WO2013179556A1 - Information terminal, integrated circuit, and signal processing method - Google Patents

Information terminal, integrated circuit, and signal processing method Download PDF

Info

Publication number
WO2013179556A1
WO2013179556A1 PCT/JP2013/002668 JP2013002668W WO2013179556A1 WO 2013179556 A1 WO2013179556 A1 WO 2013179556A1 JP 2013002668 W JP2013002668 W JP 2013002668W WO 2013179556 A1 WO2013179556 A1 WO 2013179556A1
Authority
WO
WIPO (PCT)
Prior art keywords
information terminal
signal
input
unit
deformation
Prior art date
Application number
PCT/JP2013/002668
Other languages
French (fr)
Japanese (ja)
Inventor
高志 森本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013179556A1 publication Critical patent/WO2013179556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form

Definitions

  • the present disclosure relates to an information terminal having an interface that accepts touch input, an integrated circuit of the information terminal, and a signal processing method.
  • Information terminals such as smartphones and tablet terminals that can be operated by touch input have become widespread.
  • Patent Document 1 discloses a configuration in which an input is not confirmed simply by touching the input surface with a finger.
  • the contact position is determined to be the input position for touch input.
  • Non-Patent Document 1 proposes a film-like touch sensor using an organic transistor and polyvinylidene fluoride (PVDF) as organic materials.
  • PVDF polyvinylidene fluoride
  • the flexible touch sensor as described above may be deformed by touch input pressure or gravity.
  • the operability of the information terminal is lowered.
  • the input position may not be detected because the force of the touch input is not properly transmitted to the touch sensor.
  • This disclosure provides an information terminal that improves operability by performing signal processing corresponding to deformation of the touch sensor, an integrated circuit of the information terminal, and a signal processing method.
  • the information terminal is an information terminal that can be operated by touching a predetermined input area with a finger or a predetermined object.
  • the information terminal has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, generates a first signal, detects deformation of the information terminal, and A deformation detection unit that generates the second signal, and a processing unit that corrects the first signal based on the second signal.
  • FIG. 1 It is an external view of an information terminal.
  • (A) is a figure which shows the structure of the sheet-like part of an information terminal
  • (b) is a figure which shows the piezoelectric element film of a sheet-like part.
  • (A) is a figure which shows the use condition of an information terminal
  • (b) is a figure which shows the detection signal detected by a touch sensor.
  • A) is a figure which shows the use condition of an information terminal
  • (b) is a figure which shows the detection signal detected by a touch sensor.
  • FIG. 1 is a diagram illustrating a configuration of a signal processing unit according to Embodiment 1.
  • FIG. 4 is a diagram illustrating details of a configuration of a signal processing unit according to Embodiment 1.
  • FIG. It is a figure which shows the holding position of the information terminal based on Embodiment 1, and the nonuniform distribution and uniform distribution which comprise the pressure distribution detected by a touch sensor.
  • FIG. 6 is a diagram illustrating a configuration of a signal processing unit according to Embodiment 2.
  • FIG. 1 shows the holding position of the information terminal based on Embodiment 1, and the nonuniform distribution and uniform distribution which comprise the pressure distribution detected by a touch sensor.
  • (A) And (c) is a figure which shows the use condition of the information terminal which concerns on Embodiment 1, and the pressure distribution detected by a touch sensor,
  • FIG. (A) is a figure which shows the use condition of the information terminal which concerns on Embodiment 1, and the pressure distribution detected by a touch sensor,
  • (b) is a figure which shows the pressure distribution after correction
  • 6 is a diagram illustrating a configuration of a signal processing unit according to Embodiment 2.
  • FIG. 6 is a diagram illustrating details of a configuration of a signal processing unit according to Embodiment 2.
  • FIG. (A) And (b) is a figure which shows the holding
  • FIG. (A) And (b) is a figure which shows the holding position of the information terminal which concerns on Embodiment 2, uniform distribution, and the display position of an image.
  • FIG. 10 is a diagram illustrating a configuration of a signal processing unit according to a third embodiment.
  • Non-Patent Document 1 proposes a configuration of a film-like touch sensor using an organic material.
  • printable large area electronics using organic materials is starting to be put into practical use. It is desired to increase the screen size and flexibility of information terminals using such materials and technologies.
  • PVDF material which is a piezoelectric material, generates electric power by deformation. Therefore, a touch sensor configured using such a piezoelectric material detects a pressure distribution based on a touch input or the like based on electric power generated by a force applied to the PVDF material.
  • the touch sensor When such a touch sensor is arranged in a flexible information terminal casing, the touch sensor may be deformed together with the casing in accordance with the force of touch input or gravity.
  • the detection signal indicating the pressure distribution detected by the touch sensor may deteriorate.
  • the pressure at the input position detected by the touch sensor may be reduced. In this case, the touch input may not be detected properly.
  • a signal resulting from deformation of the touch sensor may be mixed in the detection signal output from the touch sensor. That is, the piezoelectric material may be deformed according to the deformation of the touch sensor, and the piezoelectric material may generate electric power based on the deformation of the piezoelectric material. In this case, a signal caused by a factor different from the touch input such as a signal caused by deformation of the touch sensor is mixed in the detection signal.
  • the case of the information terminal may be deformed by its own weight. Also in this case, the touch sensor is deformed, and a signal resulting from the deformation based on the own weight is mixed in the detection signal.
  • the detection signal is deteriorated due to deformation of the touch sensor or the like, the detection accuracy of the touch input is lowered, and thus the operability of the information terminal is lowered.
  • a relatively large touch sensor may be used, for example, when the touch sensor is arranged on a large display.
  • the housing (or touch sensor) of the information terminal tends to be easily deformed. That is, the casing of such an information terminal is easily deformed by the lever principle. As the deformation easily occurs, the detection signal output from the touch sensor may be significantly degraded.
  • the present inventor has found an information terminal that improves operability by performing signal processing corresponding to deformation of the touch sensor, an integrated circuit of the information terminal, and a signal processing method.
  • the information terminal includes an input unit that detects an input distribution, and a signal processing unit that applies a predetermined process to the distribution based on a modification of the input unit.
  • FIG. 1 is an external view of an information terminal according to the first embodiment.
  • FIG. 2A is a diagram illustrating a configuration of the information terminal 1.
  • FIG. 3 is a block diagram showing an internal configuration of the information terminal 1.
  • the information terminal 1 includes a sheet-like part 2a and a non-sheet-like part 2b.
  • the sheet-like portion 2a is made of a flexible material as will be described below with reference to FIG.
  • the non-sheet-like part 2b has a housing attached to the sheet-like part 2a at the corner of the sheet-like part 2a.
  • the sheet-like part 2a is provided with a display 3 for displaying an image and a touch sensor 4 for receiving a touch input.
  • the non-sheet-like part 2b is provided with a memory, a processor, etc. (FIG. 3) described later.
  • the sheet-like portion 2a is formed by laminating three layers including a display film 3a, a piezoelectric element film 4a, and an electronic circuit film 5.
  • a display film 3a is disposed on the uppermost surface of the sheet-like portion 2a.
  • the display film 3a includes a light emitting element using an organic compound such as an organic EL (Electro-Luminescence).
  • the display 3 is formed on the display film 3a.
  • the display 3 displays a screen including characters and images on the upper surface of the sheet-like portion 2a.
  • the display film 3a may be a display film configured using a light emitting element different from the organic compound.
  • a piezoelectric element film 4a for detecting pressure is disposed under the display 3.
  • the piezoelectric element 4c configured using PVDF (polyvinylidene fluoride) is placed on the input area of the touch sensor 4 (for example, the area corresponding to the display area of the display 3).
  • the piezoelectric element film 4a is configured by being arranged in a matrix. In practice, the piezoelectric elements 4c may be arranged more finely than in FIG.
  • the piezoelectric element film 4a detects the pressure of touch input (contact) by a finger or a predetermined object (such as a pen) performed on the upper surface of the sheet-like part 2a via the display film 3a, and the piezoelectric element 4c A detection signal (sensor output) corresponding to the deformation is output.
  • the configuration of the piezoelectric element film 4a is disclosed in Non-Patent Document 1, for example.
  • the electronic circuit film 5 formed using an organic transistor or the like is formed below the piezoelectric element film 4a.
  • the electronic circuit film 5 includes a driver 6, an amplifier circuit 4 b, and a signal processing unit 7.
  • the driver 6 outputs a drive signal for driving the display 3 to the display 3 based on a control signal from the processor 9 (described later).
  • the amplification circuit 4b amplifies the electric signal input from the piezoelectric element film 4a and outputs the amplified signal as a detection signal from the touch sensor 4.
  • the amplifier circuit 4b forms the touch sensor 4 together with the piezoelectric element film 4a.
  • the touch sensor 4 outputs a detection signal (sensor output) indicating the distribution of input to the surface on which the touch sensor 4 is disposed in order to accept touch input.
  • the touch sensor 4 may be a sensor that can be manufactured in a sheet shape, and may be, for example, an element that operates by a method such as a capacitance method, a resistance film method, an optical method, or an ultrasonic method.
  • the surface of the display film 3a corresponding to the surface on which the touch sensor 4 is arranged corresponds to an input surface for touch input. That is, the user performs touch input to the touch sensor 4 through the display film 3a.
  • the touch sensor 4 detects the force of the touch input with respect to the input surface as a pressure, and outputs a detection signal indicating a pressure distribution.
  • the processor 9 described later controls each part of the information terminal 1 such as displaying a screen on the display 3 based on the detection signal from the touch sensor 4.
  • the signal processing unit 7 is configured by an integrated circuit (for example, LSI) or the like, and applies predetermined processing (signal processing) according to the present embodiment to the detection signal from the touch sensor 4. Then, the signal processing unit 7 outputs a signal (corrected detection signal) after the signal processing is applied.
  • LSI integrated circuit
  • the corrected detection signal (corrected sensor output) output from the signal processing unit 7 is a signal obtained by removing the influence of deformation of the touch sensor 4 from the detection signal output from the touch sensor 4. In other words, the corrected detection signal reproduces the detection signal output from the touch sensor 4 that is not deformed.
  • the function of the signal processing unit 7 is realized using hardware (an integrated circuit or the like) as described above, but is not limited thereto, and may be realized by cooperation of hardware and software, for example.
  • software for example, a program that realizes the signal processing function is incorporated into a microcontroller or the like constituting the signal processing unit 7.
  • Part or all of the driver 6, the amplifier circuit 4b, and the signal processing unit 7 may be arranged in the non-sheet-like part 2b.
  • the memory 8 and the processor 9 are arranged in the non-sheet-like part 2b.
  • the memory 8 includes a nonvolatile memory 8a and a main memory 8b.
  • the memory 8 stores a control program, application program, and the like (hereinafter referred to as “program”) for controlling each unit of the information terminal 1.
  • the memory 8 is also used as a working memory for executing the program, that is, stores information temporarily generated or temporarily acquired when the program is executed.
  • the processor 9 executes a control process for controlling each component of the information terminal 1 such as the display 3, the touch sensor 4, and the memory 8. By executing the control process, the processor 9 transmits a control signal to each component via the bus 13 and obtains necessary information from each component via the bus 13. For example, the processor 9 acquires the corrected detection signal from the signal processing unit 7, and a screen corresponding to the acquired detection signal (for example, a window (execution screen of an application program displayed so as to accept a user operation)) , A screen including icons, buttons, and the like) is output to the driver 6 for display on the display 3.
  • a screen corresponding to the acquired detection signal for example, a window (execution screen of an application program displayed so as to accept a user operation)
  • a screen including icons, buttons, and the like is output to the driver 6 for display on the display 3.
  • the processor 9 is composed of a CPU or the like, and executes various processes described later based on a predetermined program.
  • the function of the processor 9 may be realized by cooperation of hardware and software, or may be realized only by hardware (electronic circuit or the like).
  • the non-sheet-like portion 2b includes a memory 8 and a processor 9, a gyro sensor 10 that detects an angular velocity based on rotation of the information terminal 1, a baseband processor 11 that executes processing related to wireless communication and a telephone call, and a wireless LAN. And a wireless LAN module 12 for performing signal processing, wireless signal transmission / reception, and the like.
  • an acceleration sensor or the like may be arranged on the non-sheet-like portion 2b.
  • these elements are not essential elements.
  • the constituent elements of the non-sheet-like portion 2b can be manufactured in a flexible sheet shape, or are small compared to the degree of deformation of the sheet-like portion 2a.
  • the sheet-like part 2a and the non-sheet-like part 2b may be configured as separate devices separated from each other.
  • the information terminal 1b is configured such that various signals are transmitted and received between the sheet-like portion 2a and the non-sheet-like portion 2b by wired wiring or wireless connection.
  • FIGS. 4B and 5B are diagrams schematically illustrating the pressure detected at the input position P of the touch input corresponding to FIGS. 4A and 5B, respectively.
  • the touch sensor 4 When a touch input is made to the information terminal 1 placed on the desk as shown in FIG. 4A, the touch sensor 4 is moved to the input position P as shown in FIG. At the coordinates (x, y), the pressure f corresponding to the force of the touch input is detected. Since the information terminal 1 is placed on a desk having high rigidity, the piezoelectric element 4c disposed at the input position P receives the force of the touch input, and the reaction force from the desk to the force of the touch input. Receive. The piezoelectric element 4c is compressed by the force of the touch input and the force from the desk, and the piezoelectric element 4c outputs a voltage signal corresponding to the deformation based on the compression. The other piezoelectric elements 4c arranged at positions different from the input position P are not deformed because they do not receive pressure.
  • the touch sensor 4 bends (deforms) together with the sheet-like portion 2a.
  • the piezoelectric element 4c does not receive the pressing force as in the case of FIG. Therefore, the pressure f at the input position P (coordinates (x, y)) detected by the touch sensor 4 is smaller than in the case of FIG.
  • FIG. 5 (b) schematically shows the pressure f at the input position P of the touch input.
  • the pressure distribution detected by the touch sensor 4 may be affected by the deformation of the touch sensor 4 as described below.
  • FIG. 6A illustrates an example of a region in which pressure is detected by the touch sensor 4 when a touch input is performed on the information terminal 1 held by hand as illustrated in FIG. Indicates.
  • the input position P in FIG. 6A corresponds to the input position of the touch input in FIGS. 5A and 5B.
  • a pressure distribution of pressure detected by the touch sensor 4 is formed on the touch sensor 4.
  • FIG. 6B is a graph showing a distribution of the pressure distribution along a straight line M passing through the holding position A and the input position P of the information terminal 1.
  • the pressure distribution includes a non-uniform distribution R and a uniform distribution S.
  • the non-uniform distribution R is a pressure distribution detected based on the touch input in the input position P of the touch input and a region in the vicinity thereof.
  • the uniform distribution S is a distribution of pressure detected in a region where the touch sensor 4 is deformed. That is, the influence of the deformation of the touch sensor 4 given to the pressure distribution in this example appears as a uniform distribution S.
  • the region forming the non-uniform distribution R is divided into a region Ra in which a finger or the like directly applies pressure to the touch sensor 4 and a surrounding region.
  • the non-uniform distribution R shows a larger pressure in the region Ra than the surrounding region.
  • the pressure distribution detected in the surrounding area is a pressure distribution caused by deformation (dent) of the touch sensor 4 based on the touch input. That is, the piezoelectric material is deformed when the touch sensor 4 is depressed, and the pressure distribution related to the deformation is detected in the surrounding region.
  • the pressure f detected at the input position P when the sheet-like portion 2a is bent (FIG. 5A) is such that the information terminal 1 is placed on the desk. It is smaller than the case (FIG. 4A).
  • the non-uniform distribution R is a non-uniform distribution localized near the input position P of touch input.
  • the uniform distribution S is formed in an area where the touch sensor 4 is curved as shown in FIG. That is, the uniform distribution S corresponds to the touch sensor 4 being curved (see FIG. 5A) on the region including the straight line L shown in the figure, and the boundary (the upper side It is formed in a band-shaped region in contact with the lower side.
  • the area of the region forming the uniform distribution S is larger than the area of the region forming the non-uniform distribution R. Furthermore, the gradient of the formed uniform distribution S (the degree of change in pressure in the x-axis and y-axis directions) is gentle compared to the non-uniform distribution.
  • the pressure distribution detected by the touch sensor 4 includes the uniform distribution S based on the deformation of the touch sensor 4 in addition to the non-uniform distribution R based on the touch input. Therefore, the detection accuracy of the touch input (or the input position P) from the detection signal may be lowered due to the deformation of the touch sensor 4. A decrease in detection accuracy leads to a decrease in operability of the information terminal 1.
  • the information terminal 1 is provided with the signal processing unit 7 in order to improve the detection accuracy of the touch input.
  • the signal processing unit 7 applies signal processing for removing the influence of deformation of the touch sensor 4 from the detection signal indicating the pressure distribution detected by the touch sensor 4 to the detection signal from the touch sensor 4. Specifically, the signal processing unit 7 removes an output corresponding to the uniform distribution S based on the deformation of the touch sensor 4 from, for example, a sensor output constituting the pressure distribution. In addition, the signal processing unit 7 performs signal processing so as to increase the pressure level of the non-uniform distribution R based on the touch input (the sensor output that configures the non-uniform distribution R). As a result, the pressure distribution detected by the touch sensor 4 in a state where the sheet-like portion 2a is not deformed as shown in FIG. 6D is reproduced on the region as shown in FIG.
  • FIG. 6D is a graph showing a distribution along the straight line M passing through the holding position A and the input position P of the information terminal 1 after the influence of the deformation of the touch sensor 4 is removed. It is.
  • the pressure distribution in FIG. 6D does not include the uniform distribution S, and the pressure f in the contact region Ra such as a finger is stronger than in the case of FIG.
  • a detection signal indicating the pressure distribution reproduced in this way is output from the signal processing unit 7 as a corrected detection signal.
  • FIG. 7 is a block diagram showing functions of the signal processing unit 7.
  • FIG. 8 is a block diagram showing detailed functions of the signal processing unit 7.
  • the signal processing unit 7 includes a preprocessing unit 20, a terminal information extraction unit 30, an input position detection unit 40, a deformation detection unit 50, and a correction unit 60.
  • the pre-processing unit 20 includes an adjustment unit 21 that applies noise removal or the like to the detection signal from the touch sensor 4 and a pressure distribution acquisition unit 22 that acquires a pressure distribution from the detection signal.
  • the adjusting unit 21 acquires a detection signal from the touch sensor 4.
  • the adjusting unit 21 removes noise from the detection signal from the touch sensor 4 that is RAW data, and amplifies the detection signal to convert it into a detection signal having an appropriate amplitude.
  • the adjustment unit 21 outputs the detection signal after adjustment to the pressure distribution acquisition unit 22.
  • the pressure distribution acquisition unit 22 acquires the detection signal adjusted by the adjustment unit 21. Then, the pressure distribution acquisition unit 22 acquires the pressure distribution applied to the touch sensor 4 from the acquired detection signal. Then, the pressure distribution acquisition unit 22 outputs a signal indicating the pressure distribution to the input position detection unit 40 and the deformation detection unit 50.
  • the pressure distribution acquisition unit 22 acquires the pressure distribution from the detection signal, for example, at a sampling period that can capture a change in the detection signal related to the user's touch input.
  • the sampling period may be longer or shorter than the above period.
  • a sampling period that greatly exceeds the speed of change of the detection signal related to the touch input may be set.
  • the pressure distribution acquisition unit 22 outputs a signal corresponding to the pressure distribution when there is a change in the acquired pressure distribution.
  • the pressure distribution acquisition unit 22 may be configured to output a signal indicating the pressure distribution even when there is no change in the acquired pressure distribution.
  • the terminal information extraction unit 30 extracts information related to the information terminal 1.
  • the information regarding the information terminal 1 includes, for example, information for indicating the size of the grid of the piezoelectric elements 4c constituting the touch sensor 4 and the rigidity (or ease of deformation) of the sheet-like part 2a (material of the sheet-like part 2a). And information indicating rigidity).
  • the terminal information extraction unit 30 outputs the extracted information to the input position detection unit 40 and the deformation detection unit 50.
  • the terminal information extraction unit 30 may acquire information on the information terminal 1 from information held by an OS (Operating System), or may be acquired from a hardware driver or the like. Further, when information related to the information terminal 1 is stored in the memory 8 in advance, the terminal information extraction unit 30 may acquire information related to the information terminal 1 from the memory 8.
  • OS Operating System
  • the input position detection unit 40 acquires information on the pressure distribution from the preprocessing unit 20 and also acquires information on the information terminal 1 from the terminal information extraction unit 30. And the input position detection part 40 acquires a nonuniform distribution and an input position based on the information regarding pressure distribution, and the information regarding the information terminal 1. FIG. Then, the input position detection unit 40 outputs information indicating the non-uniform distribution and the input position to the correction unit 60.
  • the input position detection unit 40 includes a non-uniform distribution extraction unit 41 and a position determination unit 42.
  • the non-uniform distribution extraction unit 41 extracts a distribution having a width equal to or smaller than a predetermined value, which is composed of output values satisfying a predetermined condition, as a non-uniform distribution formed based on a touch input.
  • the predetermined condition regarding the pressure distribution is that the pressure is higher than a pressure detected in the vicinity thereof by a predetermined threshold value (for example, about several grams to several hundred grams).
  • the non-uniform distribution extraction unit 41 acquires a signal related to the pressure distribution from the pressure distribution acquisition unit 22.
  • the non-uniform distribution extracting unit 41 acquires information indicating the size of the grid of the piezoelectric elements 4 c constituting the touch sensor 4 from the terminal information extracting unit 30 as information related to the information terminal 1. Then, the non-uniform distribution extraction unit 41 has a predetermined area (for example, a value about the area of the fingertip. For example, 0.5 cm 2 to 5 cm) from the pressure distribution. 2 ) The following distribution is extracted as a non-uniform distribution. The non-uniform distribution extraction unit 41 outputs information indicating the extracted non-uniform distribution to the position determination unit 42. For example, the non-uniform distribution R illustrated in FIG. 6B is extracted by the non-uniform distribution extraction unit 41.
  • a predetermined area for example, a value about the area of the fingertip. For example, 0.5 cm 2 to 5 cm
  • the following distribution is extracted as a non-uniform distribution.
  • the non-uniform distribution extraction unit 41 outputs information indicating the extracted non-uniform
  • the non-uniform distribution extracting unit 41 may be configured not to extract this distribution as a non-uniform distribution.
  • the non-uniform distribution extracting unit 41 refers to the information regarding the size of the grid acquired from the terminal information extracting unit 30 when calculating the area of the region.
  • the non-uniform distribution extracting unit 41 may extract the non-uniform distribution by a method other than the extraction method based on the area. For example, an image corresponding to the pressure distribution may be generated, and the non-uniform distribution may be extracted by applying an image recognition process to the image. In this case, for example, the shape (circular, elliptical, etc.) of a finger or the like that contacts the touch sensor 4 via the display film 3a is identified and extracted from the image based on the pressure distribution.
  • the non-uniform distribution extracting unit 41 may be implemented in various modes other than the above as long as it is configured to detect a pressure distribution based on touch input.
  • Information (information indicating the material and rigidity of the sheet-like part 2a) for indicating the rigidity (or ease of deformation) of the sheet-like part 2a is further acquired from the terminal information extraction unit 30, and based on the information, The predetermined condition may be changed as appropriate.
  • the position determination unit 42 acquires information indicating the non-uniform distribution from the non-uniform distribution extraction unit 41.
  • the position determination unit 42 determines that the position indicating the maximum pressure in the non-uniform distribution is the input position P by touch input based on the acquired information.
  • the position determination unit 42 outputs a signal indicating the non-uniform distribution and the input position P of the touch input to the correction unit 60.
  • the non-uniform distribution R detected by the input position detection unit 40 is not limited to the non-uniform distribution R in FIG.
  • a plurality of non-uniform distributions R ⁇ b> 1 and R ⁇ b> 2 may be detected by the input position detection unit 40.
  • Each pressure distribution in the example of FIGS. 9 and 10 includes one uniform distribution S and two non-uniform distributions R1 and R2.
  • the non-uniform distribution extraction unit 41 extracts two non-uniform distributions R1 and R2, and the position determination unit 42 calculates input positions P1 and P2 corresponding to the non-uniform distributions R1 and R2, respectively. To detect.
  • the non-uniform distributions R1 and R2 detected by the input position detection unit 40 are truly non-uniform distributions based on touch input, and other cases. That is, one or both of the non-uniform distributions R1 and R2 may be a pressure distribution that is not based on touch input. Processing for excluding distributions not based on touch input from the plurality of non-uniform distributions (candidates) R1 and R2 is executed by the correction unit 60 (described later).
  • the deformation detection unit 50 acquires a signal indicating the pressure distribution from the preprocessing unit 20 and the information related to the information terminal 1 from the terminal information extraction unit 30, similarly to the input position detection unit 40. And the deformation
  • the signal indicating the deformation state of the touch sensor 4 includes a uniform distribution (described later).
  • the deformation detection unit 50 includes a uniform distribution extraction unit 51 and a deformation determination unit 52.
  • the uniform distribution extraction unit 51 acquires a signal indicating the pressure distribution from the pressure distribution acquisition unit 22. Further, the uniform distribution extraction unit 51 acquires information on the size of the grid of the piezoelectric elements 4 c constituting the touch sensor 4 as information on the information terminal 1 from the terminal information extraction unit 30. The uniform distribution extracting unit 51 satisfies the predetermined condition from the pressure distribution and has an area equal to or larger than a predetermined area (about the area of the area where the touch sensor 4 (sheet-like part 2a) is deformed). The distribution on the region is extracted as a uniform distribution. The uniform distribution extraction unit 51 outputs a signal indicating the uniform distribution to the deformation determination unit 52.
  • the predetermined condition is that the pressure detected by the touch sensor 4 is not less than a predetermined threshold value.
  • the uniform distribution extraction unit 51 refers to information on the grid size acquired from the terminal information extraction unit 30.
  • the uniform distribution extraction unit 51 may extract the uniform distribution by a method other than the above extraction method based on the area. For example, an image corresponding to the pressure distribution may be generated, and the uniform distribution may be extracted by applying an image recognition process to the image. In this case, for example, from the image based on the pressure distribution, the area and shape of the region in which the pressure is detected (for example, a band-shaped shape in contact with the two sides of the touch sensor 4) are identified and extracted.
  • the deformation mode of the touch sensor 4 depends on the material forming the sheet-like portion 2a. Therefore, when the shape of the deformed portion is recognized for the extraction of the uniform distribution, the shape may be other shapes such as a rectangle, a triangle, and a circle in addition to a belt-like shape that touches two sides of the touch sensor 4. possible. Therefore, the conditions relating to the shape of the deformed portion may be set as appropriate for extracting a uniform distribution. For example, in order to set conditions regarding the shape of the deformed portion for extracting a uniform distribution, information for indicating the rigidity (or ease of deformation) of the sheet-like portion 2a (material and rigidity of the sheet-like portion 2a) Information) may be acquired from the terminal information extraction unit 30.
  • the deformation determination unit 52 acquires a uniform distribution from the uniform distribution extraction unit 51. Then, the deformation determination unit 52 determines the deformation state of the touch sensor 4 based on the uniform distribution. The deformation determination unit 52 outputs a signal indicating the deformation state of the touch sensor 4 described below to the correction unit 60.
  • the deformation determination unit 52 extracts features from the uniform distribution and detects and determines the deformation state of the touch sensor 4 based on the extracted features.
  • the deformation determination unit 52 detects a straight line L that approximates the shape of a region where a uniform distribution is formed. For example, the deformation determination unit 52 extracts a region having a high pressure level from the uniform distribution, and detects a straight line L that approximates the shape of the region.
  • the deformation determination unit 52 determines that the touch sensor 4 (sheet-like portion 2a) is curved around the straight line L.
  • the deformation determination unit 52 outputs a signal indicating the uniform distribution and the straight line L to the correction unit 60 as a signal indicating the deformation state of the touch sensor 4.
  • the deformation detection unit 50 detects the deformation state of the touch sensor 4.
  • the deformation determination unit 52 determines that the touch sensor 4 is deformed so as to bend in a direction orthogonal to the detected straight line L.
