WO2024078618A1 - 一种含氰基取代的多肽类化合物的晶型及其制备方法 - Google Patents

一种含氰基取代的多肽类化合物的晶型及其制备方法 Download PDF

Info

Publication number
WO2024078618A1
WO2024078618A1 PCT/CN2023/124527 CN2023124527W WO2024078618A1 WO 2024078618 A1 WO2024078618 A1 WO 2024078618A1 CN 2023124527 W CN2023124527 W CN 2023124527W WO 2024078618 A1 WO2024078618 A1 WO 2024078618A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
crystal form
formula
ray powder
diffraction pattern
Prior art date
Application number
PCT/CN2023/124527
Other languages
English (en)
French (fr)
Inventor
杨亚讯
张建臣
李鹏
贺海鹰
陈曙辉
Original Assignee
福建广生中霖生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建广生中霖生物科技有限公司 filed Critical 福建广生中霖生物科技有限公司
Priority to CN202380014386.9A priority Critical patent/CN118176202A/zh
Publication of WO2024078618A1 publication Critical patent/WO2024078618A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0205Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-(X)3-C(=0)-, e.g. statine or derivatives thereof

Definitions

  • the present invention relates to a crystal form of a cyano-substituted polypeptide compound and a preparation method thereof, and in particular to a crystal form of a compound of formula (I) and a preparation method thereof.
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • SARS-CoV-2 has a very high RNA genome ( ⁇ 80%) similarity to SARS-CoV-1, which caused the SARS outbreak in 2003.
  • SARS-CoV-2 infection many countries and institutions have made great efforts to develop preventive and therapeutic methods, such as the development and large-scale vaccination of vaccines, as well as the development and application of some therapeutic drugs.
  • Coronavirus is an enveloped, single-stranded, positive-sense RNA virus that encodes structural and nonstructural proteins to facilitate viral entry and replication in the host.
  • the nonstructural protein 3CL (-chymotrypsin-like protease) protease plays a vital role. Its main function is to hydrolyze the two polyproteins expressed by the virus. Sequence analysis shows that 3CL protease may become one of the key targets for drug design.
  • the 3CL proteases currently on the market include Pfizer's Namatevir tablets, which reduce hospitalization or mortality by 89% and 70% in both high-risk and low-risk populations, respectively. They have been approved for marketing or emergency authorization use in the United States and many other countries. There are currently many 3CL proteases in various stages of clinical trials at home and abroad. Therefore, in order to treat 2019 novel coronavirus or other coronavirus infections, the development of 3CL protease inhibitors is particularly important.
  • the present invention provides a crystalline form A of a compound of formula (I),
  • the invention is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.655 ⁇ 0.200°, 11.988 ⁇ 0.200°, 16.055 ⁇ 0.200°, 18.356 ⁇ 0.200°, 20.083 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the crystal form A of the compound of formula (I) above, expressed by 2 ⁇ angle comprises at least 6, 7, or 8 diffraction peaks selected from the following: 6.917 ⁇ 0.200°, 10.655 ⁇ 0.200°, 11.988 ⁇ 0.200°, 14.481 ⁇ 0.200°, 16.055 ⁇ 0.200°, 17.653 ⁇ 0.200°, 18.356 ⁇ 0.200°, 20.083 ⁇ 0.200°.
  • the A form of the compound of formula (I) has an X-ray powder diffraction pattern with characteristic diffraction peaks at the following 2 ⁇ angles: 6.917 ⁇ 0.200°, 10.655 ⁇ 0.200°, 11.988 ⁇ 0.200°, 14.481 ⁇ 0.200°, 16.055 ⁇ 0.200°, 17.653 ⁇ 0.200°, 18.356 ⁇ 0.200°, 20.083 ⁇ 0.200°.
  • the A crystal form of the compound of formula (I) has an X-ray powder diffraction pattern, represented by 2 ⁇ angle, comprising at least 12, 13, 14, 15, or 16 diffraction peaks selected from the following: 6.917 ⁇ 0.200°, 10.655 ⁇ 0.200°, 11.988 ⁇ 0.200°, 13.837 ⁇ 0.200°, 14.481 ⁇ 0.200°, 16.05 5 ⁇ 0.200°, 17.653 ⁇ 0.200°, 18.356 ⁇ 0.200°, 20.083 ⁇ 0.200°, 20.839 ⁇ 0.200°, 21.388 ⁇ 0.200°, 22.379 ⁇ 0.200°, 24.577 ⁇ 0.200°, 25.104 ⁇ 0.200°, 26.402 ⁇ 0.200°, 31.540 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the A crystal form of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 6.917 ⁇ 0.200°, 10.655 ⁇ 0.200°, 11.988 ⁇ 0.200°, 13.837 ⁇ 0.200°, 14.481 ⁇ 0.200°, 16.055 ⁇ 0.200°, 17.6 53 ⁇ 0.200°, 18.356 ⁇ 0.200°, 20.083 ⁇ 0.200°, 20.839 ⁇ 0.200°, 21.388 ⁇ 0.200°, 22.379 ⁇ 0.200°, 24.577 ⁇ 0.200°, 25.104 ⁇ 0.200°, 26.402 ⁇ 0.200°, 31.540 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of Form A of the compound of formula (I) is shown in FIG1 .
  • the peak position, interplanar spacing and relative intensity of the diffraction peaks in the X-ray powder diffraction (XRPD) spectrum of the above-mentioned crystal form A of the compound of formula (I) are shown in Table 1:
  • the crystalline form A of the compound of formula (I) has a differential scanning calorimetry (DSC) curve with an endothermic peak at 173.5°C ⁇ 3°C.
  • the differential scanning calorimetry curve of the above-mentioned crystal form A of the compound of formula (I) is shown in FIG2 .
  • thermogravimetric analysis curve (TGA) of the above-mentioned crystalline form A of the compound of formula (I) shows a weight loss of 0.00% at 150.0°C ⁇ 3°C.
  • thermogravimetric analysis curve of the above-mentioned crystal form A of the compound of formula (I) is shown in FIG3 .
  • the present invention also provides a method for preparing the above-mentioned crystal form A of the compound of formula (I), comprising the step of stirring the compound of formula (I) in water, and further comprising the step of separation.
  • the crystal form A of the compound of formula (I) of the present invention is prepared by the following method:
  • the stirring in step (1) is performed under heating conditions; preferably, the stirring temperature is 50°C.
  • the present invention also provides a crystal form B of the compound of formula (I),
  • the invention is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 9.202 ⁇ 0.200°, 13.394 ⁇ 0.200°, 14.212 ⁇ 0.200°, 15.516 ⁇ 0.200°, and 19.917 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the B form of the compound of formula (I) above, expressed by 2 ⁇ angle, comprises at least 6, 7, or 8 diffraction peaks selected from the following: 9.202 ⁇ 0.200°, 10.968 ⁇ 0.200°, 13.394 ⁇ 0.200°, 14.212 ⁇ 0.200°, 15.516 ⁇ 0.200°, 16.483 ⁇ 0.200°, 18.306 ⁇ 0.200°, 19.917 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystalline form B of compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 9.202 ⁇ 0.200°, 10.968 ⁇ 0.200°, 13.394 ⁇ 0.200°, 14.212 ⁇ 0.200°, 15.516 ⁇ 0.200°, 16.483 ⁇ 0.200°, 18.306 ⁇ 0.200°, 19.917 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystalline form B of the compound of formula (I) comprises at least 12, 13, 14, 15, or 16 diffraction peaks selected from the following, expressed as 2 ⁇ angles: 5.459 ⁇ 0.200°, 7.096 ⁇ 0.200°, 9.202 ⁇ 0.200°, 10.968 ⁇ 0.200°, 13.394 ⁇ 0.200°, 14.212 ⁇ 0.200°, 15.516 ⁇ 0.200°, 16.483 ⁇ 0.200°, 18.306 ⁇ 0.200°, 19.488 ⁇ 0.200°, 19.917 ⁇ 0.200°, 20.681 ⁇ 0.200°, 21.526 ⁇ 0.200°, 22.409 ⁇ 0.200°, 24.622 ⁇ 0.200°, 25.661 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 5.459 ⁇ 0.200°, 7.096 ⁇ 0.200°, 9.202 ⁇ 0.200°, 10.968 ⁇ 0.200°, 13.394 ⁇ 0.200°, 14.212 ⁇ 0.200°, 15.51 6 ⁇ 0.200°, 16.483 ⁇ 0.200°, 18.306 ⁇ 0.200°, 19.488 ⁇ 0.200°, 19.917 ⁇ 0.200°, 20.681 ⁇ 0.200°, 21.526 ⁇ 0.200°, 22.409 ⁇ 0.200°, 24.622 ⁇ 0.200°, 25.661 ⁇ 0.200°.
  • the B crystal form of the compound of formula (I) has an X-ray powder diffraction pattern (XRPD) as shown in FIG. shown.
  • XRPD X-ray powder diffraction pattern
  • the peak position, interplanar spacing and relative intensity of the diffraction peaks in the X-ray powder diffraction pattern of the above-mentioned crystal form B of the compound of formula (I) are shown in Table 2:
  • the crystalline form B of the compound of formula (I) has a differential scanning calorimetry (DSC) curve with an endothermic peak at 128.4°C ⁇ 3°C.
  • the differential scanning calorimetry curve of the above-mentioned crystal form B of the compound of formula (I) is shown in FIG5 .
  • thermogravimetric analysis curve (TGA) of the above-mentioned crystalline form B of the compound of formula (I) shows a weight loss of 9.77% at 150.0°C ⁇ 3°C.
  • thermogravimetric analysis curve of the above-mentioned crystal form B of the compound of formula (I) is shown in FIG6 .
  • the crystal form B of the compound of formula (I) may exist in the form of a solvate crystal.
  • the present invention also provides a method for preparing the above-mentioned crystal form B of the compound of formula (I), comprising the step of stirring the compound of formula (I) in an alcohol/n-heptane mixed solvent at room temperature, and further comprising a separation step.
  • the crystal form B of the compound of formula (I) of the present invention is prepared by the following method:
  • the alcohol/n-heptane mixed solvent in step (1) is preferably ethanol/n-heptane.
  • the solvent ratio of ethanol/n-heptane is preferably 1/4 (volume ratio).
  • the low temperature in the above step (2) is preferably 5°C.
  • the present invention also provides a crystal form C of the compound of formula (I),
  • the invention is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.334 ⁇ 0.200°, 8.399 ⁇ 0.200°, 9.435 ⁇ 0.200°, 12.060 ⁇ 0.200°, and 18.126 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the C form of the compound of formula (I) above, expressed by 2 ⁇ angle, comprises at least 6, 7, or 8 diffraction peaks selected from the following: 4.883 ⁇ 0.200°, 6.334 ⁇ 0.200°, 8.399 ⁇ 0.200°, 8.928 ⁇ 0.200°, 9.435 ⁇ 0.200°, 11.168 ⁇ 0.200°, 12.060 ⁇ 0.200°, and 18.126 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the C form of the compound of formula (I) above has characteristic diffraction peaks at the following 2 ⁇ angles: 4.883 ⁇ 0.200°, 6.334 ⁇ 0.200°, 8.399 ⁇ 0.200°, 8.928 ⁇ 0.200°, 9.435 ⁇ 0.200°, 11.168 ⁇ 0.200°, 12.060 ⁇ 0.200°, 18.126 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C of the compound of formula (I) is expressed by 2 ⁇ angle, and at least 12, 13, 14, 15, or 16 diffraction peaks selected from the following: 4.883 ⁇ 0.200°, 6.334 ⁇ 0.200°, 8.399 ⁇ 0.200°, 8.928 ⁇ 0.200°, 9.435 ⁇ 0.200°, 11.168 ⁇ 0.200°, 12.880 ⁇ 0.200°, 13.600 ⁇ 0.200°, 14.700 ⁇ 0.200°, 15.900 ⁇ 0.200°, 16.600 ⁇ 0.200°, 17.700 ⁇ 0.200°, 18.600 ⁇ 0.200°, 19.700 ⁇ 0.200°, 20.600 ⁇ 0.200°, 21.700 ⁇ 0.200°, 23.700 ⁇ 0.200°, 24.700 ⁇ 0.200°, 25.700 ⁇ 0.200°, 26.700 ⁇ 0.200°, 27.700 ⁇ 0.200°, 28.
  • the X-ray powder diffraction pattern of the crystal form C of the compound of formula (I) has characteristic diffraction peaks at the following 2 ⁇ angles: 4.883 ⁇ 0.200°, 6.334 ⁇ 0.200°, 8.399 ⁇ 0.200°, 8.928 ⁇ 0.200°, 9.435 ⁇ 0.200°, 11.168 ⁇ 0.200°, 12.060 ⁇ 0.200°, 13.910 ⁇ 0.200°, 14.800 ⁇ 0.200°, 15.800 ⁇ 0.200°, 16.800 ⁇ 0.200°, 17.910 ⁇ 0.200°, 18.700 ⁇ 0.200°, 19.700 ⁇ 0.200°, 20.600 ⁇ 0.200°, 21.300 ⁇ 0.200°, 23.700 ⁇ 0.200°, 24.800 ⁇ 0.200°, 25.800 ⁇ 0.200°, 26.800 ⁇ 0.200°, 27.700 ⁇ 0.200°, 28.
