WO2020153075A1 - Grip load detection device - Google Patents

Grip load detection device Download PDF

Info

Publication number
WO2020153075A1
WO2020153075A1 PCT/JP2019/050319 JP2019050319W WO2020153075A1 WO 2020153075 A1 WO2020153075 A1 WO 2020153075A1 JP 2019050319 W JP2019050319 W JP 2019050319W WO 2020153075 A1 WO2020153075 A1 WO 2020153075A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
housing
grip
load detection
sensor
Prior art date
Application number
PCT/JP2019/050319
Other languages
French (fr)
Japanese (ja)
Inventor
正道 安藤
博雄 山川
暢謙 森田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201990000862.0U priority Critical patent/CN215841392U/en
Priority to JP2020567434A priority patent/JP6954483B2/en
Publication of WO2020153075A1 publication Critical patent/WO2020153075A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/045Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters having torsion or bending or flexion element
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present invention relates to a grip load detection device that detects a load applied by a user in a gripped state.
  • Patent Document 1 discloses a hand-held isometric exercise device.
  • a user applies a force to the surface of the device.
  • the applied load is transmitted to the load cell. This causes the load cell to detect the force applied to the device by the user.
  • a health appliance that detects the gripping force of the user.
  • the fitness equipment is used, for example, in a training gym, a home, or a room such as a hospital. Since such health appliances are heavy and bulky, they are difficult to carry and carry. Therefore, a health appliance that is easy to carry and easy to use is desired.
  • an object of the present invention is to provide a gripping load detection device that is easy to carry and easy to use.
  • the grip load detection device of the present invention includes a cylindrical housing that a user grips, and a sensor that is attached to the housing and that detects a load applied to the housing by the grip of the user.
  • the casing of the grip load detection device according to the present invention is tubular. Therefore, the user can easily hold the case and carry it around. In addition, the user easily applies a load while holding the tubular casing. For example, the user can apply a load to the housing by a simple operation such as grasping or twisting the housing lightly. The strongest load is the twisting motion when the user strongly grips both ends of the housing. Further, since the sensor is attached to the cylindrical casing, the load applied to the casing can be detected. This allows the user to use the gripping load detection device according to the present invention with a simple operation.
  • FIG. 1A is a perspective view showing the configuration of the grip load detection device according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A
  • FIG. 2A is a plan view in which the sensor according to the first embodiment is developed in a planar shape
  • FIG. 2B is a cross-sectional view taken along the line II-II in FIG. 2A
  • FIG. 3A and FIG. 3B are diagrams showing the relationship among the uniaxial stretching direction in the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film.
  • FIG. 4A is a schematic diagram showing an example in which a twisting deformation is applied to the gripping load detection device according to the first embodiment
  • FIG. 4B is a twisting deformation in the gripping load detection device according to the first embodiment. It is a schematic diagram which shows the result of having simulated the stress which arises when adding.
  • FIG. 5(A) is a schematic diagram illustrating a combination with a charging stand as an application example of the grip load detection device according to the first embodiment, and FIG. 5(B) is a first diagram during charging on the charging stand. It is a schematic diagram explaining the grip load detection device which concerns on embodiment.
  • FIG. 6A is a perspective view showing the configuration of the grip load detection device according to the second embodiment, and FIG. 6B is a sectional view taken along the line III-III of FIG. 6A.
  • FIG. 1A is a perspective view showing the configuration of the grip load detection device 10 according to the first embodiment
  • FIG. 1B is the grip load detection device 10 taken along the line II of FIG. 1A.
  • the grip load detection device 10 includes a housing 11, a sensor 15, a display unit 16, a microcomputer (hereinafter, referred to as a microcomputer) 17, and sensor detection.
  • a circuit 18 is provided.
  • the housing 11 has a first end 12 and a second end 13.
  • the housing 11 has a tubular shape.
  • the housing 11 has an internal space 19 extending from the first end 12 to the second end 13.
  • the housing 11 is open on the side of the first end 12 and the second end 13. However, the first end 12 and the second end 13 sides of the housing 11 may be closed.
  • the sensor 15 and the display unit 16 are arranged in the central portion of the housing 11 in the axial direction.
  • the grip load detection device 10 has a center of gravity in a substantially central portion. Therefore, when the user grips the first end portion 12 side and the second end portion 13 side of the grip load detection device 10 with both hands, the load is evenly applied to each hand.
  • the shape of the sensor 15 is a sheet.
  • the sensor 15 is attached to the inside of the housing 11.
  • the wiring of the sensor 15 cannot be seen from outside the housing 11. Therefore, the grip load detection device 10 has a simple design.
  • the sensor 15 is deformed according to the deformation of the housing 11.
  • the sensor 15 detects deformation of the housing 11 as described in detail below.
  • the sensor 15 may be attached to the outside of the housing 11.
  • the sensor 15 is covered with a protective material such as a resin film.
  • a translucent film such as PET is preferable.
  • the display unit 16 is composed of a thin film display such as an organic EL or an inorganic EL.
  • the shape of the display unit 16 is a sheet.
  • the display unit 16 can be modified.
  • the display unit 16 is disposed in the internal space 19 of the housing 11 in a cylindrically rolled state.
  • the display unit 16 is attached to the sensor 15, for example.
  • the display unit 16 may be attached to the outside of the housing 11. When the sensor 15 is inside the display unit 16, the sensor 15 may be opaque.
  • the microcomputer 17 and the sensor detection circuit 18 are arranged inside the display unit 16 in the internal space 19 of the housing 11.
  • the microcomputer 17 and the sensor detection circuit 18 are covered with the display unit 16 and cannot be visually recognized from the outside. Therefore, the grip load detection device 10 has a simple appearance.
  • the grip load detection device 10 includes a power source (not shown). Like the microcomputer 17, the power supply is arranged inside the display unit 16 in the internal space 19 of the housing 11. The power supply is connected to the microcomputer 17.
  • the microcomputer 17 may include a communication unit (not shown).
  • the communication unit is an interface for receiving a signal input and outputting a signal.
  • the communication unit functionally includes a receiving unit and a transmitting unit.
  • the receiving unit receives information from outside the grip load detection device 10. For example, the receiving unit receives the information to be displayed on the display unit 16.
  • the transmission unit transmits information regarding the detection value of the sensor 15 to the outside of the grip load detection device 10.
  • the sensor detection circuit 18 detects electric charges generated in the sensor 15 due to deformation of the housing 11, as described in detail below.
  • the microcomputer 17 inputs the detection value of the sensor detection circuit 18.
  • the microcomputer 17 displays an image corresponding to the detection value of the sensor detection circuit 18 on the display unit 16.
  • the display unit 16 is not always necessary.
  • the housing 11 is made of a translucent member.
  • the housing 11 is made of a translucent resin.
  • a resin such as acrylic, polycarbonate, PET, vinyl chloride or ABS is preferable.
  • the housing 11 having high transparency can be obtained at low cost.
  • the tough casing 11 can be obtained, the durability of the casing 11 can be improved, and the transparency of the casing 11 becomes high.
  • the grip load detection device 10 looks beautiful.
  • the gripping load detection device 10 can be handled hygienically because dirt can be easily understood. Further, when the sensor 15 has a light-transmitting property, the user can visually recognize the display unit 16 through the housing 11 and the sensor 15. Since the display unit 16 is visible from the outside as described above, the display unit 16 can be arranged inside the housing 11. When the display unit 16 is attached to the outside of the housing 11, the housing 11 may be opaque.
  • the housing 11 has two gripping areas 14.
  • the grip area 14 is a part of the housing 11 on the first end 12 side and the second end 13 side, respectively.
  • the grip area 14 is an area that does not overlap the display unit 16. Therefore, when the user grips the grip area 14, the display unit 16 is kept visible.
  • the case 11 has a tubular shape such as a cylinder. Therefore, the user can easily grasp the housing 11 and easily carry it. Moreover, only components such as a power supply and a circuit are arranged inside the housing 11. Most of the inside of the housing 11 is a cavity. Therefore, the grip load detection device 10 is very light. For example, the user can carry it in a bag or the like. Accordingly, the user can use the grip load detection device 10 without being limited in time or place.
  • the grip load detection device 10 can be used as a health tool that applies a load to the housing 11. For example, the user grips the grip area 14 of the grip load detection device 10 and twists the housing 11. The user can thus perform strength training, for example, using the grip load detection device 10 in this manner.
  • the shape of the housing 11 is not limited to a cylinder, and may be, for example, an elliptical or polygonal cross-sectional shape.
  • the housing 11 may be subjected to a treatment such as slip prevention.
  • the housing 11 is knurled. As a result, the user can easily grip the housing 11 stably and easily apply a large load to the housing 11.
  • the sensor 15 detects the load applied to the housing 11 by the user's grip. The detection method of the sensor 15 will be described in detail below.
  • FIG. 2A is a plan view of the sensor 15 developed in a plane
  • FIG. 2B is a cross-sectional view taken along line II-II of FIG. 2A. Note that, in FIG. 2B, the thickness is increased for convenience of description.
  • FIG. 3A and FIG. 3B are diagrams showing the relationship between the uniaxial stretching direction 900 in the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film.
  • the sensor 15 includes a piezoelectric film 21, a first electrode 22, and a second electrode 23.
  • the piezoelectric film 21 has a first main surface 151 and a second main surface 152.
  • the piezoelectric film 21 includes the first electrode 22 on the first main surface 151 side and the second electrode 23 on the second main surface 152 side.
  • the first electrode 22 and the second electrode 23 any one of ITO, ZnO, silver nanowires, carbon nanotubes, inorganic electrodes such as graphene, PEDOT (polythiophene), and organic electrodes containing polyaniline as a main component are used. It is preferably used. By using such a material, the first electrode 22 and the second electrode 23 can be transparent electrodes.
  • the sensor 15 does not necessarily need to be transparent, and materials such as silver, copper and aluminum may be used. In this case, since the user cannot visually recognize the display unit 16 through the sensor 15, the sensor 15 is arranged inside the display unit 16. Both the sensor 15 and the display unit 16 may be arranged inside or outside the housing 11 in a state where the sensor 15 is arranged inside the display unit 16. Further, the sensor 15 may be provided inside the housing 11 and the display unit 16 may be provided outside the housing 11.
  • the piezoelectric film 21 is formed in a rectangular shape.
  • the piezoelectric film 21 may be a film having piezoelectricity.
  • the piezoelectric film 21 is formed of, for example, uniaxially stretched polylactic acid (PLA) and further L-type polylactic acid (PLLA).
  • the piezoelectric film 21 is made of uniaxially stretched L-type polylactic acid (PLLA).
  • PLLA uniaxially stretched L-type polylactic acid
  • the uniaxial stretching direction of the piezoelectric film 21 will be referred to as a uniaxial stretching direction 900 below. It is preferable that the uniaxial stretching direction 900 forms an angle of 0° or an angle of 90° with respect to the axial direction or the circumferential direction of the housing 11 when attached to the housing 11. However, the angle is not limited to this, and may be designed to be an optimum angle in consideration of the characteristics of the piezoelectric film 21 or the usage state.
  • the uniaxial stretching direction 900 is not limited to 0° with respect to the axial direction or the circumferential direction of the housing 11, and may be approximately 0°.
  • Substantially 0° means an angle including, for example, about 0° ⁇ 10°. These angles are appropriately determined based on the application of the grip load detection device 10 and the overall design such as detection accuracy.
  • the uniaxial stretching direction 900 forms an angle of 90° with the axial direction or the circumferential direction of the housing 11.
  • the uniaxial stretching direction 900 is not limited to an angle of approximately 0° or approximately 90° with respect to the axial direction or the circumferential direction of the housing 11, and any angle may be used as long as deformation can be detected. Even if it exists, it can be adopted in the present invention.
  • the above-mentioned PLLA is a chiral polymer and its main chain has a helical structure.
  • PLLA has piezoelectricity when it is uniaxially stretched and molecules are oriented. Then, the uniaxially stretched PLLA is polarized by deforming the flat film surface of the piezoelectric film 21. At this time, the magnitude of polarization is uniquely determined by the displacement amount by which the flat film surface is displaced in the direction orthogonal to the flat film surface by pressing.
  • the piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
  • Polylactic acid does not need to be subjected to poling treatment unlike other piezoelectric polymers such as PVDF or piezoelectric ceramics, because piezoelectricity is generated by molecular orientation treatment by stretching. That is, the piezoelectricity of PLLA, which does not belong to the ferroelectric substance, is not expressed by the polarization of ions unlike the ferroelectric substance such as PVDF or PZT, but is derived from the helical structure which is the characteristic structure of the molecule. is there.
  • the piezoelectric constant of the uniaxially stretched PLLA is about 5 pC/N or more and 30 pC/N or less, which is a very high piezoelectric constant among polymers.
  • mass-produced PLLA has a piezoelectric constant of about 7 pC/N or more and 10 pC/N or less. Even with such mass-produced PLLA, it is possible to detect minute displacements of several hundred nm or more and several ⁇ m or less with high sensitivity. The detection sensitivity also depends on the size of the polylactic acid used for the sensor, the method of attachment, and the performance of the amplifier.
  • the sensor using PLLA is suitable for use in an object that a living body touches, because it does not generate a signal due to heat and can accurately detect only displacement.
  • the piezoelectric constant fluctuates over time, and the piezoelectric constant may drop significantly in some cases, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, the deformation of the piezoelectric film 21 can be detected with high sensitivity without being affected by the surrounding environment. By using PLLA, the deformation transmitted to the piezoelectric film 21 can be detected reliably and with high sensitivity. Therefore, the deformation applied to the housing 11 can be reliably detected.
  • a draw ratio of 3 to 8 is suitable.
  • crystallization of the extended chain crystal of polylactic acid is promoted and the piezoelectric constant is improved.
