WO2024084956A1 - Sensor module and computation circuit - Google Patents

Sensor module and computation circuit Download PDF

Info

Publication number
WO2024084956A1
WO2024084956A1 PCT/JP2023/036041 JP2023036041W WO2024084956A1 WO 2024084956 A1 WO2024084956 A1 WO 2024084956A1 JP 2023036041 W JP2023036041 W JP 2023036041W WO 2024084956 A1 WO2024084956 A1 WO 2024084956A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signal
period
value
length
Prior art date
Application number
PCT/JP2023/036041
Other languages
French (fr)
Japanese (ja)
Inventor
芽衣 渡邊
勇希 橘
尚志 木原
宏明 北田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024084956A1 publication Critical patent/WO2024084956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a calculation circuit that calculates a stress value that indicates the stress applied to a member, and a sensor module that includes the calculation circuit.
  • Patent document 1 describes a pressure distribution detection device that calculates the pressure applied to a member.
  • the pressure distribution detection device includes a piezoelectric element and a data processing device.
  • the data processing device calculates the pressure applied to the member based on the discharge time of the piezoelectric element.
  • the object of the present invention is to provide a sensor module and an arithmetic circuit that can easily and accurately identify a stress value that indicates the stress applied to a component.
  • the sensor module includes: a sensor that outputs a signal corresponding to the deformation of the elastic member; a computing circuit for receiving the signal from the sensor; Equipped with The arithmetic circuit includes: measuring the length of time during a period of interest during which the strength of the signal falls outside a range defined by a threshold; Calculating a slope of the signal based on a length of at least a portion of the time period of interest and an amount of fluctuation of the signal during at least a portion of the time period of interest; A stress value indicating the stress applied to the elastic member is calculated based on the length of time of the target period and the inclination.
  • An arithmetic circuit comprises: receiving a signal having a value that increases and then decreases over time from a sensor that outputs a signal in response to deformation of the elastic member; A stress value is calculated that changes when the slope of the signal changes during at least a portion of the period during which the signal strength is increasing, and that changes when the length of the period from when the signal strength increases to when it decreases changes.
  • X and Y are parts or members of the sensor module.
  • X is located above Y
  • Y means that X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps with Y.
  • X is located above Y
  • X is located directly above Y and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap with Y.
  • This definition also applies to directions other than the upward direction.
  • the sensor module or arithmetic circuit according to one embodiment of the present invention makes it easier to accurately identify the stress value that indicates the stress applied to a component.
  • FIG. 1 is a right-hand view of an electronic device EE equipped with a sensor module 1 according to the first embodiment.
  • FIG. 2 is a diagram showing the elastic member 10 and the sensor 11 viewed from above.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a diagram showing an example of the signal Sig output from the sensor 11 when the elastic member 10 is deformed.
  • FIG. 5 is a graph showing the relationship between the stress value applied to the elastic member 10 and the slope of the signal Sig.
  • FIG. 6 is a flowchart showing an example of a process P executed by the arithmetic circuit 12.
  • FIG. 7 is a diagram showing values of the signal Sig in the vicinity of time t10 shown in FIG. FIG.
  • FIG. 8 is a graph showing the relationship between the length of the second period and the stress value.
  • FIG. 9 is a graph showing the relationship between the length of the second period and the stress value, and is obtained by performing an experiment three times in which the elastic member 10 is pressed at different speeds.
  • FIG. 10 is a diagram showing a case where the sensor 11 outputs a signal Sig having a value that exceeds the measurement range of the sensor 11.
  • FIG. 11 is a flowchart showing an example of a process Q executed by the arithmetic circuit 12a included in the sensor module 1a according to the first modification.
  • FIG. 12 is a diagram showing a case where noise occurs in the signal Sig between time t14 and time t15.
  • FIG. 13 is a diagram showing a sensor module 1b according to the second modification.
  • FIG. 14 is a table Tb showing an example of the load values calculated by the arithmetic circuit 12 in the sensor module 1b.
  • FIG. 1 is a right-hand view of an electronic device EE including a sensor module 1 according to the first embodiment.
  • Fig. 2 is an upward view of an elastic member 10 and a sensor 11.
  • Fig. 3 is a cross-sectional view taken along line A-A in Fig. 2.
  • the directions are defined as follows.
  • the direction in which the elastic member 10 and the sensor 11 are lined up is defined as the up-down direction.
  • the direction in which the elastic member 10 and the sensor 11 are lined up in this order is defined as the down direction.
  • the direction in which the sensor 11 and the elastic member 10 are lined up in this order is defined as the up-down direction.
  • the direction parallel to the direction in which the long side of the elastic member 10 extends is defined as the front-rear direction.
  • the direction perpendicular to the up-down direction and the front-rear direction is defined as the left-right direction.
  • the up-down direction, the front-rear direction, and the left-right direction are directions defined for the purpose of explanation.
  • the up-down direction, the front-rear direction, and the left-right direction during actual use of the sensor module 1 do not necessarily have to match the up-down direction, the front-rear direction, and the left-right direction in this embodiment.
  • the direction parallel to the direction in which the long side of the elastic member 10 extends may be defined as the left-right direction.
  • the sensor module 1 is a module provided in an electronic device EE such as a smartphone.
  • the sensor module 1 includes an elastic member 10, a sensor 11, and an arithmetic circuit 12.
  • the elastic member 10 has a plate shape with long sides extending in the front-rear direction and short sides extending in the left-right direction.
  • the elastic member 10 has elasticity.
  • the elastic member 10 is deformed by a force applied to the elastic member 10. For example, as shown in Fig. 1, the user 200 presses the elastic member 10 downward.
  • the elastic member 10 is deformed by the downward force applied to the elastic member 10.
  • the elastic member 10 is a member that has components such as a touch panel, for example.
  • the sensor 11 has a rectangular shape with long sides extending in the front-rear direction and short sides extending in the left-right direction.
  • the length of the sensor 11 in the left-right direction is shorter than the length of the elastic member 10 in the left-right direction.
  • the length of the sensor 11 in the front-rear direction is shorter than the length of the elastic member 10 in the front-rear direction.
  • the sensor 11 includes a piezoelectric film 111, an upper electrode 110, a lower electrode 112, and a detection circuit (not shown).
  • the piezoelectric film 111 has a sheet shape with long sides extending in the front-rear direction and short sides extending in the left-right direction.
  • the piezoelectric film 111 has an upper principal surface SF1 and a lower principal surface SF2 aligned in the vertical direction.
  • the upper principal surface SF1 and the lower principal surface SF2 are aligned in this order in the downward direction.
  • the piezoelectric film 111 generates an electric charge according to the deformation amount of the piezoelectric film 111.
  • the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the left-right direction is opposite to the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the front-back direction.
  • the piezoelectric film 111 is a film formed from a chiral polymer.
  • An example of a chiral polymer is polylactic acid (PLA), particularly L-type polylactic acid (PLLA).
  • PLLA has a helical structure in the main chain.
  • PLLA has a piezoelectricity in which the molecules are oriented by uniaxial stretching.
  • the piezoelectric film 111 has a piezoelectric constant of d14. As shown in FIG. 2, the uniaxial stretching direction OD of the piezoelectric film 111 forms an angle of 45 with respect to the front-back direction and the left-right direction. This 45 degrees includes, for example, an angle of about 45 degrees ⁇ 10 degrees. As a result, the piezoelectric film 111 generates an electric charge when the piezoelectric film 111 is stretched in the front-back direction or compressed in the left-right direction. For example, when the piezoelectric film 111 is stretched in the forward or backward direction, it generates a positive charge. The magnitude of the charge depends on the differential value of the deformation of the piezoelectric film 111 due to the stretching or compression.
  • the upper electrode 110 is a reference electrode connected to a reference potential.
  • the upper electrode 110 is fixed to the upper principal surface SF1 by an adhesive (not shown) such as OCA (Opticaly Clear Adhesive).
  • the upper electrode 110 covers the upper principal surface SF1.
  • the lower electrode 112 is a signal electrode.
  • the lower electrode 112 is fixed to the lower principal surface SF2 with an adhesive (not shown) such as OCA.
  • the lower electrode 112 covers the lower principal surface SF2.
  • the detection circuit includes a charge amplifier (not shown), an AD converter (not shown), and the like.
  • the charge amplifier converts the charge generated by the piezoelectric film 111 into a voltage signal.
  • the AD converter generates a digital signal by AD converting the voltage signal.
  • the sensor 11 outputs a signal Sig corresponding to the deformation of the elastic member 10.
  • the sensor 11 is provided near the center of the elastic member 10 in the front-rear and left-right directions.
  • the sensor 11 is fixed to the lower main surface of the elastic member 10 by an adhesive (not shown). This causes the sensor 11 to deform in accordance with the deformation of the elastic member 10.
  • the sensor 11 outputs a signal Sig corresponding to the deformation of the sensor 11.
  • the value of the signal Sig depends on the differential value of the displacement of the sensor 11.
  • the piezoelectric film 111 of the sensor 11 deforms in accordance with the deformation of the elastic member 10.
  • the magnitude of the charge generated by the piezoelectric film 111 depends on the differential value of the deformation of the piezoelectric film 111.
  • the sensor 11 obtains the signal Sig by converting the charge generated by the piezoelectric film 111 into a digital signal.
  • the signal Sig includes an electrical parameter that changes in response to the deformation of the elastic member 10.
  • the electrical parameter is a voltage value.
  • FIG. 4 is a diagram showing an example of the signal Sig output from the sensor 11 when the elastic member 10 is deformed.
  • the horizontal axis in FIG. 4 is time.
  • the vertical axis in FIG. 4 is the value (intensity) of the signal Sig.
  • the value of the signal Sig is a voltage value.
  • time t13 is a time after time t10.
  • Time s10 is a time after time t13.
  • Time s11 is a time after time s10.
  • the user 200 starts to press the front of the elastic member 10 downward at time t10.
  • the piezoelectric film 111 is stretched in the front-rear direction.
  • the piezoelectric film 111 outputs a positive charge. Therefore, as shown in FIG. 4, the sensor 11 outputs a signal Sig having a positive polarity with respect to the reference potential VE between time t10 and time t13.
  • the signal Sig has an intensity (value) that increases and then decreases over time.
  • the user 200 stops pressing the elastic member 10 downward. At this time, the extension of the piezoelectric film 111 stops. Therefore, as shown in FIG.
  • the intensity (value) of the signal Sig does not change between time t13 and time s10.
  • the user 200 removes the finger of the user 200 from the elastic member 10 at time s10.
  • the sensor 11 tries to return to its pre-deformation shape due to the stress generated in the sensor 11. This stress causes the piezoelectric film 111 to be compressed in the front-rear direction. In this case, the piezoelectric film 111 outputs a negative charge. Therefore, as shown in FIG. 4, the sensor 11 outputs a signal Sig having a negative polarity with respect to the reference potential VE during the period from time s10 to time s11 (period PEs).
  • the arithmetic circuit 12 is, for example, a microcontroller including a CPU, ROM, and RAM. As shown in FIG. 1, the arithmetic circuit 12 is provided, for example, in the electronic device EE. The arithmetic circuit 12 is electrically connected to the sensor 11, for example, via a signal line (not shown). The arithmetic circuit 12 receives the signal Sig from the sensor 11. The arithmetic circuit 12 removes noise contained in the signal Sig.
  • the arithmetic circuit 12 includes a low-pass filter. The low-pass filter removes noise contained in the signal Sig.
  • the low-pass filter is, for example, an RC circuit including a resistor and a capacitor.
  • the calculation circuit 12 calculates a stress value indicating the stress applied to the elastic member 10 based on the signal Sig.
  • the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of time during which the intensity (value) of the signal Sig is outside the range determined by the threshold (hereinafter referred to as the target period).
  • the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of time during which the intensity (value) of the signal Sig increases and decreases (hereinafter referred to as the increase/decrease period). For example, when the user 200 presses the elastic member 10, the intensity (value) of the signal Sig increases.
  • the intensity (value) of the signal Sig exceeds an arbitrary threshold and then falls below the threshold.
  • the increase/decrease period is the period from when the intensity (value) of the signal Sig exceeds the threshold to when it falls below the threshold.
  • the slope of the signal Sig is the value obtained by dividing the amount of signal fluctuation during at least a portion of the period during which the intensity (value) of the signal Sig is increasing (hereinafter referred to as the first period) by the length of the first period.
  • the period of increase/decrease is, for example, from time t10 to time t13, as shown in FIG. 4.
  • FIG. 5 is a graph showing the relationship between the stress value applied to the elastic member 10 and the slope of the signal Sig.
  • FIG. 5 is a graph obtained by performing multiple experiments in which the elastic member 10 is pressed at a predetermined speed. The speed at which the elastic member 10 is pressed differs in each of the multiple experiments.
  • the horizontal axis in FIG. 5 shows the slope of the signal Sig.
  • the vertical axis in FIG. 5 shows the value obtained by dividing the stress value by the length of time of the increase/decrease period (hereinafter referred to as the divided value).
  • the straight line ST1 in FIG. 5 is a regression line showing the relationship between the divided value and the slope of the signal Sig.
  • the coefficient is obtained by performing an experiment in which the elastic member 10 is pressed at a predetermined speed multiple times.
  • the coefficient is the slope of the straight line ST1.
  • the coefficient is approximately 4.7.
  • the stress value is "4.7 x 0.002 x 200 ⁇ 1.88 (N)" based on formula 2.
  • the stress value is directly proportional to the slope of the signal Sig. Therefore, the stress value changes when the slope of the signal Sig changes in the first period (at least a portion of the period during which the intensity (value) of the signal Sig is increasing). Specifically, if the slope of the signal Sig increases, the stress value increases. If the slope of the signal Sig decreases, the stress value decreases.
  • the stress value is directly proportional to the length of the increase/decrease period. Therefore, the stress value changes when the length of the increase/decrease period (the period from when the intensity (value) of the signal Sig increases to when it decreases) changes. Specifically, if the length of the increase/decrease period increases, the stress value increases. If the length of the increase/decrease period decreases, the stress value decreases.
  • the calculation circuit 12 can find the stress value by executing process P, which includes a process for calculating the slope of the signal Sig and a process for calculating the period of increase or decrease.
  • process P includes a process for calculating the slope of the signal Sig and a process for calculating the period of increase or decrease.
  • FIG. 6 is a flowchart showing an example of process P executed by the calculation circuit 12.
  • FIG. 7 is a diagram showing the value of the signal Sig near time t10 shown in FIG. 4. The following describes an example in which the calculation circuit 12 executes process P based on a voltage value.
  • the calculation circuit 12 starts process P, for example, when the power supply of the calculation circuit 12 is turned on (FIG. 6: START).
  • the arithmetic circuit 12 determines whether or not the intensity (value) of the signal Sig is outside the range defined by the threshold Th1.
  • the range defined by the threshold Th1 is between the reference potential VE and the threshold Th1 (see FIG. 4).
  • the threshold Th1 is a value greater than the reference potential VE.
  • the arithmetic circuit 12 determines whether or not the voltage value exceeds the threshold Th1 (FIG. 6: step S11).
  • the threshold Th1 is 1.7 V.
  • the arithmetic circuit 12 determines whether or not the voltage value exceeds 1.7 V.
  • the ROM of the arithmetic circuit 12 stores the threshold Th1.
  • the calculation circuit 12 determines that the voltage value has exceeded the threshold value Th1 (FIG. 6: step S11: Yes), it identifies the time when the voltage value exceeded the threshold value Th1 (hereinafter referred to as the second time) (FIG. 6: step S12).
  • the second time is a time after the time when the voltage value exceeded the reference potential VE (hereinafter referred to as the first time).
  • the calculation circuit 12 identifies time t11 as the second time.
  • the calculation circuit 12 calculates the slope of the signal Sig (FIG. 6: step S13). Specifically, the calculation circuit 12 calculates the slope of the signal Sig based on the length of at least a portion of the target period and the amount of fluctuation of the signal Sig during at least a portion of the target period. In this embodiment, the calculation circuit 12 calculates the slope of the signal Sig based on the length of the first period (at least a portion of the period during which the intensity (value) of the signal Sig is increasing) and the amount of fluctuation of the signal Sig during the first period. Specifically, the calculation circuit 12 calculates the slope by dividing the amount of increase in the voltage value during the first period by the length of the first period.
  • the calculation circuit 12 records the intensity (value) of the signal Sig at times t8, t9, and t10, which are times before time t11 (second time).
  • Time t9 is a time before time t10.
  • Time t8 is a time before time t9.
  • the calculation circuit 12 calculates a slope p8 of the signal Sig by dividing the increase in the signal Sig from time t8 to time t11 by the length of time between time t8 and time t11.
  • the calculation circuit 12 calculates a slope p9 by dividing the increase in the signal Sig from time t9 to time t11 by the length of time between time t9 and time t11.
  • the calculation circuit 12 calculates a slope p10 by dividing the increase in the signal Sig from time t10 to time t11 by the length of time between time t10 and time t11.
  • the calculation circuit 12 selects the slope having the largest value among the slopes p8, p9, and p10 as the slope of the signal Sig.
  • the calculation circuit 12 selects the slope p10 as the slope of the signal Sig.
  • the first period is the period PE1 between time t10 (first time) and time t11 (second time).
  • the increase in the voltage value in the period PE1 is 0.1 V.
  • the length of the period PE1 is 100 msec.
  • the calculation circuit 12 calculates the slope to be "0.001".
  • the calculation circuit 12 measures the length of the target period.
  • the calculation circuit 12 measures the length of the increase/decrease period (the length of time from when the intensity (value) of the signal Sig increases to when it decreases).
  • the calculation circuit 12 measures the length of the period from when the voltage value exceeds the threshold value Th1 to when it falls below the threshold value Th1 (hereinafter referred to as the second period) (FIG. 6: step S14).
  • the voltage value falls below the threshold value Th1 at time t12 (third time).
  • Time t12 (third time) is a time after time t11 (second time).
  • the second period is the period PEt between time t11 and time t12 (see FIG. 4).
  • the calculation circuit 12 obtains the length of the period PEt as the length of the second period.