  • the crystal form C of the compound of formula (I) is characterized in that the X-ray powder diffraction pattern of the crystal form C is shown in Figure 7.
  • the peak position, interplanar spacing and relative intensity of the diffraction peaks in the X-ray powder diffraction pattern of the above-mentioned crystal form C of the compound of formula (I) are shown in Table 3:
  • the differential scanning calorimetry curve of the Form C of the compound of formula (I) above has an endothermic peak at 113.5°C ⁇ 3°C.
  • the DSC spectrum of the crystal form C of the compound of formula (I) is shown in Figure 8.
  • thermogravimetric analysis curve of the crystal form C of the compound of formula (I) above shows a weight loss of 3.52% at 110.0°C ⁇ 3°C and a weight loss of 10.58% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the Form C of the compound of formula (I) is shown in FIG9 .
  • the crystal form C of the compound of formula (I) above may exist in the form of a solvate crystal.
  • the present invention also provides a method for preparing the above-mentioned crystal form C of the compound of formula (I), comprising the step of stirring the compound of formula (I) in an ethyl acetate/n-heptane mixed solvent at room temperature, and further comprising a separation step.
  • the crystal form C of the compound of formula (I) of the present invention is prepared by the following method:
  • the solvent ratio of ethyl acetate/n-heptane in the above step (1) is preferably 1/4 (volume ratio).
  • the low temperature in the above step (2) is preferably -20°C.
  • the present invention also provides a crystal form D of the compound of formula (I),
  • the invention is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 9.136 ⁇ 0.200°, 9.908 ⁇ 0.200°, 17.787 ⁇ 0.200°, 18.329 ⁇ 0.200°, and 24.298 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the D crystal form of the compound of formula (I) above has characteristic diffraction peaks at the following 2 ⁇ angles: 9.136 ⁇ 0.200°, 9.908 ⁇ 0.200°, 17.787 ⁇ 0.200°, 18.329 ⁇ 0.200°, 24.298 ⁇ 0.200°.
  • the XRPD spectrum of the D crystal form of the compound of formula (I) is shown in FIG10 .
  • the peak position, interplanar spacing and relative intensity of the diffraction peaks in the X-ray powder diffraction pattern of the D crystal form of the compound of formula (I) are shown in Table 4:
  • the differential scanning calorimetry curve of the D-form of the compound of formula (I) above has an endothermic peak at 113.3°C ⁇ 3°C.
  • the DSC spectrum of the D crystal form of the compound of formula (I) is shown in Figure 11.
  • thermogravimetric analysis curve of the D crystal form of the compound of formula (I) above shows a weight loss of 6.59% at 90.0°C ⁇ 3°C and a weight loss of 15.60% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the D crystal form of the compound of formula (I) is shown in Figure 12.
  • the D crystal form of the compound of formula (I) may exist in the form of a solvate crystal.
  • the present invention also provides a method for preparing the D crystal form of the compound of formula (I), comprising the step of stirring the compound of formula (I) in a dichloromethane/n-heptane mixed solvent at room temperature, and further comprising a separation step.
  • the D crystal form of the compound of formula (I) of the present invention is prepared by the following method:
  • the solvent ratio of dichloromethane/n-heptane in the above step (1) is preferably 1/4 (volume ratio).
  • the low temperature in the above step (2) is preferably -20°C.
  • the present invention also provides a crystalline form E of the compound of formula (I),
  • the invention is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.987 ⁇ 0.200°, 9.928 ⁇ 0.200°, 11.998 ⁇ 0.200°, 13.499 ⁇ 0.200°, and 18.044 ⁇ 0.200°.
  • the X-ray powder diffraction pattern of the E crystal form of the compound of formula (I) above has characteristic diffraction peaks at the following 2 ⁇ angles: 5.987 ⁇ 0.200°, 9.928 ⁇ 0.200°, 11.998 ⁇ 0.200°, 13.499 ⁇ 0.200°, 18.044 ⁇ 0.200°, 19.492 ⁇ 0.200°, 25.173 ⁇ 0.200°.
  • the XRPD spectrum of the E crystal form of the compound of formula (I) is shown in FIG13 .
  • the peak position, interplanar spacing and relative intensity of the diffraction peaks in the X-ray powder diffraction pattern of the E crystal form of the compound of formula (I) are shown in Table 5:
  • the differential scanning calorimetry curve of the E-form of the compound of formula (I) has an endothermic peak at 113.7°C ⁇ 3°C.
  • the DSC spectrum of the E crystal form of the compound of formula (I) is shown in Figure 14.
  • thermogravimetric analysis curve of the E crystal form of the compound of formula (I) above shows a weight loss of 13.97% at 150.0°C ⁇ 3°C.
  • the TGA spectrum of the E crystal form of the compound of formula (I) is shown in Figure 15.
  • the E crystal form of the compound of formula (I) may exist in the form of a solvate crystal.
  • the present invention also provides a method for preparing the E crystal form of the compound of formula (I), comprising the step of stirring the compound of formula (I) in toluene at room temperature, and further comprising the step of separation.
  • the E crystal form of the compound of formula (I) of the present invention is prepared by the following method:
  • the volatilization temperature in the above step (2) is preferably room temperature.
  • the present invention also provides a crystalline composition
  • a crystalline composition comprising Form A, Form B, Form C, Form D, or Form E of the compound of formula (I), wherein the form accounts for more than 50% by weight of the crystalline composition, preferably more than 80%, more preferably more than 90%, and most preferably more than 95%.
  • the present invention also provides a pharmaceutical composition, which contains a therapeutically effective amount of the A crystal form, B crystal form, C crystal form, D crystal form, or E crystal form of the compound of formula (I), or the above-mentioned crystalline composition.
  • the pharmaceutical composition of the present invention may contain or not contain pharmaceutically acceptable excipients.
  • the pharmaceutical composition of the present invention may further include one or more other therapeutic agents.
  • the present invention also provides a method for treating coronavirus infection, comprising administering to an individual in need thereof a therapeutically effective amount of the crystal form A, crystal form B, crystal form C, crystal form D, or crystal form E of the compound of formula (I) of the present invention, or the above-mentioned crystalline composition, or the above-mentioned pharmaceutical composition.
  • the present invention also provides the use of the above-mentioned crystal form A, crystal form B, crystal form C, crystal form D, or crystal form E of the compound of formula (I), or the above-mentioned crystalline composition, or the above-mentioned pharmaceutical composition in the preparation of drugs for treating diseases related to coronavirus infection.
  • the above-mentioned disease related to coronavirus infection is SARS-CoV-2 virus infection.
  • the crystal form of the compound of the present invention has good PK properties and the effect of treating SARS-CoV-2 virus.
  • the crystal form is stable, has good hygroscopicity, and is less affected by light and heat.
  • the relative intensity of the diffraction peaks can change due to the preferred orientation caused by factors such as crystal morphology, which is well known in the field of crystallography. Where there is a preferred orientation effect, the peak intensity changes, but the diffraction peak position of the crystal form cannot be changed. In addition, for any given crystal form, there may be a slight error in the position of the peak, which is also well known in the field of crystallography. For example, due to changes in temperature when analyzing a sample, movement of the sample, or calibration of the instrument, the position of the peak can move, and the measurement error of the 2 ⁇ value is sometimes about ⁇ 0.2 degrees. Therefore, it is well known to those skilled in the art that this error should be taken into account when determining each crystalline structure.
  • DSC measures the transition temperature when a crystal absorbs or releases heat due to changes in its crystalline structure or melting of the crystal.
  • the error of thermal transition temperature and melting point is typically within about 5°C or 3°C.
  • DSC peak or melting point this refers to the DSC peak or melting point ⁇ 5°C or ⁇ 3°C.
  • DSC provides an auxiliary method for distinguishing different crystal forms. Different crystalline forms can be identified based on their different transition temperature characteristics. It should be pointed out that for mixtures, their DSC peaks or melting points may vary over a larger range.
  • the melting temperature is related to the heating rate.
  • the TGA weight loss temperature may vary due to factors such as the measuring instrument, measuring method/conditions, etc.
  • the weight loss temperature may have an error of about ⁇ 5°C or about ⁇ 3°C.
  • solvates are all included in the scope of the present invention.
  • pharmaceutically acceptable excipients refer to inert substances that are administered together with the active ingredients and are beneficial to the administration of the active ingredients, including but not limited to any glidants, sweeteners, diluents, preservatives, dyes/colorants, flavor enhancers, surfactants, wetting agents, dispersants, disintegrants, suspending agents, stabilizers, isotonic agents, solvents or emulsifiers that are acceptable for use in humans or animals (e.g., livestock) and approved by the State Food and Drug Administration.
  • crystalline composition refers to a mixture of a crystalline form of the compound of formula (I) of the present invention and other crystalline forms or amorphous substances or other impurities of the compound.
  • a crystalline composition of crystalline form A of the compound of formula (I) contains other crystalline forms or amorphous substances or other impurities of the compound of formula (I) in addition to crystalline form A of the compound of formula (I).
  • composition refers to a mixture of one or more compounds of the present invention or their salts and pharmaceutically acceptable excipients.
  • the purpose of a pharmaceutical composition is to facilitate administration of the compounds of the present invention to an organism.
  • the therapeutic dosage of the compounds of the invention may be determined, for example, based on the specific therapeutic application, the manner in which the compounds are administered, the patient's health and condition, and the judgment of the prescribing physician.
  • the ratio or concentration of the compounds of the invention in the pharmaceutical composition may not be fixed, depending on multiple factors, which include dosage, chemical properties (e.g. hydrophobicity) and route of administration.
