showing the reflection spectrum of the antireflection film according to Example 7.
  • FIG. 9 is an SEM image of a cross section of the antireflection coating according to Example 1.
  • FIG. 10 is an SEM image of a cross section of the antireflection coating according to Example 5.
  • An anti-reflection film is provided, for example, on the surface of an optical article.
  • optical articles on which an anti-reflection film is provided include optical elements such as optical filters, lenses, and polarizers, various displays, glasses, and transparent shields. It is possible to form an anti-reflection film that suppresses the reflection of light from the surface of the optical article by coating an optical article with a material having a predetermined refractive index.
  • anti-reflection films can play an important role in fields or applications such as optical elements such as lenses and filters, windows and structural materials used in buildings, windshields for automobiles, and shields such as helmets and goggles.
  • the anti-reflection film can suppress the reflection of light from the surface of the article or substrate, and can increase the amount of light transmitted through the article or substrate.
  • the anti-reflection film is composed of a single layer or multiple layers made of different materials, fabrication conditions, and methods, and is provided on the surface of the article or substrate to prevent or reduce the reflection of light from the surface of the article or substrate.
  • the reflectance of one surface of a transparent dielectric made of glass or resin is usually about 4 to 5%. Therefore, the overall reflectance considering the reflection on the front surface and the reflection on the back surface can be 8 to 10% for a single plate-shaped transparent dielectric.
  • an imaging device such as a camera usually has an optical system including multiple lenses made of transparent dielectrics such as glass and resin, and the amount of reflection from the lens surfaces in the optical system is very large, which greatly reduces the amount of light reaching the light receiving surface of an imaging element such as a CCD or CMOS.
  • the reflected light from the surface of a lens made of a transparent dielectric such as glass or resin is repeatedly reflected or refracted by the internal structure of the imaging device or the surfaces of other lenses before reaching the light receiving surface of the imaging element, which can cause undesirable phenomena such as ghosts or flares. Therefore, it is important to form an anti-reflection film on the surface of an article or substrate that performs functions such as transmitting or refracting light, and to suppress reflection on the surface.
  • the anti-reflection film 1a is a film provided on a substrate 3.
  • the anti-reflection film 1a includes a first layer 11 and a second layer 12 in this order from the surface side.
  • the substrate 3 may be an article for transmitting light in a desired wavelength range and using it.
  • the substrate 3 may be a transparent dielectric.
  • the second layer 12 is disposed between the first layer 11 and the substrate 3 in the thickness direction of the anti-reflection film 1a.
  • the first layer 11 has a refractive index n L1 of 1.10 to 1.35 and a thickness t L1 of 80 nm to 150 nm.
  • the second layer 12 has a refractive index n L2 of 1.30 to 1.55 and a thickness t L2 of 25 nm or less. With this configuration, the anti-reflection film 1a can exhibit high anti-reflection performance.
  • the refractive indexes n L1 and n L2 are refractive indices at the D line (wavelength 589.3 nm).
  • the minimum reflectance r min 300-1200 within the wavelength range of 300 nm to 1200 nm can be 1% or less.
  • the reflectance r min 300-1200 is preferably 0.5% or less, and more preferably 0.2% or less.
  • the reflectance of an antireflection coating or the like is the reflectance determined from the reflection spectrum when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 5°.
  • the minimum reflectance r min 400-800 in the wavelength range of 400 nm to 800 nm is not limited to a specific value.
  • the reflectance r min 400-800 is, for example, 0.5% or less. In this case, the antireflection coating 1a is more likely to exhibit high antireflection performance.
  • the reflectance r min 400-800 is preferably 0.2% or less.
  • the range ⁇ range/2.5 in which the reflectance is 2.5% or less within the wavelength range of 300 nm to 1200 nm, is not limited to a specific value.
  • the range ⁇ range/2.5 is, for example, 400 nm or more. This makes it easier for the antireflection coating 1a to exhibit high antireflection performance.
  • the range ⁇ range/2.5 may be 450 nm or more, or may be 500 nm or more.
  • the wavelength and wavelength range corresponding to a predetermined reflectance are also wavelengths determined from the reflection spectrum.
  • the range ⁇ range/1.0 in which the reflectance is 1.0% or less in the wavelength range of 300 nm to 1200 nm is not limited to a specific value.
  • the range ⁇ range/1.0 is, for example, 250 nm or more. This makes it easier for the antireflection film 1a to exhibit high antireflection performance.
  • the range ⁇ range/1.0 may be 300 nm or more, 350 nm or more, or 400 nm or more.
  • the second layer 12 is formed, for example, in direct contact with the surface of the substrate 3.
  • another layer or film may be disposed between the second layer 12 and the surface of the substrate 3.
  • the condition n L1 ⁇ n L2 is satisfied, in which case the antireflection film 1a is more likely to exhibit high antireflection performance.
  • the thickness t L2 of the second layer is preferably 15 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less, so that the antireflection film 1a can more easily exhibit high antireflection performance.
  • the first layer 11 and the second layer 12 form a first multi-layer structure 10.
  • the thickness t LL of the first multi-layer structure 10 is, for example, 100 nm to 160 nm. In this case, the antireflection film 1a is more likely to exhibit high antireflection performance.
  • the thickness t LL and the arbitrary wavelength ⁇ X [nm] may satisfy, for example, the condition ⁇ X /6 ⁇ t LL ⁇ X /4.
  • the reflectance at the wavelength ⁇ X is likely to be low, and the wavelength range in the reflection spectrum where the reflectance is equal to or less than a predetermined value can be increased, which is advantageous.
  • the wavelength ⁇ X is, for example, a specific wavelength included in the wavelength range of 400 nm to 800 nm, and may be the D line (wavelength 589.3 nm), a wavelength representative of the wavelength range of the light used, a central wavelength of the wavelength range of the light used, or the most important wavelength in the wavelength range of the light used.
  • the most important wavelength in the wavelength range of the light used may be the wavelength corresponding to the lowest reflectance in a predetermined wavelength range.
  • the refractive index of the substrate is n sb and the refractive index of the antireflection film is n 1 , it is possible to adjust the optical thickness of the antireflection film to 1/4 of a predetermined wavelength ⁇ .
  • the smaller the absolute value of n sb -n 1 2 the smaller the reflectance at the wavelength ⁇ corresponding to that refractive index. For this reason, it may be desirable from the viewpoint of reducing the reflectance that the effective refractive index of the antireflection film is low.
  • the antireflection film it is advantageous for the antireflection film to contain hollow fine particles.
  • the first multilayer structure 10 includes, for example, first hollow fine particles 21 and a first binder 31.
  • the first binder 31 binds the first hollow fine particles 21.
  • the first layer 11 and the second layer 12 tend to have the desired refractive index and thickness, and the anti-reflection film 1a tends to exhibit high anti-reflection performance.
  • the effective refractive index of the anti-reflection film 1a can be lowered, and mechanical strength such as peel resistance and abrasion resistance, as well as weather resistance such as moisture resistance, are expected to be improved.
  • fine particles are particles having an average particle diameter of less than 1 ⁇ m.
  • the first hollow particles 21 have, for example, a hollow balloon-type structure.
  • the refractive index of the first hollow particles 21 is, for example, 1.10 to 1.40, preferably 1.15 to 1.40, and more preferably 1.17 to 1.35. Note that the refractive index of the first hollow particles 21 is not the refractive index of the material forming the outer shell of the first hollow particles 21, but the effective refractive index of the first hollow particles 21 including the effect of the hollow portion 21a.
  • the refractive index of a specific wavelength of the first hollow microparticle may be widely known, or it may be calculated by obtaining representative or average values of the approximate spherical size of the hollow microparticle, the material and thickness of the outer shell of the hollow microparticle, etc., and using, for example, an effective medium approximation method using the Bruggemann equation.
  • the material forming the outer shell of the first hollow microparticle 21 is not limited to a specific material.
  • the material may be an inorganic material, an organic material, or an organic-inorganic hybrid material.
  • inorganic materials forming the outer shell of the first hollow microparticle 21 are silicon oxide (silica) and magnesium fluoride.
  • organic materials forming the outer shell of the first hollow microparticle 21 are polystyrene and polyethylene. These materials may be used alone, or two or more types of materials may be mixed and used.
  • the main component of the outer shell of the first hollow microparticle 21 is preferably silicon oxide. In this specification, the main component is the component that is contained most abundantly by mass.
  • the shape of the first hollow microparticles 21 is not limited to a specific shape.
  • the first hollow microparticles 21 may be substantially spherical, may have an irregular shape, or may have a specific shape connected in a chain shape.
  • the average particle diameter D p of the first hollow fine particles 21 is not limited to a specific value.
  • the average particle diameter D p is, for example, 5 to 200 nm.
  • the manufacturing cost of the first hollow fine particles 21 is likely to be low.
  • the average particle diameter D p is 200 nm or less, scattering is suppressed even when light is incident on the first hollow fine particles 21, and it is easy to prevent the haze of the antireflection film 1a from increasing.
  • the size and shape of the fine particles can be confirmed and measured by observation using, for example, a scanning electron microscope (SEM).
  • the average particle diameter of the fine particles an SEM image of 100,000 times the cross section perpendicular to the main surface of an article or the like on which a film containing fine particles is formed is obtained, the fine particles are identified, the shape of the fine particles is approximated to a circle, and the diameter is measured, and the arithmetic average value of the diameters of the fine particles included in a predetermined area, for example, within a 500 nm square range including all layers constituting the antireflection film, may be adopted.
  • This method is convenient for determining the average particle diameter of the fine particles contained in an already solidified film or layer.
  • the shape of the fine particles is approximated to a circle in the SEM image, the circle with the smallest diameter that includes the area of each fine particle may be specified as the approximate circle.
  • the average particle size D p is preferably 10 to 100 nm, and more preferably 30 to 80 nm.
  • the outer shell of the first hollow microparticle 21 may be crystalline, polycrystalline, or amorphous.
  • the thickness t S of the outer shell of the first hollow fine particle 21 is not limited to a specific value.
  • the thickness t S is, for example, 1 to 50 nm. When the thickness t S is 1 nm or more, the mechanical strength of the outer shell is likely to be high, and the hollow structure of the first hollow fine particle 21 is likely to be maintained in a desired state. When the thickness t S is 50 nm or less, the first hollow fine particle 21 is easy to manufacture.
  • the thickness t S of the outer shell of the hollow fine particle may be estimated from the relationship between the substantial refractive index of the hollow fine particle, the volume of the approximate sphere of the hollow fine particle, the volume of the hollow portion, and the like, by an effective medium approximation method using the Bruggemann equation.
  • the ratio t S /D p of the shell thickness t S to the average particle diameter D p is not limited to a specific value and is, for example, 1/50 to 1/5.
  • the first hollow fine particles 21 may be hollow fine particles whose surfaces have been modified.
  • fine particles may be used that have been reacted in advance with a compound having a metal component, an alkyl group, and an alkoxy group in one molecule, or a hydrolyzate of such a compound.
  • the compound may contain reactive functional groups such as amino groups, epoxy groups, methacryl groups, and vinyl groups.
  • Compounds known as coupling agents may also be used as such compounds. Coupling agents include, for example, components such as Si, Ti, or Al. In this specification, Si is treated as a metal component.
  • the particles for the first hollow particles 21 may be provided as a powder or as a dispersion of particles.
  • the dispersion of particles may be in a colloidal state.
  • colloidal silica which is a colloidal dispersion of silicon oxide particles, may be used.
  • the dispersion medium of the dispersion may be alcohols, ketones, esters, ethers, aromatic hydrocarbons, or amides.
  • Examples of alcohols are methanol, ethanol, isopropanol, butanol, and octanol.
  • Examples of ketones are acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Examples of esters are ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • the ethers are ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether.
  • the aromatic hydrocarbons are benzene, toluene, and xylene.
  • amides are dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • methanol, isopropanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, toluene, and xylene are preferable as the dispersion medium.
  • the first hollow microparticles 21 may be Suluria 1110 (silicon oxide, average particle size (nominal) approximately 50 nm, solids concentration approximately 20% by mass) manufactured by JGC Catalysts and Chemicals, or Suluria 4110 (silicon oxide, average particle size (nominal): 50 nm to 60 nm, solids concentration approximately 20 to 25% by mass) manufactured by the same company. These are hollow microparticles whose outer shell is mainly composed of silicon oxide.
  • the anti-reflective film 1a contains a binder such as the first binder 31.
  • the binder bonds the fine particles contained in the anti-reflective film 1a to each other and to the fine particles and the substrate or undercoat layer.
  • a binder is originally a material for binding materials such as particles, pigments, and substrates within a layer, but in this specification, for example, a component that solidifies to form a uniform structure within a layer that does not contain pigments or particles is also treated as a binder.
  • the binder material contained in the anti-reflective film 1a is not limited to a specific material.
  • the binder may be, for example, a compound or composition whose precursor is liquid and which hardens when heated or exposed to electromagnetic waves such as light. If the binder precursor is liquid, it is easy to prepare the precursor of the anti-reflective film 1a in the manufacture of the anti-reflective film 1a, and it is easy to add fine particles, disperse fine particles, make fine particles colloidal, or dissolve fine particles.
  • the binder precursor may be, for example, a monomer or oligomer having a polymerizable unsaturated group in the molecule, such as an acrylic group, a vinyl group, or an allyl group.
  • the binder precursor may be a compound having one or more polymerizable unsaturated groups in one molecule.
  • the binder precursor is not limited to a specific compound.
  • binder precursor examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenyloxypropyl (meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolethane di(meth)acrylate, pentaerythritol tri(meth)acrylate, and dipentaerythritol penta(meth)acrylate.
  • the binder precursor may be a compound obtained by an addition reaction between a glycidyl group-containing compound, such as an alkyl glycidyl ether, an allyl glycidyl ether, and a glycidyl (meth)acrylate, and (meth)acrylic acid.
  • the binder precursor may be a compound containing a polymerizable functional group, and may be a precursor of a silicone resin, an epoxy resin, a phenoxy resin, a novolac resin, a silicone acrylate resin, a melamine resin, a phenolic resin, a polyimide resin, or a urethane resin.
  • the binder precursor may contain a metal alkoxide having a metal component and an alkoxy group as shown in the following formula (A) or a hydrolyzate thereof:
  • Rx and Ry are functional groups containing at least a carbon atom
  • M is a metal atom
  • n and m are the numbers of functional groups substantially contained in one molecule.
  • the metal component is, for example, selected from the group consisting of Si, Ti, Nb, Zr, and Al.
  • the binder precursor may desirably contain an alkoxysilane having Si and an alkoxy group represented by the following formula (B), a hydrolyzate thereof, or a polysilane obtained by polymerizing the hydrolyzate thereof.
  • R 1 and R 2 are the same or different functional groups containing carbon atoms and hydrogen atoms, and n is an integer of 1 to 4.
  • Such alkoxysilanes undergo hydrolysis in the presence of water, producing silanol groups (-Si-OH), which then undergo condensation polymerization to produce siloxane bonds (-O-Si-O-) between multiple molecules. This increases the molecular weight, producing a polymer, and it is relatively easy to obtain a binder containing silica or silsesquioxane.
  • Silica is the main component of glass. Ordinary glass requires a process of melting silica sand at a very high temperature. However, the solidification of a composition containing silica using alkoxysilane is advantageous in that it can be done at a low temperature.
  • binders that contain alkoxysilane as part of the raw materials can contain silica, etc., so they are advantageous in terms of durability.
  • binders that contain alkoxysilane as part of the raw materials are likely to have the desired characteristics in terms of affinity with the particles or formation of hydrogen bonds with the particles, even when containing fine particles whose main component is silicon oxide such as silica, and are expected to increase the binding strength of the fine particles.
  • the difference in refractive index between the binder and the fine particles is likely to be small, and the transparency of a layer or film containing the binder and the fine particles is likely to be high.
  • the alkoxysilane contained in the binder precursor is not limited to a specific alkoxysilane.
  • alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetra(i-propoxy)silane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, methyltri-iso-propoxysilane, ethyltri-iso-propoxysilane, dimethoxysilane, diethoxysilane, methyldimethoxysilane, methyl Diethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dieth
  • the binder or the binder precursor may be a hydrolyzate of these alkoxysilanes having silanol groups, or a compound in which the hydrolyzates of these alkoxysilanes are polymerized through siloxane bonds.
  • the binder or the binder precursor may contain multiple alkoxysilanes, hydrolyzates of multiple alkoxysilanes, or polymers of hydrolyzates of multiple alkoxysilanes.
  • the alkoxysilane contained in the binder precursor may have, in addition to the alkoxy group, reactive functional groups such as acryloyl groups and epoxy groups or polymerizable unsaturated groups in one molecule.
  • alkoxysilanes are 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriacetoxysilane, 3-acryloxypropyltris(trichloroacetoxy)silane, 3-acryloxypropyltris(trifluoroacetoxy)silane, 3-methacryloxypropyltriacetoxysilane, 3-methacryloxypropyltriacetoxysilane, 3-methacryloxypropyltriacet
  • 3-glycidoxypropyltris(trifluoroacetoxy)silane 3-glycidoxypropyltris(trichloroacetoxy)silane, 3-glycidoxypropyltris(trifluoroacetoxy)silane, 3-acryloxypropyltrichlorosilane, 3-acryloxypropyltribromosilane, 3-acryloxypropyltrifluorosilane, 3-methacryloxypropyltrichlorosilane, 3-methacryloxypropyltribromosilane, 3-methacryloxypropyltrifluorosilane, 3-glycidoxypropyltrichlorosilane, 3-glycidoxypropyltribromosilane, and 3-glycidoxypropyltrifluorosilane.
  • the first binder 31 contains, for example, at least one selected from the group consisting of alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane. This makes it easier for the anti-reflection film 1a to exhibit high anti-reflection performance.
  • the second layer 12 includes, for example, the first binder 31 present near the surface of the substrate 3 and a part of the outer shell of the first hollow fine particle 21 present near the surface of the substrate 3. A part of the first hollow fine particle 21 present near the surface of the substrate 3 may be in contact with the surface of the substrate 3. Therefore, the second layer 12 is almost filled with a solid and contains almost no hollow or void parts in which air exists.
  • the main component of the outer shell of the first hollow fine particle 21 is silicon oxide and the first binder 31 contains a hydrolyzate of alkoxysilane or a polymer of the hydrolyzate
  • the second layer 12 can be composed of a material containing silicon oxide as the main component.
  • the refractive index of the second layer 12 is close to the refractive index of silicon oxide or a modified product of silicon oxide.
  • the first layer 11 includes the outer shell of the first hollow fine particle 21, the hollow part 21a of the first hollow fine particle 21, and the gap between the first hollow fine particles 21.
  • air with a refractive index of about 1 exists in the first layer 11.
  • the first layer 11 and the second layer 12 are likely to have the desired refractive index and the desired thickness, and the condition n L1 ⁇ n L2 is likely to be satisfied.
  • the refractive index n L1 of the first layer 11 is likely to become smaller, and the condition n L1 ⁇ n L2 is likely to be satisfied.
  • the thickness of the second layer 12 is, for example, smaller than the average particle diameter Dp of the first hollow fine particles 21. Furthermore, the thickness of the second layer 12 may be smaller than the thickness ts of the outer shell.
  • the substrate 3 is not limited to a specific substrate, so long as the anti-reflection film 1a is provided on its surface.
  • the optical properties of the anti-reflection film 1a may be determined by taking into consideration the optical properties of the substrate 3.
  • the substrate 3 is, for example, a substrate used in an image display device such as a display.
  • the substrate 3 may be an optical element such as an optical filter, a lens, or a diffraction element.
  • An optical filter causes a predetermined physical change in incident light, and can perform the functions of transmission, reflection, absorption, diffusion, or a combination of these.
  • a lens causes light to be focused or diverged by refraction.
  • a diffraction element has unevenness on its surface or inside, and can diffract light to perform a predetermined function.
  • the substrate 3 is, for example, flat.
  • the substrate 3 may have a curved surface on all or part of its surface, or may have a smooth surface including irregularities.
  • the surface of the substrate 3 may include a curved surface.
  • the substrate 3 may be a substrate for a helmet windshield and a display screen of a head-mounted display. In this case, the entire substrate 3 is gently curved.
  • the surface may have irregularities of the size of the wavelength of the light to be diffracted or close to that wavelength.
  • FIG. 2 is a side view showing an example of an optical component having a substrate 3 and an anti-reflection film 1a.
  • the substrate 3 may be a lens such as a convex lens.
  • the material of the substrate 3 is not limited to a specific material.
  • the substrate 3 is, for example, a material that can function as an optical article.
  • the substrate 3 has high transparency, and includes, for example, glass or resin.
  • the glass is not limited to a specific glass. Examples of glass are soda-lime glass, borosilicate glass, aluminosilicate glass, (synthetic) quartz, lead glass, barium glass, phosphate glass, fluorophosphate glass, and lanthanum glass.
  • the glass may be glass produced by the sol-gel method. In this case, it is easy to form a structure of the wavelength size of light.
  • the raw material of the glass used in the sol-gel method is a metal and a compound having an alkoxy group.
  • the resin contained in the substrate 3 is not limited to a specific resin.
  • resins include acrylic (methacrylic) resins, styrene resins, polycarbonate resins, polyolefin resins, epoxy resins, polyethylene resins, polypropylene resins, ABS resins, polyamide resins, polyacetal resins, and polyethylene terephthalate resins.
  • the refractive index n SB of the substrate 3 at the D line is, for example, 1.20 to 2.50, may be 1.30 to 2.30, or may be 1.35 to 2.00.
  • the anti-reflective film 1a or a layer contained in the anti-reflective film 1a, can be produced, for example, by solidifying a specific liquid composition.
  • the liquid composition contains a binder precursor and, if necessary, fine particles.
  • the liquid composition may further contain an organic polymer, and examples of the organic polymer may be polyethers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, or may be polyisocyanate compounds.
  • these organic polymers act as crosslinking agents, making it possible to improve the mechanical properties, such as hardness and scratch resistance, light resistance, or weather resistance of the anti-reflective film 1a.
  • a polymerization initiator may be added to the liquid composition.
  • the polymerization initiator is selected from known polymerization initiators such as thermal radical generators, photoradical generators, thermal acid generators, and photoacid generators, depending on the reaction form of the polymerizable functional group or polymerizable monomer.
  • the liquid composition may contain water for promoting hydrolysis, and acids (acid catalysts) or alkalis (alkali catalysts) that act as catalysts.
  • acids are hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, formic acid, and acetic acid
  • alkali catalysts are ammonia, trialkylamine, sodium hydroxide, potassium hydroxide, choline, and tetraalkylammonium hydroxide.
  • formic acid and acetic acid are organic acids that can dissolve alkoxysilane.
  • pKa acid dissociation constant
  • acetic acid and formic acid are used as acid catalysts, silanol groups are generated even when there is little or no water in the system, so that a polysilane structure can be formed without hydrolysis. From this viewpoint, the use of formic acid and acetic acid is also desirable.
  • formic acid has a fairly simple structure among organic acids, making it easy to exhibit the desired properties as an acid catalyst.
  • the liquid composition may be prepared, for example, by dropping the catalyst into a liquid containing an alkoxysilane while stirring the liquid. This prevents the reaction in which the catalyst acts from proceeding too quickly by adding too much catalyst compound at once, making it less likely that the reaction will be biased.
  • the liquid composition may contain a solvent.
  • the solvent also contributes to the dispersion of, for example, fine particles, etc., and the liquid composition is likely to have a desired viscosity in the manufacturing process of the anti-reflection film 1a.
  • the coating work of the liquid composition or the quality of the coating film is likely to be adjusted to a desired level.
  • the metal alkoxide compound such as alkoxysilane, which is the raw material of the binder 31, may not be easily dissolved in water required for hydrolysis immediately after mixing. For this reason, the liquid composition may contain an organic solvent that is compatible with both the metal alkoxide and water.
  • the solvent contained in the liquid composition is not limited to a specific solvent.
  • the solvent contained in the liquid composition may be alcohols, ketones, esters, ethers, aromatic hydrocarbons, or amides.
  • alcohols are methanol, ethanol, isopropanol, butanol, octanol, 1-methoxy-2-propanol, and 3-methoxy-3-methyl-1-butanol.
  • ketones are acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters are ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • ethers are ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether.
  • aromatic hydrocarbons are benzene, toluene, and xylene.
  • amides are dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • Organic acids such as acetic acid and formic acid may also be used as a solvent in the preparation of the liquid composition.
  • At least one selected from the group consisting of methanol, isopropanol, butanol, 1-methoxy-2-propanol, 3-methoxy-3-methyl-1-butanol, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, toluene, and xylene may be preferably used as a solvent.
  • These solvents may be used alone, or two or more of them may be mixed and used.
  • the liquid composition may contain hydrophilic and hydrophobic compounds such as surfactants and silane coupling agents to prevent aggregation of the fine particles.
  • the liquid composition can be prepared by selecting the types of fine particles, binder precursor, solvent, catalyst, and the above compounds, adjusting the composition ratio of each component by known methods and conditions, and mixing them while causing a reaction of some of the compounds as necessary.
  • the ratio of the mass of the solid content of the first hollow fine particles 21 to the mass of the solid content of the liquid composition is not limited to a specific value.
  • the ratio is, for example, 80% to 99.5%.
  • the precursor of the first binder 31 in the liquid composition may, for example, function to bind the first hollow fine particles 21 together or to bind the first hollow fine particles 21 to the surface of the substrate 3, and the precursor of the first binder 31 contained in an amount exceeding that required for binding the first hollow fine particles may move toward the surface of the substrate 3 and solidify in the manufacture of the anti-reflective coating 1a to form a part of the second layer 12.
  • the second layer 12 is filled with a solid containing a part of the outer shell of the hollow fine particles 21 and the first binder 31, and is a layer having a relatively high refractive index in the first multilayer structure 10.
  • the first binder 31 contains, for example, a hydrolyzate of an alkoxysilane or a polymer thereof.
  • the ratio of the mass of the solid content of the first hollow microparticles 21 to the mass of the solid content of the liquid composition that is the precursor of the first multilayer structure 10 is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
  • the liquid composition which is the precursor of the first multi-layer structure 10, contains, as a precursor of the first binder 31, at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes.
  • the alkoxysilanes contain tetrafunctional alkoxysilanes and trifunctional alkoxysilanes, and the ratio of the amount of substance of tetrafunctional alkoxysilane to the amount of substance of trifunctional alkoxysilane is not limited to a specific value. The ratio is, for example, 1/9 to 9.
  • the first layer 11 and the second layer 12 tend to have the desired refractive index and the desired thickness.
  • the first multi-layer structure 10 tends to have the desired mechanical strength and high transparency.
  • the anti-reflective film 1a can be produced, for example, by applying a liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes onto a substrate 3 and solidifying the liquid composition.
  • the mass ratio of the first hollow fine particles 21 to the liquid composition is 80% to 99.5%.
  • the anti-reflective film 1a contains a first layer 11 and a second layer 12 that are separated from each other. According to this method, the anti-reflective film 1a having the first layer 11 and the second layer 12 can be produced relatively easily from a single liquid composition.
  • the method of coating the liquid composition, which is the precursor of the anti-reflection film 1a, along the substrate 3 is not limited to a specific method.
  • Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, coating with an inkjet, screen printing, and coating by dip.
  • the conditions of the coating method are adjusted according to the required thickness of the coating film. For example, in the case of coating by dip, when the viscosity of the liquid composition is ⁇ [Pa ⁇ sec] and the lifting speed is v [m/sec], the thickness of the coating film, for example, the thickness t LL of the first multi-layer structure 10, is proportional to ⁇ j ⁇ v k .
  • the thickness of the coating film is proportional to ⁇ 1/3 / ⁇ 2/3 .
  • the method of solidifying the liquid composition is not limited to a specific method.
  • the liquid composition may be solidified according to a method that dries the coating film by heating or polymerizes the binder precursor, etc.
  • heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction.
  • the liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
  • coating film refers to a liquid composition applied to the surface of a substrate or the like, regardless of whether the coating film is a sol or a gel.
  • Solidification includes gelation of the liquid composition due to an increase in the molecular weight of the binder component contained in the liquid composition caused by polymerization of the compounds contained in the liquid composition, gelation of the liquid composition due to drying of the liquid composition caused by removal of the solvent or liquid by-products contained in the liquid composition by evaporation or the like, and solidification by a mechanism accompanying mixing of the liquid composition, or a combination of these mechanisms. Furthermore, solidification includes the reaction or drying of the liquid composition progressing to produce a solid containing organic and inorganic compounds, the removal of organic matter in the liquid composition to produce a solid that is mostly inorganic, and the production of a mixture of these solids.
  • the surface of the substrate 3 to which the liquid composition is applied may be subjected to various cleaning or surface treatments before application of the liquid composition.
  • the cleaning of the surface of the substrate 3 is not limited to a specific method.
  • the cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning involving immersion in an acid or alkali solution.
  • Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
  • the liquid composition In the manufacture of the anti-reflective film 1a, it is preferable to form a coating of the liquid composition along the surface of the substrate 3, and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the microparticles or binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to dry or react the liquid composition by heating to solidify the layer constituting the anti-reflective film 1a, rather than rapidly solidifying the liquid composition by irradiating it with electromagnetic waves or the like.
  • the heating temperature of the liquid composition is, for example, 600°C or less, preferably 400°C or less, more preferably 300°C or less, and even more preferably 250°C or less.
  • the heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less.
  • Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1a and the heat resistance temperature of the substrate 3. For example, if the liquid composition is heated to a high temperature, the resulting film will be dense and hard, but there is a trade-off in that cracks will easily occur and brittleness will become apparent.
  • the refractive index n L2 of the second layer 12 is 1.30 to 1.55, and the thickness t L2 of the second layer 12 is 25 nm or less.
  • the refractive index n L1 of the first layer 11 is 1.10 to 1.35, and the thickness t L1 of the first layer 11 is 80 nm to 150 nm.
  • the physical parameters of each layer of the antireflection film 1a may be measured or calculated as follows.
  • the average particle diameter D p of the hollow fine particles 21 and the thickness t LL of the first multi-layer structure 10 consisting of the first layer 11 and the second layer 12 are measured from an SEM image or the like of the cross section of the antireflection film 1a.
  • the reflection spectrum of the antireflection film 1a is measured with a spectrophotometer or the like.
  • the values of parameters corresponding to the refractive index and thickness of the first layer 11 and the second layer 12 when it is assumed that each layer is filled with a uniform medium are successively changed to calculate the reflection spectrum.
  • fitting is performed. In the fitting, the refractive index and thickness of each layer are determined so that a specific error parameter between the actual reflection spectrum measured by, for example, a spectrophotometer or the like and the calculated reflection spectrum is minimized.
  • the main function of the antireflection film 1a is to prevent reflection on the surface of a transparent optical article or substrate.
  • the reflectance may be low in the actually measured reflection spectrum of the antireflection film 1a.
  • the antireflection film 1a may be formed on the surface of a silicon wafer having a known refractive index dispersion by the same method and conditions as when the antireflection film 1a is formed on the surface of the substrate 3, and the actually measured reflection spectrum of the antireflection film 1a formed on the surface of the silicon wafer may be used for fitting.
  • the thickness t L2 of the second layer 12 is smaller than the thickness t S of the outer shell of the hollow fine particle 21.
  • the value of the parameter corresponding to the thickness t L2 of the second layer 12 may be uniquely determined to a specific thickness, for example, 4 nm or 2 nm, etc., determined in consideration of the amount of solid content in the liquid composition.
  • the specific error parameter between the measured reflectance spectrum and the calculated reflectance spectrum used for fitting is not limited to a specific parameter.
  • the error parameter are a correlation coefficient, a root mean square value (rms value), a mean square value (MS value), and a mean absolute difference (MA value).
  • rms value root mean square value
  • MS value mean square value
  • MA value mean absolute difference
  • IA value Integrate of Absolute
  • the measured reflectance spectrum and the calculated reflectance spectrum are obtained for each unit wavelength (for example, 1 nm)
  • the sum of the absolute difference of the reflectance at each wavelength may be used instead of the IA value.
  • the IA value is determined according to the following formula (1).
  • r m is the measured reflectance at a wavelength ⁇
  • r s is the calculated reflectance at a wavelength ⁇
  • is the absolute value of the reflectance difference
  • ⁇ 1 and ⁇ 2 indicate the integral range or the range for obtaining the sum.
  • the sum of the absolute differences in reflectance is determined according to equation (2) below.
  • the sum of the absolute differences in the IA value or reflectance is preferably 20% or less, more preferably 18% or less, and even more preferably 15% or less.
  • the range in which the sum of the absolute differences in the IA value or reflectance is determined may be, for example, within the range of 300 nm to 1200 nm. Taking into account the accuracy of the spectrophotometer used for the measurement, the range may be within the range of 350 nm to 900 nm, or within the range of 400 nm to 850 nm.
  • Anti-reflection film 1a can be modified from various viewpoints.
  • Anti-reflection film 1a may be modified, for example, to anti-reflection film 1b shown in FIG. 3A or FIG. 3B.
  • Anti-reflection film 1b is configured in the same manner as anti-reflection film 1a, except for the parts that will be specifically described.
  • the same reference numerals are used to designate components of anti-reflection film 1b that are the same as or correspond to those of anti-reflection film 1a, and detailed description will be omitted.
  • the above description of anti-reflection film 1a also applies to anti-reflection film 1b, unless there is a technical contradiction.
  • the antireflection film 1b further includes a third layer 13 disposed between the second layer 12 and the substrate 3 in the thickness direction of the antireflection film 1b.
  • the third layer 13 has a refractive index n L3 of 1.35 to 2.25 and a thickness t M3 of 60 nm to 200 nm.
  • n L3 refractive index
  • t M3 thickness of 60 nm to 200 nm.
  • the refractive index n L3 may be 1.40 to 1.85.
  • the condition n L1 ⁇ n L3 ⁇ n L2 is satisfied. In this case, the antireflection film 1b is more likely to exhibit high antireflection performance.
  • the condition n L1 ⁇ n L2 ⁇ n L3 may be satisfied.
