WO2024080116A1 - Sensor module - Google Patents

Sensor module Download PDF

Info

Publication number
WO2024080116A1
WO2024080116A1 PCT/JP2023/034685 JP2023034685W WO2024080116A1 WO 2024080116 A1 WO2024080116 A1 WO 2024080116A1 JP 2023034685 W JP2023034685 W JP 2023034685W WO 2024080116 A1 WO2024080116 A1 WO 2024080116A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic member
sensor
sensor module
signal
charged
Prior art date
Application number
PCT/JP2023/034685
Other languages
French (fr)
Japanese (ja)
Inventor
健一 森
誠 大野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024080116A1 publication Critical patent/WO2024080116A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a sensor module equipped with a sensor that detects deformation of a component.
  • Patent Document 1 describes a grip load detection device that detects a load applied by a user.
  • the grip load detection device includes a housing and a sensor.
  • the housing is gripped by a user.
  • the sensor is attached to the housing.
  • the sensor detects a load applied to the housing by the user's grip.
  • the sensor includes a piezoelectric film, a first electrode, and a second electrode. The sensor outputs a signal based on the potential difference between the first electrode and the second electrode.
  • the object of the present invention is to provide a sensor module in which the sensor that detects deformation of a component is less likely to malfunction.
  • the inventors of this application have considered the case where a sensor that detects deformation of a component and is equipped with a piezoelectric film, a signal electrode, and a reference electrode malfunctions.
  • the sensor outputs a signal based on the potential difference between the signal electrode and the reference electrode.
  • the inventors realized that if the member to which the sensor is attached contains a resin that easily becomes charged, the sensor may malfunction when the sensor is attached to the member so that the signal electrode is in close proximity to the member. For example, friction or the like occurs on the member, causing the member to become positively charged. The signal electrode may become negatively charged due to the effect of the charge on the member. In this case, the potential difference between the signal electrode and the reference electrode changes. As a result, the inventors realized that the sensor may output a signal indicating that the member is deformed even though the member is not deformed.
  • the inventors of the present application have investigated sensor modules in which the sensors are less likely to malfunction. As a result, the inventors of the present application have come up with the following invention.
  • the sensor module includes: An elastic member containing a resin; a first sensor in contact with the elastic member and including an upper electrode, a piezoelectric film, and a lower electrode; Switch, Equipped with The first sensor outputs a first signal corresponding to the deformation of the elastic member, the switch has a function of short-circuiting the upper electrode and the lower electrode, The lower electrode is a signal electrode.
  • X and Y are parts or members of the sensor module.
  • each part of X is defined as follows.
  • the front part of X means the front half of X.
  • the rear part of X means the rear half of X.
  • the left part of X means the left half of X.
  • the right part of X means the right half of X.
  • the upper part of X means the upper half of X.
  • the lower part of X means the lower half of X.
  • the front end of X means the front end of X.
  • the rear end of X means the rear end of X.
  • the left end of X means the left end of X.
  • the right end of X means the right end of X.
  • the upper end of X means the upper end of X.
  • the lower end of X means the lower end of X.
  • the front end of X means the front end of X and its vicinity.
  • the rear end of X means the rear end of X and its vicinity.
  • the left end of X means the left end of X and its vicinity.
  • the right end of X means the right end of X and its vicinity.
  • the upper end of X means the upper end of X and its vicinity.
  • the lower end of X means the lower end of X and its vicinity.
  • X is located above Y
  • X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps with Y.
  • X is located above Y
  • X is located directly above Y, and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap with Y.
  • This definition also applies to directions other than the upward direction.
  • the sensor module according to one embodiment of the present invention makes it less likely for the sensor that detects deformation of a component to malfunction.
  • FIG. 1 is a perspective view showing the appearance of a sensor module 1.
  • FIG. 2 is a diagram showing an example of the connections between the first sensor 11, the switch 12, and the arithmetic circuit 13.
  • FIG. 3 is a diagram of the first sensor 11 viewed from below.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a diagram showing an example of deformation of the piezoelectric film 111.
  • FIG. 6 is a diagram showing an example of the first signal Sig1 generated by the elastic member 10 being charged.
  • FIG. 7 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 is deformed so as to be twisted around the central axis CAX.
  • FIG. 8 is a flowchart showing an example of a process P executed by the arithmetic circuit 13.
  • FIG. 9 is a diagram showing the waveform of the first signal Sig1 when the arithmetic circuit 13 is executing the process P.
  • FIG. 10 is a perspective view showing the appearance of a sensor module 1a according to the first modification.
  • FIG. 11 is a diagram showing an example of the connections between the switch 12, the arithmetic circuit 13, and the second sensor 14a.
  • FIG. 12 is a diagram showing the second sensor 14a.
  • FIG. 13 is a diagram showing an example of processing by an arithmetic circuit 13b included in a sensor module 1b according to the second modification.
  • FIG. 14 is a block diagram showing an example of a sensor module 1c according to the third modification.
  • FIG. 15 is a block diagram showing an example of a sensor module 1d according to the fourth modification.
  • FIG. 1 is a perspective view showing the external appearance of the sensor module 1.
  • FIG. 2 is a diagram showing an example of the connection between a first sensor 11, a switch 12, and an arithmetic circuit 13.
  • FIG. 3 is a diagram showing the first sensor 11 viewed from below.
  • FIG. 4 is a cross-sectional view taken along line A-A in FIG. 3. In FIG. 4, the lower end, left end, and right end of the elastic member 10 are omitted.
  • FIG. 5 is a diagram showing an example of deformation of a piezoelectric film 111.
  • directions are defined as follows.
  • the direction in which the sensor module 1 extends is defined as the left-right direction.
  • the direction in which the elastic member 10 and the first sensor 11 are lined up is defined as the up-down direction.
  • the direction in which the elastic member 10 and the first sensor 11 are lined up in this order is defined as the up direction.
  • the direction in which the first sensor 11 and the elastic member 10 are lined up in this order is defined as the down direction.
  • the direction perpendicular to the left-right direction and the up-down direction is defined as the front-rear direction.
  • the left-right direction, the up-down direction, and the front-rear direction are directions defined for the purpose of explanation. Therefore, the left-right direction, the up-down direction, and the front-rear direction during actual use of the sensor module 1 do not necessarily match the front-rear direction, the up-down direction, and the left-right direction in this embodiment.
  • the sensor module 1 is used, for example, in training equipment. As shown in Figs. 1 and 2, the sensor module 1 includes an elastic member 10, a first sensor 11, a switch 12, and an arithmetic circuit 13.
  • the elastic member 10 includes a resin.
  • the elastic member 10 includes, for example, an acrylic resin.
  • the elastic member 10 is rod-shaped. Specifically, the elastic member 10 has a rod shape having a central axis CAX extending in the left-right direction.
  • the elastic member 10 has elasticity.
  • the elastic member 10 deforms around the central axis CAX. Specifically, a user holds the left and right parts of the elastic member 10. For example, looking to the right, the user twists the left part of the elastic member 10 clockwise around the central axis CAX. As a result, as shown in FIG. 1, a circumferential force F1 is applied to the left part of the elastic member 10.
  • the user twists the right part of the elastic member 10 counterclockwise around the central axis CAX.
  • a circumferential force F2 is applied to the right part of the elastic member 10.
  • the elastic member 10 deforms so as to be twisted around the central axis CAX.
  • the first sensor 11 has a rectangular shape with long sides extending in the left-right direction and short sides extending in the front-rear direction. As shown in FIG. 2, the first sensor 11 includes a piezoelectric film 111, an upper electrode 110, a lower electrode 112, and a detection circuit 113.
  • the piezoelectric film 111 has a sheet shape with long sides extending in the left-right direction and short sides extending in the front-rear direction.
  • the piezoelectric film 111 has an upper principal surface SF1 and a lower principal surface SF2 aligned in the vertical direction.
  • the upper principal surface SF1 and the lower principal surface SF2 are aligned in this order in the downward direction.
  • the piezoelectric film 111 generates an electric charge according to the amount of deformation of the piezoelectric film 111.
  • the piezoelectric film 111 has a characteristic that the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the right-rear direction or the left-front direction is opposite to the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the right-front direction or the left-rear direction.
  • the piezoelectric film 111 is a film formed from a chiral polymer.
  • An example of a chiral polymer is polylactic acid (PLA), particularly L-type polylactic acid (PLLA).
  • PLLA has a helical structure in the main chain.
  • the piezoelectric film 111 has a piezoelectricity.
  • the piezoelectric film 111 has a piezoelectric constant of d14.
  • the uniaxial stretching direction OD of the piezoelectric film 111 forms an angle of 0 degrees or 180 degrees with respect to the left-right direction. This 0 degree includes, for example, an angle of about 0 degrees ⁇ 10 degrees. Similarly, this 180 degrees includes angles including, for example, about 180 degrees ⁇ 10 degrees.
  • the piezoelectric film 111 generates an electric charge when the piezoelectric film 111 is stretched in the right-rear direction, the left-front direction, the right-front direction, or the left-rear direction.
  • the piezoelectric film 111 generates a positive electric charge when stretched in the right-rear direction or the left-front direction.
  • the piezoelectric film 111 generates a negative electric charge when stretched in the right-front direction or the left-rear direction.
  • the magnitude of the electric charge depends on the amount of deformation of the piezoelectric film 111 due to the stretching or compression.
  • the upper electrode 110 is a reference electrode connected to a reference potential VE. As an example, the upper electrode 110 is connected to a ground potential.
  • the upper electrode 110 is fixed to the upper principal surface SF1 by an adhesive (not shown) such as OCA (Opticaly Clear Adhesive). Therefore, the upper electrode 110 is located on the piezoelectric film 111.
  • the upper electrode 110 covers the upper principal surface SF1.
  • the upper electrode 110 includes, for example, a PET film and an ITO layer.
  • the ITO layer of the upper electrode 110 is in contact with the lower surface of the PET film of the upper electrode 110.
  • the ITO layer of the upper electrode 110 covers the lower surface of the PET film of the upper electrode 110.
  • the lower electrode 112 is a signal electrode.
  • the lower electrode 112 is fixed to the lower main surface SF2 by an adhesive (not shown) such as OCA. Therefore, the lower electrode 112 is located below the piezoelectric film 111.
  • the lower electrode 112 covers the lower main surface SF2.
  • the lower electrode 112 includes, for example, a PET film and an ITO layer.
  • the ITO layer of the lower electrode 112 is in contact with the upper surface of the PET film of the lower electrode 112.
  • the ITO layer of the upper electrode 110 covers the upper surface of the PET film of the upper electrode 110.
  • the lower electrode 112 is in contact with the elastic member 10 as shown in Figures 1 and 4.
  • the elastic member 10 is located below the lower electrode 112.
  • the detection circuit 113 is electrically connected to the upper electrode 110 and the lower electrode 112.
  • the detection circuit 113 includes a voltage follower (not shown), an AD converter (not shown), and the like.
  • the voltage follower converts the charge generated by the piezoelectric film 111 into a voltage signal.
  • the AD converter generates a digital signal by AD converting the voltage signal.
  • the first sensor 11 outputs a first signal Sig1 based on the potential difference between the upper electrode 110 and the lower electrode 112.
  • the first sensor 11 outputs a first signal Sig1 in response to the deformation of the elastic member 10.
  • the first sensor 11 is in contact with the elastic member 10.
  • the first sensor 11 is in contact with the outer peripheral surface of the elastic member 10.
  • the lower electrode 112 of the first sensor 11 is fixed to the outer peripheral surface of the elastic member 10 by an adhesive (not shown) such as OCA. This causes the first sensor 11 to deform in response to the deformation of the elastic member 10.
  • the first sensor 11 outputs a first signal Sig1 in response to the deformation of the first sensor 11.
  • the first sensor 11 detects deformation of the elastic member 10 around the central axis CAX. For example, looking to the right, the user twists the left part of the elastic member 10 clockwise around the central axis CAX. At this time, as shown in FIG. 5, the piezoelectric film 111 stretches in the left front direction. Looking to the right, the user twists the right part of the elastic member 10 counterclockwise around the central axis CAX. At this time, as shown in FIG. 5, the piezoelectric film 111 stretches in the right rear direction. Therefore, the piezoelectric film 111 generates a positive charge. As a result, the first sensor 11 outputs a first signal Sig1 having a positive polarity with respect to the reference potential VE.
  • the switch 12 has the function of shorting the upper electrode 110 and the lower electrode 112. Specifically, the switch 12 is connected in parallel to the upper electrode 110 and the lower electrode 112. When the switch 12 is turned on, the upper electrode 110 is electrically connected to the lower electrode 112 via the switch 12. In other words, the switch 12 shorts the upper electrode 110 and the lower electrode 112.
  • the switch 12 is, for example, a switching element such as a FET (Field Effect Transistor).
  • the arithmetic circuit 13 is, for example, a microcontroller including a CPU, ROM, and RAM.
  • the arithmetic circuit 13 is electrically connected to the detection circuit 113 as shown in FIG. 2.
  • the arithmetic circuit 13 receives the first signal Sig1 from the detection circuit 113 at a predetermined sampling rate.
  • the arithmetic circuit 13 receives the first signal Sig1 from the detection circuit 113 at intervals of, for example, 50 msec.
  • the arithmetic circuit 13 calculates the magnitude of the load applied to the elastic member 10 based on the first signal Sig1, for example.
  • the arithmetic circuit 13 is electrically connected to the switch 12 as shown in FIG. 2.
  • the arithmetic circuit 13 transmits to the switch 12 a signal related to a command to switch the switch 12 on/off.
  • the switch 12 is a FET
  • the arithmetic circuit 13 transmits to the FET a signal related to a command to switch the gate of the FET on/off.
  • the switch 12 switches the switch 12 on/off based on the signal received from the arithmetic circuit 13.
  • the arithmetic circuit 13 transmits to the switch 12 a signal related to a command to turn the switch 12 on, and then transmits to the switch 12 a signal related to a command to turn the switch 12 off.
  • the calculation circuit 13 determines whether or not the elastic member 10 is charged based on the first signal Sig1 received from the first sensor 11. Specifically, the calculation circuit 13 determines whether or not the elastic member 10 is charged by examining how the value of the first signal Sig1 decays.
  • FIG. 6 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 becomes charged.
  • FIG. 7 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 is deformed so as to be twisted around the central axis CAX.
  • the horizontal axis in FIG. 6 and FIG. 7 indicates time.
  • the vertical axis in FIG. 6 and FIG. 7 indicates the value of the first signal Sig1.
  • the manner in which the value of the first signal Sig1 generated by deformation of the elastic member 10 attenuates differs from the manner in which the value of the first signal Sig1 generated by charging the elastic member 10 attenuates.
  • the value of the first signal Sig1 generated by charging the elastic member 10 attenuates based on the following formula 1.
  • the value of the first signal Sig1 generated by deformation of the elastic member 10 does not attenuate based on formula 1.
  • Vt0 in Equation 1 indicates the value of the first signal Sig1 output from the first sensor 11 at a reference time.
  • the reference time is the time when the arithmetic circuit 13 receives the first signal Sig1 from the first sensor 11.
  • dt in Equation 1 indicates a time before or after the reference time.
  • a in Equation 1 indicates the time constant in the sensor module 1 having an RC circuit.
  • V(dt) in Equation 1 indicates the value of the first signal Sig1 calculated based on Equation 1. For example, if Vt0 is 2.0 V, dt is 1 second later, and a is 3 seconds, V(dt) is approximately 1.4 V based on Equation 1.
  • the calculation circuit 13 determines whether the elastic member 10 is charged by comparing the calculation result obtained by Equation 1 with the value of the first signal Sig1. Specifically, as shown in Figures 6 and 7, the calculation circuit 13 calculates a calculation value MD indicating the manner of attenuation of the first signal Sig1 based on Equation 1. For example, as shown in Figure 6, the calculation circuit 13 obtains the calculation value MD by substituting the value of the first signal Sig1 at time p1 (reference time) into Equation 1.
  • the calculation circuit 13 determines whether the calculated value MD matches the value of the first signal Sig1. If the calculated value MD matches the value of the first signal Sig1, the calculation circuit 13 determines that the elastic member 10 is charged. In the example shown in FIG. 6, the calculated value MD matches the value of the first signal Sig1. Therefore, the calculation circuit 13 determines that the elastic member 10 is charged.
  • the calculation circuit 13 obtains the calculated value MD by substituting the value of the first signal Sig1 at time q1 (reference time) into Equation 1.
  • the calculation value MD does not match the value of the first signal Sig1. Therefore, the calculation circuit 13 determines that the elastic member 10 is not charged.
  • FIG. 8 is a flow chart showing an example of process P executed by the arithmetic circuit 13.
  • FIG. 9 is a diagram showing the waveform of the first signal Sig1 when the arithmetic circuit 13 is executing process P.
  • the calculation circuit 13 starts process P, for example, when the power supply of the calculation circuit 13 is turned on (FIG. 8: START).
  • the calculation circuit 13 calculates the calculated value MD (FIG. 8: step S11).
  • the calculation circuit 13 calculates the calculated value MD1 indicating the value of the first signal Sig1 in a period PE1 after time u1 (reference time) based on the value of the first signal Sig1 at time u1.
  • the calculation circuit 13 calculates the calculated value MD1 in the period PE1 by substituting the value of the first signal Sig1 at time u1 into Equation 1.
  • the period PE1 is the period between time u1 and time t1 after time u1.
  • the length of the period PE1 is, for example, 2.5 seconds.
  • the calculation circuit 13 calculates the calculated value MD1 indicating the value of the first signal Sig1 between time u1 and time t1, which is 2.5 seconds later.
  • step S11 the calculation circuit 13 compares the calculated value MD1 with the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 during the period PE1 (FIG. 8: step S12). Specifically, the calculation circuit 13 compares the calculated value MD1 with the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 during the period PE1 at a determination time that is later than the reference time. The determination time is the latest time during the period PE1. Therefore, the calculation circuit 13 executes the process of step S12 at time t1 (determination time).
  • the calculation circuit 13 determines whether the value of the first signal Sig1 at each time in the period PE1 is within a predetermined threshold value.
  • the predetermined threshold value is, for example, within ⁇ 10% of the calculated value MD1. Therefore, the calculation circuit 13 determines whether the elastic member 10 is charged based on the calculated value MD1 and the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 in the period PE1 (the period after the reference time).
  • the calculation circuit 13 performs the processes of steps S11 and S12 a predetermined number of times (hereinafter referred to as the acquisition number) in succession (FIG. 8: step S13). For example, the calculation circuit 13 performs the processes of steps S11 and S12 in succession 10 times. For example, as shown in FIG. 9, the calculation circuit 13 calculates the calculated value MD1, and then calculates the calculated value MD2 at time u2 (reference time) after time u1. As an example, when the sampling rate of the calculation circuit 13 is 50 msec, the time u2 is 50 msec after the time u1. The calculation circuit 13 calculates the calculated value MD2 based on the value of the first signal Sig1 at time u2.
  • the calculated value MD2 indicates the value of the first signal Sig1 in the period PE2 between time u2 and time t2 after time u2. At time t2, the calculation circuit 13 compares the value of the first signal Sig1 received in the period PE2 with the calculated value MD2. The calculation circuit 13 repeats the above process until the number of acquisitions becomes 10.
  • the arithmetic circuit 13 determines that the elastic member 10 is charged (FIG. 8: step S17). For example, if the count number is equal to or greater than 7, the arithmetic circuit 13 determines that the elastic member 10 is charged.