  • treatment means administering the compound or formulation of the present invention to improve or eliminate a disease or one or more symptoms associated with the disease, and includes:
  • terapéuticaally effective amount means an amount of a compound of the present invention that (i) treats a particular disease, condition, or disorder, (ii) alleviates, ameliorates, or eliminates one or more symptoms of a particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more symptoms of a particular disease, condition, or disorder described herein.
  • the amount of a compound of the present invention that constitutes a “therapeutically effective amount” varies depending on the compound, the disease state and its severity, the mode of administration, and the age of the mammal to be treated, but can be routinely determined by those skilled in the art based on their own knowledge and this disclosure.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combining them with other chemical synthesis methods, and equivalent substitutions well known to those skilled in the art. Preferred embodiments include but are not limited to the embodiments of the present invention.
  • Test method About 1-2 mg of sample was used for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • Test method Take a sample ( ⁇ 1 mg) and place it in a DSC aluminum pan for testing. Under 50 mL/min N2 conditions, heat the sample from 25°C (room temperature) to the set temperature at a heating rate of 10°C/min.
  • Test method Take a sample ( ⁇ 1 mg) and place it in a TGA platinum pan for testing. Under 25 mL/min N2 conditions, heat the sample from room temperature to the set temperature at a heating rate of 10°C/min.
  • Test method Take a sample (5-10 mg) and place it in the aluminum pan built in the TGA platinum pot for testing. Under 60 mL/min N2 conditions, heat the sample from room temperature to 300°C at a heating rate of 10°C/min.
  • Test conditions Take a sample (10-30 mg) and place it in the DVS sample tray for testing.
  • RH(%) range: 70%RH-95%RH-0%RH-95%RH
  • RH(%) gradient 10% (90%RH-0%RH-90%RH), 5% (95%RH-90%RH and 90%RH-95%RH).
  • FIG1 is a Cu-K ⁇ radiation XRPD spectrum of Form A of the compound of formula (I);
  • FIG2 is a DSC spectrum of Form A of the compound of formula (I);
  • FIG3 is a TGA spectrum of Form A of the compound of formula (I);
  • FIG4 is a Cu-K ⁇ radiation XRPD spectrum of Form B of the compound of formula (I);
  • FIG5 is a DSC spectrum of Form B of the compound of formula (I);
  • FIG6 is a TGA spectrum of Form B of the compound of formula (I);
  • FIG7 is a Cu-K ⁇ radiation XRPD spectrum of Form C of the compound of formula (I);
  • FIG8 is a DSC spectrum of Form C of the compound of formula (I);
  • FIG9 is a TGA spectrum of Form C of the compound of formula (I).
  • FIG10 is a Cu-K ⁇ radiation XRPD spectrum of Form D of the compound of formula (I);
  • FIG11 is a DSC spectrum of the crystal form D of the compound of formula (I);
  • FIG12 is a TGA spectrum of the D-form of the compound of formula (I);
  • FIG13 is a Cu-K ⁇ radiation XRPD spectrum of Form E of the compound of formula (I);
  • FIG14 is a DSC spectrum of Form E of the compound of formula (I).
  • FIG15 is a TGA spectrum of the E-form of the compound of formula (I);
  • FIG16 is a DVS spectrum of Form A of the compound of formula (I).
  • Step 5 Synthesis of the hydrochloride salt of compound 1-6
  • the compound of formula (I) (9.4 g, 18.38 mmol) was dissolved in H 2 O (235 mL) and stirred at 50° C. for 48 hr. The mixture was filtered to obtain a white solid, which was concentrated under reduced pressure to remove water to obtain Form A, which was detected by XRPD.
  • the compound of formula (I) (15 mg, 29.32 ⁇ mol) was added to a glass vial, and 0.5 mL of ethanol/n-heptane (1:4) solvent was added. The sample was placed at room temperature with magnetic stirring (1000 rpm) for about 5 days, then lowered to a low temperature (5° C.) and stirred for volatilization. The solid was collected by centrifugation and concentrated under reduced pressure to obtain Form B, which was detected by XRPD.
  • the compound of formula (I) (15 mg, 29.32 ⁇ mol) was added to a glass vial, and 0.5 mL of ethyl acetate/n-heptane (1:4) solvent was added. The sample was placed at room temperature with magnetic stirring (1000 rpm) for about 5 days, then lowered to a low temperature (-20° C.) and stirred for volatilization. The solid was collected by centrifugation and concentrated under reduced pressure to obtain Form C, which was detected by XRPD.
  • the compound of formula (I) (15 mg, 29.32 ⁇ mol) was added to a glass vial, and 0.5 mL of dichloromethane/n-heptane (1:4) solvent was added. The sample was placed at room temperature with magnetic stirring (1000 rpm) for about 5 days, then lowered to a low temperature (-20° C.) and stirred for volatilization. The solid was collected by centrifugation and concentrated under reduced pressure to obtain Form D, which was detected by XRPD.
  • the compound of formula (I) (15 mg, 29.32 ⁇ mol) was added to a glass vial, and 0.5 mL of toluene solvent was added. The sample was placed at room temperature and magnetically stirred (1000 rpm) for about 5 days to a clear state. The temperature was then lowered to a low temperature (-20°C) and stirred. No precipitation was observed. The temperature was then raised to room temperature and evaporated to obtain a white solid. The mixture was concentrated under reduced pressure to obtain Form E, which was detected by XRPD.
  • the weight gain of the crystal form A of the compound of formula (I) at 25° C. and 80% RH is 0.114%, and it has no or almost no hygroscopicity.
  • Example 8 Stability study of the crystalline form of compound A of formula (I)
  • the crystalline form A of the compound of the present invention has good stability under light, high temperature and high humidity conditions.
  • the compound was dissolved in DMSO and diluted in 3-fold gradient using Echo655 according to the concentration to be tested, 10 concentration points, and double wells for each concentration, and added to a 384-well plate.
  • Mpro protein and substrate were diluted with test buffer (100mM NaCl, 20mM Tris-HCL, 1mM EDTA), and Mpro protein was added to a 384-well test plate.
  • the compound was incubated at room temperature for 30 minutes, and then the substrate was added.
  • the background wells containing substrate and compound but without Mpro protein were detected as controls.
  • Inhibition rate % [(Compound-BG Compound ) - (ZPE-BG ZPE )] / [(HPE-BG HPE ) - (ZPE-BG ZPE )] * 100%
  • ZPE non-inhibitory control, containing 25 nM Mpro protein + 25 ⁇ M substrate, no compound
  • Test compound well Contains 25nM Mpro protein + 25 ⁇ M substrate + compound
  • BG Background control well. Contains 25 ⁇ M substrate + compound, without Mpro protein
  • the compounds of the present invention have good in vitro anti-novel coronavirus Mpro protease activity.
  • Example 2 Evaluation of the anti-coronavirus activity of compounds in vitro using a cytopathic model
  • MRC5 cells and coronavirus HCoV OC43 were purchased from ATCC.
  • MRC5 cells were cultured in MEM (Sigma) supplemented with 10% fetal bovine serum (Excell), 1% double antibody (Hyclone), 1% L-glutamine (Gibco) and 1% non-essential amino acids (Gibco). MEM (Sigma) supplemented with 5% fetal bovine serum (Excell), 1% double antibody (Hyclone), 1% L-glutamine (Gibco) and 1% non-essential amino acids (Gibco) was used as the experimental culture medium.
  • Cells were seeded into 96-well microplates at a certain density (Table 12) and cultured overnight in a 5% CO 2 , 37°C incubator. On the second day, the compound was added after multiple dilution (8 concentration points, duplicate wells), 50 ⁇ L per well. Then the diluted virus was added to the cells at 100 TCID 50 per well, 50 ⁇ L per well.
  • Cell control (cells, no compound treatment or virus infection), virus control (cells infected with virus, no compound treatment) and culture medium control (only culture medium) were set up. The final volume of the experimental culture medium was 200 ⁇ L, and the final concentration of DMSO in the culture medium was 0.5%.
  • the cells were cultured in a 5% CO 2 , 33°C incubator for 5 days. Cell viability was detected using the cell viability detection kit CellTiter Glo (Promega). The cytotoxicity experiment was carried out under the same conditions as the antiviral experiment, but without virus infection.
  • the antiviral activity and cytotoxicity of the compound are respectively expressed by the inhibition rate (%) and cell viability (%) of the compound at different concentrations on the virus-induced cytopathic effect.
  • the calculation formula is as follows:
  • Inhibition rate (%) (test well reading - virus control average) / (cell control average - virus control average) ⁇ 100
  • GraphPad Prism was used to perform nonlinear fitting analysis on the inhibition rate and cell viability of the compounds, and the half effective concentration (EC 50 ) and half cytotoxic concentration (CC 50 ) values of the compounds were calculated.
  • the compounds of the present invention have good in vitro anti-coronavirus activity at the cellular level and are non-cytotoxic.
  • test animals male and female SD rats were selected as test animals.
  • the LC/MS/MS method was used to quantitatively determine the plasma drug concentration of the test compound at different time points after a single intravenous injection of 2 mg/kg and a single oral gavage of 30 mg/kg of compound 1 A crystal form. The pharmacokinetic characteristics of the test drug in rats were evaluated.
  • the animals were divided into groups of 3/group/sex, and the animals were given the A-form of compound 1, and plasma samples were collected at 0.083 (only intravenous injection group), 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after administration, and the blood drug concentration was determined by LC-MS/MS.
  • the experimental results are shown in Table 14.
  • the compound of the present invention has a higher exposure in plasma and a higher bioavailability.
  • C57BL/6J suckling mice were infected with a lethal dose of coronavirus via intranasal drops, and 2 hours before infection, the suckling mice were treated with a solvent (5% DMSO + 40% PEG400 + 55% water) and compound 1. During the experiment, the weight, health status and survival of the suckling mice were monitored daily to evaluate the protective effect of compound 1 on the suckling mice at different doses.
  • a solvent 5% DMSO + 40% PEG400 + 55% water
  • the body weight of the suckling mice in the vehicle group continued to decrease on the 6th day after virus inoculation, and the terminal survival rate was 0%.
  • Compound 1 (12.5, 25, 50 mpk) was first administered 2 hours before infection, and the terminal survival rates were 87.5%, 100% and 100%, respectively.
  • the experimental results are shown in Table 15.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种含氰基取代的多肽类化合物的晶型及其制备方法。具体公开了式(I)化合物的晶型及其制备方法。