  • the signal indicating the deformation state of the touch sensor 4 is used by the correction unit 60 to exclude the influence of the deformation of the touch sensor 4 on the detection signal from the touch sensor 4.
  • the signal indicating the deformation state may include information other than the uniform distribution or the straight line L.
  • information indicating the degree of deformation (or bending) of the touch sensor 4 in the uniform distribution forming portion may be included in the signal indicating the deformation state.
  • the deformation determination unit 52 further acquires, for example, information related to the information terminal 1 from the terminal information extraction unit 30, and detects the degree of deformation based on the information related to the information terminal 1.
  • the deformation state of the touch sensor 4 detected by the deformation determination unit 52 may indicate a deformation state that is not based on touch input.
  • the touch sensor 4 may be deformed based on the weight of the sheet-like part 2a.
  • the uniform distribution extracted from the pressure distribution by the uniform distribution extraction unit 51 detects a deformation state that is not based on the touch input.
  • the detection signal from the touch sensor 4 does not need to be corrected, and thus the detection signal in this case is not corrected by the correction unit 60 described below.
  • the correction unit 60 acquires the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the correction unit 60 corrects the detection signal from the touch sensor 4 based on the non-uniform distribution and the deformation state of the touch sensor 4, and outputs the corrected detection signal.
  • the correction unit 60 corrects the detection result from the touch sensor 4 when the detection result is rational, and the input determination unit 61 that determines whether the detection result by the input position detection unit 40 and the deformation detection unit 50 is reasonable. And a correction application unit 62 that applies
  • the input determination unit 61 acquires the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the input determination unit 61 determines whether the deformation state of the touch sensor 4 is formed based on the touch input based on a predetermined determination condition, and from the input position detected by the input position detection unit 40, Exclude input positions that are not based on touch input, that is, input positions that are not rational. When it is determined that the deformed state of the touch sensor 4 is formed based on the touch input, the input determination unit 61 sets the input position (the input position having rationality) after the input position that is not based on the touch input is excluded. The corresponding non-uniform distribution and a signal indicating the deformation state of the touch sensor 4 are output to the correction application unit 62.
  • the input determination unit 61 detects the straight line M passing through the predetermined holding position A of the information terminal 1 and the input position P detected by the input position detection unit 40, and the deformation detection unit 50. An angle ⁇ formed by the straight line L is extracted.
  • the predetermined holding position A is set with predetermined coordinates.
  • the input determination unit 61 determines that the input position P is a true input position based on the touch input. judge. Then, the input determination unit 61 determines that the deformation state of the touch sensor 4 is a deformation state based on the touch input.
  • the input determination unit 61 determines that the input position P is touched.
  • the true input position is determined based on the input.
  • the predetermined angle ⁇ 0 is set to about 0 to 30 degrees, for example.
  • the predetermined angle ⁇ 0 may be appropriately set according to the configuration of the sheet-like portion 2a, the usage environment of the information terminal 1, user settings, and the like.
  • the input determination part 61 may acquire the information regarding the structure of the sheet-like part 2a from the terminal information extraction part 30, and may set predetermined
  • the input determination unit 61 forms a deformed state of the touch sensor 4 by the touch input with respect to the input position P. It is determined that there is no rationality. In this case, it is not necessary to correct the detection signal from the touch sensor 4, and the correction unit 60 does not perform further processing for outputting the corrected detection signal.
  • two input positions P1 and P2 may be detected by the input position detection unit 40.
  • the input determination unit 61 calculates the angles ⁇ 1 and ⁇ 2 corresponding to the input positions P1 and P2 in the same manner as the angle ⁇ .
  • ⁇ ⁇ 0 hold. Therefore, the input determination unit 61 extracts the input position P1 as the input position P1 based on the touch input, and determines that the deformation state of the touch sensor 4 is formed based on the touch input with respect to the input position P1.
  • the input determination unit 61 extracts the two input positions P1 and P2 as the input positions P1 and P2 based on the touch input, and the deformation state of the touch sensor 4 is a touch input to the two input positions P1 and P2 ( It is determined that it is formed based on multi-touch input).
  • the input determination unit 61 extracts two input positions P1 and P2 as touch input positions P1 and P2. However, the input determination unit 61 may extract, for example, one input position corresponding to the angle closer to 90 degrees out of the angles ⁇ 1 and ⁇ 2 as the input position of the touch input.
  • the input determination unit 61 determines that both of the two input positions P1 and P2 are touch input positions. In other words, it is determined that the deformation state of the touch sensor 4 is not formed based on the touch input. However, the input determination unit 61 may extract, for example, one input position corresponding to the angle closer to 90 degrees out of the angles ⁇ 1 and ⁇ 2 as the input position of the touch input.
  • the input determination part 61 may perform a determination process based on conditions other than said determination conditions. For example, the determination process may be executed based on the relationship between the pressure levels of the non-uniform distribution R and the uniform distribution S.
  • the input determination unit 61 estimates the pressure level of the uniform distribution S from the pressure level of the non-uniform distribution R and the holding position A based on the lever principle. By comparing the estimated distribution and the detected uniform distribution S, the presence / absence of rationality is determined (for example, if the pressure levels of both distributions are similar to each other, it is determined that there is rationality). )
  • the correction application unit 62 acquires from the input determination unit 61 a signal indicating the input position of the touch input extracted by the input determination unit 61, the non-uniform distribution corresponding to the input position, and the deformation state of the touch sensor 4. . Then, the correction application unit 62 generates a detection signal after correction based on the deformation state of the touch sensor 4 and the non-uniform distribution corresponding to the input position of the extracted touch input. Output as an output signal.
  • the correction application unit 62 amplifies the acquired non-uniform distribution according to the deformation state of the touch sensor 4, and outputs the amplified non-uniform distribution as a detection signal after correction. Specifically, the correction application unit 62 adds a value corresponding to the uniform distribution extracted by the deformation detection unit 50 to the non-uniform distribution. That is, for example, an average value of the uniform distribution is added to each value constituting the non-uniform distribution as a value corresponding to the uniform distribution. That is, the influence of the deformation of the touch sensor 4 is removed from the pressure distribution, and the pressure distribution when the touch input is performed on the touch sensor 4 that is not deformed is reproduced.
  • the value corresponding to the uniform distribution is a value representing the pressure level of the uniform distribution S, such as an average value or an integral value of the uniform distribution, or a value proportional to the average value or the integral value, various values can be used.
  • a value corresponding to the uniform distribution S may be multiplied to each value constituting the non-uniform distribution instead of addition.
  • the correction applying unit 62 may emphasize the non-uniform distribution by various methods in accordance with the pressure level of the uniform distribution. In other words, the correction application unit 62 may emphasize the output value of the sensor output constituting the non-uniform distribution.
  • the correction application unit 62 adds a value corresponding to the uniform distribution extracted by the deformation detection unit 50 to the non-uniform distribution.
  • the correction application unit 62 subtracts a component corresponding to the deformation of the touch sensor 4 based on the weight of the sheet-like portion 2a from the uniform distribution extracted by the deformation detection unit 50, and a value corresponding to the remaining pressure value. (For example, a value obtained by multiplying the remaining pressure value by a predetermined coefficient) may be added to the non-uniform distribution.
  • the pressure distribution corresponding to the deformation of the touch sensor 4 based on the weight of the sheet-like part 2a is specified from the uniform distribution detected by the deformation detection unit 50 when the non-uniform distribution is not detected by the input position detection unit 40. it can.
  • Such a specifying process is performed by, for example, the correction application unit 62. By applying such correction, the pressure distribution when the touch input is performed on the touch sensor 4 in the undeformed state is more faithfully reproduced.
  • the coefficient is a value corresponding to the pressure of the uniform distribution in the addition process.
  • the value obtained by multiplying by may be added to the non-uniform distribution.
  • this coefficient may be a numerical value proportional to the ratio obtained by dividing the distance between the holding position A and the input position by the distance between the holding position A and the uniform distribution.
  • FIGS. 11A to 11D show application examples of correction by the correction application unit 62.
  • FIG. 11A to 11D show application examples of correction by the correction application unit 62.
  • a pressure distribution as shown in FIG. 11A may be detected by the touch sensor 4.
  • a non-uniform distribution R and a uniform distribution S are detected.
  • the correction application unit 62 calculates a value corresponding to the uniform distribution S (such as an average value of the uniform distribution S) as a non-uniform distribution.
  • R a corrected pressure distribution as shown in FIG. 11B is generated.
  • the corrected pressure distribution does not include a uniform distribution but includes a non-uniform distribution R ′ corresponding to the input position P of the touch input.
  • the pressure f2 in the non-uniform distribution R ′ is larger than the pressure f1 before correction. That is, the correction application unit 62 removes the influence of deformation of the touch sensor 4 from the pressure distribution detected from the touch sensor 4 and outputs a sensor output that forms a non-uniform distribution according to the pressure level of the uniform distribution S. Emphasize the output value of.
  • a pressure distribution as shown in the graph of FIG. 11C may be detected by the touch sensor 4.
  • the uniform distribution S as shown in FIG. 11C is formed around a region where the non-uniform distribution R is formed.
  • the input position detection unit 40 calculates a distribution constituted by a value obtained by subtracting the average value of the uniform distribution S from the value of the detected pressure distribution on the region where the non-uniform distribution R is formed. Detect as uniform distribution.
  • the input determination unit 61 determines that the detection result is valid without using the predetermined determination condition (separately) The validity may be determined based on the conditions of Then, the correction application unit 62 generates a corrected pressure distribution as shown in FIG. That is, the correction application unit 62 adds a value corresponding to the uniform distribution S (an average value of the uniform distribution S or the like) to each value constituting the non-uniform distribution R, thereby obtaining the result shown in FIG. A corrected pressure distribution as shown is generated.
  • the pressure distribution after correction does not include the uniform distribution but includes the non-uniform distribution R ′ corresponding to the input position P of the touch input, and the pressure f2 in the non-uniform distribution R ′ is the pressure f1 before correction. Greater than. Therefore, also in the case of the example of FIG. 11C and FIG. 11D, the correction application unit 62 removes the influence of the deformation of the touch sensor 4 from the pressure distribution detected from the touch sensor 4 and is uniform. The output value of the sensor output constituting the non-uniform distribution is emphasized according to the pressure level of the distribution S.
  • the corrected pressure distribution includes a non-uniform distribution corresponding to the input position of the extracted touch input, and the input position of the touch input that has not been extracted.
  • the corresponding non-uniform distribution is not included, and the uniform distribution is not included.
  • the signal processing unit 7 applies the correction process to the detection signal from the touch sensor 4 and outputs the corrected detection signal.
  • the corrected detection signal is acquired by, for example, the processor 9 and the processor 9 controls each unit of the information terminal 1 based on an application program or the like. Since touch input is detected with high accuracy based on the corrected detection signal, the operability of the information terminal 1 is improved.
  • touch input may be performed in a state where the information terminal 1 is placed on a soft surface (such as a sofa seat).
  • the touch sensor 4 detects a pressure distribution as shown in FIG.
  • the deformation detection unit 50 detects a circular uniform distribution S formed around a region where the non-uniform distribution R is formed.
  • the input determination unit 61 uses the input position detection unit 40 and the deformation detection unit 50 without using the predetermined determination condition. The detection result is determined to be reasonable (the validity may be determined based on another condition).
  • the correction application unit 62 generates the corrected pressure distribution as shown in FIG. 12B by executing the same processing as that described with reference to FIGS.
  • the correction application unit 62 adds a value corresponding to the uniform distribution S (an average value of the uniform distribution S or the like) to each value constituting the non-uniform distribution R, thereby obtaining the result shown in FIG.
  • a corrected pressure distribution as shown is generated.
  • the corrected pressure distribution does not include a uniform distribution but includes a non-uniform distribution R ′ corresponding to the input position P of the touch input.
  • the pressure f2 in the non-uniform distribution R ′ is larger than the pressure f1 before correction.
  • the detection result by the input position detection unit 40 and the deformation detection unit 50 by the input determination unit 61 may be omitted (the validity may be determined based on another condition).
  • the correction process is applied to the detection signal indicating the pressure distribution detected by the touch sensor based on the deformation of the touch sensor 4.
  • the influence of the deformation of the touch sensor 4 (sheet-like portion 2a) based on the deformation of the information terminal 1, that is, the uniform distribution is removed from the output value of the sensor output constituting the pressure distribution, and the touch input.
  • the output value of the sensor output that forms a non-uniform distribution based on is emphasized (amplified). Therefore, for example, when the processor 9 accepts an input from the touch sensor 4, the presence / absence of the touch input and the input position are detected well. That is, even when the touch sensor 4 is deformed, good detection accuracy of touch input is maintained, and the operability of the information terminal 1 is improved.
  • the signal processing by the signal processing unit 7 described above may be applied to the information terminal 1 including the large display 3 (for example, a display having a screen having a size of 9 inches or more). Since the touch sensor 4 (size is 9 inches or more) arranged on the housing (sheet-like portion 2a) of the large information terminal 1 is easily deformed, the effect of the present embodiment becomes remarkable, and the operability of the user is improved. Greatly improved.
  • the configuration of the present embodiment may be applied to a flexible tablet information terminal device (corresponding to the information terminal 1).
  • the signal processing unit 7 such as an LSI provided separately from the processor 9 applies signal processing (correction processing) to the detection signal from the touch sensor 4.
  • the signal processing unit 7 may be realized by dedicated LSI hardware, for example.
  • the signal processing unit 7 may be realized by the processor 9.
  • the program related to the function executed by the processor 9 is read from, for example, the memory 8 or acquired via a wired or wireless communication network.
  • the holding position A of the information terminal 1 is fixed at a predetermined position.
  • processing for detecting the holding position of the information terminal 1 is executed based on the touch input and information indicating the deformation of the information terminal.
  • FIG. 13 is a block diagram illustrating functions of the signal processing unit 7 according to the present embodiment.
  • the signal processing unit 7 includes a preprocessing unit 20, a terminal information extraction unit 30, an input position detection unit 40, and a deformation detection unit 50 having the same configuration as that of the above embodiment.
  • the signal processing unit 7 further includes a holding position detection unit 70. A signal from the holding position detection unit 70 is output to the display processing unit 80 provided in the processor 9.
  • the terminal information extraction unit 30, the input position detection unit 40, and the deformation detection unit 50 the description of the same configuration as in the first embodiment may be omitted in the following description.
  • the holding position detection unit 70 and the display processing unit 80 will be mainly described.
  • the holding position detection unit 70 acquires a signal indicating the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the holding position detection unit 70 specifies the holding position of the information terminal 1. Then, the holding position detection unit 70 outputs a signal indicating the holding position and the uniform distribution to the display processing unit 80.
  • the display processing unit 80 executes processing for displaying a screen on the display 3 according to the detection result of the holding position detection unit 70, that is, based on the holding position and the uniform distribution acquired from the holding position detection unit 70.
  • FIG. 14 is a block diagram showing details of the function of the signal processing unit 7 according to the present embodiment.
  • the holding position detection unit 70 includes an input determination unit 71 and a holding position determination unit 72.
  • the input determination unit 71 is substantially the same as the configuration of the input determination unit 61 of the first embodiment. However, unlike the input determination unit 61 of the first embodiment, the input determination unit 71 of the present embodiment does not execute the process of extracting the input position based on the touch input.
  • the input determination unit 71 acquires a signal indicating the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. However, when the touch input is not performed, the input determination unit 71 does not acquire the non-uniform distribution and the input position from the input position detection unit 40.
  • the input determination unit 71 determines that the deformation of the touch sensor 4 is not formed based on the touch input based on the fact that the non-uniform distribution or the input position is not acquired, and acquires the deformation from the deformation determination unit 52.
  • the uniform distribution is output to the holding position determination unit 72.
  • the holding position determination unit 72 When it is determined that the deformation state of the touch sensor 4 is not formed based on the touch input, the holding position determination unit 72 outputs the output value of the sensor output forming the uniform distribution detected from the input determination unit 71. get. Then, the holding position determination unit 72 detects the holding position of the information terminal 1 based on the uniform distribution. The holding position determination unit 72 outputs the output value of the sensor output that forms a uniform distribution with the detected holding position to the display processing unit 80.
  • the holding position determination unit 72 detects the holding position A of the information terminal 1 by the user as follows.
  • FIG. 15A and 15B show examples of the detected holding position A.
  • the holding position determination unit 72 first extracts a region having a high pressure level from the uniform distribution, and detects a straight line L that approximates the shape of the region. The method for detecting the straight line L is the same as the method described in the first embodiment. Then, the holding position determination unit 72 extracts the midpoint H of the straight line L on the touch sensor 4, and the edge of the information terminal 1 positioned in the direction passing through the midpoint H and orthogonal to the straight line L is determined as the holding position. Detect as A. Here, although there are two candidates for the holding position A, the position closer to the straight line L of the two positions is detected as the holding position A.
  • the holding position determination unit 72 may statistically detect the holding position A from the detection signal detected by the touch sensor 4 (for example, the fluctuation in the gradient of the output value of the sensor output that constitutes the pressure distribution is large). The portion may be detected as the holding position A).
  • the holding position determination unit 72 may detect the position where the pressure is constantly detected at the boundary of the touch sensor 4 as the holding position A.
  • the detection method of the holding position A is not limited to the above method, and may be detected by various methods.
  • the above two detection methods of the holding position A may be combined.
  • a position that is appropriate as a holding position based on the straight line L is set as the holding position A from the plurality of positions. It can be detected.
  • a touch sensor for detecting the holding position may be separately provided around the sheet-like portion 2a.
  • the holding position determination unit 72 may detect the holding position by various methods.
  • FIG. 16A and FIG. 16B are diagrams showing an example of image display by the display processing unit 80.
  • the display processing unit 80 causes the display 3 to display an image based on the holding position A and the uniform distribution S acquired from the holding position determination unit 72.
  • the display processing unit 80 displays the window 90 on the display 3 based on the program that the processor 9 is currently executing.
  • the display processing unit 80 acquires position information (such as the coordinates of the frame of the window 90) related to the display of the window 90. Then, the display processing unit 80 moves the window 90 so as to approach the holding position A.
  • position information such as the coordinates of the frame of the window 90
  • a uniform distribution S may be formed between the holding position A and the window 90.
  • the window 90 is displayed at a portion bent by the weight of the sheet-like portion 2a. Therefore, the display processing unit 80 displays the window 90 as an area where the holding position A and the uniform distribution S are formed based on the fact that the uniform distribution S is formed between the holding position A and the window 90. Move between.
  • the display processing unit 80 is not limited to the window 90, and may execute processing for moving various images such as icons, buttons, and dialogs in the same manner as described above.
  • the display processing unit 80 is not limited to moving the image, and performs various switching operations such as switching on / off of the screen and switching on / off of the power supply of the information terminal 1 based on a predetermined condition regarding the uniform distribution or the like. Control for processing may be performed. For example, when the uniform distribution is formed in the immediate vicinity of the holding position A (when the sheet-like portion 2a hangs down and it is difficult to view the display 3), or the uniform distribution is a touch sensor. 4 is formed in almost all of the areas where 4 is arranged (in a state where the information terminal 1 is rounded), the display processing unit 80 performs control to turn off the display on the display 3. In this case, when the predetermined condition is not satisfied, the display processing unit 80 turns on the display of the display 3.
  • the holding position A of the information terminal 1 is detected based on the detection signal detected by the touch sensor 4.
  • the processor 9 can execute various processes corresponding to the deformation of the information terminal 1 based on the pressure distribution (non-uniform distribution, uniform distribution, etc.) and the holding position. Improves.
  • FIG. 17 is a block diagram illustrating a configuration of the signal processing unit 7 according to the third embodiment.
  • the configuration of the correction unit 60 of the first embodiment is omitted (FIG. 13).
  • the signal processing unit 7 of the third embodiment further includes a correction unit 60 in addition to the configuration of the second embodiment. As shown in FIG. 17, the correction unit 60 of the first embodiment is inserted between the holding position detection unit 70 and the display processing unit 80.
  • the display 3 and the touch sensor 4 of the information terminal 1 are deformed when an image is displayed on the display 3 by the processor 9 based on an application program or the like, As in the case, the high detection accuracy of the touch input is maintained, and at the same time, when the touch input is not performed, various images are displayed at an easily viewable position (near the holding position) of the display 3 as in the second embodiment. Is done.
  • the correction unit 60 can correct the sensor output constituting the pressure distribution detected by the touch sensor 4 using the information on the holding position detected by the holding position detection unit 70. Therefore, the correction application unit 62 of the correction unit 60 detects the detection signal from the touch sensor 4 based on the distance between the holding position and the region where the uniform distribution is formed, as described in the second embodiment. Can be corrected. In this case, the holding position detected by the holding position detection unit 70 is used for the correction process, so that the correction is performed more appropriately, and the touch input detection accuracy is further improved.
  • An information terminal (1) that can be operated by touching a predetermined input area with a finger or a predetermined object,
  • An input unit (4) that has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, and generates a first signal (detection signal);
  • a deformation detection unit (7) that detects a deformation of the information terminal (1) and generates a second signal (a signal indicating the deformation state);
  • An information terminal (1) comprising: a processing unit (7) that corrects the first signal (detection signal) based on a second signal (a signal indicating a deformed state).
  • the first signal (detection signal) is corrected based on the second signal (signal indicating a deformed state). Therefore, the operability of the information terminal (1) is improved by performing signal processing (correction processing) corresponding to the deformation of the information terminal (1) (input unit (4)).
  • the processing unit (7) determines the distribution when the distribution of the output values of the first signal (detection signal) and the distribution composed of the output values satisfying the predetermined condition is equal to or smaller than the predetermined value. Correcting the first signal (detection signal) by emphasizing a signal (non-uniform distribution) indicating a touch-operated region based on the constituting signal; 2.
  • This configuration emphasizes a signal (non-uniform distribution) indicating a touch-operated region, thereby maintaining good input detection accuracy and improving operability.
  • the deformation detection unit (7) is a distribution of the output value of the first signal (detection signal), and the information is obtained when the distribution of the output value satisfying a predetermined condition is greater than or equal to the predetermined value. Detecting that the terminal (1) is deformed; 3. The information terminal (1) according to 1 or 2 above, wherein
  • This configuration makes it possible to correct the first signal (detection signal) based on the deformation of the information terminal (1), that is, based on the influence (uniform distribution) based on the deformation of the information terminal (1).
  • the influence of deformation non-uniform distribution
  • the influence of deformation can be removed from the first signal (detection signal), so that the input detection accuracy and the operability of the information terminal (1) are improved.
  • a holding position detector (7) for detecting a holding position of the information terminal (1) held by the user;
  • the holding position detector (7) detects the holding position (A) by the user based on the first signal (detection signal) and the second signal (signal indicating the deformation state).
  • Information terminal (1) as described in any one of thru
  • the information terminal (1) can execute processing based on the holding position.
  • the first signal can be corrected based on the holding position of the information terminal (1) and the deformation of the information terminal (1).
  • the deformation detection unit (7) detects the deformation of the information terminal (1) based on the first signal (detection signal), and generates a second signal (a signal indicating a deformation state).
  • the information terminal (1) according to any one of 1 to 5.
  • the deformation detection unit (7) uses the first signal (detection signal) from the input unit (4). That is, the configuration of the information terminal (1) is simplified as compared with the case where the second signal is generated based on a signal from a component different from the input unit (4).
  • the degree of deformation of the information terminal (1) and the input unit (4) is particularly large. In this case, the effect of improving the operability of the information terminal (1) with the configurations 1 to 6 is high.
  • the size of the input part (4) is 9 inches or more,
  • the information terminal (1) according to any one of the above 1 to 7, characterized in that:
  • the information terminal (1) according to any one of 1 to 8, which is a tablet-type information processing apparatus.
  • the input unit (4) is composed of a piezoelectric element.
  • the information terminal (1) according to any one of the above 1 to 9, characterized in that:
  • the deformation of the information terminal (1) (input unit (4)) is detected.
  • An integrated circuit used by being incorporated in an information terminal (1) An input circuit (7) for receiving a signal detecting an area touched by a finger or a predetermined object in a predetermined input area; A detection circuit (7) for detecting deformation of the information terminal (1) based on the received signal; An integrated circuit (7) comprising a circuit (7) for correcting a signal received by the input circuit based on an output signal from the detection circuit.
  • An information terminal (1) that can be operated by touching a predetermined input area with a finger or a predetermined object,
  • An input unit (4) that has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, and generates a first signal (detection signal);
  • a deformation detection unit (7) that detects a deformation of the information terminal (1) and generates a second signal (a signal indicating the deformation state);
  • a holding position detector (7) for detecting the holding position (P) of the information terminal (1) held by the user;
  • the holding position detector (7) detects the holding position (P) by the user based on the first signal and the second signal.
  • This configuration makes it possible to change the characters and images displayed on the display unit according to the deformation of the detected information terminal (1). Therefore, the visibility of the display unit is improved, or the operability for the display unit is improved, and the convenience of the information terminal is improved.
  • the functions of the deformation detection unit, the processing unit, and the holding position detection unit can be realized by using the signal processing unit (7) described in the above embodiment.
  • the signal processing unit (7) can be realized using hardware (an integrated circuit, a CPU, an LSI, or the like).
  • the function of the signal processing unit may be realized by a combination of hardware and software.
  • some or all of the functions of the signal processing unit may be realized using the processor (9) and software.
  • the hardware that realizes part or all of the functions of the signal processing unit may be configured to be distributed in, for example, hardware and processors (9) built in the touch sensor.
  • the function of the holding position detection unit may be realized by a combination of hardware and software constituting a touch sensor, a gyro sensor, an acceleration sensor, and the like for detecting the holding position. Further, the function of the holding position detection unit may be realized only by hardware.
  • the software may be embedded in hardware or may be a memory or the like. It may be stored in the storage unit or installed after factory shipment.
  • the software may be distributed through a communication line such as the Internet.
  • the present disclosure can be used for an information terminal having a display unit.