  • the calculation circuit 13 determines whether the value of the first signal Sig1 matches the calculated values MD15 to MD25 in one cycle from period PE15 to period PE25 in the same way as in one cycle from period PE1 to period PE10.
  • Periods PE15 to PE25 are periods after period PE10.
  • the value of the first signal Sig1 matches the calculated values MD15 to MD25 in all periods from period PE15 to period PE25. Therefore, the calculation circuit 13 calculates the count number to be "10.” In this case, the calculation circuit 13 determines that the elastic member 10 is charged at time t25 (determination time).
  • calculation circuit 13 calculates the calculation value MD10 at a time that is the length of the period PE10 before time t10. In the same manner, the calculation circuit 13 calculates the calculation values MD15 to MD25.
  • the calculation circuit 13 determines that the elastic member 10 is charged, it turns on the switch 12 (FIG. 8: step S18). In the example shown in FIG. 9, the calculation circuit 13 determines that the elastic member 10 is charged at time t25 (determination time). Therefore, the calculation circuit 13 turns on the switch 12 at time t25. In this case, the value of the first signal Sig1 at time t25 matches the reference potential VE.
  • the arithmetic circuit 13 repeats the processes from step S11 to step S18. For example, the arithmetic circuit 13 executes the processes from step S11 to step S18 each time the arithmetic circuit 13 receives the first signal Sig1 from the first sensor 11 at a predetermined sampling interval. For example, the arithmetic circuit 13 executes process P with one cycle being from period PE1 to period PE10, and then executes process P with one cycle being from period PE2 to period PE11 (not shown).
  • the calculation circuit 13 ends process P, for example, when the power supply to the calculation circuit 13 is turned off (FIG. 8: END).
  • the first sensor 11 is less likely to malfunction.
  • the first sensor 11 is attached to the elastic member 10 so that the lower electrode 112, which is a signal electrode, is close to the elastic member 10.
  • the elastic member 10 is in contact with the lower electrode 112, which is a signal electrode, via an adhesive.
  • the elastic member 10 contains a resin that is easily charged.
  • the lower electrode 112 is charged, for example, by being affected by the charge of the elastic member 10. In this case, the potential difference between the upper electrode 110 and the lower electrode 112 changes.
  • the first sensor 11 may generate a first signal Sig1 having a negative or positive polarity with respect to the reference potential VE even if the elastic member 10 is not deformed.
  • the sensor module 1 is therefore equipped with a switch 12 that has the function of shorting the upper electrode 110 and the lower electrode 112.
  • the switch 12 When the switch 12 is turned on, the potential difference between the upper electrode 110 and the lower electrode 112, which is generated by the charging of the elastic member 10, becomes zero.
  • the first sensor 11 when the elastic member 10 is not deformed, the first sensor 11 does not output the first signal Sig1 having a positive or negative polarity with respect to the reference potential VE. In other words, the first sensor 11 is less likely to malfunction, such as outputting the first signal Sig1 indicating that the elastic member 10 is deformed, even though the elastic member 10 is not deformed.
  • the arithmetic circuit 13 determines whether or not the elastic member 10 is charged based on the first signal Sig1. In this case, the arithmetic circuit 13 does not turn on the switch 12 when the elastic member 10 is not charged. Therefore, it is unlikely that the first sensor 11 will not detect the deformation of the elastic member 10 due to the switch 12 being turned on unnecessarily.
  • the calculation circuit 13 determines whether the value of the first signal Sig1 matches the calculated value MD, for example, with the period PE1 to the period PE10 being one cycle. Therefore, even if the first sensor 11 outputs an abnormal output value during one of the periods PE1 to PE10, for example, the calculation circuit 13 can accurately determine whether the elastic member 10 is charged.
  • the first sensor 11 when the elastic member 10 is deformed, the first sensor 11 outputs the first signal Sig1. At this time, there is a possibility that the value of the first signal Sig1 output from the first sensor 11 matches the calculated value MD.
  • the arithmetic circuit 13 determines whether the value of the first signal Sig1 matches the calculated value MD, for example, with the period from period PE1 to period PE10 being one cycle. This makes it less likely that the arithmetic circuit 13 will erroneously determine that the elastic member 10 is charged when the value of the first signal Sig1 output from the first sensor 11 momentarily matches the calculated value MD.
  • the arithmetic circuit 13 determines whether or not the elastic member 10 is charged, with ten periods PE1 to PE10 forming one cycle.
  • the time required for the arithmetic circuit 13 to make this determination is, for example, 0.5 seconds (sampling rate (seconds) x 10 (times)). Therefore, the arithmetic circuit 13 can determine whether or not the elastic member 10 is charged in a short time.
  • Fig. 10 is a perspective view showing the external appearance of the sensor module 1a according to the first modification.
  • Fig. 11 is a diagram showing an example of the connection between the switch 12, the arithmetic circuit 13, and the second sensor 14a.
  • Fig. 12 is a diagram showing the second sensor 14a.
  • Sensor module 1a differs from sensor module 1 in that it further includes a second sensor 14a. As shown in FIG. 10, second sensor 14a is in contact with elastic member 10. Second sensor 14a is in contact with the outer peripheral surface of elastic member 10. As shown in FIG. 11, second sensor 14a includes a second sensor upper electrode 140, a film 141, a second sensor lower electrode 142, and a detection circuit 143.
  • the second sensor 14a does not output a signal in response to the deformation of the elastic member 10.
  • the film 141 does not have piezoelectricity.
  • the film 141 does not generate an electric charge in response to the deformation of the elastic member 10.
  • Such a film 141 is, for example, a PET film.
  • the film 141 has an upper principal surface SF1a and a lower principal surface SF2a arranged in this order in the downward direction.
  • the second sensor upper electrode 140 is a reference electrode connected to the reference potential VE.
  • the second sensor upper electrode 140 is fixed to the upper principal surface SF1a by an adhesive (not shown) such as OCA. Therefore, the second sensor upper electrode 140 is located on the film 141.
  • the second sensor lower electrode 142 is a signal electrode.
  • the second sensor lower electrode 142 is fixed to the lower principal surface SF2a with an adhesive (not shown) such as OCA.
  • the second sensor lower electrode 142 is located below the film 141.
  • the detection circuit 143 is electrically connected to the second sensor upper electrode 140 and the second sensor lower electrode 142.
  • the detection circuit 143 converts the charge generated by the film 141 into a voltage signal.
  • the second sensor 14a outputs a signal based on the potential difference between the second sensor upper electrode 140 and the second sensor lower electrode 142.
  • the second sensor 14a outputs a signal (hereinafter referred to as the second signal) based on the charge of the elastic member 10.
  • the second sensor lower electrode 142 which is a signal electrode, is in contact with the elastic member 10.
  • the second sensor lower electrode 142 becomes charged by being affected by the charge of the elastic member 10. This causes a change in the potential difference between the second sensor upper electrode 140 and the second sensor lower electrode 142.
  • the arithmetic circuit 13 determines whether or not the elastic member 10 is charged based on the second signal. For example, the arithmetic circuit 13 compares the value of the second signal with a predetermined threshold value. If the value of the second signal is equal to or greater than the predetermined threshold value, the arithmetic circuit 13 determines that the elastic member 10 is charged. If the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns on the switch 12.
  • the second sensor 14a When the elastic member 10 is deformed, the second sensor 14a does not output the second signal. When the elastic member 10 is charged, the second sensor 14a outputs the second signal. The arithmetic circuit 13 determines whether the elastic member 10 is charged or not based on the second signal. This allows the arithmetic circuit 13 to reliably determine whether the signal is generated due to the deformation of the elastic member 10 or due to the elastic member 10 being charged.
  • process Q The program for the process of comparing the value of the second signal with the threshold value in this modified example (hereinafter referred to as process Q) is simpler than the program for process P. Therefore, the load applied to the arithmetic circuit 13 when the arithmetic circuit 13 executes the program for process Q is smaller than the load applied when the arithmetic circuit 13 executes the program for process P.
  • FIG. 13 is a diagram showing an example of processing by the arithmetic circuit 13b provided in the sensor module 1b according to Modification 2.
  • the horizontal axis in FIG. 13 indicates time.
  • the vertical axis in FIG. 13 indicates the value of the first signal Sig1.
  • the arithmetic circuit 13b determines that the elastic member 10 is charged at time w1.
  • time w2 is a time after time w1.
  • Sensor module 1b differs from sensor module 1 in that it includes an arithmetic circuit 13b that is different from arithmetic circuit 13. If arithmetic circuit 13b determines that elastic member 10 is charged, it further executes a process of offsetting the value of first signal Sig1.
  • the calculation circuit 13b determines whether or not the elastic member 10 is charged based on the first signal Sig1. In the example shown in FIG. 13, the calculation circuit 13 determines that the elastic member 10 is charged at time w1. In this case, the calculation circuit 13b calculates a difference value DV between the reference potential VE and the value of the first signal Sig1 at time w1 (charging time) when it is determined that the elastic member 10 is charged. For example, if the value of the first signal Sig1 at time w1 is 2.0 V and the reference potential VE is 0 V, the difference value DV is 2.0 V.
  • the calculation circuit 13 calculates the value of the first signal Sig1 at a time after time w1 based on the difference value DV. Specifically, the calculation circuit 13 calculates the difference between the difference value DV and the value of the first signal Sig1 received from the detection circuit 113 at a time after time w1. The calculation circuit 13 estimates this difference as the value of the first signal Sig1. For example, at time w2 after time w1, the calculation circuit 13 receives the first signal Sig1 having a value of "2.0V". In this case, the calculation circuit 13 estimates the value of the first signal Sig1 at time w2 to be "0V" based on the "difference value: 2.0V".
  • the calculation circuit 13b determines that the elastic member 10 has not been charged for a predetermined time or when the sensor module 1b is restarted, the calculation circuit 13b turns on the switch 12. After turning on the switch 12, the calculation circuit 13b returns the reference to the value before the offset. In the example shown in FIG. 13, for example, the calculation circuit 13b returns the difference value DV from "2.0 V" to "0.0 V". After returning the reference to the value before the offset, the calculation circuit 13b turns off the switch 12.
  • the calculation circuit 13b When the elastic member 10 is charged, the calculation circuit 13b does not turn on the switch 12. When the elastic member 10 is charged, the calculation circuit 13b calculates the first signal Sig1 based on the difference value DV. Therefore, the calculation circuit 13b can accurately detect the deformation of the elastic member 10 even if the elastic member 10 is charged.
  • Fig. 14 is a block diagram showing an example of the sensor module 1c according to the third modification.
  • the sensor module 1c differs from the sensor module 1 in that it further includes an LED 15 and a power button 16.
  • the LED 15 and the power button 16 are electrically connected to the arithmetic circuit 13.
  • the LED 15 corresponds to the display device in the present invention that displays information according to the deformation of the elastic member.
  • the brightness of the LED 15 changes according to the deformation of the elastic member 10.
  • the arithmetic circuit 13 increases (brightens) the brightness of the LED 15 when the deformation of the elastic member 10 is large, and decreases (darkens) the brightness of the LED 15 when the deformation of the elastic member 10 is small.
  • the arithmetic circuit 13 may change the color of the LED 15, or, if the LED 15 is composed of multiple LEDs, may change the number of LEDs that are lit. The arithmetic circuit 13 may also change the blinking speed of the LED in response to the deformation of the elastic member 10.
  • the sensor module 1c may be equipped with, for example, an organic EL display or a liquid crystal display instead of the LED 15.
  • the organic EL display or the liquid crystal display displays, for example, the amount of deformation of the elastic member 10 in a numerical value as information corresponding to the deformation of the elastic member 10.
  • the power button 16 is an example of an interface in the present invention.
  • the power button 16 accepts an instruction from the user to turn the power of the sensor module 1c on or off. Pressing the power button 16 switches the power of the sensor module 1c on and off.
  • the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns off the power to the sensor module 1c.
  • the power button 16 is pressed after the power to the sensor module 1c is turned off, the power is turned on.
  • the arithmetic circuit 13 turns on the switch 12.
  • the first sensor 11 may output a signal that detects the potential difference between the upper electrode 110 and the lower electrode 112 even though the elastic member 10 is not deformed.
  • the LED 15 goes out. This allows the user to recognize that the power supply of the sensor module 1c has been turned off.
  • the power supply is turned off, the user releases the twisting operation and presses the power button 16.
  • the arithmetic circuit 13 turns on the switch 12 while the elastic member 10 is not deformed.
  • the potential difference between the upper electrode 110 and the lower electrode 112 is a potential difference due to charging, and turning on the switch 12 can make the potential difference zero. Therefore, the first sensor 11 can more accurately detect the amount of deformation of the elastic member 10 even if charging occurs in the elastic member 10 when the user twists the elastic member 10.
  • Fig. 15 is a block diagram showing an example of the sensor module 1d according to the fourth modification.
  • the sensor module 1d differs from the sensor module 1c in that it further includes an alert LED 17. As shown in FIG. 15, the alert LED 17 is electrically connected to the arithmetic circuit 13.
  • the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns on the alert LED 17 to notify the user that the elastic member 10 is charged.
  • the alert LED 17 functions as an example of a notification means.
  • the first sensor 11 can accurately detect the amount of deformation of the elastic member 10 even if the elastic member 10 becomes charged when the user twists the elastic member 10.
  • the notification means in this application may be, for example, a speaker with a function of emitting sound, or a vibrator with a function of vibrating the sensor module.
  • the sensor module according to the present invention is not limited to the sensor modules 1 and 1a to 1d, and may be modified within the scope of the present invention.
  • the configurations of the sensor modules 1 and 1a to 1d may be combined in any desired manner.
  • the elastic member 10 does not necessarily have to be rod-shaped.
  • the elastic member 10 does not necessarily have to be cylindrical.
  • the switch 12 may include two FETs connected in series. This reduces leakage current that occurs between the upper and lower electrodes of the sensor modules 1, 1a to 1d when the switch 12 is off, improving the accuracy with which the first sensor 11 detects the deformation of the elastic member 10.
  • the sensor module 1 may also be used in electronic devices such as smartphones.
  • the material of the elastic member 10 may be a resin other than acrylic resin.
  • the upper electrode 110 does not necessarily have to be connected to ground potential.
  • the first sensor 11 does not necessarily have to be in contact with the outer peripheral surface of the elastic member 10.
  • the elastic member 10 has a cylindrical shape having an inner peripheral surface and an outer peripheral surface. In this case, the first sensor 11 may be in contact with the inner peripheral surface of the elastic member 10.
  • the process P for determining whether the elastic member 10 in the sensor module 1a is charged is an example. Therefore, the sensor module 1a does not necessarily need to determine whether the elastic member 10 is charged by the process P.
  • the arithmetic circuit 13 does not necessarily have to switch the switch 12 on/off based on the process P.
  • the arithmetic circuit 13 may send a signal to the switch 12 instructing it to turn on the switch 12 at a predetermined interval (e.g., once every 10 seconds).
  • the film 141 may have piezoelectric properties.
  • the conditions of the number of acquisitions, the number used for judgment, and the count number can be adjusted.
  • the number of acquisitions does not necessarily have to be "10".
  • the number used for judgment does not necessarily have to be "7".
  • the arithmetic circuit 13 may determine whether the elastic member 10 is charged based on the ratio (%) of the count number to the number of acquisitions. For example, the arithmetic circuit 13 may determine that the elastic member 10 is charged when the ratio of the count number to the number of acquisitions is 80% or more.
  • the arithmetic circuit 13 may determine that the elastic member 10 is not charged based on conditions other than the determination number and the count number.
  • the present invention has the following structure:
  • the upper electrode is a reference electrode connected to a reference potential.
  • the sensor module described in (1) is a reference electrode connected to a reference potential.
  • the first sensor outputs the first signal based on a potential difference between the upper electrode and the lower electrode.
  • the sensor module further includes an arithmetic circuit.
  • the arithmetic circuit switches the switch on/off based on the first signal.
  • a sensor module according to any one of (1) to (3).
  • the arithmetic circuit includes: determining whether the elastic member is charged based on the first signal received from the first sensor; When it is determined that the elastic member is charged, the switch is turned on.
  • the sensor module according to (4).
  • the sensor module further includes a power supply and an interface that receives an instruction to turn on the power supply;
  • the arithmetic circuit includes: determining whether the elastic member is charged based on the first signal received from the first sensor; When it is determined that the elastic member is charged, the power source is turned off; turning on the switch when the power supply is turned on via the interface after the power supply is turned off; The sensor module according to (4).
  • a display device that displays information according to the deformation of the elastic member is further provided.
  • the display of the display device is turned off.
  • the sensor module further includes a power source and a notification means for notifying that the elastic member is charged.
  • the arithmetic circuit includes: determining whether the elastic member is charged based on the first signal received from the first sensor; When it is determined that the elastic member is charged, notifying the user through the notification means that the elastic member is charged; After the notification, the switch is turned on.
  • the sensor module according to (4).
  • the arithmetic circuit includes: calculating a calculated value indicating a value of the first signal during a period after a reference time based on a value of the first signal at a reference time when the arithmetic circuit receives the first signal from the first sensor; determining whether or not the elastic member is charged based on the calculated value and a value of the first signal received by the arithmetic circuit from the first sensor during a period after the reference time; A sensor module according to any one of (5) to (8).
  • the sensor module further includes an arithmetic circuit.
  • the arithmetic circuit includes: determining whether the elastic member is charged based on the first signal; When it is determined that the elastic member is charged, a difference value between a reference potential and a value of the first signal at a charging time when it is determined that the elastic member is charged is calculated; calculating a value of the first signal at a time after the electrification time based on the difference value; A sensor module according to any one of (1) to (3).
  • the sensor module further includes a second sensor, the second sensor is in contact with the elastic member, the second sensor includes a film, a second sensor upper electrode, and a second sensor lower electrode; The second sensor outputs a second signal based on the charge of the elastic member.
  • a sensor module according to any one of (1) to (3).
  • the sensor module further includes an arithmetic circuit.
  • the arithmetic circuit includes: determining whether the elastic member is charged based on the second signal; When it is determined that the elastic member is charged, the switch is turned on.
  • the sensor module according to (11).
  • the elastic member is rod-shaped.
  • a sensor module according to any one of (1) to (12).
  • the elastic member has a rod shape having a central axis extending in the left-right direction, The elastic member deforms around the central axis, The first sensor detects deformation of the elastic member around the central axis.
  • a sensor module according to any one of (1) to (13).
  • the elastic member deforms so as to twist around the central axis.
  • sensor module 10 elastic member 11: first sensor 110: upper electrode 111: piezoelectric film 112: lower electrode 12: switch 13, 13b: arithmetic circuit Sig1: first signal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Push-Button Switches (AREA)
  • Pressure Sensors (AREA)