  • biaxial stretching the same effect as uniaxial stretching can be obtained by making the stretching ratio of each axis different. For example, when a certain direction is taken as the X axis and stretched 8 times in that direction and twice in the Y axis direction orthogonal to that direction, the piezoelectric constant is approximately 4 times uniaxially stretched in the X axis direction. The same effect can be obtained. Since a film that is simply uniaxially stretched is likely to tear along the stretching axis direction, the strength can be somewhat increased by performing the biaxial stretching as described above.
  • the sensor 15 is not limited to the piezoelectric sensor using PLLA.
  • the sensor 15 may be a piezoelectric sensor using PVDF.
  • the sensor 15 may be a strain sensor.
  • the PVDF piezoelectric sensor or the strain sensor may be arranged so as to detect the torsional deformation (diagonal deformation) of the housing 11.
  • FIG. 4A is a schematic diagram showing an example of the case where the gripping load detection device 10 is twisted and deformed
  • FIG. 4B is the stress generated when the gripping load detection device 10 is twisted and deformed. It is a schematic diagram which shows the result of having simulated. 4A is a perspective view and FIG. 4B is a side view.
  • the user grasps each of the two grasping regions 14 of the grasping load detection device 10 in a normal manner.
  • the user may grip the two gripping areas 14 of the gripping load detection device 10 with the opposite hands.
  • the user may grasp one of the grasping regions 14 of the grasping load detection device 10 with the normal hand and grasp the other with the opposite hand.
  • the user may hold the palms of both hands so as to cover the openings of the first end 12 and the second end 13.
  • the user uses muscles of different arms depending on how to grip the grip load detection device 10. This allows the user to train the muscles of different arms.
  • the user may sandwich and fix one gripping region 14 of the gripping load detection device 10 with the thigh, and grip the other with both hands.
  • the user can perform circuit training by changing how to hold the grip load detection device 10.
  • the user applies torsional deformation to the housing 11 of the grip load detection device 10. That is, the user applies a shearing force to the grip load detection device 10. As a result, the user applies a force in the direction indicated by arrow F1 to the first end 12 side of the housing 11 and a force in the direction indicated by arrow F2 to the second end 13 side of the housing 11.
  • the casing 11 is slightly deformed, for example, about 1 ⁇ m, which is invisible to the user.
  • a compressive stress S1 and a tensile stress S2 are generated in the housing 11.
  • the compressive stress S1 and the tensile stress S2 correspond to the magnitude of torsional deformation applied by the user.
  • the compressive stress S1 and the tensile stress S2 shown in FIGS. 4(A) and 4(B) are representative ones, and similar stresses are present in the axial direction and the circumferential direction of the housing 11. Has also occurred.
  • the sensor 15 deforms together with the deformation of the housing 11. As a result, the piezoelectric film 21 of the sensor 15 is deformed. A compressive stress S1 and a tensile stress S2 are generated in the piezoelectric film 21. The piezoelectric film 21 generates polarization having a magnitude proportional to the compressive stress S1 and the tensile stress S2. As a result, the sensor detection circuit 18 detects electric charges that move to neutralize the generated polarization. That is, the sensor 15 can generate an electric charge according to the magnitude of the deformation of the twist applied by the user.
  • the uniaxial stretching direction 900 of the piezoelectric film 21 forms an angle of 0° with the axial direction of the housing 11.
  • the compressive stress S1 and the tensile stress S2 form an angle of about 45° with respect to the uniaxial stretching direction 900, respectively. Therefore, the piezoelectric film 21 can efficiently generate electric charges.
  • the uniaxial stretching direction 900 of the piezoelectric film 21 forms an angle of 90° with the axial direction of the housing 11, the compressive stress S1 and the tensile stress S2 are respectively relative to the uniaxial stretching direction 900. , Forms an angle of approximately 45 degrees. Therefore, even in this case, the piezoelectric film 21 can efficiently generate electric charges.
  • the sensor detection circuit 18 may include an integration circuit.
  • the sensor detection circuit 18 integrates the charges generated in the piezoelectric film 21 to calculate a voltage value.
  • the microcomputer 17 calculates the voltage value detected by the sensor detection circuit 18 as the size of the deformation of the housing 11, that is, the load applied to the housing 11 by the user. If the sensor detection circuit 18 does not include an integration circuit, the detected charge amount has a value proportional to the deformation speed of the housing 11.
  • the microcomputer 17 displays the calculated load on the display unit 16.
  • the display unit 16 displays the load applied to the housing 11 in a graph.
  • the display unit 16 can visually show the load applied to the housing 11 to the user.
  • the display unit 16 may visually show the load in various modes other than the graph display.
  • the display unit 16 displays so that the color changes according to the load. In this case, the display unit 16 displays blue when the load is weak, changes from green to yellow by gradually increasing the load, and displays red when the load is very strong.
  • the display unit 16 may display the load by using numbers, letters, or symbols.
  • the display unit 16 may display an image in which the housing 11 is distorted in a pseudo manner as one display mode.
  • the display unit 16 displays an image of twisting the housing 11 in a spiral shape, an image of squeezing a cloth, an image of twisting a bundle of strings like a rope, or the like according to the magnitude of the detected force. Good.
  • the user has the illusion that he or she is exerting force on what is displayed on the display unit 16. For this reason, the user feels that the housing 11 is twisted, and thus can perform training while feeling the applied load.
  • the display unit 16 may display an image in which something is destroyed according to the force applied to the housing 11.
  • the microcomputer 17 displays on the display unit 16 a target object (for example, ice) to be destroyed by the user and an instruction to the user to destroy the target object.
  • the microcomputer 17 displays on the display unit 16 how the target object is destroyed according to the load applied to the housing 11 by the user. As a result, the user feels a kind of illusion as if the target object was actually destroyed.
  • the grip load detection device 10 can guide the user's load on the housing 11 by displaying an image on the display unit 16 so that the user naturally applies force.
  • the easiness of destroying the target object displayed on the display unit 16 can be changed according to the level of the user or the level of training.
  • the user can confirm the load applied to the housing 11 from the display unit 16. Therefore, the user can perform training while adjusting the load. Further, since the grip load detection device 10 displays the load detected by the sensor detection circuit 18 to the user, the grip load detection device 10 can be performed while enjoying the training. For example, even when the user performs isometric training in which the user needs to apply a predetermined load to the muscle for a certain period of time, the user can easily maintain the concentration.
  • the display unit 16 does not have to be built in the grip load detection device 10.
  • the image may be displayed on an information processing device such as a smartphone carried by the user.
  • the microcomputer 17 transmits information regarding the detection value of the sensor 15 to the smartphone.
  • the smartphone displays the information transmitted by the grip load detection device 10. This allows the user to check the training status on the smartphone. In this case, the user does not need to hold the grip load detection device 10 in front of the face.
  • the grip load detection device 10 may include a speaker in addition to the display unit 16 or in place of the display unit 16.
  • the speaker emits a sound according to the detected load magnitude.
  • the grip load detection device 10 includes a speaker in addition to the display unit 16, the speaker may emit a sound linked to the image. In this case, the user is more likely to have the illusion of exerting a force on the object displayed on the display unit 16. Further, the speaker may emit a sound whose volume is changed according to the magnitude of the detected load, or may emit a sound whose height is changed.
  • the grip load detection device 10 can use the grip load detection device 10 as a kind of musical instrument. For example, the user can play music by changing the way of exerting force in accordance with the instruction displayed on the display unit 16. The user can perform strength training like a game while using the grip load detection device 10.
  • the display unit 16 may display characters such as "work hard” and "Fight! according to the amount of load on the housing 11 of the user or the duration.
  • the microcomputer 17 compares the detection value of the sensor detection circuit 18 with a predetermined threshold value stored in a built-in memory (not shown) of the microcomputer 17. When the microcomputer 17 determines that the detected value is less than or equal to the predetermined threshold value, the display unit 16 displays “a little more”. This allows the user to know that the load applied to the housing 11 is insufficient. On the contrary, when the microcomputer 17 determines that the detected value is larger than the predetermined threshold value, the display unit 16 displays “OK”. The user can know that the load applied to the housing 11 is sufficient. Further, the display unit 16 may display the time required for training the user. The user can know the time required for training. In this way, the grip load detection device 10 can support the training of the user.
  • the grip load detection device 10 may communicate with the server.
  • the communication unit of the microcomputer 17 transmits information regarding the detection value of the sensor 15 to the server managed by the provider of the grip load detection device 10.
  • the provider of the grip load detection device 10 is, for example, a gym or a sales company of the grip load detection device 10.
  • the server receives information about the detection value of the sensor 15.
  • the server analyzes the received information. For example, the server calculates the training state of the user (for example, the total amount of exercise per day or the calorie consumption) from the detection value of the sensor 15.
  • the gym instructor creates an advice message by looking at the training status of the customer user.
  • the server transmits the message created by the instructor to the grip load detection device 10.
  • the grip load detection device 10 receives a message from the server. That is, the grip load detection device 10 receives information according to the transmitted information.
  • the display unit 16 displays the message received from the server.
  • the user can receive training support by checking the displayed message. In this way, the grip load detection device 10 can support the training of the user by communicating with an external server or the like.
  • the information transmitted from the server may be points according to the training state of the user.
  • the provider of the grip load detection device 10 may construct a system that provides some benefit to the user depending on the points. The user is prompted to train by confirming the points.
  • the grip load detection device 10 may be one that detects a body tremor.
  • Biological tremor is a physiological phenomenon, which is a mechanical microvibration of muscles.
  • the body tremor is transmitted to the piezoelectric film 21.
  • the microcomputer 17 determines that the user is in contact with the housing 11.
  • the microcomputer 17 calculates the load only when the biological tremor is detected. Therefore, the microcomputer 17 can reduce unnecessary power consumption.
  • the grip load detection device 10 can be used, for example, as a health assistance device that lowers blood pressure.
  • a health assistance device that lowers blood pressure.
  • hypertensive diseases it is known that the effect of lowering blood pressure is obtained by repeating light exercises such as gently holding a towel.
  • the grip load detection device 10 displays a warning on the display unit 16 when the user applies a load equal to or higher than a predetermined load to the housing 11.
  • the user can know that the load applied to the housing 11 is too strong, that is, the load is excessive. Therefore, the user can know how to apply an appropriate light load, and can exercise to lower the blood pressure.
  • FIG. 5A is a schematic diagram illustrating a combination with the charging stand 51 as an application example of the gripping load detection device 10
  • FIG. 5B is a gripping load detection device 10 during charging on the charging stand 51. It is a schematic diagram which shows.
  • the charging stand 51 is formed in a substantially cylindrical shape so that the grip load detection device 10 can be inserted therein.
  • the charging stand 51 has a pin 55 that can be connected to the grip load detection device 10.
  • the grip load detection device 10 has a charging pin (not shown) inside the housing 11.
  • the grip load detection device 10 When the grip load detection device 10 is inserted into the charging base 51, the charging pin of the grip load detection device 10 and the pin 55 of the charging base 51 are electrically connected.
  • the grip load detection device 10 does not need to be directly connected to the charging stand 51.
  • the grip load detection device 10 may be charged by a non-contact type charging method using electromagnetic induction.
  • the display unit 16 may display information during charging of the grip load detection device 10.
  • the display unit 16 may display, for example, the training state of the user of the day or the current number of points. This allows the user to know the training status and the like.
  • the display unit 16 may also display information that is not related to the training status of the user.
  • the display unit 16 can display the information received by the communication unit of the microcomputer 17.
  • the display unit 16 may display information such as an image or video selected by the user.
  • the image or video displays, for example, news, advertisements, pictures registered by the user, or notifications or instructions from a training gym or the like. This allows the user to use the grip load detection device 10 as an interior or as a monitor.
  • FIG. 6A is a perspective view showing the configuration of the grip load detection device 20 according to the second embodiment
  • FIG. 6B is a sectional view taken along the line III-III of FIG. 6A.
  • the grip portion 65 is shown in a broken line and in a transparent form.
  • the description of the second embodiment the description of the same structure as the first embodiment will be omitted.
  • the grip load detection device 20 includes a housing 61 and a grip 65.
  • the grip portion 65 is arranged in the grip area 14 on the outer periphery of the housing 61.
  • the housing 61 is formed such that its central portion has a smaller cross-sectional area than the gripping area 14.
  • the gripping area 14 of the gripping load detection device 20 is formed to have a thickness that is easy for the user to grip. This makes it easy for the user to grip the grip load detection device 20 and to apply force.
  • the grip 65 includes a sensor 63 and a protective film 64.
  • the sensor 63 is attached to the outer periphery of the housing 61. Therefore, the sensor 63 can be easily attached to and detached from the housing 61.
  • the protective film 64 is laminated and attached to the sensor 63 so as to cover the sensor 63.
  • the sensor 63 detects the load applied by the user via the protective film 64.
  • the sensor 63 is covered by the user's hand. Therefore, the sensor 63 and the protective film 64 do not have to have a light-transmitting property. Therefore, the material of the sensor 63 can be widely selected. Further, the housing 61 only needs to have a light-transmitting property in the central portion, and the grip region 14 does not need to have a light-transmitting property.
  • the grip portion 65 may be subjected to a treatment such as slip prevention.
  • the casing 61 may be directly knurled.
  • the sensor 63 may be sprinkled with a tape such as used for a tennis or badminton racket. This makes it easier for the user to stably grip the housing 61.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rehabilitation Tools (AREA)