Abstract

An information terminal (1) can be operated by bringing a finger or a predetermined object into contact with an input region of a touch sensor (4). The information terminal (1) is provided with: the touch sensor (4), which has an input region, and which generates detection signals by detecting a region where the finger or the predetermined object is brought into contact, said region being in the input region; and a signal processing unit (7), which generates signals that indicate a deformation state by detecting deformation of the information terminal (1), and which corrects the detection signals on the basis of the signals indicating the deformation state.

Description

情報端末、集積回路および信号処理方法Information terminal, integrated circuit, and signal processing method
 本開示は、タッチ入力を受け付けるインタフェースを持つ情報端末、および当該情報端末の集積回路ならびに信号処理方法に関する。 The present disclosure relates to an information terminal having an interface that accepts touch input, an integrated circuit of the information terminal, and a signal processing method.
 タッチ入力により操作可能な、スマートフォンやタブレット端末等の情報端末が普及している。 Information terminals such as smartphones and tablet terminals that can be operated by touch input have become widespread.
 このような情報端末の操作性を向上させるための種々の構成が、従来提案されている。 Various configurations for improving the operability of such information terminals have been proposed in the past.
 たとえば、特許文献1は、指が入力面に単に接触しただけでは入力が確定されない構成を開示する。この構成では、指の入力面への接触面積がしきい値以上になったとき、接触位置がタッチ入力の入力位置であると確定される。 For example, Patent Document 1 discloses a configuration in which an input is not confirmed simply by touching the input surface with a finger. In this configuration, when the contact area of the finger with the input surface becomes equal to or greater than the threshold value, the contact position is determined to be the input position for touch input.
 他方、フィルム状の柔軟なタッチセンサが提案されている。例えば非特許文献1には、有機トランジスタとポリフッ化ビニリデン(PVDF)を有機素材として用いたフィルム状のタッチセンサが提案されている。 On the other hand, flexible film-like touch sensors have been proposed. For example, Non-Patent Document 1 proposes a film-like touch sensor using an organic transistor and polyvinylidene fluoride (PVDF) as organic materials.
特開2011-43987号公報JP 2011-43987 A
 上記のような柔軟なタッチセンサは、タッチ入力の押圧や重力によって変形する場合がある。タッチセンサが変形すると、情報端末の操作性が低下する。たとえば、タッチ入力の力が適切にタッチセンサに伝わらず入力位置が検出されない場合がある。 ∙ The flexible touch sensor as described above may be deformed by touch input pressure or gravity. When the touch sensor is deformed, the operability of the information terminal is lowered. For example, the input position may not be detected because the force of the touch input is not properly transmitted to the touch sensor.
 本開示は、タッチセンサの変形に対応した信号処理を行うことにより、操作性を向上させる情報端末、および当該情報端末の集積回路ならびに信号処理方法を提供する。 This disclosure provides an information terminal that improves operability by performing signal processing corresponding to deformation of the touch sensor, an integrated circuit of the information terminal, and a signal processing method.
 本開示の1つの態様は、情報端末に関する。本態様に係る情報端末は、所定の入力領域に対する指または所定の物体による接触により操作が可能な情報端末である。当該情報端末は、所定の入力領域を有し、入力領域において指または所定の物体により接触された領域を検出して第1の信号を生成する入力部と、情報端末の変形を検出して第2の信号を生成する変形検出部と、第2の信号に基づいて第1の信号を補正する処理部とを備える。 One aspect of the present disclosure relates to an information terminal. The information terminal according to this aspect is an information terminal that can be operated by touching a predetermined input area with a finger or a predetermined object. The information terminal has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, generates a first signal, detects deformation of the information terminal, and A deformation detection unit that generates the second signal, and a processing unit that corrects the first signal based on the second signal.
 上記の概括的且つ特定の態様は、システム、方法、コンピュータプログラム並びにシステム、方法およびコンピュータプログラムの任意の組み合わせにより実現してもよい。 The above general and specific aspects may be realized by a system, a method, a computer program, and any combination of the system, the method, and the computer program.
 タッチセンサの変形に対応した信号処理を行うことにより操作性を向上させる情報端末、および当該情報端末の集積回路ならびに信号処理方法を提供することができる。 It is possible to provide an information terminal that improves operability by performing signal processing corresponding to deformation of the touch sensor, an integrated circuit of the information terminal, and a signal processing method.
情報端末の外観図である。It is an external view of an information terminal. (a)は情報端末のシート状部の構成を示す図であり、(b)はシート状部の圧電素子フィルムを示す図である。(A) is a figure which shows the structure of the sheet-like part of an information terminal, (b) is a figure which shows the piezoelectric element film of a sheet-like part. 情報端末の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of an information terminal. (a)は情報端末の使用状態を示す図であり、(b)はタッチセンサにより検出される検出信号を示す図である。(A) is a figure which shows the use condition of an information terminal, (b) is a figure which shows the detection signal detected by a touch sensor. (a)は情報端末の使用状態を示す図であり、(b)はタッチセンサにより検出される検出信号を示す図である。(A) is a figure which shows the use condition of an information terminal, (b) is a figure which shows the detection signal detected by a touch sensor. (a)及び(c)はタッチセンサにより検出される圧力分布が形成される領域を示す図であり、(b)及び(d)はタッチセンサにより検出される圧力分布を示す図である。(A) And (c) is a figure which shows the area | region where the pressure distribution detected by a touch sensor is formed, (b) And (d) is a figure which shows the pressure distribution detected by a touch sensor. 実施の形態1に係る、信号処理部の構成を示す図である。2 is a diagram illustrating a configuration of a signal processing unit according to Embodiment 1. FIG. 実施の形態1に係る、信号処理部の構成の詳細を示す図である。4 is a diagram illustrating details of a configuration of a signal processing unit according to Embodiment 1. FIG. 実施の形態1に係る、情報端末の保持位置と、タッチセンサにより検出される圧力分布を構成する非一様分布および一様分布と示す図である。It is a figure which shows the holding position of the information terminal based on Embodiment 1, and the nonuniform distribution and uniform distribution which comprise the pressure distribution detected by a touch sensor. 実施の形態1に係る、情報端末の保持位置と、タッチセンサにより検出される圧力分布を構成する非一様分布および一様分布とを示す図である。It is a figure which shows the holding position of the information terminal based on Embodiment 1, and the nonuniform distribution and uniform distribution which comprise the pressure distribution detected by a touch sensor. (a)及び(c)は、実施の形態1に係る情報端末の使用状態及びタッチセンサにより検出される圧力分布を示す図であり、(b)及び(d)は補正後の圧力分布を示す図である。(A) And (c) is a figure which shows the use condition of the information terminal which concerns on Embodiment 1, and the pressure distribution detected by a touch sensor, (b) and (d) show the pressure distribution after correction | amendment. FIG. (a)は実施の形態1に係る情報端末の使用状態及びタッチセンサにより検出される圧力分布を示す図であり、(b)は補正後の圧力分布を示す図である。(A) is a figure which shows the use condition of the information terminal which concerns on Embodiment 1, and the pressure distribution detected by a touch sensor, (b) is a figure which shows the pressure distribution after correction | amendment. 実施の形態2に係る、信号処理部の構成を示す図である。6 is a diagram illustrating a configuration of a signal processing unit according to Embodiment 2. FIG. 実施の形態2に係る、信号処理部の構成の詳細を示す図である。6 is a diagram illustrating details of a configuration of a signal processing unit according to Embodiment 2. FIG. (a)及び(b)は、実施の形態2に係る情報端末の保持位置と圧力分布を示す図である。(A) And (b) is a figure which shows the holding | maintenance position and pressure distribution of the information terminal which concerns on Embodiment 2. FIG. (a)及び(b)は、実施の形態2に係る情報端末の保持位置と、一様分布と、画像の表示位置を示す図である。(A) And (b) is a figure which shows the holding position of the information terminal which concerns on Embodiment 2, uniform distribution, and the display position of an image. 実施の形態3に係る、信号処理部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a signal processing unit according to a third embodiment.
 <本発明者が得た知見>
 上述の通り非特許文献1には、有機素材を用いたフィルム状のタッチセンサの構成が提案されている。また、有機素材を用いたプリンタブル・ラージエリアエレクトロニクスが、実用化されはじめている。このような素材や技術を用いた、情報端末の大画面化やフレキシブル化が望まれる。
<Knowledge obtained by the present inventor>
As described above, Non-Patent Document 1 proposes a configuration of a film-like touch sensor using an organic material. In addition, printable large area electronics using organic materials is starting to be put into practical use. It is desired to increase the screen size and flexibility of information terminals using such materials and technologies.
 圧電材料であるPVDF素材は、変形によって電力を発生させる。よって、このような圧電材料を用いて構成されたタッチセンサは、PVDF素材に加えられる力によって発生される電力に基づいて、タッチ入力等に基づく圧力分布を検出する。 PVDF material, which is a piezoelectric material, generates electric power by deformation. Therefore, a touch sensor configured using such a piezoelectric material detects a pressure distribution based on a touch input or the like based on electric power generated by a force applied to the PVDF material.
 柔軟な情報端末の筐体にこのようなタッチセンサが配される場合、タッチセンサは、タッチ入力の力や重力に応じて、筐体とともに変形する場合がある。 When such a touch sensor is arranged in a flexible information terminal casing, the touch sensor may be deformed together with the casing in accordance with the force of touch input or gravity.
 タッチセンサが変形すると、タッチセンサにより検出される圧力分布を示す検出信号は劣化する場合がある。 When the touch sensor is deformed, the detection signal indicating the pressure distribution detected by the touch sensor may deteriorate.
 たとえば、タッチ入力によって容易に情報端末の筐体が変形するために、タッチセンサにより検出される入力位置における圧力が小さくなる場合がある。この場合、タッチ入力が適正に検出されない場合がある。 For example, since the housing of the information terminal is easily deformed by touch input, the pressure at the input position detected by the touch sensor may be reduced. In this case, the touch input may not be detected properly.
 また、タッチセンサが出力する検出信号に、タッチセンサの変形に起因する信号が混入する場合がある。すなわち、タッチセンサの変形に応じて圧電材料が変形し、この圧電材料の変形に基づいて圧電材料が電力を発生させる場合がある。この場合、タッチセンサの変形に起因する信号などの、タッチ入力とは異なる要因に起因する信号が、検出信号に混入する。 In addition, a signal resulting from deformation of the touch sensor may be mixed in the detection signal output from the touch sensor. That is, the piezoelectric material may be deformed according to the deformation of the touch sensor, and the piezoelectric material may generate electric power based on the deformation of the piezoelectric material. In this case, a signal caused by a factor different from the touch input such as a signal caused by deformation of the touch sensor is mixed in the detection signal.
 さらに、情報端末の筐体は自重により変形する場合がある。この場合にも、タッチセンサは変形し、この自重に基づく変形に起因する信号が、検出信号に混入する。 Furthermore, the case of the information terminal may be deformed by its own weight. Also in this case, the touch sensor is deformed, and a signal resulting from the deformation based on the own weight is mixed in the detection signal.
 タッチセンサの変形等に起因する検出信号の劣化に伴い、タッチ入力の検出精度は低下し、よって情報端末の操作性が低下する。 As the detection signal is deteriorated due to deformation of the touch sensor or the like, the detection accuracy of the touch input is lowered, and thus the operability of the information terminal is lowered.
 特に、タッチセンサが大きなディスプレイに配されている場合など、比較的大型のタッチセンサが用いられる場合がある。この場合、情報端末の筐体(またはタッチセンサ)は、容易に変形する傾向がある。すなわち、このような情報端末の筐体は、テコの原理により容易に変形する。変形が容易に起きる程、タッチセンサより出力される検出信号の劣化が顕著になるおそれがある。 Especially, a relatively large touch sensor may be used, for example, when the touch sensor is arranged on a large display. In this case, the housing (or touch sensor) of the information terminal tends to be easily deformed. That is, the casing of such an information terminal is easily deformed by the lever principle. As the deformation easily occurs, the detection signal output from the touch sensor may be significantly degraded.
 以上の点を考慮し、本発明者は、タッチセンサの変形に対応した信号処理を行うことにより操作性を向上させる情報端末、および当該情報端末の集積回路ならびに信号処理方法を見出した。 In consideration of the above points, the present inventor has found an information terminal that improves operability by performing signal processing corresponding to deformation of the touch sensor, an integrated circuit of the information terminal, and a signal processing method.
 本開示の1つの態様は、情報端末に関する。本態様に係る情報端末は、入力の分布を検出する入力部と、入力部の変形に基づいて、分布に対して所定の処理を適用する信号処理部と、を備える。 One aspect of the present disclosure relates to an information terminal. The information terminal according to this aspect includes an input unit that detects an input distribution, and a signal processing unit that applies a predetermined process to the distribution based on a modification of the input unit.
 以下、本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 <実施の形態1>
1.情報端末の構成
 図1は、本実施の形態1の情報端末の外観図である。図2(a)は、情報端末1の構成を示す図である。図3は、情報端末1の内部構成を示すブロック図である。
<Embodiment 1>
1. Configuration of Information Terminal FIG. 1 is an external view of an information terminal according to the first embodiment. FIG. 2A is a diagram illustrating a configuration of the information terminal 1. FIG. 3 is a block diagram showing an internal configuration of the information terminal 1.
1.1 シート状部
 情報端末1は、シート状部2aと非シート状部2bとを備える。シート状部2aは、以下に図2を用いて説明するように、柔軟な材料により構成されている。非シート状部2bは、シート状部2aの隅においてシート状部2aに装着された筐体を有する。
1.1 Sheet-like part The information terminal 1 includes a sheet-like part 2a and a non-sheet-like part 2b. The sheet-like portion 2a is made of a flexible material as will be described below with reference to FIG. The non-sheet-like part 2b has a housing attached to the sheet-like part 2a at the corner of the sheet-like part 2a.
 シート状部2aには、画像を表示するディスプレイ3と、タッチ入力を受け付けるためのタッチセンサ4が配されている。非シート状部2bには、後述のメモリ、プロセッサ等(図3)が配される。 The sheet-like part 2a is provided with a display 3 for displaying an image and a touch sensor 4 for receiving a touch input. The non-sheet-like part 2b is provided with a memory, a processor, etc. (FIG. 3) described later.
 図2(a)に示すように、シート状部2aは、ディスプレイフィルム3a、圧電素子フィルム4a、電子回路フィルム5からなる3つの層が積層されて形成されている。 As shown in FIG. 2A, the sheet-like portion 2a is formed by laminating three layers including a display film 3a, a piezoelectric element film 4a, and an electronic circuit film 5.
 シート状部2aの最上面には、ディスプレイフィルム3aが配される。ディスプレイフィルム3aは、有機EL(Electro-Luminescence)等の有機化合物を使った発光素子を備える。ディスプレイフィルム3aにディスプレイ3が形成される。後述のドライバ6からの駆動信号に基づいて、発光素子が発光することにより、ディスプレイ3は、文字や画像等を含む画面をシート状部2aの上面に表示する。ディスプレイフィルム3aは、柔軟なシート状のディスプレイを形成するのであれば、有機化合物とは異なる発光素子を用いて構成されたディスプレイフィルムであってもよい。 A display film 3a is disposed on the uppermost surface of the sheet-like portion 2a. The display film 3a includes a light emitting element using an organic compound such as an organic EL (Electro-Luminescence). The display 3 is formed on the display film 3a. When the light emitting element emits light based on a drive signal from a driver 6 described later, the display 3 displays a screen including characters and images on the upper surface of the sheet-like portion 2a. As long as the display film 3a forms a flexible sheet-like display, the display film 3a may be a display film configured using a light emitting element different from the organic compound.
 ディスプレイ3の下層には、圧力を検出する圧電素子フィルム4aが配されている。図2(b)に模式的に示すように、PVDF(ポリフッ化ビニリデン)を用いて構成された圧電素子4cがタッチセンサ4の入力領域(たとえば、ディスプレイ3の表示領域に対応する領域)上にマトリクス状に配列されることにより、圧電素子フィルム4aは構成されている。なお、実際には、圧電素子4cは、図2(b)よりも細かく配列される場合がある。圧電素子フィルム4aは、シート状部2aの上面に対して行われた指または所定の物体(ペン等)によるタッチ入力(接触)の圧力を、ディスプレイフィルム3aを介して検出し、圧電素子4cの変形に応じた検出信号(センサ出力)を出力する。圧電素子フィルム4aの構成は、たとえば非特許文献1に開示されている。 A piezoelectric element film 4a for detecting pressure is disposed under the display 3. As schematically shown in FIG. 2B, the piezoelectric element 4c configured using PVDF (polyvinylidene fluoride) is placed on the input area of the touch sensor 4 (for example, the area corresponding to the display area of the display 3). The piezoelectric element film 4a is configured by being arranged in a matrix. In practice, the piezoelectric elements 4c may be arranged more finely than in FIG. The piezoelectric element film 4a detects the pressure of touch input (contact) by a finger or a predetermined object (such as a pen) performed on the upper surface of the sheet-like part 2a via the display film 3a, and the piezoelectric element 4c A detection signal (sensor output) corresponding to the deformation is output. The configuration of the piezoelectric element film 4a is disclosed in Non-Patent Document 1, for example.
 圧電素子フィルム4aの下層には、有機トランジスタ等を使って構成された電子回路フィルム5が形成されている。電子回路フィルム5は、ドライバ6と、増幅回路4bと、信号処理部7とを備える。 An electronic circuit film 5 formed using an organic transistor or the like is formed below the piezoelectric element film 4a. The electronic circuit film 5 includes a driver 6, an amplifier circuit 4 b, and a signal processing unit 7.
 ドライバ6は、プロセッサ9(後述)からの制御信号に基づき、ディスプレイ3を駆動するための駆動信号をディスプレイ3へ出力する。 The driver 6 outputs a drive signal for driving the display 3 to the display 3 based on a control signal from the processor 9 (described later).
 増幅回路4bは、圧電素子フィルム4aより入力された電気信号を増幅し、増幅された信号を、タッチセンサ4からの検出信号として出力する。増幅回路4bは、圧電素子フィルム4aとともに、タッチセンサ4を形成する。タッチセンサ4は、タッチ入力を受け付けるため、タッチセンサ4が配された面に対する入力の分布を示す検出信号(センサ出力)を出力する。 The amplification circuit 4b amplifies the electric signal input from the piezoelectric element film 4a and outputs the amplified signal as a detection signal from the touch sensor 4. The amplifier circuit 4b forms the touch sensor 4 together with the piezoelectric element film 4a. The touch sensor 4 outputs a detection signal (sensor output) indicating the distribution of input to the surface on which the touch sensor 4 is disposed in order to accept touch input.
 タッチセンサ4は、シート状に製作可能なセンサであればよく、たとえば、静電容量方式、抵抗膜方式、光学方式、超音波方式等の方式により動作する素子であってよい。 The touch sensor 4 may be a sensor that can be manufactured in a sheet shape, and may be, for example, an element that operates by a method such as a capacitance method, a resistance film method, an optical method, or an ultrasonic method.
 タッチセンサ4が配された面に対応するディスプレイフィルム3aの表面が、タッチ入力のための入力面に相当する。すなわち、ユーザは、ディスプレイフィルム3aを介して、タッチセンサ4へタッチ入力を行う。タッチセンサ4は、入力面に対するタッチ入力の力を圧力として検出し、圧力分布を示す検出信号を出力する。後述のプロセッサ9は、このようなタッチセンサ4からの検出信号に基づいてディスプレイ3に画面を表示させる等、情報端末1の各部を制御する。 The surface of the display film 3a corresponding to the surface on which the touch sensor 4 is arranged corresponds to an input surface for touch input. That is, the user performs touch input to the touch sensor 4 through the display film 3a. The touch sensor 4 detects the force of the touch input with respect to the input surface as a pressure, and outputs a detection signal indicating a pressure distribution. The processor 9 described later controls each part of the information terminal 1 such as displaying a screen on the display 3 based on the detection signal from the touch sensor 4.
 信号処理部7は、集積回路(たとえばLSI)等で構成され、タッチセンサ4からの検出信号に本実施の形態に係る所定の処理(信号処理)を適用する。そして、信号処理部7は、当該信号処理が適用された後の信号(補正後の検出信号)を出力する。 The signal processing unit 7 is configured by an integrated circuit (for example, LSI) or the like, and applies predetermined processing (signal processing) according to the present embodiment to the detection signal from the touch sensor 4. Then, the signal processing unit 7 outputs a signal (corrected detection signal) after the signal processing is applied.
 上記信号処理部7から出力される補正後の検出信号(補正後のセンサ出力)は、タッチセンサ4より出力された検出信号からタッチセンサ4の変形の影響が除去された信号である。言い換えると、補正後の検出信号は、変形していない状態のタッチセンサ4より出力される検出信号を再現する。 The corrected detection signal (corrected sensor output) output from the signal processing unit 7 is a signal obtained by removing the influence of deformation of the touch sensor 4 from the detection signal output from the touch sensor 4. In other words, the corrected detection signal reproduces the detection signal output from the touch sensor 4 that is not deformed.
 信号処理部7の機能は、上記の通りハードウェア(集積回路等)を用いて実現されるが、これに限らず、たとえばハードウェアとソフトウェアの協働で実現されてもよい。ソフトウェアが用いられる場合、たとえば、上記信号処理の機能を実現するプログラムが、信号処理部7を構成するマイクロコントローラ等に組み込まれる。 The function of the signal processing unit 7 is realized using hardware (an integrated circuit or the like) as described above, but is not limited thereto, and may be realized by cooperation of hardware and software, for example. When software is used, for example, a program that realizes the signal processing function is incorporated into a microcontroller or the like constituting the signal processing unit 7.
 信号処理部7の機能の詳細については、図7と図8を用いて後述する。 Details of the function of the signal processing unit 7 will be described later with reference to FIGS.
 シート状部2aの各構成要素へバッテリ等の電源(たとえば非シート状部2bに内蔵される)が接続されることにより、ディスプレイ3、タッチセンサ4、および信号処理部7が動作する。 When a power source such as a battery (for example, incorporated in the non-sheet-like part 2b) is connected to each component of the sheet-like part 2a, the display 3, the touch sensor 4, and the signal processing part 7 operate.
 ドライバ6、増幅回路4b、および信号処理部7の一部または全ては、非シート状部2bに配されてもよい。 Part or all of the driver 6, the amplifier circuit 4b, and the signal processing unit 7 may be arranged in the non-sheet-like part 2b.
1.2 非シート状部
 以下に、非シート状部2bの構成について説明する。
1.2 Non-sheet-like part Below, the composition of non-sheet-like part 2b is explained.
 非シート状部2bには、メモリ8と、プロセッサ9が配される。 The memory 8 and the processor 9 are arranged in the non-sheet-like part 2b.
 メモリ8は、不揮発メモリ8a、主記憶8bなどから構成される。メモリ8は、情報端末1の各部を制御するための制御プログラム、アプリケーションプログラムなど(以下、「プログラム」という。)を記憶する。メモリ8はプログラムの実行のためのワーキングメモリとしても利用され、すなわち、プログラムの実行の際に一時的に生成されたまたは一時的に取得された情報を記憶する。 The memory 8 includes a nonvolatile memory 8a and a main memory 8b. The memory 8 stores a control program, application program, and the like (hereinafter referred to as “program”) for controlling each unit of the information terminal 1. The memory 8 is also used as a working memory for executing the program, that is, stores information temporarily generated or temporarily acquired when the program is executed.
 プロセッサ9は、ディスプレイ3、タッチセンサ4、メモリ8などの情報端末1の各構成要素を制御するための制御処理を実行する。制御処理の実行により、プロセッサ9は、バス13を介して制御信号を各構成要素へ送信するとともに、各構成要素からバス13を介して必要な情報を取得する。たとえば、プロセッサ9は、信号処理部7からの補正後の検出信号を取得し、取得した検出信号に対応した画面(たとえば、ウィンドウ(ユーザによる操作を受け付け可能に表示されたアプリケーションプログラムの実行画面)、アイコン、ボタン等を含む画面)をディスプレイ3に表示させるための制御信号をドライバ6へ出力する。 The processor 9 executes a control process for controlling each component of the information terminal 1 such as the display 3, the touch sensor 4, and the memory 8. By executing the control process, the processor 9 transmits a control signal to each component via the bus 13 and obtains necessary information from each component via the bus 13. For example, the processor 9 acquires the corrected detection signal from the signal processing unit 7, and a screen corresponding to the acquired detection signal (for example, a window (execution screen of an application program displayed so as to accept a user operation)) , A screen including icons, buttons, and the like) is output to the driver 6 for display on the display 3.
 プロセッサ9はCPU等で構成され、所定のプログラムに基づき、後述する各種の処理を実行する。なお、プロセッサ9の機能は、ハードウェアとソフトウェアの協働で実現されてもよいし、ハードウェア(電子回路等)のみで実現されてもよい。 The processor 9 is composed of a CPU or the like, and executes various processes described later based on a predetermined program. The function of the processor 9 may be realized by cooperation of hardware and software, or may be realized only by hardware (electronic circuit or the like).
 非シート状部2bには、メモリ8とプロセッサ9の他、情報端末1の回転等に基づく角速度を検出するジャイロセンサ10、無線通信や通話に関する処理を実行するベースバンドプロセッサ11、無線LANのための信号処理、無線信号の送受信等を行う無線LANモジュール12等をさらに備える。この他、加速度センサ等が非シート状部2bに配されてもよい。但し、これらの要素は必須の要素ではない。 The non-sheet-like portion 2b includes a memory 8 and a processor 9, a gyro sensor 10 that detects an angular velocity based on rotation of the information terminal 1, a baseband processor 11 that executes processing related to wireless communication and a telephone call, and a wireless LAN. And a wireless LAN module 12 for performing signal processing, wireless signal transmission / reception, and the like. In addition, an acceleration sensor or the like may be arranged on the non-sheet-like portion 2b. However, these elements are not essential elements.
 なお、図3に示される非シート状部2bの構成要素の一部またはすべては、シート状部2aに配されてもよい。この場合、非シート状部2bの構成要素は、柔軟なシート状に製作可能であるか、またはシート状部2aの変形の度合いに比較して小型であることが好ましい。 Note that some or all of the components of the non-sheet-like part 2b shown in FIG. 3 may be arranged in the sheet-like part 2a. In this case, it is preferable that the constituent elements of the non-sheet-like portion 2b can be manufactured in a flexible sheet shape, or are small compared to the degree of deformation of the sheet-like portion 2a.
 シート状部2aと非シート状部2bは、互いに分離した個別の装置として構成されていてもよい。この場合、情報端末1bは、シート状部2aと非シート状部2bとの間で、有線の配線または無線の接続により各種の信号が送受信されるよう構成される。 The sheet-like part 2a and the non-sheet-like part 2b may be configured as separate devices separated from each other. In this case, the information terminal 1b is configured such that various signals are transmitted and received between the sheet-like portion 2a and the non-sheet-like portion 2b by wired wiring or wireless connection.
2.タッチセンサの変形と圧力分布
 情報端末1は、様々な環境において使用され得る。たとえば、情報端末1は、図4(a)に示すように机の上に置かれた状態で使用される場合や、図5(a)に示すように手に保持された状態で使用される場合がある。図4(b)と図5(b)は、図4(a)と図5(b)にそれぞれ対応する、タッチ入力の入力位置Pにおいて検出される圧力を模式的に示す図である。
2. Deformation of touch sensor and pressure distribution The information terminal 1 can be used in various environments. For example, the information terminal 1 is used in a state where it is placed on a desk as shown in FIG. 4A, or in a state where it is held by a hand as shown in FIG. There is a case. FIGS. 4B and 5B are diagrams schematically illustrating the pressure detected at the input position P of the touch input corresponding to FIGS. 4A and 5B, respectively.
 図4(a)に示すような机の上に置かれた状態の情報端末1に対してタッチ入力がなされると、タッチセンサ4は、図4(b)に示すように、入力位置Pの座標(x、y)において、タッチ入力の力に対応した圧力fを検出する。情報端末1は高い剛性を有する机の上に置かれているため、入力位置Pに配されている圧電素子4cは、タッチ入力の力を受けるとともに、机から、タッチ入力の力に対する反作用の力を受ける。タッチ入力の力と机からの力により圧電素子4cは圧迫され、圧電素子4cは圧迫に基づく変形に対応した電圧信号を出力する。入力位置Pとは異なる位置に配されている他の圧電素子4cは、圧力を受けないために変形しない。 When a touch input is made to the information terminal 1 placed on the desk as shown in FIG. 4A, the touch sensor 4 is moved to the input position P as shown in FIG. At the coordinates (x, y), the pressure f corresponding to the force of the touch input is detected. Since the information terminal 1 is placed on a desk having high rigidity, the piezoelectric element 4c disposed at the input position P receives the force of the touch input, and the reaction force from the desk to the force of the touch input. Receive. The piezoelectric element 4c is compressed by the force of the touch input and the force from the desk, and the piezoelectric element 4c outputs a voltage signal corresponding to the deformation based on the compression. The other piezoelectric elements 4c arranged at positions different from the input position P are not deformed because they do not receive pressure.
 他方、図5(a)に示すような手で保持された状態の情報端末1に対して、タッチ入力がなされると、シート状部2aとともにタッチセンサ4はたわむ(変形する)。このとき、圧電素子4cは、図4(a)の場合のような圧迫の力を受けない。故に、タッチセンサ4が検出する入力位置P(座標(x、y))の圧力fは、図4(a)の場合より小さい。 On the other hand, when a touch input is made on the information terminal 1 held by hand as shown in FIG. 5A, the touch sensor 4 bends (deforms) together with the sheet-like portion 2a. At this time, the piezoelectric element 4c does not receive the pressing force as in the case of FIG. Therefore, the pressure f at the input position P (coordinates (x, y)) detected by the touch sensor 4 is smaller than in the case of FIG.
 図5(b)には、タッチ入力の入力位置Pにおける圧力fが模式的に示されている。実際には、タッチセンサ4が検出する圧力分布は、以下に説明するように、タッチセンサ4の変形の影響を受ける場合がある。 FIG. 5 (b) schematically shows the pressure f at the input position P of the touch input. Actually, the pressure distribution detected by the touch sensor 4 may be affected by the deformation of the touch sensor 4 as described below.
 図6(a)は、図5(a)に示すような手で保持された状態の情報端末1に対してタッチ入力が行われたときに、タッチセンサ4により圧力が検出される領域の例を示す。図6(a)の入力位置Pが、図5(a)と図5(b)におけるタッチ入力の入力位置に対応する。タッチセンサ4により検出される圧力の圧力分布は、タッチセンサ4上に形成される。 FIG. 6A illustrates an example of a region in which pressure is detected by the touch sensor 4 when a touch input is performed on the information terminal 1 held by hand as illustrated in FIG. Indicates. The input position P in FIG. 6A corresponds to the input position of the touch input in FIGS. 5A and 5B. A pressure distribution of pressure detected by the touch sensor 4 is formed on the touch sensor 4.
 図6(b)は、上記圧力分布の、情報端末1の保持位置Aと入力位置Pを通る直線M上に沿った分布を示すグラフである。 FIG. 6B is a graph showing a distribution of the pressure distribution along a straight line M passing through the holding position A and the input position P of the information terminal 1.