Abstract

This sensor module comprises: an elastic member including a resin; a first sensor provided in contact with the elastic member and including an upper electrode, a piezoelectric film, and a lower electrode; and a switch. The first sensor outputs a first signal corresponding to deformation of the elastic member. The switch has a function of causing a short circuit between the upper electrode and the lower electrode. The lower electrode is a signal electrode.

Description

センサモジュールSensor Module
 本発明は、部材の変形を検知するセンサを備えるセンサモジュールに関する。 The present invention relates to a sensor module equipped with a sensor that detects deformation of a component.
 特許文献1には、ユーザが加えた負荷を検出する把持負荷検出デバイスが記載されている。把持負荷検出デバイスは、筐体とセンサとを備えている。筐体は、ユーザによって把持される。センサは、筐体に貼り付けられている。センサは、ユーザの把持によって筐体に加わる負荷を検出する。具体的には、センサは、圧電フィルム、第1電極及び第2電極を備えている。センサは、第1電極と第2電極との電位差に基づいて信号を出力する。 Patent Document 1 describes a grip load detection device that detects a load applied by a user. The grip load detection device includes a housing and a sensor. The housing is gripped by a user. The sensor is attached to the housing. The sensor detects a load applied to the housing by the user's grip. Specifically, the sensor includes a piezoelectric film, a first electrode, and a second electrode. The sensor outputs a signal based on the potential difference between the first electrode and the second electrode.
国際公開第2020/153075号International Publication No. 2020/153075
 特許文献1に記載の把持負荷検出デバイスの分野において、部材の変形を検知するセンサが誤動作しにくいセンサモジュールが望まれている。 In the field of grip load detection devices described in Patent Document 1, there is a demand for sensor modules in which the sensors that detect deformation of components are less likely to malfunction.
 本発明の目的は、部材の変形を検知するセンサが誤動作しにくいセンサモジュールを提供することである。 The object of the present invention is to provide a sensor module in which the sensor that detects deformation of a component is less likely to malfunction.
 本願発明者は、部材の変形を検知するセンサであって、圧電フィルムと信号電極と基準電極とを備えているセンサが誤動作をする場合について考察をした。センサは、信号電極と基準電極との電位差に基づいて信号を出力する。 The inventors of this application have considered the case where a sensor that detects deformation of a component and is equipped with a piezoelectric film, a signal electrode, and a reference electrode malfunctions. The sensor outputs a signal based on the potential difference between the signal electrode and the reference electrode.
 考察の結果、センサが張り付けられている部材が帯電しやすい樹脂を含む場合、信号電極が部材と近接する様にセンサを部材に張り付けたとき、センサが、誤動作をする可能性があることに、本願発明者は気が付いた。例えば、部材に摩擦等が発生することにより、部材が正に帯電する。信号電極は、部材の帯電による影響を受けることによって負に帯電する可能性がある。この場合、信号電極と基準電極との間の電位差が変化する。結果、センサが、部材が変形していないにも関わらず部材が変形していることを示す信号を出力する可能性があることに本願発明者は気が付いた。 After careful consideration, the inventors realized that if the member to which the sensor is attached contains a resin that easily becomes charged, the sensor may malfunction when the sensor is attached to the member so that the signal electrode is in close proximity to the member. For example, friction or the like occurs on the member, causing the member to become positively charged. The signal electrode may become negatively charged due to the effect of the charge on the member. In this case, the potential difference between the signal electrode and the reference electrode changes. As a result, the inventors realized that the sensor may output a signal indicating that the member is deformed even though the member is not deformed.
 本願発明者は、上記の考察に基づいてセンサが誤動作をしにくいセンサモジュールについて検討した。結果、本願発明者は、以下の発明に思い至った。 Based on the above considerations, the inventors of the present application have investigated sensor modules in which the sensors are less likely to malfunction. As a result, the inventors of the present application have come up with the following invention.
 本発明の一実施形態に係るセンサモジュールは、
 樹脂を含む弾性部材と、
 前記弾性部材に接触し、且つ、上電極、圧電フィルム及び下電極を含んでいる第1センサと、
 スイッチと、
 を備えており、
 前記第1センサは、前記弾性部材の変形に応じた第1信号を出力し、
 前記スイッチは、前記上電極と前記下電極とを短絡させる機能を有し、
 前記下電極は、信号電極である。
The sensor module according to an embodiment of the present invention includes:
An elastic member containing a resin;
a first sensor in contact with the elastic member and including an upper electrode, a piezoelectric film, and a lower electrode;
Switch,
Equipped with
The first sensor outputs a first signal corresponding to the deformation of the elastic member,
the switch has a function of short-circuiting the upper electrode and the lower electrode,
The lower electrode is a signal electrode.
 以下では、X,Yは、センサモジュールの部品又は部材である。本明細書において、特に断りのない場合には、Xの各部について以下の様に定義する。Xの前部とは、Xの前半分を意味する。Xの後部とは、Xの後半分を意味する。Xの左部とは、Xの左半分を意味する。Xの右部とは、Xの右半分を意味する。Xの上部とは、Xの上半分を意味する。Xの下部とは、Xの下半分を意味する。Xの前端とは、Xの前方向の端を意味する。Xの後端とは、Xの後方向の端を意味する。Xの左端とは、Xの左方向の端を意味する。Xの右端とは、Xの右方向の端を意味する。Xの上端とは、Xの上方向の端を意味する。Xの下端とは、Xの下方向の端を意味する。Xの前端部とは、Xの前端及びその近傍を意味する。Xの後端部とは、Xの後端及びその近傍を意味する。Xの左端部とは、Xの左端及びその近傍を意味する。Xの右端部とは、Xの右端及びその近傍を意味する。Xの上端部とは、Xの上端及びその近傍を意味する。Xの下端部とは、Xの下端及びその近傍を意味する。 In the following, X and Y are parts or members of the sensor module. In this specification, unless otherwise specified, each part of X is defined as follows. The front part of X means the front half of X. The rear part of X means the rear half of X. The left part of X means the left half of X. The right part of X means the right half of X. The upper part of X means the upper half of X. The lower part of X means the lower half of X. The front end of X means the front end of X. The rear end of X means the rear end of X. The left end of X means the left end of X. The right end of X means the right end of X. The upper end of X means the upper end of X. The lower end of X means the lower end of X. The front end of X means the front end of X and its vicinity. The rear end of X means the rear end of X and its vicinity. The left end of X means the left end of X and its vicinity. The right end of X means the right end of X and its vicinity. The upper end of X means the upper end of X and its vicinity. The lower end of X means the lower end of X and its vicinity.
 また、「Xは、Yの上に位置している。」とは、XがYの真上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっている。「Xは、Yより上に位置している。」とは、XがYの真上に位置していること、及び、XがYの斜め上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっていてもよいし、Yと重なっていなくてもよい。この定義は、上方向以外の方向にも適用される。 Furthermore, "X is located above Y" means that X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps with Y. "X is located above Y" means that X is located directly above Y, and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap with Y. This definition also applies to directions other than the upward direction.
 本発明の一実施形態に係るセンサモジュールによれば、部材の変形を検知するセンサが誤動作しにくくなる。 The sensor module according to one embodiment of the present invention makes it less likely for the sensor that detects deformation of a component to malfunction.
図1は、センサモジュール1の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of a sensor module 1. As shown in FIG. 図2は、第1センサ11とスイッチ12と演算回路13との接続の一例を示す図である。FIG. 2 is a diagram showing an example of the connections between the first sensor 11, the switch 12, and the arithmetic circuit 13. As shown in FIG. 図3は、第1センサ11を下方向に見た図である。FIG. 3 is a diagram of the first sensor 11 viewed from below. 図4は、図3におけるA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 図5は、圧電フィルム111の変形の一例を示す図である。FIG. 5 is a diagram showing an example of deformation of the piezoelectric film 111. As shown in FIG. 図6は、弾性部材10が帯電することによって発生した第1信号Sig1の一例を示す図である。FIG. 6 is a diagram showing an example of the first signal Sig1 generated by the elastic member 10 being charged. 図7は、弾性部材10が中心軸CAX周りにねじれる様に変形したときに発生した第1信号Sig1の一例を示す図である。FIG. 7 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 is deformed so as to be twisted around the central axis CAX. 図8は、演算回路13が実行する処理Pの一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of a process P executed by the arithmetic circuit 13. 図9は、演算回路13が処理Pを実行しているときの第1信号Sig1の波形を示す図である。FIG. 9 is a diagram showing the waveform of the first signal Sig1 when the arithmetic circuit 13 is executing the process P. 図10は、変形例1に係るセンサモジュール1aの外観を示す斜視図である。FIG. 10 is a perspective view showing the appearance of a sensor module 1a according to the first modification. 図11は、スイッチ12と演算回路13と第2センサ14aとの接続の一例を示す図である。FIG. 11 is a diagram showing an example of the connections between the switch 12, the arithmetic circuit 13, and the second sensor 14a. 図12は、第2センサ14aを示す図である。FIG. 12 is a diagram showing the second sensor 14a. 図13は、変形例2に係るセンサモジュール1bに備わる演算回路13bの処理の一例を示す図である。FIG. 13 is a diagram showing an example of processing by an arithmetic circuit 13b included in a sensor module 1b according to the second modification. 図14は、変形例3に係るセンサモジュール1cの一例を示すブロック図である。FIG. 14 is a block diagram showing an example of a sensor module 1c according to the third modification. 図15は、変形例4に係るセンサモジュール1dの一例を示すブロック図である。FIG. 15 is a block diagram showing an example of a sensor module 1d according to the fourth modification.
 [第1実施形態]
 以下、本発明の第1実施形態に係るセンサモジュール1について図面を参照しながら説明する。図1は、センサモジュール1の外観を示す斜視図である。図2は、第1センサ11とスイッチ12と演算回路13との接続の一例を示す図である。図3は、第1センサ11を下方向に見た図である。図4は、図3におけるA-A断面図である。図4において、弾性部材10の下端部、左端部及び右端部の記載を省略している。図5は、圧電フィルム111の変形の一例を示す図である。
[First embodiment]
A sensor module 1 according to a first embodiment of the present invention will now be described with reference to the drawings. FIG. 1 is a perspective view showing the external appearance of the sensor module 1. FIG. 2 is a diagram showing an example of the connection between a first sensor 11, a switch 12, and an arithmetic circuit 13. FIG. 3 is a diagram showing the first sensor 11 viewed from below. FIG. 4 is a cross-sectional view taken along line A-A in FIG. 3. In FIG. 4, the lower end, left end, and right end of the elastic member 10 are omitted. FIG. 5 is a diagram showing an example of deformation of a piezoelectric film 111.
 本実施形態において方向を以下の様に定義する。図1に示すように、センサモジュール1が延びている方向を左右方向と定義する。弾性部材10と第1センサ11とが並んでいる方向を上下方向と定義する。弾性部材10と第1センサ11とが、この順に並んでいる方向を上方向と定義する。第1センサ11と弾性部材10とが、この順に並んでいる方向を下方向と定義する。左右方向及び上下方向に直交する方向を前後方向と定義する。但し、左右方向、上下方向及び前後方向は、説明のために定義した方向である。従って、センサモジュール1の実使用時における左右方向、上下方向及び前後方向は、必ずしも、本実施形態における前後方向、上下方向及び左右方向と一致しなくてよい。 In this embodiment, directions are defined as follows. As shown in FIG. 1, the direction in which the sensor module 1 extends is defined as the left-right direction. The direction in which the elastic member 10 and the first sensor 11 are lined up is defined as the up-down direction. The direction in which the elastic member 10 and the first sensor 11 are lined up in this order is defined as the up direction. The direction in which the first sensor 11 and the elastic member 10 are lined up in this order is defined as the down direction. The direction perpendicular to the left-right direction and the up-down direction is defined as the front-rear direction. However, the left-right direction, the up-down direction, and the front-rear direction are directions defined for the purpose of explanation. Therefore, the left-right direction, the up-down direction, and the front-rear direction during actual use of the sensor module 1 do not necessarily match the front-rear direction, the up-down direction, and the left-right direction in this embodiment.
 センサモジュール1は、例えば、トレーニング器具に用いられる。図1及び図2に示すように、センサモジュール1は、弾性部材10、第1センサ11、スイッチ12及び演算回路13を備えている。 The sensor module 1 is used, for example, in training equipment. As shown in Figs. 1 and 2, the sensor module 1 includes an elastic member 10, a first sensor 11, a switch 12, and an arithmetic circuit 13.
 弾性部材10は、樹脂を含む。弾性部材10は、例えば、アクリル樹脂を含む。図1に示すように、弾性部材10は、棒形状である。具体的には、弾性部材10は、左右方向に延びる中心軸CAXを有している棒形状を有している。弾性部材10は、弾性を有する。弾性部材10は、中心軸CAX周りに変形する。具体的には、ユーザが、弾性部材10の左部及び右部を把持する。例えば、右方向に見て、ユーザは、中心軸CAXを軸として弾性部材10の左部を時計回りに捻じる。これにより、図1に示すように、弾性部材10の左部に周方向の力F1が加わる。また、右方向に見て、ユーザは、中心軸CAXを軸として弾性部材10の右部を反時計回りに捻じる。これにより、図1に示すように、弾性部材10の右部に周方向の力F2が加わる。結果、弾性部材10は、中心軸CAX周りにねじれるように変形する。 The elastic member 10 includes a resin. The elastic member 10 includes, for example, an acrylic resin. As shown in FIG. 1, the elastic member 10 is rod-shaped. Specifically, the elastic member 10 has a rod shape having a central axis CAX extending in the left-right direction. The elastic member 10 has elasticity. The elastic member 10 deforms around the central axis CAX. Specifically, a user holds the left and right parts of the elastic member 10. For example, looking to the right, the user twists the left part of the elastic member 10 clockwise around the central axis CAX. As a result, as shown in FIG. 1, a circumferential force F1 is applied to the left part of the elastic member 10. Also, looking to the right, the user twists the right part of the elastic member 10 counterclockwise around the central axis CAX. As a result, as shown in FIG. 1, a circumferential force F2 is applied to the right part of the elastic member 10. As a result, the elastic member 10 deforms so as to be twisted around the central axis CAX.
 第1センサ11は、図3に示すように、左右方向に延びる長辺及び前後方向に延びる短辺を有する長方形状を有している。第1センサ11は、図2に示すように、圧電フィルム111、上電極110及び下電極112及び検出回路113を含んでいる。 As shown in FIG. 3, the first sensor 11 has a rectangular shape with long sides extending in the left-right direction and short sides extending in the front-rear direction. As shown in FIG. 2, the first sensor 11 includes a piezoelectric film 111, an upper electrode 110, a lower electrode 112, and a detection circuit 113.
 圧電フィルム111は、図3及び図4に示すように、左右方向に延びる長辺及び前後方向に延びる短辺を有するシート形状を有している。圧電フィルム111は、上下方向に並ぶ上主面SF1及び下主面SF2を有している。上主面SF1と下主面SF2とは、下方向にこの順に並んでいる。 As shown in Figures 3 and 4, the piezoelectric film 111 has a sheet shape with long sides extending in the left-right direction and short sides extending in the front-rear direction. The piezoelectric film 111 has an upper principal surface SF1 and a lower principal surface SF2 aligned in the vertical direction. The upper principal surface SF1 and the lower principal surface SF2 are aligned in this order in the downward direction.
 圧電フィルム111は、圧電フィルム111の変形量に応じた電荷を発生する。圧電フィルム111は、圧電フィルム111が右後方向又は左前方向に伸張されたときに発生する電荷の極性は、圧電フィルム111が右前方向又は左後方向に伸張されたときに発生する電荷の極性と逆となる特性を有している。具体的には、圧電フィルム111は、キラル高分子から形成されるフィルムである。キラル高分子とは、例えば、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)である。PLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸されて分子が配向する圧電性を有する。従って、圧電フィルム111は、圧電性を有している。圧電フィルム111は、d14の圧電定数を有している。図3及び図5に示すように、圧電フィルム111の一軸延伸方向ODは、左右方向に対して0度又は180度の角度を形成している。この0度は、例えば、0度±10度程度を含む角度を含んでいる。同様にして、この180度は、例えば、180度±10度程度を含む角度を含んでいる。これにより、圧電フィルム111は、圧電フィルム111が右後方向、左前方向、右前方向又は左後方向に伸張されることにより、電荷を発生する。圧電フィルム111は、例えば、右後方向又は左前方向に伸張されると正の電荷を発生する。圧電フィルム111は、例えば、右前方向又は左後方向に伸張されると負の電荷を発生する。電荷の大きさは、伸張又は圧縮による圧電フィルム111の変形量に依存する。 The piezoelectric film 111 generates an electric charge according to the amount of deformation of the piezoelectric film 111. The piezoelectric film 111 has a characteristic that the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the right-rear direction or the left-front direction is opposite to the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the right-front direction or the left-rear direction. Specifically, the piezoelectric film 111 is a film formed from a chiral polymer. An example of a chiral polymer is polylactic acid (PLA), particularly L-type polylactic acid (PLLA). PLLA has a helical structure in the main chain. PLLA has a piezoelectricity in which the molecules are oriented by uniaxial stretching. Therefore, the piezoelectric film 111 has a piezoelectricity. The piezoelectric film 111 has a piezoelectric constant of d14. As shown in Figures 3 and 5, the uniaxial stretching direction OD of the piezoelectric film 111 forms an angle of 0 degrees or 180 degrees with respect to the left-right direction. This 0 degree includes, for example, an angle of about 0 degrees ±10 degrees. Similarly, this 180 degrees includes angles including, for example, about 180 degrees ±10 degrees. As a result, the piezoelectric film 111 generates an electric charge when the piezoelectric film 111 is stretched in the right-rear direction, the left-front direction, the right-front direction, or the left-rear direction. For example, the piezoelectric film 111 generates a positive electric charge when stretched in the right-rear direction or the left-front direction. For example, the piezoelectric film 111 generates a negative electric charge when stretched in the right-front direction or the left-rear direction. The magnitude of the electric charge depends on the amount of deformation of the piezoelectric film 111 due to the stretching or compression.
 上電極110は、基準電位VEに接続される基準電極である。上電極110は、一例として、グランド電位に接続される。上電極110は、OCA(Optically Clear Adhesive)等の接着剤(図示せず)によって上主面SF1に固定されている。従って、上電極110は、圧電フィルム111の上に位置している。上電極110は、上主面SF1を覆っている。上電極110は、例えば、PETフィルム及びITO層を含んでいる。上電極110のITO層は、上電極110のPETフィルムの下面に接触している。上電極110のITO層は、上電極110のPETフィルムの下面を覆っている。 The upper electrode 110 is a reference electrode connected to a reference potential VE. As an example, the upper electrode 110 is connected to a ground potential. The upper electrode 110 is fixed to the upper principal surface SF1 by an adhesive (not shown) such as OCA (Opticaly Clear Adhesive). Therefore, the upper electrode 110 is located on the piezoelectric film 111. The upper electrode 110 covers the upper principal surface SF1. The upper electrode 110 includes, for example, a PET film and an ITO layer. The ITO layer of the upper electrode 110 is in contact with the lower surface of the PET film of the upper electrode 110. The ITO layer of the upper electrode 110 covers the lower surface of the PET film of the upper electrode 110.
 下電極112は、信号電極である。下電極112は、OCA等の接着剤(図示せず)によって下主面SF2に固定されている。従って、下電極112は、圧電フィルム111の下に位置している。下電極112は、下主面SF2を覆っている。下電極112は、例えば、PETフィルム及びITO層を含んでいる。下電極112のITO層は、下電極112のPETフィルムの上面に接触している。上電極110のITO層は、上電極110のPETフィルムの上面を覆っている。下電極112は、図1及び図4に示すように、弾性部材10と接触している。弾性部材10は、下電極112の下に位置している。 The lower electrode 112 is a signal electrode. The lower electrode 112 is fixed to the lower main surface SF2 by an adhesive (not shown) such as OCA. Therefore, the lower electrode 112 is located below the piezoelectric film 111. The lower electrode 112 covers the lower main surface SF2. The lower electrode 112 includes, for example, a PET film and an ITO layer. The ITO layer of the lower electrode 112 is in contact with the upper surface of the PET film of the lower electrode 112. The ITO layer of the upper electrode 110 covers the upper surface of the PET film of the upper electrode 110. The lower electrode 112 is in contact with the elastic member 10 as shown in Figures 1 and 4. The elastic member 10 is located below the lower electrode 112.