Abstract

A grip load detection device (10, 20) characterized by comprising: a tubular casing (11, 61) to be gripped by a user; and a sensor (15, 63) attached to the casing (11, 61), for detecting load applied to the casing (11, 61) when gripped by the user.

Description

把持負荷検出デバイスGrip load detection device
 本発明は、ユーザが把持した状態でかけた負荷を検出する把持負荷検出デバイスに関する。 The present invention relates to a grip load detection device that detects a load applied by a user in a gripped state.
 特許文献1は、手持式アイソメトリックエクササイズ装置を開示している。特許文献1に開示の手持式アイソメトリックエクササイズ装置は、ユーザにより該装置の表面に対して付勢するような力が加えられる。加えられた荷重は、ロードセルに伝達する。これにより、ロードセルは、ユーザにより該装置に加えられた力を検出する。 Patent Document 1 discloses a hand-held isometric exercise device. In the hand-held isometric exercise device disclosed in Patent Document 1, a user applies a force to the surface of the device. The applied load is transmitted to the load cell. This causes the load cell to detect the force applied to the device by the user.
特開2009-95651号公報JP, 2009-95651, A
 一般的に負荷を検出する装置として、例えば、ユーザの握力等を検出するような健康器具がある。健康器具は、例えば、トレーニングジム、家庭、又は病院等の室内で使用されている。このような健康器具は、重く嵩張るため、携帯して持ち運びし難い。このため、携帯し易く、かつ簡単に使用できる健康器具が望まれている。 As a device that generally detects the load, for example, there is a health appliance that detects the gripping force of the user. The fitness equipment is used, for example, in a training gym, a home, or a room such as a hospital. Since such health appliances are heavy and bulky, they are difficult to carry and carry. Therefore, a health appliance that is easy to carry and easy to use is desired.
 そこで、この発明は、携帯し易く、かつ簡単に使用できる把持負荷検出デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a gripping load detection device that is easy to carry and easy to use.
 本発明の把持負荷検出デバイスは、ユーザが把持する筒状の筐体と、前記筐体に貼り付けられ、前記ユーザの把持によって前記筐体にかかる負荷を検出するセンサと、を備えることを特徴とする。 The grip load detection device of the present invention includes a cylindrical housing that a user grips, and a sensor that is attached to the housing and that detects a load applied to the housing by the grip of the user. And
 本発明に係る把持負荷検出デバイスの筐体は、筒状である。このため、ユーザは筐体を把持し易く、かつ持ち運びし易い。また、ユーザは、筒状の筐体を把持した状態で負荷をかけやすい。例えば、ユーザは、筐体を軽く握る、又は捻る等の簡単な動作で筐体に負荷をかけることができる。最も強い負荷は、ユーザが筐体の両端をそれぞれ強く握った状態での捻り動作である。また、センサは、筒状の筐体に貼りつけられているため、筐体に与えられた負荷を検出することができる。これにより、ユーザは、本発明に係る把持負荷検出デバイスを簡単な動作によって使用することができる。 The casing of the grip load detection device according to the present invention is tubular. Therefore, the user can easily hold the case and carry it around. In addition, the user easily applies a load while holding the tubular casing. For example, the user can apply a load to the housing by a simple operation such as grasping or twisting the housing lightly. The strongest load is the twisting motion when the user strongly grips both ends of the housing. Further, since the sensor is attached to the cylindrical casing, the load applied to the casing can be detected. This allows the user to use the gripping load detection device according to the present invention with a simple operation.
 この発明によれば、携帯し易く、かつ簡単に使用できる。 According to this invention, it is easy to carry and easy to use.
図1(A)は、第1実施形態に係る把持負荷検出デバイスの構成を示す斜視図であり、図1(B)は、図1(A)のI-I線における断面図である。1A is a perspective view showing the configuration of the grip load detection device according to the first embodiment, and FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A. 図2(A)は、第1実施形態に係るセンサを平面状に展開した平面図であり、図2(B)は、図2(A)のII-II線における断面図である。FIG. 2A is a plan view in which the sensor according to the first embodiment is developed in a planar shape, and FIG. 2B is a cross-sectional view taken along the line II-II in FIG. 2A. 図3(A)及び図3(B)は、ポリ乳酸のフィルムにおける一軸延伸方向と、電場方向と、ポリ乳酸フィルムの変形と、の関係を示す図である。FIG. 3A and FIG. 3B are diagrams showing the relationship among the uniaxial stretching direction in the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film. (A)は、第1実施形態に係る把持負荷検出デバイスにねじり変形を加える場合の一例を示す模式図であり、図4(B)は、第1実施形態に係る把持負荷検出デバイスにねじり変形を加えた場合に発生する応力をシミュレーションした結果を示す模式図である。FIG. 4A is a schematic diagram showing an example in which a twisting deformation is applied to the gripping load detection device according to the first embodiment, and FIG. 4B is a twisting deformation in the gripping load detection device according to the first embodiment. It is a schematic diagram which shows the result of having simulated the stress which arises when adding. 図5(A)は、第1実施形態に係る把持負荷検出デバイスの応用例として、充電台との組み合わせについて説明する模式図であり、図5(B)は、充電台で充電中の第1実施形態に係る把持負荷検出デバイスについて説明する模式図である。FIG. 5(A) is a schematic diagram illustrating a combination with a charging stand as an application example of the grip load detection device according to the first embodiment, and FIG. 5(B) is a first diagram during charging on the charging stand. It is a schematic diagram explaining the grip load detection device which concerns on embodiment. 図6(A)は、第2実施形態に係る把持負荷検出デバイスの構成を示す斜視図であり、図6(B)は、図6(A)のIII-III線における断面図である。FIG. 6A is a perspective view showing the configuration of the grip load detection device according to the second embodiment, and FIG. 6B is a sectional view taken along the line III-III of FIG. 6A.
 図1(A)は、第1実施形態に係る把持負荷検出デバイス10の構成を示す斜視図であり、図1(B)は、図1(A)のI-I線における把持負荷検出デバイス10の断面図である。なお、図1(A)において、センサ15は破線で表している。図1(A)及び図1(B)において、配線などは省略している。 FIG. 1A is a perspective view showing the configuration of the grip load detection device 10 according to the first embodiment, and FIG. 1B is the grip load detection device 10 taken along the line II of FIG. 1A. FIG. Note that in FIG. 1A, the sensor 15 is indicated by a broken line. Wiring and the like are omitted in FIGS. 1A and 1B.
 図1(A)及び図1(B)に示すように、把持負荷検出デバイス10は、筐体11、センサ15、表示部16、マイクロコンピュータ(以下、マイコンと称する。)17、及びセンサ用検出回路18を備える。筐体11は、第1端部12及び第2端部13を有する。筐体11の形状は、筒状である。筐体11は、第1端部12から第2端部13に亘る内部空間19を有する。筐体11の第1端部12及び第2端部13側は、開口している。ただし、筐体11の第1端部12及び第2端部13側は、閉じられていてもよい。 As shown in FIGS. 1A and 1B, the grip load detection device 10 includes a housing 11, a sensor 15, a display unit 16, a microcomputer (hereinafter, referred to as a microcomputer) 17, and sensor detection. A circuit 18 is provided. The housing 11 has a first end 12 and a second end 13. The housing 11 has a tubular shape. The housing 11 has an internal space 19 extending from the first end 12 to the second end 13. The housing 11 is open on the side of the first end 12 and the second end 13. However, the first end 12 and the second end 13 sides of the housing 11 may be closed.
 センサ15及び表示部16は、筐体11の軸方向における中央部分に配置されている。把持負荷検出デバイス10は、略中央部分に重心を有する。このため、ユーザは、把持負荷検出デバイス10の第1端部12側及び第2端部13側を両手で把持した際に、それぞれの手に均等に荷重を受ける。 The sensor 15 and the display unit 16 are arranged in the central portion of the housing 11 in the axial direction. The grip load detection device 10 has a center of gravity in a substantially central portion. Therefore, when the user grips the first end portion 12 side and the second end portion 13 side of the grip load detection device 10 with both hands, the load is evenly applied to each hand.
 センサ15の形状は、シート状である。センサ15は、筐体11の内側に貼り付けられている。センサ15の配線は、筐体11の外部から見えない。従って、把持負荷検出デバイス10は、シンプルなデザインとなる。また、センサ15は、筐体11の変形に応じて変形する。センサ15は、以下で詳細に説明するように筐体11の変形を検知するものである。 The shape of the sensor 15 is a sheet. The sensor 15 is attached to the inside of the housing 11. The wiring of the sensor 15 cannot be seen from outside the housing 11. Therefore, the grip load detection device 10 has a simple design. Moreover, the sensor 15 is deformed according to the deformation of the housing 11. The sensor 15 detects deformation of the housing 11 as described in detail below.
 なお、センサ15は、筐体11の外側に貼りつけられていてもよい。この場合、センサ15は、例えば樹脂から成るフィルム等の保護材で覆われる。センサ15を覆う保護材としては、例えばPET等のような透光性を有するフィルムが好ましい。 The sensor 15 may be attached to the outside of the housing 11. In this case, the sensor 15 is covered with a protective material such as a resin film. As the protective material for covering the sensor 15, a translucent film such as PET is preferable.
 表示部16は、有機EL又は無機EL等の薄膜ディスプレイからなる。表示部16の形状は、シート状である。表示部16は変形可能である。表示部16は、筐体11の内部空間19に筒状に丸めた状態で配置されている。表示部16は、例えば、センサ15に貼りつけられている。なお、表示部16は、筐体11の外側に貼り付けられていてもよい。センサ15が表示部16の内側にある場合には、センサ15は不透明であってもよい。 The display unit 16 is composed of a thin film display such as an organic EL or an inorganic EL. The shape of the display unit 16 is a sheet. The display unit 16 can be modified. The display unit 16 is disposed in the internal space 19 of the housing 11 in a cylindrically rolled state. The display unit 16 is attached to the sensor 15, for example. The display unit 16 may be attached to the outside of the housing 11. When the sensor 15 is inside the display unit 16, the sensor 15 may be opaque.
 マイコン17及びセンサ用検出回路18は、筐体11の内部空間19のうち表示部16の内側に配置されている。マイコン17及びセンサ用検出回路18は、表示部16で覆われ、外部から視認できない。従って、把持負荷検出デバイス10は、シンプルな外観になる。 The microcomputer 17 and the sensor detection circuit 18 are arranged inside the display unit 16 in the internal space 19 of the housing 11. The microcomputer 17 and the sensor detection circuit 18 are covered with the display unit 16 and cannot be visually recognized from the outside. Therefore, the grip load detection device 10 has a simple appearance.
 把持負荷検出デバイス10は、不図示の電源を備えている。電源は、マイコン17と同様に筐体11の内部空間19のうち表示部16の内側に配置されている。電源は、マイコン17と接続されている。 The grip load detection device 10 includes a power source (not shown). Like the microcomputer 17, the power supply is arranged inside the display unit 16 in the internal space 19 of the housing 11. The power supply is connected to the microcomputer 17.
 マイコン17は、不図示の通信部を備えていてもよい。通信部は、信号の入力を受け付け、信号を出力するためのインタフェースである。通信部は、機能的に受信部及び送信部を備える。受信部は、把持負荷検出デバイス10の外部から情報を受信する。例えば、受信部は、表示部16で表示すべき情報を受信する。また、送信部は、センサ15の検出値に関する情報を把持負荷検出デバイス10の外部へ送信する。 The microcomputer 17 may include a communication unit (not shown). The communication unit is an interface for receiving a signal input and outputting a signal. The communication unit functionally includes a receiving unit and a transmitting unit. The receiving unit receives information from outside the grip load detection device 10. For example, the receiving unit receives the information to be displayed on the display unit 16. In addition, the transmission unit transmits information regarding the detection value of the sensor 15 to the outside of the grip load detection device 10.
 センサ用検出回路18は、以下に詳細に説明するように筐体11の変形によってセンサ15に生じる電荷を検出する。マイコン17は、センサ用検出回路18の検出値を入力する。マイコン17は、センサ用検出回路18の検出値に対応する画像を表示部16に表示する。なお、表示部16は、必ずしも必要な構成ではない。 The sensor detection circuit 18 detects electric charges generated in the sensor 15 due to deformation of the housing 11, as described in detail below. The microcomputer 17 inputs the detection value of the sensor detection circuit 18. The microcomputer 17 displays an image corresponding to the detection value of the sensor detection circuit 18 on the display unit 16. The display unit 16 is not always necessary.
 筐体11は、透光性を有する部材からなる。例えば、筐体11は、透光性を有する樹脂で構成される。透光性を有する樹脂としては、例えば、アクリル、ポリカーボネイト、PET、塩化ビニル、又はABS等の樹脂が好ましい。筐体11を構成する樹脂として上記樹脂を用いると、透明度の高い筐体11が安価に得られる。さらに、筐体11を構成する樹脂としてアクリル樹脂を用いることがより好ましい。筐体11を構成する樹脂としてアクリル樹脂を用いることにより、強靭な筐体11が得られ、筐体11の耐久性を向上させることができ、かつ筐体11の透明度が高くなる。筐体11が高い透明度を有すると、把持負荷検出デバイス10は、見た目に美しくなる。また、把持負荷検出デバイス10は、汚れが解り易くなるため衛生的に扱える。さらに、センサ15が透光性を有する場合、ユーザは、筐体11及びセンサ15を通して表示部16を視認できる。このように表示部16は外部から視認可能であるため、筐体11の内部に配置することができる。表示部16が筐体11の外側に貼り付けられる場合には、筐体11は不透明であってもよい。 The housing 11 is made of a translucent member. For example, the housing 11 is made of a translucent resin. As the translucent resin, for example, a resin such as acrylic, polycarbonate, PET, vinyl chloride or ABS is preferable. When the above resin is used as the resin forming the housing 11, the housing 11 having high transparency can be obtained at low cost. Furthermore, it is more preferable to use an acrylic resin as the resin forming the housing 11. By using the acrylic resin as the resin forming the casing 11, the tough casing 11 can be obtained, the durability of the casing 11 can be improved, and the transparency of the casing 11 becomes high. When the housing 11 has a high degree of transparency, the grip load detection device 10 looks beautiful. Further, the gripping load detection device 10 can be handled hygienically because dirt can be easily understood. Further, when the sensor 15 has a light-transmitting property, the user can visually recognize the display unit 16 through the housing 11 and the sensor 15. Since the display unit 16 is visible from the outside as described above, the display unit 16 can be arranged inside the housing 11. When the display unit 16 is attached to the outside of the housing 11, the housing 11 may be opaque.
 筐体11は、二つの把持領域14を有する。把持領域14は、それぞれ筐体11における第1端部12側及び第2端部13側の一部である。把持領域14は、表示部16と重ならない領域である。このため、ユーザが把持領域14を把持したとき、表示部16は可視可能に保たれる。 The housing 11 has two gripping areas 14. The grip area 14 is a part of the housing 11 on the first end 12 side and the second end 13 side, respectively. The grip area 14 is an area that does not overlap the display unit 16. Therefore, when the user grips the grip area 14, the display unit 16 is kept visible.