Description

一种含氰基取代的多肽类化合物的晶型及其制备方法
本申请要求申请日为2022/10/14的中国专利申请2022112639720的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种含氰基取代的多肽类化合物的晶型及其制备方法,具体涉及式(I)化合物的晶型及其制备方法。
背景技术
2019年12月,新型2019冠状病毒病(CoVID-19)爆发,并快速演变为对全球公共卫生系统和全球经济产生重大影响的大流行病。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)作为病原体,与SARS-CoV-1具有非常高的RNA基因组(~80%)相似性,后者曾在2003年导致SARS的爆发。针对SARS-CoV-2感染的流行性和严重性,许多国家和机构已经做出巨大努力进行预防和治疗方法的开发,如疫苗的开发和大范围接种,以及一些治疗药物的开发和应用。
冠状病毒是一种有包膜的单链正义RNA病毒,其能编码结构蛋白和非结构蛋白,以促进病毒进入宿主和在宿主中复制。在病毒复制周期中,非结构蛋白3CL(3-chymotrypsin-like protease)蛋白酶起到至关重要的作用,其主要功能是水解病毒所表达的两个多聚蛋白质。序列分析表明3CL蛋白酶可能成为药物设计的关键靶标之一。
目前已经上市的3CL蛋白酶有辉瑞的奈玛特韦片,无论在高风险还是低风险人群中,其住院或者死亡率分别降低89%、70%,已经先后被美国和多个国家批准上市或者批准紧急授权使用。且目前国内外有多款3CL蛋白酶处于临床的各个阶段。因此为了治疗2019新冠病毒或者其它冠状病毒感染,3CL蛋白酶抑制剂的开发显得尤为重要。
发明内容
本发明提供了式(I)化合物的A晶型,
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.655±0.200°,11.988±0.200°,16.055±0.200°,18.356±0.200°,20.083±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,13.837±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°,20.839±0.200°,21.388±0.200°,22.379±0.200°,24.577±0.200°,25.104±0.200°,26.402±0.200°,31.540±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型的射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,13.837±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°,20.839±0.200°,21.388±0.200°,22.379±0.200°,24.577±0.200°,25.104±0.200°,26.402±0.200°,31.540±0.200°。
在本发明的一些方案中,上述式(I)化合物的A晶型,其X射线粉末衍射图谱如图1所示。
在本发明的一些方案中,上述式(I)化合物的A晶型,其X射线粉末衍射(XRPD)图谱中衍射峰的峰位置、面间距和相对强度如表1所示:
表1 A晶型的XRPD图谱衍射峰的峰位置、面间距和相对强度
在本发明的一些方案中,上述式(I)化合物A晶型,其差示扫描量热曲线(DSC)在173.5℃±3℃处具有吸热峰的峰值。
在本发明的一些方案中,上述式(I)化合物A晶型,其差示扫描量热曲线如图2所示。
在本发明的一些方案中,上述式(I)化合物A晶型,其热重分析曲线(TGA)在150.0℃±3℃时失重0.00%。
在本发明的一些方案中,上述式(I)化合物A晶型,其热重分析曲线如图3所示。
本发明还提供了制备上述式(I)化合物的A晶型的方法:包括将式(I)化合物在水中搅拌的步骤。进一步地,还包括分离的步骤。
在本发明的一些实施方案中,本发明式(I)化合物的A晶型通过如下方法制备:
(1)向式(I)化合物中加入水搅拌;
(2)过滤,减压浓缩除去水分。
在本发明的一些实施方案中,上述步骤(1)中搅拌在加热条件下进行;优选地,搅拌温度为50℃。
本发明还提供了式(I)化合物的B晶型,
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.202±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,19.917±0.200°。
在本发明的一些方案中,上述式(I)化合物的B晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.917±0.200°。
在本发明的一些方案中,上述式(I)化合物B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.917±0.200°。
在本发明的一些方案中,上述式(I)化合物的B晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:5.459±0.200°,7.096±0.200°,9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.488±0.200°,19.917±0.200°,20.681±0.200°,21.526±0.200°,22.409±0.200°,24.622±0.200°,25.661±0.200°。
在本发明的一些方案中,上述式(I)化合物的B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.459±0.200°,7.096±0.200°,9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.488±0.200°,19.917±0.200°,20.681±0.200°,21.526±0.200°,22.409±0.200°,24.622±0.200°,25.661±0.200°。
在本发明的一些方案中,上述式(I)化合物的B晶型,其X射线粉末衍射图谱(XRPD)如图4 所示。
在本发明的一些方案中,上述式(I)化合物的B晶型,其X射线粉末衍射图谱中衍射峰的峰位置、面间距和相对强度如表2所示:
表2 B晶型的XRPD图谱衍射峰的峰位置、面间距和相对强度
在本发明的一些方案中,上述式(I)化合物B晶型,其差示扫描量热曲线(DSC)在128.4℃±3℃具有吸热峰的峰值。
在本发明的一些方案中,上述式(I)化合物B晶型,其差示扫描量热曲线如图5所示。
在本发明的一些方案中,上述式(I)化合物B晶型,其热重分析曲线(TGA)在150.0℃±3℃时失重达9.77%。
在本发明的一些方案中,上述式(I)化合物B晶型,其热重分析曲线如图6所示。
在本发明的一些方案中,上述式(I)化合物的B晶型可以是以溶剂合物结晶的形式存在。
本发明还提供了制备上述式(I)化合物的B晶型的方法:包括将式(I)化合物在醇类/正庚烷混合溶剂中室温搅拌的步骤。进一步地,还包括分离的步骤。
在本发明的一些实施方案中,本发明式(I)化合物的B晶型通过如下方法制备:
(1)向式(I)化合物中加入醇类/正庚烷混合溶剂中室温搅拌;
(2)低温挥发,减压浓缩。
在本发明的一些实施方案中,上述步骤(1)中醇类/正庚烷混合溶剂优选乙醇/正庚烷。
在本发明的一些实施方案中,上述乙醇/正庚烷的溶剂比例优选1/4(体积比)。
在本发明的一些实施方案中,上述步骤(2)中的低温优选5℃。
本发明还提供了式(I)化合物的C晶型,
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.334±0.200°,8.399±0.200°,9.435±0.200°,12.060±0.200°,18.126±0.200°。
在本发明的一些方案中,上述式(I)化合物的C晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,18.126±0.200°。
在本发明的一些方案中,上述式(I)化合物的C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,18.126±0.200°。
在本发明的一些方案中,上述式(I)化合物的C晶型,其X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,12.988±0.200°,14.821±0.200°,16.182±0.200°,18.126±0.200°,18.545±0.200°,19.474±0.200°,20.199±0.200°,24.294±0.200°,25.697±0.200°。
在本发明的一些方案中,上述式(I)化合物的C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,12.988±0.200°,14.821±0.200°,16.182±0.200°,18.126±0.200°,18.545±0.200°,19.474±0.200°,20.199±0.200°,24.294±0.200°,25.697±0.200°。
在本发明的一些方案中,上述式(I)化合物的C晶型,其特征在于,所述C晶型的X射线粉末衍射图谱如图7所示。
在本发明的一些方案中,上述式(I)化合物的C晶型,其X射线粉末衍射图谱中衍射峰的峰位置、面间距和相对强度如表3所示:
表3 C晶型的XRPD图谱衍射峰的峰位置、面间距和相对强度