 検出回路113は、図2に示すように、上電極110及び下電極112に電気的に接続されている。検出回路113は、ボルテージフォロワ(図示せず)、ADコンバータ(図示せず)等を含んでいる。ボルテージフォロワは、圧電フィルム111が発生した電荷を電圧信号に変換する。ADコンバータは、電圧信号をAD変換することによってデジタル信号を生成する。 As shown in FIG. 2, the detection circuit 113 is electrically connected to the upper electrode 110 and the lower electrode 112. The detection circuit 113 includes a voltage follower (not shown), an AD converter (not shown), and the like. The voltage follower converts the charge generated by the piezoelectric film 111 into a voltage signal. The AD converter generates a digital signal by AD converting the voltage signal.
 第1センサ11は、上電極110と下電極112との間の電位差に基づいた第1信号Sig1を出力する。第1センサ11は、弾性部材10の変形に応じた第1信号Sig1を出力する。図1に示すように、第1センサ11は、弾性部材10に接触している。第1センサ11は、弾性部材10の外周面に接触している。第1センサ11の下電極112は、弾性部材10にOCA等の接着剤(図示せず)によって弾性部材10の外周面に固定されている。これにより、第1センサ11は、弾性部材10の変形に伴って変形する。第1センサ11は、第1センサ11の変形に応じた第1信号Sig1を出力する。 The first sensor 11 outputs a first signal Sig1 based on the potential difference between the upper electrode 110 and the lower electrode 112. The first sensor 11 outputs a first signal Sig1 in response to the deformation of the elastic member 10. As shown in FIG. 1, the first sensor 11 is in contact with the elastic member 10. The first sensor 11 is in contact with the outer peripheral surface of the elastic member 10. The lower electrode 112 of the first sensor 11 is fixed to the outer peripheral surface of the elastic member 10 by an adhesive (not shown) such as OCA. This causes the first sensor 11 to deform in response to the deformation of the elastic member 10. The first sensor 11 outputs a first signal Sig1 in response to the deformation of the first sensor 11.
 本実施形態において、第1センサ11は、弾性部材10における中心軸CAX周りの変形を検知する。例えば、右方向に見て、ユーザが、中心軸CAXを軸として弾性部材10の左部を時計回りに捻じる。このとき、図5に示すように、圧電フィルム111が、左前方向に伸張する。また、右方向に見て、ユーザが、中心軸CAXを軸として弾性部材10の右部を反時計回りに捻じる。このとき、図5に示すように、圧電フィルム111が、右後方向に伸張する。従って、圧電フィルム111は、正の電荷を発生する。結果、第1センサ11が、基準電位VEに対して正の極性を有する第1信号Sig1を出力する。 In this embodiment, the first sensor 11 detects deformation of the elastic member 10 around the central axis CAX. For example, looking to the right, the user twists the left part of the elastic member 10 clockwise around the central axis CAX. At this time, as shown in FIG. 5, the piezoelectric film 111 stretches in the left front direction. Looking to the right, the user twists the right part of the elastic member 10 counterclockwise around the central axis CAX. At this time, as shown in FIG. 5, the piezoelectric film 111 stretches in the right rear direction. Therefore, the piezoelectric film 111 generates a positive charge. As a result, the first sensor 11 outputs a first signal Sig1 having a positive polarity with respect to the reference potential VE.
 スイッチ12は、上電極110とした下電極112とを短絡させる機能を有している。具体的には、スイッチ12は、上電極110及び下電極112に並列に接続されている。スイッチ12がオンした場合、上電極110は、スイッチ12を介して下電極112と電気的に接続される。つまり、スイッチ12は、上電極110と下電極112とを短絡させる。スイッチ12は、例えば、FET(Field Effect Transistor)等のスイッチング素子である。 The switch 12 has the function of shorting the upper electrode 110 and the lower electrode 112. Specifically, the switch 12 is connected in parallel to the upper electrode 110 and the lower electrode 112. When the switch 12 is turned on, the upper electrode 110 is electrically connected to the lower electrode 112 via the switch 12. In other words, the switch 12 shorts the upper electrode 110 and the lower electrode 112. The switch 12 is, for example, a switching element such as a FET (Field Effect Transistor).
 演算回路13は、例えば、CPU、ROM及びRAMを含んでいるマイクロコントローラである。演算回路13は、図2に示すように検出回路113と電気的に接続されている。演算回路13は、検出回路113から第1信号Sig1を所定のサンプリングレートで受信する。演算回路13は、例えば、検出回路113から第1信号Sig1を50msec間隔で受信する。演算回路13は、例えば、第1信号Sig1に基づいて弾性部材10に加わる負荷の大きさを算出する。 The arithmetic circuit 13 is, for example, a microcontroller including a CPU, ROM, and RAM. The arithmetic circuit 13 is electrically connected to the detection circuit 113 as shown in FIG. 2. The arithmetic circuit 13 receives the first signal Sig1 from the detection circuit 113 at a predetermined sampling rate. The arithmetic circuit 13 receives the first signal Sig1 from the detection circuit 113 at intervals of, for example, 50 msec. The arithmetic circuit 13 calculates the magnitude of the load applied to the elastic member 10 based on the first signal Sig1, for example.
 演算回路13は、図2に示すように、スイッチ12と電気的に接続されている。演算回路13は、スイッチ12へスイッチ12のオン/オフを切り替える命令に係る信号を送信する。例えば、スイッチ12がFETである場合、演算回路13は、FETのゲートのオン/オフを切り替える命令に係る信号をFETへ送信する。スイッチ12は、演算回路13から受信した信号に基づいてスイッチ12のオン/オフを切り替える。演算回路13は、スイッチ12をオンする命令に係る信号をスイッチ12へ送信した後、スイッチ12をオフする命令に係る信号をスイッチ12へ送信する。 The arithmetic circuit 13 is electrically connected to the switch 12 as shown in FIG. 2. The arithmetic circuit 13 transmits to the switch 12 a signal related to a command to switch the switch 12 on/off. For example, if the switch 12 is a FET, the arithmetic circuit 13 transmits to the FET a signal related to a command to switch the gate of the FET on/off. The switch 12 switches the switch 12 on/off based on the signal received from the arithmetic circuit 13. The arithmetic circuit 13 transmits to the switch 12 a signal related to a command to turn the switch 12 on, and then transmits to the switch 12 a signal related to a command to turn the switch 12 off.
 本実施形態において、演算回路13は、弾性部材10が帯電していると判定した場合、スイッチ12をオンする。演算回路13は、第1センサ11から受信した第1信号Sig1に基づいて弾性部材10が帯電しているか否かを判定する。具体的には、演算回路13は、第1信号Sig1の値がどの様に減衰しているかを調べることによって弾性部材10が帯電しているか否かを判定する。 In this embodiment, if the calculation circuit 13 determines that the elastic member 10 is charged, it turns on the switch 12. The calculation circuit 13 determines whether or not the elastic member 10 is charged based on the first signal Sig1 received from the first sensor 11. Specifically, the calculation circuit 13 determines whether or not the elastic member 10 is charged by examining how the value of the first signal Sig1 decays.
 以下、演算回路13における弾性部材10が帯電しているか否かを判定する処理(以下、処理Pと称す)について図面を参照しながら説明する。図6は、弾性部材10が帯電することによって発生した第1信号Sig1の一例を示す図である。図7は、弾性部材10が中心軸CAX周りにねじれる様に変形したときに発生した第1信号Sig1の一例を示す図である。図6及び図7における横軸は、時刻を示す。図6及び図7における縦軸は、第1信号Sig1の値を示す。 The process (hereinafter referred to as process P) in the arithmetic circuit 13 for determining whether the elastic member 10 is charged will be described below with reference to the drawings. FIG. 6 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 becomes charged. FIG. 7 is a diagram showing an example of the first signal Sig1 generated when the elastic member 10 is deformed so as to be twisted around the central axis CAX. The horizontal axis in FIG. 6 and FIG. 7 indicates time. The vertical axis in FIG. 6 and FIG. 7 indicates the value of the first signal Sig1.
 図6及び図7に示すように、弾性部材10が変形することによって発生した第1信号Sig1の値の減衰の態様は、弾性部材10が帯電することによって発生した第1信号Sig1の値の減衰の態様と異なる。弾性部材10が帯電することによって発生した第1信号Sig1の値は、以下に示す数式1に基づいて減衰する。一方、弾性部材10が変形することによって発生した第1信号Sig1の値は、数式1に基づいて減衰しない。 As shown in Figures 6 and 7, the manner in which the value of the first signal Sig1 generated by deformation of the elastic member 10 attenuates differs from the manner in which the value of the first signal Sig1 generated by charging the elastic member 10 attenuates. The value of the first signal Sig1 generated by charging the elastic member 10 attenuates based on the following formula 1. On the other hand, the value of the first signal Sig1 generated by deformation of the elastic member 10 does not attenuate based on formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1におけるVt0は、基準時刻において第1センサ11から出力された第1信号Sig1の値を示す。基準時刻とは、演算回路13が第1センサ11から第1信号Sig1を受信した時刻である。数式1におけるdtは、基準時刻より前の時刻又は後の時刻を示す。数式1におけるaは、RC回路を有しているセンサモジュール1における時定数を示す。数式1におけるV(dt)は、数式1に基づいて算出された第1信号Sig1の値を示す。例えば、Vt0が2.0Vであり、dtが1秒後であり、且つ、aが3秒である場合、V(dt)は、数式1に基づいて約1.4Vである。 Vt0 in Equation 1 indicates the value of the first signal Sig1 output from the first sensor 11 at a reference time. The reference time is the time when the arithmetic circuit 13 receives the first signal Sig1 from the first sensor 11. dt in Equation 1 indicates a time before or after the reference time. a in Equation 1 indicates the time constant in the sensor module 1 having an RC circuit. V(dt) in Equation 1 indicates the value of the first signal Sig1 calculated based on Equation 1. For example, if Vt0 is 2.0 V, dt is 1 second later, and a is 3 seconds, V(dt) is approximately 1.4 V based on Equation 1.
 演算回路13は、数式1によって得られた計算結果と、第1信号Sig1の値とを比較することによって弾性部材10が帯電しているか否かを判定する。具体的には、演算回路13は、図6及び図7に示すように、数式1に基づいて第1信号Sig1の減衰の態様を示す計算値MDを演算する。例えば、図6に示すように、演算回路13は、時刻p1(基準時刻)における第1信号Sig1の値を数式1に代入することによって計算値MDを取得する。 The calculation circuit 13 determines whether the elastic member 10 is charged by comparing the calculation result obtained by Equation 1 with the value of the first signal Sig1. Specifically, as shown in Figures 6 and 7, the calculation circuit 13 calculates a calculation value MD indicating the manner of attenuation of the first signal Sig1 based on Equation 1. For example, as shown in Figure 6, the calculation circuit 13 obtains the calculation value MD by substituting the value of the first signal Sig1 at time p1 (reference time) into Equation 1.
 演算回路13は、計算値MDが第1信号Sig1の値と一致しているか否かを判定する。計算値MDが第1信号Sig1の値と一致している場合、演算回路13は、弾性部材10が帯電していると判定する。図6に示す例において、計算値MDは、第1信号Sig1の値と一致している。従って、演算回路13は、弾性部材10が帯電していると判定する。 The calculation circuit 13 determines whether the calculated value MD matches the value of the first signal Sig1. If the calculated value MD matches the value of the first signal Sig1, the calculation circuit 13 determines that the elastic member 10 is charged. In the example shown in FIG. 6, the calculated value MD matches the value of the first signal Sig1. Therefore, the calculation circuit 13 determines that the elastic member 10 is charged.
 一方、図7に示す例において、演算回路13は、時刻q1(基準時刻)における第1信号Sig1の値を数式1に代入することによって計算値MDを取得している。図7に示す例において、計算値MDは、第1信号Sig1の値と一致していない。従って、演算回路13は、弾性部材10が帯電していないと判定する。 On the other hand, in the example shown in FIG. 7, the calculation circuit 13 obtains the calculated value MD by substituting the value of the first signal Sig1 at time q1 (reference time) into Equation 1. In the example shown in FIG. 7, the calculation value MD does not match the value of the first signal Sig1. Therefore, the calculation circuit 13 determines that the elastic member 10 is not charged.
 以下、処理Pの一連の流れについて図面を参照しながら説明する。図8は、演算回路13が実行する処理Pの一例を示すフローチャートである。図9は、演算回路13が処理Pを実行しているときの第1信号Sig1の波形を示す図である。 The sequence of steps in process P will be described below with reference to the drawings. FIG. 8 is a flow chart showing an example of process P executed by the arithmetic circuit 13. FIG. 9 is a diagram showing the waveform of the first signal Sig1 when the arithmetic circuit 13 is executing process P.
 演算回路13は、例えば、演算回路13の電源がオンされたときに処理Pを開始する(図8:START)。 The calculation circuit 13 starts process P, for example, when the power supply of the calculation circuit 13 is turned on (FIG. 8: START).
 開始後、演算回路13は、計算値MDを計算する(図8:ステップS11)。本実施形態において、演算回路13は、図9に示すように、時刻u1における第1信号Sig1の値に基づいて、時刻u1(基準時刻)より後の期間PE1における第1信号Sig1の値を示す計算値MD1を演算する。具体的には、演算回路13は、時刻u1における第1信号Sig1の値を数式1に代入することによって、期間PE1における計算値MD1を演算する。期間PE1は、時刻u1と、時刻u1より後の時刻t1との間の期間である。期間PE1の時間の長さは、例えば、2.5秒である。この場合、演算回路13は、時刻u1から2.5秒後の時刻t1との間における第1信号Sig1の値を示す計算値MD1を演算する。 After starting, the calculation circuit 13 calculates the calculated value MD (FIG. 8: step S11). In this embodiment, as shown in FIG. 9, the calculation circuit 13 calculates the calculated value MD1 indicating the value of the first signal Sig1 in a period PE1 after time u1 (reference time) based on the value of the first signal Sig1 at time u1. Specifically, the calculation circuit 13 calculates the calculated value MD1 in the period PE1 by substituting the value of the first signal Sig1 at time u1 into Equation 1. The period PE1 is the period between time u1 and time t1 after time u1. The length of the period PE1 is, for example, 2.5 seconds. In this case, the calculation circuit 13 calculates the calculated value MD1 indicating the value of the first signal Sig1 between time u1 and time t1, which is 2.5 seconds later.
 ステップS11の後、演算回路13は、計算値MD1と、期間PE1において演算回路13が第1センサ11から受信した第1信号Sig1の値と、を比較する(図8:ステップS12)。具体的には、演算回路13は、基準時刻より後の判定時刻において、計算値MD1と、期間PE1において演算回路13が第1センサ11から受信した第1信号Sig1の値と、を比較する。判定時刻は、期間PE1において最も後の時刻である。従って、演算回路13は、時刻t1(判定時刻)において、ステップS12の処理を実行する。 After step S11, the calculation circuit 13 compares the calculated value MD1 with the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 during the period PE1 (FIG. 8: step S12). Specifically, the calculation circuit 13 compares the calculated value MD1 with the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 during the period PE1 at a determination time that is later than the reference time. The determination time is the latest time during the period PE1. Therefore, the calculation circuit 13 executes the process of step S12 at time t1 (determination time).
 本実施形態において、演算回路13は、期間PE1の各時刻における第1信号Sig1の値が、所定の閾値以内か否かを判定する。所定の閾値は、例えば、計算値MD1±10%以内である。従って、演算回路13は、計算値MD1と期間PE1(基準時刻より後の期間)において演算回路13が第1センサ11から受信した第1信号Sig1の値とに基づいて弾性部材10が帯電しているか否かを判定する。 In this embodiment, the calculation circuit 13 determines whether the value of the first signal Sig1 at each time in the period PE1 is within a predetermined threshold value. The predetermined threshold value is, for example, within ±10% of the calculated value MD1. Therefore, the calculation circuit 13 determines whether the elastic member 10 is charged based on the calculated value MD1 and the value of the first signal Sig1 that the calculation circuit 13 receives from the first sensor 11 in the period PE1 (the period after the reference time).
 演算回路13は、所定の回数(以下、取得回数と称す)、ステップS11,S12の処理を連続して行う(図8:ステップS13)。例えば、演算回路13は、ステップS11,S12の処理を連続で10回行う。例えば、図9に示すように、演算回路13は、計算値MD1を計算した後、時刻u1より後の時刻u2(基準時刻)において計算値MD2を計算する。一例として、演算回路13のサンプリングレートが50msecである場合、時刻u2は、時刻u1より50msec後の時刻である。演算回路13は、時刻u2における第1信号Sig1の値に基づいて計算値MD2を計算する。計算値MD2は、時刻u2と時刻u2より後の時刻t2との間の期間PE2における第1信号Sig1の値を示す。演算回路13は、時刻t2において、期間PE2において受信した第1信号Sig1の値と計算値MD2とを比較する。演算回路13は、「取得回数=10」となるまで、上記の処理を繰り返す。 The calculation circuit 13 performs the processes of steps S11 and S12 a predetermined number of times (hereinafter referred to as the acquisition number) in succession (FIG. 8: step S13). For example, the calculation circuit 13 performs the processes of steps S11 and S12 in succession 10 times. For example, as shown in FIG. 9, the calculation circuit 13 calculates the calculated value MD1, and then calculates the calculated value MD2 at time u2 (reference time) after time u1. As an example, when the sampling rate of the calculation circuit 13 is 50 msec, the time u2 is 50 msec after the time u1. The calculation circuit 13 calculates the calculated value MD2 based on the value of the first signal Sig1 at time u2. The calculated value MD2 indicates the value of the first signal Sig1 in the period PE2 between time u2 and time t2 after time u2. At time t2, the calculation circuit 13 compares the value of the first signal Sig1 received in the period PE2 with the calculated value MD2. The calculation circuit 13 repeats the above process until the number of acquisitions becomes 10.
 ステップS13の後、演算回路13は、第1信号Sig1の値が計算値MDと一致している期間の数(以下、カウント数と称する)を検出する(図8:ステップS14)。具体的には、期間PE1から期間PE10までの1サイクルにおいて、第1信号Sig1の値が計算値MD1~MD10と一致している期間の数を検出する。図9に示す例では、期間PE1から期間PE10までの全ての期間において、第1信号Sig1の値が、計算値MD1~MD10と一致していない。この場合、演算回路13は、「カウント数=0」と算出する。 After step S13, the arithmetic circuit 13 detects the number of periods during which the value of the first signal Sig1 matches the calculated value MD (hereinafter referred to as the count number) (FIG. 8: step S14). Specifically, the arithmetic circuit 13 detects the number of periods during which the value of the first signal Sig1 matches the calculated values MD1 to MD10 in one cycle from period PE1 to period PE10. In the example shown in FIG. 9, the value of the first signal Sig1 does not match the calculated values MD1 to MD10 in any of the periods from period PE1 to period PE10. In this case, the arithmetic circuit 13 calculates "count number = 0".
 演算回路13は、カウント数が所定の数(以下、判定用数と称す)未満である場合(図8:ステップS15 No)、弾性部材10が帯電していないと判定する(図8:ステップS16)。例えば、演算回路13は、カウント数が7未満の場合、弾性部材10が帯電していないと判定する。図9に示す例では、期間PE1から期間PE10までにおいて、演算回路13は、「カウント数=0」と算出している。従って、演算回路13は、時刻t10において弾性部材10が帯電していないと判定する。 If the count number is less than a predetermined number (hereinafter referred to as the determination number) (FIG. 8: step S15 No), the calculation circuit 13 determines that the elastic member 10 is not charged (FIG. 8: step S16). For example, if the count number is less than 7, the calculation circuit 13 determines that the elastic member 10 is not charged. In the example shown in FIG. 9, from period PE1 to period PE10, the calculation circuit 13 calculates "count number = 0". Therefore, the calculation circuit 13 determines that the elastic member 10 is not charged at time t10.
 カウント数が所定の数以上である場合(図8:ステップS15 Yes)、演算回路13は、弾性部材10が帯電していると判定する(図8:ステップS17)。例えば、演算回路13は、カウント数が7以上である場合、弾性部材10が帯電していると判定する。 If the count number is equal to or greater than a predetermined number (FIG. 8: step S15: Yes), the arithmetic circuit 13 determines that the elastic member 10 is charged (FIG. 8: step S17). For example, if the count number is equal to or greater than 7, the arithmetic circuit 13 determines that the elastic member 10 is charged.
 例えば、図9に示すように、演算回路13は、期間PE1から期間PE10までの1サイクルと同様にして、期間PE15から期間PE25までの1サイクルにおいて、第1信号Sig1の値が計算値MD15~MD25と一致するか否かを判定する。期間PE15~PE25は、期間PE10より後の期間である。図9に示す例では、期間PE15から期間PE25までの全ての期間において、第1信号Sig1の値が、計算値MD15~MD25と一致している。従って、演算回路13は、カウント数を“10”と算出する。この場合、演算回路13は、時刻t25(判定時刻)において、弾性部材10が帯電していると判定する。 For example, as shown in FIG. 9, the calculation circuit 13 determines whether the value of the first signal Sig1 matches the calculated values MD15 to MD25 in one cycle from period PE15 to period PE25 in the same way as in one cycle from period PE1 to period PE10. Periods PE15 to PE25 are periods after period PE10. In the example shown in FIG. 9, the value of the first signal Sig1 matches the calculated values MD15 to MD25 in all periods from period PE15 to period PE25. Therefore, the calculation circuit 13 calculates the count number to be "10." In this case, the calculation circuit 13 determines that the elastic member 10 is charged at time t25 (determination time).
 なお、演算回路13は、時刻t10より期間PE10の時間の長さ分前の時刻において、計算値MD10を計算している。同様にして、演算回路13は、計算値MD15~MD25を演算している。 Note that the calculation circuit 13 calculates the calculation value MD10 at a time that is the length of the period PE10 before time t10. In the same manner, the calculation circuit 13 calculates the calculation values MD15 to MD25.