  • the thickness t M3 may be 70 nm to 180 nm.
  • the minimum value r min(2) of the reflectance in the wavelength range of 300 nm to 1200 nm is, for example, 1% or less, more preferably 0.5% or less, and even more preferably 0.2% or less.
  • the wavelength range ⁇ range/1.0 in which the reflectance is 1% or less in the wavelength range of 300 nm to 1200 nm is, for example, 250 nm or more.
  • the material of the third layer 13 is not limited to a specific material as long as the third layer 13 has the above-mentioned refractive index and thickness.
  • the third layer 13 may be a layer containing a dielectric material such as a metal oxide and a metal fluoride.
  • the third layer 13 may be a dielectric film produced by a physical method such as vacuum deposition, sputtering, and ion plating (hereinafter referred to as "physical vapor deposition"), or may be a so-called dielectric multilayer film in which a plurality of dielectric materials are laminated.
  • the material of the dielectric material is not limited to a specific material.
  • dielectric material examples include SiO 2 , MgF 2 , TiO 2 , Ta 2 O 3 , AlF 3 , CaF 2 , Al 2 O 3 , ZrO 2 , WO 3 , CeO 2 , ITO, ATO, and mixtures thereof.
  • Such a dielectric layer can be produced by a known method using a physical vapor deposition method or the like.
  • the third layer 13 may be a layer obtained by applying a curable liquid composition along the surface of the substrate 3, drying and reacting the resulting coating to solidify it.
  • the curable liquid composition that is the precursor of the third layer 13 may contain fine particles 33, and may contain a second binder 32 that binds the fine particles 33 together.
  • an apparatus such as an evaporator required for a physical vapor deposition method is not required, and the production cost of the anti-reflection film 1b tends to be low.
  • the third layer 13 may not contain fine particles 33, and may contain only the second binder 32.
  • the refractive index of the fine particles 33 contained in the third layer 13 is, for example, 1.25 to 2.75.
  • the material of the fine particles 33 contained in the third layer 13 is not limited to a specific material.
  • the fine particles 33 may be hollow or solid fine particles containing metal oxides or metal fluorides such as SiO 2 , MgF 2 , TiO 2 , Ta 2 O 3 , AlF 3 , CaF 2 , Al 2 O 3 , ZrO 2 , WO 3 , CeO 2 , indium tin oxide (ITO), and antimony tin oxide (ATO).
  • the fine particles 33 may contain multiple types of fine particles selected from these fine particles.
  • the fine particles 33 may be fine particles made of resin.
  • the microparticles 33 may include, for example, solid microparticles whose main component is polymethylmethacrylate, polyethylene, polystyrene, benzoguanamine (melamine), or silicone, or may include multiple types of microparticles selected from among these.
  • the third layer 13 may include the following layers (i) or (ii), or (i) and (ii). (i) a layer including a dielectric film including one or more oxides selected from the group consisting of SiO2 , MgF2 , TiO2 , Ta2O3 , AlF3 , CaF2 , Al2O3 , ZrO2 , WO3 , CeO2 , indium tin oxide, and antimony tin oxide; (ii) a layer including oxide particles composed of one or more materials selected from the group consisting of SiO2 , TiO2 , ZrO2 , CeO2 , indium tin oxide, and antimony tin oxide, and a binder for binding the oxide particles.
  • the third layer 13 is disposed closer to the substrate 3 in the thickness direction of the antireflection coating 1b than the first layer 11 and the second layer 12, it may be appropriate for the third layer 13 to have a relatively high refractive index in order to enhance the antireflection performance.
  • the fine particles 33 contained in the third layer 13 are preferably solid fine particles.
  • the average particle diameter of the fine particles 33 is not limited to a specific value.
  • the average particle diameter is, for example, 5 nm to 200 nm. When the average particle diameter of the fine particles 33 is 5 nm or more, the manufacturing cost of the fine particles 33 is likely to be low. When the average particle diameter of the fine particles 33 is 200 nm or less, it is likely to prevent the haze of the anti-reflection film 1b from increasing due to scattering caused by the incidence of light.
  • the average particle diameter of the fine particles 33 is preferably 10 to 100 nm, and more preferably 30 to 80 nm.
  • the average particle diameter of the fine particles 33 contained in the third layer 13 can be measured by a method similar to the method for measuring the average particle diameter Dp of the first hollow fine particles 21.
  • the content of the fine particles 33 in the solid content of the third layer 13 is not limited to a specific value.
  • the content is, for example, 0% to 75% by mass. This makes it easier for the third layer 13 to have the desired refractive index.
  • the third layer 13 does not need to contain fine particles. Even if the refractive index of the third layer 13 is required to be relatively high, the third layer 13 does not need to contain fine particles as long as the anti-reflection film 1b has a predetermined anti-reflection performance.
  • the third layer 13 contains, for example, the binder 32 as a main component. In this case, it is not necessary to procure, adjust, and mix the fine particles in preparing the liquid composition that is the precursor of the third layer 13, and the manufacturing cost of the anti-reflection film 1b tends to be low.
  • 3C and 3D are cross-sectional views showing the state of the first hollow fine particles 21 in the anti-reflective coating shown in FIG. 3A.
  • a part of the first hollow fine particles 21 contained in the first layer 11 and the second layer 12 may be present at the boundary surface of the third layer 13 that is distal to the substrate 3 of the third layer 13.
  • the third layer 13 As the coating film of the liquid composition that is the precursor of the first multi-layer structure 10 solidifies, a part of the hollow fine particles 21 contained in the first layer 11 and the second layer 12 is buried in the third layer 13, and thus a part of the first hollow fine particles 21 is present at the boundary surface of the third layer 13 that is distal to the substrate 3.
  • the part surrounded by the two-dot chain line shows the part of the hollow fine particles 21 buried in the third layer 13. From the viewpoint of realizing such a state in which a part of the first hollow fine particles 21 is buried in the third layer 13, it is considered that the components and composition of the third layer 13 are similar to the components and composition of the multi-layer structure 10.
  • the precursor of the first binder 31 and the precursor of the second binder 32 are likely to be mixed in the manufacture of the anti-reflection film 1b.
  • the precursor of the first binder 31 and the precursor of the second binder 32 are likely to be mixed in the manufacture of the anti-reflection film 1b.
  • the liquid composition applied to the surface of the third layer 13 distal to the substrate 3 may infiltrate the pores to fill them.
  • the same type of compound as a part of the compound contained in the first binder 31 is also contained in the second binder 32, and the first binder 31 and the second binder 32 may become homogenous.
  • the surface of the third layer 13 is softened, and a part of the first hollow fine particles 21 is buried in the third layer 13 and exists at the boundary surface of the third layer 13 distal to the substrate 3.
  • the first binder 31 and the second binder 32 being similar includes cases where the components and compositions of both are the same, as well as cases where the types of compounds contained in the binders, such as alkoxysilanes, are similar, specifically cases where the trifunctional alkoxysilanes or tetrafunctional alkoxysilanes contained in both are the same type of alkoxysilane. It is known that pores can be formed during solidification of a liquid composition containing alkoxysilane, and it is thought that a portion of the uncured liquid composition is likely to seep into such pores.
  • the first hollow fine particles 21 present at the boundary of the third layer 13 distal to the substrate 3 can be identified, and the number of the first hollow fine particles 21 can be counted.
  • the proportion of the portion present on the third layer 13 side of the first hollow fine particles 21 in the whole may be obtained. A 100,000 times SEM image of the cross section of the anti-reflection film 1b is acquired, and the first layer 11, the second layer 12, and the third layer 13 are identified.
  • a target cross section of 500 nm square is specified so as to include all layers in the thickness direction.
  • the first hollow fine particles 21 present at the boundary of the third layer 13 distal to the substrate 3 included in the target cross section are identified, and the first hollow fine particles 21 are approximated by a circle.
  • the number N M1 of the first hollow fine particles 21 included in the target cross section and having a portion belonging to the second layer 12 and the third layer 13, and the ratio S M /S L of the area S M of a partial circle (a shape with a part of a circle missing) included in the region on the third layer 13 side to the total area S L of the approximation circle of the first hollow fine particles 21 having a portion belonging to the second layer 12 and the third layer 13 are measured and calculated.
  • the number N M1 is, for example, 1 to 5, and preferably 3 to 5.
  • the ratio S M /S L is, for example, 5% to 50%.
  • the fine particles 33 contained in the third layer 13 are not limited to specific fine particles.
  • the fine particles 33 may be titanium oxide fine particles such as TTO-51 and TTO-55 series manufactured by Ishihara Sangyo Kaisha, JMT-150B, JMT-150AO, JMT-150ANO, and MTY-700BS manufactured by Teika Co., Ltd., STT-65C-S and STT-30EHJ manufactured by Titanium Industries Co., Ltd., and OPTOLAKE series manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • the fine particles 33 may be niobium oxide fine particles such as Nb-G6000, Nb-G6100, and Nb-G6600 manufactured by Taki Chemical Industry Co., Ltd., and niobium oxide manufactured by Mitsui Mining and Smelting Co., Ltd.
  • the fine particles 33 may be zirconium oxide fine particles such as Zircostar manufactured by Nippon Shokubai Co., Ltd., and HXU-110JC manufactured by Sumitomo Osaka Cement Co., Ltd.
  • the fine particles 33 may be silicon oxide fine particles such as the QSG series manufactured by Shin-Etsu Chemical Co., Ltd., the Snowtex series manufactured by Nissan Chemical Industries, Ltd., and the Sururia series manufactured by JGC Catalysts and Chemicals.
  • the fine particles 33 may be magnesium fluoride nanoparticles manufactured by Stella Chemifa.
  • the fine particles 33 may be aluminum oxide fine particles such as the Aluminasol 100, 200, and 500 series manufactured by Nissan Chemical Industries, Ltd., and the AS-150T and AS-1501 manufactured by Sumitomo Osaka Ceramics Co., Ltd.
  • the fine particles 33 may be polyethylene fine particles such as polyethylene particles manufactured by Corefront Co., Ltd. and the Mipelon series manufactured by Mitsui Chemicals, Inc.
  • the fine particles 33 may be polystyrene fine particles such as polystyrene particles manufactured by Corefront Co., Ltd. and polybeads polystyrene manufactured by Techno Chemical Co., Ltd.
  • the fine particles 33 may be ITO fine particles such as the ITO series manufactured by Mitsubishi Materials Electronics Chemicals Co., Ltd., and P-120 and P-130 manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • the fine particles 33 may be ATO fine particles such as the T-I series manufactured by Mitsubishi Materials Electronics Chemicals Co., Ltd.
  • As the fine particles 33 other fine particles may be added, and one type of fine particles may be used alone, or two or more types of fine particles may be mixed and used.
  • conductive fine particles such as ITO and ATO are used as the fine particles 33
  • the anti-reflection film 1b can exhibit an antistatic function.
  • the fine particles 33 are selected and appropriately combined according to the application and function required of the anti-reflection film 1b.
  • the second binder 32 contained in the third layer 13 is not limited to a specific binder.
  • the second binder 32 may be selected taking into consideration the circumstances in the explanation of the binder given for the anti-reflection film 1a.
  • the second binder 32 may contain at least one selected from the group consisting of alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane.
  • the liquid composition that is the precursor of the third layer 13 may contain, in addition to the precursors of the fine particles 33 and the second binder 32, a crosslinking agent, a polymerization initiator, a leveling agent, a surfactant, a silane coupling agent, and the like, as necessary.
  • the third layer 13 is produced by solidifying a curable liquid composition, it is not necessary for the third layer 13 to be formed in a state where it is separated into two layers during the process of solidifying a coating of a single type of liquid composition, as in the formation of the first multilayer structure 10 including the first layer 11 and the second layer 12.
  • the optical parameters such as the refractive index, may be approximately uniform throughout the entire third layer 3.
  • the antireflection film 1b can be produced, for example, by a method including the following steps (Ib), (IIb), and (IIIb):
  • the antireflection film 1b includes a first layer and a second layer which are separated from each other in this order from the surface of the antireflection film 1b.
  • a third layer 13 containing a dielectric material is formed on the substrate 3 .
  • a first liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied to the surface of the third layer 13 .
  • the third layer 13 may be obtained by applying a second liquid composition containing a precursor of the second binder 32 onto the substrate 3 and solidifying the second liquid composition.
  • the method of applying the second liquid composition onto the substrate 3 is not limited to a specific method. Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, inkjet coating, screen printing, and dip coating.
  • the conditions of each method can be set according to the thickness required for the second coating film.
  • the method of solidifying the liquid composition is not limited to a specific method.
  • the liquid composition may be solidified according to a method that dries the coating film by heating or polymerizes the binder precursor, etc.
  • heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction.
  • the liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
  • the surface of the substrate 3 to which the liquid composition is applied may be subjected to various cleaning or surface treatments before application of the liquid composition.
  • the cleaning of the surface of the substrate 3 is not limited to a specific method.
  • the cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning involving immersion in an acid or alkali solution.
  • Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
  • the liquid composition In the manufacture of the anti-reflective film 1b, it is preferable to form a coating of the liquid composition and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the fine particles or the binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to heat the layer constituting the anti-reflective film 1b to dry or react the liquid composition and solidify it.
  • the heating temperature of the liquid composition is, for example, 600° C. or less, preferably 400° C. or less, more preferably 300° C. or less, and even more preferably 250° C. or less.
  • the heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less.
  • Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1b and the heat resistance temperature of the substrate 3. For example, if the heating temperature of the liquid composition is high, the resulting film becomes dense and hard, but there is a trade-off in that cracks are easily generated and brittleness becomes apparent.
  • the parameters of the anti-reflection film 1b can be calculated in the same manner as the parameters of the anti-reflection film 1a.
  • the anti-reflection film 1b is prepared on the surface of the substrate 3 or the like, and the anti-reflection film is prepared on the surface of a silicon wafer by the same method and conditions as the anti-reflection film 1b.
  • SEM images of the cross section are obtained, the thickness of each layer is measured, the fine particles contained in each layer are identified, and the average particle size, the number N M1 , and the ratio S M /S L are measured and calculated.
  • the reflection spectrum of the anti-reflection film 1b is actually measured, and the reflection spectrum is calculated using the refractive index and thickness of each layer as variables, and the refractive index and thickness of each layer are specified so that the error parameter with the actually measured reflection spectrum is minimized within the allowable range.
  • This allows the parameters of each layer of the anti-reflection film 1b to be calculated.
  • the circumstances of the error parameters are as described for the anti-reflection film 1a.
  • Anti-reflection film 1a may be modified, for example, to anti-reflection film 1c shown in FIG. 4.
  • Anti-reflection film 1c is configured in the same manner as anti-reflection film 1a, except for the parts that will be specifically described.
  • the same reference numerals are used to designate components of anti-reflection film 1c that are the same as or correspond to those of anti-reflection film 1a, and detailed descriptions will be omitted.
  • the above description of anti-reflection films 1a and 1b also applies to anti-reflection film 1c, unless technically inconsistent.
  • the antireflection film 1c further includes a third layer 13 and a fourth layer 14.
  • the third layer 13 is disposed between the second layer 12 and the substrate 3 in the thickness direction of the antireflection film 1c.
  • the fourth layer 14 is disposed between the third layer 13 and the substrate 3 in the thickness direction of the antireflection film 1c.
  • the third layer 13 has a refractive index n L3 of 1.30 to 2.25 and a thickness t M3 of 60 nm to 200 nm.
  • the fourth layer 14 has a refractive index n L4 of 1.30 to 1.55 and a thickness t M4 of 25 nm or less.
  • the refractive indices n L3 and n L4 are values at the D line (589.3 nm). With this configuration, the antireflection film 1c is likely to exhibit high antireflection performance. In the antireflection film 1c, for example, the reflectance at a specific wavelength (design central wavelength) is likely to be low. The low reflection band, which is a wavelength range in which the reflectance is kept below a specific value, is likely to be large.
  • the minimum reflectance r min(2) in the wavelength range of 300 nm to 1200 nm is, for example, 1% or less, preferably 0.5% or less, and more preferably 0.2% or less.
  • the wavelength range ⁇ range/1.0 in which the reflectance is 1% or less is, for example, 250 nm or more.
  • the refractive index n L3 is preferably 1.40 to 2.00.
  • the thickness t M3 is preferably 80 nm to 160 nm.
  • the refractive index n L4 is preferably 1.35 to 1.50.
  • the thickness t M4 is preferably 20 nm or less.
  • the antireflection film 1c may satisfy the condition n L3 ⁇ n L4 . This makes it easier for the antireflection film 1c to exhibit high antireflection performance.
  • the antireflection film 1c satisfies the conditions n L1 ⁇ n L2 and n L3 ⁇ n L4 .
  • the first layer 11 and the second layer 12 form a first multilayer structure 10.
  • the third layer 13 and the fourth layer 14 form a second multilayer structure 20.
  • the first multilayer structure 10 includes first hollow particles 21 and a first binder 31 that binds the first hollow particles 21 together.
  • the second multilayer structure 20 includes second hollow particles 22 and a second binder 32 that binds the second hollow particles 22 together.
  • the difference between the refractive index of the first binder 31 and the refractive index of the second binder 32 is not limited to a specific value.
  • the difference is, for example, 0.01 or less. With this configuration, the anti-reflection film 1c is more likely to exhibit high anti-reflection performance.
  • the second layer 12 includes, for example, a first portion 12a and a second portion 12b.
  • the first portion 12a is a layered portion arranged on the first layer 11 side of the second layer 12.
  • the second portion 12b is a layered portion arranged on the third layer 13 side of the second layer 12.
  • the anti-reflective film 1c can be manufactured, for example, using a liquid composition group that is a precursor of the anti-reflective film 1c.
  • the liquid composition group includes a first liquid composition and a second liquid composition.
  • the first liquid composition includes, for example, a precursor of the first hollow fine particles 21 and the first binder 31.
  • the first layer 11 and the first portion 12a of the second layer 12 can be formed by solidifying the first liquid composition.
  • the second liquid composition includes a precursor of the second hollow fine particles 22 and the second binder 32.
  • the second portion 12b of the second layer 12, the third layer 13, and the fourth layer 14 can be formed by solidifying the second liquid composition.
  • the anti-reflection film 1c can be produced, for example, by a method including the following steps (Ic) and (IIc).
  • the second portion 12b of the second layer 12, the third layer 13, and the fourth layer 14 are formed by at least one method selected from the group consisting of drying of a second coating film obtained by applying the above-mentioned second liquid composition along the surface of the substrate 3, and a reaction of the second coating film.
  • the first portion 12a and the first layer 11 of the second layer 12 are formed by separating them, and the first portion 12a and the second portion 12b are formed by combining them together, by at least one method selected from the group consisting of drying the first coating film obtained by applying the above-mentioned first liquid composition onto the second portion 12b of the second layer 12 and reacting the first coating film.
  • the anti-reflection film 1c may be produced by, for example, a method including the following steps (Id), (IId), (IIId), and (IVd).
  • a second liquid composition containing second fine particles containing an oxide and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied onto a substrate 3 .
  • the second liquid composition is solidified.
  • a first liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied to the surface of the solidified product of the second liquid composition.
  • the anti-reflection film 1c includes, for example, a first layer 11, a second layer 12, a third layer 13, and a fourth layer 14, which are separated from each other in this order from the surface of the anti-reflection film 1c.
  • the second layer 12 includes a part of the outer shell of the first hollow fine particle 21, a part of the polymer of the hydrolyzate of the alkoxysilane, and a part of the second fine particle.
  • the mass ratio of the second microparticles to the second liquid composition is, for example, 5% to 75%.
  • the mass ratio of the first hollow microparticles 21 to the first liquid composition is, for example, 80% to 99.5%.
  • Both the precursors of the first binder 31 and the second binder 32 may contain a predetermined alkoxysilane, and each of the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14 may contain at least one of a hydrolyzate of an alkoxysilane and a polymer of a hydrolyzate of an alkoxysilane.
  • the predetermined alkoxysilane is, for example, an alkoxysilane that is at least one precursor selected from the group consisting of a hydrolyzate of an alkoxysilane and a polymer of a hydrolyzate of an alkoxysilane, in which the difference in refractive index between the first binder 31 and the second binder 32 can be 0.01 or less.
  • the substance amount ratio of the trifunctional alkoxysilane to the tetrafunctional alkoxysilane is 1/4 to 4.
  • the first portion 12a and the second portion 12b are united to form a substantially identical layer, and the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14 are arranged in this order toward the substrate 3.
  • the fourth layer 14 which is the closest to the substrate 3 among the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14, contains a material that constitutes the outer shell of the hollow fine particles 22.
  • the first binder 31 and the second binder 32 contain at least one selected from the group consisting of hydrolysates of alkoxysilanes and polymers of hydrolysates of alkoxysilanes, and the first hollow fine particles 21 and the second hollow fine particles 22 are composed of compounds mainly composed of silicon oxide
  • the fourth layer 14 can be filled with a compound mainly composed of silicon oxide.
  • the fourth layer 14 when the outer shell of the second hollow fine particles 22 composed of a compound mainly composed of silicon oxide contains a hydrolysate of alkoxysilane or a polymer of the hydrolysate as a main component, the fourth layer 14 has almost no parts filled with air such as hollow parts and voids, and is filled with alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane. Therefore, the refractive index n L4 of the fourth layer 14 can be a value not significantly different from the refractive index of silicon oxide or a modified product thereof.
  • the material forming the outer shell of the hollow fine particle 22 may contain a material other than silicon oxide, so long as the fourth layer 14 has a refractive index n L4 of 1.30 to 1.55 and t M4 is 25 nm or less.
  • the third layer 13 may be disposed at a position farther from the substrate 3 than the fourth layer 14.
  • the third layer 13 is a layer including the outer shell and hollow portion of the second hollow fine particle 22, and since air having a refractive index of about 1 exists in the hollow portion of the second hollow fine particle 22 and in the gap between the second hollow fine particles 22, the refractive index n L3 of the third layer tends to be lower as the proportion of the region including such air in the third layer 13 increases.
  • a part of the second hollow fine particle 22 may be present at the interface of the second portion 12b that is distal to the substrate 3.
  • the second portion 12b may contain, for example, a compound constituting the outer shell of the second hollow fine particle 22 containing, for example, silicon oxide as a main component, in addition to the second binder 32, as in the fourth layer 14.
  • the layer constituting the anti-reflection film 1c contains alkoxysilane, hydrolyzate of alkoxysilane, or polymer of hydrolyzate of alkoxysilane, and the second hollow fine particles 22 are composed of a compound mainly composed of silicon oxide
  • the second portion 12b can be filled with a compound mainly composed of silicon oxide.
  • the second portion 12b is unlikely to contain hollow portions and voids, and is filled with alkoxysilane, hydrolyzate of alkoxysilane, or polymer of hydrolyzate of alkoxysilane. Therefore, in the anti-reflection film 1c, the refractive index of the second portion 12b can be a value not significantly different from the refractive index of silicon oxide or modified silicon oxide.
  • step (IIc) the first portion 12a and the first layer 11 of the second layer 12 are formed separately.
  • the formation of the first layer 11 and the first portion 12a in the anti-reflective coating 1c corresponds to the formation of the first layer 11 and the second layer 12 in the anti-reflective coating 1a, respectively. Therefore, for the formation of the first layer 11 and the first portion 12a in the anti-reflective coating 1c, the explanation regarding the "second layer 12" of the anti-reflective coating 1a can be read as "first portion 12a".
  • the first hollow particles 21 and the second hollow particles 22 may preferably be the same type of particles having an outer shell containing silicon oxide as a main component.
  • the first hollow particles 21 and the second hollow particles 22 may be the same or different types of particles containing a component other than silicon oxide as a main component, so long as the refractive index and thickness of each layer are within a predetermined range.
  • the first binder 31 and the second binder 32 are preferably selected so that the difference in refractive index between the two is 0.01 or less.
  • the ratio M L of the mass of the solid content of the first hollow fine particles 21 to the mass of the solid content of the first liquid composition is greater than, for example, the ratio M H of the mass of the solid content of the second hollow fine particles 22 to the mass of the solid content of the second liquid composition.
  • the ratios M L and M H preferably satisfy the condition of 0.05 ⁇ M H /M L ⁇ 0.85, and more preferably satisfy the condition of 0.2 ⁇ M H /M L ⁇ 0.7, so that the antireflection coating 1c can more easily exhibit high antireflection performance.
  • the ratio M L is, for example, 80% to 99.5%, desirably 85% to 99.5%, more desirably 90% to 99.5%, and even more desirably 95% to 99%.
  • M H is, for example, 5% to 70%, desirably 10% to 50%.
  • the method of applying the first and second liquid compositions, which are precursors of the anti-reflective coating 1c, is not limited to a specific method. Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, inkjet coating, screen printing, and dip coating. The conditions of the application method are adjusted according to the desired thickness of the coating film.
  • the method of solidifying the first liquid composition and the second liquid composition is not limited to a specific method.
  • These liquid compositions may be solidified according to a method that dries the coating by heating or polymerizes the binder precursor, etc.
  • heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction.
  • the liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
  • the surface of the substrate 3 to which the second liquid composition is applied may be subjected to various cleaning or surface treatments before application of the second liquid composition.
  • the cleaning of the surface of the substrate 3 is not limited to a specific method.
  • the cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning accompanied by immersion in an acid or alkali solution.
  • Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
  • the anti-reflective film 1c In the manufacture of the anti-reflective film 1c, it is preferable to form a coating of the liquid composition along the surface of the substrate 3, and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the microparticles or binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to heat the layer constituting the anti-reflective film 1c to dry or react the liquid composition to solidify it.
  • the heating temperature of the liquid composition is, for example, 600°C or less, preferably 400°C or less, more preferably 300°C or less, and even more preferably 250°C or less.
  • the heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less.
  • Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1c and the heat resistance temperature of the substrate 3. For example, if the heating temperature of the liquid composition is high, the resulting film becomes dense and hard, but there is a trade-off in that cracks are easily generated and brittleness becomes apparent.
  • the parameters of the anti-reflection film 1c can be calculated in the same manner as the parameters of the anti-reflection film 1a.
  • the anti-reflection film 1c is prepared on the surface of the substrate 3 or the like, and the anti-reflection film is prepared on the surface of a silicon wafer by the same method and conditions as the anti-reflection film 1c.
  • SEM images of the cross section are obtained, the thickness of each layer is measured, the fine particles contained in each layer are identified, and the average particle size, the number N M1 , and the ratio S M /S L are measured and calculated.
  • the reflection spectrum of the anti-reflection film 1c is actually measured, and the reflection spectrum is calculated using the refractive index and thickness of each layer as variables, and the refractive index and thickness of each layer are specified so that the error parameter with the actually measured reflection spectrum is minimized within the allowable range.
  • This allows the parameters of each layer of the anti-reflection film 1c to be calculated.
  • the circumstances of the error parameters are as described for the anti-reflection film 1a.
  • the anti-reflection films 1a, 1b, and 1c can be modified from various viewpoints.
  • the anti-reflection film may have k layers.
  • the first layer 11, the second layer 12, the third layer 13, (omitted), and the kth layer may be arranged in this order toward the substrate 3.
  • k is, for example, an integer of 5 or more.
  • ⁇ Binder Precursor A5 > 19.2 g of TEOS, 36.1 g of n-propyltrimethoxysilane (n-PTMS), and 37.9 g of 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain binder precursor A5, which is a transparent liquid composition.
  • the mass ratio of TEOS to n-PTMS in binder precursor A5 was 3:7.
  • binder precursor A1 and Sururia 4110 a dispersion of approximately 20 mass% of roughly spherical hollow silica microparticles, 70 mass% of 2-propanol, and 10 mass% of methanol,
  • ⁇ Liquid composition B2> To 82.3 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 2.7 g of binder precursor A2 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 95%, and the mixture was mixed and stirred to prepare a liquid composition B2 containing hollow fine particles and a binder precursor.
  • ⁇ Liquid composition B3> To 81.9 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 4.4 g of binder precursor A3 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 90%, and the mixture was mixed and stirred to prepare a liquid composition B3 containing hollow fine particles and a binder precursor.
  • ⁇ Liquid composition B4> To 81.3 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 3.7 g of binder precursor A4 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 90%, and the mixture was mixed and stirred to prepare a liquid composition B4 containing hollow fine particles and a binder precursor.
  • ⁇ Liquid composition B5> 4.4 g of binder precursor A5 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added to 81.9 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol so that the solid mass of the fine particles relative to the total solid mass was 95%, and the mixture was mixed and stirred to prepare a liquid composition B5 containing hollow fine particles and a binder precursor.
  • ⁇ Liquid composition B7> To 82.8 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 14.8 g of binder precursor A1 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid mass of the fine particles relative to the total solid mass was 13.1%, and the mixture was mixed and stirred to prepare a liquid composition B7 containing fine particles and binder precursor.
  • ⁇ Liquid composition B8> To 82.8 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 14.8 g of binder precursor A3 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 10.0%, and the mixture was mixed and stirred to prepare a liquid composition B8 containing fine particles and binder precursor.
  • ⁇ Liquid composition B9> To 71.4 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 15.7 g of binder precursor A1 and titanium oxide fine particles OPTOLAKE (average particle diameter 8 to 12 nm (nominal); solvent: methanol or the like) manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 54.2%, and the mixture was mixed and stirred to prepare a liquid composition B9 containing fine particles and a binder precursor.
  • binder precursor A1 and titanium oxide fine particles OPTOLAKE average particle diameter 8 to 12 nm (nominal); solvent: methanol or the like
  • ⁇ Liquid composition B10> To 86.2 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 0.04 g of binder precursor A1 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid mass of the fine particles relative to the total solid mass was 99.8%, and the mixture was mixed and stirred to prepare a liquid composition B10 containing hollow fine particles and a binder precursor.
  • Example 1 As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B1 was dropped onto one main surface of the substrate to form a coating film by spin coating.
  • This substrate was a square with a side length of 70 mm in plan view.
  • the substrate on which the coating film was formed was placed in a thermostatic dryer and left at 30°C for 30 minutes, and then the temperature inside the thermostatic dryer was adjusted to 200°C and the temperature was maintained at 200°C for 10 minutes. Thereafter, the temperature inside the thermostatic dryer was naturally lowered to room temperature, and the substrate provided with the low refractive index layer was taken out of the thermostatic dryer, and the anti-reflection film according to Example 1 was produced.
  • Example 2 As the base material, a substrate of D263 T eco (refractive index n D : 1.5230), which is borosilicate glass manufactured by Corning Incorporated and has a thickness of 2.1 mm, was used, the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B2 was dropped onto one main surface of the substrate, and a coating film was formed by spin coating.
  • D263 T eco reactive index n D : 1.5230
  • the temperature inside the thermostatic chamber was adjusted to 200°C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was taken out of the thermostatic chamber, and the substrate was left in a room at room temperature of 25°C to cool the substrate, thereby producing an anti-reflection film according to Example 2.
  • Example 3 An anti-reflection film according to Example 3 was prepared in the same manner as in Example 2, except that Liquid Composition B4 was used instead of Liquid Composition B2.
  • Example 4 As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B6 was dropped onto one main surface of the substrate to form a coating film by spin coating. Next, the temperature inside the thermostatic chamber was adjusted to 200°C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was removed from the thermostatic chamber and left in a room at room temperature of 25°C to lower the temperature of the substrate, thereby forming the lower layer according to Example 4.
  • n D reffractive index n D : 1.5230
  • Example 5 An anti-reflection film according to Example 5 was prepared in the same manner as in Example 4, except that Liquid Composition B8 was used instead of Liquid Composition B6, and Liquid Composition B2 was used instead of Liquid Composition B1.
  • Example 6 An anti-reflection film according to Example 6 was prepared in the same manner as in Example 4, except that Liquid Composition B7 was used instead of Liquid Composition B6, and Liquid Composition B5 was used instead of Liquid Composition B1.
  • Example 7 An anti-reflection film according to Example 7 was prepared in the same manner as in Example 4, except that Liquid Composition B9 was used instead of Liquid Composition B6.
  • Example 8 As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and a single layer of SiO 2 was formed on one main surface of the substrate by a vacuum deposition method. The thickness of the SiO 2 single layer was 103 nm. Next, an appropriate amount of liquid composition B3 was dropped onto the surface of the SiO 2 single layer to form a coating film by spin coating.
  • n D reffractive index n D : 1.5230
  • the temperature inside the thermostatic chamber was adjusted to 200 ° C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was removed from the thermostatic chamber, and the substrate was left in a room at room temperature of 25 ° C to cool the substrate, thereby producing an anti-reflection film according to Example 8.
  • Example 9 An anti-reflection film according to Example 9 was prepared in the same manner as in Example 4, except that Liquid Composition B8 was used instead of Liquid Composition B6, and Liquid Composition B10 was used instead of Liquid Composition B1.
  • Table 1 shows the conditions for the anti-reflective films in each example and the liquid compositions used to prepare these anti-reflective films.
  • ⁇ Anti-reflection coating for fitting> For fitting of the reflection spectrum, a film corresponding to the antireflection film according to each example was prepared on a silicon wafer in the same manner as in each example, except that a silicon wafer was used as a base material instead of the D263 T eco substrate.
  • the anti-reflective film according to each example was cut along a plane perpendicular to the main surface of the substrate, and the cut surface was subjected to a conductive treatment by carbon deposition to prepare a sample.
  • the sample was observed using a field emission scanning electron microscope (FE-SEM) SU8220 manufactured by Hitachi High-Tech Corporation, and a 100,000-fold magnification SEM image of the cross section of the anti-reflective film according to each example was obtained.
  • FE-SEM field emission scanning electron microscope
  • FIG. 9 is a SEM image of a cross section of the antireflective coating according to Example 1.
  • Fig. 10 is an SEM image of a cross section of the antireflection coating according to Example 5.
  • the area surrounded by a white dashed line indicates a 500 nm square area selected for determining the average particle diameter Dp , the number of fine particles NMI , and the ratio S / SL .