  • the calculation circuit 12 calculates the stress value based on the formula 2 (FIG. 6: step S15). Specifically, the calculation circuit 12 calculates the stress value based on the length of the target period and the slope of the signal Sig. In this embodiment, the calculation circuit 12 calculates an integrated value by multiplying the slope of the signal Sig by the length of the period PEt (the length of the second period). The calculation circuit 12 calculates the stress value based on the integrated value. More specifically, the calculation circuit 12 calculates the stress value by multiplying the integrated value by a coefficient based on the formula 2. For example, if the slope is "0.001", the length of the period PEt is "100 msec", and the coefficient is 4.7, the stress value is "0.001 x 100 x 4.7 ⁇ 0.47 (N)" based on the formula 2.
  • the calculation circuit 12 may determine that the voltage value does not exceed the threshold value Th1 (FIG. 6: step S11 No). For example, if the voltage value has negative polarity with respect to the reference potential VE, the voltage value does not exceed the threshold value Th1. At this time, the calculation circuit 12 determines whether the voltage value is below the threshold value Th2 (FIG. 6: step S16).
  • step S17 the calculation circuit 12 calculates the slope of the signal Sig in the same manner as in step S13 (FIG. 6: step S18). Specifically, the calculation circuit 12 calculates the slope of the signal Sig based on the length of at least a portion of the period during which the intensity (value) of the signal Sig is decreasing, and the amount of fluctuation of the signal Sig during at least a portion of the period during which the intensity (value) of the signal Sig is decreasing. In this case, the slope of the signal Sig is negative.
  • the calculation circuit 12 determines the length of the period from when the voltage value falls below the threshold value Th2 to when it exceeds the threshold value Th2 (FIG. 6: step S19). After step S19, the calculation circuit 12 calculates the stress value based on Equation 2. Specifically, the calculation circuit 12 calculates the stress value based on the length of time from when the intensity (value) of the signal Sig decreases to when it increases, and on the slope of the signal Sig.
  • step S16 the calculation circuit 12 determines that the voltage value is not below the threshold value Th2 (FIG. 6: step S16 No), it does not execute the process of calculating the stress value.
  • the arithmetic circuit 12 repeats the process from step S10 to step S19. For example, the arithmetic circuit 12 executes the process from step S10 to step S19 as one cycle each time the arithmetic circuit 12 receives the signal Sig from the sensor 11 at a predetermined sampling interval.
  • the calculation circuit 12 ends process P, for example, when the power supply to the calculation circuit 12 is turned off (FIG. 6: END).
  • FIG. 8 is a diagram showing the relationship between the length of the second period and the stress value.
  • FIG. 8 is a graph obtained by performing an experiment nine times in which the elastic member 10 is pressed at a predetermined speed.
  • the horizontal axis represents the length of the second period
  • the vertical axis represents the stress value.
  • Figure 9 is a graph showing the relationship between the length of the second period and the stress value, obtained by performing an experiment three times in which the elastic member 10 is pressed at different speeds.
  • the horizontal axis is the length of the second period
  • the vertical axis is the stress value.
  • line L1 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 1 mm/sec.
  • Line L2 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 3 mm/sec.
  • Line L3 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 6 mm/sec.
  • the calculation circuit of Comparative Example 1 differs from the first embodiment only in the method of calculating the stress value. Specifically, the calculation circuit of Comparative Example 1 calculates the stress value by multiplying the length of the second period by the first coefficient. Specifically, as shown in FIG. 8, the stress value is directly proportional to the length of the second period. Therefore, the calculation circuit of Comparative Example 1 calculates the stress value based on the formula "stress value ⁇ first coefficient ⁇ length of the second period".
  • the arithmetic circuit of Comparative Example 1 needs to calculate the stress value based on the value of the first coefficient that corresponds to the speed at which the elastic member 10 is pressed. If the arithmetic circuit of Comparative Example 1 calculates the stress value based on the value of the first coefficient that does not correspond to the speed at which the elastic member 10 is pressed, the stress value calculated by the arithmetic circuit of Comparative Example 1 will be an incorrect value. Therefore, a sensor module equipped with the arithmetic circuit of Comparative Example 1 may not be able to accurately identify the stress value applied to the elastic member.
  • the arithmetic circuit 12 calculates the stress value taking into account the speed at which the elastic member 10 is pressed. Specifically, when the elastic member 10 is pressed by the user 200, the arithmetic circuit 12 calculates the slope of the signal Sig. The slope of the signal Sig changes based on the speed at which the elastic member 10 is pressed. Therefore, the arithmetic circuit 12 can calculate the stress value applied to the elastic member 10 based on the slope of the signal Sig that corresponds to the speed at which the elastic member 10 is pressed.
  • the arithmetic circuit 12 calculates an incorrect stress value by using a value (first coefficient) that does not correspond to the speed at which the elastic member 10 is pressed.
  • the sensor module 1 can easily accurately identify the stress value applied to the elastic member 10.
  • the sensor module 1 allows the arithmetic circuit 12 to more easily and accurately determine the stress value applied to the elastic member 10. Below, the arithmetic circuit 12 will be compared with the arithmetic circuit of Comparative Example 2 with reference to the drawings.
  • FIG. 10 is a diagram showing a time when the sensor 11 outputs a signal Sig having a value that exceeds the measurement range of the sensor 11.
  • the horizontal axis represents time
  • the vertical axis represents the value of the signal Sig.
  • Time u1 in FIG. 10 is the time when the value of the signal Sig exceeds the measurement range of the sensor 11.
  • Time u2 is the time when the value of the signal Sig falls below the measurement range of the sensor 11.
  • the upper limit UL of the measurement range of the sensor 11 is 3.0 V.
  • the calculation circuit according to the comparative example 2 differs from the first embodiment only in the calculation method of the stress value. Specifically, the calculation circuit according to the comparative example 2 calculates the stress value by integrating the value of the signal Sig received from the sensor 11.
  • the elastic member 10 may be deformed beyond the deformation amount that the sensor 11 can measure. In the example shown in FIG. 10, the elastic member 10 is deformed beyond the deformation amount that the sensor 11 can measure between time u1 and time u2. In this case, the sensor 11 does not output a signal Sig having a value exceeding the upper limit UL between time u1 and time u2.
  • the sensor 11 outputs the value of the signal Sig between time u1 and time u2 as 3.0 V, which is the upper limit UL.
  • the calculation circuit according to the comparative example 2 performs an integration process to calculate the stress value with the value of the signal Sig from time u1 to time u2 set to 3.0 V.
  • the stress value obtained by the calculation of the calculation circuit according to the comparative example 2 is lower than the stress value indicating the stress applied to the elastic member 10. Therefore, the calculation circuit of Comparative Example 2 may not be able to accurately determine the stress value applied to the elastic member 10.
  • the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of the second period (the length of the period from when the voltage value exceeds the threshold value Th1 to when it falls below the threshold value Th1). In this case, the calculation circuit 12 does not calculate the stress value based on the value of the signal Sig acquired between time u1 and time u2 shown in FIG. 10. Therefore, even if the sensor 11 outputs a signal Sig having a value that exceeds the upper limit UL, the calculation circuit 12 can accurately determine the stress value. In other words, the sensor module 1 equipped with the calculation circuit 12 makes it easier to accurately determine the stress value that indicates the stress applied to the elastic member 10.
  • Fig. 11 is a flow chart showing an example of a process Q executed by the arithmetic circuit 12a included in the sensor module 1a according to the first modification.
  • Fig. 12 is a diagram showing a case where noise occurs in the signal Sig between time t14 and time t15. Time t15 is a time after time t14.
  • Sensor module 1a differs from sensor module 1 in that it includes an arithmetic circuit 12a instead of arithmetic circuit 12. As shown in FIG. 11, arithmetic circuit 12a executes process Q, which is different from process P. Steps S10 to S19 in process Q are the same as steps S10 to S19 in process P, and therefore will not be described.
  • the calculation circuit 12a determines whether the length of the second period (the period from when the voltage value exceeds the threshold value Th1 until when it falls below the threshold value Th1) is equal to or greater than the threshold value Th3 (FIG. 11: step S20).
  • the threshold value Th3 is, for example, 30 msec.
  • the calculation circuit 12a determines whether the length of the period PEt (second period) is equal to or greater than the threshold value Th3.
  • step S15 If the calculation circuit 12a determines that the length of the second period is equal to or greater than the threshold value Th3 (FIG. 11: step S20 Yes), it executes step S15.
  • the length of the period PEt is equal to or greater than the threshold value Th3.
  • the calculation circuit 12a calculates the stress value during the period PEt.
  • step S20 No if the calculation circuit 12 determines that the length of the second period is less than the threshold value Th3 (FIG. 11: step S20 No), it does not execute step S15.
  • the calculation circuit 12a determines whether the length of time between time t14 and time t15 is greater than or equal to threshold value Th3. The length of time between time t14 and time t15 is less than threshold value Th3. For this reason, the calculation circuit 12a does not calculate the stress value between time t14 and time t15.
  • step S19 the calculation circuit 12a determines whether the length of time from when the voltage value falls below threshold Th2 to when it exceeds threshold Th2 is equal to or greater than threshold Th3 (FIG. 11: step S20).
  • the possibility that the arithmetic circuit 12a makes an erroneous determination can be reduced.
  • the user 200 erroneously operates the sensor module 1a.
  • the erroneous operation is, for example, an operation in which the user 200 places the hand of the user 200 on the elastic member 10.
  • the voltage value may exceed the threshold value Th1 between time t14 and time t15.
  • the arithmetic circuit that does not execute the process of step S20 (hereinafter, referred to as the arithmetic circuit according to the comparative example 2) may erroneously determine that the user 200 has performed a pressing operation between time t14 and time t15.
  • the arithmetic circuit 12a executes step S20 to determine whether or not a pressing operation has been performed by the user 200.
  • the threshold value Th3 is, for example, a time shorter than the time required for the user 200 to perform a pressing operation.
  • the arithmetic circuit 12a can determine that the signal Sig has been generated due to an erroneous operation by the user 200, for example, when the length of the second period is less than the threshold value Th3.
  • the arithmetic circuit 12a is less likely to erroneously determine that an erroneous operation by the user 200 is a pressing operation by the user 200.
  • the sensor module 1a makes it easier for the calculation circuit 12a to calculate the stress value. For example, when the difference between the threshold value Th1 and the reference potential VE is small, the voltage value generated by noise is likely to exceed the threshold value Th1. For this reason, the calculation circuit in Comparative Example 2 may erroneously determine that the user 200 has performed a pressing operation when the user 200 has not performed a pressing operation.
  • the arithmetic circuit 12a determines that no pressing operation has been performed by the user 200. Therefore, even if threshold Th1 is a small value, the arithmetic circuit 12a is less likely to make an erroneous determination. In other words, the value of threshold Th1 can be made small. Therefore, the arithmetic circuit 12a can calculate the stress value even if the force applied to the elastic member 10 by the user 200 is small.
  • Fig. 13 is a diagram showing the sensor module 1b according to the second modification.
  • Sensor module 1b differs from sensor module 1 in that it has two or more sensors. In the example shown in FIG. 13, sensor module 1b has sensors 11a, 11b, and 11c in addition to sensor 11.
  • the sensor 11 is provided, for example, at the right end of the elastic member 10 (see FIG. 13).
  • the sensor 11a is provided at the left end of the elastic member 10.
  • the sensor 11b is provided at the rear end of the elastic member 10.
  • the sensor 11c is provided at the front end of the elastic member 10.
  • FIG. 14 is a table Tb showing an example of load values calculated by the calculation circuit 12 in the sensor module 1b. For example, nine areas Ar1 to Sr9 are defined on the elastic member 10. Each of the areas Ar1 to Ar9 has the same size.
  • FIG. 14 is obtained by performing an experiment (hereinafter referred to as experiment Z) in which each of the areas Ar1 to Ar9 on the elastic member 10 is pressed with a load of 150 g.
  • the calculation circuit 12 estimates the load applied to the elastic member 10 to be 161 g.
  • Load: 161 g is the largest estimated load (hereinafter referred to as the maximum estimated load) among the estimated loads obtained in experiment Z.
  • the calculation circuit 12 calculates the load applied to the elastic member 10 to be 143 g.
  • Load: 143 g is the smallest estimated load (hereinafter referred to as the minimum estimated load) among the estimated loads obtained in experiment Z.
  • the value obtained by dividing the minimum estimated load by the maximum estimated load and multiplying this value by 100 is defined as the in-plane distribution.
  • the in-plane distribution in the example shown in FIG. 14 is "143/161 ⁇ 100 ⁇ 89%".
  • the calculation circuit 12 can calculate the load applied to the elastic member 10 while maintaining a high degree of accuracy of 89% in-plane distribution.
  • the sensor module according to the present invention is not limited to the sensor module 1, and can be modified within the scope of the gist thereof.
  • the elastic member 10 does not necessarily have to have a plate shape.
  • the elastic member 10 may be, for example, rod-shaped.
  • the electronic device EE does not necessarily have to be a smartphone.
  • the electronic device EE may be any device that allows the user 200 to perform a pressing operation.
  • the electronic device EE may be a pen tablet, TWS (True Wireless Stereo), etc.
  • the sensor 11 can be attached to the elastic member 10 regardless of the housing structure of the electronic device EE. This allows the arithmetic circuits 12, 12a to calculate the stress value regardless of the housing structure of the electronic device EE.
  • the sensor module 1 may include two or three sensors.
  • the sensor module 1 may include five or more sensors.
  • the elastic member 10 may also be square-shaped.
  • the electrical parameter contained in the signal Sig does not necessarily have to be a voltage value.
  • the electrical parameter contained in the signal Sig may be a current value.
  • the uniaxial stretching direction OD does not necessarily have to form an angle of 45 degrees with respect to the front-to-rear and left-to-right directions.
  • the uniaxial stretching direction OD may form an angle of 0 degrees with respect to the front-to-rear direction.
  • the calculation circuit 12 When the calculation circuit 12 acquires the signal Sig having a negative polarity with respect to the reference potential VE, the calculation circuit 12 may invert the waveform of the signal Sig with respect to the reference potential VE. In this case, the intensity (value) of the signal Sig has a positive polarity with respect to the reference potential VE. Therefore, the calculation circuit 12 can calculate the stress value by executing the processes from step S10 to step S15.
  • the calculation circuit 12 repeatedly executes one cycle of processing from step S10 to step S19. At this time, the calculation circuit 12 adds up the stress values acquired in each cycle. In this way, the calculation circuit 12 calculates the stress value at the time when the processing P is executed. For example, as shown in FIG. 4, the calculation circuit 12 calculates a stress value of 1.4 N in one cycle from time t10 to time t12 (hereinafter referred to as the first stress value). Next, the calculation circuit 12 calculates a stress value of -1.4 N in one cycle from time s10 to time s11 (hereinafter referred to as the second stress value). In this case, the value obtained by adding the second stress value to the first stress value is 0. Therefore, the calculation circuit 12 can determine that no force is applied to the elastic member 10 at time s11.
  • the calculation circuit 12 may transmit a signal (hereinafter referred to as the first signal) corresponding to the calculated stress value to a device other than the calculation circuit 12.
  • the value of the first signal depends on the slope of the signal Sig or the length of the second period. Therefore, if the slope of the signal Sig changes, the intensity (value) of the first signal changes. If the length of the second period changes, the intensity (value) of the first signal changes. Therefore, a processing device that outputs a first signal having an intensity (value) that changes with changes in the signal Sig and an intensity (value) that changes with changes in the length of the second period is considered to be performing processing related to the calculation circuit 12.
  • the sensor module 1 may also be equipped with a display that displays the stress value.
  • the display is, for example, an organic EL display.
  • a processing device such as a smartphone that has a display that displays a stress value that changes with a change in the slope of the signal Sig and that displays a stress value that changes with a change in the length of the second period is considered to be executing processing related to the arithmetic circuit 12.
  • the value of the signal Sig does not have to depend on the differential value of the displacement of the sensor 11. For example, depending on the frequency of the input signal, it may contain components that are not dependent on the differential value.
  • the present invention has the following structure:
  • the arithmetic circuit includes: measuring the length of time between an increase and a decrease in the strength of the signal; Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is increasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is increasing; calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal increases to when it decreases and on the slope of the signal;
  • the sensor module described in (1) The sensor module described in (1).
  • the arithmetic circuit includes: measuring the length of time between a decrease and an increase in the strength of the signal; Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is decreasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is decreasing; calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal decreases to when it increases and on the slope of the signal; A sensor module according to (1) or (2).
  • a sensor module according to any one of (1) to (3).
  • the signal includes an electrical parameter that varies in response to deformation of the elastic member;
  • a sensor module according to any one of (1) to (3).
  • the electrical parameter is a voltage value.
  • the first time is the time when the voltage value exceeds a reference potential;
  • the threshold value is a value greater than the reference potential,
  • the second time is a time after the first time and is a time at which the voltage value exceeds the threshold value;
  • a third time point is a time point after the second time point and is a time point at which the voltage value falls below the threshold value;
  • the first period is a period between the first time and the second time, the second period is a period between the second time and the third time
  • the arithmetic circuit includes: calculating the slope by dividing an increase in the voltage value during the first period by a length of the first period; calculating the stress value based on an integrated value obtained by integrating the slope by the length of the second period;
  • the sensor module according to (6).
  • the calculation circuit calculates the stress value by multiplying the integrated value by a coefficient;
  • the sensor module according to (7).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