 演算回路13は、弾性部材10が帯電していると判定した場合、スイッチ12をオンする(図8:ステップS18)。図9に示す例において、演算回路13は、時刻t25(判定時刻)において、弾性部材10が帯電していると判定している。従って、演算回路13は、時刻t25において、スイッチ12をオンする。この場合、時刻t25において第1信号Sig1の値は、基準電位VEと一致する。 If the calculation circuit 13 determines that the elastic member 10 is charged, it turns on the switch 12 (FIG. 8: step S18). In the example shown in FIG. 9, the calculation circuit 13 determines that the elastic member 10 is charged at time t25 (determination time). Therefore, the calculation circuit 13 turns on the switch 12 at time t25. In this case, the value of the first signal Sig1 at time t25 matches the reference potential VE.
 演算回路13は、ステップS11からステップS18の処理を繰り返す。例えば、演算回路13は、第1センサ11から第1信号Sig1を所定のサンプリング間隔で受信する毎に、ステップS11からステップS18の処理を実行する。例えば、演算回路13は、期間PE1から期間PE10までを1サイクルとして処理Pを実行後、期間PE2から期間PE11(図示せず)までを1サイクルとして処理Pを実行する。 The arithmetic circuit 13 repeats the processes from step S11 to step S18. For example, the arithmetic circuit 13 executes the processes from step S11 to step S18 each time the arithmetic circuit 13 receives the first signal Sig1 from the first sensor 11 at a predetermined sampling interval. For example, the arithmetic circuit 13 executes process P with one cycle being from period PE1 to period PE10, and then executes process P with one cycle being from period PE2 to period PE11 (not shown).
 演算回路13は、例えば、演算回路13の電源がオフされたとき、処理Pを終了する(図8:END)。 The calculation circuit 13 ends process P, for example, when the power supply to the calculation circuit 13 is turned off (FIG. 8: END).
 (効果)
 センサモジュール1によれば、第1センサ11が誤動作をしにくい。本実施形態において、信号電極である下電極112が弾性部材10と近接する様に、第1センサ11が弾性部材10に貼り付けられている。本実施形態において、弾性部材10は、信号電極である下電極112と接着剤を介して接触している。弾性部材10は、帯電しやすい樹脂を含む。下電極112は、例えば、弾性部材10の帯電による影響を受けることによって帯電する。この場合、上電極110と下電極112との間の電位差が、変化する。結果、第1センサ11は、弾性部材10が変形していないにも関わらず、基準電位VEに対して負又は正の極性を有する第1信号Sig1を発生する可能性がある。
(effect)
According to the sensor module 1, the first sensor 11 is less likely to malfunction. In this embodiment, the first sensor 11 is attached to the elastic member 10 so that the lower electrode 112, which is a signal electrode, is close to the elastic member 10. In this embodiment, the elastic member 10 is in contact with the lower electrode 112, which is a signal electrode, via an adhesive. The elastic member 10 contains a resin that is easily charged. The lower electrode 112 is charged, for example, by being affected by the charge of the elastic member 10. In this case, the potential difference between the upper electrode 110 and the lower electrode 112 changes. As a result, the first sensor 11 may generate a first signal Sig1 having a negative or positive polarity with respect to the reference potential VE even if the elastic member 10 is not deformed.
 そこで、本実施形態に係るセンサモジュール1は、上電極110と下電極112とを短絡させる機能を有するスイッチ12を備えている。スイッチ12がオンされたとき、弾性部材10の帯電によって生じた上電極110と下電極112との間の電位差がゼロになる。これにより、弾性部材10が変形していないとき、第1センサ11は、基準電位VEに対して正又は負の極性を有する第1信号Sig1を出力しなくなる。つまり、弾性部材10が変形していないにも関わらず、弾性部材10が変形していることを示す第1信号Sig1を出力するという誤動作が、第1センサ11に発生しにくくなる。 The sensor module 1 according to this embodiment is therefore equipped with a switch 12 that has the function of shorting the upper electrode 110 and the lower electrode 112. When the switch 12 is turned on, the potential difference between the upper electrode 110 and the lower electrode 112, which is generated by the charging of the elastic member 10, becomes zero. As a result, when the elastic member 10 is not deformed, the first sensor 11 does not output the first signal Sig1 having a positive or negative polarity with respect to the reference potential VE. In other words, the first sensor 11 is less likely to malfunction, such as outputting the first signal Sig1 indicating that the elastic member 10 is deformed, even though the elastic member 10 is not deformed.
 センサモジュール1において、演算回路13は、第1信号Sig1に基づいて弾性部材10が帯電しているか否かを判定する。この場合、演算回路13は、弾性部材10が帯電していないときに、スイッチ12をオンしない。従って、スイッチ12が不要にオンされることによって、第1センサ11が弾性部材10の変形を検知しないという事態が発生しにくい。 In the sensor module 1, the arithmetic circuit 13 determines whether or not the elastic member 10 is charged based on the first signal Sig1. In this case, the arithmetic circuit 13 does not turn on the switch 12 when the elastic member 10 is not charged. Therefore, it is unlikely that the first sensor 11 will not detect the deformation of the elastic member 10 due to the switch 12 being turned on unnecessarily.
 演算回路13は、例えば、期間PE1から期間PE10を1サイクルとして、第1信号Sig1の値が、計算値MDと一致しているか否かを判定する。従って、例えば、期間PE1から期間PE10の内の1つの期間において第1センサ11が異常な出力値を出力した場合であっても、演算回路13は、弾性部材10が帯電しているか否かを正確に判定出来る。 The calculation circuit 13 determines whether the value of the first signal Sig1 matches the calculated value MD, for example, with the period PE1 to the period PE10 being one cycle. Therefore, even if the first sensor 11 outputs an abnormal output value during one of the periods PE1 to PE10, for example, the calculation circuit 13 can accurately determine whether the elastic member 10 is charged.
 例えば、弾性部材10が変形した場合、第1センサ11は第1信号Sig1を出力する。このとき、第1センサ11から出力された第1信号Sig1の値が、計算値MDと一致する可能性がある。本実施形態において演算回路13は、例えば、期間PE1から期間PE10までを1サイクルとして、第1信号Sig1の値が計算値MDと一致しているか否かを判定する。これにより、第1センサ11から出力された第1信号Sig1の値が瞬間的に計算値MDと一致したときに、演算回路13が、弾性部材10が帯電していると誤判定しにくくなる。 For example, when the elastic member 10 is deformed, the first sensor 11 outputs the first signal Sig1. At this time, there is a possibility that the value of the first signal Sig1 output from the first sensor 11 matches the calculated value MD. In this embodiment, the arithmetic circuit 13 determines whether the value of the first signal Sig1 matches the calculated value MD, for example, with the period from period PE1 to period PE10 being one cycle. This makes it less likely that the arithmetic circuit 13 will erroneously determine that the elastic member 10 is charged when the value of the first signal Sig1 output from the first sensor 11 momentarily matches the calculated value MD.
 例えば、演算回路13は、10個の期間PE1~期間PE10を1サイクルとして弾性部材10が帯電しているか否かを判定する。この場合、演算回路13が当該判定を行うために要する時間は、例えば、0.5秒(サンプリングレート(秒)×10(回))である。従って、演算回路13は、短時間で弾性部材10が帯電しているか否かを判定出来る。 For example, the arithmetic circuit 13 determines whether or not the elastic member 10 is charged, with ten periods PE1 to PE10 forming one cycle. In this case, the time required for the arithmetic circuit 13 to make this determination is, for example, 0.5 seconds (sampling rate (seconds) x 10 (times)). Therefore, the arithmetic circuit 13 can determine whether or not the elastic member 10 is charged in a short time.
 [変形例1]
 以下、変形例1に係るセンサモジュール1aについて図面を参照しながら説明する。図10は、変形例1に係るセンサモジュール1aの外観を示す斜視図である。図11は、スイッチ12と演算回路13と第2センサ14aとの接続の一例を示す図である。図12は、第2センサ14aを示す図である。
[Modification 1]
The sensor module 1a according to the first modification will be described below with reference to the drawings. Fig. 10 is a perspective view showing the external appearance of the sensor module 1a according to the first modification. Fig. 11 is a diagram showing an example of the connection between the switch 12, the arithmetic circuit 13, and the second sensor 14a. Fig. 12 is a diagram showing the second sensor 14a.
 センサモジュール1aは、第2センサ14aを更に備えている点でセンサモジュール1と異なる。第2センサ14aは、図10に示すように、弾性部材10に接触している。第2センサ14aは、弾性部材10の外周面に接触している。図11に示すように、第2センサ14aは、第2センサ上電極140と、フィルム141と、第2センサ下電極142と、検出回路143と、を含んでいる。 Sensor module 1a differs from sensor module 1 in that it further includes a second sensor 14a. As shown in FIG. 10, second sensor 14a is in contact with elastic member 10. Second sensor 14a is in contact with the outer peripheral surface of elastic member 10. As shown in FIG. 11, second sensor 14a includes a second sensor upper electrode 140, a film 141, a second sensor lower electrode 142, and a detection circuit 143.
 本変形例において、第2センサ14aは、弾性部材10の変形に応じて信号を出力しない。一例として、フィルム141は、圧電性を有していない。フィルム141は、弾性部材10の変形に応じた電荷を発生しない。このようなフィルム141は、例えば、PETフィルムである。フィルム141は、図12に示すように、下方向にこの順に並んでいる上主面SF1a及び下主面SF2aを有している。 In this modified example, the second sensor 14a does not output a signal in response to the deformation of the elastic member 10. As an example, the film 141 does not have piezoelectricity. The film 141 does not generate an electric charge in response to the deformation of the elastic member 10. Such a film 141 is, for example, a PET film. As shown in FIG. 12, the film 141 has an upper principal surface SF1a and a lower principal surface SF2a arranged in this order in the downward direction.
 第2センサ上電極140は、基準電位VEに接続されている基準電極である。第2センサ上電極140は、OCA等の接着剤(図示せず)によって上主面SF1aに固定されている。従って、第2センサ上電極140は、フィルム141の上に位置している。 The second sensor upper electrode 140 is a reference electrode connected to the reference potential VE. The second sensor upper electrode 140 is fixed to the upper principal surface SF1a by an adhesive (not shown) such as OCA. Therefore, the second sensor upper electrode 140 is located on the film 141.
 第2センサ下電極142は、信号電極である。第2センサ下電極142は、OCA等の接着剤(図示せず)によって下主面SF2aに固定されている。第2センサ下電極142は、フィルム141の下に位置している。 The second sensor lower electrode 142 is a signal electrode. The second sensor lower electrode 142 is fixed to the lower principal surface SF2a with an adhesive (not shown) such as OCA. The second sensor lower electrode 142 is located below the film 141.
 検出回路143は、図11に示すように、第2センサ上電極140及び第2センサ下電極142に電気的に接続されている。検出回路143は、フィルム141が発生した電荷を電圧信号に変換する。 As shown in FIG. 11, the detection circuit 143 is electrically connected to the second sensor upper electrode 140 and the second sensor lower electrode 142. The detection circuit 143 converts the charge generated by the film 141 into a voltage signal.
 第2センサ14aは、第2センサ上電極140と第2センサ下電極142との間の電位差に基づいた信号を出力する。第2センサ14aは、弾性部材10の帯電に基づいた信号(以下、第2信号と称す)を出力する。信号電極である第2センサ下電極142は、弾性部材10と接触している。弾性部材10の帯電の影響を受けることによって、第2センサ下電極142が、帯電する。これにより、第2センサ上電極140と第2センサ下電極142との間の電位差が変化する。 The second sensor 14a outputs a signal based on the potential difference between the second sensor upper electrode 140 and the second sensor lower electrode 142. The second sensor 14a outputs a signal (hereinafter referred to as the second signal) based on the charge of the elastic member 10. The second sensor lower electrode 142, which is a signal electrode, is in contact with the elastic member 10. The second sensor lower electrode 142 becomes charged by being affected by the charge of the elastic member 10. This causes a change in the potential difference between the second sensor upper electrode 140 and the second sensor lower electrode 142.
 本変形例において、演算回路13は、第2信号に基づいて弾性部材10が帯電しているか否かを判定する。例えば、演算回路13は、第2信号の値と所定の閾値とを比較する。第2信号の値が所定の閾値以上となった場合、演算回路13は、弾性部材10が帯電していると判定する。演算回路13は、弾性部材10が帯電していると判定した場合、スイッチ12をオンする。 In this modified example, the arithmetic circuit 13 determines whether or not the elastic member 10 is charged based on the second signal. For example, the arithmetic circuit 13 compares the value of the second signal with a predetermined threshold value. If the value of the second signal is equal to or greater than the predetermined threshold value, the arithmetic circuit 13 determines that the elastic member 10 is charged. If the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns on the switch 12.
 (効果)
 弾性部材10が変形した場合、第2センサ14aは、第2信号を出力しない。第2センサ14aは、弾性部材10が帯電している場合、第2信号を出力する。演算回路13は、第2信号に基づいて弾性部材10が帯電しているか否かを判定する。これにより、演算回路13は、弾性部材10の変形によって発生した信号なのか弾性部材10が帯電することによって発生した信号なのかを確実に判定することが出来る。
(effect)
When the elastic member 10 is deformed, the second sensor 14a does not output the second signal. When the elastic member 10 is charged, the second sensor 14a outputs the second signal. The arithmetic circuit 13 determines whether the elastic member 10 is charged or not based on the second signal. This allows the arithmetic circuit 13 to reliably determine whether the signal is generated due to the deformation of the elastic member 10 or due to the elastic member 10 being charged.
 本変形例における第2信号の値と閾値とを比較する処理(以下、処理Qと称す)に係るプログラムは、処理Pに係るプログラムよりも単純である。従って、演算回路13が処理Qに係るプログラムを実行したときに演算回路13に加わる負荷は、演算回路13が処理Pに係るプログラムを実行したときに加わる負荷よりも小さい。 The program for the process of comparing the value of the second signal with the threshold value in this modified example (hereinafter referred to as process Q) is simpler than the program for process P. Therefore, the load applied to the arithmetic circuit 13 when the arithmetic circuit 13 executes the program for process Q is smaller than the load applied when the arithmetic circuit 13 executes the program for process P.
 [変形例2]
 以下、変形例2に係るセンサモジュール1b(図示せず)について図を参照しながら説明する。図13は、変形例2に係るセンサモジュール1bに備わる演算回路13bの処理の一例を示す図である。図13における横軸は、時刻を示す。図13における縦軸は、第1信号Sig1の値を示す。図13に示す例において、演算回路13bは、時刻w1において弾性部材10が帯電していると判定している。図13に示す例において、時刻w2は、時刻w1より後の時刻である。
[Modification 2]
A sensor module 1b (not shown) according to Modification 2 will be described below with reference to the drawings. FIG. 13 is a diagram showing an example of processing by the arithmetic circuit 13b provided in the sensor module 1b according to Modification 2. The horizontal axis in FIG. 13 indicates time. The vertical axis in FIG. 13 indicates the value of the first signal Sig1. In the example shown in FIG. 13, the arithmetic circuit 13b determines that the elastic member 10 is charged at time w1. In the example shown in FIG. 13, time w2 is a time after time w1.
 センサモジュール1bは、演算回路13と異なる演算回路13bを備えている点でセンサモジュール1と異なる。演算回路13bは、弾性部材10が帯電していると判定した場合、第1信号Sig1の値をオフセットする処理を更に実行する。 Sensor module 1b differs from sensor module 1 in that it includes an arithmetic circuit 13b that is different from arithmetic circuit 13. If arithmetic circuit 13b determines that elastic member 10 is charged, it further executes a process of offsetting the value of first signal Sig1.
 具体的には、演算回路13bは、第1信号Sig1に基づいて弾性部材10が帯電しているか否かを判定する。図13に示す例において、演算回路13は、時刻w1において弾性部材10が帯電していると判定している。この場合、演算回路13bは、基準電位VEと、弾性部材10が帯電していると判定された時刻w1(帯電時刻)における第1信号Sig1の値と、の差分値DVを算出する。例えば、時刻w1における第1信号Sig1の値が2.0Vである場合、且つ、基準電位VEが0Vである場合、差分値DVは、2.0Vである。 Specifically, the calculation circuit 13b determines whether or not the elastic member 10 is charged based on the first signal Sig1. In the example shown in FIG. 13, the calculation circuit 13 determines that the elastic member 10 is charged at time w1. In this case, the calculation circuit 13b calculates a difference value DV between the reference potential VE and the value of the first signal Sig1 at time w1 (charging time) when it is determined that the elastic member 10 is charged. For example, if the value of the first signal Sig1 at time w1 is 2.0 V and the reference potential VE is 0 V, the difference value DV is 2.0 V.
 演算回路13は、時刻w1より後の時刻における第1信号Sig1の値を差分値DVに基づいて算出する。具体的には、演算回路13は、差分値DVと、時刻w1より後の時刻において検出回路113から受信した第1信号Sig1の値と、の差を算出する。演算回路13は、当該差を、第1信号Sig1の値と推定する。例えば、時刻w1より後の時刻w2において演算回路13は、“2.0V”という値を有する第1信号Sig1を受信する。この場合、演算回路13は、“差分値:2.0V”に基づいて時刻w2における第1信号Sig1の値を“0V”と推定する。 The calculation circuit 13 calculates the value of the first signal Sig1 at a time after time w1 based on the difference value DV. Specifically, the calculation circuit 13 calculates the difference between the difference value DV and the value of the first signal Sig1 received from the detection circuit 113 at a time after time w1. The calculation circuit 13 estimates this difference as the value of the first signal Sig1. For example, at time w2 after time w1, the calculation circuit 13 receives the first signal Sig1 having a value of "2.0V". In this case, the calculation circuit 13 estimates the value of the first signal Sig1 at time w2 to be "0V" based on the "difference value: 2.0V".
 演算回路13bは、例えば、弾性部材10が所定の時間帯電していないと判定した場合、又は、センサモジュール1bが再起動したとき、スイッチ12をオンする。演算回路13bは、スイッチ12をオンした後、当該基準をオフセットする前の値に戻す。図13に示す例において、演算回路13bは、例えば、差分値DVを“2.0V”から“0.0V”に戻す。演算回路13bは、当該基準をオフセットする前の値に戻した後、スイッチ12をオフする。 For example, when the calculation circuit 13b determines that the elastic member 10 has not been charged for a predetermined time or when the sensor module 1b is restarted, the calculation circuit 13b turns on the switch 12. After turning on the switch 12, the calculation circuit 13b returns the reference to the value before the offset. In the example shown in FIG. 13, for example, the calculation circuit 13b returns the difference value DV from "2.0 V" to "0.0 V". After returning the reference to the value before the offset, the calculation circuit 13b turns off the switch 12.
 (効果)
 スイッチ12がオンされているときに弾性部材10が変形した場合、スイッチ12がオンされている間に第1センサ11に発生した電圧は無効になる。ここで、例えば、弾性部材10が変形しているとき、スイッチ12が、オフされる。スイッチ12がオフされた後、第1センサ11から出力される第1信号Sig1の値は、無効になった電圧分オフセットされてしまう。結果、スイッチ12がオフされた後に第1センサ11から出力される第1信号Sig1の値に誤差が生じる可能性がある。しかし、演算回路13bは、弾性部材10が帯電していると判定した場合、差分値DVに基づいて第1信号Sig1の値を算出する。つまり、演算回路13は、当該誤差を考慮した第1信号Sig1の値を算出する。結果、演算回路13bにおける弾性部材10の変形を検知する精度が、向上する。
(effect)
If the elastic member 10 is deformed while the switch 12 is on, the voltage generated in the first sensor 11 while the switch 12 is on becomes invalid. Here, for example, when the elastic member 10 is deformed, the switch 12 is turned off. After the switch 12 is turned off, the value of the first signal Sig1 output from the first sensor 11 is offset by the invalid voltage. As a result, an error may occur in the value of the first signal Sig1 output from the first sensor 11 after the switch 12 is turned off. However, when the calculation circuit 13b determines that the elastic member 10 is charged, it calculates the value of the first signal Sig1 based on the difference value DV. In other words, the calculation circuit 13 calculates the value of the first signal Sig1 taking the error into consideration. As a result, the accuracy of detecting the deformation of the elastic member 10 in the calculation circuit 13b is improved.
 弾性部材10が帯電している場合、演算回路13bは、スイッチ12をオンしない。演算回路13bは、弾性部材10が帯電している場合、差分値DVに基づいて第1信号Sig1を算出する。従って、演算回路13bは、弾性部材10が帯電していても、弾性部材10の変形を正確に検知することが出来る。 When the elastic member 10 is charged, the calculation circuit 13b does not turn on the switch 12. When the elastic member 10 is charged, the calculation circuit 13b calculates the first signal Sig1 based on the difference value DV. Therefore, the calculation circuit 13b can accurately detect the deformation of the elastic member 10 even if the elastic member 10 is charged.
 [変形例3]
 以下、変形例3に係るセンサモジュール1cについて図を参照しながら説明する。図14は、変形例3に係るセンサモジュール1cの一例を示すブロック図である。
[Modification 3]
The sensor module 1c according to the third modification will be described below with reference to the drawings. Fig. 14 is a block diagram showing an example of the sensor module 1c according to the third modification.
 図14に示すように、センサモジュール1cは、LED15及び電源ボタン16を更に備える点で、センサモジュール1と異なる。LED15及び電源ボタン16は、演算回路13と電気的に接続される。 As shown in FIG. 14, the sensor module 1c differs from the sensor module 1 in that it further includes an LED 15 and a power button 16. The LED 15 and the power button 16 are electrically connected to the arithmetic circuit 13.