 筐体11の形状は、例えば円筒のような筒状である。このため、ユーザは、筐体11を把持し易く、かつ持ち運びし易い。また、筐体11の内部には電源及び回路等の部品が配置されているだけである。筐体11の内部の大半は、空洞である。そのため、把持負荷検出デバイス10は、非常に軽い。例えば、ユーザは、かばん等に入れて持ち運ぶことができる。これにより、ユーザは、時間又は場所を制限されることなく把持負荷検出デバイス10を使用することができる。把持負荷検出デバイス10は、筐体11に負荷をかける健康器具として用いることができる。例えば、ユーザは、把持負荷検出デバイス10の把持領域14を把持して、筐体11を捻る動作を行う。ユーザは、この様に把持負荷検出デバイス10を用いて、例えば筋力トレーニングを行うことができる。 The case 11 has a tubular shape such as a cylinder. Therefore, the user can easily grasp the housing 11 and easily carry it. Moreover, only components such as a power supply and a circuit are arranged inside the housing 11. Most of the inside of the housing 11 is a cavity. Therefore, the grip load detection device 10 is very light. For example, the user can carry it in a bag or the like. Accordingly, the user can use the grip load detection device 10 without being limited in time or place. The grip load detection device 10 can be used as a health tool that applies a load to the housing 11. For example, the user grips the grip area 14 of the grip load detection device 10 and twists the housing 11. The user can thus perform strength training, for example, using the grip load detection device 10 in this manner.
 なお、筐体11の形状は、円筒に限ることなく、例えば楕円、又は多角形の断面形状であってもよい。筐体11が多角形の場合、円筒に比べて手が滑りにくくなる。また、筐体11は、滑り止め等の処理が施されていてもよい。例えば、筐体11は、ローレット加工を施されている。これにより、ユーザは、筐体11を安定して把持し易く、筐体11に大きな負荷をかけ易くなる。 The shape of the housing 11 is not limited to a cylinder, and may be, for example, an elliptical or polygonal cross-sectional shape. When the housing 11 has a polygonal shape, the hand is less likely to slip than a cylinder. Further, the housing 11 may be subjected to a treatment such as slip prevention. For example, the housing 11 is knurled. As a result, the user can easily grip the housing 11 stably and easily apply a large load to the housing 11.
 センサ15は、ユーザの把持によって筐体11にかかる負荷を検出する。センサ15の検出方法については、以下で詳細に説明する。 The sensor 15 detects the load applied to the housing 11 by the user's grip. The detection method of the sensor 15 will be described in detail below.
 図2(A)は、センサ15を平面状に展開した平面図であり、図2(B)は、図2(A)のII-II線における断面図である。なお、図2(B)は、説明の便宜上、厚みを増して表している。図3(A)及び図3(B)は、ポリ乳酸のフィルムにおける一軸延伸方向900と、電場方向と、ポリ乳酸フィルムの変形と、の関係を示す図である。 2A is a plan view of the sensor 15 developed in a plane, and FIG. 2B is a cross-sectional view taken along line II-II of FIG. 2A. Note that, in FIG. 2B, the thickness is increased for convenience of description. FIG. 3A and FIG. 3B are diagrams showing the relationship between the uniaxial stretching direction 900 in the polylactic acid film, the electric field direction, and the deformation of the polylactic acid film.
 図2(A)及び図2(B)に示すように、センサ15は、圧電フィルム21、第1電極22、及び第2電極23を備える。圧電フィルム21は、第1主面151及び第2主面152を有する。圧電フィルム21は、第1主面151側に第1電極22を、第2主面152側に第2電極23を、それぞれ備える。 As shown in FIGS. 2A and 2B, the sensor 15 includes a piezoelectric film 21, a first electrode 22, and a second electrode 23. The piezoelectric film 21 has a first main surface 151 and a second main surface 152. The piezoelectric film 21 includes the first electrode 22 on the first main surface 151 side and the second electrode 23 on the second main surface 152 side.
 第1電極22及び第2電極23としては、ITO、ZnO、銀ナノワイヤ、カーボンナノチューブ、グラフェン等の無機系の電極、PEDOT(ポリチオフェン)、ポリアニリン等を主成分とする有機系の電極のいずれかを用いるのが好適である。このような材料を用いることで、第1電極22及び第2電極23を透明な透明電極とすることができる。なお、センサ15は必ずしも透明である必要はなく、銀、銅及びアルミなどの材料を使用してもよい。この場合、ユーザはセンサ15を通して表示部16を視認できないため、センサ15は、表示部16の内側になるように配置される。センサ15が表示部16の内側になるように配置された状態で、センサ15及び表示部16の双方が、筐体11の内部又は外部に配置されていてもよい。また、センサ15が筐体11の内部にあって、表示部16が筐体11の外部に配置されていてもよい。 As the first electrode 22 and the second electrode 23, any one of ITO, ZnO, silver nanowires, carbon nanotubes, inorganic electrodes such as graphene, PEDOT (polythiophene), and organic electrodes containing polyaniline as a main component are used. It is preferably used. By using such a material, the first electrode 22 and the second electrode 23 can be transparent electrodes. The sensor 15 does not necessarily need to be transparent, and materials such as silver, copper and aluminum may be used. In this case, since the user cannot visually recognize the display unit 16 through the sensor 15, the sensor 15 is arranged inside the display unit 16. Both the sensor 15 and the display unit 16 may be arranged inside or outside the housing 11 in a state where the sensor 15 is arranged inside the display unit 16. Further, the sensor 15 may be provided inside the housing 11 and the display unit 16 may be provided outside the housing 11.
 圧電フィルム21は、矩形状に形成されている。圧電フィルム21は、圧電性を有するフィルムであればよい。圧電フィルム21は、例えば、一軸延伸されたポリ乳酸(PLA)、さらにはL型ポリ乳酸(PLLA)によって形成されている。 The piezoelectric film 21 is formed in a rectangular shape. The piezoelectric film 21 may be a film having piezoelectricity. The piezoelectric film 21 is formed of, for example, uniaxially stretched polylactic acid (PLA) and further L-type polylactic acid (PLLA).
 本実施形態では、圧電フィルム21は、一軸延伸されたL型ポリ乳酸(PLLA)によって形成されている。圧電フィルム21は、筐体11に貼りつけた際に、筐体11の軸方向にほぼ沿った方向に一軸延伸されている(図4(A)及び図4(B)に示す白抜矢印参照)。 In this embodiment, the piezoelectric film 21 is made of uniaxially stretched L-type polylactic acid (PLLA). When the piezoelectric film 21 is attached to the housing 11, it is uniaxially stretched in a direction substantially along the axial direction of the housing 11 (see white arrows shown in FIGS. 4A and 4B). ).
 圧電フィルム21の一軸延伸方向を、以下では、一軸延伸方向900と称する。一軸延伸方向900は、筐体11に貼りつけた際に、筐体11の軸方向又は周方向に対して0°の角度又は90°の角度を成すことが好ましい。ただし、角度はこれに限るものではなく、圧電フィルム21の特性又は使用状態に鑑みて最適な角度に設計すればよい。 The uniaxial stretching direction of the piezoelectric film 21 will be referred to as a uniaxial stretching direction 900 below. It is preferable that the uniaxial stretching direction 900 forms an angle of 0° or an angle of 90° with respect to the axial direction or the circumferential direction of the housing 11 when attached to the housing 11. However, the angle is not limited to this, and may be designed to be an optimum angle in consideration of the characteristics of the piezoelectric film 21 or the usage state.
 なお、一軸延伸方向900は筐体11の軸方向又は周方向に対して正確な0°に限ることなく、略0°でもよい。略0°とは、例えば0°±10°程度を含む角度をいう。これらの角度は、把持負荷検出デバイス10の用途に基づき、検知精度など全体の設計に応じて、適宜決定される。一軸延伸方向900が、筐体11の軸方向又は周方向に対して90°の角度を成す場合も同様である。また、一軸延伸方向900は、筐体11の軸方向又は周方向に対して略0°又は略90°の角度に限ることなく、変形を検出することができる場合であれば、いずれの角度であっても本発明に採用され得る。 Note that the uniaxial stretching direction 900 is not limited to 0° with respect to the axial direction or the circumferential direction of the housing 11, and may be approximately 0°. Substantially 0° means an angle including, for example, about 0°±10°. These angles are appropriately determined based on the application of the grip load detection device 10 and the overall design such as detection accuracy. The same applies when the uniaxial stretching direction 900 forms an angle of 90° with the axial direction or the circumferential direction of the housing 11. Further, the uniaxial stretching direction 900 is not limited to an angle of approximately 0° or approximately 90° with respect to the axial direction or the circumferential direction of the housing 11, and any angle may be used as long as deformation can be detected. Even if it exists, it can be adopted in the present invention.
 前述のPLLAは、キラル高分子であり、主鎖が螺旋構造を有する。PLLAは、一軸延伸され、分子が配向すると、圧電性を有する。そして、一軸延伸されたPLLAは、圧電フィルム21の平膜面が変形されることにより、分極する。この際、分極の大きさは、押圧により平膜面が、当該平膜面に直交する方向へ変位する変位量によって一意的に決定される。一軸延伸されたPLLAの圧電定数は、高分子中で非常に高い部類に属する。 The above-mentioned PLLA is a chiral polymer and its main chain has a helical structure. PLLA has piezoelectricity when it is uniaxially stretched and molecules are oriented. Then, the uniaxially stretched PLLA is polarized by deforming the flat film surface of the piezoelectric film 21. At this time, the magnitude of polarization is uniquely determined by the displacement amount by which the flat film surface is displaced in the direction orthogonal to the flat film surface by pressing. The piezoelectric constant of uniaxially stretched PLLA belongs to a very high class among polymers.
 図3(A)に示すように、圧電フィルム21は、第1対角線910Aの方向に縮み、第1対角線910Aに直交する第2対角線910Bの方向に伸びると、紙面の裏側から表側に向く方向に電場を生じる。すなわち、圧電フィルム21は、厚さ方向の中立面を0電位と定義した場合、紙面表側では負の電位が発生する。圧電フィルム21は、図3(B)に示すように、第1対角線910Aの方向に伸び、第2対角線910Bの方向に縮む場合も、電荷を発生するが、極性が逆になり、紙面の表面から裏側に向く方向に電場を生じる。すなわち、圧電フィルム21は、紙面表側では、正の電位が発生する。 As shown in FIG. 3A, when the piezoelectric film 21 contracts in the direction of the first diagonal 910A and extends in the direction of the second diagonal 910B orthogonal to the first diagonal 910A, it extends from the back side of the paper to the front side. Generate an electric field. That is, in the piezoelectric film 21, when the neutral plane in the thickness direction is defined as 0 potential, a negative potential is generated on the front side of the paper. As shown in FIG. 3B, when the piezoelectric film 21 extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, electric charges are generated, but the polarity is reversed and the surface of the paper surface An electric field is generated in the direction from to the back side. That is, the piezoelectric film 21 generates a positive potential on the front side of the paper.
 ポリ乳酸は、延伸による分子の配向処理で圧電性が生じるため、PVDF等の他の圧電性ポリマー又は圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDF又はPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。一軸延伸されたPLLAの圧電定数は、5pC/N以上30pC/N以下程度であり、高分子の中では非常に高い圧電定数を有する。一般的に量産されているPLLAの圧電定数は、7pC/N以上10pC/N以下程度である。このような量産されているPLLAでも、数百nm以上数μm以下前後の微小な変位を感度よく検知することができる。検知感度は、センサに用いるポリ乳酸のサイズ、貼り付け方、アンプの性能によっても変わる。 Polylactic acid does not need to be subjected to poling treatment unlike other piezoelectric polymers such as PVDF or piezoelectric ceramics, because piezoelectricity is generated by molecular orientation treatment by stretching. That is, the piezoelectricity of PLLA, which does not belong to the ferroelectric substance, is not expressed by the polarization of ions unlike the ferroelectric substance such as PVDF or PZT, but is derived from the helical structure which is the characteristic structure of the molecule. is there. The piezoelectric constant of the uniaxially stretched PLLA is about 5 pC/N or more and 30 pC/N or less, which is a very high piezoelectric constant among polymers. Generally, mass-produced PLLA has a piezoelectric constant of about 7 pC/N or more and 10 pC/N or less. Even with such mass-produced PLLA, it is possible to detect minute displacements of several hundred nm or more and several μm or less with high sensitivity. The detection sensitivity also depends on the size of the polylactic acid used for the sensor, the method of attachment, and the performance of the amplifier.
 PLLAには、自発分極が存在せず強誘電性を示さない。このため、他の強誘電性の圧電体で生じる焦電性が生じない。従って、PLLAを用いたセンサは、熱による信号の発生が無く、正確に変位のみを検出できるため、生体が触れる物に用いるのに好適である。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。このため、周囲環境に影響されることなく、圧電フィルム21の変形を高感度に検出することができる。PLLAを用いることで、圧電フィルム21に伝導される変形を確実且つ高感度に検出することができる。従って、筐体11に負荷された変形を確実に検出することができる。 PLLA has no spontaneous polarization and does not exhibit ferroelectricity. Therefore, the pyroelectricity that occurs in other ferroelectric piezoelectric materials does not occur. Therefore, the sensor using PLLA is suitable for use in an object that a living body touches, because it does not generate a signal due to heat and can accurately detect only displacement. Further, in PVDF and the like, the piezoelectric constant fluctuates over time, and the piezoelectric constant may drop significantly in some cases, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, the deformation of the piezoelectric film 21 can be detected with high sensitivity without being affected by the surrounding environment. By using PLLA, the deformation transmitted to the piezoelectric film 21 can be detected reliably and with high sensitivity. Therefore, the deformation applied to the housing 11 can be reliably detected.
 なお、延伸倍率は3から8倍程度が好適である。延伸後に熱処理を施すことにより、ポリ乳酸の延びきり鎖結晶の結晶化が促進され圧電定数が向上する。なお、二軸延伸した場合はそれぞれの軸の延伸倍率を異ならせることによって一軸延伸と同様の効果を得ることができる。例えばある方向をX軸としてその方向に8倍、その軸に直交するY軸方向に2倍の延伸を施した場合、圧電定数に関してはおよそX軸方向に4倍の一軸延伸を施した場合と同等の効果が得られる。単純に一軸延伸したフィルムは延伸軸方向に沿って裂け易いため、前述したような二軸延伸を行うことにより幾分強度を増すことができる。 Note that a draw ratio of 3 to 8 is suitable. By performing heat treatment after stretching, crystallization of the extended chain crystal of polylactic acid is promoted and the piezoelectric constant is improved. In the case of biaxial stretching, the same effect as uniaxial stretching can be obtained by making the stretching ratio of each axis different. For example, when a certain direction is taken as the X axis and stretched 8 times in that direction and twice in the Y axis direction orthogonal to that direction, the piezoelectric constant is approximately 4 times uniaxially stretched in the X axis direction. The same effect can be obtained. Since a film that is simply uniaxially stretched is likely to tear along the stretching axis direction, the strength can be somewhat increased by performing the biaxial stretching as described above.