This sensor module comprises a sensor that outputs a signal corresponding to deformation of an elastic member, and a computation circuit that receives the signal from the sensor. The computation circuit measures the length of time of a target period in which the signal strength is outside a range defined by threshold values, calculates a signal gradient on the basis of the length of at least one portion of the target period and the amount of variation in the signal in the at least one portion of the target period, and computes a stress value representing the stress applied to the elastic member on the basis of the gradient and the length of time of the target period.

Description

センサモジュール及び演算回路Sensor module and arithmetic circuit
 本発明は、部材に加わる応力を示す応力値を演算する演算回路及び当該演算回路を備えているセンサモジュールに関する。 The present invention relates to a calculation circuit that calculates a stress value that indicates the stress applied to a member, and a sensor module that includes the calculation circuit.
 特許文献1には、部材に加わる圧力を算出する圧力分布検出装置が記載されている。圧力分布検出装置は、圧電素子及びデータ処理装置を備えている。データ処理装置は、圧電素子の放電時間に基づいて部材に加わる圧力を算出する。 Patent document 1 describes a pressure distribution detection device that calculates the pressure applied to a member. The pressure distribution detection device includes a piezoelectric element and a data processing device. The data processing device calculates the pressure applied to the member based on the discharge time of the piezoelectric element.
特開平1-260333号公報Japanese Patent Application Laid-Open No. 1-260333
 特許文献1に記載の圧力分布検出装置の分野において、部材に加わる応力を示す応力値を正確に特定したいという要望がある。 In the field of the pressure distribution detection device described in Patent Document 1, there is a demand to accurately identify the stress value that indicates the stress applied to a component.
 本発明の目的は、部材に加わる応力を示す応力値を正確に特定しやすいセンサモジュール及び演算回路を提供することである。 The object of the present invention is to provide a sensor module and an arithmetic circuit that can easily and accurately identify a stress value that indicates the stress applied to a component.
 本発明の一実施形態に係るセンサモジュールは、
 弾性部材の変形に応じた信号を出力するセンサと、
 前記センサから前記信号を受信する演算回路と、
 を備えており、
 前記演算回路は、
  閾値によって定められる範囲の外に前記信号の強度が存在する対象期間の時間の長さを計測し、
  前記対象期間の少なくとも一部分の時間の長さと、前記対象期間の少なくとも一部分における前記信号の変動量と、に基づいて前記信号の傾きを演算し、
  前記対象期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する。
The sensor module according to an embodiment of the present invention includes:
a sensor that outputs a signal corresponding to the deformation of the elastic member;
a computing circuit for receiving the signal from the sensor;
Equipped with
The arithmetic circuit includes:
measuring the length of time during a period of interest during which the strength of the signal falls outside a range defined by a threshold;
Calculating a slope of the signal based on a length of at least a portion of the time period of interest and an amount of fluctuation of the signal during at least a portion of the time period of interest;
A stress value indicating the stress applied to the elastic member is calculated based on the length of time of the target period and the inclination.
 本発明の一実施形態に係る演算回路は、
 弾性部材の変形に応じた信号を出力するセンサから、時間経過に伴って増加した後に減少する値を有する信号を受信し、
 前記信号の強度が増加している期間の少なくとも一部分における信号の傾きが変化したときに変化し、且つ、前記信号の強度が増加してから減少するまでの期間の時間の長さが変化したときに変化する応力値を演算する。
An arithmetic circuit according to an embodiment of the present invention comprises:
receiving a signal having a value that increases and then decreases over time from a sensor that outputs a signal in response to deformation of the elastic member;
A stress value is calculated that changes when the slope of the signal changes during at least a portion of the period during which the signal strength is increasing, and that changes when the length of the period from when the signal strength increases to when it decreases changes.
 以下では、X,Yは、センサモジュールの部品又は部材である。本明細書において「Xは、Yの上に位置している。」とは、XがYの真上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっている。「Xは、Yより上に位置している。」とは、XがYの真上に位置していること、及び、XがYの斜め上に位置していることを意味する。従って、上下方向に視て、Xは、Yと重なっていてもよいし、Yと重なっていなくてもよい。この定義は、上方向以外の方向にも適用される。 In the following, X and Y are parts or members of the sensor module. In this specification, "X is located above Y" means that X is located directly above Y. Therefore, when viewed in the vertical direction, X overlaps with Y. "X is located above Y" means that X is located directly above Y and that X is located diagonally above Y. Therefore, when viewed in the vertical direction, X may or may not overlap with Y. This definition also applies to directions other than the upward direction.
 本発明の一実施形態に係るセンサモジュール又は演算回路によれば、部材に加わる応力を示す応力値を正確に特定しやすくなる。 The sensor module or arithmetic circuit according to one embodiment of the present invention makes it easier to accurately identify the stress value that indicates the stress applied to a component.
図1は、第1実施形態に係るセンサモジュール1を備えている電子機器EEを右方向に見た図である。FIG. 1 is a right-hand view of an electronic device EE equipped with a sensor module 1 according to the first embodiment. 図2は、弾性部材10及びセンサ11を上方向に見た図である。FIG. 2 is a diagram showing the elastic member 10 and the sensor 11 viewed from above. 図3は、図2におけるA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 図4は、弾性部材10が変形した場合にセンサ11から出力される信号Sigの一例を示す図である。FIG. 4 is a diagram showing an example of the signal Sig output from the sensor 11 when the elastic member 10 is deformed. 図5は、弾性部材10に加わる応力値と信号Sigの傾きとの関係性を示すグラフである。FIG. 5 is a graph showing the relationship between the stress value applied to the elastic member 10 and the slope of the signal Sig. 図6は、演算回路12が実行する処理Pの一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a process P executed by the arithmetic circuit 12. 図7は、図4に示す時刻t10近傍における信号Sigの値を示す図である。FIG. 7 is a diagram showing values of the signal Sig in the vicinity of time t10 shown in FIG. 図8は、第2期間の時間の長さと応力値との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the length of the second period and the stress value. 図9は、第2期間の時間の長さと応力値との関係を示すグラフであって、異なる速度で弾性部材10を押すという実験を3回行うことによって得られるグラフである。FIG. 9 is a graph showing the relationship between the length of the second period and the stress value, and is obtained by performing an experiment three times in which the elastic member 10 is pressed at different speeds. 図10は、センサ11が、センサ11の測定範囲を超えた値を有する信号Sigを出力したときを示す図である。FIG. 10 is a diagram showing a case where the sensor 11 outputs a signal Sig having a value that exceeds the measurement range of the sensor 11. In FIG. 図11は、変形例1に係るセンサモジュール1aに備わる演算回路12aが実行する処理Qの一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a process Q executed by the arithmetic circuit 12a included in the sensor module 1a according to the first modification. 図12は、時刻t14と時刻t15との間において信号Sigにノイズが発生した場合を示す図である。FIG. 12 is a diagram showing a case where noise occurs in the signal Sig between time t14 and time t15. 図13は、変形例2に係るセンサモジュール1bを示す図である。FIG. 13 is a diagram showing a sensor module 1b according to the second modification. 図14は、センサモジュール1bにおいて演算回路12が演算した荷重値の一例を示す表Tbである。FIG. 14 is a table Tb showing an example of the load values calculated by the arithmetic circuit 12 in the sensor module 1b.
 [第1実施形態]
 以下、本発明の第1実施形態に係るセンサモジュール1について図面を参照しながら説明する。図1は、第1実施形態に係るセンサモジュール1を備えている電子機器EEを右方向に見た図である。図2は、弾性部材10及びセンサ11を上方向に見た図である。図3は、図2におけるA-A断面図である。
[First embodiment]
A sensor module 1 according to a first embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a right-hand view of an electronic device EE including a sensor module 1 according to the first embodiment. Fig. 2 is an upward view of an elastic member 10 and a sensor 11. Fig. 3 is a cross-sectional view taken along line A-A in Fig. 2.
 本実施形態において方向を以下の様に定義する。図1に示すように、弾性部材10とセンサ11とが並んでいる方向を上下方向と定義する。弾性部材10とセンサ11とが、この順に並んでいる方向を下方向と定義する。センサ11と弾性部材10とが、この順に並んでいる方向を上方向と定義する。図2に示すように、弾性部材10の長辺が伸びる方向と平行な方向を前後方向と定義する。上下方向及び前後方向に直交する方向を左右方向と定義する。但し上下方向、前後方向及び左右方向は、説明のために定義した方向である。従って、センサモジュール1の実使用時における上下方向、前後方向及び左右方向は、必ずしも、本実施形態における上下方向、前後方向及び左右方向と一致しなくてよい。例えば、弾性部材10の長辺が伸びる方向と平行な方向を左右方向と定義してもよい。 In this embodiment, the directions are defined as follows. As shown in FIG. 1, the direction in which the elastic member 10 and the sensor 11 are lined up is defined as the up-down direction. The direction in which the elastic member 10 and the sensor 11 are lined up in this order is defined as the down direction. The direction in which the sensor 11 and the elastic member 10 are lined up in this order is defined as the up-down direction. As shown in FIG. 2, the direction parallel to the direction in which the long side of the elastic member 10 extends is defined as the front-rear direction. The direction perpendicular to the up-down direction and the front-rear direction is defined as the left-right direction. However, the up-down direction, the front-rear direction, and the left-right direction are directions defined for the purpose of explanation. Therefore, the up-down direction, the front-rear direction, and the left-right direction during actual use of the sensor module 1 do not necessarily have to match the up-down direction, the front-rear direction, and the left-right direction in this embodiment. For example, the direction parallel to the direction in which the long side of the elastic member 10 extends may be defined as the left-right direction.
 図1に示すように、センサモジュール1は、例えば、スマートフォン等の電子機器EEに備わるモジュールである。センサモジュール1は、弾性部材10、センサ11及び演算回路12を備えている。 As shown in FIG. 1, the sensor module 1 is a module provided in an electronic device EE such as a smartphone. The sensor module 1 includes an elastic member 10, a sensor 11, and an arithmetic circuit 12.
 弾性部材10は、図1及び図2に示すように、前後方向に伸びる長辺及び左右方向に伸びる短辺を有する板形状を有している。弾性部材10は、弾性を有する。弾性部材10は、弾性部材10に加わる力によって変形する。例えば、図1に示すように、ユーザ200は、弾性部材10を下方向に向かって押す。弾性部材10に加わった下方向の力によって弾性部材10は、変形する。弾性部材10は、例えば、タッチパネル等の部品を有している部材である。 As shown in Figs. 1 and 2, the elastic member 10 has a plate shape with long sides extending in the front-rear direction and short sides extending in the left-right direction. The elastic member 10 has elasticity. The elastic member 10 is deformed by a force applied to the elastic member 10. For example, as shown in Fig. 1, the user 200 presses the elastic member 10 downward. The elastic member 10 is deformed by the downward force applied to the elastic member 10. The elastic member 10 is a member that has components such as a touch panel, for example.
 センサ11は、図2に示すように、前後方向に伸びる長辺及び左右方向に伸びる短辺を有する長方形状を有している。センサ11の左右方向における長さは、弾性部材10の左右方向における長さよりも短い。センサ11の前後方向における長さは、弾性部材10の前後方向における長さよりも短い。図3に示すように、センサ11は、圧電フィルム111、上電極110、下電極112及び検出回路(図示せず)を含んでいる。 As shown in FIG. 2, the sensor 11 has a rectangular shape with long sides extending in the front-rear direction and short sides extending in the left-right direction. The length of the sensor 11 in the left-right direction is shorter than the length of the elastic member 10 in the left-right direction. The length of the sensor 11 in the front-rear direction is shorter than the length of the elastic member 10 in the front-rear direction. As shown in FIG. 3, the sensor 11 includes a piezoelectric film 111, an upper electrode 110, a lower electrode 112, and a detection circuit (not shown).
 圧電フィルム111は、図2及び図3に示すように、前後方向に伸びる長辺及び左右方向に伸びる短辺を有するシート形状を有している。圧電フィルム111は、上下方向に並んでいる上主面SF1及び下主面SF2を有している。上主面SF1及び下主面SF2は、下方向にこの順に並んでいる。 As shown in Figures 2 and 3, the piezoelectric film 111 has a sheet shape with long sides extending in the front-rear direction and short sides extending in the left-right direction. The piezoelectric film 111 has an upper principal surface SF1 and a lower principal surface SF2 aligned in the vertical direction. The upper principal surface SF1 and the lower principal surface SF2 are aligned in this order in the downward direction.
 圧電フィルム111は、圧電フィルム111の変形量に応じた電荷を発生する。圧電フィルム111が左右方向に伸張されたときに発生する電荷の極性は、圧電フィルム111が前後方向に伸張されたときに発生する電荷の極性と逆となる。具体的には、圧電フィルム111は、キラル高分子から形成されるフィルムである。キラル高分子とは、例えば、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)である。PLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸されて分子が配向する圧電性を有する。圧電フィルム111は、d14の圧電定数を有している。図2に示すように、圧電フィルム111の一軸延伸方向ODは、前後方向及び左右方向に対して45の角度を形成している。この45度は、例えば、45度±10度程度を含む角度を含んでいる。これにより、圧電フィルム111は、圧電フィルム111が前後方向に伸張されることにより又は左右方向に圧縮されることにより、電荷を発生する。圧電フィルム111は、例えば、前後方向に伸張されると正の電荷を発生する。電荷の大きさは、伸張又は圧縮による圧電フィルム111の変形量の微分値に依存する。 The piezoelectric film 111 generates an electric charge according to the deformation amount of the piezoelectric film 111. The polarity of the electric charge generated when the piezoelectric film 111 is stretched in the left-right direction is opposite to the polarity of the electric charge generated when the piezoelectric film 111 is stretched in the front-back direction. Specifically, the piezoelectric film 111 is a film formed from a chiral polymer. An example of a chiral polymer is polylactic acid (PLA), particularly L-type polylactic acid (PLLA). PLLA has a helical structure in the main chain. PLLA has a piezoelectricity in which the molecules are oriented by uniaxial stretching. The piezoelectric film 111 has a piezoelectric constant of d14. As shown in FIG. 2, the uniaxial stretching direction OD of the piezoelectric film 111 forms an angle of 45 with respect to the front-back direction and the left-right direction. This 45 degrees includes, for example, an angle of about 45 degrees ± 10 degrees. As a result, the piezoelectric film 111 generates an electric charge when the piezoelectric film 111 is stretched in the front-back direction or compressed in the left-right direction. For example, when the piezoelectric film 111 is stretched in the forward or backward direction, it generates a positive charge. The magnitude of the charge depends on the differential value of the deformation of the piezoelectric film 111 due to the stretching or compression.
 上電極110は、基準電位に接続される基準電極である。上電極110は、OCA(Optically Clear Adhesive)等の接着剤(図示せず)によって上主面SF1に固定されている。上電極110は、上主面SF1を覆っている。 The upper electrode 110 is a reference electrode connected to a reference potential. The upper electrode 110 is fixed to the upper principal surface SF1 by an adhesive (not shown) such as OCA (Opticaly Clear Adhesive). The upper electrode 110 covers the upper principal surface SF1.
 下電極112は、信号電極である。下電極112は、OCA等の接着剤(図示せず)によって下主面SF2に固定されている。下電極112は、下主面SF2を覆っている。 The lower electrode 112 is a signal electrode. The lower electrode 112 is fixed to the lower principal surface SF2 with an adhesive (not shown) such as OCA. The lower electrode 112 covers the lower principal surface SF2.
 検出回路は、チャージアンプ(図示せず)、ADコンバータ(図示せず)等を含んでいる。チャージアンプは、圧電フィルム111が発生した電荷を電圧信号に変換する。ADコンバータは、電圧信号をAD変換することによってデジタル信号を生成する。 The detection circuit includes a charge amplifier (not shown), an AD converter (not shown), and the like. The charge amplifier converts the charge generated by the piezoelectric film 111 into a voltage signal. The AD converter generates a digital signal by AD converting the voltage signal.
 センサ11は、弾性部材10の変形に応じた信号Sigを出力する。具体的には、センサ11は、弾性部材10の前後方向及び左右方向における中央付近に設けられている。センサ11は、接着剤(図示せず)によって弾性部材10の下主面に固定されている。これにより、センサ11は、弾性部材10の変形に伴って変形する。センサ11は、センサ11の変形に応じた信号Sigを出力する。 The sensor 11 outputs a signal Sig corresponding to the deformation of the elastic member 10. Specifically, the sensor 11 is provided near the center of the elastic member 10 in the front-rear and left-right directions. The sensor 11 is fixed to the lower main surface of the elastic member 10 by an adhesive (not shown). This causes the sensor 11 to deform in accordance with the deformation of the elastic member 10. The sensor 11 outputs a signal Sig corresponding to the deformation of the sensor 11.
 本実施形態において、信号Sigの値は、センサ11の変位量の微分値に依存している。具体的には、弾性部材10の変形に伴ってセンサ11の圧電フィルム111が変形する。圧電フィルム111が発生する電荷の大きさは、圧電フィルム111の変形量の微分値に依存する。センサ11は、圧電フィルム111が発生した電荷をデジタル信号に変換することによって信号Sigを取得する。信号Sigは、弾性部材10の変形に応じて変化する電気的パラメータを含んでいる。本実施形態において、電気的パラメータは、電圧値である。 In this embodiment, the value of the signal Sig depends on the differential value of the displacement of the sensor 11. Specifically, the piezoelectric film 111 of the sensor 11 deforms in accordance with the deformation of the elastic member 10. The magnitude of the charge generated by the piezoelectric film 111 depends on the differential value of the deformation of the piezoelectric film 111. The sensor 11 obtains the signal Sig by converting the charge generated by the piezoelectric film 111 into a digital signal. The signal Sig includes an electrical parameter that changes in response to the deformation of the elastic member 10. In this embodiment, the electrical parameter is a voltage value.
 以下、弾性部材10の変形に応じてセンサ11から出力される信号Sigの一例について図面を参照しながら説明する。図4は、弾性部材10が変形した場合にセンサ11から出力される信号Sigの一例を示す図である。図4における横軸は、時刻である。図4における縦軸は、信号Sigの値(強度)である。図4において、信号Sigの値は、電圧値である。図4において、時刻t13は、時刻t10より後の時刻である。時刻s10は、時刻t13より後の時刻である。時刻s11は、時刻s10より後の時刻である。 Below, an example of the signal Sig output from the sensor 11 in response to the deformation of the elastic member 10 will be described with reference to the drawings. FIG. 4 is a diagram showing an example of the signal Sig output from the sensor 11 when the elastic member 10 is deformed. The horizontal axis in FIG. 4 is time. The vertical axis in FIG. 4 is the value (intensity) of the signal Sig. In FIG. 4, the value of the signal Sig is a voltage value. In FIG. 4, time t13 is a time after time t10. Time s10 is a time after time t13. Time s11 is a time after time s10.