 LED15は、本願発明における、弾性部材の変形に応じた情報を表示する表示装置に対応する。例えば、LED15の明るさは、弾性部材10の変形に応じて変化する。例えば、演算回路13は、弾性部材10の変形量が大きい場合、LED15の明るさを上げ(明るくする)、弾性部材10の変形量が小さい場合、LED15の明るさを下げる(暗くする)。 The LED 15 corresponds to the display device in the present invention that displays information according to the deformation of the elastic member. For example, the brightness of the LED 15 changes according to the deformation of the elastic member 10. For example, the arithmetic circuit 13 increases (brightens) the brightness of the LED 15 when the deformation of the elastic member 10 is large, and decreases (darkens) the brightness of the LED 15 when the deformation of the elastic member 10 is small.
 なお、演算回路13は、弾性部材10の変形に応じてLED15の明るさを変化させる以外に、LED15の色を変化させてもよいし、LED15が複数のLEDにより構成されている場合にはLEDの点灯数を変化させてもよい。また、演算回路13は、弾性部材10の変形に応じてLEDの点滅速度を変化させてもよい。 In addition to changing the brightness of the LED 15 in response to the deformation of the elastic member 10, the arithmetic circuit 13 may change the color of the LED 15, or, if the LED 15 is composed of multiple LEDs, may change the number of LEDs that are lit. The arithmetic circuit 13 may also change the blinking speed of the LED in response to the deformation of the elastic member 10.
 なお、センサモジュール1cは、LED15の代わりに、例えば有機ELディスプレイ又は液晶ディスプレイ等を備えていてもよい。この場合、有機ELディスプレイ又は液晶ディスプレイは、弾性部材10の変形に応じた情報として、例えば、弾性部材10の変形量を数値で表示する。 In addition, the sensor module 1c may be equipped with, for example, an organic EL display or a liquid crystal display instead of the LED 15. In this case, the organic EL display or the liquid crystal display displays, for example, the amount of deformation of the elastic member 10 in a numerical value as information corresponding to the deformation of the elastic member 10.
 電源ボタン16は、本願発明におけるインタフェースの一例である。電源ボタン16は、センサモジュール1cの電源をオン又はオフする指示をユーザから受け付ける。電源ボタン16が押下されることによって、センサモジュール1cの電源のオン/オフが切り替わる。 The power button 16 is an example of an interface in the present invention. The power button 16 accepts an instruction from the user to turn the power of the sensor module 1c on or off. Pressing the power button 16 switches the power of the sensor module 1c on and off.
 本変形例では、演算回路13は、弾性部材10が帯電していると判定した場合、センサモジュール1cの電源をオフにする。センサモジュール1cの電源がオフされた後に電源ボタン16が押下されると、電源がオンされる。演算回路13は、電源がオンされたとき、スイッチ12をオンする。 In this modified example, if the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns off the power to the sensor module 1c. When the power button 16 is pressed after the power to the sensor module 1c is turned off, the power is turned on. When the power is turned on, the arithmetic circuit 13 turns on the switch 12.
 仮に、ユーザが弾性部材10を捻っているときに弾性部材10に帯電が生じてスイッチ12がオンされると、弾性部材10が変形した状態で上電極110と下電極112との間の電位差がゼロにリセットされる。このため、ユーザが捻り操作を解除して、弾性部材10が変形前の形状に戻ると、第1センサ11は、弾性部材10が変形していないにも関わらず上電極110と下電極112との間の電位差を検出した信号を出力する可能性がある。 If, for example, an electric charge is generated in the elastic member 10 while the user is twisting the elastic member 10 and the switch 12 is turned on, the potential difference between the upper electrode 110 and the lower electrode 112 is reset to zero while the elastic member 10 is in a deformed state. Therefore, when the user releases the twisting operation and the elastic member 10 returns to its pre-deformation shape, the first sensor 11 may output a signal that detects the potential difference between the upper electrode 110 and the lower electrode 112 even though the elastic member 10 is not deformed.
 センサモジュール1cでは、センサモジュール1cの電源がオフされた場合、LED15が消える。このため、ユーザは、センサモジュール1cの電源がオフになったと認識する。ユーザは、電源がオフになると捻り操作を解除して、電源ボタン16を押下する。演算回路13は、電源ボタン16により電源がオンされたときに、弾性部材10が変形していない状態でスイッチ12をオンする。弾性部材10が変形していない状態では上電極110と下電極112との間の電位差は帯電による電位差であり、スイッチ12をオンすると電位差をゼロにすることができる。従って、第1センサ11は、ユーザが弾性部材10を捻っているときに弾性部材10に帯電が生じた場合でも弾性部材10の変形量をより正確に検知出来る。 When the power supply of the sensor module 1c is turned off, the LED 15 goes out. This allows the user to recognize that the power supply of the sensor module 1c has been turned off. When the power supply is turned off, the user releases the twisting operation and presses the power button 16. When the power supply is turned on by the power button 16, the arithmetic circuit 13 turns on the switch 12 while the elastic member 10 is not deformed. When the elastic member 10 is not deformed, the potential difference between the upper electrode 110 and the lower electrode 112 is a potential difference due to charging, and turning on the switch 12 can make the potential difference zero. Therefore, the first sensor 11 can more accurately detect the amount of deformation of the elastic member 10 even if charging occurs in the elastic member 10 when the user twists the elastic member 10.
 [変形例4]
 以下、変形例4に係るセンサモジュール1dについて図を参照しながら説明する。図15は、変形例4に係るセンサモジュール1dの一例を示すブロック図である。
[Modification 4]
The sensor module 1d according to the fourth modification will be described below with reference to the drawings. Fig. 15 is a block diagram showing an example of the sensor module 1d according to the fourth modification.
 図15に示すように、センサモジュール1dは、アラート用LED17を更に備える点で、センサモジュール1cと異なる。アラート用LED17は、図15に示すように、演算回路13に電気的に接続される。 As shown in FIG. 15, the sensor module 1d differs from the sensor module 1c in that it further includes an alert LED 17. As shown in FIG. 15, the alert LED 17 is electrically connected to the arithmetic circuit 13.
 演算回路13は、弾性部材10が帯電していると判定したとき、アラート用LED17を点灯させて、ユーザに対して弾性部材10が帯電していることを通知する。つまり、アラート用LED17は、通知手段の一例として機能する。 When the arithmetic circuit 13 determines that the elastic member 10 is charged, it turns on the alert LED 17 to notify the user that the elastic member 10 is charged. In other words, the alert LED 17 functions as an example of a notification means.
 これにより、ユーザは、弾性部材10が帯電していることを認識出来る。ユーザは、弾性部材10の捻り操作を解除して、電源ボタン16を押下する。結果、弾性部材10が変形していない状態でセンサモジュール1dの電源がオンされる。また、演算回路13は、センサモジュール1dの電源がオンされた場合にスイッチ12をオンする。このため、センサモジュール1cと同様にして、弾性部材10が変形していない状態では上電極110と下電極112との間の電位差は帯電による電位差であり、スイッチ12をオンすると電位差をゼロにすることができる。従って、第1センサ11は、ユーザが弾性部材10を捻っているときに弾性部材10に帯電が生じた場合でも弾性部材10の変形量を正確に検知出来る。 This allows the user to recognize that the elastic member 10 is charged. The user releases the twisting operation of the elastic member 10 and presses the power button 16. As a result, the power of the sensor module 1d is turned on when the elastic member 10 is not deformed. In addition, the arithmetic circuit 13 turns on the switch 12 when the power of the sensor module 1d is turned on. Therefore, similar to the sensor module 1c, when the elastic member 10 is not deformed, the potential difference between the upper electrode 110 and the lower electrode 112 is a potential difference due to charging, and the potential difference can be made zero by turning on the switch 12. Therefore, the first sensor 11 can accurately detect the amount of deformation of the elastic member 10 even if the elastic member 10 becomes charged when the user twists the elastic member 10.
 なお、本願における通知手段は、例えば、スピーカであり、音を発する機能でもよいし、振動子であり、センサモジュールを振動させる機能であってもよい。 The notification means in this application may be, for example, a speaker with a function of emitting sound, or a vibrator with a function of vibrating the sensor module.
 [その他の実施形態]
 本発明に係るセンサモジュールは、センサモジュール1,1a~1dに限らず、その要旨の範囲において変更可能である。また、センサモジュール1,1a~1dの構成を任意に組み合わせてもよい。
[Other embodiments]
The sensor module according to the present invention is not limited to the sensor modules 1 and 1a to 1d, and may be modified within the scope of the present invention. In addition, the configurations of the sensor modules 1 and 1a to 1d may be combined in any desired manner.
 なお、弾性部材10は、必ずしも、棒形状でなくてよい。 The elastic member 10 does not necessarily have to be rod-shaped.
 なお、弾性部材10は、必ずしも円筒形状でなくてもよい。 The elastic member 10 does not necessarily have to be cylindrical.
 なお、スイッチ12は、2個の直列に接続したFETを含んでいてもよい。これにより、スイッチ12のオフ時のセンサモジュール1,1a~1dの上電極と下電極との間に発生するリーク電流が抑制され、第1センサ11による弾性部材10の変形を検知する精度が向上する。 The switch 12 may include two FETs connected in series. This reduces leakage current that occurs between the upper and lower electrodes of the sensor modules 1, 1a to 1d when the switch 12 is off, improving the accuracy with which the first sensor 11 detects the deformation of the elastic member 10.
 なお、センサモジュール1は、スマートフォン等の電子機器に用いられてもよい。 The sensor module 1 may also be used in electronic devices such as smartphones.
 なお、弾性部材10の材料は、アクリル樹脂以外の樹脂でもよい。 The material of the elastic member 10 may be a resin other than acrylic resin.
 なお、上電極110は、必ずしも、グランド電位に接続されていなくてもよい。 The upper electrode 110 does not necessarily have to be connected to ground potential.
 なお、第1センサ11は、必ずしも、弾性部材10の外周面と接触していなくてもよい。例えば、弾性部材10は、内周面及び外周面を有している筒形状を有している。この場合、第1センサ11は、弾性部材10の内周面と接触していてもよい。 The first sensor 11 does not necessarily have to be in contact with the outer peripheral surface of the elastic member 10. For example, the elastic member 10 has a cylindrical shape having an inner peripheral surface and an outer peripheral surface. In this case, the first sensor 11 may be in contact with the inner peripheral surface of the elastic member 10.
 なお、センサモジュール1aにおける弾性部材10が帯電しているか否かを判定する処理Pは、一例である。従って、センサモジュール1aは、必ずしも、処理Pによって弾性部材10が帯電しているか否かを判定しなくてもよい。 Note that the process P for determining whether the elastic member 10 in the sensor module 1a is charged is an example. Therefore, the sensor module 1a does not necessarily need to determine whether the elastic member 10 is charged by the process P.
 なお、演算回路13は、必ずしも、処理Pに基づいてスイッチ12のオン/オフを切り替えなくてもよい。例えば、演算回路13は、所定の間隔で(例えば、10秒に1回の間隔で)スイッチ12をオンする命令に係る信号をスイッチ12へ送信してもよい。 Note that the arithmetic circuit 13 does not necessarily have to switch the switch 12 on/off based on the process P. For example, the arithmetic circuit 13 may send a signal to the switch 12 instructing it to turn on the switch 12 at a predetermined interval (e.g., once every 10 seconds).
 なお、第2センサ14aが弾性部材10のねじり変形に基づいて第2信号を出力しない構成であれば、フィルム141は、圧電性を有していてもよい。 If the second sensor 14a is configured not to output a second signal based on the torsional deformation of the elastic member 10, the film 141 may have piezoelectric properties.
 なお、第1実施形態において、取得回数、判定用数及びカウント数の条件を調整することが出来る。例えば、第1実施形態において、取得回数は、必ずしも“10”でなくてもよい。例えば、第1実施形態において、判定用数は、必ずしも“7”でなくてもよい。 In addition, in the first embodiment, the conditions of the number of acquisitions, the number used for judgment, and the count number can be adjusted. For example, in the first embodiment, the number of acquisitions does not necessarily have to be "10". For example, in the first embodiment, the number used for judgment does not necessarily have to be "7".
 なお、第1実施形態において、演算回路13は、取得回数に対するカウント数の割合(%)に基づいて、弾性部材10が帯電しているか否かを判定してもよい。例えば、演算回路13は、取得回数に対するカウント数の割合が80%以上である場合に、弾性部材10が帯電していると判定してもよい。 In the first embodiment, the arithmetic circuit 13 may determine whether the elastic member 10 is charged based on the ratio (%) of the count number to the number of acquisitions. For example, the arithmetic circuit 13 may determine that the elastic member 10 is charged when the ratio of the count number to the number of acquisitions is 80% or more.
 なお、第1実施形態において、演算回路13は、判定用数及びカウント数以外の条件に基づいて、弾性部材10が帯電していないと判定してもよい。 In the first embodiment, the arithmetic circuit 13 may determine that the elastic member 10 is not charged based on conditions other than the determination number and the count number.
 本発明は、以下の構造を有する。 The present invention has the following structure:
 (1) 
 樹脂を含む弾性部材と、
 前記弾性部材に接触し、且つ、上電極、圧電フィルム及び下電極を含む第1センサと、
 スイッチと、
 を備えており、
 前記第1センサは、前記弾性部材の変形に応じた第1信号を出力し、
 前記スイッチは、前記上電極と前記下電極とを短絡させる機能を有し、
 前記下電極は、信号電極である、
 センサモジュール。
(1)
An elastic member containing a resin;
a first sensor in contact with the elastic member and including an upper electrode, a piezoelectric film, and a lower electrode;
Switch,
Equipped with
The first sensor outputs a first signal corresponding to the deformation of the elastic member,
the switch has a function of short-circuiting the upper electrode and the lower electrode,
The lower electrode is a signal electrode.
Sensor module.
 (2) 
 前記上電極は、基準電位に接続される基準電極である、
 (1)に記載のセンサモジュール。
(2)
The upper electrode is a reference electrode connected to a reference potential.
The sensor module described in (1).
 (3) 
 前記第1センサは、前記上電極と前記下電極との間の電位差に基づいた前記第1信号を出力する、
 (1)又は(2)に記載のセンサモジュール。
(3)
The first sensor outputs the first signal based on a potential difference between the upper electrode and the lower electrode.
A sensor module according to (1) or (2).
 (4) 
 前記センサモジュールは、演算回路を更に備えており、
 前記演算回路は、前記第1信号に基づいて前記スイッチのオン/オフの切り替えを行う、
 (1)から(3)のいずれかに記載のセンサモジュール。
(4)
The sensor module further includes an arithmetic circuit.
The arithmetic circuit switches the switch on/off based on the first signal.
A sensor module according to any one of (1) to (3).
 (5) 
 前記演算回路は、
  前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
  前記弾性部材が帯電していると判定した場合、前記スイッチをオンする、
 (4)に記載のセンサモジュール。
(5)
The arithmetic circuit includes:
determining whether the elastic member is charged based on the first signal received from the first sensor;
When it is determined that the elastic member is charged, the switch is turned on.
The sensor module according to (4).
 (6)
 前記センサモジュールは、電源と、前記電源をオンする指示を受け付けるインタフェースと、を更に備え、
 前記演算回路は、
  前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
  前記弾性部材が帯電していると判定した場合、前記電源をオフにし、
  前記電源をオフにした後に前記インタフェースを介して前記電源がオンされたとき、前記スイッチをオンする、
 (4)に記載のセンサモジュール。
(6)
the sensor module further includes a power supply and an interface that receives an instruction to turn on the power supply;
The arithmetic circuit includes:
determining whether the elastic member is charged based on the first signal received from the first sensor;
When it is determined that the elastic member is charged, the power source is turned off;
turning on the switch when the power supply is turned on via the interface after the power supply is turned off;
The sensor module according to (4).
 (7)
 前記弾性部材の変形に応じた情報を表示する表示装置を更に備え、
 前記電源がオフされたとき、前記表示装置の表示がオフされる、
 (6)に記載のセンサモジュール。
(7)
A display device that displays information according to the deformation of the elastic member is further provided.
When the power supply is turned off, the display of the display device is turned off.
The sensor module according to (6).
 (8)
 前記センサモジュールは、電源と、前記弾性部材が帯電していることを通知する通知手段と、を更に備え、
 前記演算回路は、
  前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
  前記弾性部材が帯電していると判定した場合、前記通知手段を介して、前記弾性部材が帯電していることを通知し、
  前記通知後に、前記スイッチをオンする、
 (4)に記載のセンサモジュール。
(8)
The sensor module further includes a power source and a notification means for notifying that the elastic member is charged.
The arithmetic circuit includes:
determining whether the elastic member is charged based on the first signal received from the first sensor;
When it is determined that the elastic member is charged, notifying the user through the notification means that the elastic member is charged;
After the notification, the switch is turned on.
The sensor module according to (4).
 (9) 
 前記演算回路は、
  前記演算回路が前記第1センサから前記第1信号を受信した基準時刻における前記第1信号の値に基づいて、前記基準時刻より後の期間における前記第1信号の値を示す計算値を演算し、
  前記計算値と、前記基準時刻より後の期間において前記演算回路が前記第1センサから受信した前記第1信号の値と、に基づいて前記弾性部材が帯電しているか否かを判定する、
 (5)から(8)のいずれかに記載のセンサモジュール。
(9)
The arithmetic circuit includes:
calculating a calculated value indicating a value of the first signal during a period after a reference time based on a value of the first signal at a reference time when the arithmetic circuit receives the first signal from the first sensor;
determining whether or not the elastic member is charged based on the calculated value and a value of the first signal received by the arithmetic circuit from the first sensor during a period after the reference time;
A sensor module according to any one of (5) to (8).
 (10) 
 前記センサモジュールは、演算回路を更に備えており、
 前記演算回路は、
  前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
  前記弾性部材が帯電していると判定した場合、基準電位と、前記弾性部材が帯電していると判定された帯電時刻における前記第1信号の値と、の差分値を算出し、
  前記帯電時刻より後の時刻における前記第1信号の値を前記差分値に基づいて算出する、
 (1)から(3)のいずれかに記載のセンサモジュール。
(10)
The sensor module further includes an arithmetic circuit.
The arithmetic circuit includes:
determining whether the elastic member is charged based on the first signal;
When it is determined that the elastic member is charged, a difference value between a reference potential and a value of the first signal at a charging time when it is determined that the elastic member is charged is calculated;
calculating a value of the first signal at a time after the electrification time based on the difference value;
A sensor module according to any one of (1) to (3).
 (11) 
 前記センサモジュールは、第2センサを更に備えており、
 前記第2センサは、前記弾性部材に接触しており、
 前記第2センサは、フィルムと、第2センサ上電極と、第2センサ下電極とを含んでおり、
 前記第2センサは、前記弾性部材の帯電に基づいた第2信号を出力する、
 (1)から(3)のいずれかに記載のセンサモジュール。
(11)
The sensor module further includes a second sensor,
the second sensor is in contact with the elastic member,
the second sensor includes a film, a second sensor upper electrode, and a second sensor lower electrode;
The second sensor outputs a second signal based on the charge of the elastic member.
A sensor module according to any one of (1) to (3).
 (12) 
 前記センサモジュールは、演算回路を更に備えており、
 前記演算回路は、
  前記第2信号に基づいて前記弾性部材が帯電しているか否かを判定し、
  前記弾性部材が帯電していると判定した場合、前記スイッチをオンする、
 (11)に記載のセンサモジュール。
(12)
The sensor module further includes an arithmetic circuit.
The arithmetic circuit includes:
determining whether the elastic member is charged based on the second signal;
When it is determined that the elastic member is charged, the switch is turned on.
The sensor module according to (11).
 (13) 
 前記弾性部材は、棒形状である、
 (1)から(12)のいずれかに記載のセンサモジュール。
(13)
The elastic member is rod-shaped.
A sensor module according to any one of (1) to (12).
 (14) 
 前記弾性部材は、左右方向に延びる中心軸を有している棒形状を有しており、
 前記弾性部材は、前記中心軸周りに変形し、
 前記第1センサは、前記弾性部材の前記中心軸周りの変形を検知する、
 (1)から(13)のいずれかに記載のセンサモジュール。
(14)
The elastic member has a rod shape having a central axis extending in the left-right direction,
The elastic member deforms around the central axis,
The first sensor detects deformation of the elastic member around the central axis.
A sensor module according to any one of (1) to (13).
 (15) 
 前記弾性部材は、前記中心軸周りにねじれるように変形する、
 (14)に記載のセンサモジュール。
(15)
The elastic member deforms so as to twist around the central axis.
The sensor module according to (14).
 1,1a~1d:センサモジュール
10:弾性部材
11:第1センサ
110:上電極
111:圧電フィルム
112:下電極
12:スイッチ
13,13b:演算回路
Sig1:第1信号
1, 1a to 1d: sensor module 10: elastic member 11: first sensor 110: upper electrode 111: piezoelectric film 112: lower electrode 12: switch 13, 13b: arithmetic circuit Sig1: first signal