在本发明的一些方案中,上述式(I)化合物的C晶型的差示扫描量热曲线在113.5℃±3℃具有吸热峰的峰值。
在本发明的一些方案中,上述式(I)化合物的C晶型的DSC图谱如图8所示。
在本发明的一些方案中,上述式(I)化合物的C晶型的热重分析曲线在110.0℃±3℃时失重3.52%,150.0℃±3℃时失重10.58%。
在本发明的一些方案中,上述式(I)化合物的C晶型的TGA图谱如图9所示。
在本发明的一些方案中,上述式(I)化合物的C晶型可以是以溶剂合物结晶的形式存在。
本发明还提供了制备上述式(I)化合物的C晶型的方法:包括将式(I)化合物在乙酸乙酯/正庚烷混合溶剂中室温搅拌的步骤。进一步地,还包括分离的步骤。
在本发明的一些实施方案中,本发明式(I)化合物的C晶型通过如下方法制备:
(1)向式(I)化合物中加入乙酸乙酯/正庚烷混合溶剂中室温搅拌;
(2)低温挥发,减压浓缩。
在本发明的一些实施方案中,上述步骤(1)中乙酸乙酯/正庚烷的溶剂比例优选1/4(体积比)。
在本发明的一些实施方案中,上述步骤(2)中的低温优选-20℃。
本发明还提供了式(I)化合物的D晶型,
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.136±0.200°,9.908±0.200°,17.787±0.200°,18.329±0.200°,24.298±0.200°。
在本发明的一些方案中,上述式(I)化合物的D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.136±0.200°,9.908±0.200°,17.787±0.200°,18.329±0.200°,24.298±0.200°。
在本发明的一些方案中,上述式(I)化合物的D晶型的XRPD图谱如图10所示。
在本发明的一些方案中,上述式(I)化合物的D晶型,其X射线粉末衍射图谱中衍射峰的峰位置、面间距和相对强度如表4所示:
表4 D晶型的XRPD图谱衍射峰的峰位置、面间距和相对强度
在本发明的一些方案中,上述式(I)化合物的D晶型的差示扫描量热曲线在113.3℃±3℃具有吸热峰的峰值。
在本发明的一些方案中,上述式(I)化合物的D晶型的DSC图谱如图11所示。
在本发明的一些方案中,上述式(I)化合物的D晶型的热重分析曲线在90.0℃±3℃时失重达6.59%,150.0℃±3℃时失重达15.60%。
在本发明的一些方案中,上述式(I)化合物的D晶型的TGA图谱如图12所示。
在本发明的一些方案中,上述式(I)化合物的D晶型可以是以溶剂合物结晶的形式存在。
本发明还提供了制备上述式(I)化合物的D晶型的方法:包括将式(I)化合物在二氯甲烷/正庚烷混合溶剂中室温搅拌的步骤。进一步地,还包括分离的步骤。
在本发明的一些实施方案中,本发明式(I)化合物的D晶型通过如下方法制备:
(1)向式(I)化合物中加入二氯甲烷/正庚烷混合溶剂中室温搅拌;
(2)低温挥发,减压浓缩。
在本发明的一些实施方案中,上述步骤(1)中二氯甲烷/正庚烷的溶剂比例优选1/4(体积比)。
在本发明的一些实施方案中,上述步骤(2)中的低温优选-20℃。
本发明还提供了式(I)化合物的E晶型,
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.987±0.200°,9.928±0.200°,11.998±0.200°,13.499±0.200°,18.044±0.200°。
在本发明的一些方案中,上述式(I)化合物的E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.987±0.200°,9.928±0.200°,11.998±0.200°,13.499±0.200°,18.044±0.200°,19.492±0.200°,25.173±0.200°。
在本发明的一些方案中,上述式(I)化合物的E晶型的XRPD图谱如图13所示。
在本发明的一些方案中,上述式(I)化合物的E晶型,其X射线粉末衍射图谱中衍射峰的峰位置、面间距和相对强度如表5所示:
表5 E晶型的XRPD图谱衍射峰的峰位置、面间距和相对强度
在本发明的一些方案中,上述式(I)化合物的E晶型的差示扫描量热曲线在113.7℃±3℃具有吸热峰的峰值。
在本发明的一些方案中,上述式(I)化合物的E晶型的DSC图谱如图14所示。
在本发明的一些方案中,上述式(I)化合物的E晶型的热重分析曲线在150.0℃±3℃时失重13.97%。
在本发明的一些方案中,上述式(I)化合物的E晶型的TGA图谱如图15所示。
在本发明的一些方案中,上述式(I)化合物的E晶型可以是以溶剂合物结晶的形式存在。
本发明还提供了制备上述式(I)化合物的E晶型的方法:包括将式(I)化合物在甲苯中室温搅拌的步骤。进一步地,还包括分离的步骤。
在本发明的一些实施方案中,本发明式(I)化合物的E晶型通过如下方法制备:
(1)向式(I)化合物中加入甲苯中室温搅拌;
(2)挥发,减压浓缩。
在本发明的一些实施方案中,上述步骤(2)中的挥发温度优选室温。
本发明还提供了包含式(I)化合物的A晶型、B晶型、C晶型、D晶型、或E晶型的结晶组合物,其中,所述晶型占结晶组合物重量的50%以上,较好为80%以上,更好是90%以上,最好是95%以上。
本发明还提供了一种药物组合物,所述药物组合物中包含治疗有效量的式(I)化合物的A晶型、B晶型、C晶型、D晶型、或E晶型、或上述结晶组合物。本发明的药物组合物中可含有或不含有药学上可接受的辅料。此外,本发明的药物组合物可进一步包括一种或多种其他治疗剂。
本发明还提供了一种治疗冠状病毒感染的方法,所述方法包括给予有需要的个体治疗有效量的本发明的式(I)化合物的A晶型、B晶型、C晶型、D晶型、或E晶型、或上述结晶组合物、或上述药物组合物。
本发明还提供了上述式(I)化合物的A晶型、B晶型、C晶型、D晶型、或E晶型、或上述结晶组合物、或上述药物组合物在制备治疗与冠状病毒感染相关疾病的药物中的用途。
本发明的一些方案中,上述与冠状病毒感染相关疾病是SARS-CoV-2病毒感染。
技术效果
本发明化合物的晶型具有较好的PK性质及治疗SARS-CoV-2病毒的作用,其晶型稳定、引湿性良好、受光热影响小。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
对于任何给定的结晶形式而言,由于例如结晶形态等因素引起的优选取向,衍射峰的相对强度可以改变,这在结晶学领域中是公知的。存在优选取向影响的地方,峰强度是改变的,但是晶型的衍射峰位置是无法改变的。此外,对任何给定的晶型而言,峰的位置可能存在轻微误差,这在结晶学领域中也是公知的。例如,由于分析样品时温度的变化、样品的移动、或仪器的标定等,峰的位置可以移动,2θ值的测量误差有时约为±0.2度,因此,本领域技术人员公知在确定每种结晶结构时,应该将此误差考虑在内。
DSC测定当结晶由于其结晶结构发生变化或结晶熔融而吸收或释放热时的转变温度。对于同种化合物的同种晶型,在连续的分析中,热转变温度和熔点误差典型的在约5℃或3℃之内,当我们说一个化合物具有一给定的DSC峰或熔点时,这是指该DSC峰或熔点±5℃或±3℃。DSC提供了一种辨别不同晶型的辅助方法。不同的结晶形态可根据其不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其DSC峰或熔点可能会在更大的范围内变动。此外,由于在物质熔化的过程中伴有分解,因此熔化温度与升温速率相关。
对于同种晶型,TGA失重温度出现可能会因为测定仪器、测定方法/条件等因素而产生差异。对任何特定的晶型,失重温度可能存在误差,误差可以为约±5℃,可以为约±3℃。
需要说明的是,在制备药物晶型时,药物分子与溶剂分子在接触的过程中,外部条件与内部因素造成溶剂分子与化合物分子形成共晶而残留在固体物质中的情况很难避免,从而形成溶剂合物,具体包括化学计量类溶剂合物和非化学计量类溶剂合物。所述的溶剂合物均包括在本发明的范围内。
所述“药学上可接受的辅料”是指与活性成份一同给药的、有利于活性成份给药的惰性物质,包括但不限于国家食品药品监督管理局许可的可接受的用于人或动物(例如家畜)的任何助流剂、增甜剂、稀释剂、防腐剂、染料/着色剂、矫味增强剂、表面活性剂、润湿剂、分散剂、崩解剂、助悬剂、稳定剂、等渗剂、溶剂或乳化剂。
术语“结晶组合物”是指本发明的式(I)化合物的晶型与该化合物的其他晶型或无定形物或其他杂质组成的混合物。例如,式(I)化合物的A晶型的结晶组合物除了式(I)化合物的A晶型之外,还包含式(I)化合物的其他晶型或无定形物或者其他杂质。
术语“药物组合物”是指一种或多种本发明的化合物或其盐与药学上可接受的辅料组成的混合物。药物组合物的目的是有利于对有机体给予本发明的化合物。
本发明化合物的治疗剂量可根据例如以下而定:治疗的具体用途、给予化合物的方式、患者的健康和状态,以及签处方医师的判断。本发明化合物在药用组合物中的比例或浓度可不固定,取决于多 种因素,它们包括剂量、化学特性(例如疏水性)和给药途径。
术语“治疗”意为将本发明所述化合物或制剂进行给药以改善或消除疾病或与所述疾病相关的一个或多个症状,且包括:
(i)抑制疾病或疾病状态,即遏制其发展;
(ii)缓解疾病或疾病状态,即使该疾病或疾病状态消退。
术语“治疗有效量”意指(i)治疗特定疾病、病况或障碍,(ii)减轻、改善或消除特定疾病、病况或障碍的一种或多种症状,或(iii)预防或延迟本文中所述的特定疾病、病况或障碍的一种或多种症状发作的本发明化合物的用量。构成“治疗有效量”的本发明化合物的量取决于该化合物、疾病状态及其严重性、给药方式以及待被治疗的哺乳动物的年龄而改变,但可例行性地由本领域技术人员根据其自身的知识及本公开内容而确定。
除非本发明中另外要求,在整个说明书和其后的权利要求书中,词语“包括(comprise)”及其英文变体例如“包括(comprises)”和“包括(comprising)”应解释为开放式的、含括式的意义,即“包括但不限于”。
在整个本说明书中提到的“一实施方案”或“实施方案”或“在另一实施方案中”或“在某些实施方案中”意指在至少一实施方案中包括与该实施方案所述的相关的具体参考要素、结构或特征。因此,在整个说明书中不同位置出现的短语“在一实施方案中”或“在实施方案中”或“在另一实施方案中”或“在某些实施方案中”不必全部指同一实施方案。此外,具体要素、结构或特征可以任何适当的方式在一个或多个实施方案中结合。
应当理解,在本发明说明书和附加的权利要求书中用到的单数形式的冠词“一”(对应于英文“a”、“an”和“the”)包括复数的对象,除非文中另外明确地规定。因此,例如提到的包括“催化剂”的反应包括一种催化剂,或两种或多种催化剂。还应当理解,术语“或”通常以其包括“和/或”的含义而使用,除非文中另外明确地规定。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
化合物依据本领域常规命名原则或者使用软件命名,市售化合物采用供应商目录名称。
仪器及分析方法
1.1本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:PANalytacal X-射线衍射仪
测试方法:大约1~2mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,Kα11.540598,Kα21.544426,Kα2/Kα1intensity ratio:0.50
光管电压:45kV,光管电流:40mA
发散狭缝:1/8°
扫描模式:Continuous
扫描范围(°2Theta):3-40
每步扫描时间(s):46.7
扫描步长(°2Theta):0.0263
测试时间:~5min
1.2本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA 2500差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N2条件下,以10℃/min的升温速率,加热样品从25℃(室温)到设置温度。
1.3本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA 5500热重分析仪
测试方法:取样品(~1mg)置于TGA铂金锅内进行测试,在25mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到设置温度。
或者:
热重分析仪TGA550
测试方法:取样品(5~10mg)置于TGA铂金锅内置铝盘中进行测试,在60mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
1.4本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~30mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.002%/min(最短:10min,最长:180min)
RH(%)范围:70%RH-95%RH-0%RH-95%RH
RH(%)梯度:10%(90%RH-0%RH-90%RH),5%(95%RH-90%RH and 90%RH-95%RH)。
附图说明
图1为式(I)化合物的A晶型的Cu-Kα辐射XRPD谱图;
图2为式(I)化合物的A晶型的DSC谱图;
图3为式(I)化合物的A晶型的TGA谱图;
图4为式(I)化合物的B晶型的Cu-Kα辐射XRPD谱图;
图5为式(I)化合物的B晶型的DSC谱图;
图6为式(I)化合物的B晶型的TGA谱图;
图7为式(I)化合物的C晶型的Cu-Kα辐射XRPD谱图;
图8为式(I)化合物的C晶型的DSC谱图;
图9为式(I)化合物的C晶型的TGA谱图;
图10为式(I)化合物的D晶型的Cu-Kα辐射XRPD谱图;
图11为式(I)化合物的D晶型的DSC谱图;
图12为式(I)化合物的D晶型的TGA谱图;
图13为式(I)化合物的E晶型的Cu-Kα辐射XRPD谱图;
图14为式(I)化合物的E晶型的DSC谱图;
图15为式(I)化合物的E晶型的TGA谱图;
图16为式(I)化合物的A晶型的DVS谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1:化合物1的制备
步骤1:化合物1-2的合成
将化合物1-1(5g,54.32mmol)溶于甲醇(50mL),在70℃回流48h。反应体系减压浓缩得到目标产物粗品。粗品纯度较高,直接用于下一步反应,得到化合物1-2。
1H NMR(400MHz,CDCl3)δ=4.81(s,1H),3.77(s,3H),3.43(s,3H).
步骤2:化合物1-3的合成
将化合物1-2溶于甲苯(3mL),降温至0℃,缓慢滴加化合物(R)-(+)苯乙胺(1.5g,12.38mmol,1.60mL),在20℃搅拌1h。向反应体系加入乙酸乙酯(60mL)和饱和食盐水(30mL)萃取分得有机相,无水硫酸钠干燥,旋干得到粗品。经硅胶柱层析(石油醚:乙酸乙酯=1:0~5:1)纯化,得到目标化合物1-3。
1H NMR(400MHz,CDCl3)δ=7.95-7.56(m,1H),7.31-7.17(m,5H),4.71-4.40(m,1H),3.95-3.71(m,3H),1.67-1.51(m,3H).
步骤3:化合物1-4的合成
将化合物1-3(0.5g,2.61mmol)溶于2,2,2-三氟乙醇(5mL),加入三氟乙酸(313.04mg,2.75mmol,203.28μL)降温至-10℃,搅拌1h,控制温度-10℃,缓慢滴加环戊二烯(207.40mg,3.14mmol),继续搅拌0.5h。反应体系减压浓缩,加入甲基叔丁基醚(60mL)和饱和碳酸氢钠溶液(30mL×2)搅拌10min,萃取分得有机相,无水硫酸钠干燥,减压浓缩。经硅胶柱层析(石油醚:乙酸乙酯=1:0~5:1)纯化,得到化合物1-4,构型经二维NMR确认。