 例えば、図4において、ユーザ200は、時刻t10において弾性部材10の前部を下方向に押すことを開始する。このとき、圧電フィルム111が前後方向に伸張される。この場合、圧電フィルム111は、正の電荷を出力する。従って、センサ11は、図4に示すように、時刻t10から時刻t13までの間において基準電位VEに対して正の極性を有する信号Sigを出力する。この場合、信号Sigは、時間経過に伴って増加した後に減少する強度(値)を有する。ユーザ200は、弾性部材10を下方向に押すことを停止する。このとき、圧電フィルム111の伸張が停止する。従って、図4に示すように、時刻t13から時刻s10までの間において信号Sigの強度(値)は変化しない。次に、ユーザ200は、時刻s10において弾性部材10からユーザ200の指を離す。このとき、センサ11は、センサ11に発生する応力によって変形前の形状に戻ろうとする。この応力によって圧電フィルム111は、前後方向に圧縮される。この場合、圧電フィルム111は、負の電荷を出力する。従って、センサ11は、図4に示すように、時刻s10から時刻s11までの間(期間PEs)において、基準電位VEに対して負の極性を有する信号Sigを出力する。 For example, in FIG. 4, the user 200 starts to press the front of the elastic member 10 downward at time t10. At this time, the piezoelectric film 111 is stretched in the front-rear direction. In this case, the piezoelectric film 111 outputs a positive charge. Therefore, as shown in FIG. 4, the sensor 11 outputs a signal Sig having a positive polarity with respect to the reference potential VE between time t10 and time t13. In this case, the signal Sig has an intensity (value) that increases and then decreases over time. The user 200 stops pressing the elastic member 10 downward. At this time, the extension of the piezoelectric film 111 stops. Therefore, as shown in FIG. 4, the intensity (value) of the signal Sig does not change between time t13 and time s10. Next, the user 200 removes the finger of the user 200 from the elastic member 10 at time s10. At this time, the sensor 11 tries to return to its pre-deformation shape due to the stress generated in the sensor 11. This stress causes the piezoelectric film 111 to be compressed in the front-rear direction. In this case, the piezoelectric film 111 outputs a negative charge. Therefore, as shown in FIG. 4, the sensor 11 outputs a signal Sig having a negative polarity with respect to the reference potential VE during the period from time s10 to time s11 (period PEs).
 演算回路12は、例えば、CPU、ROM及びRAMを含んでいるマイクロコントローラである。図1に示すように、演算回路12は、例えば、電子機器EE内に設けられている。演算回路12は、例えば、信号線(図示せず)を介してセンサ11と電気的に接続されている。演算回路12は、センサ11から信号Sigを受信する。演算回路12は、信号Sigに含まれているノイズを除去する。例えば、演算回路12は、ローパスフィルタを含んでいる。ローパスフィルタが、信号Sigに含まれているノイズを除去する。ローパスフィルタは、例えば、抵抗器及びコンデンサを含んでいるRC回路である。 The arithmetic circuit 12 is, for example, a microcontroller including a CPU, ROM, and RAM. As shown in FIG. 1, the arithmetic circuit 12 is provided, for example, in the electronic device EE. The arithmetic circuit 12 is electrically connected to the sensor 11, for example, via a signal line (not shown). The arithmetic circuit 12 receives the signal Sig from the sensor 11. The arithmetic circuit 12 removes noise contained in the signal Sig. For example, the arithmetic circuit 12 includes a low-pass filter. The low-pass filter removes noise contained in the signal Sig. The low-pass filter is, for example, an RC circuit including a resistor and a capacitor.
 演算回路12は、信号Sigに基づいて弾性部材10に加わる応力を示す応力値を演算する。本実施形態において、演算回路12は、信号Sigの傾きと、閾値によって定められる範囲の外に信号Sigの強度(値)が存在する期間(以下、対象期間と称す)の時間の長さと、に基づいて応力値を演算する。具体的には、演算回路12は、信号Sigの傾きと、信号Sigの強度(値)が増加してから減少するまでの期間(以下、増減期間と称す)の時間の長さと、に基づいて応力値を演算する。例えば、ユーザ200が弾性部材10を押圧操作したとき、信号Sigの強度(値)が増加する。この場合、信号Sigの強度(値)は、任意の閾値を超えた後に、当該閾値を下回る。このとき、増減期間は、信号Sigの強度(値)が当該閾値を超えてから当該閾値を下回るまでの期間である。本実施形態において、信号Sigの傾きとは、信号Sigの強度(値)が増加している期間の少なくとも一部分(以下、第1期間と称す)における信号の変動量を第1期間の時間の長さで除算した値である。増減期間は、例えば、図4に示すように、時刻t10から時刻t13までの間である。 The calculation circuit 12 calculates a stress value indicating the stress applied to the elastic member 10 based on the signal Sig. In this embodiment, the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of time during which the intensity (value) of the signal Sig is outside the range determined by the threshold (hereinafter referred to as the target period). Specifically, the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of time during which the intensity (value) of the signal Sig increases and decreases (hereinafter referred to as the increase/decrease period). For example, when the user 200 presses the elastic member 10, the intensity (value) of the signal Sig increases. In this case, the intensity (value) of the signal Sig exceeds an arbitrary threshold and then falls below the threshold. At this time, the increase/decrease period is the period from when the intensity (value) of the signal Sig exceeds the threshold to when it falls below the threshold. In this embodiment, the slope of the signal Sig is the value obtained by dividing the amount of signal fluctuation during at least a portion of the period during which the intensity (value) of the signal Sig is increasing (hereinafter referred to as the first period) by the length of the first period. The period of increase/decrease is, for example, from time t10 to time t13, as shown in FIG. 4.
 以下、演算回路12が応力値を演算する処理(以下、処理Pと称す)について図面を参照しながら説明する。図5は、弾性部材10に加わる応力値と信号Sigの傾きとの関係性を示すグラフである。図5は、所定の速度で弾性部材10を押すという実験を複数回行うことによって得られたグラフである。弾性部材10を押す速度は、複数の実験それぞれにおいて異なる。図5における横軸は、信号Sigの傾きを示す。図5における縦軸は、応力値を増減期間の時間の長さで除算した値(以下、除算値と称す)を示す。図5における直線ST1は、除算値と信号Sigの傾きとの関係性を示す回帰直線である。 Below, the process (hereinafter referred to as process P) in which the calculation circuit 12 calculates the stress value will be described with reference to the drawings. FIG. 5 is a graph showing the relationship between the stress value applied to the elastic member 10 and the slope of the signal Sig. FIG. 5 is a graph obtained by performing multiple experiments in which the elastic member 10 is pressed at a predetermined speed. The speed at which the elastic member 10 is pressed differs in each of the multiple experiments. The horizontal axis in FIG. 5 shows the slope of the signal Sig. The vertical axis in FIG. 5 shows the value obtained by dividing the stress value by the length of time of the increase/decrease period (hereinafter referred to as the divided value). The straight line ST1 in FIG. 5 is a regression line showing the relationship between the divided value and the slope of the signal Sig.
 図5に示すように、信号Sigの傾きと除算値との間には相関関係がある。具体的には、信号Sigの傾きが増加するにしたがって、除算値は、増加する傾向がある。つまり、除算値は、信号Sigの傾きに正比例する傾向がある。従って、以下に示す数式1が、成立する。また、数式1より、数式2が成立する。 As shown in Figure 5, there is a correlation between the slope of the signal Sig and the division value. Specifically, as the slope of the signal Sig increases, the division value tends to increase. In other words, the division value tends to be directly proportional to the slope of the signal Sig. Therefore, the following formula 1 holds. Furthermore, from formula 1, formula 2 holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 係数は、所定の速度で弾性部材10を押すという実験を複数回行うことによって得られる。係数は、直線ST1の傾きである。係数は、一例として、約4.7である。例えば、信号Sigの傾きが“0.002”であり、増減期間の時間の長さが200msecであり、係数が4.7である場合、応力値は、数式2に基づいて「4.7×0.002×200≒1.88(N)」である。 The coefficient is obtained by performing an experiment in which the elastic member 10 is pressed at a predetermined speed multiple times. The coefficient is the slope of the straight line ST1. As an example, the coefficient is approximately 4.7. For example, if the slope of the signal Sig is "0.002", the length of the increase/decrease period is 200 msec, and the coefficient is 4.7, the stress value is "4.7 x 0.002 x 200 ≒ 1.88 (N)" based on formula 2.
 数式2より、応力値は、信号Sigの傾きに正比例している。従って、応力値は、第1期間(信号Sigの強度(値)が増加している期間の少なくとも一部分)における信号Sigの傾きが変化したときに変化する。具体的には、信号Sigの傾きが増加した場合、応力値は、増加する。信号Sigの傾きが減少した場合、応力値は、減少する。 From Equation 2, the stress value is directly proportional to the slope of the signal Sig. Therefore, the stress value changes when the slope of the signal Sig changes in the first period (at least a portion of the period during which the intensity (value) of the signal Sig is increasing). Specifically, if the slope of the signal Sig increases, the stress value increases. If the slope of the signal Sig decreases, the stress value decreases.
 数式2より、応力値は、増減期間の時間の長さに正比例している。従って、応力値は、増減期間(信号Sigの強度(値)が増加してから減少するまでの期間)の時間の長さが変化したときに変化する。具体的には、増減期間の時間の長さが増加した場合、応力値は、増加する。増減期間の時間の長さが減少した場合、応力値は、減少する。 From Equation 2, the stress value is directly proportional to the length of the increase/decrease period. Therefore, the stress value changes when the length of the increase/decrease period (the period from when the intensity (value) of the signal Sig increases to when it decreases) changes. Specifically, if the length of the increase/decrease period increases, the stress value increases. If the length of the increase/decrease period decreases, the stress value decreases.
 以上より、演算回路12は、信号Sigの傾きを演算する処理及び増減期間を演算する処理を含んでいる処理Pを実行することによって応力値を求めることが出来る。以下、処理Pの一連の流れについて図面を参照しながら説明する。図6は、演算回路12が実行する処理Pの一例を示すフローチャートである。図7は、図4に示す時刻t10近傍における信号Sigの値を示す図である。以下、演算回路12が、電圧値に基づいて処理Pを実行する場合を例に説明する。 As described above, the calculation circuit 12 can find the stress value by executing process P, which includes a process for calculating the slope of the signal Sig and a process for calculating the period of increase or decrease. The flow of process P will be described below with reference to the drawings. FIG. 6 is a flowchart showing an example of process P executed by the calculation circuit 12. FIG. 7 is a diagram showing the value of the signal Sig near time t10 shown in FIG. 4. The following describes an example in which the calculation circuit 12 executes process P based on a voltage value.
 演算回路12は、例えば、演算回路12の電源がオンされたときに処理Pを開始する(図6:START)。 The calculation circuit 12 starts process P, for example, when the power supply of the calculation circuit 12 is turned on (FIG. 6: START).
 開始後、演算回路12は、基準電位VEを算出する(図6:ステップS10)。具体的には、演算回路12は、電圧値の移動平均を算出する。例えば、演算回路12は、1秒の間に受信した電圧値の移動平均を算出する。図4及び図7に示す例において、演算回路12は、基準電位VE=1.6Vという値を算出している。 After starting, the calculation circuit 12 calculates the reference potential VE (FIG. 6: step S10). Specifically, the calculation circuit 12 calculates a moving average of the voltage values. For example, the calculation circuit 12 calculates a moving average of the voltage values received in one second. In the example shown in FIG. 4 and FIG. 7, the calculation circuit 12 calculates the reference potential VE=1.6V.
 次に、演算回路12は、閾値Th1によって定められる範囲の外に信号Sigの強度(値)が存在するか否かを判定する。本実施形態において、閾値Th1によって定められる範囲内とは、基準電位VEと閾値Th1との間である(図4参照)。閾値Th1は、基準電位VEより大きい値である。演算回路12は、電圧値が閾値Th1を超えたか否かの判定を行う(図6:ステップS11)。図4に示す例において、閾値Th1は、1.7Vである。この場合、演算回路12は、電圧値が1.7Vを超えているか否かを判定する。例えば、演算回路12のROMが、閾値Th1を記憶している。 Next, the arithmetic circuit 12 determines whether or not the intensity (value) of the signal Sig is outside the range defined by the threshold Th1. In this embodiment, the range defined by the threshold Th1 is between the reference potential VE and the threshold Th1 (see FIG. 4). The threshold Th1 is a value greater than the reference potential VE. The arithmetic circuit 12 determines whether or not the voltage value exceeds the threshold Th1 (FIG. 6: step S11). In the example shown in FIG. 4, the threshold Th1 is 1.7 V. In this case, the arithmetic circuit 12 determines whether or not the voltage value exceeds 1.7 V. For example, the ROM of the arithmetic circuit 12 stores the threshold Th1.
 演算回路12は、電圧値が閾値Th1を超えたと判定した場合(図6:ステップS11 Yes)、電圧値が閾値Th1を超えた時刻(以下、第2時刻と称する)を特定する(図6:ステップS12)。第2時刻は、電圧値が基準電位VEを超えた時刻(以下、第1時刻と称する)より後の時刻である。図4及び図7に示す例では、時刻t11において電圧値が、閾値Th1を超えている。従って、演算回路12は、時刻t11を第2時刻として特定する。 When the calculation circuit 12 determines that the voltage value has exceeded the threshold value Th1 (FIG. 6: step S11: Yes), it identifies the time when the voltage value exceeded the threshold value Th1 (hereinafter referred to as the second time) (FIG. 6: step S12). The second time is a time after the time when the voltage value exceeded the reference potential VE (hereinafter referred to as the first time). In the examples shown in FIGS. 4 and 7, the voltage value exceeds the threshold value Th1 at time t11. Therefore, the calculation circuit 12 identifies time t11 as the second time.
 ステップS12の後、演算回路12は、信号Sigの傾きを演算する(図6:ステップS13)。具体的には、演算回路12は、対象期間の少なくとも一部分の時間の長さと、対象期間の少なくとも一部分における信号Sigの変動量と、に基づいて信号Sigの傾きを演算する。本実施形態において、演算回路12は、第1期間(信号Sigの強度(値)が増加している期間の少なくとも一部分)の時間の長さと、第1期間における信号Sigの変動量と、に基づいて信号Sigの傾きを演算する。具体的には、演算回路12は、第1期間における電圧値の増加量を第1期間の時間の長さで除算することによって傾きを演算する。 After step S12, the calculation circuit 12 calculates the slope of the signal Sig (FIG. 6: step S13). Specifically, the calculation circuit 12 calculates the slope of the signal Sig based on the length of at least a portion of the target period and the amount of fluctuation of the signal Sig during at least a portion of the target period. In this embodiment, the calculation circuit 12 calculates the slope of the signal Sig based on the length of the first period (at least a portion of the period during which the intensity (value) of the signal Sig is increasing) and the amount of fluctuation of the signal Sig during the first period. Specifically, the calculation circuit 12 calculates the slope by dividing the amount of increase in the voltage value during the first period by the length of the first period.
 例えば、演算回路12は、時刻t11(第2時刻)より前の時刻である時刻t8,t9,t10における信号Sigの強度(値)を記録している。時刻t9は、時刻t10より前の時刻である。時刻t8は、時刻t9より前の時刻である。このとき、演算回路12は、時刻t8から時刻t11までの間における信号Sigの増加量を時刻t8と時刻t11との間の時間の長さで除算することによって信号Sigの傾きp8を算出する。同様にして、演算回路12は、演算回路12は、時刻t9から時刻t11までの間における信号Sigの増加量を時刻t9と時刻t11との間の時間の長さで除算することによって傾きp9を算出する。演算回路12は、時刻t10から時刻t11までの間における信号Sigの増加量を時刻t10と時刻t11との間の時間の長さで除算することによって傾きp10を算出する。 For example, the calculation circuit 12 records the intensity (value) of the signal Sig at times t8, t9, and t10, which are times before time t11 (second time). Time t9 is a time before time t10. Time t8 is a time before time t9. At this time, the calculation circuit 12 calculates a slope p8 of the signal Sig by dividing the increase in the signal Sig from time t8 to time t11 by the length of time between time t8 and time t11. Similarly, the calculation circuit 12 calculates a slope p9 by dividing the increase in the signal Sig from time t9 to time t11 by the length of time between time t9 and time t11. The calculation circuit 12 calculates a slope p10 by dividing the increase in the signal Sig from time t10 to time t11 by the length of time between time t10 and time t11.
 演算回路12は、傾きp8,p9,p10の内、最も大きい値を有する傾きを信号Sigの傾きとして選択する。図7に示す例において、演算回路12は、傾きp8,p9,p10の内、傾きp10が最も大きい値を有する。従って、演算回路12は、傾きp10を信号Sigの傾きとして選択する。この場合、第1期間は、図7に示すように、時刻t10(第1時刻)と、時刻t11(第2時刻)と、の間の期間PE1である。例えば、図7に示す例において、期間PE1における電圧値の増加量は、0.1Vである。例えば、期間PE1の長さは、100msecである。この場合、演算回路12は、傾きを“0.001”と算出する。 The calculation circuit 12 selects the slope having the largest value among the slopes p8, p9, and p10 as the slope of the signal Sig. In the example shown in FIG. 7, the calculation circuit 12 selects the slope p10 as the slope of the signal Sig. In this case, as shown in FIG. 7, the first period is the period PE1 between time t10 (first time) and time t11 (second time). For example, in the example shown in FIG. 7, the increase in the voltage value in the period PE1 is 0.1 V. For example, the length of the period PE1 is 100 msec. In this case, the calculation circuit 12 calculates the slope to be "0.001".
 ステップS13の後、演算回路12は、対象期間の時間の長さを計測する。本実施形態では、演算回路12は、増減期間の時間の長さ(信号Sigの強度(値)が増加してから減少するまでの時間の長さ)を計測する。本実施形態では、演算回路12は、電圧値が閾値Th1を超えてから閾値Th1を下回るまでの期間(以下、第2期間と称す)の時間の長さを計測する(図6:ステップS14)。図4に示す例において、電圧値は、時刻t12(第3時刻)において閾値Th1を下回っている。時刻t12(第3時刻)は、時刻t11(第2時刻)より後の時刻である。この場合、第2期間は、時刻t11と時刻t12との間の期間PEtである(図4参照)。演算回路12は、期間PEtの時間の長さを第2期間の時間の長さとして取得する。 After step S13, the calculation circuit 12 measures the length of the target period. In this embodiment, the calculation circuit 12 measures the length of the increase/decrease period (the length of time from when the intensity (value) of the signal Sig increases to when it decreases). In this embodiment, the calculation circuit 12 measures the length of the period from when the voltage value exceeds the threshold value Th1 to when it falls below the threshold value Th1 (hereinafter referred to as the second period) (FIG. 6: step S14). In the example shown in FIG. 4, the voltage value falls below the threshold value Th1 at time t12 (third time). Time t12 (third time) is a time after time t11 (second time). In this case, the second period is the period PEt between time t11 and time t12 (see FIG. 4). The calculation circuit 12 obtains the length of the period PEt as the length of the second period.
 ステップS14の後、演算回路12は、数式2に基づいて応力値を演算する(図6:ステップS15)。具体的には、演算回路12は、対象期間の時間の長さと、信号Sigの傾きと、に基づいて応力値を演算する。本実施形態では、演算回路12は、信号Sigの傾きに期間PEtの時間の長さ(第2期間の時間の長さ)を積算することによって積算値を算出する。演算回路12は、当該積算値に基づいて応力値を演算する。より詳細には、演算回路12は、数式2に基づいて、当該積算値に係数を積算することによって応力値を演算する。例えば、傾きが“0.001”であり、且つ、期間PEtの時間の長さが“100msec”であり、且つ、係数が4.7である場合、応力値は、数式2に基づいて「0.001×100×4.7≒0.47(N)」である。 After step S14, the calculation circuit 12 calculates the stress value based on the formula 2 (FIG. 6: step S15). Specifically, the calculation circuit 12 calculates the stress value based on the length of the target period and the slope of the signal Sig. In this embodiment, the calculation circuit 12 calculates an integrated value by multiplying the slope of the signal Sig by the length of the period PEt (the length of the second period). The calculation circuit 12 calculates the stress value based on the integrated value. More specifically, the calculation circuit 12 calculates the stress value by multiplying the integrated value by a coefficient based on the formula 2. For example, if the slope is "0.001", the length of the period PEt is "100 msec", and the coefficient is 4.7, the stress value is "0.001 x 100 x 4.7 ≒ 0.47 (N)" based on the formula 2.