 図5(a)に示すようにシート状部2aがたわんでいるとき、圧力分布は、非一様分布Rと一様分布Sを含む。非一様分布Rは、タッチ入力の入力位置Pおよびその近傍の領域において、タッチ入力に基づいて検出される圧力の分布である。一様分布Sは、タッチセンサ4が変形した領域において検出される圧力の分布である。すなわち、この例における圧力分布へ与えられるタッチセンサ4の変形の影響は、一様分布Sとして現れる。 When the sheet-like portion 2a is bent as shown in FIG. 5A, the pressure distribution includes a non-uniform distribution R and a uniform distribution S. The non-uniform distribution R is a pressure distribution detected based on the touch input in the input position P of the touch input and a region in the vicinity thereof. The uniform distribution S is a distribution of pressure detected in a region where the touch sensor 4 is deformed. That is, the influence of the deformation of the touch sensor 4 given to the pressure distribution in this example appears as a uniform distribution S.
 非一様分布Rを形成する領域は、指等が直接的にタッチセンサ4に圧力を加えた領域Raと、その周囲の領域とに分かれる。非一様分布Rは、領域Raにおいてその周囲の領域より大きな圧力を示す。周囲の領域において検出される圧力分布は、タッチ入力に基づいたタッチセンサ4の変形(へこみ)に起因する圧力の分布である。すなわち、タッチセンサ4がへこむことにより圧電材料が変形し、その変形に係る圧力分布が、上記周囲の領域において検出されている。 The region forming the non-uniform distribution R is divided into a region Ra in which a finger or the like directly applies pressure to the touch sensor 4 and a surrounding region. The non-uniform distribution R shows a larger pressure in the region Ra than the surrounding region. The pressure distribution detected in the surrounding area is a pressure distribution caused by deformation (dent) of the touch sensor 4 based on the touch input. That is, the piezoelectric material is deformed when the touch sensor 4 is depressed, and the pressure distribution related to the deformation is detected in the surrounding region.
 図6(b)に示すように、シート状部2aがたわんでいるとき(図5(a))に入力位置Pにおいて検出される圧力fは、情報端末1が机の上に置かれている場合(図4(a))より小さい。 As shown in FIG. 6B, the pressure f detected at the input position P when the sheet-like portion 2a is bent (FIG. 5A) is such that the information terminal 1 is placed on the desk. It is smaller than the case (FIG. 4A).
 非一様分布Rは、タッチ入力の入力位置Pの近傍に局在する非一様な分布である。 The non-uniform distribution R is a non-uniform distribution localized near the input position P of touch input.
 一方、一様分布Sは、図6(a)に示すように、タッチセンサ4の湾曲が生じる領域において形成される。すなわち、一様分布Sは、タッチセンサ4が図に示す直線Lを含む領域上で湾曲(図5(a)参照)していることに対応して、タッチセンサ4の境界(上の辺と下の辺)に接する帯状の領域に形成されている。 On the other hand, the uniform distribution S is formed in an area where the touch sensor 4 is curved as shown in FIG. That is, the uniform distribution S corresponds to the touch sensor 4 being curved (see FIG. 5A) on the region including the straight line L shown in the figure, and the boundary (the upper side It is formed in a band-shaped region in contact with the lower side.
 図6(a)に示すように、一様分布Sを形成する領域の面積は、非一様分布Rを形成する領域の面積よりも大きい。さらに、形成される一様分布Sの勾配(圧力のx軸およびy軸方向への変化の度合い)は、非一様分布に比べてなだらかである。 As shown in FIG. 6A, the area of the region forming the uniform distribution S is larger than the area of the region forming the non-uniform distribution R. Furthermore, the gradient of the formed uniform distribution S (the degree of change in pressure in the x-axis and y-axis directions) is gentle compared to the non-uniform distribution.
 このように、タッチセンサ4が検出する圧力分布は、タッチ入力に基づく非一様分布Rの他に、タッチセンサ4の変形に基づく一様分布Sを含む。よって、検出信号からのタッチ入力(またはその入力位置P)の検出精度は、タッチセンサ4の変形により低下する場合がある。検出精度の低下は、情報端末1の操作性の低下を招く。 As described above, the pressure distribution detected by the touch sensor 4 includes the uniform distribution S based on the deformation of the touch sensor 4 in addition to the non-uniform distribution R based on the touch input. Therefore, the detection accuracy of the touch input (or the input position P) from the detection signal may be lowered due to the deformation of the touch sensor 4. A decrease in detection accuracy leads to a decrease in operability of the information terminal 1.
 そこで、本実施の形態1では、タッチ入力の検出精度の向上のため、上記の信号処理部7が情報端末1に備えられている。 Therefore, in the first embodiment, the information terminal 1 is provided with the signal processing unit 7 in order to improve the detection accuracy of the touch input.
3.信号処理
 信号処理部7は、タッチセンサ4により検出された圧力分布を示す検出信号からタッチセンサ4の変形の影響を除去するための信号処理を、タッチセンサ4からの検出信号へ適用する。具体的には、信号処理部7は、たとえば圧力分布を構成するセンサ出力からタッチセンサ4の変形に基づく一様分布Sに対応する出力を除去する。また、信号処理部7は、タッチ入力に基づく非一様分布Rの圧力レベル(非一様分布Rを構成するセンサ出力)を増加させるように信号処理を実行する。この結果、図6(c)に示すような領域上に、図6(d)に示すような、シート状部2aが変形していない状態のタッチセンサ4が検出する圧力分布が再現される。ここで、図6(d)は、タッチセンサ4の変形の影響が除去された後の圧力分布の、情報端末1の保持位置Aと入力位置Pを通る直線M上に沿った分布を示すグラフである。図6(d)の圧力分布は、一様分布Sを含まず、さらに、指等の接触領域Raの圧力fは図6(b)の場合より強い。このように再現された圧力分布を示す検出信号が、補正後の検出信号として、信号処理部7から出力される。
3. Signal Processing The signal processing unit 7 applies signal processing for removing the influence of deformation of the touch sensor 4 from the detection signal indicating the pressure distribution detected by the touch sensor 4 to the detection signal from the touch sensor 4. Specifically, the signal processing unit 7 removes an output corresponding to the uniform distribution S based on the deformation of the touch sensor 4 from, for example, a sensor output constituting the pressure distribution. In addition, the signal processing unit 7 performs signal processing so as to increase the pressure level of the non-uniform distribution R based on the touch input (the sensor output that configures the non-uniform distribution R). As a result, the pressure distribution detected by the touch sensor 4 in a state where the sheet-like portion 2a is not deformed as shown in FIG. 6D is reproduced on the region as shown in FIG. 6C. Here, FIG. 6D is a graph showing a distribution along the straight line M passing through the holding position A and the input position P of the information terminal 1 after the influence of the deformation of the touch sensor 4 is removed. It is. The pressure distribution in FIG. 6D does not include the uniform distribution S, and the pressure f in the contact region Ra such as a finger is stronger than in the case of FIG. A detection signal indicating the pressure distribution reproduced in this way is output from the signal processing unit 7 as a corrected detection signal.
 以下に、図7と図8を用いて信号処理部7の機能(信号処理)について説明する。 Hereinafter, the function (signal processing) of the signal processing unit 7 will be described with reference to FIGS. 7 and 8.
 図7は、信号処理部7の機能を示すブロック図である。図8は、信号処理部7の詳細な機能を示すブロック図である。 FIG. 7 is a block diagram showing functions of the signal processing unit 7. FIG. 8 is a block diagram showing detailed functions of the signal processing unit 7.
 信号処理部7は、前処理部20、端末情報抽出部30、入力位置検出部40、変形検出部50、および補正部60を備える。 The signal processing unit 7 includes a preprocessing unit 20, a terminal information extraction unit 30, an input position detection unit 40, a deformation detection unit 50, and a correction unit 60.
 前処理部20は、タッチセンサ4からの検出信号に対してノイズ除去等を適用する調整部21と、検出信号から圧力分布を取得する圧力分布取得部22を備える。 The pre-processing unit 20 includes an adjustment unit 21 that applies noise removal or the like to the detection signal from the touch sensor 4 and a pressure distribution acquisition unit 22 that acquires a pressure distribution from the detection signal.
 調整部21は、タッチセンサ4からの検出信号を取得する。そして、調整部21は、RAWデータであるタッチセンサ4からの検出信号からノイズを除去するとともに、検出信号を増幅することによって適切な振幅を有する検出信号へ変換する。調整部21は、調整後の検出信号を圧力分布取得部22へ出力する。 The adjusting unit 21 acquires a detection signal from the touch sensor 4. The adjusting unit 21 removes noise from the detection signal from the touch sensor 4 that is RAW data, and amplifies the detection signal to convert it into a detection signal having an appropriate amplitude. The adjustment unit 21 outputs the detection signal after adjustment to the pressure distribution acquisition unit 22.
 圧力分布取得部22は、調整部21により調整された検出信号を取得する。そして、圧力分布取得部22は、取得された検出信号から、タッチセンサ4に加えられた圧力分布を取得する。そして、圧力分布取得部22は、圧力分布を示す信号を入力位置検出部40と変形検出部50へ出力する。 The pressure distribution acquisition unit 22 acquires the detection signal adjusted by the adjustment unit 21. Then, the pressure distribution acquisition unit 22 acquires the pressure distribution applied to the touch sensor 4 from the acquired detection signal. Then, the pressure distribution acquisition unit 22 outputs a signal indicating the pressure distribution to the input position detection unit 40 and the deformation detection unit 50.
 圧力分布取得部22は、たとえば、ユーザのタッチ入力に関する検出信号の変化を捉えることが可能なサンプリング周期で、検出信号から圧力分布を取得する。サンプリング周期は、上記の周期より長くてもよく、または短くても良い。たとえば、タッチ操作の検出の時間精度を高めるため、タッチ入力に関する検出信号の変化の早さを大幅に超えるサンプリング周期が設定されてもよい。 The pressure distribution acquisition unit 22 acquires the pressure distribution from the detection signal, for example, at a sampling period that can capture a change in the detection signal related to the user's touch input. The sampling period may be longer or shorter than the above period. For example, in order to increase the time accuracy of detection of the touch operation, a sampling period that greatly exceeds the speed of change of the detection signal related to the touch input may be set.
 圧力分布取得部22は、取得された圧力分布に変化があったとき、圧力分布に対応した信号を出力する。ただし、圧力分布取得部22は、取得された圧力分布に変化がないときにも圧力分布を示す信号を出力するよう構成されてもよい。 The pressure distribution acquisition unit 22 outputs a signal corresponding to the pressure distribution when there is a change in the acquired pressure distribution. However, the pressure distribution acquisition unit 22 may be configured to output a signal indicating the pressure distribution even when there is no change in the acquired pressure distribution.
 端末情報抽出部30は、情報端末1に関する情報を抽出する。情報端末1に関する情報は、たとえば、タッチセンサ4を構成する圧電素子4cのグリッドのサイズや、シート状部2aの剛性(または変形のしやすさ)を示すための情報(シート状部2aの材料や剛性を示す情報)である。端末情報抽出部30は、抽出された情報を、入力位置検出部40と、変形検出部50へ出力する。端末情報抽出部30は、情報端末1に関する情報を、OS(Operating System)により保持されている情報から取得してもよいし、ハードウェアドライバ等から取得してもよい。また、予めメモリ8に情報端末1に関する情報が保持されている場合、端末情報抽出部30は、情報端末1に関する情報をメモリ8から取得してもよい。 The terminal information extraction unit 30 extracts information related to the information terminal 1. The information regarding the information terminal 1 includes, for example, information for indicating the size of the grid of the piezoelectric elements 4c constituting the touch sensor 4 and the rigidity (or ease of deformation) of the sheet-like part 2a (material of the sheet-like part 2a). And information indicating rigidity). The terminal information extraction unit 30 outputs the extracted information to the input position detection unit 40 and the deformation detection unit 50. The terminal information extraction unit 30 may acquire information on the information terminal 1 from information held by an OS (Operating System), or may be acquired from a hardware driver or the like. Further, when information related to the information terminal 1 is stored in the memory 8 in advance, the terminal information extraction unit 30 may acquire information related to the information terminal 1 from the memory 8.
 入力位置検出部40は、前処理部20から圧力分布に関する情報を取得するとともに、端末情報抽出部30から情報端末1に関する情報を取得する。そして、入力位置検出部40は、圧力分布に関する情報と情報端末1に関する情報とに基づき、非一様分布および入力位置を取得する。そして、入力位置検出部40は、非一様分布および入力位置を示す情報を補正部60へ出力する。 The input position detection unit 40 acquires information on the pressure distribution from the preprocessing unit 20 and also acquires information on the information terminal 1 from the terminal information extraction unit 30. And the input position detection part 40 acquires a nonuniform distribution and an input position based on the information regarding pressure distribution, and the information regarding the information terminal 1. FIG. Then, the input position detection unit 40 outputs information indicating the non-uniform distribution and the input position to the correction unit 60.
 入力位置検出部40は、非一様分布抽出部41と位置判定部42を備える。 The input position detection unit 40 includes a non-uniform distribution extraction unit 41 and a position determination unit 42.
 非一様分布抽出部41は、圧力分布において、所定の条件を満たす出力値で構成される、広さが所定値以下である分布を、タッチ入力に基づき形成された非一様分布として抽出する。ここで、圧力分布に関する所定の条件は、その周辺において検出される圧力より所定のしきい値(たとえば数グラム~数百グラム程度)以上高い圧力を有する事である。非一様分布抽出部41は、具体的には、圧力分布取得部22から圧力分布に関する信号を取得する。また、非一様分布抽出部41は、端末情報抽出部30から、情報端末1に関する情報として、タッチセンサ4を構成する圧電素子4cのグリッドのサイズを示す情報を取得する。そして、非一様分布抽出部41は、圧力分布から、所定の条件を満たす出力値で構成される分布の面積が所定値(たとえば、指先の面積程度の値。たとえば、0.5cm~5cm)以下である分布を、非一様分布として抽出する。非一様分布抽出部41は、抽出した非一様分布を示す情報を位置判定部42へ出力する。たとえば、図6(b)に例示す非一様分布Rが、非一様分布抽出部41により抽出される。なお、タッチ入力に基づかないような分布が検出された場合、たとえば所定の条件を満たす出力値で構成される分布の面積が指先の面積程度よりも小さい(たとえば、指先の面積の1%~50%以下の値。)場合には、非一様分布抽出部41は、この分布を非一様分布として抽出しないよう構成されてもよい。 The non-uniform distribution extraction unit 41 extracts a distribution having a width equal to or smaller than a predetermined value, which is composed of output values satisfying a predetermined condition, as a non-uniform distribution formed based on a touch input. . Here, the predetermined condition regarding the pressure distribution is that the pressure is higher than a pressure detected in the vicinity thereof by a predetermined threshold value (for example, about several grams to several hundred grams). Specifically, the non-uniform distribution extraction unit 41 acquires a signal related to the pressure distribution from the pressure distribution acquisition unit 22. In addition, the non-uniform distribution extracting unit 41 acquires information indicating the size of the grid of the piezoelectric elements 4 c constituting the touch sensor 4 from the terminal information extracting unit 30 as information related to the information terminal 1. Then, the non-uniform distribution extraction unit 41 has a predetermined area (for example, a value about the area of the fingertip. For example, 0.5 cm 2 to 5 cm) from the pressure distribution. 2 ) The following distribution is extracted as a non-uniform distribution. The non-uniform distribution extraction unit 41 outputs information indicating the extracted non-uniform distribution to the position determination unit 42. For example, the non-uniform distribution R illustrated in FIG. 6B is extracted by the non-uniform distribution extraction unit 41. When a distribution not based on touch input is detected, for example, the area of the distribution composed of output values that satisfy a predetermined condition is smaller than the area of the fingertip (for example, 1% to 50% of the fingertip area). %), The non-uniform distribution extracting unit 41 may be configured not to extract this distribution as a non-uniform distribution.
 非一様分布抽出部41は、領域の面積を計算するとき、端末情報抽出部30から取得されたグリッドのサイズに関する情報を参照する。 The non-uniform distribution extracting unit 41 refers to the information regarding the size of the grid acquired from the terminal information extracting unit 30 when calculating the area of the region.
 非一様分布抽出部41は、上記の面積に基づく抽出方法以外の方法により、非一様分布を抽出してもよい。たとえば、圧力分布に対応する画像が生成され、当該画像に対して画像認識処理を適用することによって、非一様分布が抽出されてもよい。この場合は、たとえば、圧力分布に基づく画像から、ディスプレイフィルム3aを介してタッチセンサ4へ接触する指等の形状(円形、楕円形等)が識別されて抽出される。 The non-uniform distribution extracting unit 41 may extract the non-uniform distribution by a method other than the extraction method based on the area. For example, an image corresponding to the pressure distribution may be generated, and the non-uniform distribution may be extracted by applying an image recognition process to the image. In this case, for example, the shape (circular, elliptical, etc.) of a finger or the like that contacts the touch sensor 4 via the display film 3a is identified and extracted from the image based on the pressure distribution.
 非一様分布抽出部41は、タッチ入力に基づく圧力分布を検出するよう構成されれば、上記以外にも、各種の態様で実現されてよい。端末情報抽出部30から、シート状部2aの剛性(または変形のしやすさ)を示すための情報(シート状部2aの材料や剛性を示す情報)がさらに取得され、当該情報に基づいて、適宜、上記所定の条件が変更されてもよい。 The non-uniform distribution extracting unit 41 may be implemented in various modes other than the above as long as it is configured to detect a pressure distribution based on touch input. Information (information indicating the material and rigidity of the sheet-like part 2a) for indicating the rigidity (or ease of deformation) of the sheet-like part 2a is further acquired from the terminal information extraction unit 30, and based on the information, The predetermined condition may be changed as appropriate.
 位置判定部42は、非一様分布抽出部41から非一様分布を示す情報を取得する。位置判定部42は、取得した情報に基づいて、非一様分布における最大圧力を示す位置が、タッチ入力による入力位置Pであると判定する。位置判定部42は、非一様分布とタッチ入力の入力位置Pを示す信号を補正部60へ出力する。 The position determination unit 42 acquires information indicating the non-uniform distribution from the non-uniform distribution extraction unit 41. The position determination unit 42 determines that the position indicating the maximum pressure in the non-uniform distribution is the input position P by touch input based on the acquired information. The position determination unit 42 outputs a signal indicating the non-uniform distribution and the input position P of the touch input to the correction unit 60.
 入力位置検出部40により検出される非一様分布Rは、図6(a)の非一様分布Rに限られない。たとえば、図9と図10に示すように、入力位置検出部40により複数の非一様分布R1、R2が検出される場合がある。図9と図10の例の場合における各圧力分布は、1つの一様分布Sと2つの非一様分布R1、R2を含む。これらの場合、非一様分布抽出部41は、2つの非一様分布R1、R2を抽出し、位置判定部42は、非一様分布R1、R2のそれぞれに対応する入力位置P1、P2を検出する。 The non-uniform distribution R detected by the input position detection unit 40 is not limited to the non-uniform distribution R in FIG. For example, as shown in FIGS. 9 and 10, a plurality of non-uniform distributions R <b> 1 and R <b> 2 may be detected by the input position detection unit 40. Each pressure distribution in the example of FIGS. 9 and 10 includes one uniform distribution S and two non-uniform distributions R1 and R2. In these cases, the non-uniform distribution extraction unit 41 extracts two non-uniform distributions R1 and R2, and the position determination unit 42 calculates input positions P1 and P2 corresponding to the non-uniform distributions R1 and R2, respectively. To detect.
 図9と図10の例において、入力位置検出部40により検出される非一様分布R1、R2が、真にタッチ入力に基づく非一様分布である場合と、そうではない場合とがある。すなわち、非一様分布R1、R2の一方または両方が、タッチ入力に基づかない圧力分布である場合がある。複数の非一様分布(の候補)R1、R2から、タッチ入力に基づかない分布を除外するための処理は、補正部60により実行される(後述)。 9 and 10, there are cases where the non-uniform distributions R1 and R2 detected by the input position detection unit 40 are truly non-uniform distributions based on touch input, and other cases. That is, one or both of the non-uniform distributions R1 and R2 may be a pressure distribution that is not based on touch input. Processing for excluding distributions not based on touch input from the plurality of non-uniform distributions (candidates) R1 and R2 is executed by the correction unit 60 (described later).
 変形検出部50は、入力位置検出部40と同様に、前処理部20から圧力分布を示す信号を取得するとともに、端末情報抽出部30から情報端末1に関する情報を取得する。そして、変形検出部50は、圧力分布を示す信号と情報端末1に関する情報とに基づき、シート状部2a(またはタッチセンサ4)の変形状態を検出する。そして、変形検出部50は、検出したシート状部2aの変形状態を示す信号を補正部60へ出力する。タッチセンサ4の変形状態を示す信号は、一様分布等を含む(後述)。 The deformation detection unit 50 acquires a signal indicating the pressure distribution from the preprocessing unit 20 and the information related to the information terminal 1 from the terminal information extraction unit 30, similarly to the input position detection unit 40. And the deformation | transformation detection part 50 detects the deformation | transformation state of the sheet-like part 2a (or touch sensor 4) based on the signal which shows pressure distribution, and the information regarding the information terminal 1. FIG. And the deformation | transformation detection part 50 outputs the signal which shows the deformation | transformation state of the detected sheet-like part 2a to the correction | amendment part 60. FIG. The signal indicating the deformation state of the touch sensor 4 includes a uniform distribution (described later).
 変形検出部50は、一様分布抽出部51と、変形判定部52を備える。 The deformation detection unit 50 includes a uniform distribution extraction unit 51 and a deformation determination unit 52.
 一様分布抽出部51は、圧力分布取得部22から圧力分布を示す信号を取得する。また、一様分布抽出部51は、端末情報抽出部30から、情報端末1に関する情報として、タッチセンサ4を構成する圧電素子4cのグリッドのサイズに関する情報を取得する。そして、一様分布抽出部51は、圧力分布から、所定の条件を満たし、かつ、所定の面積(タッチセンサ4(シート状部2a)が変形する領域の面積程度)以上の面積を有するような領域上の分布を一様分布として抽出する。一様分布抽出部51は、一様分布を示す信号を変形判定部52へ出力する。 The uniform distribution extraction unit 51 acquires a signal indicating the pressure distribution from the pressure distribution acquisition unit 22. Further, the uniform distribution extraction unit 51 acquires information on the size of the grid of the piezoelectric elements 4 c constituting the touch sensor 4 as information on the information terminal 1 from the terminal information extraction unit 30. The uniform distribution extracting unit 51 satisfies the predetermined condition from the pressure distribution and has an area equal to or larger than a predetermined area (about the area of the area where the touch sensor 4 (sheet-like part 2a) is deformed). The distribution on the region is extracted as a uniform distribution. The uniform distribution extraction unit 51 outputs a signal indicating the uniform distribution to the deformation determination unit 52.
 上記所定の条件とは、タッチセンサ4により検出される圧力が所定のしきい値以上であることである。一様分布抽出部51は、領域の面積を計算するとき、端末情報抽出部30から取得されたグリッドのサイズに関する情報を参照する。 The predetermined condition is that the pressure detected by the touch sensor 4 is not less than a predetermined threshold value. When calculating the area of the region, the uniform distribution extraction unit 51 refers to information on the grid size acquired from the terminal information extraction unit 30.
 たとえば、図6(a)、図9および図10に示される一様分布Sが、一様分布抽出部51により抽出される。 For example, the uniform distribution S shown in FIG. 6A, FIG. 9 and FIG.
 一様分布抽出部51は、上記の面積に基づく抽出方法以外の方法により、一様分布を抽出してもよい。たとえば、圧力分布に対応する画像が生成され、当該画像に対して画像認識処理を適用することによって、一様分布が抽出されてもよい。この場合は、たとえば、圧力分布に基づく画像から、圧力が検出されている領域の面積や形状(たとえば、タッチセンサ4の2つの辺に接する帯状の形状)が識別されて抽出される。 The uniform distribution extraction unit 51 may extract the uniform distribution by a method other than the above extraction method based on the area. For example, an image corresponding to the pressure distribution may be generated, and the uniform distribution may be extracted by applying an image recognition process to the image. In this case, for example, from the image based on the pressure distribution, the area and shape of the region in which the pressure is detected (for example, a band-shaped shape in contact with the two sides of the touch sensor 4) are identified and extracted.
 ただし、タッチセンサ4の変形の態様は、シート状部2aを形成する素材に依存する。したがって、一様分布の抽出のために変形部分の形状が認識される場合、その形状は、タッチセンサ4の2つの辺に接する帯状の形状の他、四角形、三角形、円形等、他の形状であり得る。よって、一様分布の抽出のために変形部分の形状に関する条件は、適宜、設定されてよい。たとえば、一様分布の抽出のために変形部分の形状に関する条件を設定するため、シート状部2aの剛性(または変形のしやすさ)を示すための情報(シート状部2aの材料や剛性を示す情報)が、端末情報抽出部30から取得されてもよい。 However, the deformation mode of the touch sensor 4 depends on the material forming the sheet-like portion 2a. Therefore, when the shape of the deformed portion is recognized for the extraction of the uniform distribution, the shape may be other shapes such as a rectangle, a triangle, and a circle in addition to a belt-like shape that touches two sides of the touch sensor 4. possible. Therefore, the conditions relating to the shape of the deformed portion may be set as appropriate for extracting a uniform distribution. For example, in order to set conditions regarding the shape of the deformed portion for extracting a uniform distribution, information for indicating the rigidity (or ease of deformation) of the sheet-like portion 2a (material and rigidity of the sheet-like portion 2a) Information) may be acquired from the terminal information extraction unit 30.
 変形判定部52は、一様分布抽出部51から一様分布を取得する。そして、変形判定部52は、一様分布に基づいて、タッチセンサ4の変形状態を判定する。変形判定部52は、以下に説明するタッチセンサ4の変形状態を示す信号を補正部60へ出力する。 The deformation determination unit 52 acquires a uniform distribution from the uniform distribution extraction unit 51. Then, the deformation determination unit 52 determines the deformation state of the touch sensor 4 based on the uniform distribution. The deformation determination unit 52 outputs a signal indicating the deformation state of the touch sensor 4 described below to the correction unit 60.
 変形判定部52は、一様分布から特徴を抽出し、抽出された特徴に基づいて、タッチセンサ4の変形状態を検出して判定する。変形判定部52は、一様分布が形成される領域の形状を近似する直線Lを検出する。たとえば、変形判定部52は、一様分布から高い圧力レベルを有する領域を抽出し、当該領域の形状を近似する直線Lを検出する。 The deformation determination unit 52 extracts features from the uniform distribution and detects and determines the deformation state of the touch sensor 4 based on the extracted features. The deformation determination unit 52 detects a straight line L that approximates the shape of a region where a uniform distribution is formed. For example, the deformation determination unit 52 extracts a region having a high pressure level from the uniform distribution, and detects a straight line L that approximates the shape of the region.
 たとえば、図5(a)に示すように、直線Lを中心にタッチセンサ4(シート状部2a)が湾曲していることが、変形判定部52により判定される。 For example, as shown in FIG. 5A, the deformation determination unit 52 determines that the touch sensor 4 (sheet-like portion 2a) is curved around the straight line L.
 変形判定部52は、一様分布と直線Lを示す信号を、上記のタッチセンサ4の変形状態を示す信号として補正部60へ出力する。 The deformation determination unit 52 outputs a signal indicating the uniform distribution and the straight line L to the correction unit 60 as a signal indicating the deformation state of the touch sensor 4.
 このようにして、変形検出部50は、タッチセンサ4の変形状態を検出する。 In this way, the deformation detection unit 50 detects the deformation state of the touch sensor 4.
 変形判定部52は、タッチセンサ4が、検出された直線Lに直交する方向へ湾曲するように変形していると判定する。タッチセンサ4の変形状態を示す信号は、タッチセンサ4からの検出信号におけるタッチセンサ4の変形の影響を除外するために補正部60により用いられる。変形判定部52は、タッチセンサ4からの検出信号におけるタッチセンサ4の変形の影響を除外できる情報であれば、変形状態を示す信号は、一様分布または直線L以外の情報を含んでもよい。たとえば、一様分布の形成部分におけるタッチセンサ4の変形(または湾曲)の度合いを示す情報が変形状態を示す信号に含まれてもよい。この場合、変形判定部52は、たとえば端末情報抽出部30から情報端末1に関する情報をさらに取得し、情報端末1に関する情報に基づいて変形の度合いを検出する。 The deformation determination unit 52 determines that the touch sensor 4 is deformed so as to bend in a direction orthogonal to the detected straight line L. The signal indicating the deformation state of the touch sensor 4 is used by the correction unit 60 to exclude the influence of the deformation of the touch sensor 4 on the detection signal from the touch sensor 4. If the deformation determination unit 52 is information that can exclude the influence of deformation of the touch sensor 4 in the detection signal from the touch sensor 4, the signal indicating the deformation state may include information other than the uniform distribution or the straight line L. For example, information indicating the degree of deformation (or bending) of the touch sensor 4 in the uniform distribution forming portion may be included in the signal indicating the deformation state. In this case, the deformation determination unit 52 further acquires, for example, information related to the information terminal 1 from the terminal information extraction unit 30, and detects the degree of deformation based on the information related to the information terminal 1.
 なお、変形判定部52により検出されるタッチセンサ4の変形状態は、タッチ入力に基づかない変形状態を示す場合もある。たとえば、タッチセンサ4は、シート状部2aの自重に基づき変形する場合がある。この場合、一様分布抽出部51により圧力分布から抽出される一様分布は、タッチ入力に基づかない変形状態を検出する。タッチ入力に基づかない変形状態が検出される場合には、タッチセンサ4からの検出信号は補正される必要がないため、この場合における検出信号は、以下に説明される補正部60によって補正されない。 Note that the deformation state of the touch sensor 4 detected by the deformation determination unit 52 may indicate a deformation state that is not based on touch input. For example, the touch sensor 4 may be deformed based on the weight of the sheet-like part 2a. In this case, the uniform distribution extracted from the pressure distribution by the uniform distribution extraction unit 51 detects a deformation state that is not based on the touch input. When a deformed state not based on touch input is detected, the detection signal from the touch sensor 4 does not need to be corrected, and thus the detection signal in this case is not corrected by the correction unit 60 described below.
 補正部60は、入力位置検出部40から非一様分布と入力位置を取得するとともに、変形検出部50からタッチセンサ4の変形状態を示す信号を取得する。そして、補正部60は、非一様分布とタッチセンサ4の変形状態に基づいて、タッチセンサ4からの検出信号を補正し、補正後の検出信号を出力する。 The correction unit 60 acquires the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the correction unit 60 corrects the detection signal from the touch sensor 4 based on the non-uniform distribution and the deformation state of the touch sensor 4, and outputs the corrected detection signal.