 また、PLLAは圧電出力定数(=圧電g定数、g=d/ε)が大きい。従って、PLLAを用いることで、非常に高感度に圧電フィルム21の変形を検出することが可能になる。 Further, PLLA has a large piezoelectric output constant (=piezoelectric g constant, g=d/ε T ). Therefore, by using PLLA, it becomes possible to detect the deformation of the piezoelectric film 21 with extremely high sensitivity.
 ただし、センサ15は、PLLAを用いた圧電センサに限らない。センサ15は、PVDFを用いた圧電センサでもよい。センサ15は、歪みセンサでもよい。PVDFの圧電センサ、又は歪みセンサは、筐体11の捩り変形(斜め方向の変形)を検出するように配置すればよい。 However, the sensor 15 is not limited to the piezoelectric sensor using PLLA. The sensor 15 may be a piezoelectric sensor using PVDF. The sensor 15 may be a strain sensor. The PVDF piezoelectric sensor or the strain sensor may be arranged so as to detect the torsional deformation (diagonal deformation) of the housing 11.
 次に、把持負荷検出デバイス10の使用及びセンサ15の検出について説明する。図4(A)は、把持負荷検出デバイス10にねじり変形を加える場合の一例を示す模式図であり、図4(B)は、把持負荷検出デバイス10にねじり変形を加えた場合に発生する応力をシミュレーションした結果を示す模式図である。図4(A)は斜視図として、図4(B)は、側面図としてそれぞれ表されている。 Next, the use of the grip load detection device 10 and the detection of the sensor 15 will be described. FIG. 4A is a schematic diagram showing an example of the case where the gripping load detection device 10 is twisted and deformed, and FIG. 4B is the stress generated when the gripping load detection device 10 is twisted and deformed. It is a schematic diagram which shows the result of having simulated. 4A is a perspective view and FIG. 4B is a side view.
 初めに、ユーザは、把持負荷検出デバイス10の二つの把持領域14をそれぞれ順手で把持する。なお、ユーザは、把持負荷検出デバイス10の二つの把持領域14をそれぞれ逆手で把持してもよい。また、ユーザは、把持負荷検出デバイス10の一方の把持領域14を順手で、他方を逆手で把持してもよい。さらに、ユーザは、両方の手のひらで第1端部12及び第2端部13の開口を覆うように把持してもよい。ユーザは、把持負荷検出デバイス10の把持の仕方に応じて、腕の異なる筋肉を使用する。これにより、ユーザは、腕の異なる筋肉を鍛えることができる。また、ユーザは、把持負荷検出デバイス10の一方の把持領域14を大腿で挟み込んで固定し、他方を両手で把持してもよい。また、ユーザは、把持負荷検出デバイス10の持ち方を変化させることにより、サーキットトレーニングを行うことができる。 First, the user grasps each of the two grasping regions 14 of the grasping load detection device 10 in a normal manner. The user may grip the two gripping areas 14 of the gripping load detection device 10 with the opposite hands. Further, the user may grasp one of the grasping regions 14 of the grasping load detection device 10 with the normal hand and grasp the other with the opposite hand. Furthermore, the user may hold the palms of both hands so as to cover the openings of the first end 12 and the second end 13. The user uses muscles of different arms depending on how to grip the grip load detection device 10. This allows the user to train the muscles of different arms. Further, the user may sandwich and fix one gripping region 14 of the gripping load detection device 10 with the thigh, and grip the other with both hands. In addition, the user can perform circuit training by changing how to hold the grip load detection device 10.
 図4(A)及び図4(B)に示すように、ユーザは、把持負荷検出デバイス10の筐体11にねじりの変形を加える。すなわち、ユーザは把持負荷検出デバイス10に剪断力を与える。これにより、ユーザは、筐体11の第1端部12側に矢印F1で示す方向の力を、筐体11の第2端部13側に矢印F2で示す方向の力を、それぞれ付与する。 As shown in FIGS. 4(A) and 4(B), the user applies torsional deformation to the housing 11 of the grip load detection device 10. That is, the user applies a shearing force to the grip load detection device 10. As a result, the user applies a force in the direction indicated by arrow F1 to the first end 12 side of the housing 11 and a force in the direction indicated by arrow F2 to the second end 13 side of the housing 11.
 この時、筐体11は、ユーザが視認できない程度、例えば1μm前後の微小な変形を生じている。筐体11には、圧縮応力S1と、引張応力S2とが発生する。圧縮応力S1及び引張応力S2は、ユーザが加えたねじりの変形の大きさに対応する。なお、図4(A)及び図4(B)に示す圧縮応力S1及び引張応力S2は、代表的に示したものであり、筐体11の軸方向及び周方向に亘って同様な応力が他にも発生している。 At this time, the casing 11 is slightly deformed, for example, about 1 μm, which is invisible to the user. A compressive stress S1 and a tensile stress S2 are generated in the housing 11. The compressive stress S1 and the tensile stress S2 correspond to the magnitude of torsional deformation applied by the user. The compressive stress S1 and the tensile stress S2 shown in FIGS. 4(A) and 4(B) are representative ones, and similar stresses are present in the axial direction and the circumferential direction of the housing 11. Has also occurred.
 センサ15は、筐体11の変形に応じて共に変形する。これにより、センサ15の圧電フィルム21が変形する。圧電フィルム21は、圧縮応力S1及び引張応力S2が生じる。圧電フィルム21は、圧縮応力S1及び引張応力S2に比例する大きさの分極を発生する。これにより、センサ用検出回路18は、発生した分極を中和するために移動する電荷を検出する。すなわち、センサ15は、ユーザが加えたねじりの変形の大きさに応じた電荷を発生することができる。 The sensor 15 deforms together with the deformation of the housing 11. As a result, the piezoelectric film 21 of the sensor 15 is deformed. A compressive stress S1 and a tensile stress S2 are generated in the piezoelectric film 21. The piezoelectric film 21 generates polarization having a magnitude proportional to the compressive stress S1 and the tensile stress S2. As a result, the sensor detection circuit 18 detects electric charges that move to neutralize the generated polarization. That is, the sensor 15 can generate an electric charge according to the magnitude of the deformation of the twist applied by the user.
 圧電フィルム21の一軸延伸方向900は、筐体11の軸方向に対して0°の角度を成している。圧縮応力S1及び引張応力S2は、それぞれ一軸延伸方向900に対して、概ね45°の角度を成している。このため、圧電フィルム21は、効率よく電荷を発生することができる。なお、圧電フィルム21の一軸延伸方向900は、筐体11の軸方向に対して90°の角度を成している場合でも、圧縮応力S1及び引張応力S2は、それぞれ一軸延伸方向900に対して、概ね45度の角度を成す。従って、この場合においても圧電フィルム21は、効率よく電荷を発生することができる。 The uniaxial stretching direction 900 of the piezoelectric film 21 forms an angle of 0° with the axial direction of the housing 11. The compressive stress S1 and the tensile stress S2 form an angle of about 45° with respect to the uniaxial stretching direction 900, respectively. Therefore, the piezoelectric film 21 can efficiently generate electric charges. Even when the uniaxial stretching direction 900 of the piezoelectric film 21 forms an angle of 90° with the axial direction of the housing 11, the compressive stress S1 and the tensile stress S2 are respectively relative to the uniaxial stretching direction 900. , Forms an angle of approximately 45 degrees. Therefore, even in this case, the piezoelectric film 21 can efficiently generate electric charges.
 センサ用検出回路18は、積分回路を備えていてもよい。センサ用検出回路18は、圧電フィルム21で発生する電荷を積算して電圧値として算出する。マイコン17は、センサ用検出回路18で検出した電圧値を、筐体11の変形の大きさ、つまりユーザが筐体11にかけている負荷として算出する。なお、センサ用検出回路18は、積分回路を備えていない場合、検知する電荷量は筐体11の変形の速度に比例した値となる。 The sensor detection circuit 18 may include an integration circuit. The sensor detection circuit 18 integrates the charges generated in the piezoelectric film 21 to calculate a voltage value. The microcomputer 17 calculates the voltage value detected by the sensor detection circuit 18 as the size of the deformation of the housing 11, that is, the load applied to the housing 11 by the user. If the sensor detection circuit 18 does not include an integration circuit, the detected charge amount has a value proportional to the deformation speed of the housing 11.
 マイコン17は、算出した負荷を表示部16に表示する。例えば、図1(A)に示すように、表示部16は、筐体11にかけている負荷をグラフで表示する。これにより、表示部16はユーザに対して、筐体11にかけている負荷を視覚的に示すことができる。また、表示部16は、グラフ表示のみでなく、その他さまざまな態様で負荷を視覚的に示してもよい。例えば、表示部16は、負荷に応じて色が変わるように表示する。この場合、表示部16は、負荷が弱い時には青、徐々に強くすることにより緑から黄色に変化し、非常に強い時には赤く表示する。また、表示部16は、負荷を数字、文字、又は記号を用いて表示してもよい。 The microcomputer 17 displays the calculated load on the display unit 16. For example, as shown in FIG. 1A, the display unit 16 displays the load applied to the housing 11 in a graph. Thereby, the display unit 16 can visually show the load applied to the housing 11 to the user. Further, the display unit 16 may visually show the load in various modes other than the graph display. For example, the display unit 16 displays so that the color changes according to the load. In this case, the display unit 16 displays blue when the load is weak, changes from green to yellow by gradually increasing the load, and displays red when the load is very strong. In addition, the display unit 16 may display the load by using numbers, letters, or symbols.
 表示部16は、一表示態様として、疑似的に筐体11が捻じれたような画像を表示してもよい。例えば、表示部16は、検出した力の大きさに応じて、筐体11をらせん状に捻る画像、布を絞る画像、又は紐の束を縄のように撚る画像等、を表示してもよい。これにより、ユーザは、あたかも表示部16に表示されているものに力を加えたような錯覚を起こす。このため、ユーザは、筐体11が捻じれたように感じるため、加えている負荷を実感しながらトレーニングを行うことができる。また、ユーザは、表示部16に表示されたものに力を加えているように感じるため、表示部16に何も表示しない場合に比べて、筐体11に大きな負荷を加えることができる。表示部16は、筐体11に加えていく力に応じて、何かが破壊されるような画像を表示させてもよい。例えば、マイコン17は、ユーザの破壊するターゲット物体(例えば氷)と、ユーザに該ターゲット物体を破壊する指示と、を表示部16に表示する。ユーザが筐体11を捻じると、マイコン17は、ユーザが筐体11に加えた負荷に応じてターゲット物体が破壊されていく様子を表示部16に表示する。これにより、ユーザは、実際にターゲット物体を破壊したかのような一種の錯視を感じる。従って、把持負荷検出デバイス10は、表示部16にユーザが力を自然と加えていくように画像を表示することにより、ユーザの筐体11への負荷のかけ具合を誘導することができる。なお、表示部16に表示するターゲット物体の破壊のし易さは、ユーザのレベル又はトレーニングのレベルに応じて変更することができる。 The display unit 16 may display an image in which the housing 11 is distorted in a pseudo manner as one display mode. For example, the display unit 16 displays an image of twisting the housing 11 in a spiral shape, an image of squeezing a cloth, an image of twisting a bundle of strings like a rope, or the like according to the magnitude of the detected force. Good. As a result, the user has the illusion that he or she is exerting force on what is displayed on the display unit 16. For this reason, the user feels that the housing 11 is twisted, and thus can perform training while feeling the applied load. Further, the user feels that he or she is exerting force on what is displayed on the display unit 16, so that a greater load can be applied to the housing 11 as compared with the case where nothing is displayed on the display unit 16. The display unit 16 may display an image in which something is destroyed according to the force applied to the housing 11. For example, the microcomputer 17 displays on the display unit 16 a target object (for example, ice) to be destroyed by the user and an instruction to the user to destroy the target object. When the user twists the housing 11, the microcomputer 17 displays on the display unit 16 how the target object is destroyed according to the load applied to the housing 11 by the user. As a result, the user feels a kind of illusion as if the target object was actually destroyed. Therefore, the grip load detection device 10 can guide the user's load on the housing 11 by displaying an image on the display unit 16 so that the user naturally applies force. The easiness of destroying the target object displayed on the display unit 16 can be changed according to the level of the user or the level of training.
 ユーザは、表示部16から筐体11にかけている負荷を確認できる。このため、ユーザは、負荷を調節しながらトレーニングを行うことができる。また、把持負荷検出デバイス10は、ユーザに対してセンサ用検出回路18で検出した負荷を表示するため、トレーニングを楽しみながら行える。例えばユーザが筋肉に所定の負荷を一定時間かける必要があるアイソメトリックトレーニングを行う場合であっても、ユーザは、集中力を維持し易い。 The user can confirm the load applied to the housing 11 from the display unit 16. Therefore, the user can perform training while adjusting the load. Further, since the grip load detection device 10 displays the load detected by the sensor detection circuit 18 to the user, the grip load detection device 10 can be performed while enjoying the training. For example, even when the user performs isometric training in which the user needs to apply a predetermined load to the muscle for a certain period of time, the user can easily maintain the concentration.
 なお、表示部16は、把持負荷検出デバイス10に内蔵する必要はない。例えば、ユーザの携帯するスマートフォン等の情報処理装置に画像を表示してもよい。この場合、ユーザが把持負荷検出デバイス10を使用すると、マイコン17は、センサ15の検出値に関する情報をスマートフォンに送信する。スマートフォンは、把持負荷検出デバイス10が送信した情報を表示する。これにより、ユーザはスマートフォンでトレーニング状況を確認できる。この場合、ユーザは、把持負荷検出デバイス10を顔の前に持つ必要が無い。 The display unit 16 does not have to be built in the grip load detection device 10. For example, the image may be displayed on an information processing device such as a smartphone carried by the user. In this case, when the user uses the grip load detection device 10, the microcomputer 17 transmits information regarding the detection value of the sensor 15 to the smartphone. The smartphone displays the information transmitted by the grip load detection device 10. This allows the user to check the training status on the smartphone. In this case, the user does not need to hold the grip load detection device 10 in front of the face.