  • the refractive index n L1 of the first layer, the refractive index n L2 of the second layer, the thickness t L1 of the first layer, and the thickness t L2 of the second layer were determined for Examples 1 to 3. It was assumed that the binder contained in the second layer was unevenly distributed on the surface between the second layer and the substrate, and it was assumed that the thickness t L2 of the second layer was 2 nm.
  • the refractive index nL1 of the first layer, the refractive index nL2 of the second layer, the refractive index nL3 of the third layer, the thickness tL1 of the first layer, the thickness tL2 of the second layer, and the thickness tM3 of the third layer were determined for Examples 4 and 7. It was assumed that the binder contained in the second layer was unevenly distributed on the surface between the second layer and the substrate, and it was assumed that the thickness tL2 of the second layer was 2 nm.
  • the refractive index nL1 of the first layer, the refractive index nL2 of the second layer, the refractive index nL3 of the third layer, the refractive index nL4 of the fourth layer, the thickness tL1 of the first layer, the thickness tL2 of the second layer, the thickness tM3 of the third layer, and the thickness tM4 of the fourth layer were determined for Examples 5, 6, and 9.
  • the thickness tL2 of the second layer was assumed to be 16 nm, which corresponds to the sum of 14 nm, which is the thickness of the outer shell of the hollow fine particles contained in the third layer, and 2 nm, which is the thickness of the binder unevenly distributed at the boundary between the first layer and the second layer.
  • ⁇ Adhesion test> The adhesion test of the anti-reflective film according to the embodiment was carried out under the conditions and method (cross-cut peel test) according to Japanese Industrial Standards (JIS) K5600-5-6. Six cut lines were drawn vertically and horizontally at 1 mm intervals on the surface of the anti-reflective film according to the embodiment, forming a cut line pattern of 25 squares with a side length of 1 mm in plan view.
  • JIS Japanese Industrial Standards
  • the substrate with the anti-reflective film was placed on a flat glass table, and an adhesive tape was attached to the anti-reflective film with a surface pressure of 3.3 N/cm 2 , and the adhesive tape was peeled off from the surface of the anti-reflective film over 1 second while lifting the end of the tape at an angle of 60°.
  • the adhesive tape used was cleanroom cellophane tape CRCT-18 manufactured by Nichiban Co., Ltd. Cellophane tape is a registered trademark.
  • the adhesive tape was attached and peeled off twice on the entire surface of the anti-reflective film on which the cut line pattern was formed. The adhesion of each anti-reflective film was evaluated according to the following evaluation criteria. The results are shown in Table 2.
  • the anti-reflective coatings according to Examples 1 to 8 had high adhesion to the anti-reflective coating according to Example 9.
  • E The number of peeled squares out of 25 squares is 35% or more.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Abstract

An anti-reflection film 1a is a film provided on a substrate 3. The anti-reflection film 1a is provided with a first layer 11 and a second layer 12 in this order from the surface side. The first layer 11 has a refractive index nL1 of 1.10-1.35 and a thickness tL1 of 80-150 nm. The second layer 12 has a refractive index nL2 of 1.30-1.55 and a thickness tL2 of 25 nm or less.

Description

反射防止膜、液状組成物、液状組成物群、及び反射防止膜の製造方法Anti-reflective film, liquid composition, liquid compositions, and method for producing anti-reflective film
 本発明は、反射防止膜、液状組成物、液状組成物群、及び反射防止膜の製造方法に関する。 The present invention relates to an anti-reflective film, a liquid composition, a group of liquid compositions, and a method for producing an anti-reflective film.
 従来、物品の表面からの光の反射を防止又は低減するための技術が知られている。  Technologies for preventing or reducing light reflection from the surface of an object are known.
 例えば、特許文献1には、中空球状の所定のシリカ系微粒子と、被膜形成用マトリクスとを含む皮膜が基材表面上に形成された基材が記載されている。このシリカ系微粒子において細孔を有する外殻の内部に空洞が形成されており、空洞内に溶媒又は気体が包含されている。シリカ系微粒子が低屈折率であるので、被膜も低屈折率であり、被膜が反射防止性能に優れる。 For example, Patent Document 1 describes a substrate on whose surface a coating containing specific hollow spherical silica-based particles and a matrix for forming a coating is formed. The silica-based particles have a cavity formed inside an outer shell having fine pores, and a solvent or gas is contained within the cavity. Since the silica-based particles have a low refractive index, the coating also has a low refractive index, and the coating has excellent anti-reflection performance.
 特許文献2には、有機フィルムの表面に、下層側からハードコート層と、高屈折率層と、低屈折率層とを有する反射防止フィルムが記載されている。高屈折率層は、ZrO2等の金属酸化物の微粒子を含んだ合成樹脂系薄膜である。合成樹脂は、紫外線又は電子線硬化型合成樹脂である。 Patent Document 2 describes an anti-reflection film having a hard coat layer, a high refractive index layer, and a low refractive index layer from the lower layer side on the surface of an organic film. The high refractive index layer is a synthetic resin thin film containing fine particles of a metal oxide such as ZrO2 . The synthetic resin is an ultraviolet or electron beam curable synthetic resin.
 特許文献3には、バインダー樹脂中に低屈折率微粒子と中乃至高屈折率微粒子が分散されているコーティング組成物を用いてワンコートにて形成された塗膜を含む反射防止積層体が記載されている。低屈折率微粒子としてフッ素系化合物により処理されているシリカ微粒子が用いられている。これにより、比重の差により塗膜の上部乃至中間部において低屈折率微粒子が偏在し、且つ中間部乃至下部において中乃至高屈折率微粒子が偏在している。 Patent Document 3 describes an anti-reflection laminate including a coating film formed in one coat using a coating composition in which low refractive index particles and medium to high refractive index particles are dispersed in a binder resin. Silica particles treated with a fluorine-based compound are used as the low refractive index particles. As a result, due to the difference in specific gravity, the low refractive index particles are unevenly distributed in the upper and middle parts of the coating film, and the medium to high refractive index particles are unevenly distributed in the middle and lower parts.
特開2001-233611号公報JP 2001-233611 A 特開2001-350001号公報JP 2001-350001 A 特開2007-272132号公報JP 2007-272132 A
 特許文献1から3に記載の技術は、反射防止性能の観点から再検討の余地を有する。本発明は、反射防止性能の観点から有利な新規の反射防止膜を提供する。 The techniques described in Patent Documents 1 to 3 have room for reexamination from the viewpoint of anti-reflection performance. The present invention provides a novel anti-reflection film that is advantageous from the viewpoint of anti-reflection performance.
 本発明は、
 基材上に設けられる反射防止膜であって、
 前記反射防止膜は、前記反射防止膜の表面側から順に第一層と、第二層と、を備え、
 前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
 前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有する、
 反射防止膜を提供する。
The present invention relates to
An anti-reflection film provided on a substrate,
The antireflection film includes a first layer and a second layer in this order from a front surface side of the antireflection film,
The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less.
Provide an anti-reflective coating.
 上記の反射防止膜は、反射防止性能の観点から有利である。 The above anti-reflective coating is advantageous in terms of anti-reflective performance.
図1は、本発明に係る反射防止膜の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of an anti-reflection film according to the present invention. 図2は、本発明に係る反射防止膜を備えた光学部品の一例を示す側面図である。FIG. 2 is a side view showing an example of an optical component provided with an anti-reflection coating according to the present invention. 図3Aは、本発明に係る反射防止膜の別の一例を示す断面図である。FIG. 3A is a cross-sectional view showing another example of the antireflection film according to the present invention. 図3Bは、本発明に係る反射防止膜のさらに別の一例を示す断面図である。FIG. 3B is a cross-sectional view showing still another example of the antireflection film according to the present invention. 図3Cは、図3Aに示す反射防止膜における第一中空微粒子の状態を示す断面図である。FIG. 3C is a cross-sectional view showing a state of first hollow fine particles in the antireflection coating shown in FIG. 3A. 図3Dは、図3Aに示す反射防止膜における第一中空微粒子の状態を示す断面図である。FIG. 3D is a cross-sectional view showing a state of first hollow fine particles in the antireflection coating shown in FIG. 3A. 図4は、本発明に係る反射防止膜のさらに別の一例を示す断面図である。FIG. 4 is a cross-sectional view showing still another example of the antireflection film according to the present invention. 図5は、実施例1に係る反射防止膜の反射スペクトルを示すグラフである。FIG. 5 is a graph showing the reflection spectrum of the antireflection film according to Example 1. As shown in FIG. 図6は、実施例4に係る反射防止膜の反射スペクトルを示すグラフである。FIG. 6 is a graph showing the reflection spectrum of the antireflection film according to Example 4. 図7は、実施例5に係る反射防止膜の反射スペクトルを示すグラフである。FIG. 7 is a graph showing the reflection spectrum of the antireflection film according to Example 5. 図8は、実施例7に係る反射防止膜の反射スペクトルを示すグラフである。FIG. 8 is a graph showing the reflection spectrum of the antireflection film according to Example 7. 図9は、実施例1に係る反射防止膜の断面のSEM画像である。FIG. 9 is an SEM image of a cross section of the antireflection coating according to Example 1. 図10は、実施例5に係る反射防止膜の断面のSEM画像である。FIG. 10 is an SEM image of a cross section of the antireflection coating according to Example 5.
 以下、添付の図面を参照しつつ、本発明の実施形態について説明する。なお、以下の説明は、本発明の例示に関するものであり、本発明は以下の実施形態に限定されるものではない。 Below, an embodiment of the present invention will be described with reference to the attached drawings. Note that the following description is an example of the present invention, and the present invention is not limited to the following embodiment.
 反射防止膜は、例えば、光学物品の表面に設けられる。反射防止膜が設けられる光学物品の例は、光学フィルタ、レンズ、及び偏光子等の光学素子、各種ディスプレイ、メガネ、及び透明シールドである。所定の屈折率を有する材料を光学物品にコーティングすることにより、その光学物品の表面からの光の反射を抑制する反射防止膜を形成することが考えられる。例えば、レンズ及びフィルタ等の光学素子、建築物等に使用される窓及び構造材料、自動車用のウィンドシールド、並びにヘルメット及びゴーグル等のシールド等の分野又は用途において、反射防止膜は重要な役割を果たしうる。反射防止膜により、それらの物品又は基材の表面からの光の反射が抑制され、かつ、それらの物品又は基材を透過した光の光量を増大しうる。ここで、反射防止膜とは、単一の層、又は、材質や作製条件、方法の異なる複数の層から構成され、物品又は基材の表面からの光の反射を防止又は低減するために、物品又は基材の表面に設けられるものである。 An anti-reflection film is provided, for example, on the surface of an optical article. Examples of optical articles on which an anti-reflection film is provided include optical elements such as optical filters, lenses, and polarizers, various displays, glasses, and transparent shields. It is possible to form an anti-reflection film that suppresses the reflection of light from the surface of the optical article by coating an optical article with a material having a predetermined refractive index. For example, anti-reflection films can play an important role in fields or applications such as optical elements such as lenses and filters, windows and structural materials used in buildings, windshields for automobiles, and shields such as helmets and goggles. The anti-reflection film can suppress the reflection of light from the surface of the article or substrate, and can increase the amount of light transmitted through the article or substrate. Here, the anti-reflection film is composed of a single layer or multiple layers made of different materials, fabrication conditions, and methods, and is provided on the surface of the article or substrate to prevent or reduce the reflection of light from the surface of the article or substrate.
 例えば、ガラス又は樹脂等から構成された透明誘電体の一つの表面の反射率は、通常4~5%程度である。このため、表面における反射及び裏面における反射を考慮した全体の反射率は、一枚の板状の透明誘電体について8~10%となりうる。例えば、カメラ等の撮像装置は、ガラス及び樹脂等の透明誘電体から構成される複数のレンズを含む光学系を通常備えており、光学系におけるレンズ表面からの反射量は非常に大きく、CCD及びCMOS等の撮像素子の受光面に到達する光量が大きく減じてしまう。さらに、これらのガラス又は樹脂等の透明誘電体からなるレンズの表面からの反射光は、撮像装置の内部の構造又は他のレンズ表面によって反射又は屈折を繰り返して撮像素子の受光面に到達し、ゴースト又はフレアといった好ましくない現象を引き起こしうる。したがって、光の透過又は屈折などの機能を果たす物品又は基材の表面に反射防止膜を形成し、表面における反射を抑制することが重要である。 For example, the reflectance of one surface of a transparent dielectric made of glass or resin is usually about 4 to 5%. Therefore, the overall reflectance considering the reflection on the front surface and the reflection on the back surface can be 8 to 10% for a single plate-shaped transparent dielectric. For example, an imaging device such as a camera usually has an optical system including multiple lenses made of transparent dielectrics such as glass and resin, and the amount of reflection from the lens surfaces in the optical system is very large, which greatly reduces the amount of light reaching the light receiving surface of an imaging element such as a CCD or CMOS. Furthermore, the reflected light from the surface of a lens made of a transparent dielectric such as glass or resin is repeatedly reflected or refracted by the internal structure of the imaging device or the surfaces of other lenses before reaching the light receiving surface of the imaging element, which can cause undesirable phenomena such as ghosts or flares. Therefore, it is important to form an anti-reflection film on the surface of an article or substrate that performs functions such as transmitting or refracting light, and to suppress reflection on the surface.
 図1に示す通り、反射防止膜1aは、基材3上に設けられる膜である。反射防止膜1aは、その表面側から順に第一層11と、第二層12とを備えている。基材3は、求められる波長範囲の光を透過させて利用するための物品でありうる。基材3は、透明誘電体であってもよい。第二層12は、反射防止膜1aの厚さ方向において第一層11と基材3との間に配置されている。第一層11は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みtL1を有する。第二層12は、1.30~1.55の屈折率nL2及び25nm以下の厚みtL2を有する。このような構成によれば、反射防止膜1aが高い反射防止性能を発揮しうる。屈折率nL1及び屈折率nL2は、D線(波長589.3nm)における屈折率である。 As shown in FIG. 1, the anti-reflection film 1a is a film provided on a substrate 3. The anti-reflection film 1a includes a first layer 11 and a second layer 12 in this order from the surface side. The substrate 3 may be an article for transmitting light in a desired wavelength range and using it. The substrate 3 may be a transparent dielectric. The second layer 12 is disposed between the first layer 11 and the substrate 3 in the thickness direction of the anti-reflection film 1a. The first layer 11 has a refractive index n L1 of 1.10 to 1.35 and a thickness t L1 of 80 nm to 150 nm. The second layer 12 has a refractive index n L2 of 1.30 to 1.55 and a thickness t L2 of 25 nm or less. With this configuration, the anti-reflection film 1a can exhibit high anti-reflection performance. The refractive indexes n L1 and n L2 are refractive indices at the D line (wavelength 589.3 nm).
 反射防止膜1aにおいて、例えば、波長300nm~1200nmの波長の光を入射角度が5°で入射させたときの波長と、その波長に対する反射率を表した反射スペクトルにおいて、波長300nm~1200nmの範囲内における最小の反射率rmin 300-1200は1%以下となりうる。反射率rmin 300-1200は、望ましくは0.5%以下であり、より望ましくは0.2%以下である。以下、特に断りのない限り、反射防止膜等の反射率は、波長300nm~1200nmの波長の光を入射角度が5°で入射させたときの反射スペクトルから求められる反射率とする。 In the antireflection coating 1a, for example, in the reflection spectrum showing the wavelength and the reflectance for light having a wavelength of 300 nm to 1200 nm incident at an incident angle of 5°, the minimum reflectance r min 300-1200 within the wavelength range of 300 nm to 1200 nm can be 1% or less. The reflectance r min 300-1200 is preferably 0.5% or less, and more preferably 0.2% or less. Hereinafter, unless otherwise specified, the reflectance of an antireflection coating or the like is the reflectance determined from the reflection spectrum when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 5°.
 反射防止膜1aにおいて、波長400nm~800nmの範囲内における最小の反射率rmin 400-800は、特定の値に限定されない。反射率rmin 400-800は、例えば、0.5%以下である。この場合、反射防止膜1aが高い反射防止性能をより発揮しやすい。反射率rmin 400-800は、望ましくは、0.2%以下である。 In the antireflection coating 1a, the minimum reflectance r min 400-800 in the wavelength range of 400 nm to 800 nm is not limited to a specific value. The reflectance r min 400-800 is, for example, 0.5% or less. In this case, the antireflection coating 1a is more likely to exhibit high antireflection performance. The reflectance r min 400-800 is preferably 0.2% or less.
 反射防止膜1aにおいて、波長300nm~1200nmの範囲内において反射率が2.5%以下となる範囲λrange/2.5は、特定の値に限定されない。範囲λrange/2.5は、例えば400nm以上である。これにより、反射防止膜1aが高い反射防止性能をより発揮しやすい。範囲λrange/2.5は、450nm以上であってもよく、500nm以上であってもよい。以下、特に断りのない限り、所定の反射率に対応する波長及び波長の範囲についても、反射スペクトルから求められる波長とする。 In the antireflection coating 1a, the range λ range/2.5 , in which the reflectance is 2.5% or less within the wavelength range of 300 nm to 1200 nm, is not limited to a specific value. The range λ range/2.5 is, for example, 400 nm or more. This makes it easier for the antireflection coating 1a to exhibit high antireflection performance. The range λ range/2.5 may be 450 nm or more, or may be 500 nm or more. Hereinafter, unless otherwise specified, the wavelength and wavelength range corresponding to a predetermined reflectance are also wavelengths determined from the reflection spectrum.
 反射防止膜1aにおいて、波長300nm~1200nmの範囲内において反射率が1.0%以下となる範囲λrange/1.0は、特定の値に限定されない。範囲λrange/1.0は、例えば250nm以上である。これにより、反射防止膜1aが高い反射防止性能をより発揮しやすい。範囲λrange/1.0は、300nm以上であってもよく、350nm以上であってもよく、400nm以上であってもよい。 In the antireflection film 1a, the range λ range/1.0 in which the reflectance is 1.0% or less in the wavelength range of 300 nm to 1200 nm is not limited to a specific value. The range λ range/1.0 is, for example, 250 nm or more. This makes it easier for the antireflection film 1a to exhibit high antireflection performance. The range λ range/1.0 may be 300 nm or more, 350 nm or more, or 400 nm or more.
 図1に示す通り、反射防止膜1aにおいて、第二層12は、例えば、基材3の表面に直接接触して形成されている。反射防止膜1aの厚み方向において、第二層12と基材3の表面との間には、別の層又は別の膜が配置されていてもよい。 As shown in FIG. 1, in the anti-reflection film 1a, the second layer 12 is formed, for example, in direct contact with the surface of the substrate 3. In the thickness direction of the anti-reflection film 1a, another layer or film may be disposed between the second layer 12 and the surface of the substrate 3.
 反射防止膜1aにおいて、例えば、nL1<nL2の条件が満たされている。この場合、反射防止膜1aが高い反射防止性能をより発揮しやすい。 In the antireflection film 1a, for example, the condition n L1 <n L2 is satisfied, in which case the antireflection film 1a is more likely to exhibit high antireflection performance.
 第二層の厚みtL2は、望ましくは15nm以下であり、より望ましくは10nm以下であり、さらに望ましくは5nm以下である。これにより、反射防止膜1aが高い反射防止性能をより発揮しやすい。 The thickness t L2 of the second layer is preferably 15 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less, so that the antireflection film 1a can more easily exhibit high antireflection performance.
 図1に示す通り、反射防止膜1aにおいて、第一層11及び第二層12は、第一複層構造10をなしている。第一複層構造10の厚みtLLは、例えば、100nm~160nmである。この場合、反射防止膜1aが高い反射防止性能をより発揮しやすい。第一複層構造10のD線(波長λD:589.3nm)における実質的又は代表的な屈折率nLD及び厚みtLLがtLL=λD/(4nLD)の条件を満たすときにD線における反射率が最小になる。このため、厚みtLLが100nm~160nmであることが高い反射防止性能の観点から有利である。 As shown in FIG. 1, in the antireflection film 1a, the first layer 11 and the second layer 12 form a first multi-layer structure 10. The thickness t LL of the first multi-layer structure 10 is, for example, 100 nm to 160 nm. In this case, the antireflection film 1a is more likely to exhibit high antireflection performance. When the substantial or representative refractive index n LD and thickness t LL of the first multi-layer structure 10 at the D line (wavelength λ D : 589.3 nm) satisfy the condition t LL = λ D / (4n LD ), the reflectance at the D line is minimized. For this reason, it is advantageous from the viewpoint of high antireflection performance that the thickness t LL is 100 nm to 160 nm.
 反射防止膜1aにおいて、厚みtLL及び任意の波長λX[nm]は、例えば、λX/6≦tLL≦λX/4の条件を満たしていてもよい。この場合、反射防止膜1aにおいて、波長λXにおける反射率が低くなりやすいほか、反射スペクトルにおいて、反射率が所定の値以下を示す波長範囲を大きくすることができ、有利である。波長λXは、例えば、波長400nm~800nmの範囲に含まれる特定の波長であり、D線(波長589.3nm)であってもよく、用いられる光の波長範囲を代表する波長、用いられる光の波長範囲の中央の波長、又は、用いられる光の波長範囲で最も重要な波長であってもよい。用いられる光の波長範囲で最も重要な波長とは、所定の波長範囲の中で最も低い反射率に対応する波長であってもよい。 In the anti-reflection film 1a, the thickness t LL and the arbitrary wavelength λ X [nm] may satisfy, for example, the condition λ X /6≦t LL ≦λ X /4. In this case, in the anti-reflection film 1a, the reflectance at the wavelength λ X is likely to be low, and the wavelength range in the reflection spectrum where the reflectance is equal to or less than a predetermined value can be increased, which is advantageous. The wavelength λ X is, for example, a specific wavelength included in the wavelength range of 400 nm to 800 nm, and may be the D line (wavelength 589.3 nm), a wavelength representative of the wavelength range of the light used, a central wavelength of the wavelength range of the light used, or the most important wavelength in the wavelength range of the light used. The most important wavelength in the wavelength range of the light used may be the wavelength corresponding to the lowest reflectance in a predetermined wavelength range.
 基材の屈折率nsb及び反射防止膜の屈折率n1であるときに反射防止膜の光学厚みを所定の波長λの1/4に調整することが考えられる。この場合、nsb-n1 2の値の絶対値が小さいほど、その屈折率に対応する波長λにおいて、反射率が小さくなりやすい。このため、反射防止膜の実質的な屈折率が低いことが反射率の低減の観点から望ましい場合がある。このように反射防止膜に低屈折率が要求される場合、反射防止膜が中空微粒子を含むことが有利である。 When the refractive index of the substrate is n sb and the refractive index of the antireflection film is n 1 , it is possible to adjust the optical thickness of the antireflection film to 1/4 of a predetermined wavelength λ. In this case, the smaller the absolute value of n sb -n 1 2 , the smaller the reflectance at the wavelength λ corresponding to that refractive index. For this reason, it may be desirable from the viewpoint of reducing the reflectance that the effective refractive index of the antireflection film is low. When a low refractive index is required for the antireflection film, it is advantageous for the antireflection film to contain hollow fine particles.
 図1に示す通り、第一複層構造10は、例えば、第一中空微粒子21及び第一バインダ31を含んでいる。第一バインダ31は、第一中空微粒子21を結着する。このような構成によれば、第一層11及び第二層12が所望の屈折率及び所望の厚みを有しやすく、反射防止膜1aが高い反射防止性能をより発揮しやすい。加えて、第一複層構造10が第一中空微粒子21を含むことにより、後述するように、反射防止膜1aの実質的な屈折率を低くすることができるほか、耐剥離性及び耐摩耗性等の機械的強度の向上並びに耐湿性等の耐候性の向上が期待される。本明細書において、微粒子は、1μm未満の平均粒子径を有する粒子である。 As shown in FIG. 1, the first multilayer structure 10 includes, for example, first hollow fine particles 21 and a first binder 31. The first binder 31 binds the first hollow fine particles 21. With this configuration, the first layer 11 and the second layer 12 tend to have the desired refractive index and thickness, and the anti-reflection film 1a tends to exhibit high anti-reflection performance. In addition, by including the first hollow fine particles 21 in the first multilayer structure 10, as described below, the effective refractive index of the anti-reflection film 1a can be lowered, and mechanical strength such as peel resistance and abrasion resistance, as well as weather resistance such as moisture resistance, are expected to be improved. In this specification, fine particles are particles having an average particle diameter of less than 1 μm.
 第一中空微粒子21の外殻をなす材料が所定の屈折率を有していても、その内部の中空部21aは空気によって満たされているとみなしうる。このため、第一複層構造10に第一中空微粒子21が含まれていることにより、実質的な屈折率が低くなりやすい。第一中空微粒子21は、例えば、中空のバルーン型構造を有する。第一中空微粒子21の屈折率は、例えば1.10~1.40であり、望ましくは1.15~1.40であり、より望ましくは1.17~1.35である。なお、第一中空微粒子21の屈折率は、第一中空微粒子21の外殻をなす材料の屈折率ではなく、中空部21aの作用も含めた第一中空微粒子21の実質的な屈折率である。第一中空微粒子の特定の波長の屈折率は、広く知られている場合もあるし、又は、中空微粒子の近似球体の大きさ、中空微粒子の外殻の材質や厚み、等の代表的又は平均的な数値を得て、例えばBruggemannの式を用いた有効媒質近似法によって求めることができる。 Even if the material forming the outer shell of the first hollow particles 21 has a predetermined refractive index, the hollow portion 21a inside can be considered to be filled with air. For this reason, the inclusion of the first hollow particles 21 in the first multilayer structure 10 tends to lower the effective refractive index. The first hollow particles 21 have, for example, a hollow balloon-type structure. The refractive index of the first hollow particles 21 is, for example, 1.10 to 1.40, preferably 1.15 to 1.40, and more preferably 1.17 to 1.35. Note that the refractive index of the first hollow particles 21 is not the refractive index of the material forming the outer shell of the first hollow particles 21, but the effective refractive index of the first hollow particles 21 including the effect of the hollow portion 21a. The refractive index of a specific wavelength of the first hollow microparticle may be widely known, or it may be calculated by obtaining representative or average values of the approximate spherical size of the hollow microparticle, the material and thickness of the outer shell of the hollow microparticle, etc., and using, for example, an effective medium approximation method using the Bruggemann equation.
 第一中空微粒子21の外殻をなす材料は、特定の材料に限定されない。その材料は、無機材料であってもよいし、有機材料であってもよいし、有機‐無機ハイブリッド材料であってもよい。第一中空微粒子21の外殻をなす無機材料の例は、酸化シリコン(シリカ)及びフッ化マグネシウムである。第一中空微粒子21の外殻をなす有機材料の例は、ポリスチレン及びポリエチレンである。これらの材料は、単独で使用されてもよいし、二種類以上の材料が混合されて使用されてもよい。中空微粒子の製造の容易さの観点から、第一中空微粒子21の外殻の主成分は、望ましくは酸化シリコンである。本明細書において、主成分は質量基準で最も多く含まれる成分である。 The material forming the outer shell of the first hollow microparticle 21 is not limited to a specific material. The material may be an inorganic material, an organic material, or an organic-inorganic hybrid material. Examples of inorganic materials forming the outer shell of the first hollow microparticle 21 are silicon oxide (silica) and magnesium fluoride. Examples of organic materials forming the outer shell of the first hollow microparticle 21 are polystyrene and polyethylene. These materials may be used alone, or two or more types of materials may be mixed and used. From the viewpoint of ease of manufacturing hollow microparticles, the main component of the outer shell of the first hollow microparticle 21 is preferably silicon oxide. In this specification, the main component is the component that is contained most abundantly by mass.
 第一中空微粒子21の形状は、特定の形状に限定されない。第一中空微粒子21は、略球形状であってもよく、不定形状であってもよく、特定の形状が鎖状に連結された態様であってもよい。 The shape of the first hollow microparticles 21 is not limited to a specific shape. The first hollow microparticles 21 may be substantially spherical, may have an irregular shape, or may have a specific shape connected in a chain shape.
 第一中空微粒子21の平均粒子径Dpは特定の値に限定されない。平均粒子径Dpは、例えば、5~200nmである。平均粒子径Dpが5nm以上であることにより、第一中空微粒子21の製造コストが低くなりやすい。加えて、中空部21aの体積が小さいことにより屈折率の低下が不十分となることを防止できる。平均粒子径Dpが200nm以下であることにより、第一中空微粒子21に光が入射しても散乱が抑制され、反射防止膜1aの曇価(ヘイズ)が高くなることが防止されやすい。微粒子のサイズ及び形状の確認及び計測は、例えば走査型電子顕微鏡(SEM)等を用いた観察によってなされうる。微粒子の平均粒子径として、微粒子を含む膜が形成された物品等の主面に直角な断面の10万倍のSEM画像を取得して、微粒子を特定し、微粒子の形状を円形と近似したうえでその直径を計測し、予め定められた領域、例えば、反射防止膜を構成する全ての層を含む500nm四方の範囲内に含まれる微粒子の直径の算術平均値を採用してもよい。この方法は、既に固化された膜又は層に含まれる微粒子の平均粒子径を求めるときに簡便である。なお、SEM画像において、微粒子の形状を円形と近似する場合に、個々の微粒子の領域を含む、最小の直径の円を近似円として特定してもよい。 The average particle diameter D p of the first hollow fine particles 21 is not limited to a specific value. The average particle diameter D p is, for example, 5 to 200 nm. When the average particle diameter D p is 5 nm or more, the manufacturing cost of the first hollow fine particles 21 is likely to be low. In addition, it is possible to prevent the refractive index from being insufficiently reduced due to the small volume of the hollow portion 21a. When the average particle diameter D p is 200 nm or less, scattering is suppressed even when light is incident on the first hollow fine particles 21, and it is easy to prevent the haze of the antireflection film 1a from increasing. The size and shape of the fine particles can be confirmed and measured by observation using, for example, a scanning electron microscope (SEM). As the average particle diameter of the fine particles, an SEM image of 100,000 times the cross section perpendicular to the main surface of an article or the like on which a film containing fine particles is formed is obtained, the fine particles are identified, the shape of the fine particles is approximated to a circle, and the diameter is measured, and the arithmetic average value of the diameters of the fine particles included in a predetermined area, for example, within a 500 nm square range including all layers constituting the antireflection film, may be adopted. This method is convenient for determining the average particle diameter of the fine particles contained in an already solidified film or layer. When the shape of the fine particles is approximated to a circle in the SEM image, the circle with the smallest diameter that includes the area of each fine particle may be specified as the approximate circle.
 平均粒子径Dpは、望ましくは10~100nmであり、より望ましくは30~80nmである。 The average particle size D p is preferably 10 to 100 nm, and more preferably 30 to 80 nm.
 第一中空微粒子21の外殻は、結晶であってもよく、多結晶であってもよく、アモルファスであってもよい。 The outer shell of the first hollow microparticle 21 may be crystalline, polycrystalline, or amorphous.
 第一中空微粒子21の外殻の厚みtSは特定の値に限定されない。厚みtSは、例えば、1~50nmである。厚みtSが1nm以上であることにより、外郭の機械的強度が高くなりやすく、第一中空微粒子21の中空構造が所望の状態に保たれやすい。厚みtSが50nm以下であることにより、第一中空微粒子21を製造しやすい。中空微粒子の外殻の厚みtSは、Bruggemannの式を用いた有効媒質近似法によって、中空微粒子の実質的な屈折率、中空微粒子の近似球体の体積、中空部の体積などの関係から推算されてもよい。 The thickness t S of the outer shell of the first hollow fine particle 21 is not limited to a specific value. The thickness t S is, for example, 1 to 50 nm. When the thickness t S is 1 nm or more, the mechanical strength of the outer shell is likely to be high, and the hollow structure of the first hollow fine particle 21 is likely to be maintained in a desired state. When the thickness t S is 50 nm or less, the first hollow fine particle 21 is easy to manufacture. The thickness t S of the outer shell of the hollow fine particle may be estimated from the relationship between the substantial refractive index of the hollow fine particle, the volume of the approximate sphere of the hollow fine particle, the volume of the hollow portion, and the like, by an effective medium approximation method using the Bruggemann equation.
 第一中空微粒子21において、平均粒子径Dpに対する外殻の厚みtSの比tS/Dpは特定の値に限定されない。比tS/Dpは、例えば、1/50~1/5である。 In the first hollow fine particles 21, the ratio t S /D p of the shell thickness t S to the average particle diameter D p is not limited to a specific value and is, for example, 1/50 to 1/5.
 第一中空微粒子21は、その表面に対して修飾がなされた中空微粒子であってもよい。例えば、一分子内に金属成分、アルキル基、及びアルコキシ基を有する化合物又はその化合物の加水分解物を予め反応させた微粒子が用いられてもよい。この場合、この化合物には、アミノ基、エポキシ基、メタクリル基、及びビニル基等の反応性官能基が含まれてもよい。また、このような化合物として、カップリング剤と称される化合物が使用されてもよい。カップリング剤は、例えば、Si、Ti、又はAl等の成分を含む。本明細書において、Siは金属成分として取り扱う。 The first hollow fine particles 21 may be hollow fine particles whose surfaces have been modified. For example, fine particles may be used that have been reacted in advance with a compound having a metal component, an alkyl group, and an alkoxy group in one molecule, or a hydrolyzate of such a compound. In this case, the compound may contain reactive functional groups such as amino groups, epoxy groups, methacryl groups, and vinyl groups. Compounds known as coupling agents may also be used as such compounds. Coupling agents include, for example, components such as Si, Ti, or Al. In this specification, Si is treated as a metal component.