Claims (15)

  1.  樹脂を含む弾性部材と、
     前記弾性部材に接触し、且つ、上電極、圧電フィルム及び下電極を含む第1センサと、
     スイッチと、
     を備えており、
     前記第1センサは、前記弾性部材の変形に応じた第1信号を出力し、
     前記スイッチは、前記上電極と前記下電極とを短絡させる機能を有し、
     前記下電極は、信号電極である、
     センサモジュール。
    An elastic member containing a resin;
    a first sensor in contact with the elastic member and including an upper electrode, a piezoelectric film, and a lower electrode;
    Switch,
    Equipped with
    The first sensor outputs a first signal corresponding to the deformation of the elastic member,
    the switch has a function of short-circuiting the upper electrode and the lower electrode,
    The lower electrode is a signal electrode.
    Sensor module.
  2.  前記上電極は、基準電位に接続される基準電極である、
     請求項1に記載のセンサモジュール。
    The upper electrode is a reference electrode connected to a reference potential.
    The sensor module according to claim 1 .
  3.  前記第1センサは、前記上電極と前記下電極との間の電位差に基づいた前記第1信号を出力する、
     請求項1又は請求項2に記載のセンサモジュール。
    The first sensor outputs the first signal based on a potential difference between the upper electrode and the lower electrode.
    The sensor module according to claim 1 or 2.
  4.  前記センサモジュールは、演算回路を更に備えており、
     前記演算回路は、前記第1信号に基づいて前記スイッチのオン/オフの切り替えを行う、
     請求項1から請求項3のいずれかに記載のセンサモジュール。
    The sensor module further includes an arithmetic circuit.
    The arithmetic circuit switches the switch on/off based on the first signal.
    The sensor module according to claim 1 .
  5.  前記演算回路は、
      前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
      前記弾性部材が帯電していると判定した場合、前記スイッチをオンする、
     請求項4に記載のセンサモジュール。
    The arithmetic circuit includes:
    determining whether the elastic member is charged based on the first signal received from the first sensor;
    When it is determined that the elastic member is charged, the switch is turned on.
    The sensor module according to claim 4 .
  6.  前記センサモジュールは、電源と、前記電源をオンする指示を受け付けるインタフェースと、を更に備え、
     前記演算回路は、
      前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
      前記弾性部材が帯電していると判定した場合、前記電源をオフにし、
      前記電源をオフにした後に前記インタフェースを介して前記電源がオンされたとき、前記スイッチをオンする、
     請求項4に記載のセンサモジュール。
    the sensor module further includes a power supply and an interface that receives an instruction to turn on the power supply;
    The arithmetic circuit includes:
    determining whether the elastic member is charged based on the first signal received from the first sensor;
    When it is determined that the elastic member is charged, the power source is turned off;
    turning on the switch when the power supply is turned on via the interface after the power supply is turned off;
    The sensor module according to claim 4 .
  7.  前記弾性部材の変形に応じた情報を表示する表示装置を更に備え、
     前記電源がオフされたとき、前記表示装置の表示がオフされる、
     請求項6に記載のセンサモジュール。
    A display device that displays information according to the deformation of the elastic member is further provided.
    When the power supply is turned off, the display of the display device is turned off.
    The sensor module according to claim 6 .
  8.  前記センサモジュールは、電源と、前記弾性部材が帯電していることを通知する通知手段と、を更に備え、
     前記演算回路は、
      前記第1センサから受信した前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
      前記弾性部材が帯電していると判定した場合、前記通知手段を介して、前記弾性部材が帯電していることを通知し、
      前記通知後に、前記スイッチをオンする、
     請求項4に記載のセンサモジュール。
    The sensor module further includes a power source and a notification means for notifying that the elastic member is charged.
    The arithmetic circuit includes:
    determining whether the elastic member is charged based on the first signal received from the first sensor;
    When it is determined that the elastic member is charged, notifying the user through the notification means that the elastic member is charged;
    After the notification, the switch is turned on.
    The sensor module according to claim 4 .
  9.  前記演算回路は、
      前記演算回路が前記第1センサから前記第1信号を受信した基準時刻における前記第1信号の値に基づいて、前記基準時刻より後の期間における前記第1信号の値を示す計算値を演算し、
      前記計算値と、前記基準時刻より後の期間において前記演算回路が前記第1センサから受信した前記第1信号の値と、に基づいて前記弾性部材が帯電しているか否かを判定する、
     請求項5から請求項8のいずれかに記載のセンサモジュール。
    The arithmetic circuit includes:
    calculating a calculated value indicating a value of the first signal during a period after a reference time based on a value of the first signal at a reference time when the arithmetic circuit receives the first signal from the first sensor;
    determining whether or not the elastic member is charged based on the calculated value and a value of the first signal received by the arithmetic circuit from the first sensor during a period after the reference time;
    The sensor module according to any one of claims 5 to 8.
  10.  前記センサモジュールは、演算回路を更に備えており、 前記演算回路は、
      前記第1信号に基づいて前記弾性部材が帯電しているか否かを判定し、
      前記弾性部材が帯電していると判定した場合、基準電位と、前記弾性部材が帯電していると判定された帯電時刻における前記第1信号の値と、の差分値を算出し、
      前記帯電時刻より後の時刻における前記第1信号の値を前記差分値に基づいて算出する、
     請求項1から請求項3のいずれかに記載のセンサモジュール。
    The sensor module further includes an arithmetic circuit,
    determining whether the elastic member is charged based on the first signal;
    When it is determined that the elastic member is charged, a difference value between a reference potential and a value of the first signal at a charging time when it is determined that the elastic member is charged is calculated;
    calculating a value of the first signal at a time after the electrification time based on the difference value;
    The sensor module according to claim 1 .
  11.  前記センサモジュールは、第2センサを更に備えており、
     前記第2センサは、前記弾性部材に接触しており、
     前記第2センサは、フィルムと、第2センサ上電極と、第2センサ下電極とを含んでおり、
     前記第2センサは、前記弾性部材の帯電に基づいた第2信号を出力する、
     請求項1から請求項3のいずれかに記載のセンサモジュール。
    The sensor module further includes a second sensor,
    the second sensor is in contact with the elastic member,
    the second sensor includes a film, a second sensor upper electrode, and a second sensor lower electrode;
    The second sensor outputs a second signal based on the charge of the elastic member.
    The sensor module according to claim 1 .
  12.  前記センサモジュールは、演算回路を更に備えており、
     前記演算回路は、
      前記第2信号に基づいて前記弾性部材が帯電しているか否かを判定し、
      前記弾性部材が帯電していると判定した場合、前記スイッチをオンする、
     請求項11に記載のセンサモジュール。
    The sensor module further includes an arithmetic circuit.
    The arithmetic circuit includes:
    determining whether the elastic member is charged based on the second signal;
    When it is determined that the elastic member is charged, the switch is turned on.
    The sensor module according to claim 11.
  13.  前記弾性部材は、棒形状である、
     請求項1から請求項12のいずれかに記載のセンサモジュール。
    The elastic member is rod-shaped.
    The sensor module according to any one of claims 1 to 12.
  14.  前記弾性部材は、左右方向に延びる中心軸を有している棒形状を有しており、
     前記弾性部材は、前記中心軸周りに変形し、
     前記第1センサは、前記弾性部材の前記中心軸周りの変形を検知する、
     請求項1から請求項13のいずれかに記載のセンサモジュール。
    The elastic member has a rod shape having a central axis extending in the left-right direction,
    The elastic member deforms around the central axis,
    The first sensor detects deformation of the elastic member around the central axis.
    The sensor module according to any one of claims 1 to 13.
  15.  前記弾性部材は、前記中心軸周りにねじれるように変形する、
     請求項14に記載のセンサモジュール。
    The elastic member deforms so as to twist around the central axis.
    The sensor module according to claim 14.
PCT/JP2023/034685 2022-10-13 2023-09-25 Sensor module WO2024080116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022164597 2022-10-13
JP2022-164597 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024080116A1 true WO2024080116A1 (en) 2024-04-18