 なお、把持負荷検出デバイス10は、表示部16に加えて、又は表示部16に換えてスピーカを備えていてもよい。スピーカは、検出した負荷の大きさに応じた音を出す。把持負荷検出デバイス10が、表示部16に加えてスピーカを備える場合、スピーカは、画像とリンクした音を出してもよい。この場合、ユーザは、表示部16に表示されたものに力を加えたような錯覚をさらに起こし易くなる。またスピーカは、検出した負荷の大きさに応じて音量を変化させた音を出してもよく、高さを変化させた音を出してもよい。音の高さを変化させる場合、ユーザは、把持負荷検出デバイス10を一種の楽器として用いることができる。例えば、ユーザは、表示部16に表示される指示に合わせて力の入れ方を変化させることにより、音楽を奏でることができる。ユーザは、把持負荷検出デバイス10を用いながらゲーム感覚で筋力トレーニングを行うことができる。 Note that the grip load detection device 10 may include a speaker in addition to the display unit 16 or in place of the display unit 16. The speaker emits a sound according to the detected load magnitude. When the grip load detection device 10 includes a speaker in addition to the display unit 16, the speaker may emit a sound linked to the image. In this case, the user is more likely to have the illusion of exerting a force on the object displayed on the display unit 16. Further, the speaker may emit a sound whose volume is changed according to the magnitude of the detected load, or may emit a sound whose height is changed. When changing the pitch of the sound, the user can use the grip load detection device 10 as a kind of musical instrument. For example, the user can play music by changing the way of exerting force in accordance with the instruction displayed on the display unit 16. The user can perform strength training like a game while using the grip load detection device 10.
 また、表示部16は、ユーザの筐体11に対する負荷の加減、又は持続時間に応じて、「頑張れ」、「Fight!」等の文字を表示してもよい。例えば、マイコン17は、センサ用検出回路18の検出値と、マイコン17の内蔵メモリ(不図示)に記憶された所定の閾値とを比較する。マイコン17は、検出値が所定の閾値以下であると判断した場合、表示部16に「もう少し」と表示する。これにより、ユーザは筐体11に加えている負荷が足りないことを知ることができる。逆に、マイコン17は、検出値が所定の閾値より大きいと判断した場合、表示部16に「OK」と表示する。ユーザは筐体11に加えている負荷が足りていることを知ることができる。さらに、表示部16は、ユーザのトレーニングに必要な時間を表示してもよい。ユーザは、トレーニングに必要な時間を知ることができる。このように、把持負荷検出デバイス10は、ユーザのトレーニングをサポートすることができる。 Further, the display unit 16 may display characters such as "work hard" and "Fight!" according to the amount of load on the housing 11 of the user or the duration. For example, the microcomputer 17 compares the detection value of the sensor detection circuit 18 with a predetermined threshold value stored in a built-in memory (not shown) of the microcomputer 17. When the microcomputer 17 determines that the detected value is less than or equal to the predetermined threshold value, the display unit 16 displays “a little more”. This allows the user to know that the load applied to the housing 11 is insufficient. On the contrary, when the microcomputer 17 determines that the detected value is larger than the predetermined threshold value, the display unit 16 displays “OK”. The user can know that the load applied to the housing 11 is sufficient. Further, the display unit 16 may display the time required for training the user. The user can know the time required for training. In this way, the grip load detection device 10 can support the training of the user.
 把持負荷検出デバイス10は、サーバと通信してもよい。例えば、マイコン17の通信部は、センサ15の検出値に関する情報を、把持負荷検出デバイス10の提供者の管理するサーバに送信する。把持負荷検出デバイス10の提供者とは、例えばスポーツジム、又は把持負荷検出デバイス10の販売会社などである。 The grip load detection device 10 may communicate with the server. For example, the communication unit of the microcomputer 17 transmits information regarding the detection value of the sensor 15 to the server managed by the provider of the grip load detection device 10. The provider of the grip load detection device 10 is, for example, a gym or a sales company of the grip load detection device 10.
 サーバは、センサ15の検出値に関する情報を受信する。サーバは、受信した情報を解析する。例えば、サーバは、センサ15の検出値から、ユーザのトレーニング状態(例えば1日の総運動量、又は消費カロリー)等を算出する。スポーツジムのインストラクターは、顧客であるユーザのトレーニング状態を見て、アドバイスメッセージを作成する。サーバは、把持負荷検出デバイス10に、インストラクターの作成したメッセージを送信する。把持負荷検出デバイス10は、サーバからメッセージを受信する。つまり、把持負荷検出デバイス10は、送信した情報に応じた情報を受信する。表示部16は、サーバから受信したメッセージを表示する。ユーザは、表示されたメッセージを確認することで、トレーニングのサポートを受けることができる。このように、把持負荷検出デバイス10は、外部のサーバ等と通信することでユーザのトレーニングをサポートすることができる。 The server receives information about the detection value of the sensor 15. The server analyzes the received information. For example, the server calculates the training state of the user (for example, the total amount of exercise per day or the calorie consumption) from the detection value of the sensor 15. The gym instructor creates an advice message by looking at the training status of the customer user. The server transmits the message created by the instructor to the grip load detection device 10. The grip load detection device 10 receives a message from the server. That is, the grip load detection device 10 receives information according to the transmitted information. The display unit 16 displays the message received from the server. The user can receive training support by checking the displayed message. In this way, the grip load detection device 10 can support the training of the user by communicating with an external server or the like.
 その他、サーバから送信する情報は、ユーザのトレーニング状態に応じたポイント等であってもよい。また、把持負荷検出デバイス10の提供者は、ポイントに応じて何らかの特典をユーザに供与するシステムを構築してもよい。ユーザは、ポイントを確認することにより、トレーニングを促される。 Besides, the information transmitted from the server may be points according to the training state of the user. Further, the provider of the grip load detection device 10 may construct a system that provides some benefit to the user depending on the points. The user is prompted to train by confirming the points.
 なお、把持負荷検出デバイス10は、生体振戦を検出するものであってもよい。生体振戦は、生理的現象であり、筋肉の機械的な微小振動である。ユーザが筐体11に接触すると、生体振戦が圧電フィルム21に伝達される。 Note that the grip load detection device 10 may be one that detects a body tremor. Biological tremor is a physiological phenomenon, which is a mechanical microvibration of muscles. When the user contacts the housing 11, the body tremor is transmitted to the piezoelectric film 21.
 マイコン17は、生体振戦を検知すると、ユーザが筐体11に接触していると判定する。マイコン17は、生体振戦を検知している状態の時だけ負荷を算出する。よってマイコン17は、無駄な消費電力を削減できる。 When the living body tremor is detected, the microcomputer 17 determines that the user is in contact with the housing 11. The microcomputer 17 calculates the load only when the biological tremor is detected. Therefore, the microcomputer 17 can reduce unnecessary power consumption.
 なお、把持負荷検出デバイス10は、例えば血圧を下げる健康補助器具として使用することができる。高血圧疾患に関しては、静かにタオルを握る等の軽い運動を繰り返すことにより、血圧を下げる効果があることが知られている。 Note that the grip load detection device 10 can be used, for example, as a health assistance device that lowers blood pressure. With regard to hypertensive diseases, it is known that the effect of lowering blood pressure is obtained by repeating light exercises such as gently holding a towel.
 例えば、把持負荷検出デバイス10は、ユーザが所定の負荷以上の負荷を筐体11に加えた場合、表示部16に警告を表示する。ユーザは、表示部16を見ることにより筐体11に加えている負荷が強すぎること、すなわち負荷のかけ過ぎを知ることができる。従って、ユーザは、適切な軽い負荷のかけ方を知ることができ、血圧を下げるための運動を行うことができる。 For example, the grip load detection device 10 displays a warning on the display unit 16 when the user applies a load equal to or higher than a predetermined load to the housing 11. By looking at the display unit 16, the user can know that the load applied to the housing 11 is too strong, that is, the load is excessive. Therefore, the user can know how to apply an appropriate light load, and can exercise to lower the blood pressure.
 次に、把持負荷検出デバイス10の応用例について説明する。図5(A)は、把持負荷検出デバイス10の応用例として、充電台51との組み合わせについて説明する模式図であり、図5(B)は、充電台51で充電中の把持負荷検出デバイス10を示す模式図である。 Next, an application example of the grip load detection device 10 will be described. FIG. 5A is a schematic diagram illustrating a combination with the charging stand 51 as an application example of the gripping load detection device 10, and FIG. 5B is a gripping load detection device 10 during charging on the charging stand 51. It is a schematic diagram which shows.
 図5(A)及び図5(B)に示すように、充電台51は、把持負荷検出デバイス10を差し込むように概ね円柱状に形成されている。充電台51は、把持負荷検出デバイス10と接続可能なピン55を有する。把持負荷検出デバイス10は、筐体11の内側に不図示の充電ピンを有する。 As shown in FIGS. 5(A) and 5(B), the charging stand 51 is formed in a substantially cylindrical shape so that the grip load detection device 10 can be inserted therein. The charging stand 51 has a pin 55 that can be connected to the grip load detection device 10. The grip load detection device 10 has a charging pin (not shown) inside the housing 11.
 把持負荷検出デバイス10は、充電台51に差し込まれると、把持負荷検出デバイス10の充電ピンと充電台51のピン55とが電気的に接続する。なお、把持負荷検出デバイス10は、充電台51と直接接続する必要はない。例えば、把持負荷検出デバイス10は、電磁誘導を用いた非接触型の充電方式により充電されてもよい。 When the grip load detection device 10 is inserted into the charging base 51, the charging pin of the grip load detection device 10 and the pin 55 of the charging base 51 are electrically connected. The grip load detection device 10 does not need to be directly connected to the charging stand 51. For example, the grip load detection device 10 may be charged by a non-contact type charging method using electromagnetic induction.
 図5(B)に示すように、表示部16は、把持負荷検出デバイス10の充電中に情報の表示を行ってもよい。表示部16は、例えば、その日のユーザのトレーニング状態、又は現在のポイント数等を表示してもよい。これにより、ユーザはトレーニング状態等を把握することができる。 As shown in FIG. 5B, the display unit 16 may display information during charging of the grip load detection device 10. The display unit 16 may display, for example, the training state of the user of the day or the current number of points. This allows the user to know the training status and the like.
 また、表示部16は、ユーザのトレーニング状態とは関係ない情報を表示してもよい。表示部16は、マイコン17の通信部で受信した情報を表示できる。表示部16は、ユーザが選択した画像、又は映像などの情報を表示してもよい。画像又は映像は、例えば、ニュース、広告、ユーザが登録した写真、又はトレーニングジム等からの通知又は指示を表示する。これにより、ユーザは、把持負荷検出デバイス10をインテリア、又はモニタとして利用することができる。 The display unit 16 may also display information that is not related to the training status of the user. The display unit 16 can display the information received by the communication unit of the microcomputer 17. The display unit 16 may display information such as an image or video selected by the user. The image or video displays, for example, news, advertisements, pictures registered by the user, or notifications or instructions from a training gym or the like. This allows the user to use the grip load detection device 10 as an interior or as a monitor.
 図6(A)は、第2実施形態に係る把持負荷検出デバイス20の構成を示す斜視図であり、図6(B)は、図6(A)のIII-III線における断面図である。図6(A)は、把持部65を破線で、かつ透過させる形で表している。なお、第2実施形態の説明において第1実施形態と同様の構造については説明を省略する。 FIG. 6A is a perspective view showing the configuration of the grip load detection device 20 according to the second embodiment, and FIG. 6B is a sectional view taken along the line III-III of FIG. 6A. In FIG. 6A, the grip portion 65 is shown in a broken line and in a transparent form. In the description of the second embodiment, the description of the same structure as the first embodiment will be omitted.
 把持負荷検出デバイス20は、筐体61、及び把持部65を備える。把持部65は、筐体61の外周で、把持領域14に配置されている。筐体61は、中央部分が把持領域14に比べて断面積が小さくなるように形成されている。把持負荷検出デバイス20の把持領域14は、ユーザが把持し易い太さとなるように形成されている。これにより、ユーザは、把持負荷検出デバイス20を把持し易く、また力を加え易くなる。 The grip load detection device 20 includes a housing 61 and a grip 65. The grip portion 65 is arranged in the grip area 14 on the outer periphery of the housing 61. The housing 61 is formed such that its central portion has a smaller cross-sectional area than the gripping area 14. The gripping area 14 of the gripping load detection device 20 is formed to have a thickness that is easy for the user to grip. This makes it easy for the user to grip the grip load detection device 20 and to apply force.
 把持部65は、センサ63及び保護フィルム64を備える。センサ63は、筐体61の外周に貼りつけられている。このため、センサ63は、筐体61から着脱が容易となる。また、保護フィルム64は、センサ63を覆うようにセンサ63に積層して貼りつけられている。 The grip 65 includes a sensor 63 and a protective film 64. The sensor 63 is attached to the outer periphery of the housing 61. Therefore, the sensor 63 can be easily attached to and detached from the housing 61. The protective film 64 is laminated and attached to the sensor 63 so as to cover the sensor 63.
 ユーザは、使用時に把持部65を把持する。センサ63は、保護フィルム64を介してユーザの加える負荷を検知する。ユーザが把持部65を把持することにより、センサ63はユーザの手により覆い隠される。このため、センサ63及び保護フィルム64は透光性を有していなくてもよい。従って、センサ63の材料が幅広く選択できる。また、筐体61は、中央部分のみ透光性を有していればよく、把持領域14は透光性を有していなくてもよい。 The user grips the grip portion 65 at the time of use. The sensor 63 detects the load applied by the user via the protective film 64. When the user grips the grip portion 65, the sensor 63 is covered by the user's hand. Therefore, the sensor 63 and the protective film 64 do not have to have a light-transmitting property. Therefore, the material of the sensor 63 can be widely selected. Further, the housing 61 only needs to have a light-transmitting property in the central portion, and the grip region 14 does not need to have a light-transmitting property.
 なお、把持部65は、滑り止め等の処理が施されていてもよい。例えば、筐体61は、直接ローレット加工が施されていてよい。また、センサ63は、保護フィルム64の代わりに、テニス又はバドミントンのラケットに用いるようなテープが撒きつけられていても良い。これにより、ユーザは、筐体61を安定して把持し易くなる。 Note that the grip portion 65 may be subjected to a treatment such as slip prevention. For example, the casing 61 may be directly knurled. Further, instead of the protective film 64, the sensor 63 may be sprinkled with a tape such as used for a tennis or badminton racket. This makes it easier for the user to stably grip the housing 61.
 最後に、本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Finally, the description of the present embodiment should be considered as illustrative in all points and not restrictive. The scope of the invention is indicated by the claims rather than the embodiments described above. Further, the scope of the present invention is intended to include meanings equivalent to the claims and all modifications within the scope.
10,20…把持負荷検出デバイス
11,61…筐体
15,63…センサ
16…表示部
21…圧電フィルム
65…把持部
10, 20... Gripping load detection device 11, 61... Housing 15, 63... Sensor 16... Display part 21... Piezoelectric film 65... Gripping part