 反射防止膜1aの製造において、第一中空微粒子21のための微粒子は、粉末として提供されてもよいし、微粒子の分散液として提供されてもよい。微粒子の分散液はコロイドの状態であってもよい。例えば、酸化シリコンの微粒子のコロイド分散液であるコロイダルシリカが使用されてもよい。微粒子の分散液の使用により、微粒子の分散状態が安定的に保たれ、反射防止膜1aの曇価(ヘイズ)が低くなりやすく、反射防止膜1aが高い透明性を有しやすい。分散液の分散媒は、アルコール類であってもよいし、ケトン類であってもよいし、エステル類であってもよいし、エーテル類であってもよいし、芳香族炭化水素類であってもよいし、アミド類であってもよい。アルコール類の例は、メタノール、エタノール、イソプロパノール、ブタノール、及びオクタノールである。ケトン類の例は、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンである。エステル類の例は、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、及びプロピレングリコールモノエチルエーテルアセテートである。エーテル類は、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、及びジエチレングリコールモノブチルエーテルである。芳香族炭化水素類は、ベンゼン、トルエン、及びキシレンである。アミド類の例は、ジメチルホルムアミド、ジメチルアセトアミド、及びN-メチルピロリドンである。中でも、メタノール、イソプロパノール、ブタノール、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、トルエン、及びキシレンが分散媒として望ましい。 In the manufacture of the anti-reflective film 1a, the particles for the first hollow particles 21 may be provided as a powder or as a dispersion of particles. The dispersion of particles may be in a colloidal state. For example, colloidal silica, which is a colloidal dispersion of silicon oxide particles, may be used. By using a dispersion of particles, the dispersion state of the particles is stably maintained, the haze of the anti-reflective film 1a tends to be low, and the anti-reflective film 1a tends to have high transparency. The dispersion medium of the dispersion may be alcohols, ketones, esters, ethers, aromatic hydrocarbons, or amides. Examples of alcohols are methanol, ethanol, isopropanol, butanol, and octanol. Examples of ketones are acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of esters are ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. The ethers are ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether. The aromatic hydrocarbons are benzene, toluene, and xylene. Examples of amides are dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Among them, methanol, isopropanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, toluene, and xylene are preferable as the dispersion medium.
 第一中空微粒子21は、日揮触媒化成社製のスルーリア1110(酸化シリコン、平均粒子径(呼び)約50nm、固形分濃度約20質量%)であってもよいし、同社製のスルーリア4110(酸化シリコン、平均粒子径(呼び):50nm~60nm、固形分濃度:約20~25質量%)であってもよい。これらは、酸化シリコンを外殻部の主成分とする中空微粒子である。 The first hollow microparticles 21 may be Suluria 1110 (silicon oxide, average particle size (nominal) approximately 50 nm, solids concentration approximately 20% by mass) manufactured by JGC Catalysts and Chemicals, or Suluria 4110 (silicon oxide, average particle size (nominal): 50 nm to 60 nm, solids concentration approximately 20 to 25% by mass) manufactured by the same company. These are hollow microparticles whose outer shell is mainly composed of silicon oxide.
 反射防止膜1aは、第一バインダ31等のバインダを含有している。バインダによって、反射防止膜1aに含まれる微粒子同士の結着、基材又は下地層等と微粒子との結着がなされる。バインダは、本来、層内において、粒子、顔料、及び基材等の材料を結着するための材料であるが、例えば、顔料又は粒子等を含まない層内において固化して一様な構造をなす成分も本明細書ではバインダとして取り扱う。 The anti-reflective film 1a contains a binder such as the first binder 31. The binder bonds the fine particles contained in the anti-reflective film 1a to each other and to the fine particles and the substrate or undercoat layer. A binder is originally a material for binding materials such as particles, pigments, and substrates within a layer, but in this specification, for example, a component that solidifies to form a uniform structure within a layer that does not contain pigments or particles is also treated as a binder.
 反射防止膜1aに含まれるバインダの材料は特定の材料に限定されない。バインダは、例えば、その前駆体が液状の化合物又は組成物であって、加熱又は光等の電磁波の照射によって硬化するものでありうる。バインダの前駆体が液状であると、反射防止膜1aの製造において、反射防止膜1aの前駆体の調製がしやすく、微粒子の添加、微粒子の分散、微粒子のコロイド化、又は微粒子の溶解等が容易である。 The binder material contained in the anti-reflective film 1a is not limited to a specific material. The binder may be, for example, a compound or composition whose precursor is liquid and which hardens when heated or exposed to electromagnetic waves such as light. If the binder precursor is liquid, it is easy to prepare the precursor of the anti-reflective film 1a in the manufacture of the anti-reflective film 1a, and it is easy to add fine particles, disperse fine particles, make fine particles colloidal, or dissolve fine particles.
 バインダの前駆体は、例えば、アクリル基、ビニル基、アリル基等の重合性不飽和基を分子内に有するモノマー又はオリゴマーであってもよい。バインダの前駆体は、1つの分子内に1以上の重合性不飽和基を有する化合物でありうる。バインダの前駆体は、特定の化合物に限定されない。バインダの前駆体の例は、2‐ヒドロキシエチル(メタ)アクリレート、2‐ヒドロキシプロピル(メタ)アクリレート、2‐ヒドロキシブチル(メタ)アクリレート、2‐ヒドロキシ‐3‐フェニルオキシプロピル(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールエタンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、及びジペンタエリスルトールペンタ(メタ)アクリレートである。バインダの前駆体は、アルキルグリシジルエーテル、アリルグリシジルエーテル、及びグリシジル(メタ)アクリレート等のグリシジル基含有化合物と、(メタ)アクリル酸との付加反応により得られる化合物であってもよい。バインダの前駆体は、重合可能な官能基を含む化合物であってもよく、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂、ノボラック樹脂、シリコーンアクリレート樹脂、メラミン樹脂、フェノール樹脂、ポリイミド樹脂、又はウレタン樹脂の前駆体であってもよい。 The binder precursor may be, for example, a monomer or oligomer having a polymerizable unsaturated group in the molecule, such as an acrylic group, a vinyl group, or an allyl group. The binder precursor may be a compound having one or more polymerizable unsaturated groups in one molecule. The binder precursor is not limited to a specific compound. Examples of the binder precursor are 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenyloxypropyl (meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolethane di(meth)acrylate, pentaerythritol tri(meth)acrylate, and dipentaerythritol penta(meth)acrylate. The binder precursor may be a compound obtained by an addition reaction between a glycidyl group-containing compound, such as an alkyl glycidyl ether, an allyl glycidyl ether, and a glycidyl (meth)acrylate, and (meth)acrylic acid. The binder precursor may be a compound containing a polymerizable functional group, and may be a precursor of a silicone resin, an epoxy resin, a phenoxy resin, a novolac resin, a silicone acrylate resin, a melamine resin, a phenolic resin, a polyimide resin, or a urethane resin.
 バインダの前駆体は、下記の式(A)に示す金属成分とアルコキシ基とを有する金属アルコキシド又はその加水分解物を含んでいてもよい。式(A)においてRx及びRyは、炭素原子を少なくとも含む官能基であり、Mは金属原子であり、n及びmは一分子内に実質的に含まれる官能基の数を意味する。
 Rx mM(ORyn   式(A)
The binder precursor may contain a metal alkoxide having a metal component and an alkoxy group as shown in the following formula (A) or a hydrolyzate thereof: In formula (A), Rx and Ry are functional groups containing at least a carbon atom, M is a metal atom, and n and m are the numbers of functional groups substantially contained in one molecule.
R x m M(OR y ) n Formula (A)
 金属成分は、例えば、Si、Ti、Nb、Zr、及びAlからなる群より選ばれる。バインダの前駆体は、望ましくは、下記の式(B)で表されるSi及びアルコキシ基を有するアルコキシシラン、その加水分解物、又はその加水分解物が重合したポリシラン類を含みうる。R1及びR2は、同一の又は異なる、炭素原子及び水素原子を含む官能基であり、nは、1~4の整数である。
 R1 4-nSi(OR2n   式(B)
The metal component is, for example, selected from the group consisting of Si, Ti, Nb, Zr, and Al. The binder precursor may desirably contain an alkoxysilane having Si and an alkoxy group represented by the following formula (B), a hydrolyzate thereof, or a polysilane obtained by polymerizing the hydrolyzate thereof. R 1 and R 2 are the same or different functional groups containing carbon atoms and hydrogen atoms, and n is an integer of 1 to 4.
R 1 4-n Si(OR 2 ) n Formula (B)
 このようなアルコキシシランは、水の存在下で加水分解を起こし、シラノール基(-Si-OH)を生じさせ、さらにシラノール基が縮重合することにより、多分子間でシロキサン結合(-O-Si-O-)が生じる。これにより、分子量が増大してポリマーが生成され、シリカ又はシルセスキオキサンを含むバインダが比較的容易に得られる。シリカは、式(B)においてn=4を満たす四官能アルコキシシランの反応により生成される。シルセスキオキサンは、式(B)においてn=3を満たす三官能アルコキシシランの反応により生成される。 Such alkoxysilanes undergo hydrolysis in the presence of water, producing silanol groups (-Si-OH), which then undergo condensation polymerization to produce siloxane bonds (-O-Si-O-) between multiple molecules. This increases the molecular weight, producing a polymer, and it is relatively easy to obtain a binder containing silica or silsesquioxane. Silica is produced by the reaction of tetrafunctional alkoxysilanes in which n = 4 in formula (B). Silsesquioxanes are produced by the reaction of trifunctional alkoxysilanes in which n = 3 in formula (B).
 シリカはガラスの主成分である。通常のガラスは珪砂を非常に高温で熔融する工程を必要とする。しかし、アルコキシシランを用いたシリカを含む組成物の固体化は低温で可能である点で有利である。加えて、アルコキシシランを原材料の一部とするバインダは、シリカ等を含みうるので、耐久性の観点からも有利である。加えて、アルコキシシランを原材料の一部とするバインダは、例えば、シリカ等のシリコン酸化物を主成分とする微粒子の内包においても、微粒子との親和性又は微粒子との水素結合の形成等の観点から所望の特性を有しやすく、微粒子の結着強度が高まることが期待される。加えて、バインダと微粒子との屈折率差が小さくなりやすく、バインダ及び微粒子を含む層又は膜の透明性が高くなりやすい。 Silica is the main component of glass. Ordinary glass requires a process of melting silica sand at a very high temperature. However, the solidification of a composition containing silica using alkoxysilane is advantageous in that it can be done at a low temperature. In addition, binders that contain alkoxysilane as part of the raw materials can contain silica, etc., so they are advantageous in terms of durability. In addition, binders that contain alkoxysilane as part of the raw materials are likely to have the desired characteristics in terms of affinity with the particles or formation of hydrogen bonds with the particles, even when containing fine particles whose main component is silicon oxide such as silica, and are expected to increase the binding strength of the fine particles. In addition, the difference in refractive index between the binder and the fine particles is likely to be small, and the transparency of a layer or film containing the binder and the fine particles is likely to be high.
 バインダの前駆体に含まれるアルコキシシランは、特定のアルコキシシランに限定されない。アルコキシシランの例は、テトラメトキシシラン、テトラエトキシシラン、テトラ(i‐プロポキシ)シラン、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、メチルトリ‐iso‐プロポキシシラン、エチルトリ‐iso‐プロポキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジ(i‐プロポキシ)シラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジ(i‐プロポキシ)シラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルプロピルジ(i‐プロポキシ)シラン、メトキシシラン、エトキシシラン、メチルメトキシシラン、メチルエトキシシラン、ジメチルメトキシシラン、ジメチルエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチル(i‐プロポキシ)シラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリエチル(i‐プロポキシ)シラン、トリプロピルメトキシシラン、トリプロピルエトキシシラン、トリプロピル(i‐プロポキシ)シラン、メチルジエチルメトキシシラン、メチルジエチルエトキシシラン、メチルジエチル(i‐プロポキシ)シラン、メチルジプロピルメトキシシラン、メチルジプロピルエトキシシラン、メチルジプロピル(i‐プロポキシ)シラン、エチルジメチルエトキシシラン、エチルジメチル(i‐プロポキシ)シラン、エチルジプロピルメトキシシラン、エチルジプロピルエトキシシラン、エチルジプロピル(i‐プロポキシ)シラン、プロピルジメチルメトキシシラン、プロピルジメチルエトキシシラン、プロピルジメチル(i‐プロポキシ)シラン、プロピルジエチルメトキシシラン、プロピルジエチルエトキシシラン、プロピルジエチル(i‐プロポキシ)シラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、1,3‐ビス(トリメトキシシリル)プロパン、1,3‐ビス(トリエトキシシリル)プロパン、ヘキサメトキシジシロキサン、ヘキサエトキシジシロキサン、3‐クロロプロピルトリメトキシシラン、3‐クロロプロピルトリエトキシシラン、3‐ヒドロキシプロピルトリエトキシシラン、3‐メルカプトプロピルトリメトキシシラン、3‐メルカプトプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、テトラアセトキシシラン、テトラキス(トリクロロアセトキシ)シラン、テトラキス(トリフルオロアセトキシ)シラン、トリアセトキシシラン、トリス(トリクロロアセトキシ)シラン、トリス(トリフルオロアセトキシ)シラン、メチルトリアセトキシシラン、メチルトリス(トリクロロアセトキシ)シラン、メチルトリス(トリフルオロアセトキシ)シラン、メチルジアセトキシシラン、メチルビス(トリクロロアセトキシ)シラン、メチルビス(トリフルオロアセトキシ)シラン、ジメチルビス(トリクロロアセトキシ)シラン、ジメチルビス(トリフルオロアセトキシ)シラン、メチルアセトキシシラン、メチル(トリクロロアセトキシ)シラン、メチル(トリフルオロアセトキシ)シラン、ジメチルアセトキシシラン、ジメチル(トリクロロアセトキシ)シラン、ジメチル(トリフルオロアセトキシ)シラン、トリメチルアセトキシシラン、トリメチル(トリクロロアセトキシ)シラン、トリメチル(トリフルオロアセトキシ)シラン、テトラクロロシラン、テトラブロモシラン、テトラフルオロシラン、トリクロロシラン、トリブロモシラン、トリフルオロシラン、メチルトリクロロシラン、メチルトリブロモシラン、メチルトリフルオロシラン、メチルジクロロシラン、メチルジブロモシラン、メチルジフルオロシラン、ジメチルジクロロシラン、ジメチルジブロモシラン、ジメチルジフルオロシラン、メチルクロロシラン、メチルブロモシラン、メチルフルオロシラン、ジメチルクロロシラン、ジメチルブロモシラン、ジメチルフルオロシラン、トリメチルクロロシラン、トリメチルブロモシラン、及びトリメチルフルオロシランである。バインダ又はバインダの前駆体は、シラノール基を有するこれらのアルコキシシランの加水分解物、又は、これらのアルコキシシランの加水分解物がシロキサン結合により重合した化合物であってもよい。バインダ又はバインダの前駆体は、複数のアルコキシシラン、複数のアルコキシシランの加水分解物、又は複数のアルコキシシランの加水分解物の重合物を含んでいてもよい。 The alkoxysilane contained in the binder precursor is not limited to a specific alkoxysilane. Examples of alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetra(i-propoxy)silane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, methyltri-iso-propoxysilane, ethyltri-iso-propoxysilane, dimethoxysilane, diethoxysilane, methyldimethoxysilane, methyl Diethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldi(i-propoxy)silane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldi(i-propoxy)silane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylpropyldi(i-propoxy)silane, methoxysilane, ethoxysilane, methylmethoxysilane, methylethoxysilane, dimethylmethoxysilane, dimethylethoxysilane trimethylmethoxysilane, trimethylethoxysilane, trimethyl(i-propoxy)silane, triethylmethoxysilane, triethylethoxysilane, triethyl(i-propoxy)silane, tripropylmethoxysilane, tripropylethoxysilane, tripropyl(i-propoxy)silane, methyldiethylmethoxysilane, methyldiethylethoxysilane, methyldiethyl(i-propoxy)silane, methyldipropylmethoxysilane, methyldipropylethoxysilane, methyldipropyl(i-propoxy)silane silane, ethyldimethylethoxysilane, ethyldimethyl(i-propoxy)silane, ethyldipropylmethoxysilane, ethyldipropylethoxysilane, ethyldipropyl(i-propoxy)silane, propyldimethylmethoxysilane, propyldimethylethoxysilane, propyldimethyl(i-propoxy)silane, propyldiethylmethoxysilane, propyldiethylethoxysilane, propyldiethyl(i-propoxy)silane, bis(trimethoxysilyl)methane, bis(triethoxysilyl)methane, bi Bis(trimethoxysilyl)ethane, bis(triethoxysilyl)ethane, 1,3-bis(trimethoxysilyl)propane, 1,3-bis(triethoxysilyl)propane, hexamethoxydisiloxane, hexaethoxydisiloxane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyl Triethoxysilane, tetraacetoxysilane, tetrakis(trichloroacetoxy)silane, tetrakis(trifluoroacetoxy)silane, triacetoxysilane, tris(trichloroacetoxy)silane, tris(trifluoroacetoxy)silane, methyltriacetoxysilane, methyltris(trichloroacetoxy)silane, methyltris(trifluoroacetoxy)silane, methyldiacetoxysilane, methylbis(trichloroacetoxy)silane, methylbis(trifluoroacetoxy)silane, dimethylbis( trichloroacetoxy)silane, dimethylbis(trifluoroacetoxy)silane, methylacetoxysilane, methyl(trichloroacetoxy)silane, methyl(trifluoroacetoxy)silane, dimethylacetoxysilane, dimethyl(trichloroacetoxy)silane, dimethyl(trifluoroacetoxy)silane, trimethylacetoxysilane, trimethyl(trichloroacetoxy)silane, trimethyl(trifluoroacetoxy)silane, tetrachlorosilane, tetrabromosilane, tetrafluorosilane, trichlorosilane, tribromosilane, trifluorosilane, methyltrichlorosilane, methyltribromosilane, methyltrifluorosilane, methyldichlorosilane, methyldibromosilane, methyldifluorosilane, dimethyldichlorosilane, dimethyldibromosilane, dimethyldifluorosilane, methylchlorosilane, methylbromosilane, methylfluorosilane, dimethylchlorosilane, dimethylbromosilane, dimethylfluorosilane, trimethylchlorosilane, trimethylbromosilane, and trimethylfluorosilane. The binder or the binder precursor may be a hydrolyzate of these alkoxysilanes having silanol groups, or a compound in which the hydrolyzates of these alkoxysilanes are polymerized through siloxane bonds. The binder or the binder precursor may contain multiple alkoxysilanes, hydrolyzates of multiple alkoxysilanes, or polymers of hydrolyzates of multiple alkoxysilanes.
 バインダの前駆体に含まれるアルコキシシランは、一分子内にアルコキシ基のほかに、アクリロイ基及びエポキシ基等の反応性官能基又は重合性不飽和基を有していてもよい。このようなアルコキシシランの例は、3‐グリシドキシプロピルトリメトキシシラン、3‐グリシドキシプロピルトリエトキシシラン、3‐アクリロキシプロピルトリメトキシシラン、3‐アクリロキシプロピルトリエトキシシラン、3‐メタクリロキシプロピルトリメトキシシラン、3‐メタクリロキシプロピルトリエトキシシラン、3‐アクリロキシプロピルトリアセトキシシラン、3‐アクリロキシプロピルトリス(トリクロロアセトキシ)シラン、3‐アクリロキシプロピルトリス(トリフルオロアセトキシ)シラン、3‐メタクリロキシプロピルトリアセトキシシラン、3‐メタクリロキシプロピルトリス(トリクロロアセトキシ)シラン、3‐メタクリロキシプロピルトリス(トリフルオロアセトキシ)シラン、3‐グリシドキシプロピルトリアセトキシシラン、3‐グリシドキシプロピルトリス(トリクロロアセトキシ)シラン、3‐グリシドキシプロピルトリス(トリフルオロアセトキシ)シラン、3‐アクリロキシプロピルトリクロロシラン、3‐アクリロキシプロピルトリブロモシラン、3‐アクリロキシプロピルトリフルオロシラン、3‐メタクリロキシプロピルトリクロロシシラン、3‐メタクリロキシプロピルトリブロモシラン、3‐メタクリロキシプロピルトリフルオロシラン、3‐グリシドキシプロピルトリクロロシラン、3‐グリシドキシプロピルトリブロモシラン、及び3‐グリシドキシプロピルトリフルオロシランである。 The alkoxysilane contained in the binder precursor may have, in addition to the alkoxy group, reactive functional groups such as acryloyl groups and epoxy groups or polymerizable unsaturated groups in one molecule. Examples of such alkoxysilanes are 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriacetoxysilane, 3-acryloxypropyltris(trichloroacetoxy)silane, 3-acryloxypropyltris(trifluoroacetoxy)silane, 3-methacryloxypropyltriacetoxysilane, 3-methacryloxypropyltris(trichloroacetoxy)silane, 3-methacryloxypropyltris(trichloroacetoxy)silane, 3-methacryloxypropyltris(trichloroacetoxy)silane, 3-methacryloxypropyltris(trichloroacetoxy)silane, 3-methacryloxypropyltris(trifluoro ... These are 3-glycidoxypropyltris(trifluoroacetoxy)silane, 3-glycidoxypropyltris(trichloroacetoxy)silane, 3-glycidoxypropyltris(trifluoroacetoxy)silane, 3-acryloxypropyltrichlorosilane, 3-acryloxypropyltribromosilane, 3-acryloxypropyltrifluorosilane, 3-methacryloxypropyltrichlorosilane, 3-methacryloxypropyltribromosilane, 3-methacryloxypropyltrifluorosilane, 3-glycidoxypropyltrichlorosilane, 3-glycidoxypropyltribromosilane, and 3-glycidoxypropyltrifluorosilane.
 第一バインダ31は、例えば、アルコキシシラン、アルコキシシランの加水分解物、及びアルコキシシランの加水分解物の重合物からなる群より選ばれる少なくとも1つを含んでいる。これにより、反射防止膜1aが高い反射防止性能をより発揮しやすい。 The first binder 31 contains, for example, at least one selected from the group consisting of alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane. This makes it easier for the anti-reflection film 1a to exhibit high anti-reflection performance.
 第二層12は、例えば、基材3の表面近傍に存在する第一バインダ31及び基材3の表面近傍に存在する第一中空微粒子21の外殻の一部を含む。基材3の表面近傍に存在する第一中空微粒子21の一部は、基材3の表面に接触していてもよい。このため、第二層12は、固体によってほぼ満たされており、空気が存在する中空部及び空隙部をほとんど含んでいない。例えば、第一中空微粒子21の外殻をなす主成分が酸化シリコンであり、第一バインダ31がアルコキシシランの加水分解物又はその加水分解物の重合物を含む場合、第二層12は、酸化シリコンを主成分とする材料で構成されうる。この場合、第二層12の屈折率は、酸化シリコン又は酸化シリコンの変性物の屈折率に近くなる。一方、第一層11は、第一中空微粒子21の外殻、第一中空微粒子21の中空部21a、第一中空微粒子21同士の間の空隙を含んでいる。このように、第一層11には屈折率が約1である空気が存在する。このため、第一層11及び第二層12が所望の屈折率及び所望の厚みを有しやすく、nL1<nL2の条件が満たされやすい。第一層11において、空気が占める体積が大きいほど第一層11の屈折率nL1は小さくなりやすく、nL1<nL2の条件が満たされやすい。 The second layer 12 includes, for example, the first binder 31 present near the surface of the substrate 3 and a part of the outer shell of the first hollow fine particle 21 present near the surface of the substrate 3. A part of the first hollow fine particle 21 present near the surface of the substrate 3 may be in contact with the surface of the substrate 3. Therefore, the second layer 12 is almost filled with a solid and contains almost no hollow or void parts in which air exists. For example, when the main component of the outer shell of the first hollow fine particle 21 is silicon oxide and the first binder 31 contains a hydrolyzate of alkoxysilane or a polymer of the hydrolyzate, the second layer 12 can be composed of a material containing silicon oxide as the main component. In this case, the refractive index of the second layer 12 is close to the refractive index of silicon oxide or a modified product of silicon oxide. On the other hand, the first layer 11 includes the outer shell of the first hollow fine particle 21, the hollow part 21a of the first hollow fine particle 21, and the gap between the first hollow fine particles 21. Thus, air with a refractive index of about 1 exists in the first layer 11. For this reason, the first layer 11 and the second layer 12 are likely to have the desired refractive index and the desired thickness, and the condition n L1 < n L2 is likely to be satisfied. As the volume occupied by air in the first layer 11 increases, the refractive index n L1 of the first layer 11 is likely to become smaller, and the condition n L1 < n L2 is likely to be satisfied.
 第二層12の厚みは、例えば、第一中空微粒子21の平均粒子径Dpより小さい。さらに、第二層12の厚みは、外殻の厚みtSより小さくてもよい。 The thickness of the second layer 12 is, for example, smaller than the average particle diameter Dp of the first hollow fine particles 21. Furthermore, the thickness of the second layer 12 may be smaller than the thickness ts of the outer shell.
 基材3は、その表面に反射防止膜1aが設けられるものである限り、特定の基材に限定されない。その反射防止膜1aの光学的特性は、基材3の光学的特性を考慮したものになってもよい。基材3は、例えば、ディスプレイ等の画像表示装置に用いられる基材である。基材3は、光学フィルタ、レンズ、及び回折素子等の光学素子であってもよい。光学フィルタは、入射光に所定の物理的変化を生じさせ、透過、反射、吸収、拡散、又はこれらが組み合わせられた機能を発揮しうる。レンズは、光の屈折により集光又は発散を生じさせる。回折素子は、その表面又は内部に凹凸を有することにより光を回折させて所定の機能を発揮しうる。 The substrate 3 is not limited to a specific substrate, so long as the anti-reflection film 1a is provided on its surface. The optical properties of the anti-reflection film 1a may be determined by taking into consideration the optical properties of the substrate 3. The substrate 3 is, for example, a substrate used in an image display device such as a display. The substrate 3 may be an optical element such as an optical filter, a lens, or a diffraction element. An optical filter causes a predetermined physical change in incident light, and can perform the functions of transmission, reflection, absorption, diffusion, or a combination of these. A lens causes light to be focused or diverged by refraction. A diffraction element has unevenness on its surface or inside, and can diffract light to perform a predetermined function.
 図1に示す通り、基材3は、例えば、平板状である。基材3は、その表面の全部又は一部に曲面を有していてもよく、凹凸を含む滑らかな表面を有していてもよい。例えば、基材3がレンズである場合、基材3の表面は曲面を含みうる。加えて、基材3は、ヘルメットの風防及びヘッドマウントディスプレイの表示画面のための基材であってもよい。この場合、基材3の全体が緩やかに湾曲している。基材3が回折素子である場合、回折させるべき光の波長のサイズ又はその波長に近いサイズの凹凸をその表面に有しうる。 As shown in FIG. 1, the substrate 3 is, for example, flat. The substrate 3 may have a curved surface on all or part of its surface, or may have a smooth surface including irregularities. For example, when the substrate 3 is a lens, the surface of the substrate 3 may include a curved surface. In addition, the substrate 3 may be a substrate for a helmet windshield and a display screen of a head-mounted display. In this case, the entire substrate 3 is gently curved. When the substrate 3 is a diffraction element, the surface may have irregularities of the size of the wavelength of the light to be diffracted or close to that wavelength.
 図2は、基材3及び反射防止膜1aを備えた光学部品の一例を示す側面図である。図2に示す通り、基材3は、凸レンズ等のレンズであってもよい。 FIG. 2 is a side view showing an example of an optical component having a substrate 3 and an anti-reflection film 1a. As shown in FIG. 2, the substrate 3 may be a lens such as a convex lens.
 基材3の材料は特定の材料に限定されない。基材3は、例えば、光学物品としての機能を発揮しうる材料である。基材3は、例えば、高い透明性を有し、ガラス又は樹脂を含む。ガラスは、特定のガラスに限定されない。ガラスの例は、ソーダ石灰ガラス、ホウケイ酸ガラス、アルミノ珪酸ガラス、(合成)石英、鉛ガラス、バリウムガラス、リン酸塩ガラス、弗リン酸ガラス、及びランタンガラスである。ガラスは、ゾルゲル法によって作製されるガラスであってもよい。この場合、光の波長サイズの構造を形成しやすい。ゾルゲル法に用いられるガラスの原料は、金属及びアルコキシ基を有する化合物である。 The material of the substrate 3 is not limited to a specific material. The substrate 3 is, for example, a material that can function as an optical article. The substrate 3 has high transparency, and includes, for example, glass or resin. The glass is not limited to a specific glass. Examples of glass are soda-lime glass, borosilicate glass, aluminosilicate glass, (synthetic) quartz, lead glass, barium glass, phosphate glass, fluorophosphate glass, and lanthanum glass. The glass may be glass produced by the sol-gel method. In this case, it is easy to form a structure of the wavelength size of light. The raw material of the glass used in the sol-gel method is a metal and a compound having an alkoxy group.
 基材3に含まれる樹脂は特定の樹脂に限定されない。樹脂の例は、アクリル(メタクリル)系樹脂、スチレン系樹脂、ポリカーボネート樹脂、ポリオレフィン系樹脂、エポキシ樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ABS樹脂、ポリアミド樹脂、ポリアセタール樹脂、及びポリエチレンテレフタレート樹脂である。 The resin contained in the substrate 3 is not limited to a specific resin. Examples of resins include acrylic (methacrylic) resins, styrene resins, polycarbonate resins, polyolefin resins, epoxy resins, polyethylene resins, polypropylene resins, ABS resins, polyamide resins, polyacetal resins, and polyethylene terephthalate resins.
 基材3のD線における屈折率nSBは、例えば1.20~2.50であり、1.30~2.30であってもよく、1.35~2.00であってもよい。 The refractive index n SB of the substrate 3 at the D line is, for example, 1.20 to 2.50, may be 1.30 to 2.30, or may be 1.35 to 2.00.
 反射防止膜1a、又は、反射防止膜1aに含まれる層は、例えば、所定の液状組成物を固化させることにより作製されうる。 The anti-reflective film 1a, or a layer contained in the anti-reflective film 1a, can be produced, for example, by solidifying a specific liquid composition.
 液状組成物は、バインダの前駆体、及び、必要に応じて微粒子を含む。液状組成物は有機ポリマーをさらに含んでいてもよく、有機ポリマーの例は、ポリエチレングリコール、ポリプロピレングリコール、及びポリテトラメチレングリコール等のポリエーテル類であってもよく、ポリイソシアネート化合物であってもよい。これにより、液状組成物を硬化させるときにこれらの有機ポリマーが架橋剤として働き、反射防止膜1aの硬度及び耐擦傷性等の機械的特性、耐光性、又は耐候性の向上を図ることが可能である。 The liquid composition contains a binder precursor and, if necessary, fine particles. The liquid composition may further contain an organic polymer, and examples of the organic polymer may be polyethers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, or may be polyisocyanate compounds. As a result, when the liquid composition is cured, these organic polymers act as crosslinking agents, making it possible to improve the mechanical properties, such as hardness and scratch resistance, light resistance, or weather resistance of the anti-reflective film 1a.
 液状組成物には重合開始剤が添加されてもよい。熱ラジカル発生剤、光ラジカル発生剤、熱酸発生剤、及び光酸発生剤等の公知の重合開始剤の中から、上記の重合性官能基又は重合性モノマーの反応形態に合わせて重合開始剤が選ばれる。 A polymerization initiator may be added to the liquid composition. The polymerization initiator is selected from known polymerization initiators such as thermal radical generators, photoradical generators, thermal acid generators, and photoacid generators, depending on the reaction form of the polymerizable functional group or polymerizable monomer.
 バインダの前駆体がアルコキシシラン又はその加水分解物を部分的に含む場合、液状組成物は、加水分解の促進のための水、触媒として働く、酸類(酸触媒)又はアルカリ類(アルカリ触媒)を含んでいてもよい。酸類(酸触媒)の例は、塩酸、硫酸、硝酸、リン酸、ホウ酸、ギ酸、及び酢酸であり、アルカリ触媒の例は、アンモニア、トリアルキルアミン、水酸化ナトリウム、水酸化カリウム、コリン、及びテトラアルキルアンモニウムヒドロキシドである。中でも、ギ酸及び酢酸は、有機酸であり、アルコキシシランを溶解させうる。加えて、これらの酸は、ハロゲンを実質的に含まない、酸乖離定数(pKa)が小さい(pKa=3.7(ギ酸)、4.7(酢酸))、及び強い酸である等の特徴を有し、酸触媒として望ましい。酢酸及びギ酸を酸触媒として用いた場合、系内に水が少ない又は存在しない場合でも、シラノール基が生成されるので、加水分解を経ずにポリシラン構造が形成されうる。このような観点からもギ酸及び酢酸の使用が望ましい。加えて、ギ酸は、有機酸の中でもかなり単純な構造であるので、酸触媒として所望の特性を発揮しやすい。 When the binder precursor partially contains alkoxysilane or its hydrolysate, the liquid composition may contain water for promoting hydrolysis, and acids (acid catalysts) or alkalis (alkali catalysts) that act as catalysts. Examples of acids (acid catalysts) are hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, formic acid, and acetic acid, and examples of alkali catalysts are ammonia, trialkylamine, sodium hydroxide, potassium hydroxide, choline, and tetraalkylammonium hydroxide. Among them, formic acid and acetic acid are organic acids that can dissolve alkoxysilane. In addition, these acids are desirable as acid catalysts because they are substantially free of halogens, have a small acid dissociation constant (pKa) (pKa = 3.7 (formic acid), 4.7 (acetic acid)), and are strong acids. When acetic acid and formic acid are used as acid catalysts, silanol groups are generated even when there is little or no water in the system, so that a polysilane structure can be formed without hydrolysis. From this viewpoint, the use of formic acid and acetic acid is also desirable. In addition, formic acid has a fairly simple structure among organic acids, making it easy to exhibit the desired properties as an acid catalyst.
 液状組成物は、例えば、アルコキシシランを含む液を撹拌しながらその液に触媒を滴下することによって調製されてもよい。これにより、一度に多くの触媒化合物が添加されて触媒が作用する反応が速く進みすぎることを防ぐことができ、反応の偏りが生じにくい。 The liquid composition may be prepared, for example, by dropping the catalyst into a liquid containing an alkoxysilane while stirring the liquid. This prevents the reaction in which the catalyst acts from proceeding too quickly by adding too much catalyst compound at once, making it less likely that the reaction will be biased.