1H NMR(400MHz,CDCl3)δ=7.34-7.18(m,5H),6.59-6.41(m,1H),6.31(dd,J=1.6,5.6Hz,1H),4.35(br d,J=1.3Hz,1H),3.39(s,3H),3.18-3.03(m,1H),2.95(br s,1H),2.33-2.22(m,1H),2.14(br d,J=8.4Hz,1H),1.54-1.41(m,4H).
MS m/z(ESI):[M+H]+=258.2.
步骤4:化合物1-5的合成
将化合物1-4(100.00mg,388.61μmol)溶于四氢呋喃(1.25mL),降温至-70℃,缓慢滴加硼烷四氢呋喃络合物(1M,427.47μL),缓慢升温至20℃搅拌1h。降温至0℃,加入10%氢氧化钠水溶液(0.55mL)溶液和30%的双氧水(220.28mg,1.94mmol,186.68μL)溶液,缓慢升温至20℃,搅拌1h。向反应体系加入硫代硫酸钠饱和溶液(10mL)搅拌10min淬灭反应,随后加入饱和食盐水(20mL)和乙酸乙酯(60mL×2)萃取,分得有机相。取少量样品溶液,用3%柠檬酸调节pH小于8,再淀粉碘化钾试纸检测呈阴性后,无水硫酸钠干燥,30℃减压浓缩。经硅胶柱层析(石油醚:乙酸乙酯=1:0~5:1)纯化得到化合物1-5。
1H NMR(400MHz,CDCl3)δ=7.30-7.13(m,5H),3.93(br d,J=6.5Hz,1H),3.78(br s,1H),3.70-3.54(m,1H),3.39-3.32(m,1H),3.31-3.24(m,3H),2.49-2.40(m,1H),2.26(s,1H),2.09-2.00(m,1H),1.72(br d,J=10.1Hz,1H),1.46(br d,J=6.5Hz,1H),1.41-1.33(m,3H).
MS m/z(ESI):[M+H]+=276.1.
步骤5:化合物1-6的盐酸盐的合成
将化合物1-5(3g,10.90mmol)溶于乙醇(80mL),加入盐酸(1.19g,32.69mmol)和湿钯碳(15g,10.68mmol)。反应在20℃搅拌16h。将反应液用硅藻土过滤,然后直接旋干得到粗品化合物1-6的盐酸盐。
1H NMR(400MHz,DMSO-d6)δ=10.32-9.78(m,1H),8.94-8.43(m,1H),5.51-5.12(m,1H),4.05-3.98(m,1H),3.96-3.86(m,2H),3.83-3.71(m,3H),2.70-2.60(m,1H),2.36-2.20(m,1H),1.92-1.81(m,1H),1.51-1.31(m,2H)
MS m/z(ESI):[M+H]+=172.0。
步骤6:化合物1-8的合成
将化合物1-7(1.87g,10.90mmol)溶于N,N-二甲基甲酰胺(20mL),加入O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟磷酸盐(4.78g,12.58mmol)和二异丙基乙胺(4.34g,33.55mmol),在搅拌30min后,加入化合物1-6的盐酸盐(190mg,1.12mmol)。反应在20℃搅拌16h。向反应液加入水(15mL),乙酸乙酯(60mL)萃取两次,合并有机相,将有机相经5%柠檬酸(30mL)洗涤两次,食盐水(20mL)洗涤四次,无水硫酸钠干燥,过滤,旋干。经柱层析(石油醚:乙酸乙酯=3:1)纯化得到化合物1-8。
1H NMR(400MHz,CDCl3)δ=5.28-5.16(m,1H),4.50(br s,1H),4.28(d,J=9.8Hz,1H),3.92(s,1H),3.74(s,3H),2.81(s,1H),2.67(s,1H),2.17(br dd,J=6.1,12.7Hz,1H),1.99-1.93(m,1H),1.90-1.84(m,1H),1.59(br d,J=13.3Hz,2H),1.43(s,9H),1.04(s,9H)。
MS m/z(ESI):[M+H]+=385.2.
步骤7:化合物1-9的合成
将化合物1-8(500mg,1.30mmol)溶解于乙腈(7.5mL)中,加入2-碘酰基苯甲酸(976.31mg,3.49mmol),60℃搅拌16h。反应液直接用硅藻土过滤,旋干。无纯化得到化合物1-9。
MS m/z(ESI):[M-55]+=327.1。
步骤8:化合物1-10的合成
将化合物1-9(0.7g,1.83mmol)溶于四氢呋喃(14mL),0℃将TEBBE(μ-氯-μ-亚甲基[二(环戊二烯基)钛]-二甲基铝)试剂(0.5M,14.64mL)加入进去。在0℃搅拌1h,再升温到15℃继续搅拌3h。反应缓慢倒入饱和碳酸氢钠溶液(50mL),硅藻土过滤,乙酸乙酯萃取(30mL×3),饱和食盐水洗涤(30mL×2)。柱层析(石油醚:乙酸乙酯=5:1)纯化得到化合物1-10。
1H NMR(400MHz,DMSO-d6)δ=6.63-6.54(m,1H),5.21-5.15(m,1H),4.88-4.82(m,1H),4.76-4.68(m,1H),4.25-4.19(m,1H),3.90-3.85(m,1H),3.66-3.61(m,3H),3.19-3.11(m,1H),2.42-2.28(m,2H),1.98-1.92(m,1H),1.61-1.53(m,1H),1.38(s,9H),1.00-0.93(m,9H).
MS m/z(ESI):[M+H]+=381.1。
步骤9:化合物1-11的合成
氮气保护,0℃下,将二乙基锌(1M,13.14mL)缓慢加入到1,2-二氯乙烷(80mL)中。搅拌0.25h,将二碘甲烷(7.04g,26.28mmol,2.12mL)在0℃下缓慢加入反应液,搅拌0.25h。将三氟乙酸(149.84mg,1.31mmol,97.30μL)缓慢加入反应体系,继续搅拌0.5h。将化合物1-10(0.5g,1.31mmol)的1,2-二氯乙烷(5mL)加入到反应体系,升温到20℃继续搅拌12h。反应用饱和碳酸氢钠溶液(200mL)淬灭,二氯甲烷萃取(100mL),无水硫酸钠干燥,过滤。浓缩。粗品用制备HPLC(柱型:Phenomenex luna C18 80*40mm*3μm;流动相:[H2O(HCl)-乙腈];乙腈%:1%-30%,7min)进行纯化,得到化合物1-11。
MS m/z(ESI):[M+H]+=295.2。
步骤10:化合物1-12的合成
将化合物1-11(0.1g,339.69μmol)溶于1,4-二氧六环(3mL),然后将碳酸钾(187.79mg,1.36mmol)和二碳酸二叔丁酯(111.20mg,509.53μmol,117.06μL)的水(1mL)溶液加入进去,反应在15℃搅拌12h。将反应液倒入水(30mL),乙酸乙酯萃取(20mL×3),无水硫酸钠干燥,过滤,浓缩。柱层析(石油醚:乙酸乙酯=5:1)纯化得到化合物1-12。
1H NMR(400MHz,DMSO-d6)δ=12.52-12.16(m,1H),6.56-6.31(m,1H),4.66-4.58(m,1H),4.24-4.18(m,1H),4.02(s,1H),3.36-3.28(m,1H),1.97-1.91(m,2H),1.81-1.73(m,2H),1.66-1.59(m,1H),1.36(s,9H),0.99-0.93(m,9H),0.80-0.70(m,1H),0.64-0.53(m,1H),0.49-0.33(m,2H)
MS m/z(ESI):[M+H]+=395.2。
步骤11:化合物1-13的合成
将化合物1-12(88.13mg,223.40μmol)溶于四氢呋喃(2mL)和甲醇(0.6mL)中,将一水合氢氧化锂(28.12mg,670.21μmol)溶于水(0.6mL)并加入进去。反应在15℃搅拌2h。反应用3%的柠檬酸调节pH约为5,乙酸乙酯萃取(20mL×3),无水硫酸钠干燥,过滤,浓缩得到化合物1-13。
MS m/z(ESI):[M+H]+=381.3.
步骤12:化合物1-15的合成
将化合物1-13(0.056g,148.79μmol)溶于N,N-二甲基甲酰胺(2mL),将O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟磷酸盐(84.86mg,223.18μmol)加入到反应体系,反应在15℃搅拌0.5h。然后将二异丙基乙胺(76.92mg,595.16μmol,103.67μL)加入到反应液,再将化合物1-14的盐酸盐(43.26mg,208.31μmol)溶于N,N-二甲基甲酰胺(0.5mL)的溶液加入到反应体系,反应在15℃搅拌12h。反应用水稀释(20mL),乙酸乙酯萃取(20mL×3),有机相用3%的柠檬酸洗涤(20mL),饱和氯化钠溶液洗涤(20mL),无水硫酸钠干燥,过滤,浓缩得到化合物1-15。
1H NMR(400MHz,DMSO-d6)δ=8.22-8.08(m,1H),7.56(s,1H),7.32-7.16(m,1H),7.01(s,1H),6.51(br d,J=9.4Hz,1H),4.60-4.49(m,1H),4.28-4.17(m,2H),4.14(s,1H),3.18-2.98(m,2H),2.47-2.35(m,1H),2.17-2.09(m,2H),1.96-1.84(m,2H),1.76(br d,J=11.0Hz,1H),1.71-1.42(m,4H),1.39-1.34(m,9H),0.95(s,8H),0.84-0.77(m,1H),0.73-0.65(m,1H),0.39(br s,2H)
MS m/z(ESI):[M+H]+=534.4。
步骤13:化合物1-16的合成
化合物1-15(0.02g,37.48μmol)溶于二氯甲烷(2mL),将三氟乙酸(141.02mg,1.24mmol,91.57μL)加入到反应体系。15℃搅拌1h。反应直接用碳酸氢钠溶液淬灭(10mL),二氯甲烷萃取(5mL×5),合并有机相并用无水硫酸钠干燥,过滤,浓缩得到化合物1-16。
1H NMR(400MHz,DMSO-d6)δ=8.37-8.26(m,1H),8.14(br d,J=3.6Hz,3H),7.59-7.53(m,1H),7.40-7.32(m,1H),7.05-6.92(m,1H),4.33-4.21(m,2H),3.93(br d,J=5.0Hz,1H),3.17-3.08(m,1H),3.06-2.97(m,1H),2.44-2.32(m,1H),2.18-2.08(m,2H),1.96-1.86(m,2H),1.82-1.57(m,4H),1.51- 1.40(m,1H),1.04(s,9H),0.95-0.85(m,1H),0.76-0.67(m,1H),0.54-0.34(m,2H)
MS m/z(ESI):[M+H]+=434.2。
步骤14:化合物1的合成
将化合物1-16(0.03g,69.20μmol)溶于二氯甲烷(1mL),将三氟乙酸酐(58.13mg,276.79μmol,38.50μL)加入到反应体系。15℃搅拌1h。反应直接用碳酸氢钠溶液淬灭(10mL),二氯甲烷萃取(5mL×5),合并有机相并用无水硫酸钠干燥,过滤,浓缩。粗品用制备HPLC(柱型:Waters Xbridge BEH C18 100*30mm*10μm;流动相:[H2O(NH4HCO3)-乙腈];乙腈%:10%-50%,8min)分离得到化合物1,即式(I)化合物。
1H NMR(400MHz,DMSO-d6)δ=9.31(br d,J=8.0Hz,1H),8.87(d,J=8.6Hz,1H),7.66(s,1H),5.01-4.87(m,1H),4.72-4.59(m,2H),4.07(s,1H),3.17-3.10(m,1H),3.09-2.98(m,1H),2.45-2.33(m,1H),2.19-2.05(m,3H),1.85-1.64(m,5H),1.56(br d,J=12.0Hz,1H),1.20-1.13(m,1H),1.01(s,8H),0.82-0.67(m,2H),0.54-0.46(m,1H),0.45-0.34(m,1H)
MS m/z(ESI):[M+H]+=512.2。
实施例2:式(I)化合物A晶型的制备
将式(I)化合物(9.4g,18.38mmol)溶于H2O(235mL),50℃搅拌48hr。过滤,得到白色固体,减压浓缩除去水分,得到A晶型,通过XRPD检测。
实施例3:式(I)化合物B晶型的制备
将式(I)化合物(15mg,29.32μmol)加入至玻璃小瓶中,加入0.5mL乙醇/正庚烷(1:4)溶剂,样品置于室温下磁力搅拌(1000rpm)约5天,随后降低至低温(5℃)搅拌挥发,离心收集固体,减压浓缩,得到晶型B,通过XRPD检测。
实施例4:式(I)化合物C晶型的制备
将式(I)化合物(15mg,29.32μmol)加入至玻璃小瓶中,加入0.5mL乙酸乙酯/正庚烷(1:4)溶剂,样品置于室温下磁力搅拌(1000rpm)约5天,随后降低至低温(-20℃)搅拌挥发,离心收集固体,减压浓缩,得到晶型C,通过XRPD检测。
实施例5:式(I)化合物D晶型的制备
将式(I)化合物(15mg,29.32μmol)加入至玻璃小瓶中,加入0.5mL二氯甲烷/正庚烷(1:4)溶剂,样品置于室温下磁力搅拌(1000rpm)约5天,随后降低至低温(-20℃)搅拌挥发,离心收集固体,减压浓缩,得到晶型D,通过XRPD检测。
实施例6:式(I)化合物E晶型的制备
将式(I)化合物(15mg,29.32μmol)加入至玻璃小瓶中,加入0.5mL甲苯溶剂,样品置于室温下磁力搅拌(1000rpm)约5天,溶清状态,随后降低至低温(-20℃)搅拌,未见沉淀,随后升至室温,挥发,得到白色固体,减压浓缩,得到晶型E,通过XRPD检测。
实施例7:式(I)化合物A晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物A晶型10~30mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物A晶型的DVS谱图如图16所示,△W=0.114%。
实验结论:
式(I)化合物A晶型在25℃和80%RH下的吸湿增重为0.114%,无或几乎无吸湿性。
实施例8:式(I)化合物A晶型的稳定性研究
晶型A在不同条件下的稳定性测试结果见表6.
表6不同条件下的稳定性测试
实验结论:本发明化合物晶型A在光照,高温,高湿条件下稳定性良好。
生物测试数据:
实验例1:评价受试化合物的体外抗新型冠状病毒Mpro蛋白酶活性
1.实验材料:
1.1试剂与耗材见表7.
表7
1.2仪器及品牌见表8.
表8
2.实验方法:
化合物溶于DMSO中,根据待测浓度要求使用Echo655按照3倍梯度稀释,10个浓度点,每个浓度双复孔,加入384孔板中。用测试缓冲液(100mM NaCl,20mM Tris-HCL,1mM EDTA)将Mpro蛋白和底物进行稀释,并将Mpro蛋白加入到384孔测试板中,和化合物室温孵育30min,然后加入底物,Mpro蛋白的测试浓度为25nM,底物的测试浓度为25μM。在30℃恒温培养箱中孵育60分钟。然后用酶标仪检测Ex/Em=340nm/490nm荧光信号值。同时检测含底物和化合物但不含Mpro蛋白的背景孔为对照。
3.数据分析:
1)使用以下公式计算抑制率:
抑制率%=[(化合物-BG化合物)-(ZPE-BGZPE)]/[(HPE-BGHPE)-(ZPE-BGZPE)]*100%
#HPE:100%抑制作用对照,包含25nM Mpro蛋白+25μM底物+1μM GC376
ZPE:无抑制作用对照,包含25nM Mpro蛋白+25μM底物,不含化合物
化合物:测试化合物孔.包含25nM Mpro蛋白+25μM底物+化合物
BG:背景对照孔.包含25μM底物+化合物,不含Mpro蛋白
2)使用GraphPad Prism软件对化合物的抑制率数据(抑制率%)进行log(agonist)vs.response--Variable slope非线性拟合分析,得到化合物的IC50值。
表9:受试化合物的体外抗新型冠状病毒Mpro蛋白酶活性
结论:本发明化合物具有较好的体外抗新型冠状病毒Mpro蛋白酶活性。
实施例2:应用细胞病变模型评价化合物体外抗冠状病毒的活性
1.实验材料见表10和表11.
表10试剂与耗材