Claims (11)

  1.  ユーザが把持する筒状の筐体と、
     前記筐体に貼り付けられ、前記ユーザの把持によって前記筐体にかかる負荷を検出するセンサと、
     を備える、
     把持負荷検出デバイス。
    A cylindrical casing that the user holds,
    A sensor attached to the housing for detecting a load applied to the housing by the user's grip;
    With
    Gripping load detection device.
  2.  前記センサは、前記筐体に対するねじりを検出する
     請求項1に記載の把持負荷検出デバイス。
    The grip load detection device according to claim 1, wherein the sensor detects a twist with respect to the housing.
  3.  前記筐体は透光性を有する、
     請求項1又は請求項2に記載の把持負荷検出デバイス。
    The housing has a light-transmitting property,
    The grip load detection device according to claim 1 or 2.
  4.  前記筐体の変形に対応する画像を表示する表示部をさらに備える、
     請求項1乃至請求項3のいずれかに記載の把持負荷検出デバイス。
    A display unit for displaying an image corresponding to the deformation of the housing,
    The grip load detection device according to any one of claims 1 to 3.
  5.  前記表示部は、前記筐体の内部に配置される、
     請求項4に記載の把持負荷検出デバイス。
    The display unit is disposed inside the housing,
    The grip load detection device according to claim 4.
  6.  前記センサは、ポリ乳酸からなる圧電フィルムを有する、
     請求項1乃至請求項5のいずれかに記載の把持負荷検出デバイス。
    The sensor has a piezoelectric film made of polylactic acid,
    The grip load detection device according to any one of claims 1 to 5.
  7.  前記圧電フィルムの延伸方向は、前記筐体の軸方向又は周方向に沿って配置される、
     請求項6に記載の把持負荷検出デバイス。
    The stretching direction of the piezoelectric film is arranged along the axial direction or the circumferential direction of the housing,
    The grip load detection device according to claim 6.
  8.  前記センサは、前記筐体の内部に配置される
     請求項1乃至請求項7のいずれかに記載の把持負荷検出デバイス。
    The gripping load detection device according to claim 1, wherein the sensor is arranged inside the housing.
  9.  前記筐体の外周に配置された把持部をさらに備え、
     前記センサは、前記把持部に対応する位置に配置される、
     請求項1乃至請求項7のいずれかに記載の把持負荷検出デバイス。
    Further comprising a grip portion arranged on the outer periphery of the housing
    The sensor is arranged at a position corresponding to the grip portion,
    The grip load detection device according to any one of claims 1 to 7.
  10.  前記センサの検出値に関する情報を外部へ送信する送信部と、
     外部から情報を受信する受信部と、をさらに備えた、
     請求項1乃至請求項7のいずれかに記載の把持負荷検出デバイス。
    A transmission unit for transmitting information regarding the detection value of the sensor to the outside,
    Further comprising a receiving unit for receiving information from the outside,
    The grip load detection device according to any one of claims 1 to 7.
  11.  前記受信部は、前記送信部から送信した情報に対する応答を受信する、
     請求項10に記載の把持負荷検出デバイス。
    The receiving unit receives a response to the information transmitted from the transmitting unit,
    The grip load detection device according to claim 10.
PCT/JP2019/050319 2019-01-25 2019-12-23 Grip load detection device WO2020153075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201990000862.0U CN215841392U (en) 2019-01-25 2019-12-23 Gripping load detection device
JP2020567434A JP6954483B2 (en) 2019-01-25 2019-12-23 Gripping load detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019011279 2019-01-25
JP2019-011279 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020153075A1 true WO2020153075A1 (en) 2020-07-30