 液状組成物は、溶媒を含んでいてもよい。溶媒は、例えば微粒子等の分散にも寄与し、反射防止膜1aの製造過程において液状組成物が所望の粘度を有しやすい。加えて、液状組成物の塗工作業又は塗膜の品質が所望のレベルに調整されやすい。バインダ31の原料であるアルコキシシラン等の金属アルコキシドの化合物は、加水分解に必要な水に対して混合直後には溶けにくい場合がある。このため、液状組成物は、金属アルコキシドと水との双方に相溶性を有する有機溶媒を含んでいてもよい。液状組成物に含まれる溶媒は、特定の溶媒に限定されない。液状組成物に含まれる溶媒は、アルコール類であってもよいし、ケトン類であってもよいし、エステル類であってもよいし、エーテル類であってもよいし、芳香族炭化水素類であってもよいし、アミド類であってもよい。アルコール類の例は、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール、1‐メトキシ‐2‐プロパノール、及び3‐メトキシ‐3‐メチル‐1‐ブタノールである。ケトン類の例は、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンである。エステル類の例は、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、及びプロピレングリコールモノエチルエーテルアセテートである。エーテル類の例は、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、及びジエチレングリコールモノブチルエーテルである。芳香族炭化水素類の例は、ベンゼン、トルエン、及びキシレンである。アミド類の例は、ジメチルホルムアミド、ジメチルアセトアミド、及びN‐メチルピロリドンである。酢酸及びギ酸等の有機酸も液状組成物の調製において溶媒として用いられてもよい。これらの中でも、望ましくは、メタノール、イソプロパノール、ブタノール、1‐メトキシ‐2‐プロパノール、3‐メトキシ‐3‐メチル‐1‐ブタノール、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、トルエン、及びキシレンからなる群より選ばれる少なくとも1つが溶媒として用いられうる。これらの溶媒が単独で用いられてもよく、二種類以上の溶媒が混合されて用いられてもよい。 The liquid composition may contain a solvent. The solvent also contributes to the dispersion of, for example, fine particles, etc., and the liquid composition is likely to have a desired viscosity in the manufacturing process of the anti-reflection film 1a. In addition, the coating work of the liquid composition or the quality of the coating film is likely to be adjusted to a desired level. The metal alkoxide compound such as alkoxysilane, which is the raw material of the binder 31, may not be easily dissolved in water required for hydrolysis immediately after mixing. For this reason, the liquid composition may contain an organic solvent that is compatible with both the metal alkoxide and water. The solvent contained in the liquid composition is not limited to a specific solvent. The solvent contained in the liquid composition may be alcohols, ketones, esters, ethers, aromatic hydrocarbons, or amides. Examples of alcohols are methanol, ethanol, isopropanol, butanol, octanol, 1-methoxy-2-propanol, and 3-methoxy-3-methyl-1-butanol. Examples of ketones are acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of esters are ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. Examples of ethers are ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether. Examples of aromatic hydrocarbons are benzene, toluene, and xylene. Examples of amides are dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Organic acids such as acetic acid and formic acid may also be used as a solvent in the preparation of the liquid composition. Among these, at least one selected from the group consisting of methanol, isopropanol, butanol, 1-methoxy-2-propanol, 3-methoxy-3-methyl-1-butanol, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether, toluene, and xylene may be preferably used as a solvent. These solvents may be used alone, or two or more of them may be mixed and used.
 液状組成物は、微粒子同士の凝集防止の目的で、界面活性剤及びシランカップリング剤等の親水性及び疎水性を有する化合物を含んでいてもよい。 The liquid composition may contain hydrophilic and hydrophobic compounds such as surfactants and silane coupling agents to prevent aggregation of the fine particles.
 液状組成物は、微粒子、バインダの前駆体、溶媒、触媒、及び上記の化合物の種類を選択し、公知の方法及び条件によって各成分の組成比を調整しながら、必要に応じて一部の化合物の反応を生じさせながら、これらを混合して作製されうる。 The liquid composition can be prepared by selecting the types of fine particles, binder precursor, solvent, catalyst, and the above compounds, adjusting the composition ratio of each component by known methods and conditions, and mixing them while causing a reaction of some of the compounds as necessary.
 反射防止膜1aの第一複層構造10の前駆体である液状組成物において、その液状組成物の固形分の質量に対する第一中空微粒子21の固形分の質量の比は特定の値に限定されない。その比は、例えば、80%~99.5%である。このような構成によれば、第一層11及び第二層12が所望の屈折率及び所望の厚みを有しやすい。液状組成物における第一バインダ31の前駆体は、例えば、第一中空微粒子21同士を結着し、又は、第一中空微粒子21と基材3の表面とを結着する働きをすればよく、第一中空微粒子の結着のために必要な分量を超えて含まれる第一バインダ31の前駆体は、反射防止膜1aの製造において基材3の表面等に向かって移動して固化して、第二層12の一部を形成しうる。上記の通り、第二層12は、中空微粒子21の外殻の一部及び第一バインダ31等を含む固体によって満たされており、第一複層構造10において比較的高い屈折率を有する層である。第一バインダ31は、例えば、アルコキシシランの加水分解物、又はその重合物を含む。 In the liquid composition that is the precursor of the first multilayer structure 10 of the anti-reflective coating 1a, the ratio of the mass of the solid content of the first hollow fine particles 21 to the mass of the solid content of the liquid composition is not limited to a specific value. The ratio is, for example, 80% to 99.5%. With such a configuration, the first layer 11 and the second layer 12 tend to have the desired refractive index and the desired thickness. The precursor of the first binder 31 in the liquid composition may, for example, function to bind the first hollow fine particles 21 together or to bind the first hollow fine particles 21 to the surface of the substrate 3, and the precursor of the first binder 31 contained in an amount exceeding that required for binding the first hollow fine particles may move toward the surface of the substrate 3 and solidify in the manufacture of the anti-reflective coating 1a to form a part of the second layer 12. As described above, the second layer 12 is filled with a solid containing a part of the outer shell of the hollow fine particles 21 and the first binder 31, and is a layer having a relatively high refractive index in the first multilayer structure 10. The first binder 31 contains, for example, a hydrolyzate of an alkoxysilane or a polymer thereof.
 第一複層構造10の前駆体である液状組成物の固形分の質量に対する第一中空微粒子21の固形分の質量の比は、望ましくは90%以上であり、より望ましくは95%以上であり、さらに望ましくは99%以上である。 The ratio of the mass of the solid content of the first hollow microparticles 21 to the mass of the solid content of the liquid composition that is the precursor of the first multilayer structure 10 is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
 第一複層構造10の前駆体である液状組成物は、第一バインダ31の前駆体として、例えば、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つを含んでいる。この場合、アルコキシシランは、四官能性アルコキシシラン及び三官能性アルコキシシランを含んでおり、三官能性アルコキシシランの物質量に対する四官能性アルコキシシランの物質量の比は、特定の値に限定されない。その比は、例えば、1/9から9である。この場合、第一層11及び第二層12が所望の屈折率及び所望の厚みを有しやすい。加えて、第一複層構造10が所望の機械的強度及び高い透明性を有しやすい。 The liquid composition, which is the precursor of the first multi-layer structure 10, contains, as a precursor of the first binder 31, at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes. In this case, the alkoxysilanes contain tetrafunctional alkoxysilanes and trifunctional alkoxysilanes, and the ratio of the amount of substance of tetrafunctional alkoxysilane to the amount of substance of trifunctional alkoxysilane is not limited to a specific value. The ratio is, for example, 1/9 to 9. In this case, the first layer 11 and the second layer 12 tend to have the desired refractive index and the desired thickness. In addition, the first multi-layer structure 10 tends to have the desired mechanical strength and high transparency.
 反射防止膜1aは、例えば、第一中空微粒子21と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つを含む液状組成物を基材3上に塗工し、その液状組成物を固化させることによって製造されうる。第一中空微粒子21の液状組成物に対する質量比は、80%~99.5%である。反射防止膜1aには、第一層11と第二層12とが分離して含まれる。このような方法によれば、単一の液状組成物によって、第一層11及び第二層12を備えた反射防止膜1aを比較的容易に製造できる。 The anti-reflective film 1a can be produced, for example, by applying a liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes onto a substrate 3 and solidifying the liquid composition. The mass ratio of the first hollow fine particles 21 to the liquid composition is 80% to 99.5%. The anti-reflective film 1a contains a first layer 11 and a second layer 12 that are separated from each other. According to this method, the anti-reflective film 1a having the first layer 11 and the second layer 12 can be produced relatively easily from a single liquid composition.
 反射防止膜1aの前駆体である液状組成物を基材3に沿って塗工する方法は、特定の方法に限定されない。その方法の例は、ロールコーティング、スプレーコーティング、スピンコーティング、ディスペンサによるコーティング、インクジェットによるコーティング、スクリーン印刷、及びディップによるコーティングである。塗膜の求められる厚みに応じて塗工方法の条件が調節される。例えば、ディップによるコーティングの場合、液状組成物の粘度η[Pa・秒]及び引き上げ時の速度をv[m/秒]としたとき、塗膜の厚み、例えば、第一複層構造10の厚みtLLは、ηj×vkに比例する。ここで、j=0.5~0.6及びk=0.5~0.7の条件が成り立つ。この他、スピンコーティングによる塗工において、回転角速度をω[ラジアン/秒]としたとき、塗膜の厚みは、η1/32/3に比例する。 The method of coating the liquid composition, which is the precursor of the anti-reflection film 1a, along the substrate 3 is not limited to a specific method. Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, coating with an inkjet, screen printing, and coating by dip. The conditions of the coating method are adjusted according to the required thickness of the coating film. For example, in the case of coating by dip, when the viscosity of the liquid composition is η [Pa·sec] and the lifting speed is v [m/sec], the thickness of the coating film, for example, the thickness t LL of the first multi-layer structure 10, is proportional to η j ×v k . Here, the conditions j = 0.5 to 0.6 and k = 0.5 to 0.7 are satisfied. In addition, in coating by spin coating, when the rotation angular velocity is ω [radian/sec], the thickness of the coating film is proportional to η 1/32/3 .
 液状組成物の固化の方法は、特定の方法に限定されない。液状組成物の固化は、加熱による塗膜の乾燥又はバインダの前駆体等の重合が起こる方法に従ってなされてもよい。この場合、加熱は、室温程度に保たれた環境、特に人工的な加熱の手段が存在していない環境であっても、例えば、コンテナの内部、恒温槽、又は机上等に静置されて、乾燥又は反応を伴って液状組成物が固化することも含みうる。液状組成物の固化は、可視光、紫外線、及びマイクロ波等の電磁波の照射によりバインダの前駆体等を重合させることによってなされてもよい。 The method of solidifying the liquid composition is not limited to a specific method. The liquid composition may be solidified according to a method that dries the coating film by heating or polymerizes the binder precursor, etc. In this case, heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction. The liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
 塗膜は、その塗膜がゾルであるかゲルであるかに関係なく、基材等の表面に塗工された液状組成物を意味する。固化は、液状組成物に含まれる化合物の重合により液状組成物に含まれるバインダ成分の分子量が増大して液状組成物がゲル化すること、液状組成物に含まれる溶媒又は液状の副生成物が蒸発等によって除去されて液状組成物が乾燥してゲル化すること、及び液状組成物の混合に伴う機序によって固体化すること、又は、これらの混合された機序を含む。さらに、固化は、液状組成物の反応又は乾燥等が進み有機化合物及び無機化合物を含む固体が生じること、液状組成物における有機物が除去されて略無機物の固体が得られること、及びそれらの固体の混合物が得られることを含む。 The term "coating film" refers to a liquid composition applied to the surface of a substrate or the like, regardless of whether the coating film is a sol or a gel. Solidification includes gelation of the liquid composition due to an increase in the molecular weight of the binder component contained in the liquid composition caused by polymerization of the compounds contained in the liquid composition, gelation of the liquid composition due to drying of the liquid composition caused by removal of the solvent or liquid by-products contained in the liquid composition by evaporation or the like, and solidification by a mechanism accompanying mixing of the liquid composition, or a combination of these mechanisms. Furthermore, solidification includes the reaction or drying of the liquid composition progressing to produce a solid containing organic and inorganic compounds, the removal of organic matter in the liquid composition to produce a solid that is mostly inorganic, and the production of a mixture of these solids.
 液状組成物が塗布される基材3の表面に対して、液状組成物の塗布の前に各種の洗浄又は表面処理がなされてもよい。基材3の表面の洗浄は、特定の方法に限定されない。基材3の表面の洗浄は、有機溶媒又は水による洗浄であってもよいし、酸又はアルカリ溶液への浸漬等を伴う酸又はアルカリ洗浄であってもよい。基材3の表面に対する表面処理の例は、サンドブラスト及び研磨等の機械的処理、コロナ放電処理、火炎処理、UV‐O3洗浄、並びにプラズマ照射処理である。これらの洗浄又は表面処理によって、基材3の表面における液状組成物の濡れ性の向上、又は、液状組成物に含まれる化合物と結合しやすいヒドロキシ基等の生成等の利点がもたらされることが期待される。 The surface of the substrate 3 to which the liquid composition is applied may be subjected to various cleaning or surface treatments before application of the liquid composition. The cleaning of the surface of the substrate 3 is not limited to a specific method. The cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning involving immersion in an acid or alkali solution. Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
 反射防止膜1aの製造において、望ましくは、基材3の表面に沿って液状組成物の塗膜を形成した後に、液状組成物のゲル化を比較的緩やかに生じさせてもよい。この場合、液状組成物のゲル化の前に微粒子又はバインダの前駆体の流動性がある程度保たれうる。このため、反射防止膜1aを構成する層は、電磁波等の照射により液状組成物を急速に固化させることよりも、加熱により液状組成物を乾燥又は反応させて固化させることがより望ましい。液状組成物の加熱の温度は、例えば600℃以下であり、望ましくは400℃以下であり、より望ましくは300℃以下であり、さらに望ましくは250℃以下である。液状組成物の加熱時間は、加熱温度にも依存するが、例えば2時間以下であり、望ましくは1時間以下であり、より望ましくは30分間以下であり、さらに望ましくは15分間以下である。このような加熱条件は、反射防止膜1aに求められる性質及び基材3の耐熱温度等を考慮して決定されうる。例えば、液状組成物の加熱温度が高いと、得られる膜は緻密で硬くなるが、クラックが生じやすく、もろさが顕在化するというトレードオフが存在する。 In the manufacture of the anti-reflective film 1a, it is preferable to form a coating of the liquid composition along the surface of the substrate 3, and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the microparticles or binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to dry or react the liquid composition by heating to solidify the layer constituting the anti-reflective film 1a, rather than rapidly solidifying the liquid composition by irradiating it with electromagnetic waves or the like. The heating temperature of the liquid composition is, for example, 600°C or less, preferably 400°C or less, more preferably 300°C or less, and even more preferably 250°C or less. The heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1a and the heat resistance temperature of the substrate 3. For example, if the liquid composition is heated to a high temperature, the resulting film will be dense and hard, but there is a trade-off in that cracks will easily occur and brittleness will become apparent.
 上記の通り、第二層12の屈折率nL2は1.30~1.55であり、第二層12の厚みtL2は25nm以下である。加えて、第一層11の屈折率nL1は、1.10~1.35であり、第一層11の厚みtL1は、80nm~150nmである。反射防止膜1aの各層の物理的パラメータの計測又は算出は、以下の様になされてもよい。反射防止膜1aの断面のSEM画像等から中空微粒子21の平均粒子径Dp及び第一層11と第二層12とからなる第一複層構造10の厚みtLLを計測する。加えて、分光光度計等で反射防止膜1aの反射スペクトルを計測する。次に、適切なシミュレーションソフトウェアを用いて、各層が均一の媒質で満たされたと仮定したときの、第一層11及び第二層12の屈折率及び厚みに対応するパラメータの値を逐次変化させて、反射スペクトルを計算する。そのうえで、フィッティングを行う。フィッティングにおいて、例えば、分光光度計等で計測された実測の反射スペクトルと計算上の反射スペクトルとの間の特定の誤差パラメータが最小となるように各層の屈折率及び厚みが定められる。反射防止膜1aの主な機能は、透明な光学物品又は基材の表面における反射防止である。このため、実測される反射防止膜1aの反射スペクトルにおいて反射率が低くなりうる。このため、例えば、屈折率分散が既知のシリコンウエハーの表面に、反射防止膜1aを基材3の表面上に形成する場合と同じ方法及び条件で形成し、シリコンウエハーの表面に形成された反射防止膜1aについて実測された反射スペクトルをフィッティングに用いてもよい。反射スペクトルの計算において、第二層12の厚みtL2は中空微粒子21の外殻の厚みtSより小さいと仮定してもよい。反射スペクトルの計算において、第二層12の厚みtL2に対応するパラメータの値は、液状組成物における固形分の分量を考慮して定まる特定の厚み、例えば、4nm又は2nm等に一義的に定められてもよい。 As described above, the refractive index n L2 of the second layer 12 is 1.30 to 1.55, and the thickness t L2 of the second layer 12 is 25 nm or less. In addition, the refractive index n L1 of the first layer 11 is 1.10 to 1.35, and the thickness t L1 of the first layer 11 is 80 nm to 150 nm. The physical parameters of each layer of the antireflection film 1a may be measured or calculated as follows. The average particle diameter D p of the hollow fine particles 21 and the thickness t LL of the first multi-layer structure 10 consisting of the first layer 11 and the second layer 12 are measured from an SEM image or the like of the cross section of the antireflection film 1a. In addition, the reflection spectrum of the antireflection film 1a is measured with a spectrophotometer or the like. Next, using appropriate simulation software, the values of parameters corresponding to the refractive index and thickness of the first layer 11 and the second layer 12 when it is assumed that each layer is filled with a uniform medium are successively changed to calculate the reflection spectrum. Then, fitting is performed. In the fitting, the refractive index and thickness of each layer are determined so that a specific error parameter between the actual reflection spectrum measured by, for example, a spectrophotometer or the like and the calculated reflection spectrum is minimized. The main function of the antireflection film 1a is to prevent reflection on the surface of a transparent optical article or substrate. For this reason, the reflectance may be low in the actually measured reflection spectrum of the antireflection film 1a. For this reason, for example, the antireflection film 1a may be formed on the surface of a silicon wafer having a known refractive index dispersion by the same method and conditions as when the antireflection film 1a is formed on the surface of the substrate 3, and the actually measured reflection spectrum of the antireflection film 1a formed on the surface of the silicon wafer may be used for fitting. In the calculation of the reflection spectrum, it may be assumed that the thickness t L2 of the second layer 12 is smaller than the thickness t S of the outer shell of the hollow fine particle 21. In the calculation of the reflection spectrum, the value of the parameter corresponding to the thickness t L2 of the second layer 12 may be uniquely determined to a specific thickness, for example, 4 nm or 2 nm, etc., determined in consideration of the amount of solid content in the liquid composition.
 フィッティングに用いられる、実測の反射スペクトルと計算上の反射スペクトルとの間の特定の誤差パラメータは特定のパラメータに限定されない。その誤差パラメータの例は、相関係数、平均平方二乗値(rms値)、平均二乗値(MS値)、及び平均絶対差(MA値)である。反射防止膜1aに関する各パラメータを求める場合に、実測の反射スペクトル及び計算上の反射スペクトルにおいて、各波長における絶対差の積分値(IA値:Integrate of Absolute)が用いられてもよい。実測の反射スペクトルと計算上の反射スペクトルとが単位波長(例えば、1nm)毎に求められている場合には、IA値の代わりに、各波長における反射率の絶対差の和が用いられてもよい。IA値は、下記式(1)に従って決定される。式(1)において、rmは波長λにおける実測の反射率であり、rsは計算で求められた波長λにおける反射率である。|rm-rs|は、反射率差の絶対値であり、λ1及びλ2は積分範囲又は和を求める範囲を示す。反射率の絶対差の和は、下記式(2)に従って決定される。 The specific error parameter between the measured reflectance spectrum and the calculated reflectance spectrum used for fitting is not limited to a specific parameter. Examples of the error parameter are a correlation coefficient, a root mean square value (rms value), a mean square value (MS value), and a mean absolute difference (MA value). When each parameter related to the anti-reflection film 1a is obtained, an integral value of the absolute difference at each wavelength in the measured reflectance spectrum and the calculated reflectance spectrum (IA value: Integrate of Absolute) may be used. When the measured reflectance spectrum and the calculated reflectance spectrum are obtained for each unit wavelength (for example, 1 nm), the sum of the absolute difference of the reflectance at each wavelength may be used instead of the IA value. The IA value is determined according to the following formula (1). In formula (1), r m is the measured reflectance at a wavelength λ, and r s is the calculated reflectance at a wavelength λ. |r m -r s | is the absolute value of the reflectance difference, and λ 1 and λ 2 indicate the integral range or the range for obtaining the sum. The sum of the absolute differences in reflectance is determined according to equation (2) below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 反射防止膜1aにおいて、IA値又は反射率の絶対差の和は、望ましくは20%以下であり、より望ましくは18%以下であり、さらに望ましくは15%以下である。IA値又は反射率の絶対差の和が求められる範囲は、例えば、300nm~1200nmの範囲内に含まれうる。その範囲は、測定に供される分光光度計の精度等を考慮して、350nm~900nmの範囲内に含まれてもよく、400nm~850nmの範囲内に含まれてもよい。 In the anti-reflection coating 1a, the sum of the absolute differences in the IA value or reflectance is preferably 20% or less, more preferably 18% or less, and even more preferably 15% or less. The range in which the sum of the absolute differences in the IA value or reflectance is determined may be, for example, within the range of 300 nm to 1200 nm. Taking into account the accuracy of the spectrophotometer used for the measurement, the range may be within the range of 350 nm to 900 nm, or within the range of 400 nm to 850 nm.
 反射防止膜1aは、様々な観点から変更可能である。反射防止膜1aは、例えば、図3A又は図3Bに示す反射防止膜1bのように変更されてもよい。反射防止膜1bは、特に説明する部分を除き、反射防止膜1aと同様に構成されている。反射防止膜1aの構成要素と同一又は対応する反射防止膜1bの構成要素には同一の符号を付し、詳細な説明を省略する。反射防止膜1aに関する上記の説明は、技術的に矛盾しない限り、反射防止膜1bにも当てはまる。 Anti-reflection film 1a can be modified from various viewpoints. Anti-reflection film 1a may be modified, for example, to anti-reflection film 1b shown in FIG. 3A or FIG. 3B. Anti-reflection film 1b is configured in the same manner as anti-reflection film 1a, except for the parts that will be specifically described. The same reference numerals are used to designate components of anti-reflection film 1b that are the same as or correspond to those of anti-reflection film 1a, and detailed description will be omitted. The above description of anti-reflection film 1a also applies to anti-reflection film 1b, unless there is a technical contradiction.
 図3A又は図3Bに示す通り、反射防止膜1bは、反射防止膜1bの厚さ方向において第二層12と基材3との間に配置されている第三層13をさらに備えている。第三層13は、1.35~2.25の屈折率nL3及び60nm~200nmの厚みtM3を有する。このような構成によれば、反射防止膜1bが高い反射防止性能を発揮しやすい。反射防止膜1bによれば、特定の波長、例えば、設計中心波長における反射率が低くなりやすく、反射率が特定値以下に保たれる波長帯域である低反射帯が大きくなりやすい。屈折率nL3は、D線(589.3nm)における値である。 As shown in FIG. 3A or 3B, the antireflection film 1b further includes a third layer 13 disposed between the second layer 12 and the substrate 3 in the thickness direction of the antireflection film 1b. The third layer 13 has a refractive index n L3 of 1.35 to 2.25 and a thickness t M3 of 60 nm to 200 nm. With this configuration, the antireflection film 1b is likely to exhibit high antireflection performance. With the antireflection film 1b, the reflectance at a specific wavelength, for example, the design central wavelength, is likely to be low, and the low reflection band, which is a wavelength band in which the reflectance is kept below a specific value, is likely to be large. The refractive index n L3 is a value at the D line (589.3 nm).
 屈折率nL3は、1.40~1.85であってもよい。反射防止膜1bにおいて、望ましくは、nL1<nL3<nL2の条件が満たされている。この場合、反射防止膜1bが高い反射防止性能をより発揮しやすい。反射防止膜1bにおいて、nL1<nL2≦nL3の条件が満たされていてもよい。厚みtM3は、70nm~180nmであってもよい。 The refractive index n L3 may be 1.40 to 1.85. In the antireflection film 1b, it is preferable that the condition n L1 < n L3 < n L2 is satisfied. In this case, the antireflection film 1b is more likely to exhibit high antireflection performance. In the antireflection film 1b, the condition n L1 < n L2 ≦ n L3 may be satisfied. The thickness t M3 may be 70 nm to 180 nm.
 反射防止膜1bにおいて、波長300nm~1200nmにおける反射率の最小値rmin(2)は、例えば1%以下であり、より望ましくは0.5%以下であり、さらに望ましくは0.2%以下である。加えて、反射防止膜1bの反射スペクトルにおいて、波長300nm~1200nmで反射率が1%以下となる波長の範囲λrange/1.0は、例えば、250nm以上である。 In the antireflection coating 1b, the minimum value r min(2) of the reflectance in the wavelength range of 300 nm to 1200 nm is, for example, 1% or less, more preferably 0.5% or less, and even more preferably 0.2% or less. In addition, in the reflection spectrum of the antireflection coating 1b, the wavelength range λ range/1.0 in which the reflectance is 1% or less in the wavelength range of 300 nm to 1200 nm is, for example, 250 nm or more.
 第三層13をなす材料は、第三層13が上記の屈折率及び厚みを有する限り、特定の材料に限定されない。第三層13は、金属酸化物及び金属フッ化物等の誘電体を含む層であってもよい。第三層13は、例えば、真空蒸着、スパッタリング、及びイオンプレーティング等の物理的方法(以下、「物理蒸着法」という。)によって作製された誘電体膜であってもよいし、複数の誘電体が積層された、いわゆる誘電体多層膜であってもよい。誘電体の材料は特定の材料に限定されない。誘電体の材料の例は、SiO2、MgF2、TiO2、Ta23、AlF3、CaF2、Al23、ZrO2、WO3、CeO2、ITO、ATO、及びこれらの混合物である。このような誘電体層は、物理蒸着法等を用いた公知の方法で作製できる。 The material of the third layer 13 is not limited to a specific material as long as the third layer 13 has the above-mentioned refractive index and thickness. The third layer 13 may be a layer containing a dielectric material such as a metal oxide and a metal fluoride. The third layer 13 may be a dielectric film produced by a physical method such as vacuum deposition, sputtering, and ion plating (hereinafter referred to as "physical vapor deposition"), or may be a so-called dielectric multilayer film in which a plurality of dielectric materials are laminated. The material of the dielectric material is not limited to a specific material. Examples of the dielectric material are SiO 2 , MgF 2 , TiO 2 , Ta 2 O 3 , AlF 3 , CaF 2 , Al 2 O 3 , ZrO 2 , WO 3 , CeO 2 , ITO, ATO, and mixtures thereof. Such a dielectric layer can be produced by a known method using a physical vapor deposition method or the like.
 第三層13は、硬化性の液状組成物を基材3の表面に沿って塗布して形成された塗膜を乾燥及び反応させて固化することによって得られる層であってもよい。この場合、図3Bに示す通り、第三層13の前駆体となる硬化性の液状組成物は、微粒子33を含んでいてもよく、微粒子33同士を結着する第二バインダ32を含んでいてもよい。第三層13がこのような硬化性の液状組成物を用いて作製される場合、物理蒸着法等に必要な蒸着器等の装置が不要となり、反射防止膜1bの製造コストが低くなりやすい。第三層13が硬化性の液状組成物を用いて作製される場合、図3Aに示す通り、第三層13が微粒子33を含んでおらず、第二バインダ32のみを含んでいてもよい。 The third layer 13 may be a layer obtained by applying a curable liquid composition along the surface of the substrate 3, drying and reacting the resulting coating to solidify it. In this case, as shown in FIG. 3B, the curable liquid composition that is the precursor of the third layer 13 may contain fine particles 33, and may contain a second binder 32 that binds the fine particles 33 together. When the third layer 13 is produced using such a curable liquid composition, an apparatus such as an evaporator required for a physical vapor deposition method is not required, and the production cost of the anti-reflection film 1b tends to be low. When the third layer 13 is produced using a curable liquid composition, as shown in FIG. 3A, the third layer 13 may not contain fine particles 33, and may contain only the second binder 32.
 第三層13が硬化性の液状組成物の固化によって作製される場合、第三層13に含まれる微粒子33の屈折率は、例えば、1.25~2.75である。第三層13に含まれる微粒子33の材料は、特定の材料に限定されない。微粒子33は、例えば、SiO2、MgF2、TiO2、Ta23、AlF3、CaF2、Al23、ZrO2、WO3、CeO2、酸化インジウムスズ(ITO)、及び酸化アンチモンスズ(ATO)等の金属酸化物又は金属フッ化物を含む中空又は中実の微粒子でありうる。微粒子33は、これらの微粒子から選択される複数種類の微粒子を含んでいてもよい。微粒子33は樹脂製の微粒子であってもよい。微粒子33は、例えば、ポリメタクリル酸メチル、ポリエチレン、ポリスチレン、ベンゾグアミン(メラミン)、又はシリコーンを主成分とする中実微粒子を含んでいてもよく、これらの中から選択される複数種類の微粒子を含んでいてもよい。 When the third layer 13 is produced by solidifying a curable liquid composition, the refractive index of the fine particles 33 contained in the third layer 13 is, for example, 1.25 to 2.75. The material of the fine particles 33 contained in the third layer 13 is not limited to a specific material. The fine particles 33 may be hollow or solid fine particles containing metal oxides or metal fluorides such as SiO 2 , MgF 2 , TiO 2 , Ta 2 O 3 , AlF 3 , CaF 2 , Al 2 O 3 , ZrO 2 , WO 3 , CeO 2 , indium tin oxide (ITO), and antimony tin oxide (ATO). The fine particles 33 may contain multiple types of fine particles selected from these fine particles. The fine particles 33 may be fine particles made of resin. The microparticles 33 may include, for example, solid microparticles whose main component is polymethylmethacrylate, polyethylene, polystyrene, benzoguanamine (melamine), or silicone, or may include multiple types of microparticles selected from among these.
 第三層13は、次の(i)若しくは(ii)、又は、(i)及び(ii)の層を含んでいてもよい。
(i)SiO2、MgF2、TiO2、Ta23、AlF3、CaF2、Al23、ZrO2、WO3、CeO2、酸化インジウムスズ、及び酸化アンチモンスズからなる群より選ばれる一種類又は二種類以上の酸化物を含む誘電体膜を含む層
(ii)SiO2、TiO2、ZrO2、CeO2、酸化インジウムスズ、及び酸化アンチモンスズからなる群より選ばれる一種類又は二種類以上の材質から構成される酸化物の微粒子と、前記酸化物微粒子を結着するためのバインダとを含む層
The third layer 13 may include the following layers (i) or (ii), or (i) and (ii).
(i) a layer including a dielectric film including one or more oxides selected from the group consisting of SiO2 , MgF2 , TiO2 , Ta2O3 , AlF3 , CaF2 , Al2O3 , ZrO2 , WO3 , CeO2 , indium tin oxide, and antimony tin oxide; (ii) a layer including oxide particles composed of one or more materials selected from the group consisting of SiO2 , TiO2 , ZrO2 , CeO2 , indium tin oxide, and antimony tin oxide, and a binder for binding the oxide particles.
 第三層13は、反射防止膜1bの厚み方向において第一層11及び第二層12よりも基材3の近くに配置されるので、反射防止性能を高める観点から、第三層13が比較的高い屈折率を有することが適切な場合もある。この場合、例えば、第三層13に含まれる微粒子33は、望ましくは中実微粒子である。第三層13に求められる屈折率を考慮して、微粒子33は、金属酸化物の中で、例えば、酸化チタン(TiO2;屈折率=2.50~2.75;比重4.1~4.4)、酸化ジルコニウム(ZrO2;屈折率=2.00~2.20;比重5.5)、酸化セリウム(CeO2;屈折率=2.00~2.30;比重7.0)、ATO(屈折率=1.70~1.85;比重6.6)、又はITO(屈折率=1.90~2.20;比重7.1)等を含んでいてもよく、微粒子33は、酸化シリコン(SiO2;屈折率=1.41~1.48)を含んでいてもよい。反射防止性能の観点から合理的な場合には、微粒子33は中空微粒子であってもよい。 Since the third layer 13 is disposed closer to the substrate 3 in the thickness direction of the antireflection coating 1b than the first layer 11 and the second layer 12, it may be appropriate for the third layer 13 to have a relatively high refractive index in order to enhance the antireflection performance. In this case, for example, the fine particles 33 contained in the third layer 13 are preferably solid fine particles. In consideration of the refractive index required for the third layer 13, the fine particles 33 may contain, among metal oxides, for example, titanium oxide (TiO 2 ; refractive index = 2.50 to 2.75; specific gravity 4.1 to 4.4), zirconium oxide (ZrO 2 ; refractive index = 2.00 to 2.20; specific gravity 5.5), cerium oxide (CeO 2 ; refractive index = 2.00 to 2.30; specific gravity 7.0), ATO (refractive index = 1.70 to 1.85; specific gravity 6.6), or ITO (refractive index = 1.90 to 2.20; specific gravity 7.1), or the like, and the fine particles 33 may contain silicon oxide (SiO 2 ; refractive index = 1.41 to 1.48). When it is reasonable from the viewpoint of anti-reflection performance, the fine particles 33 may be hollow fine particles.