Family

ID=90669165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034685 WO2024080116A1 (en) 2022-10-13 2023-09-25 Sensor module

Country Status (1)

Country Link
WO (1) WO2024080116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127997A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Capacitance-type physical quantity detection device and capacitance-type physical quantity detection method
WO2013061984A1 (en) * 2011-10-28 2013-05-02 株式会社村田製作所 Displacement detection device and displacement detection method
WO2020153075A1 (en) * 2019-01-25 2020-07-30 株式会社村田製作所 Grip load detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127997A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Capacitance-type physical quantity detection device and capacitance-type physical quantity detection method
WO2013061984A1 (en) * 2011-10-28 2013-05-02 株式会社村田製作所 Displacement detection device and displacement detection method
WO2020153075A1 (en) * 2019-01-25 2020-07-30 株式会社村田製作所 Grip load detection device

Similar Documents

Publication Publication Date Title
US9965037B2 (en) Haptic driving method and apparatus therefor in flexible display device
US10474300B2 (en) Display device
US10481701B2 (en) Operation input device
CN102483663B (en) Input device
JP2015207099A (en) semiconductor device, display system, detection method, and detection program
US11128299B2 (en) Monitoring system
WO2016038951A1 (en) Holding state detection device
JP6573062B2 (en) Electronics
WO2024080116A1 (en) Sensor module
US11610570B2 (en) Electronic percussion instrument and sound production control method thereof
CN215841392U (en) Gripping load detection device
US20200034021A1 (en) Operation detection device and display device
JP2005349492A (en) Robot hand
TWI445224B (en) Electronic device and adjustment method thereof
JP7047996B1 (en) Sensor
CN220960385U (en) Sensor module
WO2022009747A1 (en) Pressing force detection device
WO2022264562A1 (en) Sensor device
JP2004189431A (en) Contact detector and opening/closing device
WO2024084956A1 (en) Sensor module and computation circuit
US20220357145A1 (en) Electronic device
TWM567682U (en) Torque wrench with prompting function and prompting device thereof
WO2023176426A1 (en) Deformation sensing sensor
WO2023127277A1 (en) Actuator unit, haptic presentation device, and casing module
JPWO2017047603A1 (en) Operation detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877122

Country of ref document: EP

Kind code of ref document: A1