表11仪器
1.1细胞和病毒
MRC5细胞和冠状病毒HCoV OC43购自ATCC。
MRC5细胞使用添加了10%胎牛血清(Excell),1%双抗(Hyclone),1%L-谷氨酰胺(Gibco)和1%非必需氨基酸(Gibco)的MEM(Sigma)培养液培养。添加了5%胎牛血清(Excell),1%双抗(Hyclone),1%L-谷氨酰胺(Gibco)和1%非必需氨基酸(Gibco)的MEM(Sigma)培养液为实验培养液。
2.实验方法
表12本研究所用病毒试验方法
细胞以一定密度(表12)接种到96微孔板中并于5%CO2、37℃培养箱中培养过夜。第二天,加入倍比稀释后的化合物(8个浓度点、双复孔),50μL每孔。随后稀释好的病毒以每孔100TCID50加入细胞,50μL每孔。设置细胞对照(细胞,无化合物处理或病毒感染),病毒对照(细胞感染病毒,无化合物处理)和培养液对照(只有培养液)。该实验培养液终体积为200μL,培养液中DMSO的终浓度分别为0.5%。细胞于5%CO2、33℃培养箱中培养5天。使用细胞活力检测试剂盒CellTiter Glo(Promega)检测细胞活力。细胞毒性实验与抗病毒实验条件相同,但无病毒感染。
3.数据分析
化合物的抗病毒活性和细胞毒性分别由不同浓度下的化合物对病毒引起的细胞病变效应的抑制率(%)和细胞活率(%)表示。计算公式如下:
抑制率(%)=(测试孔读值-病毒对照平均值)/(细胞对照平均值-病毒对照平均值)×100
细胞活率(%)=(测试孔读值-培养液对照平均值)/(细胞对照平均值-培养液对照平均值)×100
使用GraphPad Prism对化合物的抑制率和细胞活率进行非线性拟合分析,计算化合物的半数有效浓度(EC50)和半数细胞毒性浓度(CC50)值。
表13:细胞病变模型评价化合物体外抗冠状病毒的活性
结论:本发明化合物具有较好的细胞水平的体外抗冠状病毒的活性,且无细胞毒性。
实验例3:大鼠药代动力学试验
本研究选用雌雄SD大鼠作为受试动物,应用LC/MS/MS法定量测定了单次静脉推注给药2mg/kg和单次灌胃给药30mg/kg的化合物1的A晶型后,测试化合物在不同时间点的血浆药物浓度,以评价受试药物在大鼠体内的药代动力学特征。
动物按照3只/组/性别分组,动物分别给予化合物1的A晶型后,给药后0.083(仅静脉推注组)、0.25、0.5、1、2、4、6、8和24小时采集血浆样品,采用LC-MS/MS法测定血药浓度。实验结果见表14。
表14在大鼠中的药代动力学参数