 微粒子33の平均粒子径は特定の値に限定されない。その平均粒子径は、例えば、5nm~200nmである。微粒子33の平均粒子径が5nm以上であることにより、微粒子33の製造コストが低くなりやすい。微粒子33の平均粒子径が200nm以下であることにより、光の入射に伴う散乱により反射防止膜1bの曇価(ヘイズ)が高くなることが防止されやすい。微粒子33の平均粒子径は、望ましくは10~100nmであり、より望ましくは30~80nmである。第三層13に含まれる微粒子33の平均粒子径は、第一中空微粒子21の平均粒子径Dpの計測方法と同様の方法で計測可能である。 The average particle diameter of the fine particles 33 is not limited to a specific value. The average particle diameter is, for example, 5 nm to 200 nm. When the average particle diameter of the fine particles 33 is 5 nm or more, the manufacturing cost of the fine particles 33 is likely to be low. When the average particle diameter of the fine particles 33 is 200 nm or less, it is likely to prevent the haze of the anti-reflection film 1b from increasing due to scattering caused by the incidence of light. The average particle diameter of the fine particles 33 is preferably 10 to 100 nm, and more preferably 30 to 80 nm. The average particle diameter of the fine particles 33 contained in the third layer 13 can be measured by a method similar to the method for measuring the average particle diameter Dp of the first hollow fine particles 21.
 第三層13の固形分における微粒子33の含有率は特定の値に限定されない。その含有率は、例えば、質量基準で0%~75%である。これにより、第三層13が所望の屈折率を有しやすい。上記の通り、第三層13には微粒子が含まれていなくてもよい。第三層13の屈折率が比較的高いことが求められる場合でも、反射防止膜1bが所定の反射防止性能を有する限り、第三層13は微粒子を含んでいなくてもよい。このとき、第三層13は、例えば、バインダ32を主成分として含んでいる。この場合、第三層13の前駆体である液状組成物の調製において、微粒子の調達、調整、及び混合が不要であり、反射防止膜1bの製造コストが低くなりやすい。 The content of the fine particles 33 in the solid content of the third layer 13 is not limited to a specific value. The content is, for example, 0% to 75% by mass. This makes it easier for the third layer 13 to have the desired refractive index. As described above, the third layer 13 does not need to contain fine particles. Even if the refractive index of the third layer 13 is required to be relatively high, the third layer 13 does not need to contain fine particles as long as the anti-reflection film 1b has a predetermined anti-reflection performance. In this case, the third layer 13 contains, for example, the binder 32 as a main component. In this case, it is not necessary to procure, adjust, and mix the fine particles in preparing the liquid composition that is the precursor of the third layer 13, and the manufacturing cost of the anti-reflection film 1b tends to be low.
 図3C及び図3Dは、図3Aに示す反射防止膜における第一中空微粒子21の状態を示す断面図である。図3C及び図3Dに示す通り、反射防止膜1bにおいて、第一層11及び第二層12に含まれる第一中空微粒子21の一部は、第三層13と、第三層13の基材3に対して遠位な境界面に存在していてもよい。例えば、第三層13の形成後において、第一複層構造10の前駆体である液状組成物の塗膜の固化に伴い、第一層11及び第二層12に含まれる中空微粒子21の一部が第三層13に埋もれたことによって、第三層13の基材3に対して遠位な境界面に第一中空微粒子21の一部が存在すると考えられる。図3Cにおいて二点鎖線で囲まれた部分が中空微粒子21の第三層13に埋もれた部位を示す。このような第一中空微粒子21の一部が第三層13に埋もれた状態を実現する観点から、第三層13の成分及び組成は、複層構造10の成分及び組成と類似していることが望ましいと考えられる。特に、第一バインダ31及び第二バインダ32が類似であり、第一バインダ31及び第二バインダ32の前駆体も類似であると、反射防止膜1bの製造において、第一バインダ31の前駆体と第二バインダ32の前駆体との混和が起こりやすい。例えば、第三層13に細孔が存在していると、第三層13の基材3に対して遠位な表面に塗布された液状組成物がその細孔を充填するように滲入しうる。これにより、第一バインダ31に含まれる一部の化合物と同一種類の化合物が第二バインダ32にも含まれ、第一バインダ31と第二バインダ32とが同質化しうる。その結果、第三層13の表面が軟化し、第一中空微粒子21の一部が第三層13に埋もれて第三層13の基材3に対して遠位な境界面に存在すると考えられる。なお、第一バインダ31及び第二バインダ32が類似であるとは、両者の成分及び組成が同じである場合に加えて、アルコキシシラン等のバインダに含まれる化合物の種類が類似である場合を含み、具体的には、両者に含まれる三官能アルコキシシラン又は四官能アルコキシシランが同一種類のアルコキシシランである場合を含む。アルコキシシランを含む液状組成物の固化において細孔が形成されうることが知られており、このような細孔を有する部分には未硬化の液状組成物の一部が滲入しやすいと考えられる。 3C and 3D are cross-sectional views showing the state of the first hollow fine particles 21 in the anti-reflective coating shown in FIG. 3A. As shown in FIG. 3C and 3D, in the anti-reflective coating 1b, a part of the first hollow fine particles 21 contained in the first layer 11 and the second layer 12 may be present at the boundary surface of the third layer 13 that is distal to the substrate 3 of the third layer 13. For example, after the formation of the third layer 13, as the coating film of the liquid composition that is the precursor of the first multi-layer structure 10 solidifies, a part of the hollow fine particles 21 contained in the first layer 11 and the second layer 12 is buried in the third layer 13, and thus a part of the first hollow fine particles 21 is present at the boundary surface of the third layer 13 that is distal to the substrate 3. In FIG. 3C, the part surrounded by the two-dot chain line shows the part of the hollow fine particles 21 buried in the third layer 13. From the viewpoint of realizing such a state in which a part of the first hollow fine particles 21 is buried in the third layer 13, it is considered that the components and composition of the third layer 13 are similar to the components and composition of the multi-layer structure 10. In particular, when the first binder 31 and the second binder 32 are similar and the precursors of the first binder 31 and the second binder 32 are also similar, the precursor of the first binder 31 and the precursor of the second binder 32 are likely to be mixed in the manufacture of the anti-reflection film 1b. For example, when pores are present in the third layer 13, the liquid composition applied to the surface of the third layer 13 distal to the substrate 3 may infiltrate the pores to fill them. As a result, the same type of compound as a part of the compound contained in the first binder 31 is also contained in the second binder 32, and the first binder 31 and the second binder 32 may become homogenous. As a result, it is considered that the surface of the third layer 13 is softened, and a part of the first hollow fine particles 21 is buried in the third layer 13 and exists at the boundary surface of the third layer 13 distal to the substrate 3. In addition, the first binder 31 and the second binder 32 being similar includes cases where the components and compositions of both are the same, as well as cases where the types of compounds contained in the binders, such as alkoxysilanes, are similar, specifically cases where the trifunctional alkoxysilanes or tetrafunctional alkoxysilanes contained in both are the same type of alkoxysilane. It is known that pores can be formed during solidification of a liquid composition containing alkoxysilane, and it is thought that a portion of the uncured liquid composition is likely to seep into such pores.
 図3Cに示す通り、反射防止膜1bの断面の所定の断面積を有する範囲において、第三層13の基材3に対して遠位な境界に存在する第一中空微粒子21を特定して、第一中空微粒子21の数をカウントできる。加えて、図3Dに示す通り、この境界に存在する各第一中空微粒子21について、第三層13側に存在する部位がその第一中空微粒子21の全体に占める割合を求めてもよい。反射防止膜1bの断面の10万倍のSEM画像を取得して、第一層11、第二層12、及び第三層13を特定する。そのうえで、厚み方向にすべての層を含むように500nm四方の対象断面を指定する。その対象断面に含まれる、第三層13の基材3に対して遠位な境界に存在する第一中空微粒子21を特定し、その第一中空微粒子21を円で近似する。対象断面に含まれ、第二層12と第三層13に属する部分を有する第一中空微粒子21の数であるNM1、第二層12及び第三層13に属する部分を有する第一中空微粒子21の近似円の全面積SLに対する第三層13側の領域に含まれる部分的な円(円の一部が欠けた形状)の面積SMの比SM/SLを計測して算出する。反射防止膜1bにおいて、数NM1は、例えば1~5であり、望ましくは3~5である。比SM/SLは、例えば、5%~50%である。第三層13の基材3に対して遠位な境界に第一中空微粒子21が存在していると、その第一中空微粒子21が第三層13のバインダと第三層13に接する層のバインダとの両方によって結着されるので、第三層13と、第三層13の基材3に対して遠位な境界に接する層との接合強度が高くなりやすい。 As shown in FIG. 3C, in a range having a predetermined cross-sectional area of the cross section of the anti-reflection film 1b, the first hollow fine particles 21 present at the boundary of the third layer 13 distal to the substrate 3 can be identified, and the number of the first hollow fine particles 21 can be counted. In addition, as shown in FIG. 3D, for each of the first hollow fine particles 21 present at this boundary, the proportion of the portion present on the third layer 13 side of the first hollow fine particles 21 in the whole may be obtained. A 100,000 times SEM image of the cross section of the anti-reflection film 1b is acquired, and the first layer 11, the second layer 12, and the third layer 13 are identified. Then, a target cross section of 500 nm square is specified so as to include all layers in the thickness direction. The first hollow fine particles 21 present at the boundary of the third layer 13 distal to the substrate 3 included in the target cross section are identified, and the first hollow fine particles 21 are approximated by a circle. The number N M1 of the first hollow fine particles 21 included in the target cross section and having a portion belonging to the second layer 12 and the third layer 13, and the ratio S M /S L of the area S M of a partial circle (a shape with a part of a circle missing) included in the region on the third layer 13 side to the total area S L of the approximation circle of the first hollow fine particles 21 having a portion belonging to the second layer 12 and the third layer 13 are measured and calculated. In the anti-reflection coating 1b, the number N M1 is, for example, 1 to 5, and preferably 3 to 5. The ratio S M /S L is, for example, 5% to 50%. When the first hollow fine particles 21 are present at the boundary of the third layer 13 distal to the substrate 3, the first hollow fine particles 21 are bound by both the binder of the third layer 13 and the binder of the layer in contact with the third layer 13, so that the bonding strength between the third layer 13 and the layer in contact with the boundary of the third layer 13 distal to the substrate 3 is likely to be high.
 第三層13に含まれる微粒子33は、特定の微粒子に限定されない。微粒子33は、石原産業社製のTTO-51及びTTO-55シリーズ、テイカ社製のJMT-150B、JMT-150AO、JMT-150ANO、及びMTY-700BS、チタン工業社製のSTT-65C-S及びSTT-30EHJ、日揮触媒化成社製のOPTOLAKEシリーズ等の酸化チタン微粒子であってもよい。微粒子33は、多木化学社製の製のNb-G6000、Nb-G6100、及びNb-G6600、三井金属鉱業社製の酸化ニオブ等の酸化ニオブ微粒子であってもよい。微粒子33は、日本触媒社製のジルコスター、住友大阪セメント社製のHXU-110JC等の酸化ジルコニウム微粒子であってもよい。微粒子33は、信越化学工業社製のQSGシリーズ、日産化学工業社製のスノーテックスシリーズ、日揮触媒化成社製のスルーリアシリーズ等の酸化シリコン微粒子であってもよい。微粒子33は、ステラケミファ社製のフッ化マグネシウムナノ粒子であってもよい。微粒子33は、日産化学工業社製のアルミナゾルの100、200、500の各シリーズ、住友大阪セであメント社製のAS-150T、AS-150l等の酸化アルミニウム微粒子であってもよい。微粒子33は、コアフロント社製のポリエチレン粒子、三井化学社製のミペロンシリーズ等のポリエチレン微粒子であってもよい。微粒子33は、コアフロント社製のポリスチレン粒子、テクノケミカル社製のポリビーズポリスチレン等のポリスチレン微粒子であってもよい。微粒子33は、三菱マテリアル電子化成社製のITOシリーズ、日揮触媒化成社製のP-120、P-130等のITO微粒子であってもよい。微粒子33は、三菱マテリアル電子化成社製のT-Iシリーズ等のATO微粒子であってもよい。微粒子33として、これら以外の微粒子も加えて、1種類の微粒子が単独で用いられてもよいし、2種類以上の微粒子が混合されて用いられてもよい。また、ITO及びATO等の導電性微粒子が微粒子33として使用されていると、反射防止膜1bが帯電防止の機能を発揮しうる。反射防止膜1bに求められる用途及び機能に応じて微粒子33が選択され、適宜組み合わせられる。 The fine particles 33 contained in the third layer 13 are not limited to specific fine particles. The fine particles 33 may be titanium oxide fine particles such as TTO-51 and TTO-55 series manufactured by Ishihara Sangyo Kaisha, JMT-150B, JMT-150AO, JMT-150ANO, and MTY-700BS manufactured by Teika Co., Ltd., STT-65C-S and STT-30EHJ manufactured by Titanium Industries Co., Ltd., and OPTOLAKE series manufactured by JGC Catalysts and Chemicals Co., Ltd. The fine particles 33 may be niobium oxide fine particles such as Nb-G6000, Nb-G6100, and Nb-G6600 manufactured by Taki Chemical Industry Co., Ltd., and niobium oxide manufactured by Mitsui Mining and Smelting Co., Ltd. The fine particles 33 may be zirconium oxide fine particles such as Zircostar manufactured by Nippon Shokubai Co., Ltd., and HXU-110JC manufactured by Sumitomo Osaka Cement Co., Ltd. The fine particles 33 may be silicon oxide fine particles such as the QSG series manufactured by Shin-Etsu Chemical Co., Ltd., the Snowtex series manufactured by Nissan Chemical Industries, Ltd., and the Sururia series manufactured by JGC Catalysts and Chemicals. The fine particles 33 may be magnesium fluoride nanoparticles manufactured by Stella Chemifa. The fine particles 33 may be aluminum oxide fine particles such as the Aluminasol 100, 200, and 500 series manufactured by Nissan Chemical Industries, Ltd., and the AS-150T and AS-1501 manufactured by Sumitomo Osaka Ceramics Co., Ltd. The fine particles 33 may be polyethylene fine particles such as polyethylene particles manufactured by Corefront Co., Ltd. and the Mipelon series manufactured by Mitsui Chemicals, Inc. The fine particles 33 may be polystyrene fine particles such as polystyrene particles manufactured by Corefront Co., Ltd. and polybeads polystyrene manufactured by Techno Chemical Co., Ltd. The fine particles 33 may be ITO fine particles such as the ITO series manufactured by Mitsubishi Materials Electronics Chemicals Co., Ltd., and P-120 and P-130 manufactured by JGC Catalysts and Chemicals Co., Ltd. The fine particles 33 may be ATO fine particles such as the T-I series manufactured by Mitsubishi Materials Electronics Chemicals Co., Ltd. As the fine particles 33, other fine particles may be added, and one type of fine particles may be used alone, or two or more types of fine particles may be mixed and used. In addition, when conductive fine particles such as ITO and ATO are used as the fine particles 33, the anti-reflection film 1b can exhibit an antistatic function. The fine particles 33 are selected and appropriately combined according to the application and function required of the anti-reflection film 1b.
 第三層13が硬化性の液状組成物の固化により作製される場合、第三層13に含まれる第二バインダ32は、特定のバインダに限定されない。第二バインダ32は、反射防止膜1aについてなされたバインダに関する説明における事情を考慮して選択されてもよい。第二バインダ32は、アルコキシシラン、アルコキシシランの加水分解物、及びアルコキシシランの加水分解物の重合物からなる群より選ばれる少なくとも1つを含んでいてもよい。 When the third layer 13 is produced by solidifying a curable liquid composition, the second binder 32 contained in the third layer 13 is not limited to a specific binder. The second binder 32 may be selected taking into consideration the circumstances in the explanation of the binder given for the anti-reflection film 1a. The second binder 32 may contain at least one selected from the group consisting of alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane.
 第三層13の前駆体である液状組成物は、微粒子33及び第二バインダ32の前駆体以外に、架橋剤、重合開始剤、レベリング剤、界面活性剤、及びシランカップリング剤等を必要に応じて含んでいてもよい。 The liquid composition that is the precursor of the third layer 13 may contain, in addition to the precursors of the fine particles 33 and the second binder 32, a crosslinking agent, a polymerization initiator, a leveling agent, a surfactant, a silane coupling agent, and the like, as necessary.
 第三層13が硬化性の液状組成物を固化によって作製される場合、第一層11及び第二層12を含む第一複層構造10の形成のように、単一種類の液状組成物の塗膜が固化する過程において、2つの層に分離した状態で第三層13が形成される必要はない。第三層3の全体において、屈折率などの光学的パラメータが略均一であってもよい。 When the third layer 13 is produced by solidifying a curable liquid composition, it is not necessary for the third layer 13 to be formed in a state where it is separated into two layers during the process of solidifying a coating of a single type of liquid composition, as in the formation of the first multilayer structure 10 including the first layer 11 and the second layer 12. The optical parameters, such as the refractive index, may be approximately uniform throughout the entire third layer 3.
 反射防止膜1bは、例えば、以下の工程(Ib)、(IIb)、及び(IIIb)を含む方法によって製造されうる。反射防止膜1bは、反射防止膜1bの表面から順に第一層と第二層とを分離して含む。
(Ib)基材3上に、誘電体を含む第三層13を形成する。
(IIb)第一中空微粒子21と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第一液状組成物を第三層13の表面に塗工する。
(IIIb)第一液状組成物を固化させる。
The antireflection film 1b can be produced, for example, by a method including the following steps (Ib), (IIb), and (IIIb): The antireflection film 1b includes a first layer and a second layer which are separated from each other in this order from the surface of the antireflection film 1b.
(Ib) A third layer 13 containing a dielectric material is formed on the substrate 3 .
(IIb) A first liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied to the surface of the third layer 13 .
(IIIb) Solidifying the first liquid composition.
 (Ib)において、第三層13は、第二バインダ32の前駆体を含む第二液状組成物を基材3上に塗工し、その第二液状組成物を固化させることによって得られてもよい。この場合、第二液状組成物を基材3上に塗工する方法は、特定の方法に限定されない。その方法の例は、ロールコーティング、スプレーコーティング、スピンコーティング、ディスペンサによるコーティング、インクジェットによるコーティング、スクリーン印刷、及びディップによるコーティングなどがあげられる。また、各塗布方法において、第二塗膜に求められる厚みに応じて各方法の条件等が設定されうる。 In (Ib), the third layer 13 may be obtained by applying a second liquid composition containing a precursor of the second binder 32 onto the substrate 3 and solidifying the second liquid composition. In this case, the method of applying the second liquid composition onto the substrate 3 is not limited to a specific method. Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, inkjet coating, screen printing, and dip coating. In addition, for each application method, the conditions of each method can be set according to the thickness required for the second coating film.
 液状組成物の固化の方法は、特定の方法に限定されない。液状組成物の固化は、加熱による塗膜の乾燥又はバインダの前駆体等の重合が起こる方法に従ってなされてもよい。この場合、加熱は、室温程度に保たれた環境、特に人工的な加熱の手段が存在していない環境であっても、例えば、コンテナの内部、恒温槽、又は机上等に静置されて、乾燥又は反応を伴って液状組成物が固化することも含みうる。液状組成物の固化は、可視光、紫外線、及びマイクロ波等の電磁波の照射によりバインダの前駆体等を重合させることによってなされてもよい。 The method of solidifying the liquid composition is not limited to a specific method. The liquid composition may be solidified according to a method that dries the coating film by heating or polymerizes the binder precursor, etc. In this case, heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction. The liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
 液状組成物が塗布される基材3の表面に対して、液状組成物の塗布の前に各種の洗浄又は表面処理がなされてもよい。基材3の表面の洗浄は、特定の方法に限定されない。基材3の表面の洗浄は、有機溶媒又は水による洗浄であってもよいし、酸又はアルカリ溶液への浸漬等を伴う酸又はアルカリ洗浄であってもよい。基材3の表面に対する表面処理の例は、サンドブラスト及び研磨等の機械的処理、コロナ放電処理、火炎処理、UV‐O3洗浄、並びにプラズマ照射処理である。これらの洗浄又は表面処理によって、基材3の表面における液状組成物の濡れ性の向上、又は、液状組成物に含まれる化合物と結合しやすいヒドロキシ基等の生成等の利点がもたらされることが期待される。 The surface of the substrate 3 to which the liquid composition is applied may be subjected to various cleaning or surface treatments before application of the liquid composition. The cleaning of the surface of the substrate 3 is not limited to a specific method. The cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning involving immersion in an acid or alkali solution. Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
 反射防止膜1bの製造において、望ましくは、液状組成物の塗膜を形成した後に、液状組成物のゲル化を比較的緩やかに生じさせてもよい。この場合、液状組成物のゲル化の前に微粒子又はバインダの前駆体の流動性がある程度保たれうる。このため、反射防止膜1bを構成する層は、加熱により液状組成物を乾燥又は反応させて固化させることがより望ましい。液状組成物の加熱の温度は、例えば600℃以下であり、望ましくは400℃以下であり、より望ましくは300℃以下であり、さらに望ましくは250℃以下である。液状組成物の加熱時間は、加熱温度にも依存するが、例えば2時間以下であり、望ましくは1時間以下であり、より望ましくは30分間以下であり、さらに望ましくは15分間以下である。このような加熱条件は、反射防止膜1bに求められる性質及び基材3の耐熱温度等を考慮して決定されうる。例えば、液状組成物の加熱温度が高いと、得られる膜は緻密で硬くなるが、クラックが生じやすく、もろさが顕在化するというトレードオフが存在する。 In the manufacture of the anti-reflective film 1b, it is preferable to form a coating of the liquid composition and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the fine particles or the binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to heat the layer constituting the anti-reflective film 1b to dry or react the liquid composition and solidify it. The heating temperature of the liquid composition is, for example, 600° C. or less, preferably 400° C. or less, more preferably 300° C. or less, and even more preferably 250° C. or less. The heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1b and the heat resistance temperature of the substrate 3. For example, if the heating temperature of the liquid composition is high, the resulting film becomes dense and hard, but there is a trade-off in that cracks are easily generated and brittleness becomes apparent.
 反射防止膜1bのパラメータの算出は、反射防止膜1aのパラメータの算出と同様になされうる。例えば、基材3等の表面に作製された反射防止膜1bと、シリコンウエハーの表面に反射防止膜1bと同様の方法及び条件で作製された反射防止膜を得る。断面のSEM画像の取得、各層の厚みの測定、各層に含まれる各微粒子の特定、平均粒子径、数NM1、及び比SM/SLの計測及び算出がなされる。さらに、反射防止膜1bの反射スペクトルが実測されるとともに、各層の屈折率及び厚みを変数として、反射スペクトルが計算され、実測された反射スペクトルとの誤差パラメータが許容範囲内で最小となるように、各層の屈折率及び厚みが特定される。これにより、反射防止膜1bの各層のパラメータが算出されうる。誤差パラメータの事情は、反射防止膜1aについて説明した通りである。 The parameters of the anti-reflection film 1b can be calculated in the same manner as the parameters of the anti-reflection film 1a. For example, the anti-reflection film 1b is prepared on the surface of the substrate 3 or the like, and the anti-reflection film is prepared on the surface of a silicon wafer by the same method and conditions as the anti-reflection film 1b. SEM images of the cross section are obtained, the thickness of each layer is measured, the fine particles contained in each layer are identified, and the average particle size, the number N M1 , and the ratio S M /S L are measured and calculated. Furthermore, the reflection spectrum of the anti-reflection film 1b is actually measured, and the reflection spectrum is calculated using the refractive index and thickness of each layer as variables, and the refractive index and thickness of each layer are specified so that the error parameter with the actually measured reflection spectrum is minimized within the allowable range. This allows the parameters of each layer of the anti-reflection film 1b to be calculated. The circumstances of the error parameters are as described for the anti-reflection film 1a.
 反射防止膜1aは、例えば、図4に示す反射防止膜1cのように変更されてもよい。反射防止膜1cは、特に説明する部分を除き、反射防止膜1aと同様に構成されている。反射防止膜1aの構成要素と同一又は対応する反射防止膜1cの構成要素には同一の符号を付し、詳細な説明を省略する。反射防止膜1a及び1bに関する上記の説明は、技術的に矛盾しない限り、反射防止膜1cにも当てはまる。 Anti-reflection film 1a may be modified, for example, to anti-reflection film 1c shown in FIG. 4. Anti-reflection film 1c is configured in the same manner as anti-reflection film 1a, except for the parts that will be specifically described. The same reference numerals are used to designate components of anti-reflection film 1c that are the same as or correspond to those of anti-reflection film 1a, and detailed descriptions will be omitted. The above description of anti-reflection films 1a and 1b also applies to anti-reflection film 1c, unless technically inconsistent.
 図4に示す通り、反射防止膜1cは、第三層13と、第四層14とをさらに備えている。第三層13は、反射防止膜1cの厚さ方向において第二層12と基材3との間に配置されている。第四層14は、反射防止膜1cの厚さ方向において第三層13と基材3との間に配置されている。第三層13は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みtM3を有する。第四層14は、1.30~1.55の屈折率nL4及び25nm以下の厚みtM4を有する。屈折率nL3及びnL4は、D線(589.3nm)における値である。このような構成によれば、反射防止膜1cが高い反射防止性能を発揮しやすい。反射防止膜1cにおいて、例えば、特定の波長(設計中心波長)における反射率が低くなりやすい。反射率が特定値以下に保たれる波長域である低反射帯が大きくなりやすい。 As shown in FIG. 4, the antireflection film 1c further includes a third layer 13 and a fourth layer 14. The third layer 13 is disposed between the second layer 12 and the substrate 3 in the thickness direction of the antireflection film 1c. The fourth layer 14 is disposed between the third layer 13 and the substrate 3 in the thickness direction of the antireflection film 1c. The third layer 13 has a refractive index n L3 of 1.30 to 2.25 and a thickness t M3 of 60 nm to 200 nm. The fourth layer 14 has a refractive index n L4 of 1.30 to 1.55 and a thickness t M4 of 25 nm or less. The refractive indices n L3 and n L4 are values at the D line (589.3 nm). With this configuration, the antireflection film 1c is likely to exhibit high antireflection performance. In the antireflection film 1c, for example, the reflectance at a specific wavelength (design central wavelength) is likely to be low. The low reflection band, which is a wavelength range in which the reflectance is kept below a specific value, is likely to be large.
 反射防止膜1cにおいて、波長300nm~1200nmにおける反射率の最小値rmin(2)は、例えば1%以下であり、望ましくは0.5%以下であり、より望ましくは0.2%以下である。波長300nm~1200nmにおける反射防止膜1cの反射スペクトルにおいて、反射率が1%以下となる波長の範囲λrange/1.0は、例えば250nm以上である。 In the antireflection coating 1c, the minimum reflectance r min(2) in the wavelength range of 300 nm to 1200 nm is, for example, 1% or less, preferably 0.5% or less, and more preferably 0.2% or less. In the reflection spectrum of the antireflection coating 1c in the wavelength range of 300 nm to 1200 nm, the wavelength range λ range/1.0 in which the reflectance is 1% or less is, for example, 250 nm or more.
 屈折率nL3は、望ましくは1.40~2.00である。厚みtM3は、望ましくは80nm~160nmである。屈折率nL4は、望ましくは1.35~1.50である。厚みtM4は、望ましくは20nm以下である。 The refractive index n L3 is preferably 1.40 to 2.00. The thickness t M3 is preferably 80 nm to 160 nm. The refractive index n L4 is preferably 1.35 to 1.50. The thickness t M4 is preferably 20 nm or less.
 例えば、反射防止膜1cにおいて、nL3<nL4の条件が満たされていてもよい。これにより、反射防止膜1cが高い反射防止性能をより発揮しやすい。反射防止膜1cにおいて、望ましくは、nL1<nL2及びnL3<nL4の条件が満たされている。 For example, the antireflection film 1c may satisfy the condition n L3 <n L4 . This makes it easier for the antireflection film 1c to exhibit high antireflection performance. Preferably, the antireflection film 1c satisfies the conditions n L1 <n L2 and n L3 <n L4 .
 図4に示す通り、反射防止膜1cにおいて、第一層11及び第二層12は、第一複層構造10をなしている。加えて、第三層13及び第四層14は、第二複層構造20をなしている。第一複層構造10は、第一中空微粒子21と、第一中空微粒子21を結着する第一バインダ31とを含んでいる。第二複層構造20は、第二中空微粒子22と、第二中空微粒子22を結着する第二バインダ32とを含んでいる。このような構成によれば、反射防止膜1cが高い反射防止性能をより発揮しやすい。 As shown in FIG. 4, in the anti-reflective film 1c, the first layer 11 and the second layer 12 form a first multilayer structure 10. In addition, the third layer 13 and the fourth layer 14 form a second multilayer structure 20. The first multilayer structure 10 includes first hollow particles 21 and a first binder 31 that binds the first hollow particles 21 together. The second multilayer structure 20 includes second hollow particles 22 and a second binder 32 that binds the second hollow particles 22 together. With this configuration, the anti-reflective film 1c is more likely to exhibit high anti-reflective performance.
 反射防止膜1cにおいて、第一バインダ31の屈折率と第二バインダ32の屈折率との差は、特定の値に限定されない。その差は、例えば、0.01以下である。このような構成によれば、反射防止膜1cが高い反射防止性能をより発揮しやすい。 In the anti-reflection film 1c, the difference between the refractive index of the first binder 31 and the refractive index of the second binder 32 is not limited to a specific value. The difference is, for example, 0.01 or less. With this configuration, the anti-reflection film 1c is more likely to exhibit high anti-reflection performance.
 図4に示す通り、第二層12は、例えば、第一部位12a及び第二部位12bを含んでいる。第一部位12aは、第二層12において第一層11側に配置された層状の部位である。第二部位12bは、第二層12において第三層13側に配置された層状の部位である。 As shown in FIG. 4, the second layer 12 includes, for example, a first portion 12a and a second portion 12b. The first portion 12a is a layered portion arranged on the first layer 11 side of the second layer 12. The second portion 12b is a layered portion arranged on the third layer 13 side of the second layer 12.
 反射防止膜1cは、例えば、反射防止膜1cの前駆体である液状組成物群を用いて製造できる。この液状組成物群は、第一液状組成物と、第二液状組成物とを含んでいる。第一液状組成物は、例えば、第一中空微粒子21及び第一バインダ31の前駆体を含んでいる。第一液状組成物の固化により、第一層11と、第二層12の第一部位12aとを形成可能である。第二液状組成物は、第二中空微粒子22及び第二バインダ32の前駆体を含んでいる。第二液状組成物の固化により、第二層12の第二部位12bと、第三層13と、第四層14を形成可能である。 The anti-reflective film 1c can be manufactured, for example, using a liquid composition group that is a precursor of the anti-reflective film 1c. The liquid composition group includes a first liquid composition and a second liquid composition. The first liquid composition includes, for example, a precursor of the first hollow fine particles 21 and the first binder 31. The first layer 11 and the first portion 12a of the second layer 12 can be formed by solidifying the first liquid composition. The second liquid composition includes a precursor of the second hollow fine particles 22 and the second binder 32. The second portion 12b of the second layer 12, the third layer 13, and the fourth layer 14 can be formed by solidifying the second liquid composition.
 反射防止膜1cは、例えば、下記(Ic)及び(IIc)の工程を含む方法によって製造されうる。
(Ic)上記の第二液状組成物を基材3の表面に沿って塗布して得られた第二塗膜の乾燥及びその第二塗膜の反応からなる群より選ばれる少なくとも1つによって、第二層12の第二部位12b、第三層13、及び第四層14を形成する。
(IIc)上記の第一液状組成物を第二層12の第二部位12bの上に塗布して得られた第一塗膜の乾燥及びその第一塗膜の反応からなる群より選ばれる少なくとも1つによって、第二層12の第一部位12a及び第一層11を分離させて形成し、かつ、第一部位12a及び第二部位12bを合一させて第二層12を形成する。
The anti-reflection film 1c can be produced, for example, by a method including the following steps (Ic) and (IIc).
(Ic) The second portion 12b of the second layer 12, the third layer 13, and the fourth layer 14 are formed by at least one method selected from the group consisting of drying of a second coating film obtained by applying the above-mentioned second liquid composition along the surface of the substrate 3, and a reaction of the second coating film.
(IIc) The first portion 12a and the first layer 11 of the second layer 12 are formed by separating them, and the first portion 12a and the second portion 12b are formed by combining them together, by at least one method selected from the group consisting of drying the first coating film obtained by applying the above-mentioned first liquid composition onto the second portion 12b of the second layer 12 and reacting the first coating film.
 反射防止膜1cは、例えば、下記の工程(Id)、(IId)、(IIId)、及び(IVd)を含む方法によって製造されてもよい。
(Id)酸化物を含む第二微粒子と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第二液状組成物を基材3上に塗工する。
(IId)第二液状組成物を固化させる。
(IIId)第一中空微粒子21と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第一液状組成物を、第二液状組成物の固化物の表面に塗工する。
(IVd)第一液状組成物を固化させる。
The anti-reflection film 1c may be produced by, for example, a method including the following steps (Id), (IId), (IIId), and (IVd).
(Id) A second liquid composition containing second fine particles containing an oxide and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied onto a substrate 3 .
(IId) The second liquid composition is solidified.
(IIId) A first liquid composition containing first hollow fine particles 21 and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes is applied to the surface of the solidified product of the second liquid composition.
(IVd) Solidifying the first liquid composition.
 反射防止膜1cは、例えば、反射防止膜1cの表面から順に、第一層11、第二層12、第三層13、及び第四層14を分離して含む。第二層12は、第一中空微粒子21の外殻の一部と、アルコキシシランの加水分解物の重合物の一部と、第二微粒子の一部とを含む。 The anti-reflection film 1c includes, for example, a first layer 11, a second layer 12, a third layer 13, and a fourth layer 14, which are separated from each other in this order from the surface of the anti-reflection film 1c. The second layer 12 includes a part of the outer shell of the first hollow fine particle 21, a part of the polymer of the hydrolyzate of the alkoxysilane, and a part of the second fine particle.
 (Id)において、第二液状組成物に対する第二微粒子の質量比は、例えば、5%~75%である。(IIId)において、第一液状組成物に対する第一中空微粒子21の質量比は、例えば、80~99.5%である。 In (Id), the mass ratio of the second microparticles to the second liquid composition is, for example, 5% to 75%. In (IIId), the mass ratio of the first hollow microparticles 21 to the first liquid composition is, for example, 80% to 99.5%.