 補正部60は、入力位置検出部40と変形検出部50による検出結果の合理性の有無を判定する入力判定部61と、検出結果が合理性を有する場合においてタッチセンサ4からの検出結果に補正を適用する補正適用部62とを備える。 The correction unit 60 corrects the detection result from the touch sensor 4 when the detection result is rational, and the input determination unit 61 that determines whether the detection result by the input position detection unit 40 and the deformation detection unit 50 is reasonable. And a correction application unit 62 that applies
 入力判定部61は、入力位置検出部40から非一様分布と入力位置を取得するとともに、変形検出部50からタッチセンサ4の変形状態を示す信号を取得する。そして、入力判定部61は、タッチセンサ4の変形状態がタッチ入力に基づき形成されたか否かを、所定の判定条件に基づいて判定するとともに、入力位置検出部40により検出された入力位置から、タッチ入力に基づかない入力位置すなわち合理性に欠ける入力位置を除外する。タッチセンサ4の変形状態が、タッチ入力に基づき形成されたと判定された場合、入力判定部61は、タッチ入力に基づかない入力位置が除外された後の入力位置(合理性を有する入力位置)に対応する非一様分布と、タッチセンサ4の変形状態を示す信号とを、補正適用部62へ出力する。 The input determination unit 61 acquires the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the input determination unit 61 determines whether the deformation state of the touch sensor 4 is formed based on the touch input based on a predetermined determination condition, and from the input position detected by the input position detection unit 40, Exclude input positions that are not based on touch input, that is, input positions that are not rational. When it is determined that the deformed state of the touch sensor 4 is formed based on the touch input, the input determination unit 61 sets the input position (the input position having rationality) after the input position that is not based on the touch input is excluded. The corresponding non-uniform distribution and a signal indicating the deformation state of the touch sensor 4 are output to the correction application unit 62.
 入力判定部61の処理に関する上記の所定の判定条件について、以下に例を用いて説明する。 The above-described predetermined determination condition regarding the processing of the input determination unit 61 will be described below using an example.
 図6(a)を参照し、入力判定部61は、情報端末1の所定の保持位置Aと入力位置検出部40により検出された入力位置Pとを通る直線Mと、変形検出部50により検出された直線Lとがなす角度θを抽出する。ここで、所定の保持位置Aは、あらかじめ定められた座標が設定されている。角度θと90度とのズレが所定の角度θ0未満(すなわち|90-θ|<θ0)である場合、入力判定部61は、当該入力位置Pがタッチ入力に基づく真の入力位置であると判定する。そして、入力判定部61は、タッチセンサ4の変形状態がタッチ入力に基づく変形状態であると判定する。つまり、タッチセンサ4(シート状部2a)のたわみ方が、保持位置A、入力位置P、および直線Lを考慮して合理性を有する場合に、入力判定部61は、当該入力位置Pがタッチ入力に基づく真の入力位置であると判定する。 Referring to FIG. 6A, the input determination unit 61 detects the straight line M passing through the predetermined holding position A of the information terminal 1 and the input position P detected by the input position detection unit 40, and the deformation detection unit 50. An angle θ formed by the straight line L is extracted. Here, the predetermined holding position A is set with predetermined coordinates. When the deviation between the angle θ and 90 degrees is less than the predetermined angle θ0 (that is, | 90−θ | <θ0), the input determination unit 61 determines that the input position P is a true input position based on the touch input. judge. Then, the input determination unit 61 determines that the deformation state of the touch sensor 4 is a deformation state based on the touch input. In other words, when the touch sensor 4 (sheet-like portion 2a) has a reasonable way of bending in consideration of the holding position A, the input position P, and the straight line L, the input determination unit 61 determines that the input position P is touched. The true input position is determined based on the input.
 上記所定の角度θ0は、たとえば、0度~30度程度に設定される。所定の角度θ0は、シート状部2aの構成や情報端末1の使用環境、ユーザ設定等に応じて、適宜設定されてよい。また、入力判定部61は、端末情報抽出部30からシート状部2aの構成に関する情報を取得し、取得された情報に基づいて所定の角度θ0を設定してもよい。 The predetermined angle θ0 is set to about 0 to 30 degrees, for example. The predetermined angle θ0 may be appropriately set according to the configuration of the sheet-like portion 2a, the usage environment of the information terminal 1, user settings, and the like. Moreover, the input determination part 61 may acquire the information regarding the structure of the sheet-like part 2a from the terminal information extraction part 30, and may set predetermined | prescribed angle (theta) 0 based on the acquired information.
 角度θと90度とのズレが所定の角度θ0以上(すなわち|90-θ|≧θ0)である場合、入力判定部61は、入力位置Pに対するタッチ入力によってタッチセンサ4の変形状態が形成されたということが合理性を有さないと判定する。この場合、タッチセンサ4からの検出信号を補正する必要はないとして、補正部60は、補正後の検出信号を出力するためのさらなる処理を実行しない。 When the deviation between the angle θ and 90 degrees is equal to or greater than the predetermined angle θ0 (that is, | 90−θ | ≧ θ0), the input determination unit 61 forms a deformed state of the touch sensor 4 by the touch input with respect to the input position P. It is determined that there is no rationality. In this case, it is not necessary to correct the detection signal from the touch sensor 4, and the correction unit 60 does not perform further processing for outputting the corrected detection signal.
 図9に示すように、2つの入力位置P1、P2が、入力位置検出部40により検出される場合がある。この場合、入力判定部61は、上記角度θと同様にして、入力位置P1、P2に対応する角度θ1、θ2を算出する。図9の場合、|90-θ1|<θ0且つ|90-θ2|≧θ0が成り立つ。このため、入力判定部61は、入力位置P1を、タッチ入力に基づく入力位置P1として抽出するとともに、タッチセンサ4の変形状態が入力位置P1に対するタッチ入力に基づき形成されたと判定する。 As shown in FIG. 9, two input positions P1 and P2 may be detected by the input position detection unit 40. In this case, the input determination unit 61 calculates the angles θ1 and θ2 corresponding to the input positions P1 and P2 in the same manner as the angle θ. In the case of FIG. 9, | 90−θ1 | <θ0 and | 90−θ2 | ≧ θ0 hold. Therefore, the input determination unit 61 extracts the input position P1 as the input position P1 based on the touch input, and determines that the deformation state of the touch sensor 4 is formed based on the touch input with respect to the input position P1.
 図10の場合でも、2つの入力位置P1、P2が、入力位置検出部40により検出され、入力位置P1、P2に対応する角度θ1、θ2が算出される。図10の場合、|90-θ1|<θ0且つ|90-θ2|<θ0が成り立つ。このため、入力判定部61は、2つの入力位置P1、P2を、タッチ入力に基づく入力位置P1、P2として抽出するとともに、タッチセンサ4の変形状態が2つの入力位置P1、P2に対するタッチ入力(マルチタッチ入力)に基づき形成されたと判定する。 Even in the case of FIG. 10, two input positions P1 and P2 are detected by the input position detection unit 40, and angles θ1 and θ2 corresponding to the input positions P1 and P2 are calculated. In the case of FIG. 10, | 90−θ1 | <θ0 and | 90−θ2 | <θ0 hold. Therefore, the input determination unit 61 extracts the two input positions P1 and P2 as the input positions P1 and P2 based on the touch input, and the deformation state of the touch sensor 4 is a touch input to the two input positions P1 and P2 ( It is determined that it is formed based on multi-touch input).
 図10の場合において、入力判定部61は、2つの入力位置P1、P2を、タッチ入力の入力位置P1、P2として抽出する。しかしながら、入力判定部61は、たとえば、角度θ1、θ2のうち、90度に近い方の角度に対応する1つの入力位置をタッチ入力の入力位置として抽出してもよい。 10, the input determination unit 61 extracts two input positions P1 and P2 as touch input positions P1 and P2. However, the input determination unit 61 may extract, for example, one input position corresponding to the angle closer to 90 degrees out of the angles θ1 and θ2 as the input position of the touch input.
 図10の場合において、仮に|90-θ1|≧θ0且つ|90-θ2|≧θ0が成立する場合、入力判定部61は、2つの入力位置P1、P2のいずれも、タッチ入力の入力位置ではない、すなわち、タッチセンサ4の変形状態がタッチ入力に基づき形成されていないと判定する。しかしながら、入力判定部61は、たとえば、角度θ1、θ2のうち、90度に近い方の角度に対応する1つの入力位置を、タッチ入力の入力位置として抽出してもよい。 In the case of FIG. 10, if | 90−θ1 | ≧ θ0 and | 90−θ2 | ≧ θ0 are satisfied, the input determination unit 61 determines that both of the two input positions P1 and P2 are touch input positions. In other words, it is determined that the deformation state of the touch sensor 4 is not formed based on the touch input. However, the input determination unit 61 may extract, for example, one input position corresponding to the angle closer to 90 degrees out of the angles θ1 and θ2 as the input position of the touch input.
 入力判定部61は、上記の判定条件以外の条件に基づいて、判定処理を実行してもよい。たとえば、非一様分布Rおよび一様分布Sの圧力のレベルの関係に基づいて判定処理を実行してもよい。入力判定部61は、非一様分布Rの圧力のレベルと保持位置Aとから、テコの原理に基づいて、一様分布Sの圧力のレベルを推定する。推定された分布と検出された一様分布Sとを比較することにより、合理性の有無を判定する(たとえば、両分布の圧力のレベルが互いに類似する場合には、合理性があると判定される)。 <The input determination part 61 may perform a determination process based on conditions other than said determination conditions. For example, the determination process may be executed based on the relationship between the pressure levels of the non-uniform distribution R and the uniform distribution S. The input determination unit 61 estimates the pressure level of the uniform distribution S from the pressure level of the non-uniform distribution R and the holding position A based on the lever principle. By comparing the estimated distribution and the detected uniform distribution S, the presence / absence of rationality is determined (for example, if the pressure levels of both distributions are similar to each other, it is determined that there is rationality). )
 補正適用部62は、入力判定部61から、入力判定部61により抽出されたタッチ入力の入力位置および当該入力位置に対応する非一様分布と、タッチセンサ4の変形状態を示す信号を取得する。そして、補正適用部62は、タッチセンサ4の変形状態と、抽出されたタッチ入力の入力位置に対応する非一様分布に基づいて、補正後の検出信号を生成し、信号処理部7からの出力信号として出力する。 The correction application unit 62 acquires from the input determination unit 61 a signal indicating the input position of the touch input extracted by the input determination unit 61, the non-uniform distribution corresponding to the input position, and the deformation state of the touch sensor 4. . Then, the correction application unit 62 generates a detection signal after correction based on the deformation state of the touch sensor 4 and the non-uniform distribution corresponding to the input position of the extracted touch input. Output as an output signal.
 補正適用部62は、取得した非一様分布を、タッチセンサ4の変形状態に応じて増幅し、増幅された非一様分布を補正後の検出信号として出力する。具体的には、補正適用部62は、変形検出部50により抽出された一様分布に対応した値を非一様分布へ加算する。すなわち、一様分布に対応した値としてたとえば一様分布の平均値が、非一様分布を構成する各値へ加算される。つまり、タッチセンサ4の変形の影響が圧力分布から除去されるとともに、変形していない状態のタッチセンサ4に対してタッチ入力が行われた場合の圧力分布が再現される。 The correction application unit 62 amplifies the acquired non-uniform distribution according to the deformation state of the touch sensor 4, and outputs the amplified non-uniform distribution as a detection signal after correction. Specifically, the correction application unit 62 adds a value corresponding to the uniform distribution extracted by the deformation detection unit 50 to the non-uniform distribution. That is, for example, an average value of the uniform distribution is added to each value constituting the non-uniform distribution as a value corresponding to the uniform distribution. That is, the influence of the deformation of the touch sensor 4 is removed from the pressure distribution, and the pressure distribution when the touch input is performed on the touch sensor 4 that is not deformed is reproduced.
 上記の一様分布に対応した値は、一様分布の平均値や積分値、またはこれら平均値や積分値に比例した値等、一様分布Sの圧力のレベルを表す値であれば、各種の値であってよい。また、一様分布Sに対応した値が、非一様分布を構成する各値へ、加算ではなく乗算されてもよい。このように、補正適用部62は、一様分布の圧力のレベルに対応して、種々の方法により、非一様分布を強調してよい。換言すれば、補正適用部62は、非一様分布を構成するセンサ出力の出力値を強調してもよい。 As long as the value corresponding to the uniform distribution is a value representing the pressure level of the uniform distribution S, such as an average value or an integral value of the uniform distribution, or a value proportional to the average value or the integral value, various values can be used. The value of Further, a value corresponding to the uniform distribution S may be multiplied to each value constituting the non-uniform distribution instead of addition. As described above, the correction applying unit 62 may emphasize the non-uniform distribution by various methods in accordance with the pressure level of the uniform distribution. In other words, the correction application unit 62 may emphasize the output value of the sensor output constituting the non-uniform distribution.
 上記のとおり、補正適用部62は、変形検出部50により抽出された一様分布に対応した値を非一様分布へ加算する。しかしながら、補正適用部62は、変形検出部50により抽出された一様分布から、シート状部2aの自重に基づくタッチセンサ4の変形に対応する成分を減算し、残りの圧力値に対応する値(たとえば、残りの圧力値に所定係数を掛けた値)を非一様分布へ加算してもよい。シート状部2aの自重に基づくタッチセンサ4の変形に対応する圧力分布は、非一様分布が入力位置検出部40により検出されていないときに変形検出部50により検出される一様分布から特定できる。このような特定処理は、たとえば補正適用部62が行う。このような補正が適用されることにより、変形していない状態のタッチセンサ4に対してタッチ入力が行われた場合の圧力分布が、より忠実に再現される。 As described above, the correction application unit 62 adds a value corresponding to the uniform distribution extracted by the deformation detection unit 50 to the non-uniform distribution. However, the correction application unit 62 subtracts a component corresponding to the deformation of the touch sensor 4 based on the weight of the sheet-like portion 2a from the uniform distribution extracted by the deformation detection unit 50, and a value corresponding to the remaining pressure value. (For example, a value obtained by multiplying the remaining pressure value by a predetermined coefficient) may be added to the non-uniform distribution. The pressure distribution corresponding to the deformation of the touch sensor 4 based on the weight of the sheet-like part 2a is specified from the uniform distribution detected by the deformation detection unit 50 when the non-uniform distribution is not detected by the input position detection unit 40. it can. Such a specifying process is performed by, for example, the correction application unit 62. By applying such correction, the pressure distribution when the touch input is performed on the touch sensor 4 in the undeformed state is more faithfully reproduced.
 あるいは、保持位置Aと一様分布の間の距離と、保持位置Aと入力位置Pの間の距離とに基づいて、上記加算処理の際に、一様分布の圧力に対応した値にある係数を掛けることにより得られた値が、非一様分布へ加算されてもよい。たとえば、この係数は、保持位置Aと入力位置の間の距離を、保持位置Aと一様分布の間の距離で除算することによって得られる比に比例する数値であってよい。この構成がとられることによって、補正の効果がさらに得られる場合がある。たとえば、当該比の値が大きい場合、すなわち保持位置Aと入力位置Pの間の距離が保持位置Aと一様分布の間の距離に比較して大きい場合には、小さな力でタッチ入力が行われても、シート状部2aはテコの原理により容易に変形する。このため、非一様分布における圧力値は低く、タッチ入力は検出されにくい。しかしながら、当該比を用いた補正が適用されると、テコの原理により弱まるタッチ入力の力に基づく非一様分布の圧力のレベルが適切に補強され、圧力分布が忠実に再現される。 Alternatively, on the basis of the distance between the holding position A and the uniform distribution and the distance between the holding position A and the input position P, the coefficient is a value corresponding to the pressure of the uniform distribution in the addition process. The value obtained by multiplying by may be added to the non-uniform distribution. For example, this coefficient may be a numerical value proportional to the ratio obtained by dividing the distance between the holding position A and the input position by the distance between the holding position A and the uniform distribution. By taking this configuration, a correction effect may be further obtained. For example, when the value of the ratio is large, that is, when the distance between the holding position A and the input position P is larger than the distance between the holding position A and the uniform distribution, touch input is performed with a small force. Even if it breaks, the sheet-like part 2a is easily deformed by the principle of leverage. For this reason, the pressure value in the non-uniform distribution is low, and the touch input is difficult to detect. However, when the correction using the ratio is applied, the pressure level of the non-uniform distribution based on the force of the touch input weakened by the lever principle is appropriately reinforced, and the pressure distribution is faithfully reproduced.
4.補正適用例
 図11(a)~(d)に、補正適用部62による補正の適用例を示す。
4). Correction Application Examples FIGS. 11A to 11D show application examples of correction by the correction application unit 62. FIG.
 たとえば、図11(a)に示すような圧力分布がタッチセンサ4により検出される場合がある。この場合、図11(a)に示すように、非一様分布Rと一様分布Sが検出される。入力判定部61によりこれらの検出結果が合理性を有すると判定された場合、補正適用部62は、一様分布Sに対応する値(一様分布Sの平均値等)を、非一様分布Rを構成する各値へ加算することにより、図11(b)に示すような補正後の圧力分布を生成する。補正後の圧力分布は、一様分布を含まず、タッチ入力の入力位置Pに対応する非一様分布R’を含む。非一様分布R’における圧力f2は、補正前の圧力f1より大きい。すなわち、補正適用部62は、タッチセンサ4から検出された圧力分布からタッチセンサ4の変形の影響を除去するとともに、一様分布Sの圧力のレベルに応じて非一様分布を構成するセンサ出力の出力値を強調する。 For example, a pressure distribution as shown in FIG. 11A may be detected by the touch sensor 4. In this case, as shown in FIG. 11A, a non-uniform distribution R and a uniform distribution S are detected. When the input determination unit 61 determines that these detection results are rational, the correction application unit 62 calculates a value corresponding to the uniform distribution S (such as an average value of the uniform distribution S) as a non-uniform distribution. By adding R to each value constituting the pressure, a corrected pressure distribution as shown in FIG. 11B is generated. The corrected pressure distribution does not include a uniform distribution but includes a non-uniform distribution R ′ corresponding to the input position P of the touch input. The pressure f2 in the non-uniform distribution R ′ is larger than the pressure f1 before correction. That is, the correction application unit 62 removes the influence of deformation of the touch sensor 4 from the pressure distribution detected from the touch sensor 4 and outputs a sensor output that forms a non-uniform distribution according to the pressure level of the uniform distribution S. Emphasize the output value of.
 たとえば、タッチセンサ4がたわんでいる部分へタッチ入力が行われることにより、図11(c)のグラフに示すような圧力分布がタッチセンサ4により検出される場合がある。この場合、図11(c)に示すような、一様分布Sは、非一様分布Rが形成される領域の周囲に形成される。さらに、入力位置検出部40は、非一様分布Rが形成される領域上において、検出される圧力の分布の値から一様分布Sの平均値を減算した値により構成される分布を、非一様分布として検出する。非一様分布Rが形成される領域の周囲に一様分布Sが形成される場合、入力判定部61は、上記所定の判定条件を用いることなく、検出結果は妥当であると判定する(別の条件に基づいて妥当性が判定されてもよい)。そして、補正適用部62は、図11(d)に示すように補正後の圧力分布を生成する。すなわち、補正適用部62は、一様分布Sに対応する値(一様分布Sの平均値等)を、非一様分布Rを構成する各値へ加算することにより、図11(d)に示すような補正後の圧力分布を生成する。補正後の圧力分布は、一様分布を含まず、タッチ入力の入力位置Pに対応する非一様分布R’を含み、そして、非一様分布R’における圧力f2は、補正前の圧力f1より大きい。よって、図11(c)および図11(d)の例の場合においても、補正適用部62は、タッチセンサ4から検出された圧力分布からタッチセンサ4の変形の影響を除去するとともに、一様分布Sの圧力のレベルに応じて非一様分布を構成するセンサ出力の出力値を強調する。 For example, when a touch input is performed on a portion where the touch sensor 4 is bent, a pressure distribution as shown in the graph of FIG. 11C may be detected by the touch sensor 4. In this case, the uniform distribution S as shown in FIG. 11C is formed around a region where the non-uniform distribution R is formed. Further, the input position detection unit 40 calculates a distribution constituted by a value obtained by subtracting the average value of the uniform distribution S from the value of the detected pressure distribution on the region where the non-uniform distribution R is formed. Detect as uniform distribution. When the uniform distribution S is formed around the region where the non-uniform distribution R is formed, the input determination unit 61 determines that the detection result is valid without using the predetermined determination condition (separately) The validity may be determined based on the conditions of Then, the correction application unit 62 generates a corrected pressure distribution as shown in FIG. That is, the correction application unit 62 adds a value corresponding to the uniform distribution S (an average value of the uniform distribution S or the like) to each value constituting the non-uniform distribution R, thereby obtaining the result shown in FIG. A corrected pressure distribution as shown is generated. The pressure distribution after correction does not include the uniform distribution but includes the non-uniform distribution R ′ corresponding to the input position P of the touch input, and the pressure f2 in the non-uniform distribution R ′ is the pressure f1 before correction. Greater than. Therefore, also in the case of the example of FIG. 11C and FIG. 11D, the correction application unit 62 removes the influence of the deformation of the touch sensor 4 from the pressure distribution detected from the touch sensor 4 and is uniform. The output value of the sensor output constituting the non-uniform distribution is emphasized according to the pressure level of the distribution S.
 図11(a)~(d)に例示したように、補正後の圧力分布は、抽出されたタッチ入力の入力位置に対応する非一様分布を含み、抽出されなかったタッチ入力の入力位置に対応する非一様分布を含まず、且つ、一様分布を含まない。 As illustrated in FIGS. 11A to 11D, the corrected pressure distribution includes a non-uniform distribution corresponding to the input position of the extracted touch input, and the input position of the touch input that has not been extracted. The corresponding non-uniform distribution is not included, and the uniform distribution is not included.
 以上の通り、信号処理部7は、タッチセンサ4からの検出信号に補正処理を適用し、補正後の検出信号を出力する。補正後の検出信号は、たとえば、プロセッサ9により取得され、アプリケーションプログラム等に基づいて、プロセッサ9により情報端末1の各部が制御される。補正後の検出信号に基づき、精度よくタッチ入力が検出されるため、情報端末1の操作性が向上する。 As described above, the signal processing unit 7 applies the correction process to the detection signal from the touch sensor 4 and outputs the corrected detection signal. The corrected detection signal is acquired by, for example, the processor 9 and the processor 9 controls each unit of the information terminal 1 based on an application program or the like. Since touch input is detected with high accuracy based on the corrected detection signal, the operability of the information terminal 1 is improved.
 なお、やわらかい面(ソファの座面など)の上に情報端末1が置かれた状態において、タッチ入力がなされる場合がある。この場合、タッチセンサ4は、図12(a)に示すような圧力分布を検出する。この場合、変形検出部50は、非一様分布Rが形成される領域の周囲に形成される円形の一様分布Sを検出する。非一様分布Rが形成される領域の周囲に一様分布Sが形成される場合、入力判定部61は、上記所定の判定条件を用いることなく、入力位置検出部40および変形検出部50による検出結果は合理性を有すると判定する(別の条件に基づいて妥当性が判定されてもよい)。補正適用部62は、図11(c)と図11(d)を用いて説明された処理と同様の処理を実行することにより、図12(b)に示すような補正後の圧力分布を生成する。すなわち、補正適用部62は、一様分布Sに対応する値(一様分布Sの平均値等)を、非一様分布Rを構成する各値へ加算することにより、図12(b)に示すような補正後の圧力分布を生成する。補正後の圧力分布は、一様分布を含まず、タッチ入力の入力位置Pに対応する非一様分布R’を含む。非一様分布R’における圧力f2は、補正前の圧力f1より大きい。 Note that touch input may be performed in a state where the information terminal 1 is placed on a soft surface (such as a sofa seat). In this case, the touch sensor 4 detects a pressure distribution as shown in FIG. In this case, the deformation detection unit 50 detects a circular uniform distribution S formed around a region where the non-uniform distribution R is formed. When the uniform distribution S is formed around the region where the non-uniform distribution R is formed, the input determination unit 61 uses the input position detection unit 40 and the deformation detection unit 50 without using the predetermined determination condition. The detection result is determined to be reasonable (the validity may be determined based on another condition). The correction application unit 62 generates the corrected pressure distribution as shown in FIG. 12B by executing the same processing as that described with reference to FIGS. 11C and 11D. To do. That is, the correction application unit 62 adds a value corresponding to the uniform distribution S (an average value of the uniform distribution S or the like) to each value constituting the non-uniform distribution R, thereby obtaining the result shown in FIG. A corrected pressure distribution as shown is generated. The corrected pressure distribution does not include a uniform distribution but includes a non-uniform distribution R ′ corresponding to the input position P of the touch input. The pressure f2 in the non-uniform distribution R ′ is larger than the pressure f1 before correction.
 図11(c)と図12(a)を用いて説明したように、例外的な圧力分布が検出された場合には、入力判定部61による入力位置検出部40および変形検出部50による検出結果の妥当性を評価する処理は省かれてもよい(別の条件に基づいて妥当性が判定されてもよい)。 As described with reference to FIG. 11C and FIG. 12A, when an exceptional pressure distribution is detected, the detection result by the input position detection unit 40 and the deformation detection unit 50 by the input determination unit 61 The process of evaluating the validity of may be omitted (the validity may be determined based on another condition).
 以上、本実施の形態の構成では、タッチセンサ4の変形に基づいて、タッチセンサにより検出される圧力分布を示す検出信号に補正処理が適用される。補正処理の適用により、圧力分布を構成するセンサ出力の出力値から、情報端末1の変形に基づくタッチセンサ4(シート状部2a)の変形の影響すなわち一様分布が除去されるとともに、タッチ入力に基づく非一様分布を構成するセンサ出力の出力値が強調(増幅)される。このため、たとえばプロセッサ9によりタッチセンサ4からの入力を受け付けるとき、タッチ入力の有無および入力位置が良好に検出される。すなわち、タッチセンサ4が変形した場合においても、タッチ入力の良好な検出精度が維持され、情報端末1の操作性が向上する。 As described above, in the configuration of the present embodiment, the correction process is applied to the detection signal indicating the pressure distribution detected by the touch sensor based on the deformation of the touch sensor 4. By applying the correction process, the influence of the deformation of the touch sensor 4 (sheet-like portion 2a) based on the deformation of the information terminal 1, that is, the uniform distribution is removed from the output value of the sensor output constituting the pressure distribution, and the touch input. The output value of the sensor output that forms a non-uniform distribution based on is emphasized (amplified). Therefore, for example, when the processor 9 accepts an input from the touch sensor 4, the presence / absence of the touch input and the input position are detected well. That is, even when the touch sensor 4 is deformed, good detection accuracy of touch input is maintained, and the operability of the information terminal 1 is improved.
 なお、以上に説明された信号処理部7による信号処理は、大型のディスプレイ3(たとえば、9インチ以上のサイズの画面を有するディスプレイ)を備える情報端末1に対して適用されてよい。大型の情報端末1の筐体(シート状部2a)に配されるタッチセンサ4(サイズは9インチ以上)は、変形しやすいため、本実施の形態の効果が顕著となり、ユーザの操作性は大幅に向上する。また、柔軟なタブレット型の情報端末装置(情報端末1に対応)に本実施の形態の構成が適用されてよい。 In addition, the signal processing by the signal processing unit 7 described above may be applied to the information terminal 1 including the large display 3 (for example, a display having a screen having a size of 9 inches or more). Since the touch sensor 4 (size is 9 inches or more) arranged on the housing (sheet-like portion 2a) of the large information terminal 1 is easily deformed, the effect of the present embodiment becomes remarkable, and the operability of the user is improved. Greatly improved. The configuration of the present embodiment may be applied to a flexible tablet information terminal device (corresponding to the information terminal 1).
 本実施の形態では、プロセッサ9とは別に設けられた、LSI等の信号処理部7が、タッチセンサ4からの検出信号に対して信号処理(補正処理)を適用した。信号処理部7は、たとえば、専用LSIハードウェア等によって実現されてもよい。 In this embodiment, the signal processing unit 7 such as an LSI provided separately from the processor 9 applies signal processing (correction processing) to the detection signal from the touch sensor 4. The signal processing unit 7 may be realized by dedicated LSI hardware, for example.
 信号処理部7の機能の一部または全ては、プロセッサ9により実現されてもよい。この場合、プロセッサ9が実行する機能に関するプログラムは、たとえば、メモリ8から読み込まれる、あるいは、有線または無線の通信網を介して取得される。 Some or all of the functions of the signal processing unit 7 may be realized by the processor 9. In this case, the program related to the function executed by the processor 9 is read from, for example, the memory 8 or acquired via a wired or wireless communication network.
 <実施の形態2>
 上記実施の形態1では、情報端末1の保持位置Aは所定の位置に固定された。本実施の形態においては、タッチ入力と、情報端末の変形を示す情報とに基づき、情報端末1の保持位置を検出するための処理が実行される。
<Embodiment 2>
In the first embodiment, the holding position A of the information terminal 1 is fixed at a predetermined position. In the present embodiment, processing for detecting the holding position of the information terminal 1 is executed based on the touch input and information indicating the deformation of the information terminal.
 図13は、本実施の形態に係る信号処理部7の機能を示すブロック図である。 FIG. 13 is a block diagram illustrating functions of the signal processing unit 7 according to the present embodiment.
 本実施の形態に係る信号処理部7は、上記実施の形態と同様の構成を有する前処理部20、端末情報抽出部30、入力位置検出部40、および変形検出部50を備える。信号処理部7はさらに、保持位置検出部70を備える。保持位置検出部70からの信号は、プロセッサ9に備えられる表示処理部80へ出力される。 The signal processing unit 7 according to the present embodiment includes a preprocessing unit 20, a terminal information extraction unit 30, an input position detection unit 40, and a deformation detection unit 50 having the same configuration as that of the above embodiment. The signal processing unit 7 further includes a holding position detection unit 70. A signal from the holding position detection unit 70 is output to the display processing unit 80 provided in the processor 9.
 前処理部20、端末情報抽出部30、入力位置検出部40、および変形検出部50に関して、上記実施の形態1に重複する構成についての説明は、以下の説明において省く場合がある。以下において、主に、保持位置検出部70と表示処理部80について説明する。 Regarding the preprocessing unit 20, the terminal information extraction unit 30, the input position detection unit 40, and the deformation detection unit 50, the description of the same configuration as in the first embodiment may be omitted in the following description. Hereinafter, the holding position detection unit 70 and the display processing unit 80 will be mainly described.