a:生物利用度由AUC0-last和理论剂量计算。ND:不确定。--:不适用。
实验结论:本发明化合物在血浆中的暴露量较高,生物利用度较高。
实验例4:应用冠状病毒OC43病毒株乳鼠感染模型评价受试化合物的体内抗病毒药效
C57BL/6J乳鼠通过滴鼻感染致死剂量的冠状病毒,在感染前2小时后开始用溶媒(5%DMSO+40%PEG400+55%水)、化合物1处理乳鼠。实验期间,每日监控乳鼠的体重、健康状态及存活情况,以评估不同剂量下化合物1对乳鼠的保护作用。
溶媒组乳鼠在病毒接种第6天后体重持续下降,终点存活率为0%。化合物1(12.5、25、50mpk)在感染前2小时首次给药,终点存活率分别为87.5%、100%和100%。实验结果见表15。
表15.小鼠生存分析


*与溶媒组相比
实验结论:化合物1具有良好的体内抗冠状病毒药效,呈现出较好的量效关系。

Claims (51)

  1. 式(I)化合物的A晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.655±0.200°,11.988±0.200°,16.055±0.200°,18.356±0.200°,20.083±0.200°。
  2. 根据权利要求1所述式(I)化合物的A晶型,其特征在于,所述A晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°。
  3. 根据权利要求1所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°。
  4. 根据权利要求1所述式(I)化合物的A晶型,其特征在于,所述A晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,13.837±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°,20.839±0.200°,21.388±0.200°,22.379±0.200°,24.577±0.200°,25.104±0.200°,26.402±0.200°,31.540±0.200°。
  5. 根据权利要求1所述式(I)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.917±0.200°,10.655±0.200°,11.988±0.200°,13.837±0.200°,14.481±0.200°,16.055±0.200°,17.653±0.200°,18.356±0.200°,20.083±0.200°,20.839±0.200°,21.388±0.200°,22.379±0.200°,24.577±0.200°,25.104±0.200°,26.402±0.200°,31.540±0.200°。
  6. 根据权利要求1所述式(I)化合物的A晶型,其特征在于,所述A晶型的X射线粉末衍射图谱如图1所示。
  7. 根据权利要求1所述式(I)化合物的A晶型,其特征在于,所述A晶型的差示扫描量热曲线在173.5℃±3℃处具有吸热峰的峰值。
  8. 根据权利要求1所述式(I)化合物的A晶型,其差示扫描量热曲线如图2所示。
  9. 根据权利要求1所述式(I)化合物的A晶型,其特征在于,所述A晶型的热重分析曲线在150.0℃±3℃时失重0.00%。
  10. 根据权利要求1所述式(I)化合物的A晶型,其重分析曲线如图3所示。
  11. 式(I)化合物的B晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.202±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,19.917±0.200°。
  12. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.917±0.200°。
  13. 根据权利要求11所述式(I)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.917±0.200°。
  14. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:5.459±0.200°,7.096±0.200°,9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.488±0.200°,19.917±0.200°,20.681±0.200°,21.526±0.200°,22.409±0.200°,24.622±0.200°,25.661±0.200°。
  15. 根据权利要求11所述式(I)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.459±0.200°,7.096±0.200°,9.202±0.200°,10.968±0.200°,13.394±0.200°,14.212±0.200°,15.516±0.200°,16.483±0.200°,18.306±0.200°,19.488±0.200°,19.917±0.200°,20.681±0.200°,21.526±0.200°,22.409±0.200°,24.622±0.200°,25.661±0.200°。
  16. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型的X射线粉末衍射图谱如图4所示。
  17. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型的差示扫描量热曲线在128.4℃±3℃具有吸热峰的峰值。
  18. 根据权利要求11所述式(I)化合物的B晶型,其差示扫描量热曲线图谱如图5所示。
  19. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型的热重分析曲线在150.0℃±3℃时失重9.77%。
  20. 根据权利要求11所述式(I)化合物的B晶型,其热重分析曲线如图6所示。
  21. 根据权利要求11所述式(I)化合物的B晶型,其特征在于,所述B晶型可以是以溶剂合物结晶的形式存在。
  22. 式(I)化合物的C晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.334±0.200°,8.399±0.200°,9.435±0.200°,12.060±0.200°,18.126±0.200°。
  23. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的6、7、或8个衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,18.126±0.200°。
  24. 根据权利要求22所述式(I)化合物的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,18.126±0.200°。
  25. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型的X射线粉末衍射图谱中,用2θ角表示,至少包含选自下述中的12、13、14、15、或16个衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,12.988±0.200°,14.821±0.200°,16.182±0.200°,18.126±0.200°,18.545±0.200°,19.474±0.200°,20.199±0.200°,24.294±0.200°,25.697±0.200°。
  26. 根据权利要求22所述式(I)化合物的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.883±0.200°,6.334±0.200°,8.399±0.200°,8.928±0.200°,9.435±0.200°,11.168±0.200°,12.060±0.200°,12.988±0.200°,14.821±0.200°,16.182±0.200°,18.126±0.200°,18.545±0.200°,19.474±0.200°,20.199±0.200°,24.294±0.200°,25.697±0.200°。
  27. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型的X射线粉末衍射图谱如图7所示。
  28. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型的差示扫描量热曲线在113.3℃±3℃具有吸热峰的峰值。
  29. 根据权利要求22所述式(I)化合物的C晶型,其差示扫描量热曲线如图8所示。
  30. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型的热重分析曲线在110.0℃±3℃时失重3.52%,150.0℃±3℃时失重10.58%。
  31. 根据权利要求22所述式(I)化合物的C晶型,其热重分析曲线如图9所示。
  32. 根据权利要求22所述式(I)化合物的C晶型,其特征在于,所述C晶型可以是以溶剂合物结晶的形式存在。
  33. 式(I)化合物的D晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:9.136±0.200°,9.908±0.200°,17.787±0.200°,18.329±0.200°,24.298±0.200°。
  34. 根据权利要求33所述式(I)化合物的D晶型,其其特征在于,所述D晶型的X射线粉末衍射图谱如图10所示。
  35. 根据权利要求33所述式(I)化合物的D晶型,其特征在于,所述D晶型的差示扫描量热曲线在113.3℃±3℃具有吸热峰的峰值。
  36. 根据权利要求33所述式(I)化合物的D晶型,其差示扫描量热曲线如图11所示。
  37. 根据权利要求33所述式(I)化合物的D晶型,其特征在于,所述D晶型的热重分析曲线在90.0℃±3℃时失重达6.59%,150.0℃±3℃时失重达15.60%。
  38. 根据权利要求33所述式(I)化合物的D晶型,其热重分析曲线如图12所示。
  39. 根据权利要求33所述式(I)化合物的D晶型,其特征在于,所述D晶型可以是以溶剂合物结晶的形式存在。
  40. 式(I)化合物的E晶型,
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.987±0.200°,9.928±0.200°,11.998±0.200°,13.499±0.200°,18.044±0.200°。
  41. 根据权利要求40所述式(I)化合物的E晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.987±0.200°,9.928±0.200°,11.998±0.200°,13.499±0.200°,18.044±0.200°,19.492±0.200°,25.173±0.200°。
  42. 根据权利要求40所述式(I)化合物的E晶型,其XRPD图谱如图13所示。
  43. 根据权利要求40所述式(I)化合物的E晶型,其特征在于,所述E晶型的差示扫描量热曲线在113.7℃±3℃具有吸热峰的峰值。
  44. 根据权利要求40所述式(I)化合物的E晶型,其DSC图谱如图14所示。
  45. 根据权利要求40所述式(I)化合物的E晶型,其特征在于,所述E晶型的热重分析曲线在150.0℃±3℃时失重达13.97%。
  46. 根据权利要求40所述式(I)化合物的E晶型,其热重分析曲线如图15所示。
  47. 根据权利要求40所述式(I)化合物的E晶型,其特征在于,所述E晶型可以是以溶剂合物结晶的形式存在。
  48. 一种结晶组合物,其包含权利要求1~10任意一项所述的A晶型或根据权利要求11~21任意一项所述的B晶型或根据权利要求22~32任意一项所述的C晶型或根据权利要求33~39任意一项所述的D晶型或根据权利要求40~47任意一项所述的E晶型。
  49. 一种药物组合物,其包含权利要求1~10任意一项所述的A晶型或根据权利要求11~21任意一项所述的B晶型或根据权利要求22~32任意一项所述的C晶型或根据权利要求33~39任意一项所述的D晶型或根据权利要求40~47任意一项所述的E晶型组合物。
  50. 根据权利要求1~10任意一项所述的A晶型、根据权利要求11~21任意一项所述的B晶型、根据权利要求22~32任意一项所述的C晶型、根据权利要求33~39任意一项所述的D晶型、根据权利要求40~47任意一项所述的E晶型、权利要求48所述结晶组合物、或权利要求49所述药物组合物在制备治疗冠状病毒感染相关疾病的药物中的应用。
  51. 根据权利要求50所述的应用,其中,与冠状病毒感染相关疾病是SARS-CoV-2病毒感染。
PCT/CN2023/124527 2022-10-14 2023-10-13 一种含氰基取代的多肽类化合物的晶型及其制备方法 WO2024078618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014386.9A CN118176202A (zh) 2022-10-14 2023-10-13 一种含氰基取代的多肽类化合物的晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211263972 2022-10-14
CN202211263972.0 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024078618A1 true WO2024078618A1 (zh) 2024-04-18

Family

ID=90668864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124527 WO2024078618A1 (zh) 2022-10-14 2023-10-13 一种含氰基取代的多肽类化合物的晶型及其制备方法

Country Status (2)

Country Link
CN (1) CN118176202A (zh)
WO (1) WO2024078618A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466838A (zh) * 2020-09-03 2022-05-10 辉瑞大药厂 含腈的抗病毒化合物
WO2022218442A1 (zh) * 2021-04-16 2022-10-20 南京明德新药研发有限公司 环修饰的脯氨酸短肽化合物及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466838A (zh) * 2020-09-03 2022-05-10 辉瑞大药厂 含腈的抗病毒化合物
WO2022218442A1 (zh) * 2021-04-16 2022-10-20 南京明德新药研发有限公司 环修饰的脯氨酸短肽化合物及其应用

Also Published As

Publication number Publication date
CN118176202A (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2022143473A1 (zh) 一种核苷类化合物及其用途
BR112021022419B1 (pt) Compostos antivirais contendo nitrila e composição farmacêutica
WO2022021841A1 (zh) 一种新型冠状病毒主蛋白酶的抑制剂及其制备方法和用途
JP6134338B2 (ja) B型肝炎ウイルス共有結合閉環状dna形成の阻害剤およびそれらの使用方法
CN113784963B (zh) 用作ret激酶抑制剂的化合物及其应用
CA2707308A1 (en) Ido inhibitors
BR112012012529B1 (pt) Composto indol, composição farmacêutica, inibidores e agentes compreendendo o referido composto e seus usos
BR112020003116A2 (pt) inibidores de ahr e usos dos mesmos
WO2021223718A1 (zh) 醛基类化合物及其制备方法、药物组合物和用途
BR112015022762B1 (pt) Composto de éster do ácido guanidinobenzóico, composição farmacêutica, e, uso do composto
WO2024037520A1 (zh) 一种酰胺类化合物及其制备方法、药物组合物和用途
BR112014019402B1 (pt) Composto 2-aril-benzofuran-7-carboxamida, ou sal farmacologicamente aceitável do mesmo e método para a preparação do composto
WO2010090304A1 (ja) アシルグアニジン誘導体
CN106892920B (zh) 苦豆碱衍生物、其制备方法及用途
BR112015031527B1 (pt) N-(4-hidróxi-4-metil-ciclo-hexil)-4-fenil- benzenossulfonamidas e n-(4- hidróxi-4-metil-ciclo-hexil)-4-(2-piridil) benze-nossulfonamidas, seus usos, composição farmacêutica e seu método de preparação
WO2024078618A1 (zh) 一种含氰基取代的多肽类化合物的晶型及其制备方法
CN116693447A (zh) 酮酰胺类衍生物及其制药用途
WO2023125846A1 (zh) 用于预防和治疗冠状病毒感染的化合物及其偶联物和方法
WO2022125614A1 (en) Phosphonates as inhibitors of enpp1 and cdnp
WO2023272571A1 (zh) 2,3-环氧丁二酰衍生物的医药用途
CN108368123A (zh) 一种取代的咪唑基化合物及其药物组合物
JP2018503683A (ja) ピロールアミド系化合物、その製造方法、及び用途
BR112021013099A2 (pt) Composto de benzotiofeno substituído contendo flúor, e composição farmacêutica e aplicação dos mesmos
EP2994127A1 (en) Furanone compounds as kinase inhibitors
JP2016539099A (ja) 新規sglt1阻害剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876817

Country of ref document: EP

Kind code of ref document: A1