 第一バインダ31及び第二バインダ32の前駆体の双方は、所定のアルコキシシランを含んでいてもよく、第一層11、第二層12、第三層13、及び第四層14のそれぞれは、アルコキシシランの加水分解物及びアルコキシシランの加水分解物の重合物からなる少なくとも1つを含んでいてもよい。所定のアルコキシシランは、例えば、第一バインダ31の屈折率と第二バインダ32の屈折率との差が0.01以下となりうる、アルコキシシランの加水分解物及びアルコキシシランの加水分解物の重合物からなる群より選ばれる少なくとも1つの前駆体であるアルコキシシランである。例えば、所定のアルコキシシランにおいて、四官能アルコキシシランに対する三官能のアルコキシシランの物質量比は、1/4~4である。このような構成によれば、(IIc)の工程において、第一部位12aと第二部位12bとが合一して実質的に同一の層が形成され、基材3に向かって第一層11、第二層12、第三層13、及び第四層14がこの順番で配置される。 Both the precursors of the first binder 31 and the second binder 32 may contain a predetermined alkoxysilane, and each of the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14 may contain at least one of a hydrolyzate of an alkoxysilane and a polymer of a hydrolyzate of an alkoxysilane. The predetermined alkoxysilane is, for example, an alkoxysilane that is at least one precursor selected from the group consisting of a hydrolyzate of an alkoxysilane and a polymer of a hydrolyzate of an alkoxysilane, in which the difference in refractive index between the first binder 31 and the second binder 32 can be 0.01 or less. For example, in the predetermined alkoxysilane, the substance amount ratio of the trifunctional alkoxysilane to the tetrafunctional alkoxysilane is 1/4 to 4. According to this configuration, in the step (IIc), the first portion 12a and the second portion 12b are united to form a substantially identical layer, and the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14 are arranged in this order toward the substrate 3.
 図4に示す通り、反射防止膜1cにおいて、第一層11、第二層12、第三層13、及び第四層14の中で基材3に最も近い第四層14は、中空微粒子22の外殻を構成する材料を含む。例えば、第一バインダ31及び第二バインダ32がアルコキシシランの加水分解物及びアルコキシシランの加水分解物の重合物からなる群より選ばれる少なくとも1つを含み、かつ、第一中空微粒子21及び第二中空微粒子22が酸化シリコンを主成分とする化合物から構成されている場合、第四層14は、酸化シリコンを主成分とする化合物で満たされうる。例えば、酸化シリコンを主成分とする化合物から構成されている第二中空微粒子22の外殻がアルコキシシランの加水分解物又はその加水分解物の重合物を主成分として含んでいる場合、第四層14は、中空部及び空隙等の空気で満たされる部位はほとんど存在せず、アルコキシシラン、アルコキシシランの加水分解物、及びアルコキシシランの加水分解物の重合物によって満たされる。このため、第四層14の屈折率nL4は、酸化シリコン又はその変性物の屈折率と大差ない値になりうる。なお、中空微粒子22の外殻をなす材料は、第四層14が1.30~1.55の屈折率nL4を有し、かつ、tM4が25nm以下である限り、酸化シリコン以外の材料を含んでいてもよい。 As shown in Fig. 4, in the anti-reflection film 1c, the fourth layer 14, which is the closest to the substrate 3 among the first layer 11, the second layer 12, the third layer 13, and the fourth layer 14, contains a material that constitutes the outer shell of the hollow fine particles 22. For example, when the first binder 31 and the second binder 32 contain at least one selected from the group consisting of hydrolysates of alkoxysilanes and polymers of hydrolysates of alkoxysilanes, and the first hollow fine particles 21 and the second hollow fine particles 22 are composed of compounds mainly composed of silicon oxide, the fourth layer 14 can be filled with a compound mainly composed of silicon oxide. For example, when the outer shell of the second hollow fine particles 22 composed of a compound mainly composed of silicon oxide contains a hydrolysate of alkoxysilane or a polymer of the hydrolysate as a main component, the fourth layer 14 has almost no parts filled with air such as hollow parts and voids, and is filled with alkoxysilane, hydrolysates of alkoxysilane, and polymers of hydrolysates of alkoxysilane. Therefore, the refractive index n L4 of the fourth layer 14 can be a value not significantly different from the refractive index of silicon oxide or a modified product thereof. The material forming the outer shell of the hollow fine particle 22 may contain a material other than silicon oxide, so long as the fourth layer 14 has a refractive index n L4 of 1.30 to 1.55 and t M4 is 25 nm or less.
 第三層13は、第四層14よりも基材3から離れた位置に配置されうる。図4に示す通り、第三層13は、第二中空微粒子22の外殻及び中空部を含む層であり、第二中空微粒子22の中空部及び第二中空微粒子22同士の空隙には屈折率が約1である空気が存在しているので、第三層13においてそのような空気を含む領域が占める割合が大きいほど第3層の屈折率nL3が低くなりやすい。第一液状組成物が塗布される前に、第二液状組成物が塗布され、第二部位12b、第三層13、及び第四層14が形成される過程において、第二中空微粒子22の一部は、第二部位12bの基材3に対して遠位な界面に存在しうる。第二部位12bは、第四層14と同様に、例えば、第二バインダ32に加えて、例えば酸化シリコンを主成分として含む第二中空微粒子22の外殻を構成する化合物を含みうる。反射防止膜1cを構成する層が、アルコキシシラン、アルコキシシランの加水分解物、又はアルコキシシランの加水分解物の重合物を含み、かつ、第二中空微粒子22が酸化シリコンを主成分とする化合物から構成されている場合、第2部位12bは、酸化シリコンを主成分とする化合物で満たされうる。酸化シリコンを主成分とする化合物から構成される中空微粒子が、アルコキシシランの加水分解物又はアルコキシシランの加水分解物の重合物を主成分とする化合物で形成される場合、第二部位12bは、中空部及び空隙等を含みにくく、アルコキシシラン、アルコキシシランの加水分解物、又はアルコキシシランの加水分解物重合物で満たされる。従って、反射防止膜1cにおいて、第二部位12bの屈折率は、酸化シリコン又は酸化シリコンの変性物の屈折率と大差ない値になりうる。 The third layer 13 may be disposed at a position farther from the substrate 3 than the fourth layer 14. As shown in FIG. 4, the third layer 13 is a layer including the outer shell and hollow portion of the second hollow fine particle 22, and since air having a refractive index of about 1 exists in the hollow portion of the second hollow fine particle 22 and in the gap between the second hollow fine particles 22, the refractive index n L3 of the third layer tends to be lower as the proportion of the region including such air in the third layer 13 increases. In the process in which the second liquid composition is applied before the first liquid composition is applied and the second portion 12b, the third layer 13, and the fourth layer 14 are formed, a part of the second hollow fine particle 22 may be present at the interface of the second portion 12b that is distal to the substrate 3. The second portion 12b may contain, for example, a compound constituting the outer shell of the second hollow fine particle 22 containing, for example, silicon oxide as a main component, in addition to the second binder 32, as in the fourth layer 14. When the layer constituting the anti-reflection film 1c contains alkoxysilane, hydrolyzate of alkoxysilane, or polymer of hydrolyzate of alkoxysilane, and the second hollow fine particles 22 are composed of a compound mainly composed of silicon oxide, the second portion 12b can be filled with a compound mainly composed of silicon oxide. When the hollow fine particles composed of a compound mainly composed of silicon oxide are formed of a compound mainly composed of a hydrolyzate of alkoxysilane or a polymer of hydrolyzate of alkoxysilane, the second portion 12b is unlikely to contain hollow portions and voids, and is filled with alkoxysilane, hydrolyzate of alkoxysilane, or polymer of hydrolyzate of alkoxysilane. Therefore, in the anti-reflection film 1c, the refractive index of the second portion 12b can be a value not significantly different from the refractive index of silicon oxide or modified silicon oxide.
 (IIc)の工程において、第二層12の第一部位12a及び第一層11が分離されて形成される。反射防止膜1cにおける第一層11及び第一部位12aの形成は、それぞれ、反射防止膜1aにおける第一層11及び第二層12の形成に対応している。このため、反射防止膜1cにおける第一層11及び第一部位12aの形成については、反射防止膜1aの「第二層12」に関する説明を「第一部位12a」と読み替えて参照できる。 In step (IIc), the first portion 12a and the first layer 11 of the second layer 12 are formed separately. The formation of the first layer 11 and the first portion 12a in the anti-reflective coating 1c corresponds to the formation of the first layer 11 and the second layer 12 in the anti-reflective coating 1a, respectively. Therefore, for the formation of the first layer 11 and the first portion 12a in the anti-reflective coating 1c, the explanation regarding the "second layer 12" of the anti-reflective coating 1a can be read as "first portion 12a".
 反射防止膜1cにおいて、第一中空微粒子21及び第二中空微粒子22は、望ましくは、酸化シリコンを主成分として含む外殻を有する同一種類の微粒子であってもよい。第一中空微粒子21及び第二中空微粒子22は、各層の屈折率及び厚みが所定の範囲にある限り、酸化シリコン以外の成分を主成分として含む同一又は異なる種類の微粒子であってもよい。上記の通り、第一バインダ31及び第二バインダ32は、望ましくは、両者の屈折率差が0.01以下であるように選択される。 In the anti-reflection film 1c, the first hollow particles 21 and the second hollow particles 22 may preferably be the same type of particles having an outer shell containing silicon oxide as a main component. The first hollow particles 21 and the second hollow particles 22 may be the same or different types of particles containing a component other than silicon oxide as a main component, so long as the refractive index and thickness of each layer are within a predetermined range. As described above, the first binder 31 and the second binder 32 are preferably selected so that the difference in refractive index between the two is 0.01 or less.
 第一液状組成物の固形分の質量に対する第一中空微粒子21の固形分の質量の比MLは、例えば、第二液状組成物の固形分の質量に対する第二中空微粒子22の固形分の質量の比MHより大きい。このような構成によれば、反射防止膜1cが高い反射防止性能をより発揮しやすい。 The ratio M L of the mass of the solid content of the first hollow fine particles 21 to the mass of the solid content of the first liquid composition is greater than, for example, the ratio M H of the mass of the solid content of the second hollow fine particles 22 to the mass of the solid content of the second liquid composition. With this configuration, the antireflection coating 1c is more likely to exhibit high antireflection performance.
 反射防止膜1cの前駆体である液状組成物群において、比ML及び比MHは、望ましくは0.05≦MH/ML≦0.85の条件が満たされ、より望ましくは0.2≦MH/ML≦0.7の条件が満たされる。これにより、反射防止膜1cが高い反射防止性能をより発揮しやすい。 In the liquid compositions which are precursors of the antireflection coating 1c, the ratios M L and M H preferably satisfy the condition of 0.05≦M H /M L ≦0.85, and more preferably satisfy the condition of 0.2≦M H /M L ≦0.7, so that the antireflection coating 1c can more easily exhibit high antireflection performance.
 比MLは、例えば80%~99.5%であり、望ましくは85%~99.5%であり、より望ましくは90%~99.5%であり、さらに望ましくは95%~99%である。MHは、例えば5%~70%であり、望ましくは10%~50%である。 The ratio M L is, for example, 80% to 99.5%, desirably 85% to 99.5%, more desirably 90% to 99.5%, and even more desirably 95% to 99%. M H is, for example, 5% to 70%, desirably 10% to 50%.
 反射防止膜1cの前駆体である第一液状組成物及び第二液状組成物を塗工する方法は、特定の方法に限定されない。その方法の例は、ロールコーティング、スプレーコーティング、スピンコーティング、ディスペンサによるコーティング、インクジェットによるコーティング、スクリーン印刷、及びディップによるコーティングである。塗膜の求められる厚みに応じて塗工方法の条件が調節される。 The method of applying the first and second liquid compositions, which are precursors of the anti-reflective coating 1c, is not limited to a specific method. Examples of the method include roll coating, spray coating, spin coating, coating with a dispenser, inkjet coating, screen printing, and dip coating. The conditions of the application method are adjusted according to the desired thickness of the coating film.
 第一液状組成物及び第二液状組成物の固化の方法は、特定の方法に限定されない。これらの液状組成物の固化は、加熱による塗膜の乾燥又はバインダの前駆体等の重合が起こる方法に従ってなされてもよい。この場合、加熱は、室温程度に保たれた環境、特に人工的な加熱の手段が存在していない環境であっても、例えば、コンテナの内部、恒温槽、又は机上等に静置されて、乾燥又は反応を伴って液状組成物が固化することも含みうる。液状組成物の固化は、可視光、紫外線、及びマイクロ波等の電磁波の照射によりバインダの前駆体等を重合させることによってなされてもよい。 The method of solidifying the first liquid composition and the second liquid composition is not limited to a specific method. These liquid compositions may be solidified according to a method that dries the coating by heating or polymerizes the binder precursor, etc. In this case, heating may include leaving the liquid composition in an environment kept at about room temperature, particularly in an environment where there is no artificial heating means, for example, inside a container, in a thermostatic chamber, or on a desk, etc., and solidifying the liquid composition by drying or reaction. The liquid composition may be solidified by polymerizing the binder precursor, etc. by irradiation with electromagnetic waves such as visible light, ultraviolet light, and microwaves.
 第二液状組成物が塗布される基材3の表面に対して、第二液状組成物の塗布の前に各種の洗浄又は表面処理がなされてもよい。基材3の表面の洗浄は、特定の方法に限定されない。基材3の表面の洗浄は、有機溶媒又は水による洗浄であってもよいし、酸又はアルカリ溶液への浸漬等を伴う酸又はアルカリ洗浄であってもよい。基材3の表面に対する表面処理の例は、サンドブラスト及び研磨等の機械的処理、コロナ放電処理、火炎処理、UV‐O3洗浄、並びにプラズマ照射処理である。これらの洗浄又は表面処理によって、基材3の表面における液状組成物の濡れ性の向上、又は、液状組成物に含まれる化合物と結合しやすいヒドロキシ基等の生成等の利点がもたらされることが期待される。 The surface of the substrate 3 to which the second liquid composition is applied may be subjected to various cleaning or surface treatments before application of the second liquid composition. The cleaning of the surface of the substrate 3 is not limited to a specific method. The cleaning of the surface of the substrate 3 may be cleaning with an organic solvent or water, or may be acid or alkali cleaning accompanied by immersion in an acid or alkali solution. Examples of surface treatments for the surface of the substrate 3 include mechanical treatments such as sandblasting and polishing, corona discharge treatment, flame treatment, UV- O3 cleaning, and plasma irradiation treatment. It is expected that these cleaning or surface treatments will bring about advantages such as improved wettability of the liquid composition on the surface of the substrate 3, or the generation of hydroxyl groups that are easily bonded to compounds contained in the liquid composition.
 反射防止膜1cの製造において、望ましくは、基材3の表面に沿って液状組成物の塗膜を形成した後に、液状組成物のゲル化を比較的緩やかに生じさせてもよい。この場合、液状組成物のゲル化の前に微粒子又はバインダの前駆体の流動性がある程度保たれうる。このため、反射防止膜1cを構成する層は、加熱により液状組成物を乾燥又は反応させて固化させることがより望ましい。液状組成物の加熱の温度は、例えば600℃以下であり、望ましくは400℃以下であり、より望ましくは300℃以下であり、さらに望ましくは250℃以下である。液状組成物の加熱時間は、加熱温度にも依存するが、例えば2時間以下であり、望ましくは1時間以下であり、より望ましくは30分間以下であり、さらに望ましくは15分間以下である。このような加熱条件は、反射防止膜1cに求められる性質及び基材3の耐熱温度等を考慮して決定されうる。例えば、液状組成物の加熱温度が高いと、得られる膜は緻密で硬くなるが、クラックが生じやすく、もろさが顕在化するというトレードオフが存在する。 In the manufacture of the anti-reflective film 1c, it is preferable to form a coating of the liquid composition along the surface of the substrate 3, and then allow the liquid composition to gel relatively slowly. In this case, the fluidity of the microparticles or binder precursor can be maintained to a certain degree before the liquid composition gels. For this reason, it is more preferable to heat the layer constituting the anti-reflective film 1c to dry or react the liquid composition to solidify it. The heating temperature of the liquid composition is, for example, 600°C or less, preferably 400°C or less, more preferably 300°C or less, and even more preferably 250°C or less. The heating time of the liquid composition depends on the heating temperature, but is, for example, 2 hours or less, preferably 1 hour or less, more preferably 30 minutes or less, and even more preferably 15 minutes or less. Such heating conditions can be determined taking into consideration the properties required for the anti-reflective film 1c and the heat resistance temperature of the substrate 3. For example, if the heating temperature of the liquid composition is high, the resulting film becomes dense and hard, but there is a trade-off in that cracks are easily generated and brittleness becomes apparent.
 反射防止膜1cのパラメータの算出は、反射防止膜1aのパラメータの算出と同様になされうる。例えば、基材3等の表面に作製された反射防止膜1cと、シリコンウエハーの表面に反射防止膜1cと同様の方法及び条件で作製された反射防止膜を得る。断面のSEM画像の取得、各層の厚みの測定、各層に含まれる各微粒子の特定、平均粒子径、数NM1、及び比SM/SLの計測及び算出がなされる。さらに、反射防止膜1cの反射スペクトルが実測されるとともに、各層の屈折率及び厚みを変数として、反射スペクトルが計算され、実測された反射スペクトルとの誤差パラメータが許容範囲内で最小となるように、各層の屈折率及び厚みが特定される。これにより、反射防止膜1cの各層のパラメータが算出されうる。誤差パラメータの事情は、反射防止膜1aについて説明した通りである。 The parameters of the anti-reflection film 1c can be calculated in the same manner as the parameters of the anti-reflection film 1a. For example, the anti-reflection film 1c is prepared on the surface of the substrate 3 or the like, and the anti-reflection film is prepared on the surface of a silicon wafer by the same method and conditions as the anti-reflection film 1c. SEM images of the cross section are obtained, the thickness of each layer is measured, the fine particles contained in each layer are identified, and the average particle size, the number N M1 , and the ratio S M /S L are measured and calculated. Furthermore, the reflection spectrum of the anti-reflection film 1c is actually measured, and the reflection spectrum is calculated using the refractive index and thickness of each layer as variables, and the refractive index and thickness of each layer are specified so that the error parameter with the actually measured reflection spectrum is minimized within the allowable range. This allows the parameters of each layer of the anti-reflection film 1c to be calculated. The circumstances of the error parameters are as described for the anti-reflection film 1a.
 反射防止膜1a、1b、及び1cは様々な観点から変更可能である。例えば、反射防止膜は、k個の層を備えていてもよい。この場合、基材3に向かって、第一層11、第二層12、第三層13、(中略)、及び第k層がこの順番で配置されうる。kは、例えば5以上の整数である。 The anti-reflection films 1a, 1b, and 1c can be modified from various viewpoints. For example, the anti-reflection film may have k layers. In this case, the first layer 11, the second layer 12, the third layer 13, (omitted), and the kth layer may be arranged in this order toward the substrate 3. k is, for example, an integer of 5 or more.
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be explained in more detail using examples. Note that the present invention is not limited to the following examples.
<バインダ前駆体A1>
 東京化成工業社製のテトラエトキシシラン(TEOS)44.6gと、同社製のメチルトリエトキシシラン(MTES)16.4gと、キシダ化学社製の0.3質量%のギ酸水溶液37.9gとを混合して攪拌し、透明な液状組成物であるバインダ前駆体A1を得た。バインダ前駆体A1におけるTEOSとMTESとの物質量比は7:3であった。
<Binder Precursor A1>
44.6 g of tetraethoxysilane (TEOS) manufactured by Tokyo Chemical Industry Co., Ltd., 16.4 g of methyltriethoxysilane (MTES) manufactured by the same company, and 37.9 g of 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain binder precursor A1, which is a transparent liquid composition. The substance ratio of TEOS to MTES in binder precursor A1 was 7:3.
<バインダ前駆体A2>
 TEOS33.6gと、MTES28.6gと、キシダ化学社製の0.3質量%のギ酸水溶液37.9gと混合して攪拌し、透明な液状組成物であるバインダ前駆体A2を得た。バインダ前駆体A2におけるTEOSとMTESとの物質量比は5:5であった。
<Binder Precursor A2>
33.6 g of TEOS, 28.6 g of MTES, and 37.9 g of a 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain a binder precursor A2, which is a transparent liquid composition. The substance ratio of TEOS to MTES in the binder precursor A2 was 5:5.
<バインダ前駆体A3>
 TEOS19.0gと、MTES38.0gと、キシダ化学社製の0.3質量%のギ酸水溶液37.9gとを混合して攪拌し、透明な液状組成物であるバインダ前駆体A3を得た。バインダ前駆体A3におけるTEOSとMTESとの物質量比は3:7であった。
<Binder Precursor A3>
19.0 g of TEOS, 38.0 g of MTES, and 37.9 g of a 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain a binder precursor A3, which is a transparent liquid composition. The substance ratio of TEOS to MTES in the binder precursor A3 was 3:7.
<バインダ前駆体A4>
 TEOS5.8gと、MTES45.2gと、キシダ化学社製の0.3質量%のギ酸水溶液37.9gとを混合して攪拌し、透明な液状組成物であるバインダ前駆体A4を得た。バインダ前駆体A4におけるTEOSとMTESとの物質量比は1:9であった。
<Binder precursor A4>
5.8 g of TEOS, 45.2 g of MTES, and 37.9 g of a 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain a binder precursor A4, which is a transparent liquid composition. The substance ratio of TEOS to MTES in the binder precursor A4 was 1:9.
<バインダ前駆体A5>
 TEOS19.2gと、n‐プロピルトリメトキシシラン(n‐PTMS)36.1gと、キシダ化学社製の0.3質量%のギ酸水溶液37.9gとを混合して攪拌し、透明な液状組成物であるバインダ前駆体A5を得た。バインダ前駆体A5におけるTEOSとn‐PTMSとの物質量比は3:7であった。
<Binder Precursor A5>
19.2 g of TEOS, 36.1 g of n-propyltrimethoxysilane (n-PTMS), and 37.9 g of 0.3 mass % formic acid aqueous solution manufactured by Kishida Chemical Co., Ltd. were mixed and stirred to obtain binder precursor A5, which is a transparent liquid composition. The mass ratio of TEOS to n-PTMS in binder precursor A5 was 3:7.
<液状組成物B1>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液86.0gに、0.14gのバインダ前駆体A1と、全固形分質量に対する微粒子の固形分質量が99%となるように、日揮触媒化成社製のスルーリア4110(略球形状の中空シリカ微粒子約20質量%、2‐プロパノール70質量%、及びメタノール10質量%の分散液、平均粒子径(呼び)60nm、屈折率=1.25)とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B1を調製した。
<Liquid composition B1>
0.14 g of binder precursor A1 and Sururia 4110 (a dispersion of approximately 20 mass% of roughly spherical hollow silica microparticles, 70 mass% of 2-propanol, and 10 mass% of methanol, with an average particle diameter (nominal) of 60 nm and a refractive index of 1.25) manufactured by JGC Catalysts and Chemicals were added to 86.0 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol so that the solid mass of the microparticles relative to the total solid mass was 99%, and the mixture was mixed and stirred to prepare a liquid composition B1 containing hollow microparticles and a binder precursor.
<液状組成物B2>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液82.3gに、2.7gのバインダ前駆体A2と、全固形分質量に対する微粒子の固形分質量が95%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B2を調製した。
<Liquid composition B2>
To 82.3 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 2.7 g of binder precursor A2 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 95%, and the mixture was mixed and stirred to prepare a liquid composition B2 containing hollow fine particles and a binder precursor.
<液状組成物B3>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液81.9gに、4.4gのバインダ前駆体A3と、全固形分質量に対する微粒子の固形分質量が90%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B3を調製した。
<Liquid composition B3>
To 81.9 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 4.4 g of binder precursor A3 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 90%, and the mixture was mixed and stirred to prepare a liquid composition B3 containing hollow fine particles and a binder precursor.
<液状組成物B4>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液81.3gに、3.7gのバインダ前駆体A4と、全固形分質量に対する微粒子の固形分質量が90%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B4を調製した。
<Liquid composition B4>
To 81.3 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 3.7 g of binder precursor A4 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 90%, and the mixture was mixed and stirred to prepare a liquid composition B4 containing hollow fine particles and a binder precursor.
<液状組成物B5>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液81.9gに、4.4gのバインダ前駆体A5と、全固形分質量に対する微粒子の固形分質量が95%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B5を調製した。
<Liquid composition B5>
4.4 g of binder precursor A5 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added to 81.9 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol so that the solid mass of the fine particles relative to the total solid mass was 95%, and the mixture was mixed and stirred to prepare a liquid composition B5 containing hollow fine particles and a binder precursor.
<液状組成物B6>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液82.8gに、14.8gのバインダ前駆体A1を加えて、混合、攪拌し、バインダ前駆体を含む液状組成物B6を調製した。
<Liquid composition B6>
14.8 g of the binder precursor A1 was added to 82.8 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, and the mixture was mixed and stirred to prepare a liquid composition B6 containing the binder precursor.
<液状組成物B7>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液82.8gに、14.8gのバインダ前駆体A1と、全固形分質量に対する微粒子の固形分質量が13.1%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、微粒子及びバインダ前駆体を含む液状組成物B7を調製した。
<Liquid composition B7>
To 82.8 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 14.8 g of binder precursor A1 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid mass of the fine particles relative to the total solid mass was 13.1%, and the mixture was mixed and stirred to prepare a liquid composition B7 containing fine particles and binder precursor.
<液状組成物B8>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液82.8gに、14.8gのバインダ前駆体A3と、全固形分質量に対する微粒子の固形分質量が10.0%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、微粒子及びバインダ前駆体を含む液状組成物B8を調製した。
<Liquid composition B8>
To 82.8 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 14.8 g of binder precursor A3 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 10.0%, and the mixture was mixed and stirred to prepare a liquid composition B8 containing fine particles and binder precursor.
<液状組成物B9>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液71.4gに、15.7gのバインダ前駆体A1と、全固形分質量に対する微粒子の固形分質量が54.2%となるように、日揮触媒化成社製の酸化チタン微粒子OPTOLAKE(平均粒子径8~12nm(呼び);溶媒:メタノール等)とを加えて、混合、攪拌し、微粒子及びバインダ前駆体を含む液状組成物B9を調製した。
<Liquid composition B9>
To 71.4 g of a mixed liquid of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 15.7 g of binder precursor A1 and titanium oxide fine particles OPTOLAKE (average particle diameter 8 to 12 nm (nominal); solvent: methanol or the like) manufactured by JGC Catalysts and Chemicals were added so that the solid content mass of the fine particles relative to the total solid content mass was 54.2%, and the mixture was mixed and stirred to prepare a liquid composition B9 containing fine particles and a binder precursor.
<液状組成物B10>
 1‐メトキシ‐2‐プロパノールと、3‐メトキシ‐3‐メチル‐1‐ブタノールとの混合液86.2gに、0.04gのバインダ前駆体A1と、全固形分質量に対する微粒子の固形分質量が99.8%となるように、日揮触媒化成社製のスルーリア4110とを加えて、混合、攪拌し、中空微粒子及びバインダ前駆体を含む液状組成物B10を調製した。
<Liquid composition B10>
To 86.2 g of a mixed solution of 1-methoxy-2-propanol and 3-methoxy-3-methyl-1-butanol, 0.04 g of binder precursor A1 and Sururia 4110 manufactured by JGC Catalysts and Chemicals were added so that the solid mass of the fine particles relative to the total solid mass was 99.8%, and the mixture was mixed and stirred to prepare a liquid composition B10 containing hollow fine particles and a binder precursor.
 <実施例1>
 基材として、2.1mmの厚みを有するコーニング社製ホウケイ酸ガラスであるD263 T eco(屈折率nD:1.5230)の基板を用い、アルカリ溶液及び有機溶剤でこの基板を適切に洗浄し、この基板の一方の主面上に液状組成物B1を適量滴下してスピンコーティングにより塗膜を形成した。この基板は平面視で1辺の長さが70mmの正方形状であった。次に、塗膜が形成された基板を、恒温乾燥機の内部に静置して、30℃で30分間静置した後に、恒温乾燥機の内部の温度を200℃に調節し、その温度を200℃に10分間保った。その後、恒温乾燥機の内部の温度を室温まで自然に降温させて、恒温乾燥機から低屈折率層が設けられた基板を取り出し、実施例1に係る反射防止膜を作製した。
Example 1
As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B1 was dropped onto one main surface of the substrate to form a coating film by spin coating. This substrate was a square with a side length of 70 mm in plan view. Next, the substrate on which the coating film was formed was placed in a thermostatic dryer and left at 30°C for 30 minutes, and then the temperature inside the thermostatic dryer was adjusted to 200°C and the temperature was maintained at 200°C for 10 minutes. Thereafter, the temperature inside the thermostatic dryer was naturally lowered to room temperature, and the substrate provided with the low refractive index layer was taken out of the thermostatic dryer, and the anti-reflection film according to Example 1 was produced.
 <実施例2>
 基材として、2.1mmの厚みを有するコーニング社製ホウケイ酸ガラスであるD263 T eco(屈折率nD:1.5230)の基板を用い、アルカリ溶液および有機溶剤でこの基板を適切に洗浄し、この基板の一方の主面上に液状組成物B2を適量滴下してスピンコーティングにより塗膜を形成した。次に、恒温槽の内部の温度を予め200℃に調節し、恒温槽の内部に塗膜の形成された基板を静置し、10分間経過後に恒温槽から基板を取り出して、室温25℃の室内に基板を静置して基板を降温させて、実施例2に係る反射防止膜を作製した。
Example 2
As the base material, a substrate of D263 T eco (refractive index n D : 1.5230), which is borosilicate glass manufactured by Corning Incorporated and has a thickness of 2.1 mm, was used, the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B2 was dropped onto one main surface of the substrate, and a coating film was formed by spin coating. Next, the temperature inside the thermostatic chamber was adjusted to 200°C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was taken out of the thermostatic chamber, and the substrate was left in a room at room temperature of 25°C to cool the substrate, thereby producing an anti-reflection film according to Example 2.
 <実施例3>
 液状組成物B2の代わりに液状組成物B4を用いたこと以外は、実施例2と同様にして、実施例3に係る反射防止膜を作製した。
Example 3
An anti-reflection film according to Example 3 was prepared in the same manner as in Example 2, except that Liquid Composition B4 was used instead of Liquid Composition B2.
 <実施例4>
 基材として、2.1mmの厚みを有するコーニング社製ホウケイ酸ガラスであるD263 T eco(屈折率nD:1.5230)の基板を用い、アルカリ溶液および有機溶剤でこの基板を適切に洗浄し、この基板の一方の主面上に液状組成物B6を適量滴下してスピンコーティングにより塗膜を形成した。次に、恒温槽の内部の温度を予め200℃に調節し、恒温槽の内部に塗膜の形成された基板を静置し、10分間経過後に恒温槽から基板を取り出して、室温25℃の室内に基板を静置して基板を降温させて、実施例4に係る下部層を形成した。次に、この下部層の表面に、液状組成物B1を適量滴下してスピンコーティングにより塗膜を形成した。次に、恒温槽の内部の温度を予め200℃に調節し、恒温槽の内部に塗膜の形成された基板を静置し、10分間経過後に恒温槽から基板を取り出して、室温25℃の室内に基板を静置して基板を降温させて、実施例4に係る反射防止膜を作製した。
Example 4
As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and an appropriate amount of liquid composition B6 was dropped onto one main surface of the substrate to form a coating film by spin coating. Next, the temperature inside the thermostatic chamber was adjusted to 200°C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was removed from the thermostatic chamber and left in a room at room temperature of 25°C to lower the temperature of the substrate, thereby forming the lower layer according to Example 4. Next, an appropriate amount of liquid composition B1 was dropped onto the surface of the lower layer to form a coating film by spin coating. Next, the temperature inside the thermostatic chamber was adjusted to 200°C in advance, and the substrate on which the coating film was formed was placed inside the thermostatic chamber. After 10 minutes had elapsed, the substrate was removed from the thermostatic chamber and placed in a room at room temperature of 25°C to cool the substrate, thereby producing an anti-reflection film according to Example 4.
 <実施例5>
 液状組成物B6の代わりに液状組成物B8を用い、液状組成物B1の代わりに液状組成物B2を用いたこと以外は、実施例4と同様にして、実施例5に係る反射防止膜を作製した。
Example 5
An anti-reflection film according to Example 5 was prepared in the same manner as in Example 4, except that Liquid Composition B8 was used instead of Liquid Composition B6, and Liquid Composition B2 was used instead of Liquid Composition B1.
 <実施例6>
 液状組成物B6の代わりに液状組成物B7を用い、液状組成物B1の代わりに液状組成物B5を用いたこと以外は、実施例4と同様にして、実施例6に係る反射防止膜を作製した。
Example 6
An anti-reflection film according to Example 6 was prepared in the same manner as in Example 4, except that Liquid Composition B7 was used instead of Liquid Composition B6, and Liquid Composition B5 was used instead of Liquid Composition B1.
 <実施例7>
 液状組成物B6の代わりに液状組成物B9を用いたこと以外は、実施例4と同様にして、実施例7に係る反射防止膜を作製した。
Example 7
An anti-reflection film according to Example 7 was prepared in the same manner as in Example 4, except that Liquid Composition B9 was used instead of Liquid Composition B6.