 ステップS11において、演算回路12は、電圧値が閾値Th1を超えていないと判定する場合がある(図6:ステップS11 No)。例えば、電圧値が基準電位VEに対して負の極性を有する場合、電圧値が閾値Th1を超えない。このとき、演算回路12は、電圧値が閾値Th2を下回っているか否かを判定する(図6:ステップS16)。閾値Th2は、基準電位VEより小さい値である。図4に示す例において、演算回路12は、閾値Th2=1.5Vという値を算出している。演算回路12は、電圧値が閾値Th2を下回ったと判定した場合(図6:ステップS16 Yes)、電圧値が閾値Th2を下回った時刻を特定する(図6:ステップS17)。 In step S11, the calculation circuit 12 may determine that the voltage value does not exceed the threshold value Th1 (FIG. 6: step S11 No). For example, if the voltage value has negative polarity with respect to the reference potential VE, the voltage value does not exceed the threshold value Th1. At this time, the calculation circuit 12 determines whether the voltage value is below the threshold value Th2 (FIG. 6: step S16). The threshold value Th2 is a value smaller than the reference potential VE. In the example shown in FIG. 4, the calculation circuit 12 calculates the threshold value Th2=1.5V. If the calculation circuit 12 determines that the voltage value is below the threshold value Th2 (FIG. 6: step S16 Yes), it identifies the time when the voltage value fell below the threshold value Th2 (FIG. 6: step S17).
 ステップS17の後、演算回路12は、ステップS13の処理と同様にして、信号Sigの傾きを演算する(図6:ステップS18)。具体的には、演算回路12は、信号Sigの強度(値)が減少している期間の少なくとも一部分の時間の長さと、信号Sigの強度(値)が減少している期間の少なくとも一部分における信号Sigの変動量と、に基づいて信号Sigの傾きを演算する。この場合、信号Sigの傾きは、負となる。 After step S17, the calculation circuit 12 calculates the slope of the signal Sig in the same manner as in step S13 (FIG. 6: step S18). Specifically, the calculation circuit 12 calculates the slope of the signal Sig based on the length of at least a portion of the period during which the intensity (value) of the signal Sig is decreasing, and the amount of fluctuation of the signal Sig during at least a portion of the period during which the intensity (value) of the signal Sig is decreasing. In this case, the slope of the signal Sig is negative.
 ステップS18の後、演算回路12は、電圧値が閾値Th2を下回ってから閾値Th2を超えるまでの期間の長さを特定する(図6:ステップS19)。ステップS19の後、演算回路12は、数式2に基づいて、応力値を演算する。具体的には、演算回路12は、信号Sigの強度(値)が減少してから増加するまでの時間の長さと、信号Sigの傾きと、に基づいて応力値を演算する。 After step S18, the calculation circuit 12 determines the length of the period from when the voltage value falls below the threshold value Th2 to when it exceeds the threshold value Th2 (FIG. 6: step S19). After step S19, the calculation circuit 12 calculates the stress value based on Equation 2. Specifically, the calculation circuit 12 calculates the stress value based on the length of time from when the intensity (value) of the signal Sig decreases to when it increases, and on the slope of the signal Sig.
 ステップS16において、演算回路12は、電圧値が閾値Th2を下回っていないと判定した場合(図6:ステップS16 No)、応力値を演算する処理を実行しない。 If, in step S16, the calculation circuit 12 determines that the voltage value is not below the threshold value Th2 (FIG. 6: step S16 No), it does not execute the process of calculating the stress value.
 演算回路12は、ステップS10からステップS19までの処理を繰り返す。例えば、演算回路12は、センサ11から信号Sigを所定のサンプリング間隔で受信する毎に、ステップS10からステップS19までの処理を1サイクルとして実行する。 The arithmetic circuit 12 repeats the process from step S10 to step S19. For example, the arithmetic circuit 12 executes the process from step S10 to step S19 as one cycle each time the arithmetic circuit 12 receives the signal Sig from the sensor 11 at a predetermined sampling interval.
 演算回路12は、例えば、演算回路12の電源がオフされたときに、処理Pを終了する(図6:END)。 The calculation circuit 12 ends process P, for example, when the power supply to the calculation circuit 12 is turned off (FIG. 6: END).
 (効果)
 センサモジュール1によれば、弾性部材10に加わる応力値を正確に特定しやすくなる。以下、図面を参照しながら、演算回路12と比較例1に係る演算回路とを比較して説明する。図8は、第2期間の時間の長さと応力値との関係を示す図である。図8は、弾性部材10を所定の速度で押すという実験を9回行うことによって得られたグラフである。図8において、横軸は、第2期間の時間の長さであり、縦軸は応力値である。
(effect)
The sensor module 1 makes it easier to accurately identify the stress value applied to the elastic member 10. Below, the arithmetic circuit 12 will be compared with the arithmetic circuit according to Comparative Example 1 with reference to the drawings. FIG. 8 is a diagram showing the relationship between the length of the second period and the stress value. FIG. 8 is a graph obtained by performing an experiment nine times in which the elastic member 10 is pressed at a predetermined speed. In FIG. 8, the horizontal axis represents the length of the second period, and the vertical axis represents the stress value.
 図9は、第2期間の時間の長さと応力値との関係を示すグラフであって、異なる速度で弾性部材10を押すという実験を3回行うことによって得られるグラフである。図9において、横軸は第2期間の時間の長さであり、縦軸は応力値である。図9において、直線L1は、弾性部材10が1mm/secの速度で押された場合における、第2期間の時間の長さと応力値との関係性を示す回帰直線である。直線L2は、弾性部材10が3mm/secの速度で押された場合における、第2期間の時間の長さと応力値との関係性を示す回帰直線である。直線L3は、弾性部材10が6mm/secの速度で押された場合における、第2期間の時間の長さと応力値との関係性を示す回帰直線である。 Figure 9 is a graph showing the relationship between the length of the second period and the stress value, obtained by performing an experiment three times in which the elastic member 10 is pressed at different speeds. In Figure 9, the horizontal axis is the length of the second period, and the vertical axis is the stress value. In Figure 9, line L1 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 1 mm/sec. Line L2 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 3 mm/sec. Line L3 is a regression line showing the relationship between the length of the second period and the stress value when the elastic member 10 is pressed at a speed of 6 mm/sec.
 比較例1に係る演算回路は、第1実施形態と比較して応力値の演算方法のみが相違する。具体的には、比較例1に係る演算回路は、第2期間の時間の長さに第1係数を積算することによって応力値を演算する。具体的には、図8に示すように、応力値は、第2期間の時間の長さに正比例している。従って、比較例1に係る演算回路は、“応力値≒第1係数×第2期間の時間の長さ”という数式に基づいて応力値を演算する。 The calculation circuit of Comparative Example 1 differs from the first embodiment only in the method of calculating the stress value. Specifically, the calculation circuit of Comparative Example 1 calculates the stress value by multiplying the length of the second period by the first coefficient. Specifically, as shown in FIG. 8, the stress value is directly proportional to the length of the second period. Therefore, the calculation circuit of Comparative Example 1 calculates the stress value based on the formula "stress value ≒ first coefficient × length of the second period".
 しかし、図9に示すように、直線L1,L2,L3のそれぞれの傾きは、異なる。従って、弾性部材10が押される速度に応じて第1係数の値が異なる。このため、比較例1に係る演算回路は、弾性部材10が押された速度に対応した第1係数の値に基づいて応力値を演算する必要がある。弾性部材10が押された速度に対応していない第1係数の値に基づいて比較例1に係る演算回路が応力値を演算した場合、比較例1に係る演算回路によって演算される応力値は、誤った値となる。従って、比較例1に係る演算回路を備えるセンサモジュールは、弾性部材に加わる応力値を正確に特定出来ない可能性がある。 However, as shown in FIG. 9, the slopes of the lines L1, L2, and L3 are different. Therefore, the value of the first coefficient differs depending on the speed at which the elastic member 10 is pressed. For this reason, the arithmetic circuit of Comparative Example 1 needs to calculate the stress value based on the value of the first coefficient that corresponds to the speed at which the elastic member 10 is pressed. If the arithmetic circuit of Comparative Example 1 calculates the stress value based on the value of the first coefficient that does not correspond to the speed at which the elastic member 10 is pressed, the stress value calculated by the arithmetic circuit of Comparative Example 1 will be an incorrect value. Therefore, a sensor module equipped with the arithmetic circuit of Comparative Example 1 may not be able to accurately identify the stress value applied to the elastic member.
 一方、センサモジュール1において、演算回路12は、弾性部材10が押された速度を考慮して応力値を演算する。具体的には、弾性部材10がユーザ200によって押されたとき、演算回路12は、信号Sigの傾きを演算する。信号Sigの傾きは、弾性部材10が押された速度に基づいて変化する。このため、演算回路12は、弾性部材10が押された速度に対応している信号Sigの傾きに基づいて、弾性部材10に加わる応力値を演算出来る。従って、センサモジュール1において、演算回路12が、弾性部材10が押された速度に対応していない値(第1係数)を用いることによって誤った応力値を演算するという事象が発生しない。結果、センサモジュール1は、弾性部材10に加わる応力値を正確に特定しやすい。 On the other hand, in the sensor module 1, the arithmetic circuit 12 calculates the stress value taking into account the speed at which the elastic member 10 is pressed. Specifically, when the elastic member 10 is pressed by the user 200, the arithmetic circuit 12 calculates the slope of the signal Sig. The slope of the signal Sig changes based on the speed at which the elastic member 10 is pressed. Therefore, the arithmetic circuit 12 can calculate the stress value applied to the elastic member 10 based on the slope of the signal Sig that corresponds to the speed at which the elastic member 10 is pressed. Therefore, in the sensor module 1, an event does not occur in which the arithmetic circuit 12 calculates an incorrect stress value by using a value (first coefficient) that does not correspond to the speed at which the elastic member 10 is pressed. As a result, the sensor module 1 can easily accurately identify the stress value applied to the elastic member 10.
 センサモジュール1によれば、演算回路12は、弾性部材10に加わる応力値を正確に特定しやすくなる。以下、図面を参照しながら、演算回路12と比較例2に係る演算回路とを比較して説明する。 The sensor module 1 allows the arithmetic circuit 12 to more easily and accurately determine the stress value applied to the elastic member 10. Below, the arithmetic circuit 12 will be compared with the arithmetic circuit of Comparative Example 2 with reference to the drawings.
 図10は、センサ11が、センサ11の測定範囲を超えた値を有する信号Sigを出力したときを示す図である。図10において、横軸は時刻であり、縦軸は信号Sigの値である。図10における時刻u1は、信号Sigの値がセンサ11の測定範囲を超えた時刻である。時刻u2は、信号Sigの値がセンサ11の測定範囲を下回った時刻である。図10に示す例において、センサ11の測定範囲の上限ULは、3.0Vである。 FIG. 10 is a diagram showing a time when the sensor 11 outputs a signal Sig having a value that exceeds the measurement range of the sensor 11. In FIG. 10, the horizontal axis represents time, and the vertical axis represents the value of the signal Sig. Time u1 in FIG. 10 is the time when the value of the signal Sig exceeds the measurement range of the sensor 11. Time u2 is the time when the value of the signal Sig falls below the measurement range of the sensor 11. In the example shown in FIG. 10, the upper limit UL of the measurement range of the sensor 11 is 3.0 V.
 比較例2についても同様に、比較例2に係る演算回路は、第1実施形態と比較して応力値の演算方法のみが相違する。具体的には、比較例2に係る演算回路は、センサ11から受信した信号Sigの値を積分することによって応力値を演算する。ここで、弾性部材10が、センサ11が測定可能な変形量を超えて変形する場合がある。図10に示す例において、時刻u1から時刻u2までの間において、弾性部材10が、センサ11が測定可能な変形量を超えて変形している。この場合、センサ11は、時刻u1から時刻u2までの間において、上限ULを超える値を有する信号Sigを出力しない。例えば、センサ11は、時刻u1から時刻u2までの間における信号Sigの値を上限ULである3.0Vとして出力する。このとき、比較例2に係る演算回路は、時刻u1から時刻u2における信号Sigの値を3.0Vとして、応力値を演算するための積分処理を行う。この場合、比較例2に係る演算回路の演算により得られた応力値は、弾性部材10に加わった応力を示す応力値よりも低くなる。従って、比較例2に係る演算回路は、弾性部材10に加わる応力値を正確に特定出来ない可能性がある。 Similarly, the calculation circuit according to the comparative example 2 differs from the first embodiment only in the calculation method of the stress value. Specifically, the calculation circuit according to the comparative example 2 calculates the stress value by integrating the value of the signal Sig received from the sensor 11. Here, the elastic member 10 may be deformed beyond the deformation amount that the sensor 11 can measure. In the example shown in FIG. 10, the elastic member 10 is deformed beyond the deformation amount that the sensor 11 can measure between time u1 and time u2. In this case, the sensor 11 does not output a signal Sig having a value exceeding the upper limit UL between time u1 and time u2. For example, the sensor 11 outputs the value of the signal Sig between time u1 and time u2 as 3.0 V, which is the upper limit UL. At this time, the calculation circuit according to the comparative example 2 performs an integration process to calculate the stress value with the value of the signal Sig from time u1 to time u2 set to 3.0 V. In this case, the stress value obtained by the calculation of the calculation circuit according to the comparative example 2 is lower than the stress value indicating the stress applied to the elastic member 10. Therefore, the calculation circuit of Comparative Example 2 may not be able to accurately determine the stress value applied to the elastic member 10.
 一方、演算回路12は、信号Sigの傾き及び第2期間の時間の長さ(電圧値が閾値Th1を超えてから閾値Th1を下回るまでの期間の長さ)に基づいて応力値を演算する。この場合、演算回路12は、図10に示す、時刻u1から時刻u2の間において取得した信号Sigの値に基づいて応力値を演算しない。従って、センサ11が上限ULを超えた値を有する信号Sigを出力した場合であっても、演算回路12は、応力値を正確に特定することが出来る。つまり、演算回路12を備えているセンサモジュール1は、弾性部材10に加わる応力を示す応力値を正確に特定しやすい。 On the other hand, the calculation circuit 12 calculates the stress value based on the slope of the signal Sig and the length of the second period (the length of the period from when the voltage value exceeds the threshold value Th1 to when it falls below the threshold value Th1). In this case, the calculation circuit 12 does not calculate the stress value based on the value of the signal Sig acquired between time u1 and time u2 shown in FIG. 10. Therefore, even if the sensor 11 outputs a signal Sig having a value that exceeds the upper limit UL, the calculation circuit 12 can accurately determine the stress value. In other words, the sensor module 1 equipped with the calculation circuit 12 makes it easier to accurately determine the stress value that indicates the stress applied to the elastic member 10.
 [変形例1]
 以下、変形例1に係るセンサモジュール1aについて図面を参照しながら説明する。図11は、変形例1に係るセンサモジュール1aに備わる演算回路12aが実行する処理Qの一例を示すフローチャートである。図12は、時刻t14と時刻t15との間において信号Sigにノイズが発生した場合を示す図である。時刻t15は、時刻t14より後の時刻である。
[Modification 1]
The sensor module 1a according to the first modification will be described below with reference to the drawings. Fig. 11 is a flow chart showing an example of a process Q executed by the arithmetic circuit 12a included in the sensor module 1a according to the first modification. Fig. 12 is a diagram showing a case where noise occurs in the signal Sig between time t14 and time t15. Time t15 is a time after time t14.
 センサモジュール1aは、演算回路12の代わりに演算回路12aを備えている点で、センサモジュール1と異なる。演算回路12aは、図11に示すように、処理Pと異なる処理Qを実行する。処理QにおけるステップS10からステップS19の処理は、処理PにおけるステップS10からステップS19の処理と同じであるため、説明を省略する。 Sensor module 1a differs from sensor module 1 in that it includes an arithmetic circuit 12a instead of arithmetic circuit 12. As shown in FIG. 11, arithmetic circuit 12a executes process Q, which is different from process P. Steps S10 to S19 in process Q are the same as steps S10 to S19 in process P, and therefore will not be described.
 処理Qにおいて、演算回路12aは、ステップS14の処理の後、第2期間(電圧値が閾値Th1を超えてから閾値Th1を下回るまでの期間)の時間の長さが閾値Th3以上か否かを判定する(図11:ステップS20)。閾値Th3は、例えば、30msecである。図12に示す例において、演算回路12aは、期間PEt(第2期間)の時間の長さが閾値Th3以上か否かを判定する。 In process Q, after step S14, the calculation circuit 12a determines whether the length of the second period (the period from when the voltage value exceeds the threshold value Th1 until when it falls below the threshold value Th1) is equal to or greater than the threshold value Th3 (FIG. 11: step S20). The threshold value Th3 is, for example, 30 msec. In the example shown in FIG. 12, the calculation circuit 12a determines whether the length of the period PEt (second period) is equal to or greater than the threshold value Th3.
 演算回路12aは、第2期間の時間の長さが閾値Th3以上であると判定した場合(図11:ステップS20 Yes)、ステップS15を実行する。図12に示す例において、期間PEtの時間の長さは、閾値Th3以上である。この場合、演算回路12aは、期間PEtにおける応力値を演算する。 If the calculation circuit 12a determines that the length of the second period is equal to or greater than the threshold value Th3 (FIG. 11: step S20 Yes), it executes step S15. In the example shown in FIG. 12, the length of the period PEt is equal to or greater than the threshold value Th3. In this case, the calculation circuit 12a calculates the stress value during the period PEt.
 一方、演算回路12は、第2期間の時間の長さが閾値Th3未満であると判定した場合(図11:ステップS20 No)、ステップS15を実行しない。図12に示す例において、時刻t14と時刻t15との間において、電圧値が閾値Th1を超えてから閾値Th1を下回っている。従って、演算回路12aは、時刻t14と時刻t15との間の時間の長さが閾値Th3以上か否かを判定する。時刻t14と時刻t15との間の長さは、閾値Th3未満である。このため、演算回路12aは、時刻t14と時刻t15との間における応力値を演算しない。 On the other hand, if the calculation circuit 12 determines that the length of the second period is less than the threshold value Th3 (FIG. 11: step S20 No), it does not execute step S15. In the example shown in FIG. 12, between time t14 and time t15, the voltage value exceeds threshold value Th1 and then falls below threshold value Th1. Therefore, the calculation circuit 12a determines whether the length of time between time t14 and time t15 is greater than or equal to threshold value Th3. The length of time between time t14 and time t15 is less than threshold value Th3. For this reason, the calculation circuit 12a does not calculate the stress value between time t14 and time t15.
 同様にして、処理Qにおいて、演算回路12aは、ステップS19の後、電圧値が閾値Th2を下回ってから閾値Th2を超えるまでの時間の長さが閾値Th3以上か否かを判定する(図11:ステップS20)。 Similarly, in process Q, after step S19, the calculation circuit 12a determines whether the length of time from when the voltage value falls below threshold Th2 to when it exceeds threshold Th2 is equal to or greater than threshold Th3 (FIG. 11: step S20).
 (効果)
 センサモジュール1aによれば、演算回路12aが誤判定する可能性を低減することが出来る。例えば、時刻t14と時刻t15との間において、ユーザ200が、センサモジュール1aを誤操作する。誤操作とは、例えば、ユーザ200が弾性部材10上にユーザ200の手を置く等の操作である。この場合、図12に示すように、時刻t14と時刻t15との間において、電圧値が閾値Th1を超える可能性がある。このため、ステップS20の処理を実行しない演算回路(以下、比較例2に係る演算回路と称す)は、時刻t14と時刻t15との間において、ユーザ200による押圧操作がされたと誤判定する虞がある。
(effect)
According to the sensor module 1a, the possibility that the arithmetic circuit 12a makes an erroneous determination can be reduced. For example, between time t14 and time t15, the user 200 erroneously operates the sensor module 1a. The erroneous operation is, for example, an operation in which the user 200 places the hand of the user 200 on the elastic member 10. In this case, as shown in FIG. 12, the voltage value may exceed the threshold value Th1 between time t14 and time t15. Therefore, the arithmetic circuit that does not execute the process of step S20 (hereinafter, referred to as the arithmetic circuit according to the comparative example 2) may erroneously determine that the user 200 has performed a pressing operation between time t14 and time t15.