 保持位置検出部70は、入力位置検出部40から非一様分布を示す信号と入力位置を取得するとともに、変形検出部50からタッチセンサ4の変形状態を示す信号を取得する。そして、保持位置検出部70は、情報端末1の保持位置を特定する。そして、保持位置検出部70は、保持位置と一様分布とを示す信号を、表示処理部80へ出力する。表示処理部80は、保持位置検出部70の検出結果に応じて、すなわち保持位置検出部70から取得した保持位置と一様分布に基づいて、ディスプレイ3に画面を表示させる処理を実行する。 The holding position detection unit 70 acquires a signal indicating the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. Then, the holding position detection unit 70 specifies the holding position of the information terminal 1. Then, the holding position detection unit 70 outputs a signal indicating the holding position and the uniform distribution to the display processing unit 80. The display processing unit 80 executes processing for displaying a screen on the display 3 according to the detection result of the holding position detection unit 70, that is, based on the holding position and the uniform distribution acquired from the holding position detection unit 70.
 図14は、本実施の形態に係る信号処理部7の機能の詳細を示すブロック図である。 FIG. 14 is a block diagram showing details of the function of the signal processing unit 7 according to the present embodiment.
 保持位置検出部70は、入力判定部71と、保持位置判定部72を備える。 The holding position detection unit 70 includes an input determination unit 71 and a holding position determination unit 72.
 入力判定部71は、上記実施の形態1の入力判定部61の構成とほぼ同じである。ただし、上記実施の形態1の入力判定部61と異なり、本実施の形態の入力判定部71は、タッチ入力に基づく入力位置を抽出する処理は実行しない。入力判定部71は、入力位置検出部40から非一様分布と入力位置とを示す信号を取得するとともに、変形検出部50からタッチセンサ4の変形状態を示す信号を取得する。しかしながら、タッチ入力が行われていない場合には、入力判定部71は、非一様分布と入力位置が入力位置検出部40から取得しない。この場合、入力判定部71は、非一様分布または入力位置が取得されないことに基づいて、タッチセンサ4の変形がタッチ入力に基づき形成されていないと判定するとともに、変形判定部52から取得した一様分布を、保持位置判定部72へ出力する。 The input determination unit 71 is substantially the same as the configuration of the input determination unit 61 of the first embodiment. However, unlike the input determination unit 61 of the first embodiment, the input determination unit 71 of the present embodiment does not execute the process of extracting the input position based on the touch input. The input determination unit 71 acquires a signal indicating the non-uniform distribution and the input position from the input position detection unit 40, and acquires a signal indicating the deformation state of the touch sensor 4 from the deformation detection unit 50. However, when the touch input is not performed, the input determination unit 71 does not acquire the non-uniform distribution and the input position from the input position detection unit 40. In this case, the input determination unit 71 determines that the deformation of the touch sensor 4 is not formed based on the touch input based on the fact that the non-uniform distribution or the input position is not acquired, and acquires the deformation from the deformation determination unit 52. The uniform distribution is output to the holding position determination unit 72.
 つまり、タッチセンサ4(シート状部2a)が自重によって変形しているときに、保持位置判定部72の処理が実行される。 That is, when the touch sensor 4 (sheet-like part 2a) is deformed by its own weight, the process of the holding position determination part 72 is executed.
 保持位置判定部72は、タッチセンサ4の変形状態がタッチ入力に基づき形成されたものでないと判定されたときにおいて、入力判定部71から検出された一様分布を構成するセンサ出力の出力値を取得する。そして、保持位置判定部72は、一様分布に基づいて情報端末1の保持位置を検出する。保持位置判定部72は、検出された保持位置と一様分布を構成するセンサ出力の出力値を表示処理部80へ出力する。 When it is determined that the deformation state of the touch sensor 4 is not formed based on the touch input, the holding position determination unit 72 outputs the output value of the sensor output forming the uniform distribution detected from the input determination unit 71. get. Then, the holding position determination unit 72 detects the holding position of the information terminal 1 based on the uniform distribution. The holding position determination unit 72 outputs the output value of the sensor output that forms a uniform distribution with the detected holding position to the display processing unit 80.
 保持位置判定部72は、以下のように、ユーザによる情報端末1の保持位置Aを検出する。 The holding position determination unit 72 detects the holding position A of the information terminal 1 by the user as follows.
 図15(a)と図15(b)に、検出される保持位置Aの例を示す。保持位置判定部72は、まず、一様分布のうち圧力レベルが高い領域を抽出し、当該領域の形状を近似する直線Lを検出する。直線Lの検出方法は、上記実施の形態1において説明された方法と同じである。そして、保持位置判定部72は、タッチセンサ4上における直線Lの中点Hを抽出し、そして、この中点Hを通り直線Lに直交する方向に位置する情報端末1の縁を、保持位置Aとして検出する。ここで、保持位置Aの候補は、2つあるが、2つの位置のうち直線Lに近い方の位置が保持位置Aとして検出される。 15A and 15B show examples of the detected holding position A. FIG. The holding position determination unit 72 first extracts a region having a high pressure level from the uniform distribution, and detects a straight line L that approximates the shape of the region. The method for detecting the straight line L is the same as the method described in the first embodiment. Then, the holding position determination unit 72 extracts the midpoint H of the straight line L on the touch sensor 4, and the edge of the information terminal 1 positioned in the direction passing through the midpoint H and orthogonal to the straight line L is determined as the holding position. Detect as A. Here, although there are two candidates for the holding position A, the position closer to the straight line L of the two positions is detected as the holding position A.
 図15(a)と図15(b)に示すように、情報端末1の保持位置Aが変化すると、保持位置Aの変化に応じて、シート状部2aの自重によるタッチセンサ4の変形の態様が変化する。上記保持位置Aの検出処理によって、適切に保持位置Aが検出される。 As shown in FIGS. 15A and 15B, when the holding position A of the information terminal 1 is changed, the deformation mode of the touch sensor 4 due to the weight of the sheet-like portion 2a is changed according to the change of the holding position A. Changes. The holding position A is appropriately detected by the detection processing of the holding position A.
 保持位置判定部72は、タッチセンサ4により検出される検出信号から、たとえば統計的に保持位置Aを検出してもよい(たとえば、圧力分布を構成するセンサ出力の出力値の勾配の変動が大きい部分を保持位置Aとして検出してよい)。 The holding position determination unit 72 may statistically detect the holding position A from the detection signal detected by the touch sensor 4 (for example, the fluctuation in the gradient of the output value of the sensor output that constitutes the pressure distribution is large). The portion may be detected as the holding position A).
 あるいは、保持位置判定部72は、タッチセンサ4の境界において、恒常的に圧力が検出されている位置を保持位置Aとして検出してもよい。 Alternatively, the holding position determination unit 72 may detect the position where the pressure is constantly detected at the boundary of the touch sensor 4 as the holding position A.
 保持位置Aの検出方法は、上記方法に限られず、各種の方法によって検出されてよい。たとえば、上記の2つの保持位置Aの検出方法が組み合わされてもよい。この場合、たとえば、タッチセンサ4の境界において、恒常的に圧力が検出されている位置が複数存在する場合、上記複数の位置から、直線Lに基づいて保持位置として妥当な位置を保持位置Aとして検出できる。この他、たとえば、保持位置を検出するためのタッチセンサが、シート状部2aの周囲に別途設けられてもよい。この他、保持位置判定部72は、各種の方法で、保持位置を検出してよい。 The detection method of the holding position A is not limited to the above method, and may be detected by various methods. For example, the above two detection methods of the holding position A may be combined. In this case, for example, when there are a plurality of positions where pressure is constantly detected at the boundary of the touch sensor 4, a position that is appropriate as a holding position based on the straight line L is set as the holding position A from the plurality of positions. It can be detected. In addition, for example, a touch sensor for detecting the holding position may be separately provided around the sheet-like portion 2a. In addition, the holding position determination unit 72 may detect the holding position by various methods.
 図16(a)と図16(b)は、表示処理部80による画像の表示例を示す図である。 FIG. 16A and FIG. 16B are diagrams showing an example of image display by the display processing unit 80.
 表示処理部80は、保持位置判定部72から取得した保持位置Aと一様分布Sに基づいた画像をディスプレイ3に表示させる。 The display processing unit 80 causes the display 3 to display an image based on the holding position A and the uniform distribution S acquired from the holding position determination unit 72.
 たとえば、表示処理部80は、プロセッサ9が現在実行中のプログラムに基づいてウィンドウ90をディスプレイ3に表示させる。 For example, the display processing unit 80 displays the window 90 on the display 3 based on the program that the processor 9 is currently executing.
 ここで、表示処理部80は、ウィンドウ90の表示に係る位置情報(ウィンドウ90の枠の座標等)を取得する。そして、表示処理部80は、ウィンドウ90を保持位置Aに近づけるよう移動させる。 Here, the display processing unit 80 acquires position information (such as the coordinates of the frame of the window 90) related to the display of the window 90. Then, the display processing unit 80 moves the window 90 so as to approach the holding position A.
 たとえば、保持位置Aとウィンドウ90の間に、一様分布Sが形成されている場合がある。この場合、ウィンドウ90は、シート状部2aの自重により撓んでいる部分に表示されている。そこで、表示処理部80は、保持位置Aとウィンドウ90の間に、一様分布Sが形成されていることに基づいて、ウィンドウ90を、保持位置Aと一様分布Sが形成されている領域の間へ移動させる。 For example, a uniform distribution S may be formed between the holding position A and the window 90. In this case, the window 90 is displayed at a portion bent by the weight of the sheet-like portion 2a. Therefore, the display processing unit 80 displays the window 90 as an area where the holding position A and the uniform distribution S are formed based on the fact that the uniform distribution S is formed between the holding position A and the window 90. Move between.
 表示処理部80は、ウィンドウ90に限らず、アイコン、ボタン、ダイアログ等の各種の画像にたいして、上記と同様にして移動させる処理を実行してもよい。 The display processing unit 80 is not limited to the window 90, and may execute processing for moving various images such as icons, buttons, and dialogs in the same manner as described above.
 また表示処理部80は、画像の移動に限らず、一様分布等に関する所定の条件に基づいて、画面のオン・オフの切り替え、情報端末1の電源のオン・オフの切り替え等、各種のスイッチング処理のための制御を行ってもよい。たとえば、一様分布が保持位置Aのすぐ近くにおいて形成されている場合(シート状部2aが下方へ垂れ下がり、ディスプレイ3の閲覧が困難な状態にある場合)、または、一様分布が、タッチセンサ4が配される領域のほぼ全ての領域において形成されている場合(情報端末1が丸められた状態)に、表示処理部80は、ディスプレイ3の表示をオフする制御を行う。この場合、上記所定の条件が満たされなくなったとき、表示処理部80は、ディスプレイ3の表示をオンする。 Further, the display processing unit 80 is not limited to moving the image, and performs various switching operations such as switching on / off of the screen and switching on / off of the power supply of the information terminal 1 based on a predetermined condition regarding the uniform distribution or the like. Control for processing may be performed. For example, when the uniform distribution is formed in the immediate vicinity of the holding position A (when the sheet-like portion 2a hangs down and it is difficult to view the display 3), or the uniform distribution is a touch sensor. 4 is formed in almost all of the areas where 4 is arranged (in a state where the information terminal 1 is rounded), the display processing unit 80 performs control to turn off the display on the display 3. In this case, when the predetermined condition is not satisfied, the display processing unit 80 turns on the display of the display 3.
 以上、本実施の形態では、タッチセンサ4により検出された検出信号に基づき、情報端末1の保持位置Aが検出される。保持位置Aが検出されることにより、プロセッサ9は、圧力分布(非一様分布、一様分布等)や保持位置に基づいて、情報端末1の変形に対応した各種の処理を実行でき、利便性が向上する。 As described above, in the present embodiment, the holding position A of the information terminal 1 is detected based on the detection signal detected by the touch sensor 4. By detecting the holding position A, the processor 9 can execute various processes corresponding to the deformation of the information terminal 1 based on the pressure distribution (non-uniform distribution, uniform distribution, etc.) and the holding position. Improves.
 たとえば、上記のごとく、情報端末1の変形に対応して、画像90の表示位置が変更されるため、ディスプレイ3に表示される画面の見やすさが向上する。
 <実施の形態3>
 図17は、本実施の形態3の信号処理部7の構成を示すブロック図である。
For example, as described above, the display position of the image 90 is changed corresponding to the deformation of the information terminal 1, so that the visibility of the screen displayed on the display 3 is improved.
<Embodiment 3>
FIG. 17 is a block diagram illustrating a configuration of the signal processing unit 7 according to the third embodiment.
 上記本実施の形態2では、実施の形態1の補正部60の構成が省かれている(図13)。しかしながら、本実施の形態3の信号処理部7は、実施の形態2の構成に加え、さらに補正部60を備える。図17に示すように、保持位置検出部70と表示処理部80の間に、上記実施の形態1の補正部60が挿入されている。 In the second embodiment, the configuration of the correction unit 60 of the first embodiment is omitted (FIG. 13). However, the signal processing unit 7 of the third embodiment further includes a correction unit 60 in addition to the configuration of the second embodiment. As shown in FIG. 17, the correction unit 60 of the first embodiment is inserted between the holding position detection unit 70 and the display processing unit 80.
 本実施の形態の構成によれば、アプリケーションプログラム等に基づきプロセッサ9によってディスプレイ3に画像が表示されているとき、情報端末1のディスプレイ3やタッチセンサ4が変形したとしても、実施の形態1の場合の如くタッチ入力の高い検出精度が維持されると同時に、タッチ入力が行われていないときには、実施の形態2の場合の如くディスプレイ3の見やすい位置(保持位置の近く)に各種の画像が表示される。 According to the configuration of the present embodiment, even when the display 3 and the touch sensor 4 of the information terminal 1 are deformed when an image is displayed on the display 3 by the processor 9 based on an application program or the like, As in the case, the high detection accuracy of the touch input is maintained, and at the same time, when the touch input is not performed, various images are displayed at an easily viewable position (near the holding position) of the display 3 as in the second embodiment. Is done.
 さらに、補正部60は、保持位置検出部70により検出された保持位置の情報を用いて、タッチセンサ4により検出された圧力分布を構成するセンサ出力を補正できる。このため、補正部60の補正適用部62は、実施の形態2において説明したように、保持位置と一様分布が形成される領域との間の距離に基づいて、タッチセンサ4からの検出信号を補正できる。この場合、保持位置検出部70により検出された保持位置が補正処理に用いられることにより、補正がより適切に行われ、タッチ入力の検出精度がさらに向上する。 Further, the correction unit 60 can correct the sensor output constituting the pressure distribution detected by the touch sensor 4 using the information on the holding position detected by the holding position detection unit 70. Therefore, the correction application unit 62 of the correction unit 60 detects the detection signal from the touch sensor 4 based on the distance between the holding position and the region where the uniform distribution is formed, as described in the second embodiment. Can be corrected. In this case, the holding position detected by the holding position detection unit 70 is used for the correction process, so that the correction is performed more appropriately, and the touch input detection accuracy is further improved.
 この他、本開示の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。たとえば、上記実施の形態の一部または全部を組み合わせることができる。 In addition, the embodiment of the present disclosure can be variously modified as appropriate within the scope of the technical idea shown in the claims. For example, some or all of the above embodiments can be combined.
<本開示の態様>
上記の開示は、以下の発明の態様を開示する。
<Aspects of the present disclosure>
The above disclosure discloses the following aspects of the invention.
1.所定の入力領域に対する指または所定の物体による接触により操作が可能な情報端末(1)であって、
 所定の入力領域を有し、入力領域において指または所定の物体により接触された領域を検出して第1の信号(検出信号)を生成する入力部(4)と、
 情報端末(1)の変形を検出して第2の信号(変形状態を示す信号)を生成する変形検出部(7)と、
 第2の信号(変形状態を示す信号)に基づいて第1の信号(検出信号)を補正する処理部(7)と
を備えた
ことを特徴とする情報端末(1)。
1. An information terminal (1) that can be operated by touching a predetermined input area with a finger or a predetermined object,
An input unit (4) that has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, and generates a first signal (detection signal);
A deformation detection unit (7) that detects a deformation of the information terminal (1) and generates a second signal (a signal indicating the deformation state);
An information terminal (1) comprising: a processing unit (7) that corrects the first signal (detection signal) based on a second signal (a signal indicating a deformed state).
 この構成により、第1の信号(検出信号)は、第2の信号(変形状態を示す信号)に基づいて補正される。よって、情報端末(1)(入力部(4))の変形に対応した信号処理(補正処理)が行われることにより、情報端末(1)の操作性が向上する。 With this configuration, the first signal (detection signal) is corrected based on the second signal (signal indicating a deformed state). Therefore, the operability of the information terminal (1) is improved by performing signal processing (correction processing) corresponding to the deformation of the information terminal (1) (input unit (4)).
2.処理部(7)は、第1の信号(検出信号)の出力値の分布であって、所定の条件を満たす出力値で構成される分布の広さが所定値以下である場合に、分布を構成する信号に基づき、タッチ操作された領域を示す信号(非一様分布)を強調することによって第1の信号(検出信号)を補正する、
ことを特徴とする上記1に記載の情報端末(1)。
2. The processing unit (7) determines the distribution when the distribution of the output values of the first signal (detection signal) and the distribution composed of the output values satisfying the predetermined condition is equal to or smaller than the predetermined value. Correcting the first signal (detection signal) by emphasizing a signal (non-uniform distribution) indicating a touch-operated region based on the constituting signal;
2. The information terminal (1) according to (1) above, wherein
 この構成により、タッチ操作された領域を示す信号(非一様分布)が強調されるため、入力の良好な検出精度が維持され、操作性が向上する。 This configuration emphasizes a signal (non-uniform distribution) indicating a touch-operated region, thereby maintaining good input detection accuracy and improving operability.
3.変形検出部(7)は、第1の信号(検出信号)の出力値の分布であって、所定の条件を満たす出力値で構成される分布の広さが所定値以上である場合に、情報端末(1)が変形されていることを検出する、
ことを特徴とする上記1または2に記載の情報端末(1)。
3. The deformation detection unit (7) is a distribution of the output value of the first signal (detection signal), and the information is obtained when the distribution of the output value satisfying a predetermined condition is greater than or equal to the predetermined value. Detecting that the terminal (1) is deformed;
3. The information terminal (1) according to 1 or 2 above, wherein
 この構成により、情報端末(1)の変形に基づき、すなわち情報端末(1)の変形に基づく影響(一様分布)に基づき、第1の信号(検出信号)を補正することが可能となる。たとえば、第1の信号(検出信号)から変形の影響(非一様分布)を除去することができ、よって、入力の検出精度および情報端末(1)の操作性が向上する。 This configuration makes it possible to correct the first signal (detection signal) based on the deformation of the information terminal (1), that is, based on the influence (uniform distribution) based on the deformation of the information terminal (1). For example, the influence of deformation (non-uniform distribution) can be removed from the first signal (detection signal), so that the input detection accuracy and the operability of the information terminal (1) are improved.
4.使用者により保持された情報端末(1)の保持位置を検出する保持位置検出部(7)をさらに備え、
 保持位置検出部(7)は、第1の信号(検出信号)と第2の信号(変形状態を示す信号)とに基づき使用者による保持位置(A)を検出する
ことを特徴とする上記1ないし3のいずれか1つに記載の情報端末(1)。
4). A holding position detector (7) for detecting a holding position of the information terminal (1) held by the user;
The holding position detector (7) detects the holding position (A) by the user based on the first signal (detection signal) and the second signal (signal indicating the deformation state). Information terminal (1) as described in any one of thru | or 3.
 この構成により、情報端末(1)の保持位置が検出されるため、情報端末(1)において、保持位置に基づいた処理が実行されることが可能となる。1つの例として、情報端末(1)の保持位置と情報端末(1)の変形とに基づいて、第1の信号が補正されることが可能となる。 With this configuration, since the holding position of the information terminal (1) is detected, the information terminal (1) can execute processing based on the holding position. As an example, the first signal can be corrected based on the holding position of the information terminal (1) and the deformation of the information terminal (1).
5.文字や画像を表示する表示部をさらに備え、
 保持位置検出部(7)の検出結果に応じて表示部の表示を制御する、
ことを特徴とする上記4に記載の情報端末(1)。
5. It further includes a display for displaying text and images,
Control the display of the display unit according to the detection result of the holding position detection unit (7),
5. The information terminal (1) as described in 4 above, wherein
6.変形検出部(7)は、第1の信号(検出信号)に基づき情報端末(1)の変形を検出して、第2の信号(変形状態を示す信号)を生成することを特徴とする上記1ないし5のいずれか1つに記載の情報端末(1)。 6). The deformation detection unit (7) detects the deformation of the information terminal (1) based on the first signal (detection signal), and generates a second signal (a signal indicating a deformation state). The information terminal (1) according to any one of 1 to 5.
 この構成では、変形検出部(7)は、入力部(4)からの第1の信号(検出信号)を利用する。すなわち、入力部(4)とは別の構成要素からの信号に基づいて第2の信号を生成する場合に比較して、情報端末(1)の構成が簡易となる。 In this configuration, the deformation detection unit (7) uses the first signal (detection signal) from the input unit (4). That is, the configuration of the information terminal (1) is simplified as compared with the case where the second signal is generated based on a signal from a component different from the input unit (4).
7.入力部(4)はフィルム状の柔軟なデバイスで製造されたことを特徴とする上記1ないし6のいずれか1つに記載の情報端末(1)。 7). 7. The information terminal (1) according to any one of (1) to (6), wherein the input unit (4) is manufactured by a film-like flexible device.
 この構成のように、情報端末(1)の入力部(4)が柔軟なデバイスで製造されている場合、情報端末(1)および入力部(4)の変形の度合いは特に大きい。この場合、上記1~6の構成による情報端末(1)の操作性の向上の効果は高い。 When the input unit (4) of the information terminal (1) is manufactured with a flexible device as in this configuration, the degree of deformation of the information terminal (1) and the input unit (4) is particularly large. In this case, the effect of improving the operability of the information terminal (1) with the configurations 1 to 6 is high.
8.入力部(4)のサイズは9インチ以上である、
ことを特徴とする上記1ないし7のいずれか1つに記載の情報端末(1)。
8). The size of the input part (4) is 9 inches or more,
The information terminal (1) according to any one of the above 1 to 7, characterized in that:
 この構成のように、入力部(4)が大きい場合、入力部(4)は変形しやすい。この場合、上記1~7の構成による情報端末(1)の操作性の向上の効果はさらに高い。 As in this configuration, when the input unit (4) is large, the input unit (4) is easily deformed. In this case, the effect of improving the operability of the information terminal (1) according to the configurations 1 to 7 is even higher.
9.タブレット型の情報処理装置である上記1ないし8のいずれか1つに記載の情報端末(1)。 9. The information terminal (1) according to any one of 1 to 8, which is a tablet-type information processing apparatus.
10.入力部(4)は、圧電素子から構成されている、
ことを特徴とする上記1ないし9のいずれか1つに記載の情報端末(1)。
10. The input unit (4) is composed of a piezoelectric element.
The information terminal (1) according to any one of the above 1 to 9, characterized in that:
 たとえばこの構成が用いられることにより、情報端末(1)(入力部(4))の変形が検出される。 For example, by using this configuration, the deformation of the information terminal (1) (input unit (4)) is detected.
11.情報端末(1)に組み込まれて使用される集積回路であって、
 所定の入力領域において、指または所定の物体により接触された領域を検出した信号を受信する入力回路(7)と、
 受信した信号に基づき、情報端末(1)の変形を検出する検出回路(7)と、
 検出回路からの出力信号に基づいて入力回路で受信した信号を補正する回路(7)と
を備えた集積回路(7)。
11. An integrated circuit used by being incorporated in an information terminal (1),
An input circuit (7) for receiving a signal detecting an area touched by a finger or a predetermined object in a predetermined input area;
A detection circuit (7) for detecting deformation of the information terminal (1) based on the received signal;
An integrated circuit (7) comprising a circuit (7) for correcting a signal received by the input circuit based on an output signal from the detection circuit.
12.所定の入力領域に対する指または所定の物体による接触により、情報の入力及び/または操作が可能な情報端末(1)における信号処理方法であって、
 入力領域において指または所定の物体により接触された領域を検出して第1の信号(検出信号)を生成するステップと、
 情報端末(1)の変形を検出して第2の信号(変形状態を示す信号)を生成するステップと、
 第2の信号(変形状態を示す信号)に基づいて第1の信号(検出信号)を補正するステップと
を含むことを特徴とする信号処理方法。
12 A signal processing method in an information terminal (1) capable of inputting and / or operating information by touching a predetermined input area with a finger or a predetermined object,
Detecting a region touched by a finger or a predetermined object in the input region and generating a first signal (detection signal);
Detecting a deformation of the information terminal (1) and generating a second signal (a signal indicating a deformation state);
Correcting the first signal (detection signal) based on the second signal (signal indicating the deformation state).
13.所定の入力領域に対する指または所定の物体による接触により操作が可能な情報端末(1)であって、
 所定の入力領域を有し、入力領域において指または所定の物体により接触された領域を検出して第1の信号(検出信号)を生成する入力部(4)と、
 情報端末(1)の変形を検出して第2の信号(変形状態を示す信号)を生成する変形検出部(7)と、
 使用者により保持された情報端末(1)の保持位置(P)を検出する保持位置検出部(7)を備え、
 保持位置検出部(7)は、第1の信号と第2の信号とに基づき使用者による保持位置(P)を検出する、
ことを特徴とする情報端末。
13. An information terminal (1) that can be operated by touching a predetermined input area with a finger or a predetermined object,
An input unit (4) that has a predetermined input area, detects an area touched by a finger or a predetermined object in the input area, and generates a first signal (detection signal);
A deformation detection unit (7) that detects a deformation of the information terminal (1) and generates a second signal (a signal indicating the deformation state);
A holding position detector (7) for detecting the holding position (P) of the information terminal (1) held by the user;
The holding position detector (7) detects the holding position (P) by the user based on the first signal and the second signal.
An information terminal characterized by that.
 この構成により、上記1~12に記載の第1の信号の補正のみならず、情報端末(1)の変形に基づいて、各種の処理が実行されることができる。 With this configuration, various processes can be executed based on the modification of the information terminal (1) as well as the correction of the first signal described in 1 to 12 above.
14.文字や画像を表示する表示部(3)をさらに備え、
 保持位置検出部(7)の検出結果に応じて表示部の表示を制御する、
ことを特徴とする請求項13に記載の情報端末。
14 A display unit (3) for displaying characters and images;
Control the display of the display unit according to the detection result of the holding position detection unit (7),
The information terminal according to claim 13.
 この構成により、表示部に表示される文字や画像を、検出される情報端末(1)の変形に応じて変更することができる。よって、表示部の視認性が向上し、または、表示部に対する操作性が向上し、情報端末の利便性が向上する。 This configuration makes it possible to change the characters and images displayed on the display unit according to the deformation of the detected information terminal (1). Therefore, the visibility of the display unit is improved, or the operability for the display unit is improved, and the convenience of the information terminal is improved.
 上記の発明の態様において、変形検出部、処理部および保持位置検出部の各機能は、上記実施の形態に記載の信号処理部(7)を用いて実現できる。信号処理部(7)は、ハードウェア(集積回路、CPU、LSI等)を用いて実現できる。信号処理部の機能は、ハードウェアとソフトウェアの組み合わせにより実現してもよい。たとえば、信号処理部の機能の一部または全ては、プロセッサ(9)とソフトウェアを用いて実現してもよい。信号処理部の機能の一部または全てを実現するハードウェアは、たとえばタッチセンサに内蔵されるハードウェアおよびプロセッサ(9)に、分散して構成されてもよい。 In the above aspect of the invention, the functions of the deformation detection unit, the processing unit, and the holding position detection unit can be realized by using the signal processing unit (7) described in the above embodiment. The signal processing unit (7) can be realized using hardware (an integrated circuit, a CPU, an LSI, or the like). The function of the signal processing unit may be realized by a combination of hardware and software. For example, some or all of the functions of the signal processing unit may be realized using the processor (9) and software. The hardware that realizes part or all of the functions of the signal processing unit may be configured to be distributed in, for example, hardware and processors (9) built in the touch sensor.
 上記の発明の態様において、保持位置検出部の機能は、保持位置を検出するためのタッチセンサ、ジャイロセンサ、加速度センサ等を構成するハードウェアとソフトウェアの組み合わせにより実現されてもよい。また、保持位置検出部の機能は、ハードウェアのみにより実現しても良い。 In the above-described aspect of the invention, the function of the holding position detection unit may be realized by a combination of hardware and software constituting a touch sensor, a gyro sensor, an acceleration sensor, and the like for detecting the holding position. Further, the function of the holding position detection unit may be realized only by hardware.
 適用部、位置検出部、変形検出部、および保持位置検出部の各機能の一部または全てがソフトウェアにより実現される場合、当該ソフトウェアは、ハードウェアに組み込まれていても良いし、メモリ等の記憶部に格納されても良いし、工場出荷後にインストールされてもよい。ソフトウェアは、インターネット等の通信回線を通じて配信されてもよい。 When some or all of the functions of the application unit, the position detection unit, the deformation detection unit, and the holding position detection unit are realized by software, the software may be embedded in hardware or may be a memory or the like. It may be stored in the storage unit or installed after factory shipment. The software may be distributed through a communication line such as the Internet.
 これらの概括的且つ特定の態様は、システム、方法、コンピュータプログラムならびにシステム、方法およびコンピュータプログラムの任意の組み合わせにより実現してもよい。 These general and specific aspects may be realized by a system, a method, a computer program, and any combination of the system, method, and computer program.
 本開示は、表示部を有する情報端末に利用することができる。 The present disclosure can be used for an information terminal having a display unit.