 <実施例8>
 基材として、2.1mmの厚みを有するコーニング社製ホウケイ酸ガラスであるD263 T eco(屈折率nD:1.5230)の基板を用い、アルカリ溶液および有機溶剤でこの基板を適切に洗浄し、この基板の一方の主面上にSiO2の単層膜を真空蒸着法によって形成した。SiO2単層膜の厚みは103nmであった。次に、SiO2単層膜の表面に、液状組成物B3を適量滴下してスピンコーティングにより塗膜を形成させた。恒温槽の内部の温度を予め200℃に調節し、恒温槽の内部に塗膜が形成された基板を静置し、10分間経過後に恒温槽から基板を取り出して、室温25℃の室内に基板を静置して基板を降温させて、実施例8に係る反射防止膜を作製した。
Example 8
As the substrate, a Corning borosilicate glass D263 T eco (refractive index n D : 1.5230) having a thickness of 2.1 mm was used, and the substrate was properly washed with an alkaline solution and an organic solvent, and a single layer of SiO 2 was formed on one main surface of the substrate by a vacuum deposition method. The thickness of the SiO 2 single layer was 103 nm. Next, an appropriate amount of liquid composition B3 was dropped onto the surface of the SiO 2 single layer to form a coating film by spin coating. The temperature inside the thermostatic chamber was adjusted to 200 ° C in advance, and the substrate on which the coating film was formed was left inside the thermostatic chamber, and after 10 minutes, the substrate was removed from the thermostatic chamber, and the substrate was left in a room at room temperature of 25 ° C to cool the substrate, thereby producing an anti-reflection film according to Example 8.
 <実施例9>
 液状組成物B6の代わりに液状組成物B8を用い、液状組成物B1の代わりに液状組成物B10を用いたこと以外は、実施例4と同様にして、実施例9に係る反射防止膜を作製した。
<Example 9>
An anti-reflection film according to Example 9 was prepared in the same manner as in Example 4, except that Liquid Composition B8 was used instead of Liquid Composition B6, and Liquid Composition B10 was used instead of Liquid Composition B1.
 各実施例に係る反射防止膜並びにこれらの反射防止膜の作製に用いた液状組成物に関する条件を表1に示す。 Table 1 shows the conditions for the anti-reflective films in each example and the liquid compositions used to prepare these anti-reflective films.
 <フィッティングのための反射防止膜>
 反射スペクトルのフィッティングのために、基材として、D263 T ecoの基板の代わりに、シリコンウエハーを用いたこと以外は、各実施例と同様にして、シリコンウエハー上に、各実施例に係る反射防止膜に対応する膜を作製した。
<Anti-reflection coating for fitting>
For fitting of the reflection spectrum, a film corresponding to the antireflection film according to each example was prepared on a silicon wafer in the same manner as in each example, except that a silicon wafer was used as a base material instead of the D263 T eco substrate.
 <反射率及び反射スペクトルの測定>
 各実施例に係る反射防止膜について、日本分光社製の紫外可視近赤外分光光度計V-770を用い、5°の入射角度における、反射スペクトルを測定した。さらに、代表的な反射率としてD線(波長589.6nm)における反射率を取得した。結果を表2に示す。また、同様にして、シリコンウエハー上に形成された膜の反射スペクトルを測定した。実施例1、実施例4、実施例5、及び実施例7に係る反射防止膜の反射スペクトルを、それぞれ、図5、図6、図7、及び図8に示す。
<Measurement of reflectance and reflectance spectrum>
The reflection spectrum of the antireflection coating according to each Example was measured at an incident angle of 5° using a UV-Vis-NIR spectrophotometer V-770 manufactured by JASCO Corporation. Furthermore, the reflectance at the D line (wavelength 589.6 nm) was obtained as a representative reflectance. The results are shown in Table 2. Similarly, the reflection spectrum of the film formed on the silicon wafer was also measured. The reflection spectra of the antireflection coatings according to Examples 1, 4, 5, and 7 are shown in Figures 5, 6, 7, and 8, respectively.
 <反射防止膜の断面の観察>
 各実施例に係る反射防止膜を、基板の主面に垂直な面に沿って切断し、その切断面に対してカーボン蒸着による導電処理を行い、試料を作製した。日立ハイテク社製の電界放射形走査型電子顕微鏡(FE-SEM)SU8220を用いてこの試料を観察し、各実施例に係る反射防止膜の断面の10万倍のSEM画像を取得した。取得した10万倍の各実施例に係る反射防止膜の断面のSEM画像において、厚み方向にすべての層が含まれるように500nm四方の領域を特定し、当該領域内に存在する微粒子を特定し、各微粒子の輪郭を円で近似した。500nm四方の領域に存在する微粒子の輪郭を近似した円において、円の面積のうち半分以上を認識できる微粒子を特定してそれらの円の直径を測定し、その測定値を各微粒子径の直径と定めた。500nm四方の領域に存在するすべての微粒子の直径の算術平均を求め、各実施例に係る反射防止膜の各層に含まれる微粒子の平均粒子径Dpを求めた。
<Observation of the cross section of the anti-reflective coating>
The anti-reflective film according to each example was cut along a plane perpendicular to the main surface of the substrate, and the cut surface was subjected to a conductive treatment by carbon deposition to prepare a sample. The sample was observed using a field emission scanning electron microscope (FE-SEM) SU8220 manufactured by Hitachi High-Tech Corporation, and a 100,000-fold magnification SEM image of the cross section of the anti-reflective film according to each example was obtained. In the obtained 100,000-fold magnification SEM image of the cross section of the anti-reflective film according to each example, a 500 nm square region was specified so that all layers were included in the thickness direction, fine particles present in the region were specified, and the outline of each fine particle was approximated by a circle. In the circle approximating the outline of the fine particles present in the 500 nm square region, fine particles that can be recognized in more than half of the circle area were specified, and the diameter of the circle was measured, and the measured value was defined as the diameter of each fine particle diameter. The arithmetic average of the diameters of all fine particles present in the 500 nm square region was obtained, and the average particle diameter D p of the fine particles contained in each layer of the anti-reflective film according to each example was obtained.
 加えて、実施例4~9に係る反射防止膜の断面の各SEM画像において、厚み方向にすべての層が含まれるように特定した500nm四方の領域において円で近似された微粒子を特定し、層間の境界において基板に近い層に一部が埋もれている微粒子の数NM1を求めた。加えて、層間の境界において一部が基板に近い側の層に埋もれている微粒子の近似円の面積SLと、その近似円において埋もれている部分的な円状の部位に対応する面積SMを求め、比SM/SLを求めた。 In addition, in each SEM image of the cross section of the antireflection coating according to Examples 4 to 9, fine particles approximated by a circle were identified in a 500 nm square region specified so as to include all layers in the thickness direction, and the number N M1 of fine particles partly buried in the layer closer to the substrate at the boundary between layers was calculated. In addition, the area S L of the approximate circle of the fine particles partly buried in the layer closer to the substrate at the boundary between layers and the area S M corresponding to the partial circular portion buried in the approximate circle were calculated, and the ratio S M /S L was calculated.
 上記の各SEM画像において、基板の表面に対応する略直線を特定したうえで、当該線に平行となるように、各層の境界線を特定し、各層の厚みを測定した。実施例1~3に係る反射防止膜の断面のSEM画像において、第一層及び第二層を含む層全体の厚みtLLを測定した。実施例4及び7に係る反射防止膜の断面のSEM画像において、第一層及び第二層を含む層全体の厚みtLLと、第三層の厚みtM3とを測定した。実施例5及び6に係る反射防止膜の断面のSEM画像において、第一層及び第二層を含む層全体の厚みtLLと、第三層及び第四層を含む層の厚みtMMを測定した。実施例1~3において、第一層及び第二層は、基板に向かってこの順番で配置されていた。実施例4及び7において、第一層、第二層、及び第三層は、基板に向かってこの順番で配置されていた。実施例5及び6において、第一層、第二層、第三層、及び第四層は、基板に向かってこの順番で配置されていた。図9は、実施例1に係る反射防止膜の断面のSEM画像である。図10は、実施例5に係る反射防止膜の断面のSEM画像である。図9及び図10において、白色の破線で囲まれた領域は、平均粒子径Dp、微粒子の数NM1、比SM/SLを求めるために選択された500nm四方の領域を示す。 In each of the above SEM images, an approximately straight line corresponding to the surface of the substrate was identified, and then the boundary line of each layer was identified so as to be parallel to the line, and the thickness of each layer was measured. In the SEM images of the cross sections of the antireflective coatings according to Examples 1 to 3, the thickness t LL of the entire layer including the first layer and the second layer was measured. In the SEM images of the cross sections of the antireflective coatings according to Examples 4 and 7, the thickness t LL of the entire layer including the first layer and the second layer and the thickness t M3 of the third layer were measured. In the SEM images of the cross sections of the antireflective coatings according to Examples 5 and 6, the thickness t LL of the entire layer including the first layer and the second layer and the thickness t MM of the layer including the third layer and the fourth layer were measured. In Examples 1 to 3, the first layer and the second layer were arranged in this order toward the substrate. In Examples 4 and 7, the first layer, the second layer, and the third layer were arranged in this order toward the substrate. In Examples 5 and 6, the first layer, the second layer, the third layer, and the fourth layer were arranged in this order toward the substrate. FIG. 9 is a SEM image of a cross section of the antireflective coating according to Example 1. Fig. 10 is an SEM image of a cross section of the antireflection coating according to Example 5. In Fig. 9 and Fig. 10, the area surrounded by a white dashed line indicates a 500 nm square area selected for determining the average particle diameter Dp , the number of fine particles NMI , and the ratio S / SL .
 <反射スペクトルのフィッティング>
 HULINKS社製の光学薄膜コーティング特性計算ソフトウェアであるTFCalc(登録商標)を用いて、シリコンウエハー上に形成された各実施例に係る膜の実測による反射スペクトルと、シミュレーションにより算出された反射スペクトルとのフィッティングを行うことによって、各実施例に係る各膜に含まれる層の屈折率及び層の厚み等のパラメータを算出した。このようにして算出された屈折率及び厚みを、各実施例に係る反射防止膜における各層の屈折率及び厚みとみなしうる。
<Reflectance spectrum fitting>
Using TFCalc (registered trademark), an optical thin film coating characteristic calculation software manufactured by HULINKS, the reflection spectrum of the film according to each embodiment formed on a silicon wafer was fitted to the reflection spectrum calculated by simulation to calculate parameters such as the refractive index and thickness of the layer included in each film according to each embodiment. The refractive index and thickness calculated in this way can be regarded as the refractive index and thickness of each layer in the anti-reflection film according to each embodiment.
 実施例1~3については、第一層の屈折率nL1、第二層の屈折率nL2、第一層の厚みtL1、及び第二層の厚みtL2が求められた。第二層の厚みtL2は、第二層に含まれるバインダが第二層と基材との表面に偏在しているものと仮定でき、厚みtL2が2nmであると仮定できた。 The refractive index n L1 of the first layer, the refractive index n L2 of the second layer, the thickness t L1 of the first layer, and the thickness t L2 of the second layer were determined for Examples 1 to 3. It was assumed that the binder contained in the second layer was unevenly distributed on the surface between the second layer and the substrate, and it was assumed that the thickness t L2 of the second layer was 2 nm.
 実施例4及び7については、第一層の屈折率nL1、第二層の屈折率nL2、第三層の屈折率nL3、第一層の厚みtL1、第二層の厚みtL2、及び第三層の厚みtM3が求められた。第二層の厚みtL2は、第二層に含まれるバインダが第二層と基材との表面に偏在しているものと仮定でき、厚みtL2が2nmであると仮定できた。 The refractive index nL1 of the first layer, the refractive index nL2 of the second layer, the refractive index nL3 of the third layer, the thickness tL1 of the first layer, the thickness tL2 of the second layer, and the thickness tM3 of the third layer were determined for Examples 4 and 7. It was assumed that the binder contained in the second layer was unevenly distributed on the surface between the second layer and the substrate, and it was assumed that the thickness tL2 of the second layer was 2 nm.
 実施例5、6、及び9については、第一層の屈折率nL1、第二層の屈折率nL2、第三層の屈折率nL3、第四層の屈折率nL4、第一層の厚みtL1、第二層の厚みtL2、第三層の厚みtM3、及び第四層の厚みtM4が求められた。第二層の厚みtL2は、第三層に含まれる中空微粒子の外殻の厚みである14nmと、第一層と第二層との境界に偏在しているバインダの厚みである2nmとの和に対応して、16nmと仮定できた。 The refractive index nL1 of the first layer, the refractive index nL2 of the second layer, the refractive index nL3 of the third layer, the refractive index nL4 of the fourth layer, the thickness tL1 of the first layer, the thickness tL2 of the second layer, the thickness tM3 of the third layer, and the thickness tM4 of the fourth layer were determined for Examples 5, 6, and 9. The thickness tL2 of the second layer was assumed to be 16 nm, which corresponds to the sum of 14 nm, which is the thickness of the outer shell of the hollow fine particles contained in the third layer, and 2 nm, which is the thickness of the binder unevenly distributed at the boundary between the first layer and the second layer.
 <付着性試験>
 実施例に係る反射防止膜の付着性の試験を、日本産業規格(JIS) K5600-5-6に準拠した条件及び方法(クロスカットピール試験)によって行った。実施例に係る反射防止膜の表面に、1mm間隔で縦横6本のカットラインを入れて、平面視で1辺の長さが1mmである正方形状の25個のマス目をなすカットラインパターンが形成された。この反射防止膜付基板をフラットなガラス台に静置し、反射防止膜に対して、粘着テープを3.3N/cm2の面圧で貼り付け、その粘着テープを60°の角度でテープの端を持ち上げながら、1秒間かけて反射防止膜の表面から剥がした。粘着テープは、ニチバン(株)製クリーンルーム用セロテープCRCT-18を用いた。セロテープは登録商標である。カットラインパターンが形成された反射防止膜の表面の全体において粘着テープの貼り付け及び粘着テープの剥がしを2回行った。下記の評価基準に従って、各反射防止膜の付着性を評価した。結果を表2に示す。表2に示す通り、実施例1~8に係る反射防止膜は、実施例9に係る反射防止膜に対して高い付着性を有していた。
 A:25個のマス目のうち剥がれたマス目の数が0である。
 B:25個のマス目のうち剥がれたマス目の数が0以上5%未満である。
 C:25個のマス目のうち剥がれたマス目の数が5%以上15%未満である。
 D:25個のマス目のうち剥がれたマス目の数が15%以上35%未満である。
 E:25個のマス目のうち剥がれたマス目の数が35%以上である。
<Adhesion test>
The adhesion test of the anti-reflective film according to the embodiment was carried out under the conditions and method (cross-cut peel test) according to Japanese Industrial Standards (JIS) K5600-5-6. Six cut lines were drawn vertically and horizontally at 1 mm intervals on the surface of the anti-reflective film according to the embodiment, forming a cut line pattern of 25 squares with a side length of 1 mm in plan view. The substrate with the anti-reflective film was placed on a flat glass table, and an adhesive tape was attached to the anti-reflective film with a surface pressure of 3.3 N/cm 2 , and the adhesive tape was peeled off from the surface of the anti-reflective film over 1 second while lifting the end of the tape at an angle of 60°. The adhesive tape used was cleanroom cellophane tape CRCT-18 manufactured by Nichiban Co., Ltd. Cellophane tape is a registered trademark. The adhesive tape was attached and peeled off twice on the entire surface of the anti-reflective film on which the cut line pattern was formed. The adhesion of each anti-reflective film was evaluated according to the following evaluation criteria. The results are shown in Table 2. As shown in Table 2, the anti-reflective coatings according to Examples 1 to 8 had high adhesion to the anti-reflective coating according to Example 9.
A: Of the 25 squares, 0 were peeled off.
B: The number of peeled squares out of 25 squares is 0 or more and less than 5%.
C: The number of peeled squares out of 25 squares is 5% or more and less than 15%.
D: The number of peeled squares out of 25 squares is 15% or more and less than 35%.
E: The number of peeled squares out of 25 squares is 35% or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (27)

  1.  基材上に設けられる反射防止膜であって、
     前記反射防止膜は、前記反射防止膜の表面側から順に第一層と、第二層と、を備え、
     前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
     前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有する、
     反射防止膜。
    An anti-reflection film provided on a substrate,
    The antireflection film includes a first layer and a second layer in this order from a front surface side of the antireflection film,
    The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
    The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less.
    Anti-reflective coating.
  2.  nL1<nL2の条件が満たされている、
     請求項1に記載の反射防止膜。
    The condition n L1 <n L2 is satisfied.
    The anti-reflective coating according to claim 1 .
  3.  前記反射防止膜は、第一中空微粒子と、前記第一中空微粒子を結着する第一バインダとを含み、前記反射防止膜中の前記第一中空微粒子の含有率は、質量基準で80%~99.5%である、
     請求項1又は2に記載の反射防止膜。
    the anti-reflection film includes first hollow fine particles and a first binder that binds the first hollow fine particles, and a content of the first hollow fine particles in the anti-reflection film is 80% to 99.5% by mass;
    The anti-reflection film according to claim 1 or 2.
  4.  前記第一中空微粒子は、5nm~200nmの平均粒子径Dpを有する、
     請求項3に記載の反射防止膜。
    The first hollow fine particles have an average particle diameter Dp of 5 nm to 200 nm.
    The anti-reflective coating according to claim 3 .
  5.  前記第一バインダは、アルコキシシラン、アルコキシシランの加水分解物、及びアルコキシシランの加水分解物の重合物からなる群より選ばれる少なくとも1つを含む、
     請求項3又は4に記載の反射防止膜。
    The first binder includes at least one selected from the group consisting of alkoxysilane, a hydrolyzate of an alkoxysilane, and a polymer of a hydrolyzate of an alkoxysilane.
    The anti-reflection film according to claim 3 or 4.
  6.  波長400nm~800nmの範囲内における最小の反射率は、0.5%以下である、
     請求項1~5のいずれか1項に記載の反射防止膜。
    The minimum reflectance in the wavelength range of 400 nm to 800 nm is 0.5% or less.
    The anti-reflection film according to any one of claims 1 to 5.
  7.  波長300nm~1200nmの範囲内において反射率が1%以下となる範囲λrange/1.0は、250nm以上である、
     請求項1~6のいずれか1項に記載の反射防止膜。
    The range λ range/1.0 in which the reflectance is 1% or less in the wavelength range of 300 nm to 1200 nm is 250 nm or more.
    The anti-reflection film according to any one of claims 1 to 6.
  8.  前記第二層と前記基材との間に配置されている第三層をさらに備え、
     前記第三層は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みを有する、
     請求項1~7のいずれか1項に記載の反射防止膜。
    a third layer disposed between the second layer and the substrate;
    The third layer has a refractive index n L3 of 1.30 to 2.25 and a thickness of 60 nm to 200 nm.
    The anti-reflection film according to any one of claims 1 to 7.
  9.  nL1<nL3<nL2の条件が満たされている、
     請求項8に記載の反射防止膜。
    The condition n L1 < n L3 < n L2 is satisfied.
    The anti-reflective coating according to claim 8 .
  10.  前記第一層及び前記第二層は、第一複層構造をなしており、
     前記第一複層構造は、第一中空微粒子と、前記第一中空微粒子を結着する第一バインダとを含んでおり、
     前記第三層は、少なくとも第二バインダを含んでいる、
     請求項8又は9に記載の反射防止膜。
    The first layer and the second layer form a first multi-layer structure,
    the first multilayer structure includes first hollow particles and a first binder that binds the first hollow particles,
    The third layer includes at least a second binder.
    The anti-reflection film according to claim 8 or 9.
  11.  前記第二層と前記基材との間に配置されている第三層と、
     前記第三層と前記基材との間に配置されている第四層と、をさらに備え、
     前記第三層は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みを有し、
     前記第四層は、1.30~1.55の屈折率nL4及び25nm以下の厚みを有する、
     請求項1~7のいずれか1項に記載の反射防止膜。
    a third layer disposed between the second layer and the substrate;
    a fourth layer disposed between the third layer and the substrate,
    The third layer has a refractive index n L3 of 1.30 to 2.25 and a thickness of 60 nm to 200 nm;
    The fourth layer has a refractive index n L4 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The anti-reflection film according to any one of claims 1 to 7.
  12.  前記第一層及び前記第二層は、第一複層構造をなしており、
     前記第三層及び前記第四層は、第二複層構造をなしており、
     前記第一複層構造は、第一中空微粒子と、前記第一中空微粒子を結着する第一バインダとを含んでおり、
     前記第二複層構造は、第二中空微粒子と、前記第二中空微粒子を結着する第二バインダとを含んでいる、
     請求項11に記載の反射防止膜。
    The first layer and the second layer form a first multi-layer structure,
    the third layer and the fourth layer form a second multi-layer structure,
    the first multilayer structure includes first hollow particles and a first binder that binds the first hollow particles,
    the second multilayer structure includes second hollow particles and a second binder that binds the second hollow particles;
    The anti-reflective coating according to claim 11.
  13.  前記第一バインダの屈折率と前記第二バインダの屈折率との差は、0.01以下である、
     請求項12に記載の反射防止膜。
    The difference between the refractive index of the first binder and the refractive index of the second binder is 0.01 or less.
    The anti-reflective coating according to claim 12.
  14.  液状組成物であって、
     第一中空微粒子と、
     アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つと、含み、
     前記液状組成物の固形分に対する前記第一中空微粒子の質量比は、80%~99.5%である、
     液状組成物。
    A liquid composition comprising:
    First hollow microparticles;
    At least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes;
    a mass ratio of the first hollow fine particles to a solid content of the liquid composition is 80% to 99.5%;
    Liquid composition.
  15.  前記アルコキシシランは、四官能性アルコキシシラン及び三官能性アルコキシシランを含み、
     前記三官能性アルコキシシランの物質量に対する前記四官能性アルコキシシランの物質量の比は、1/9~9である、
     請求項14に記載の液状組成物。
    The alkoxysilanes include tetrafunctional alkoxysilanes and trifunctional alkoxysilanes;
    the ratio of the amount of the tetrafunctional alkoxysilane to the amount of the trifunctional alkoxysilane is 1/9 to 9;
    The liquid composition according to claim 14.
  16.  液状組成物群であって、
     第一中空微粒子及び第一バインダの前駆体を含む第一液状組成物と、
     第二中空微粒子及び第二バインダの前駆体を含む第二液状組成物と、を含み、
     前記第一液状組成物は、前記第一液状組成物の固化により、第一層と、第二層の第一部位とを形成可能であり、
     前記第二液状組成物は、前記第二液状組成物の固化により、第二層の第二部位と、第三層と、第四層とを形成可能である、
     液状組成物群。
    A liquid composition group,
    a first liquid composition including a precursor of first hollow fine particles and a first binder;
    a second liquid composition including a precursor of second hollow fine particles and a precursor of a second binder;
    the first liquid composition is capable of forming a first layer and a first portion of a second layer by solidification of the first liquid composition;
    the second liquid composition is capable of forming a second portion of the second layer, a third layer, and a fourth layer by solidification of the second liquid composition;
    Liquid compositions.
  17.  前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
     前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有し、
     前記第三層は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みを有し、
     前記第四層は、1.30~1.55の屈折率nL4及び25nm以下の厚みを有する、
     請求項16に記載の液状組成物群。
    The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
    The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The third layer has a refractive index n L3 of 1.30 to 2.25 and a thickness of 60 nm to 200 nm;
    The fourth layer has a refractive index n L4 of 1.30 to 1.55 and a thickness of 25 nm or less;
    17. The liquid compositions according to claim 16.
  18.  前記第一液状組成物の固形分の質量に対する前記第一中空微粒子の固形分の質量の比は、前記第二液状組成物の固形分の質量に対する前記第二中空微粒子の固形分の質量の比より大きい、
     請求項16又は17に記載の液状組成物群。
    a ratio of the mass of the solid content of the first hollow fine particles to the mass of the solid content of the first liquid composition is greater than a ratio of the mass of the solid content of the second hollow fine particles to the mass of the solid content of the second liquid composition;
    18. The liquid compositions according to claim 16 or 17.
  19.  反射防止膜の製造方法であって、
     第一中空微粒子と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第一液状組成物を基材上に塗工することと、
     前記第一液状組成物を固化させることと、を含み、
     前記第一中空微粒子の前記第一液状組成物に対する質量比は、80%~99.5%であり、
     前記反射防止膜は、前記反射防止膜の表面から順に第一層と第二層とを分離して含む、
     反射防止膜の製造方法。
    A method for producing an anti-reflective coating, comprising the steps of:
    applying a first liquid composition containing first hollow fine particles and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes onto a substrate;
    and solidifying the first liquid composition,
    a mass ratio of the first hollow fine particles to the first liquid composition is 80% to 99.5%;
    The antireflection film includes a first layer and a second layer separated from each other in this order from a surface of the antireflection film.
    A method for manufacturing an anti-reflective coating.
  20.  前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
     前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有し、
     nL1<nL2の条件が満たされている、
     請求項19に記載の反射防止膜の製造方法。
    The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
    The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The condition n L1 <n L2 is satisfied.
    The method for producing the anti-reflection coating according to claim 19.
  21.  前記反射防止膜は、波長400nm~800nmの範囲内における最小の反射率が0.5%以下であり、かつ、波長300nm~1200nmの範囲内おいて反射率が1%以下となる範囲λrange/1.0が250nm以上である、反射スペクトルを有する、
     請求項19又は20に記載の反射防止膜の製造方法。
    The antireflection film has a reflection spectrum in which the minimum reflectance in a wavelength range of 400 nm to 800 nm is 0.5% or less, and the range λ range/1.0 in which the reflectance in a wavelength range of 300 nm to 1200 nm is 1% or less is 250 nm or more.
    The method for producing an anti-reflection film according to claim 19 or 20.
  22.  前記第二層は、前記第一中空微粒子の外殻の一部と、前記アルコキシシランの加水分解物の重合物の一部とを含む、
     請求項19~21のいずれか1項に記載の反射防止膜の製造方法。
    the second layer includes a part of the outer shell of the first hollow fine particle and a part of the polymer of the hydrolyzate of the alkoxysilane.
    The method for producing the anti-reflection film according to any one of claims 19 to 21.
  23.  反射防止膜の製造方法であって、
     基材上に、誘電体を含む第三層を形成することと、
     第一中空微粒子と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第一液状組成物を前記第三層の表面に塗工することと、
     前記第一液状組成物を固化させることと、を含み、
     前記反射防止膜は、前記反射防止膜の表面から順に第一層と第二層とを分離して含み、
     前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
     前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有し、
     前記第三層は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みを有し、
     nL1<nL2の条件が満たされている、
     反射防止膜の製造方法。
    A method for producing an anti-reflective coating, comprising the steps of:
    forming a third layer comprising a dielectric on the substrate;
    applying a first liquid composition containing first hollow fine particles and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes to a surface of the third layer;
    and solidifying the first liquid composition,
    the antireflection film includes a first layer and a second layer separated from each other in this order from a surface of the antireflection film,
    The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
    The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The third layer has a refractive index n L3 of 1.30 to 2.25 and a thickness of 60 nm to 200 nm;
    The condition n L1 <n L2 is satisfied.
    A method for manufacturing an anti-reflective coating.
  24.  前記第三層は、次の(i)及び/又は(ii)の層を含む、
     請求項23に記載の反射防止膜の製造方法。
     (i)SiO2、MgF2、TiO2、Ta23、AlF3、CaF2、Al23、ZrO2、WO3、CeO2、酸化インジウムスズ、及び酸化アンチモンスズからなる群より選ばれる一種類又は二種類以上の酸化物を含む誘電体膜を含む層
     (ii)SiO2、TiO2、ZrO2、CeO2、酸化インジウムスズ、及び酸化アンチモンスズからなる群より選ばれる一種類又は二種類以上の材質から構成される酸化物の微粒子と、前記酸化物の微粒子を結着するためのバインダとを含む層
    The third layer includes the following layers (i) and/or (ii):
    The method for producing the anti-reflection coating according to claim 23.
    (i) a layer including a dielectric film including one or more oxides selected from the group consisting of SiO2 , MgF2 , TiO2 , Ta2O3 , AlF3 , CaF2 , Al2O3 , ZrO2 , WO3 , CeO2 , indium tin oxide, and antimony tin oxide; (ii) a layer including oxide particles composed of one or more materials selected from the group consisting of SiO2 , TiO2 , ZrO2 , CeO2 , indium tin oxide, and antimony tin oxide, and a binder for binding the oxide particles.
  25.  反射防止膜の製造方法であって、
     酸化物を含む第二微粒子と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第二液状組成物を基材上に塗工することと、
     前記第二液状組成物を固化させることと、
     第一中空微粒子と、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれる少なくとも1つとを含む第一液状組成物を、前記第二液状組成物の固化物の表面に塗工することと、
     前記第一液状組成物を固化させることと、を含み、
     前記反射防止膜は、前記反射防止膜の表面から順に、第一層、第二層、第三層、及び第四層を分離して含み、
     前記第二層は、前記第一中空微粒子の外殻の一部と、アルコキシシランの加水分解物の重合物の一部と、前記第二微粒子の一部とを含む、
     反射防止膜の製造方法。
    A method for producing an anti-reflective coating, comprising the steps of:
    applying a second liquid composition containing second fine particles containing an oxide and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes onto a substrate;
    allowing the second liquid composition to solidify; and
    applying a first liquid composition containing first hollow fine particles and at least one selected from the group consisting of alkoxysilanes and hydrolysates of alkoxysilanes to a surface of a solidified product of the second liquid composition;
    and solidifying the first liquid composition,
    the antireflection film includes a first layer, a second layer, a third layer, and a fourth layer, which are separated from each other in this order from a surface of the antireflection film,
    the second layer includes a part of the outer shells of the first hollow fine particles, a part of a polymer of an alkoxysilane hydrolysate, and a part of the second fine particles.
    A method for manufacturing an anti-reflective coating.
  26.  前記第一層は、1.10~1.35の屈折率nL1及び80nm~150nmの厚みを有し、
     前記第二層は、1.30~1.55の屈折率nL2及び25nm以下の厚みを有し、
     前記第三層は、1.30~2.25の屈折率nL3及び60nm~200nmの厚みを有し、
     前記第四層は、1.30~1.55の屈折率nL4及び25nm以下の厚みを有し、
     nL1<nL2及びnL3<nL4の条件が満たされている、
     請求項25に記載の反射防止膜の製造方法。
    The first layer has a refractive index n L1 between 1.10 and 1.35 and a thickness between 80 nm and 150 nm;
    The second layer has a refractive index n L2 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The third layer has a refractive index n L3 of 1.30 to 2.25 and a thickness of 60 nm to 200 nm;
    The fourth layer has a refractive index n L4 of 1.30 to 1.55 and a thickness of 25 nm or less;
    The conditions n L1 < n L2 and n L3 < n L4 are satisfied.
    The method for producing the anti-reflection coating according to claim 25.
  27.  前記第一中空微粒子の前記第一液状組成物に対する質量比は、80%~99.5%であり、
     前記第二微粒子の前記第二液状組成物に対する質量比は、5%~75%である、
     請求項25又は26に記載の反射防止膜の製造方法。
    a mass ratio of the first hollow fine particles to the first liquid composition is 80% to 99.5%;
    The mass ratio of the second fine particles to the second liquid composition is 5% to 75%.
    A method for producing an anti-reflection coating according to claim 25 or 26.
PCT/JP2023/035315 2022-10-11 2023-09-27 Anti-reflection film, liquid composition, liquid composition group, and method for manufacturing anti-reflection film WO2024080149A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163461 2022-10-11
JP2022163461 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080149A1 true WO2024080149A1 (en) 2024-04-18

Family

ID=90669126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035315 WO2024080149A1 (en) 2022-10-11 2023-09-27 Anti-reflection film, liquid composition, liquid composition group, and method for manufacturing anti-reflection film

Country Status (1)

Country Link
WO (1) WO2024080149A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222450A (en) * 2015-09-11 2015-12-10 株式会社タムロン Anti-reflection film and optical element
US20200189951A1 (en) * 2017-04-24 2020-06-18 Lg Electronics Inc. Curved glass and manufacturing method thereof
WO2021132696A1 (en) * 2019-12-27 2021-07-01 日本板硝子株式会社 Transparent laminate
WO2021171912A1 (en) * 2020-02-28 2021-09-02 日本板硝子株式会社 Low-refractive-index film, laminate, optical element, windbreak material, and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222450A (en) * 2015-09-11 2015-12-10 株式会社タムロン Anti-reflection film and optical element
US20200189951A1 (en) * 2017-04-24 2020-06-18 Lg Electronics Inc. Curved glass and manufacturing method thereof
WO2021132696A1 (en) * 2019-12-27 2021-07-01 日本板硝子株式会社 Transparent laminate
WO2021171912A1 (en) * 2020-02-28 2021-09-02 日本板硝子株式会社 Low-refractive-index film, laminate, optical element, windbreak material, and display device

Similar Documents

Publication Publication Date Title
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
EP2718750B1 (en) Method for obtaining optical articles having superior abrasion resistant properties, and coated articles prepared according to such method
JP5064649B2 (en) Anti-reflection laminate
JP5558414B2 (en) Method for manufacturing antireflection laminate
KR101416610B1 (en) Paint for transparent film and transparent film coated substrate
US20090004462A1 (en) Inorganic-Organic Hybrid Nanocomposite Antiglare and Antireflection Coatings
US20060154044A1 (en) Anti-reflection coating and optical element having such anti-reflection coating for image sensors
KR101519497B1 (en) Anti-reflective film having improved scratch-resistant and manufacturing method thereof
JP5188251B2 (en) Anti-glare film
JP2006215542A (en) Anti-reflection coating and optical element having such anti-reflection coating for imaging system
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
WO2004113966A1 (en) Antireflective film
WO2004070436A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
JP6360836B2 (en) Anti-reflective coating composition containing siloxane compound, and anti-reflection film having surface energy controlled using the same
JP2008163205A (en) Coating for forming transparent coating film and substrate with transparent coating film
JP2011088787A (en) Composition for antireflection film, antireflection film, method for producing antireflection film, and substrate with antireflection film
WO2005085913A1 (en) Antireflection film and process for producing the same
JP2007316213A (en) Antireflection film and optical component using the same
JP6112753B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles
JP2007078711A (en) Antireflection film
JP6895760B2 (en) Method for producing silica-based particle dispersion liquid, silica-based particle dispersion liquid, coating liquid for forming a transparent film, and base material with a transparent film
JP2007114305A (en) Antireflection film for transfer
KR101659709B1 (en) Hollow-type aluminosilicate nanoparticle and preparation method thereof
JP2017182065A (en) Optical element and manufacturing method of the same
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877154

Country of ref document: EP

Kind code of ref document: A1