Family

ID=71735477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050319 WO2020153075A1 (en) 2019-01-25 2019-12-23 Grip load detection device

Country Status (3)

Country Link
JP (1) JP6954483B2 (en)
CN (1) CN215841392U (en)
WO (1) WO2020153075A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075205A1 (en) * 2020-10-06 2022-04-14 株式会社村田製作所 Grip load detection device
WO2024009727A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 Sensor and gripping load detection device
WO2024080116A1 (en) * 2022-10-13 2024-04-18 株式会社村田製作所 Sensor module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137897A1 (en) * 2011-04-08 2012-10-11 株式会社村田製作所 Displacement sensor, displacement detecting apparatus, and operation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529330A (en) * 2012-08-28 2015-10-05 ファンデーション フィットネス,エルエルシー Apparatus, system and method for measuring power in a crank axle and crank arm
EP3207962A4 (en) * 2014-10-16 2018-05-30 Nintendo Co., Ltd. Training implement, training system, and input device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137897A1 (en) * 2011-04-08 2012-10-11 株式会社村田製作所 Displacement sensor, displacement detecting apparatus, and operation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075205A1 (en) * 2020-10-06 2022-04-14 株式会社村田製作所 Grip load detection device
WO2024009727A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 Sensor and gripping load detection device
WO2024080116A1 (en) * 2022-10-13 2024-04-18 株式会社村田製作所 Sensor module

Also Published As

Publication number Publication date
JPWO2020153075A1 (en) 2021-09-09
JP6954483B2 (en) 2021-10-27
CN215841392U (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP6954483B2 (en) Gripping load detection device
Zhao et al. A wearable soft haptic communicator based on dielectric elastomer actuators
Dong et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
EP3345227B1 (en) Actuator and sensor device based on electroactive polymer
Carello et al. Rotational invariants and dynamic touch
Lee et al. A wearable textile-embedded dielectric elastomer actuator haptic display
TW200414014A (en) Input device and electronic machine using the input
US20130172155A1 (en) Portable Physical Therapy/Rehabilitation/Exercise Device, System and Method
WO2016103978A1 (en) Operation input device
US20150157896A1 (en) Sensor unit for quantification of physical training with rubber band
CA3178076A1 (en) Bendable exercise bar
KR101097826B1 (en) Haptic device using sensors and rheological fluid, electronic device therewith and haptic providing method using thereof
WO2010120976A1 (en) Sport grip force measuring sensor
Van Duong et al. Localized fretting-vibrotactile sensations for large-area displays
Zhu et al. Microribbon structured polyvinylidene fluoride with high-performance piezoelectricity for sensing application
WO2022075205A1 (en) Grip load detection device
JP4413105B2 (en) Acceleration generating device and pseudo force sense generating device
CN220454742U (en) Gripping load detection device
TW201029704A (en) Exercising system and physiological information sensing device thereof
Allerkamp Tactile perception of textiles in a virtual-reality system
US20080097255A1 (en) Rehabilitation apparatus
Sarakoglou et al. Free to touch: A portable tactile display for 3d surface texture exploration
Hafiz et al. Presentation of button repulsive sensations on touch screen using SMA wires
WO2022264562A1 (en) Sensor device
JP7375555B2 (en) Gripping load detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911343

Country of ref document: EP

Kind code of ref document: A1