Claims (12)

  1.  所定の入力領域に対する指または所定の物体による接触により操作が可能な情報端末であって、
     前記所定の入力領域を有し、前記入力領域において指または所定の物体により接触された領域を検出して第1の信号を生成する入力部と、
     前記情報端末の変形を検出して第2の信号を生成する変形検出部と、
     前記第2の信号に基づいて前記第1の信号を補正する処理部と
    を備えた
    ことを特徴とする情報端末。
    An information terminal that can be operated by touching a predetermined input area with a finger or a predetermined object,
    An input unit that has the predetermined input region and detects a region touched by a finger or a predetermined object in the input region and generates a first signal;
    A deformation detection unit that detects a deformation of the information terminal and generates a second signal;
    An information terminal comprising: a processing unit that corrects the first signal based on the second signal.
  2.  前記処理部は、前記第1の信号の出力値の分布であって、所定の条件を満たす出力値で構成される分布の広さが所定値以下である場合に、前記分布を構成する信号に基づき、タッチ操作された領域を示す信号を強調することによって前記第1の信号を補正する、
    ことを特徴とする請求項1に記載の情報端末。
    The processing unit outputs a signal constituting the distribution when the distribution of the output values of the first signal and the distribution of the output values satisfying a predetermined condition is equal to or smaller than a predetermined value. And correcting the first signal by enhancing a signal indicating a touch-operated region,
    The information terminal according to claim 1.
  3.  前記変形検出部は、前記第1の信号の出力値の分布であって、所定の条件を満たす出力値で構成される分布の広さが所定値以上である場合に、前記情報端末が変形されていることを検出する、
    ことを特徴とする請求項1または2に記載の情報端末。
    The deformation detection unit deforms the information terminal when the distribution of the output values of the first signal and the distribution composed of output values satisfying a predetermined condition is greater than or equal to a predetermined value. To detect,
    The information terminal according to claim 1, wherein the information terminal is an information terminal.
  4.  使用者により保持された情報端末の保持位置を検出する保持位置検出部をさらに備え、
     前記保持位置検出部は、前記第1の信号と前記第2の信号とに基づき使用者による保持位置を検出する
    ことを特徴とする請求項1ないし3のいずれか1つに記載の情報端末。
    A holding position detector for detecting the holding position of the information terminal held by the user;
    The information terminal according to any one of claims 1 to 3, wherein the holding position detection unit detects a holding position by a user based on the first signal and the second signal.
  5.  文字や画像を表示する表示部をさらに備え、
     前記保持位置検出部の検出結果に応じて前記表示部の表示を制御する、
    ことを特徴とする請求項4に記載の情報端末。
    It further includes a display for displaying text and images,
    Controlling the display of the display unit according to the detection result of the holding position detection unit;
    The information terminal according to claim 4.
  6.  前記変形検出部は、前記第1の信号に基づき前記情報端末の変形を検出して、第2の信号を生成することを特徴とする請求項1ないし5のいずれか1つに記載の情報端末。 The information terminal according to any one of claims 1 to 5, wherein the deformation detection unit detects a deformation of the information terminal based on the first signal and generates a second signal. .
  7.  前記入力部はフィルム状の柔軟なデバイスで製造されたことを特徴とする請求項1ないし6のいずれか1つに記載の情報端末。 The information terminal according to any one of claims 1 to 6, wherein the input unit is manufactured with a film-like flexible device.
  8.  前記入力部のサイズは9インチ以上である、
    ことを特徴とする請求項1ないし7のいずれか1つに記載の情報端末。
    The size of the input unit is 9 inches or more.
    The information terminal according to claim 1, wherein the information terminal is an information terminal.
  9.  タブレット型の情報処理装置である請求項1ないし8のいずれか1つに記載の情報端末。 The information terminal according to any one of claims 1 to 8, which is a tablet-type information processing device.
  10.  前記入力部は、圧電素子から構成されている、
    ことを特徴とする請求項1ないし9のいずれか1つに記載の情報端末。
    The input unit is composed of a piezoelectric element,
    The information terminal according to claim 1, wherein the information terminal is an information terminal.
  11.  情報端末に組み込まれて使用される集積回路であって、
     所定の入力領域において、指または所定の物体により接触された領域を検出した信号を受信する入力回路と、
     前記受信した信号に基づき、情報端末の変形を検出する検出回路と、
     前記検出回路からの出力信号に基づいて前記入力回路で受信した信号を補正する回路と
    を備えた集積回路。
    An integrated circuit used by being incorporated in an information terminal,
    An input circuit that receives a signal that detects an area touched by a finger or a predetermined object in a predetermined input area;
    A detection circuit for detecting deformation of the information terminal based on the received signal;
    An integrated circuit comprising: a circuit for correcting a signal received by the input circuit based on an output signal from the detection circuit.
  12.  所定の入力領域に対する指または所定の物体による接触により、情報の入力及び/または操作が可能な情報端末における信号処理方法であって、
     前記入力領域において指または所定の物体により接触された領域を検出して第1の信号を生成するステップと、
     前記情報端末の変形を検出して前記第2の信号を生成するステップと、
     前記第2の信号に基づいて前記第1の信号を補正するステップと
    を含むことを特徴とする信号処理方法。
    A signal processing method in an information terminal capable of inputting and / or operating information by touching a predetermined input area with a finger or a predetermined object,
    Detecting an area touched by a finger or a predetermined object in the input area and generating a first signal;
    Detecting deformation of the information terminal and generating the second signal;
    And correcting the first signal based on the second signal.
PCT/JP2013/002668 2012-05-28 2013-04-19 Information terminal, integrated circuit, and signal processing method WO2013179556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-121104 2012-05-28
JP2012121104 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179556A1 true WO2013179556A1 (en) 2013-12-05