 一方、演算回路12aは、ステップS20を実行することによって、ユーザ200による押圧操作がなされたか否かを判定する。閾値Th3は、例えば、ユーザ200が押圧操作を行うために要する時間より短い時間である。これにより、演算回路12aは、例えば、第2期間の時間の長さが閾値Th3未満である場合、ユーザ200による誤操作によって信号Sigが発生していると判定出来る。結果、演算回路12aは、ユーザ200による誤操作をユーザ200による押圧操作と誤判定しにくくなる。 On the other hand, the arithmetic circuit 12a executes step S20 to determine whether or not a pressing operation has been performed by the user 200. The threshold value Th3 is, for example, a time shorter than the time required for the user 200 to perform a pressing operation. As a result, the arithmetic circuit 12a can determine that the signal Sig has been generated due to an erroneous operation by the user 200, for example, when the length of the second period is less than the threshold value Th3. As a result, the arithmetic circuit 12a is less likely to erroneously determine that an erroneous operation by the user 200 is a pressing operation by the user 200.
 センサモジュール1aによれば、演算回路12aが応力値を演算しやすくなる。例えば、閾値Th1と基準電位VEとの差が小さい場合、ノイズによって発生した電圧値が、閾値Th1を超えやすくなる。このため、比較例2に係る演算回路は、ユーザ200による押圧操作がなされていないときに、ユーザ200による押圧操作がなされたと誤判定する可能性がある。 The sensor module 1a makes it easier for the calculation circuit 12a to calculate the stress value. For example, when the difference between the threshold value Th1 and the reference potential VE is small, the voltage value generated by noise is likely to exceed the threshold value Th1. For this reason, the calculation circuit in Comparative Example 2 may erroneously determine that the user 200 has performed a pressing operation when the user 200 has not performed a pressing operation.
 一方、電圧値が閾値Th1を超えたとしても、第2期間の時間の長さが閾値Th3未満である場合、演算回路12aはユーザ200による押圧操作がなされていないと判定する。このため、閾値Th1が小さい値であっても、演算回路12aは、誤判定をしにくくなる。つまり、閾値Th1の値を小さくすることが出来る。このため、演算回路12aは、ユーザ200によって弾性部材10に加えられた力が小さい場合であっても、応力値を演算することが出来る。 On the other hand, even if the voltage value exceeds threshold Th1, if the length of the second period is less than threshold Th3, the arithmetic circuit 12a determines that no pressing operation has been performed by the user 200. Therefore, even if threshold Th1 is a small value, the arithmetic circuit 12a is less likely to make an erroneous determination. In other words, the value of threshold Th1 can be made small. Therefore, the arithmetic circuit 12a can calculate the stress value even if the force applied to the elastic member 10 by the user 200 is small.
 [変形例2]
 以下、変形例2に係るセンサモジュール1bについて図面を参照しながら説明する。図13は、変形例2に係るセンサモジュール1bを示す図である。
[Modification 2]
The sensor module 1b according to the second modification will be described below with reference to the drawings. Fig. 13 is a diagram showing the sensor module 1b according to the second modification.
 センサモジュール1bは、2個以上のセンサを備えている点で、センサモジュール1と異なる。図13に示す例において、センサモジュール1bは、センサ11に加えて、センサ11a,センサ11b,センサ11cを備えている。 Sensor module 1b differs from sensor module 1 in that it has two or more sensors. In the example shown in FIG. 13, sensor module 1b has sensors 11a, 11b, and 11c in addition to sensor 11.
 本変形例において、センサ11は、例えば、弾性部材10の右端部に設けられている(図13参照)。センサ11aは、弾性部材10の左端部に設けられている。センサ11bは、弾性部材10の後端部に設けられている。センサ11cは、弾性部材10の前端部に設けられている。センサ11a,11b,11cそれぞれのその他の構成は、センサ11の構成と同じであるため、説明を省略する。 In this modified example, the sensor 11 is provided, for example, at the right end of the elastic member 10 (see FIG. 13). The sensor 11a is provided at the left end of the elastic member 10. The sensor 11b is provided at the rear end of the elastic member 10. The sensor 11c is provided at the front end of the elastic member 10. The other configurations of the sensors 11a, 11b, and 11c are the same as the configuration of the sensor 11, so the description will be omitted.
 本変形例において、演算回路12は、センサ11,11a,11b,11cのそれぞれが出力した信号Sigに基づいて弾性部材10に加わる荷重を演算する。本変形例において、演算回路12は、弾性部材10に加わった荷重を、高精度で演算出来る。以下、図面を参照しながら説明する。図14は、センサモジュール1bにおいて演算回路12が演算した荷重値の一例を示す表Tbである。例えば、弾性部材10上に9個の領域Ar1~Sr9を定義する。領域Ar1~Ar9それぞれの大きさは同じである。図14は、弾性部材10における領域Ar1~Ar9のそれぞれを150gの荷重で押すという実験(以下、実験Zと称す)を行うことによって得られる。 In this modified example, the calculation circuit 12 calculates the load applied to the elastic member 10 based on the signals Sig output by each of the sensors 11, 11a, 11b, and 11c. In this modified example, the calculation circuit 12 can calculate the load applied to the elastic member 10 with high accuracy. The following description will be given with reference to the drawings. FIG. 14 is a table Tb showing an example of load values calculated by the calculation circuit 12 in the sensor module 1b. For example, nine areas Ar1 to Sr9 are defined on the elastic member 10. Each of the areas Ar1 to Ar9 has the same size. FIG. 14 is obtained by performing an experiment (hereinafter referred to as experiment Z) in which each of the areas Ar1 to Ar9 on the elastic member 10 is pressed with a load of 150 g.
 図14に示す例において、領域Ar2が150gの荷重で押された場合、演算回路12は、弾性部材10に加わった荷重を161gと推定している。荷重:161gは、実験Zにおいて得られた推定荷重の内、最も大きい推定荷重(以下、最大推定荷重と称す)である。図14に示す例において、領域Ar6が押された場合、演算回路12は、弾性部材10に加わった荷重を143gと演算している。荷重:143gは、実験Zにおいて得られた推定荷重の内、最も小さい推定荷重(以下、最小推定荷重と称す)である。ここで、最小推定荷重を最大推定荷重で除算した値に100を積算した値を、面内分布と定義する。このとき、図14に示す例における面内分布は、「143/161×100≒89%」である。演算回路12は、面内分布89%という高い精度を保ちながら、弾性部材10に加わった荷重を演算出来る。 In the example shown in FIG. 14, when area Ar2 is pressed with a load of 150 g, the calculation circuit 12 estimates the load applied to the elastic member 10 to be 161 g. Load: 161 g is the largest estimated load (hereinafter referred to as the maximum estimated load) among the estimated loads obtained in experiment Z. In the example shown in FIG. 14, when area Ar6 is pressed, the calculation circuit 12 calculates the load applied to the elastic member 10 to be 143 g. Load: 143 g is the smallest estimated load (hereinafter referred to as the minimum estimated load) among the estimated loads obtained in experiment Z. Here, the value obtained by dividing the minimum estimated load by the maximum estimated load and multiplying this value by 100 is defined as the in-plane distribution. In this case, the in-plane distribution in the example shown in FIG. 14 is "143/161×100≒89%". The calculation circuit 12 can calculate the load applied to the elastic member 10 while maintaining a high degree of accuracy of 89% in-plane distribution.
 [その他の実施形態]
 本発明に係るセンサモジュールは、センサモジュール1に限らず、その要旨の範囲において変更可能である。
[Other embodiments]
The sensor module according to the present invention is not limited to the sensor module 1, and can be modified within the scope of the gist thereof.
 なお、弾性部材10は、必ずしも、板形状を有していなくてもよい。弾性部材10は、例えば、棒形状であってもよい。 The elastic member 10 does not necessarily have to have a plate shape. The elastic member 10 may be, for example, rod-shaped.
 なお、電子機器EEは、必ずしも、スマートフォンでなくてよい。電子機器EEは、ユーザ200によって押圧操作が行われる機器であればどの様な機器であってもよい。電子機器EEは、ペンタブレット、TWS(True Wireless Stereo)等であってもよい。つまり、電子機器EEの筐体構造に因らずに、センサ11を弾性部材10に貼ることが出来る。これにより、演算回路12,12aは、電子機器EEの筐体構造に因らずに、応力値を演算することが出来る。 The electronic device EE does not necessarily have to be a smartphone. The electronic device EE may be any device that allows the user 200 to perform a pressing operation. The electronic device EE may be a pen tablet, TWS (True Wireless Stereo), etc. In other words, the sensor 11 can be attached to the elastic member 10 regardless of the housing structure of the electronic device EE. This allows the arithmetic circuits 12, 12a to calculate the stress value regardless of the housing structure of the electronic device EE.
 なお、センサモジュール1は、2個又は3個のセンサを備えていてもよい。なお、センサモジュール1は、5個以上のセンサを備えていてもよい。 The sensor module 1 may include two or three sensors. The sensor module 1 may include five or more sensors.
 なお、弾性部材10は、正方形状であってもよい。 The elastic member 10 may also be square-shaped.
 なお、信号Sigが含んでいる電気的パラメータは、必ずしも、電圧値でなくてもよい。例えば、信号Sigが含んでいる電気的パラメータは、電流値であってもよい。 Note that the electrical parameter contained in the signal Sig does not necessarily have to be a voltage value. For example, the electrical parameter contained in the signal Sig may be a current value.
 なお、一軸延伸方向ODは、必ずしも、前後方向及び左右方向に対して45度の角度を形成していなくてもよい。例えば、一軸延伸方向ODは、前後方向に対して0度の角度を形成していてもよい。 Note that the uniaxial stretching direction OD does not necessarily have to form an angle of 45 degrees with respect to the front-to-rear and left-to-right directions. For example, the uniaxial stretching direction OD may form an angle of 0 degrees with respect to the front-to-rear direction.
 なお、演算回路12は、基準電位VEに対して負の極性を有する信号Sigを取得したとき、信号Sigの波形を基準電位VEに対して反転させてもよい。この場合、信号Sigの強度(値)は、基準電位VEに対して正の極性を有する。従って、演算回路12は、ステップS10からステップS15の処理を実行することによって、応力値を演算することが出来る。 When the calculation circuit 12 acquires the signal Sig having a negative polarity with respect to the reference potential VE, the calculation circuit 12 may invert the waveform of the signal Sig with respect to the reference potential VE. In this case, the intensity (value) of the signal Sig has a positive polarity with respect to the reference potential VE. Therefore, the calculation circuit 12 can calculate the stress value by executing the processes from step S10 to step S15.
 なお、演算回路12は、ステップS10からステップS19までの1サイクルの処理を繰り返して実行する。このとき、演算回路12は、各サイクルで取得した応力値を加算する。これにより、演算回路12は、処理Pを実行した時点における応力値を演算する。例えば、図4に示すように、演算回路12は、時刻t10から時刻t12までにおける1サイクルで1.4Nという応力値(以下、第1応力値と称する)を演算する。次に、演算回路12は、例えば、時刻s10から時刻s11までにおける1サイクルで-1.4Nという応力値(以下、第2応力値と称する)を演算する。この場合、第1応力値に第2応力値を加算した値は、0である。従って、演算回路12は、時刻s11において、弾性部材10には力が加わっていないと判定出来る。 The calculation circuit 12 repeatedly executes one cycle of processing from step S10 to step S19. At this time, the calculation circuit 12 adds up the stress values acquired in each cycle. In this way, the calculation circuit 12 calculates the stress value at the time when the processing P is executed. For example, as shown in FIG. 4, the calculation circuit 12 calculates a stress value of 1.4 N in one cycle from time t10 to time t12 (hereinafter referred to as the first stress value). Next, the calculation circuit 12 calculates a stress value of -1.4 N in one cycle from time s10 to time s11 (hereinafter referred to as the second stress value). In this case, the value obtained by adding the second stress value to the first stress value is 0. Therefore, the calculation circuit 12 can determine that no force is applied to the elastic member 10 at time s11.
 なお、演算回路12は、演算した応力値に応じた信号(以下、第1信号と称す)を演算回路12以外の装置に送信してもよい。この場合、第1信号の値は、信号Sigの傾き又は第2期間の時間の長さに依存している。このため、信号Sigの傾きが変化した場合、第1信号の強度(値)は、変化する。第2期間の時間の長さが変化した場合、第1信号の強度(値)は、変化する。従って、信号Sigの変化に伴って変化する強度(値)を有している第1信号であって、第2期間の時間の長さの変化に伴って変化する強度(値)を有している第1信号を出力する処理装置は、演算回路12に係る処理を実行していると考えられる。 The calculation circuit 12 may transmit a signal (hereinafter referred to as the first signal) corresponding to the calculated stress value to a device other than the calculation circuit 12. In this case, the value of the first signal depends on the slope of the signal Sig or the length of the second period. Therefore, if the slope of the signal Sig changes, the intensity (value) of the first signal changes. If the length of the second period changes, the intensity (value) of the first signal changes. Therefore, a processing device that outputs a first signal having an intensity (value) that changes with changes in the signal Sig and an intensity (value) that changes with changes in the length of the second period is considered to be performing processing related to the calculation circuit 12.
 なお、センサモジュール1は、応力値を表示する表示器を備えていてもよい。表示器は、例えば、有機ELディスプレイ等である。この場合、信号Sigの傾き又は第2期間の時間の長さが変化した場合、当該表示器に表示される応力値は、変化する。従って、信号Sigの傾きの変化に伴って変化する応力値を表示する表示器であって、第2期間の時間の長さの変化に伴って変化する応力値を表示する表示器を備えている処理装置(スマートフォン等)は、演算回路12に係る処理を実行していると考えられる。 The sensor module 1 may also be equipped with a display that displays the stress value. The display is, for example, an organic EL display. In this case, if the slope of the signal Sig or the length of the second period changes, the stress value displayed on the display changes. Therefore, a processing device (such as a smartphone) that has a display that displays a stress value that changes with a change in the slope of the signal Sig and that displays a stress value that changes with a change in the length of the second period is considered to be executing processing related to the arithmetic circuit 12.
 なお、信号Sigの値は、センサ11の変位量の微分値に依存しなくてよい。例えば、入力される信号の周波数によっては、微分値に依存しない成分が含まれる場合がある。 The value of the signal Sig does not have to depend on the differential value of the displacement of the sensor 11. For example, depending on the frequency of the input signal, it may contain components that are not dependent on the differential value.
 本発明は、以下の構造を有する。 The present invention has the following structure:
 (1) 
 弾性部材の変形に応じた信号を出力するセンサと、
 前記センサから前記信号を受信する演算回路と、
 を備えており、
 前記演算回路は、
  閾値によって定められる範囲の外に前記信号の強度が存在する対象期間の時間の長さを計測し、
  前記対象期間の少なくとも一部分の時間の長さと、前記対象期間の少なくとも一部分における前記信号の変動量と、に基づいて前記信号の傾きを演算し、
  前記対象期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
 センサモジュール。
(1)
a sensor that outputs a signal corresponding to the deformation of the elastic member;
a computing circuit for receiving the signal from the sensor;
Equipped with
The arithmetic circuit includes:
measuring the length of time during a period of interest during which the strength of the signal falls outside a range defined by a threshold;
Calculating a slope of the signal based on a length of at least a portion of the time period of interest and an amount of fluctuation of the signal during at least a portion of the time period of interest;
calculating a stress value indicating a stress applied to the elastic member based on the length of the target period and the slope;
Sensor module.
 (2) 
 前記演算回路は、
  前記信号の強度が増加してから減少するまでの期間の時間の長さを計測し、
  前記信号の強度が増加している期間の少なくとも一部分の時間の長さと、前記信号の強度が増加している期間の少なくとも一部分における前記信号の変動量と、に基づいて前記傾きを演算し、
  前記信号の強度が増加してから減少するまでの期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
 (1)に記載のセンサモジュール。
(2)
The arithmetic circuit includes:
measuring the length of time between an increase and a decrease in the strength of the signal;
Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is increasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is increasing;
calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal increases to when it decreases and on the slope of the signal;
The sensor module described in (1).
 (3) 
 前記演算回路は、
  前記信号の強度が減少してから増加するまでの期間の時間の長さを計測し、
  前記信号の強度が減少している期間の少なくとも一部分の時間の長さと、前記信号の強度が減少している期間の少なくとも一部分における前記信号の変動量と、に基づいて前記傾きを演算し、
  前記信号の強度が減少してから増加するまでの期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
 (1)又は(2)に記載のセンサモジュール。
(3)
The arithmetic circuit includes:
measuring the length of time between a decrease and an increase in the strength of the signal;
Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is decreasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is decreasing;
calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal decreases to when it increases and on the slope of the signal;
A sensor module according to (1) or (2).
 (4) 
 前記傾きが増加した場合、前記応力値は、増加し、
 前記傾きが減少した場合、前記応力値は、減少する、
 (1)から(3)のいずれかに記載のセンサモジュール。
(4)
If the slope increases, the stress value increases;
If the slope decreases, the stress value decreases.
A sensor module according to any one of (1) to (3).
 (5) 
 前記信号は、前記弾性部材の変形に応じて変化する電気的パラメータを含んでいる、
 (1)から(3)のいずれかに記載のセンサモジュール。
(5)
the signal includes an electrical parameter that varies in response to deformation of the elastic member;
A sensor module according to any one of (1) to (3).
 (6) 
 前記電気的パラメータは、電圧値である、
 (5)に記載のセンサモジュール。
(6)
The electrical parameter is a voltage value.
The sensor module according to (5).
 (7) 
 第1時刻は、前記電圧値が基準電位を超えた時刻であり、
 前記閾値は、前記基準電位より大きい値であり、
 第2時刻は、前記第1時刻より後の時刻であって、前記電圧値が前記閾値を超えた時刻であり、
 第3時刻は、前記第2時刻より後の時刻であって、前記電圧値が前記閾値を下回った時刻であり、
 第1期間は、前記第1時刻と前記第2時刻との間の期間であり、
 第2期間は、前記第2時刻と前記第3時刻との間の期間であり、
 前記演算回路は、
  前記第1期間における前記電圧値の増加量を前記第1期間の時間の長さで除算することによって前記傾きを演算し、
  前記傾きに前記第2期間の時間の長さを積算することによって得られる積算値に基づいて前記応力値を演算する、
 (6)に記載のセンサモジュール。
(7)
the first time is the time when the voltage value exceeds a reference potential;
the threshold value is a value greater than the reference potential,
the second time is a time after the first time and is a time at which the voltage value exceeds the threshold value;
a third time point is a time point after the second time point and is a time point at which the voltage value falls below the threshold value;
the first period is a period between the first time and the second time,
the second period is a period between the second time and the third time,
The arithmetic circuit includes:
calculating the slope by dividing an increase in the voltage value during the first period by a length of the first period;
calculating the stress value based on an integrated value obtained by integrating the slope by the length of the second period;
The sensor module according to (6).
 (8) 
 前記演算回路は、前記積算値に係数を積算することによって前記応力値を演算する、
 (7)に記載のセンサモジュール。
(8)
the calculation circuit calculates the stress value by multiplying the integrated value by a coefficient;
The sensor module according to (7).
 (9) 
 弾性部材の変形に応じた信号を出力するセンサから、時間経過に伴って増加した後に減少する値を有する信号を受信し、
 前記信号の強度が増加している期間の少なくとも一部分における信号の傾きが変化したときに変化し、且つ、前記信号の強度が増加してから減少するまでの期間の時間の長さが変化したときに変化する応力値を演算する、
 演算回路。
(9)
receiving a signal having a value that increases and then decreases over time from a sensor that outputs a signal in response to deformation of the elastic member;
A stress value that changes when a slope of the signal changes in at least a part of a period during which the intensity of the signal is increasing, and that changes when a length of a period from when the intensity of the signal increases to when it decreases changes.
Arithmetic circuit.
1,1a,1b:センサモジュール
10:弾性部材
11,11a,11b,11c:センサ
12,12a:演算回路
PE1,PEs,PEt:期間
Sig:信号
Th1,Th2,Th3:閾値
VE:基準電位
1, 1a, 1b: sensor module 10: elastic member 11, 11a, 11b, 11c: sensor 12, 12a: arithmetic circuit PE1, PEs, PEt: period Sig: signal Th1, Th2, Th3: threshold value VE: reference potential

Claims (9)

  1.  弾性部材の変形に応じた信号を出力するセンサと、
     前記センサから前記信号を受信する演算回路と、
     を備えており、
     前記演算回路は、
      閾値によって定められる範囲の外に前記信号の強度が存在する対象期間の時間の長さを計測し、
      前記対象期間の少なくとも一部分の時間の長さと、前記対象期間の少なくとも一部分における前記信号の変動量と、に基づいて前記信号の傾きを演算し、
      前記対象期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
     センサモジュール。
    a sensor that outputs a signal corresponding to the deformation of the elastic member;
    a computing circuit for receiving the signal from the sensor;
    Equipped with
    The arithmetic circuit includes:
    measuring the length of time during a period of interest during which the strength of the signal falls outside a range defined by a threshold;
    Calculating a slope of the signal based on a length of at least a portion of the time period of interest and an amount of fluctuation of the signal during at least a portion of the time period of interest;
    calculating a stress value indicating a stress applied to the elastic member based on the length of the target period and the slope;
    Sensor module.
  2.  前記演算回路は、
      前記信号の強度が増加してから減少するまでの期間の時間の長さを計測し、
      前記信号の強度が増加している期間の少なくとも一部分の時間の長さと、前記信号の強度が増加している期間の少なくとも一部分における前記信号の変動量と、に基づいて前記傾きを演算し、
      前記信号の強度が増加してから減少するまでの期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
     請求項1に記載のセンサモジュール。
    The arithmetic circuit includes:
    measuring the length of time between an increase and a decrease in the strength of the signal;
    Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is increasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is increasing;
    calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal increases to when it decreases and on the slope of the signal;
    The sensor module according to claim 1 .
  3.  前記演算回路は、
      前記信号の強度が減少してから増加するまでの期間の時間の長さを計測し、
      前記信号の強度が減少している期間の少なくとも一部分の時間の長さと、前記信号の強度が減少している期間の少なくとも一部分における前記信号の変動量と、に基づいて前記傾きを演算し、
      前記信号の強度が減少してから増加するまでの期間の時間の長さと、前記傾きと、に基づいて前記弾性部材に加わる応力を示す応力値を演算する、
     請求項1又は請求項2に記載のセンサモジュール。
    The arithmetic circuit includes:
    measuring the length of time between a decrease and an increase in the strength of the signal;
    Calculating the slope based on a length of at least a portion of a period during which the intensity of the signal is decreasing and an amount of fluctuation of the signal during at least a portion of the period during which the intensity of the signal is decreasing;
    calculating a stress value indicating a stress applied to the elastic member based on the length of time from when the intensity of the signal decreases to when it increases and on the slope of the signal;
    The sensor module according to claim 1 or 2.
  4.  前記傾きが増加した場合、前記応力値は、増加し、
     前記傾きが減少した場合、前記応力値は、減少する、
     請求項1から請求項3のいずれかに記載のセンサモジュール。
    If the slope increases, the stress value increases;
    If the slope decreases, the stress value decreases.
    The sensor module according to claim 1 .
  5.  前記信号は、前記弾性部材の変形に応じて変化する電気的パラメータを含んでいる、
     請求項1から請求項3のいずれかに記載のセンサモジュール。
    the signal includes an electrical parameter that varies in response to deformation of the elastic member;
    The sensor module according to claim 1 .
  6.  前記電気的パラメータは、電圧値である、
     請求項5に記載のセンサモジュール。
    The electrical parameter is a voltage value.
    The sensor module according to claim 5 .
  7.  第1時刻は、前記電圧値が基準電位を超えた時刻であり、
     前記閾値は、前記基準電位より大きい値であり、
     第2時刻は、前記第1時刻より後の時刻であって、前記電圧値が前記閾値を超えた時刻であり、
     第3時刻は、前記第2時刻より後の時刻であって、前記電圧値が前記閾値を下回った時刻であり、
     第1期間は、前記第1時刻と前記第2時刻との間の期間であり、
     第2期間は、前記第2時刻と前記第3時刻との間の期間であり、
     前記演算回路は、
      前記第1期間における前記電圧値の増加量を前記第1期間の時間の長さで除算することによって前記傾きを演算し、
      前記傾きに前記第2期間の時間の長さを積算することによって得られる積算値に基づいて前記応力値を演算する、
     請求項6に記載のセンサモジュール。
    the first time is the time when the voltage value exceeds a reference potential;
    the threshold value is a value greater than the reference potential,
    the second time is a time after the first time and is a time at which the voltage value exceeds the threshold value;
    a third time point is a time point after the second time point and is a time point at which the voltage value falls below the threshold value;
    the first period is a period between the first time and the second time,
    the second period is a period between the second time and the third time,
    The arithmetic circuit includes:
    calculating the slope by dividing an increase in the voltage value during the first period by a length of the first period;
    calculating the stress value based on an integrated value obtained by integrating the slope by the length of the second period;
    The sensor module according to claim 6 .
  8.  前記演算回路は、前記積算値に係数を積算することによって前記応力値を演算する、
     請求項7に記載のセンサモジュール。
    the calculation circuit calculates the stress value by multiplying the integrated value by a coefficient;
    The sensor module according to claim 7.
  9.  弾性部材の変形に応じた信号を出力するセンサから、時間経過に伴って増加した後に減少する値を有する信号を受信し、
     前記信号の強度が増加している期間の少なくとも一部分における信号の傾きが変化したときに変化し、且つ、前記信号の強度が増加してから減少するまでの期間の時間の長さが変化したときに変化する応力値を演算する、
     演算回路。
    receiving a signal having a value that increases and then decreases over time from a sensor that outputs a signal in response to deformation of the elastic member;
    A stress value that changes when a slope of the signal changes in at least a part of a period during which the intensity of the signal is increasing, and that changes when a length of a period from when the intensity of the signal increases to when it decreases changes.
    Arithmetic circuit.
PCT/JP2023/036041 2022-10-18 2023-10-03 Sensor module and computation circuit WO2024084956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-166934 2022-10-18
JP2022166934 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084956A1 true WO2024084956A1 (en) 2024-04-25

Family

ID=90737355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036041 WO2024084956A1 (en) 2022-10-18 2023-10-03 Sensor module and computation circuit

Country Status (1)

Country Link
WO (1) WO2024084956A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260333A (en) * 1988-04-11 1989-10-17 Murata Mfg Co Ltd Pressure distribution detector
JP2015097068A (en) * 2013-10-08 2015-05-21 ダイキン工業株式会社 Touch input device and electronic apparatus
JP2017102109A (en) * 2015-11-04 2017-06-08 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Method and system for processing pressure sensing signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260333A (en) * 1988-04-11 1989-10-17 Murata Mfg Co Ltd Pressure distribution detector
JP2015097068A (en) * 2013-10-08 2015-05-21 ダイキン工業株式会社 Touch input device and electronic apparatus
JP2017102109A (en) * 2015-11-04 2017-06-08 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Method and system for processing pressure sensing signal

Similar Documents

Publication Publication Date Title
CN107636436B (en) Press sensor and electronic device
US9063599B2 (en) Input device and display apparatus
CN102539022B (en) Detection device, electronic equipment and mechanical hand
KR101734796B1 (en) Pressure detection device, method for controlling pressure detection device, and program
US8707802B2 (en) Detection device, electronic apparatus, and robot
US8390303B2 (en) Method for detecting pressure on touch sensing element and electronic device using the same
CN102346546A (en) Detection device, electronic apparatus, and robot
EP3006913A1 (en) Physical quantity sensor adjustment method, and physical quantity sensor
US20140354574A1 (en) Electronic apparatus
WO2024084956A1 (en) Sensor module and computation circuit
US11846551B2 (en) Press sensor and press detection device with specific elastic moduli components
WO2022009747A1 (en) Pressing force detection device
CN115541070A (en) Piezoelectric sensor and hand
EP3301424A3 (en) Load distribution measuring device for vehicles
JP2018119801A (en) Body part contact force sensor
WO2013179556A1 (en) Information terminal, integrated circuit, and signal processing method
WO2023127277A1 (en) Actuator unit, haptic presentation device, and casing module
JP7279864B2 (en) Manipulation detection sensors and electronics
US20240241592A1 (en) Touchpad with a force-sensing function and force-sensing method thereof
CN104641323A (en) Method for determining whether at least one key of a device having multiple keys has been actuated
WO2018235954A1 (en) Input device for electronic apparatus
CN212322228U (en) Touch panel
WO2024080116A1 (en) Sensor module
WO2023127017A1 (en) Test device, test method, and test program
WO2023281829A1 (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879603

Country of ref document: EP

Kind code of ref document: A1