Family

ID=49672791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002668 WO2013179556A1 (en) 2012-05-28 2013-04-19 Information terminal, integrated circuit, and signal processing method

Country Status (1)

Country Link
WO (1) WO2013179556A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141332A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Input device, display device, and terminal device
JP6078148B1 (en) * 2015-12-25 2017-02-08 レノボ・シンガポール・プライベート・リミテッド Information processing apparatus, information processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268527A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Display medium control device, system, and method
WO2011028361A1 (en) * 2009-08-26 2011-03-10 Global Oled Technology Llc Flexible multitouch sensing electroluminescent display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268527A (en) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd Display medium control device, system, and method
WO2011028361A1 (en) * 2009-08-26 2011-03-10 Global Oled Technology Llc Flexible multitouch sensing electroluminescent display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141332A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Input device, display device, and terminal device
JP6078148B1 (en) * 2015-12-25 2017-02-08 レノボ・シンガポール・プライベート・リミテッド Information processing apparatus, information processing method, and program

Similar Documents

Publication Publication Date Title
JP6128227B2 (en) Drive control apparatus, electronic device, and drive control method
RU2519351C2 (en) Haptic user interface for electronic device
JP5497722B2 (en) Input device, information terminal, input control method, and input control program
US8305357B2 (en) Method for detecting multiple touch positions on a touch panel
TWI680389B (en) Handheld electronic apparatus, touch sensor and touch detection method thereof
JP2016521894A (en) System and method for performing device actions based on detected gestures
EP2565770A3 (en) A portable apparatus and an input method of a portable apparatus
JP2019128961A (en) Method for recognizing fingerprint, and electronic device, and storage medium
JP2014092808A (en) Electronic device and drawing method
JP2014081807A (en) Touch panel input device, control method therefor and program
CN107515675B (en) Pressure feedback method and device, computer equipment and storage medium
JP6483556B2 (en) Operation recognition device, operation recognition method and program
KR101077308B1 (en) Pressure sensing module of touch module amd method of operating the same
KR20140016853A (en) Electronic device and method of detecting touches on a touch-sensitive display
WO2014112132A1 (en) Information apparatus and information processing method
JPWO2010047339A1 (en) Touch panel device that operates as if the detection area is smaller than the display area of the display.
KR20140058006A (en) Electronic pen input sysme and input method using the same
US9347762B2 (en) Near-surface object sensing device and sensing method
JP6202874B2 (en) Electronic device, calibration method and program
WO2013179556A1 (en) Information terminal, integrated circuit, and signal processing method
US20150363043A1 (en) Touch panel device and touch panel device control method
US20180275815A1 (en) Touch input device and control method thereof
WO2015033682A1 (en) Manipulation input device, portable information terminal, method for control of manipulation input device, program, and recording medium
KR101760526B1 (en) Method for estimatting touch pressure of mobile device using acceleration sensor
CN103809846A (en) Function calling method and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP