WO2024078307A1 - 载置台定位系统、载置台定位方法及放射治疗系统 - Google Patents

载置台定位系统、载置台定位方法及放射治疗系统 Download PDF

Info

Publication number
WO2024078307A1
WO2024078307A1 PCT/CN2023/120922 CN2023120922W WO2024078307A1 WO 2024078307 A1 WO2024078307 A1 WO 2024078307A1 CN 2023120922 W CN2023120922 W CN 2023120922W WO 2024078307 A1 WO2024078307 A1 WO 2024078307A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
stage
connecting component
platform
loading platform
Prior art date
Application number
PCT/CN2023/120922
Other languages
English (en)
French (fr)
Inventor
闫发智
贡秋平
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Publication of WO2024078307A1 publication Critical patent/WO2024078307A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/105Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a laser alignment system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1097Means for immobilizing the patient

Definitions

  • the present invention relates to a treatment positioning system and method, and in particular to a mounting table positioning system, a mounting table positioning method and a radiotherapy system.
  • neutron capture therapy is a combination of the above two concepts, such as boron neutron capture therapy, which relies on the specific aggregation of boron drugs in tumor cells and precise neutron beam irradiation to provide better cancer treatment options than traditional radiation.
  • the simulation positioning room In order to achieve accurate neutron beam irradiation, in the simulation positioning room, it is necessary to accurately locate and mark the patient's tumor position through CT images and other means combined with a laser positioning system.
  • the patient In the treatment room, the patient needs to be positioned through a laser positioning system combined with the marks made in the simulation positioning room, so that the neutron beam can be aimed at the tumor for irradiation.
  • the laser positioning system uses a laser transmitter. Since the laser transmitter is fixedly installed on the walls and ceiling of the simulation positioning room and the treatment room, a positioning device is required to drive the stage and quickly and accurately position it at the same time. During the neutron capture therapy process, how to quickly and accurately lock and fix the stage and the positioning device to obtain accurate positioning is a key step in whether the neutron beam can accurately implement treatment.
  • the present invention provides a loading platform positioning system on the one hand, including a loading platform, a loading platform positioning device, a loading platform transfer device and a connecting device, the loading platform is used to carry the patient, the loading platform positioning device is used to move and position the loading platform, the loading platform transfer device is used to support and move the loading platform, the connecting device has a clamping position for locking the loading platform and the loading platform positioning device and a release position for disengaging the loading platform and the loading platform positioning device, the connecting device includes a first connecting component and a second connecting component that cooperate with each other, wherein the first connecting component and the second connecting component are relatively arranged on the loading platform and the loading platform positioning device The platform and the patient are transferred to the platform positioning device by the platform transfer device, and the connecting device can quickly clamp and lock the platform and the platform positioning device to reduce the positioning time.
  • the platform can be quickly positioned in combination with the platform positioning device to obtain accurate positioning marks, thereby saving the working time of simulating the positioning of the patient before irradiation treatment in the treatment room.
  • the connecting device in the treatment room by setting the connecting device in the treatment room, the platform and the patient can be quickly and accurately positioned according to the positioning marks obtained in the simulation positioning room in combination with the platform positioning device, which can effectively avoid unnecessary particle irradiation doses for patients and medical staff in the treatment room.
  • the first connection component includes a mounting platform and a locking member disposed on the mounting platform.
  • the mounting platform is provided with a notch for aligning and matching with the second connection component. After the locking member is rotated at a preset angle, it can be clamped and connected with the second connection component passing through the notch. The entire first connection component is installed through the mounting platform, and the locking member is distributed on the mounting platform.
  • the mounting platform is aligned with the second connection component, a part of the second connection component can pass through the notch on the mounting platform so that the first connection component and the second connection component are tightly fitted.
  • the locking member can be rotated to the clamping position to complete the locking.
  • the locking action is completed in one step and the operation is simple and convenient, which greatly saves the positioning time of the entire mounting platform.
  • the locking member includes a driving part movably connected relative to the mounting platform, a locking part, and a limiting part arranged on the mounting platform, the driving part is used to drive the locking part to rotate to a clamping position locked with the second connecting component or a release position disengaged from the second connecting component, and the limiting part has a limiting end for limiting the driving part.
  • the driving part is manually driven to rotate, and the driving part drives the locking part to rotate while the driving part rotates.
  • the initial state of the locking part is far away from the notch, and will not hinder the alignment and fitting of the first connecting component and the second connecting component.
  • the rotation and locking process of the locking part is a process of gradually approaching the notches on both sides until the locking part and the second connecting component pass through the notch and engage with each other. At this time, the locking member is locked with the second connecting component to realize the locking and fixing between the loading platform positioning device and the loading platform, which is convenient for the subsequent loading platform positioning device to move and position the loading platform.
  • the limiting part is used to limit the rotation amplitude of the driving part. When the driving part rotates to the first limiting end of the limiting part, the locking part is disengaged from the second connecting component to realize the release and unlocking between the two.
  • the loading platform positioning device can be detached from the loading platform, and when the driving part rotates to the second limiting end of the limiting part, the locking part is connected and combined with the second connecting component to realize the locking and fixing between the two. At this time, the loading platform positioning device and the loading platform can be locked and fixed.
  • a stopper is provided on one side of the limit end facing the driving part, and the driving part is provided with a stopped part corresponding to the stopper.
  • the stopped part is connected to the stopper to lock the position of the driving part and the locking part.
  • the stopper and the stopped part are used to realize the clamping position of the driving part.
  • the driving part rotates to the position where the stopped part is connected to the stopper, the driving part is clamped and stops moving.
  • the locking part also stops moving when the driving part rotates to the clamping position or the release position, that is, when the driving part rotates to the stopper position where the stopped part is connected to the stopper, the locking part also rotates to the position.
  • the second connecting component includes a clamping member that can pass through the slot and a limiting member of the limiting mounting platform, a clamping portion is provided on one side of the clamping member, and a plurality of limiting members are provided.
  • the clamping member can pass through the slot so that the second connecting component One side is fitted with one side of the first connecting component, so as to realize the combination of the loading platform and the loading platform positioning device.
  • the clamping part is used to clamp and clamp the locking part.
  • the driving part rotates to the position where the stopper at the second limit end is engaged with the stopped part, the locking part is synchronously rotated until its end is embedded in the clamping part. At this time, the stopper and the stopped part can prevent the locking part from being offset.
  • the stopper and the stopped part limit the driving part and the locking part, and the locking part and the clamping part are engaged, so as to realize the fixed locking of the loading platform and the loading platform positioning device.
  • the platform transfer device includes casters and a buffer assembly arranged on the casters
  • the buffer assembly includes a lower support, an upper support and a buffer member arranged between the upper support and the lower support
  • the upper support is movably connected to the lower support
  • the upper support can rotate relative to the lower support.
  • the platform is placed on the platform transfer device before positioning, and the platform transfer device is moved by the casters arranged at the bottom thereof, and can move the platform to a specified position.
  • the buffer assembly can buffer the impact of external pressure on the supporting structure and casters of the platform transfer device, thereby protecting the platform transfer device.
  • the buffer member is accommodated and installed between the lower support and the upper support. When the platform transfer device is subjected to downward external force, the external force is transmitted to the upper support so that the upper support can rotate, and the pressure is transmitted to the buffer member to form a buffer, thereby protecting the caster from damage.
  • a positioning member is provided on the platform transfer device, and the positioning member is used to position the platform transfer device relative to the platform positioning device.
  • the platform transfer device is fitted and positioned with the platform positioning device through the positioning member to achieve preliminary positioning of the platform transfer device, so that the first connecting component and the second connecting component can be combined more quickly in subsequent operations, which is beneficial to the subsequent positioning work of the platform by the platform positioning device.
  • an opening is provided on the loading platform transfer device, and the opening is used to accommodate the clamping assembly.
  • the first connecting assembly or the second connecting assembly arranged on the loading platform is located at the opening, so that the first connecting assembly can be aligned and matched with the second connecting assembly at the opening.
  • the second aspect of the present invention provides a method for positioning a platform, comprising moving a platform transfer device to a preset position aligned with a platform positioning device, wherein the platform is placed on the platform transfer device, and a first connecting component and a second connecting component are relatively arranged on the platform and the platform positioning device, and the purpose of moving the platform transfer device to the preset position is to preliminarily position the platform transfer device; moving the platform positioning device so that the first connecting component is aligned and matched with the second connecting component, that is, moving the platform positioning device so that the first connecting component and the second connecting component are in a fitted state; rotating the first connecting component to the clamping position so that the first connecting component and the second connecting component are locked, and the fixation between the platform positioning device and the platform is achieved by locking the first connecting component and the second connecting component; moving the platform positioning device to coordinate the platform, that is, the platform positioning device moves the platform from the initial position to the set coordinate position to achieve positioning of the platform.
  • the loading platform transfer device is provided with a positioning member and an opening, and the loading platform transfer device is moved to a position corresponding to the loading platform.
  • the preset position of the stage positioning device includes that the stage transfer device is attached to one side of the stage positioning device through the positioning member, and the first connection component is aligned and attached to the second connection component at the opening.
  • the positioning member plays a role in preliminarily positioning the stage transfer device relative to the stage positioning device, and the opening plays a role in facilitating the up and down movement of the stage positioning device, so that the first connection component can pass through the opening and match the second connection component.
  • the first connecting component includes a driving part, a locking part and a limiting part
  • the limiting part is provided with a stopper
  • the driving part is provided with a stopped part corresponding to the stopper
  • the second connecting component includes a clamping part
  • rotating the first connecting component to the clamping position so that the first connecting component and the second connecting component are locked includes rotating the driving part to clamp between the stopper and the stopped part, and the locking part is rotated to the clamping part to achieve locking.
  • the locking part When the driving part is rotated, the locking part will also rotate with the driving part, and the combination of the stopper and the stopped part is used to limit the movement of the driving part, so that the driving part and the locking part stop rotating after being rotated to the right position and will not deviate, thereby enhancing the stability of the locking member.
  • a third aspect of the present invention provides a radiotherapy system, including a radiation generating device and a stage positioning system.
  • the radiotherapy system is a neutron capture therapy system
  • the radiation generating device is a neutron generating device
  • the present invention provides a platform positioning system, which, by setting a connecting device, enables the platform positioning device to be quickly locked and fixed to the platform, thereby saving unnecessary positioning steps during treatment.
  • the platform positioning device then provides the patient with fast and accurate coordinate positioning, saving operation time before positioning, thereby effectively avoiding unnecessary particle irradiation doses.
  • the second aspect of the present invention provides a method for positioning a loading platform, in which a loading platform positioning device positions the loading platform through the method steps, wherein the locking action between the loading platform positioning device and the loading platform is completed in one step and the operation is simple and convenient, which greatly saves the overall positioning time of the loading platform and makes the irradiation positioning of the loading platform more convenient, quick and accurate.
  • FIG1 is a schematic structural diagram of a neutron capture therapy system according to an embodiment
  • FIG2 is a schematic diagram of the overall structure of a positioning system for a stage according to an embodiment
  • FIG3 is a schematic structural diagram of a connecting device in a positioning system of a stage in one embodiment
  • FIG4 is a schematic diagram of the structure of a first connecting component in a positioning system of a mounting platform in one embodiment
  • FIG5 is a schematic diagram of a state in which a connecting device in a positioning system of a stage is in a clamping position in one embodiment
  • FIG6 is a schematic diagram of a state in which a connecting device in a positioning system of a stage is in a released position in one embodiment
  • FIG. 7 is a schematic diagram of the structure of a second connecting component in a positioning system of a stage in one embodiment
  • FIG8 is a schematic diagram of the matching between the stopper and the mounting platform in the positioning system of the mounting platform in one embodiment
  • FIG9 is a schematic structural diagram of a stage transfer device in a stage positioning system in one embodiment
  • FIG10 is a schematic diagram of the structure of a buffer assembly in a positioning system for a stage in one embodiment
  • FIG. 11 is a schematic diagram of a state in which a stage transfer device and a stage positioning device in a stage positioning system in one embodiment are aligned at a preset position;
  • FIG12 is a partial enlarged view of FIG11
  • FIG. 13 is a schematic diagram of a state in which a stage positioning device in a stage positioning method in one embodiment positions a stage;
  • FIG14 is a schematic diagram of positioning a carrier of a neutron capture therapy system according to an embodiment
  • FIG15 is a schematic structural diagram of a positioning device for a stage of a neutron capture therapy system according to an embodiment
  • FIG16 is a schematic diagram of FIG15 in another direction
  • FIG17 is a schematic diagram of a module of a neutron capture therapy system according to an embodiment
  • FIG18 is a schematic diagram of a carrier transfer device and a transfer vehicle positioning mechanism of a neutron capture therapy system in one embodiment
  • FIG19 is a schematic diagram of a state of a positioning device of a platform of a neutron capture therapy system in different positions according to an embodiment
  • FIG20 is a top view of FIG19 in a direction parallel to the ground;
  • FIG21 is a cross-sectional view of FIG20 taken along the OO plane
  • FIG22 is a flow chart of a method for controlling a stage of a neutron capture therapy system according to an embodiment
  • FIG. 23 is a flow chart of a method for controlling a stage to be away from a beam outlet in a neutron capture therapy system according to an embodiment.
  • Neutron capture therapy system 100 irradiation chamber 101, charged particle beam generation chamber 102, partition wall 103, simulation positioning chamber 104, ceiling 1011, floor 1012, neutron generator 10, accelerator 11, beam shaper 20, reflector 21, retarder 22, thermal neutron absorber 23, radiation shielding body 24, beam outlet 25, collimator 30, stage 40, radiation shielding device 50, patient 200, stage transfer device 401, casters 404, connecting device 300, first connecting assembly 500, mounting table 501, locking member 502, notch 503, driving unit 504, locking member 505, limiting member 506, limiting end 507, stopper 508, stopped member 509, flange connector 510, second connecting assembly 70 0, locking member 701, locking portion 702, limiting member 703, buffer assembly 800, lower support 801, upper support 802, buffer member 803, protrusion 804, pin shaft 805, support rod 806, positioning member 4011, opening 4012, transfer vehicle positioning mechanism 402, hole 4021, pin 4022, stage positioning device 60, positioning mechanism 61, driving mechanism 62, laser positioning device 601, linear axis 6
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • FIG. 1 shows a radiation irradiation system in one embodiment of the present invention, preferably a boron neutron capture therapy system 100, comprising a neutron generator 10, a beam shaper 20, a collimator 30 and a stage 40.
  • the neutron generator 10 comprises an accelerator The accelerator 11 and the target material T, the accelerator 11 accelerates the charged particles (such as protons, deuterons, etc.) to generate charged particle lines P such as proton lines, the charged particle lines P irradiate the target material T and react with the target material T to generate neutron lines (neutron beams) N, and the target material T is preferably a metal target material.
  • the appropriate nuclear reaction is selected based on the required neutron yield and energy, the energy and current of the accelerated charged particles that can be provided, the physical and chemical properties of the metal target material, and other characteristics.
  • the nuclear reactions that are often discussed are 7 Li (p, n) 7 Be and 9 Be (p, n) 9 B, both of which are endothermic reactions.
  • the energy thresholds of the two nuclear reactions are 1.881MeV and 2.055MeV, respectively. Since the ideal neutron source for boron neutron capture therapy is an epithermal neutron of the keV energy level, theoretically, if protons with energy only slightly higher than the threshold are used to bombard the metal lithium target, relatively low-energy neutrons can be produced, which can be used clinically without too much slowing down treatment.
  • the cross-sections of the two targets of lithium metal (Li) and beryllium metal (Be) with protons of the threshold energy are not high.
  • higher energy protons are usually selected to induce nuclear reactions.
  • the ideal target should have a high neutron yield, the generated neutron energy distribution is close to the epithermal neutron energy region (described in detail below), there is not much strong penetrating radiation generated, it is safe, cheap, easy to operate, and resistant to high temperatures, but in fact, it is impossible to find a nuclear reaction that meets all the requirements.
  • a target made of lithium metal is used.
  • the material of the target material T can also be made of metal materials other than lithium and beryllium, such as tantalum (Ta) or tungsten (W); the target material T can be in the shape of a disk, or in other solid shapes, or in a liquid state (liquid metal).
  • the accelerator 11 can be a linear accelerator, a cyclotron, a synchrotron, or a synchrocyclotron, and the neutron generating device 10 can also be a nuclear reactor instead of an accelerator and a target material.
  • the neutron source of the boron neutron capture therapy comes from a nuclear reactor or a nuclear reaction between charged particles in the accelerator and the target material
  • what is actually produced is a mixed radiation field, that is, the beam contains neutrons and photons ranging from low energy to high energy.
  • the beam contains neutrons and photons ranging from low energy to high energy.
  • the more the rest of the radiation content the greater the proportion of non-selective dose deposition in normal tissues, so these radiations that will cause unnecessary doses should be reduced as much as possible.
  • various radiations should be avoided from being excessive, which also causes unnecessary dose deposition.
  • the neutron beam N generated by the neutron generator 10 is sequentially irradiated toward the irradiated object 200 on the stage 40 through the beam shaper 20 and the collimator 30.
  • the beam shaper 20 can adjust the beam quality of the neutron beam N generated by the neutron generator 10, and the collimator 30 is used to converge the neutron beam N so that the neutron beam N has a higher targeting during the treatment process.
  • the positions of the stage 40 and the irradiated object 200 can also be adjusted so that the beam is aimed at the tumor cells M in the irradiated object 200. These adjustments can be manually operated or automatically realized through a series of control mechanisms (described in detail below). It can be understood that the present invention may not have a collimator, and the beam directly irradiates the irradiated object 200 on the stage 40 after coming out of the beam shaper 20.
  • the beam shaping body 20 further includes a reflector 21, a retarder 22, a thermal neutron absorber 23, a radiation shield 24 and a beam outlet 25. Since the neutrons generated by the neutron generating device 10 have a wide energy spectrum, in addition to epithermal neutrons that meet the treatment needs, it is necessary to reduce the content of other types of neutrons and photons as much as possible to avoid causing harm to the operator or the irradiated body. Neutrons from the neutron generating device 10 need to pass through the retarder 22 to adjust the fast neutron energy (>40keV) to the epithermal neutron energy region (0.5eV-40keV) and reduce thermal neutrons ( ⁇ 0.5eV) as much as possible.
  • the retarder 22 is made of a material with a large cross section for fast neutrons and a small cross section for epithermal neutrons.
  • the retarder 22 is made of D2O , AlF3 , FluentalTM , CaF2 , Li2CO3 , MgF2 and Al2O . 3 ; the reflector 21 surrounds the retarder 22, and reflects the neutrons that diffuse through the retarder 22 to the surroundings back to the neutron beam N to improve the utilization rate of the neutrons. It is made of a material with strong neutron reflection ability.
  • the reflector 21 is made of at least one of Pb or Ni; the retarder 22 has a thermal neutron absorber 23 at the rear, which is made of a material with a large cross-section for interacting with thermal neutrons.
  • the thermal neutron absorber 23 is made of Li-6. The thermal neutron absorber 23 is used to absorb the neutrons that pass through the retarder 22. Thermal neutrons are used to reduce the content of thermal neutrons in the neutron beam N to avoid excessive doses to shallow normal tissues during treatment.
  • the thermal neutron absorber can also be integrated with the retarder, and the material of the retarder contains Li-6; the radiation shielding body 24 is used to shield neutrons and photons leaking from the beam outlet 25.
  • the material of the radiation shielding body 24 includes at least one of a photon shielding material and a neutron shielding material.
  • the material of the radiation shielding body 24 includes photon shielding material lead (Pb) and neutron shielding material polyethylene (PE).
  • the collimator 30 is arranged at the rear of the beam outlet 25.
  • the epithermal neutron beam coming out of the collimator 30 irradiates the irradiated body 200, and is slowed down to thermal neutrons after passing through the shallow normal tissue to reach the tumor cells M.
  • the beam shaping body 20 can also have other structures as long as the epithermal neutron beam required for treatment can be obtained; for the convenience of description, when the collimator 30 is provided, the outlet of the collimator 30 can also be regarded as the beam outlet 25 described below.
  • the boron-containing drug selectively accumulates in the tumor cells M.
  • the boron-containing (B-10) drug has a high capture cross section for thermal neutrons, and two heavily charged particles, 4 He and 7 Li, are generated by 10 B(n, ⁇ ) 7 Li neutron capture and nuclear fission reactions.
  • the average energy of the two charged particles is about 2.33 MeV, and they have high linear energy transfer (LET) and short range characteristics.
  • the linear energy transfer and range of ⁇ particles are 150 keV/ ⁇ m and 8 ⁇ m, respectively, while those of 7 Li heavy-charged particles are 175 keV/ ⁇ m and 5 ⁇ m.
  • the total range of the two particles is approximately equivalent to the size of a cell. Therefore, the radiation damage caused to the organism can be limited to the cellular level, so that the purpose of locally killing tumor cells can be achieved without causing too much damage to normal tissues.
  • a radiation shielding device 50 is further provided between the irradiated body 200 and the beam outlet 25 to shield the radiation of the beam exiting the beam outlet 25 to the normal tissue of the irradiated body. It is understandable that the radiation shielding device 50 may not be provided.
  • the boron neutron capture therapy system 100 is accommodated in a building of concrete structure as a whole. Specifically, the boron neutron capture therapy system 100 also includes an irradiation chamber 101 and a charged particle beam generating chamber 102. The irradiated body 200 on the mounting table 40 is treated with neutron beam N irradiation in the irradiation chamber 101. The charged particle beam generating chamber 102 at least partially accommodates the accelerator 11.
  • the beam shaping body 20 is at least partially accommodated in a partition wall 103 between the irradiation chamber 101 and the charged particle beam generating chamber 102.
  • the partition wall 103 may be a wall that completely separates the irradiation chamber 101 from the charged particle beam generating chamber 102; or it may be a wall that completely separates the irradiation chamber 101 from the charged particle beam generating chamber 102;
  • the irradiation chamber 101 and the charged particle beam generation chamber 102 are partially separated, and the irradiation chamber 101 and the charged particle beam generation chamber 102 are connected.
  • the charged particle line P can selectively act on one or more targets T or act on multiple targets T at the same time to generate one or more therapeutic neutron beams N.
  • the number of targets T there can be one or more beam shapers 20, collimators 30, and stages 40; multiple stages can be arranged in the same irradiation chamber, or a separate irradiation chamber can be arranged for each stage.
  • the irradiation chamber 101 and the charged particle beam generation chamber 102 are spaces surrounded by concrete walls W (including partition walls 103), and the concrete structure can shield neutrons and other radiation lines leaked during the operation of the boron neutron capture therapy system 100.
  • the boron neutron capture therapy system 100 can also include a preparation room, a control room and other spaces for auxiliary treatment (not shown). Each irradiation chamber can be equipped with a preparation room for preparation work such as injection of boron medicine and treatment plan simulation before irradiation therapy.
  • the control room is used to control the accelerator, beam transmission unit, stage positioning device, etc., to control and manage the entire irradiation process, and the management personnel can also monitor multiple irradiation rooms at the same time in the control room.
  • the boron neutron capture therapy system 100 can also include a simulation positioning room 104 (described in detail below) for simulating the positioning of the irradiated body 200 before irradiation therapy.
  • the simulation positioning room 104 is provided with a simulation beam outlet 25' that is the same as the beam outlet 25, which saves the time for positioning the irradiated body 200 in the irradiation room 101 and increases the utilization rate of the irradiation room 101. It can be understood that the simulation positioning room can also be used as a preparation room.
  • the neutron capture therapy system 100 also includes a platform positioning system.
  • the platform positioning system includes a platform 40, a platform positioning device 60, a platform transfer device 401 and a connecting device 300.
  • the platform 40 is used to carry a patient (irradiated body); the platform positioning device 60 is used to move and position the platform 40, and to support the platform 40 during movement and positioning; the platform transfer device 401 is used to support the platform 40 during transfer; the connecting device 300 has a clamping position for locking the platform 40 and the platform positioning device 60 and a release position for disengaging the platform 40 and the platform positioning device 60.
  • the connecting device 300 includes a first connecting component 500 and a second connecting component 700 that cooperate with each other, wherein the first connecting component 500 and the second connecting component 700 are relatively arranged on the platform 40 and the platform positioning device 60.
  • FIG. 3 shows a schematic diagram of the structure of a connecting device 300 in a stage positioning system in an embodiment of the present invention.
  • the connecting device 300 is used to lock and release the stage 40 and the stage positioning device 60.
  • the first connecting component 500 can be arranged on the stage 40 or on the stage positioning device 60.
  • the second connecting component 700 can be arranged on the stage positioning device 60 or on the stage 40.
  • the first connecting component 500 and the second connecting component 700 are locked and fixed, so that the stage 40 and the stage positioning device 60 are fixed, which facilitates moving the stage positioning device 60 to position the stage 40.
  • the first connecting component 500 and the second connecting component 700 can be separated, so that the stage 40 and the stage positioning device 60 can also be separated from each other, thereby allowing the stage 40 to detach from the stage positioning device 60.
  • the first connecting component 500 includes a mounting platform 501 and a locking member 502 arranged on the mounting platform 501.
  • the mounting platform 501 is provided with a slot 503 for aligning and matching with the second connecting component 700. After the locking member 502 is rotated at a preset angle, it can be connected to the second connecting component 700 passing through the slot 503.
  • the first connecting component 500 is arranged on the loading platform positioning device 60, and the mounting platform 501 is used for arranging the locking member 502 and installing the first connecting component 500.
  • a flange connecting member 510 is provided on one side surface of the mounting platform 501, and the mounting platform 501 is installed on the mechanical arm 612 of the loading platform positioning device 60 through the flange connecting member 510.
  • the mounting platform 501 is a plate/block with a certain thickness.
  • the locking member 502 is arranged on the mounting platform 501.
  • the locking member 502 and the flange connecting member 510 are arranged on the same side of the mounting platform 501.
  • the number of the locking members 502 is not limited. In this embodiment, two locking members 502 are arranged on the mounting platform 501, and each locking member 502 is correspondingly provided with two notches 503.
  • the notches 503 are located on both sides of the locking member 502. The notches 503 can be used for a part of the second connecting component 700 to pass through, and then the locking member 502 is rotated to perform the locking operation, so as to realize the fixed locking of the loading platform positioning device 60 and the loading platform 40.
  • the locking member 502 includes a driving portion 504 movably connected relative to the mounting platform 501, a locking portion 505, and a limiting portion 506 arranged on the mounting platform 501, the driving portion 504 is used to drive the locking portion 505 to rotate the second connecting component, and the limiting portion 506 has a limiting end 507 for limiting the displacement of the driving portion 504.
  • the driving part 504 is in the shape of a handle/rod.
  • the driving part 504 serves as the operating and rotating part of the entire locking member 502.
  • the driving part 504 and the locking part 505 are fixedly connected by a pin shaft, and the pin shaft is rotatably connected to the mounting platform 501. When the driving part 504 rotates, the locking part 505 also rotates accordingly.
  • the locking part 505 is in the shape of a block/plate.
  • the locking part 505 has two working states. One is that it is rotated to a position away from the notch 503, that is, perpendicular to the line connecting the two notches 503 in the same group. At this time, the locking part 505 of the second connecting component is in a released position and will not block the movement of the second connecting component 700; the other is that it is rotated to a position close to the notch 503, that is, parallel to the line connecting the two notches 503 in the same group.
  • the locking part 505 of the second connecting component is in a clamping position, which can limit the movement of the second connecting component 700, so that the first connecting component 500 and the second connecting component 700 are tightly fitted, thereby fixing the loading platform positioning device 60 to the loading platform 40.
  • the limiting portion 506 is arc-shaped, and its arc-shaped opening faces the driving portion 504. Both ends of the limiting portion 506 are limiting ends 507.
  • the limiting ends 507 are used to limit the movement of the driving portion 504.
  • the two limiting ends 507 define two working positions of the driving portion 504. One is when the driving portion 504 is rotated to the first limiting end 507, and the corresponding locking portion 505 is in a released state, see Figure 6. The other is when the driving portion 504 is rotated to the second limiting end 507, and the corresponding locking portion 505 is in a locked state, see Figure 5.
  • FIG. 5 is a schematic diagram showing a state in which the connection device in the positioning system of the loading platform according to an embodiment of the present invention is in a clamping position
  • FIG. 6 is a schematic diagram showing a state in which the connection device in the positioning system of the loading platform according to an embodiment of the present invention is in a releasing position.
  • a stopper 508 is provided on the side of the limiting end 507 facing the driving part 504, and the driving part 504 is provided with a stopped block 509 corresponding to the stopper 508.
  • the stopped block 509 is connected to the stopper 508 to achieve locking.
  • the locking of part 505 and the second connecting component 700 is provided.
  • the stopper 508 and the stopped block 509 are used to lock the driving part 504 at the limit end 507.
  • the stopper 508 protrudes from the inner side of the limit end 507 and can be a protrusion.
  • the stopped block 509 is sunken into one end of the driving part 504 and can be a groove.
  • the stopper 508 and the stopped block 509 cooperate with each other.
  • One end of the driving part 504 can slide arbitrarily on the inner side of the limit part 506. When the driving part 504 revolves around the pin shaft to the stopper 509 at one end thereof and is engaged with the stopper 508, the driving part 504 is restricted from rotating.
  • the corresponding locking part 505 is rotated to the releasing position.
  • the driving part 504 is rotated to the stopper 508 at the second limit end and is engaged with the stopped block 509, the corresponding locking part 505 is rotated to the clamping position.
  • FIG. 7 shows a schematic diagram of the structure of the second connection assembly in the positioning system of the loading platform in an embodiment of the present invention.
  • the second connection assembly 700 includes a clamping member 701 capable of passing through the slot 503 and a limiting member 703 for limiting the mounting platform 501.
  • a clamping portion 702 for accommodating the locking member 502 is provided on one side of the clamping member 701.
  • the second connection assembly 700 is arranged on the back of the loading platform 40.
  • the clamping members 701 are in the shape of a bar/column with a certain height and thickness.
  • the clamping portion 702 is specifically a groove.
  • the locking portion 505 is rotated to the clamping position, the locking portion 505 is clamped in two opposite clamping portions 702 to achieve the locking of the locking portion 505.
  • FIG 8 shows a schematic diagram of the matching between the limit member 703 and the mounting platform 501 in the loading platform positioning system in one embodiment of the present invention.
  • the limit member 703 is columnar, and the limit member 703 is fixed to the side of the second clamping member 700.
  • a plurality of limit members 703 can be provided, and the enclosed area is used to accommodate the mounting platform 501.
  • the limit member 703 is provided corresponding to the outer edge shape of the mounting platform 501.
  • the cross-section of the mounting platform 501 is rectangular, and a plurality of limit members 703 also surround and form a rectangle, which is used to limit the mounting platform 501.
  • the limit member 703 When the first connecting component 500 is moved by the robotic arm to the bottom of the second connecting component 700, the limit member 703 is used to limit and assist the notch 503 on the mounting platform 501 to quickly align with the positioning member 701 for plugging.
  • the side of the limit member 703 facing the mounting platform 501 is constructed as a slope, which is inclined in the direction away from the second connecting component 700.
  • a preset adjustment distance is left between the mounting platform 501 and the second connecting component 700, preferably an adjustment distance of 1-5mm, so that the position of the slot 503 on the mounting platform 501 is more accurately aligned with the position of the locking member 701, thereby assisting the quick alignment of the first connecting component 500 and the second connecting component 700.
  • FIG. 9 shows a schematic diagram of the structure of a platform transfer device in a platform positioning system according to an embodiment of the present invention.
  • the platform transfer device 401 includes a caster 404 for movement and a buffer assembly 800 disposed on the caster 404.
  • FIG. 10 shows a schematic diagram of the structure of a buffer assembly in a platform positioning system according to an embodiment of the present invention.
  • the buffer assembly 800 includes a lower support 801, an upper support 802, and a buffer member 803 disposed between the upper support 802 and the lower support 801.
  • the upper support 802 is movably connected to the lower support 801, and the upper support 802 can rotate relative to the lower support 801.
  • the loading platform transfer device 401 is specifically a transfer vehicle, a treatment bed cart, etc.
  • the loading platform transfer device 401 moves the transfer loading platform 40 via casters 404.
  • the buffer assembly 800 is used to buffer the pressure on the casters 404 and protect the casters 404.
  • the lower support 801 is in the shape of a flat plate, and the lower support 801 is fixed on the casters 404.
  • a protrusion 804 is provided on one side of the lower support 801.
  • the longitudinal section of the upper support 802 is inverted L-shaped.
  • the upper support 802 and the lower support 801 are combined into a C-shaped shape.
  • the middle position of the bottom of the lower support 801 is A slot is provided, which corresponds to the position of the protrusion 804.
  • the bottom of the upper support 802 is rotatably connected to the lower support 801 through a pin shaft 805.
  • the top of the upper support 802 is connected to the support rod 806 of the transfer vehicle 401.
  • the buffer 803 plays a buffering role.
  • the buffer 803 is specifically a rectangular spring.
  • Guide rods are provided on one side of the upper support 802 and one side of the lower support 801.
  • the buffer 803 is arranged around the guide rods. At the same time, the two guide rods will not hinder the upper support 802 from rotating toward the lower support 801.
  • the transfer vehicle 401 is suddenly subjected to downward pressure, and the pressure is transmitted to the upper support 802 through the support rod 806. After the upper support 802 is subjected to the force, it rotates around the pin shaft 805 and transmits the force to the buffer 803.
  • the buffer 803 is compressed and deformed, thereby buffering the downward force and protecting the caster 404.
  • FIG. 11 shows a schematic diagram of the state in which the stage transfer device and the stage positioning device in the stage positioning system in one embodiment are aligned at a preset position, and a positioning member 4011 is provided on the stage transfer device 401, and the positioning member 4011 is used to position the relative position of the stage transfer device 401 and the stage positioning device 60.
  • a positioning member 4011 is provided on the stage transfer device 401, and the positioning member 4011 is used to position the relative position of the stage transfer device 401 and the stage positioning device 60.
  • the positioning member 4011 is L-shaped, and the positioning member 4011 is arranged on the support rod 806 of the stage transfer device 401, and the mechanical arm 612 of the stage positioning device 60 is connected to the mounting platform 501 through the flange connector 510, and the initial position of the stage transfer device 401 is obtained by the positioning member 4011 being closely attached to the side of the mounting platform 501.
  • the loading platform transfer device 401 is provided with an opening 4012, and the opening 4012 is used to accommodate the connecting device 300.
  • the second connecting component 700 is located at the opening 4012, and the first connecting component 500 can pass through the opening 4012 and cooperate with the second connecting component 700 at the position of the opening 4012.
  • the loading platform positioning device 60 and the first connecting component 500 are quickly moved to the position of the opening 4012, so that the first connecting component 500 and the second connecting component 700 are aligned and fit.
  • the loading platform transfer device 401 is provided with a positioning member 4011 and an opening 4012.
  • Part 4011 is L-shaped, and the robot arm 612 is connected to the mounting table 501 through the flange connector 510.
  • the mounting table 501 is rectangular, and the L-shaped positioning part 4011 is tightly fitted with the right-angled side of the mounting table 501 connected to the carrier table positioning device 60.
  • the carrier table positioning device 60 and the carrier table transfer device 401 are initially positioned, so that the carrier table positioning device 60 can quickly move to the position of the opening 4012, and pass through the opening 4012 to make the first connecting component 500 close to the second connecting component 700, thereby realizing the function of the carrier table positioning device 60 driving the first connecting component 500 to quickly approach the second connecting component 700.
  • the first connecting component 500 includes a mounting table 501, and a slot 503 is opened on the mounting table 501.
  • the second connecting component 700 includes a locking piece 701.
  • the loading table transfer device 401 is initially positioned and remains stationary. Then the loading table positioning device 60 moves to the opening 4012.
  • a plurality of limiting pieces 703 are arranged on the side of the second connecting component 700.
  • the robotic arm 612 is lifted to move the mounting table 501 into the area surrounded by the limiting pieces 703.
  • the locking piece 701 passes through the slot 503, and the robotic arm 612 continues to be lifted, so that the first connecting component 500 gradually moves closer to the second connecting component 700 until they are fitted.
  • the first connecting component 500 includes a driving part 504, a locking part 505 and a limiting part 506, the limiting part 506 is configured with a stopper 508, the driving part 504 is provided with a stopped part 509 corresponding to the stopper 508, and the second connecting component 700 includes a locking member 701, and a locking part 702 is provided on the locking member 701.
  • the driving part 504 is rotated, the locking part 505 is also rotated accordingly, and the driving part 504 is rotated to be clamped between the stopper 508 and the stopped part 509, and at the same time, the locking part 505 is rotated to be locked between the locking part 702.
  • the control device 70 controls the robot arm 612 to move the mounting table 40 to the simulated positioning position according to the coordinate position determined by the simulated positioning. After the position is moved into position, the irradiation position is determined, and then the patient 200 is irradiated.
  • the control device 70 controls the stage positioning device 60 to move the stage 40 to the stage transfer device 401, and the driving part 504 is rotated in the opposite direction, and the locking part 505 is also rotated accordingly.
  • the driving part 504 is rotated until the stopper 508 at the other end of the limiting part 506 is clamped between the stopper 509 on the driving part 504, and at the same time, the locking part 505 is rotated to a position away from the clamping part 702 to achieve disengagement.
  • the neutron capture therapy system 100 further includes a control device 70.
  • the mounting table 40 and the irradiated object 200 on the mounting table 40 are supported by a mounting table positioning device 60.
  • the control device 70 is connected to the mounting table positioning device 60 and can control the mounting table 40.
  • the stage positioning device 60 and the control device 70 can also be connected to the neutron generating device 10 and can control the neutron generating device 10 to irradiate the neutron beam N to the irradiated object 200 on the stage 40.
  • the same stage positioning devices 60 and 60' are respectively arranged in the irradiation chamber 101 and the simulation positioning chamber 104, and have the same positional relationship with the beam outlet 25 and the simulation beam outlet 25', that is, the same operation coordinate system XYZ of the stage 40 and the stage positioning devices 60 and 60' is defined in the irradiation chamber 101 and the simulation positioning chamber 104, and a reference point at a certain distance from the center of the beam outlet 25 and the simulation beam outlet 25' along the direction of the neutron beam N is used as the coordinate origin, and the stage positioning devices 60 and 60' are used to respectively perform simulation positioning and irradiation positioning of the stage 40 and the irradiated object 200 on the stage 40, and the same stage positioning device is used to make the irradiation positioning more convenient, fast and accurate.
  • the structure of the stage positioning device 60 in the irradiation chamber 101 is specifically introduced below.
  • the stage positioning device 60 includes a positioning mechanism 61, and the positioning mechanism 61 includes a linear shaft 611 and a mechanical arm 612.
  • the mechanical arm 612 is disposed between the linear shaft 611 and the stage 40, and the stage 40 is connected to the linear shaft 611 through the mechanical arm 612, and the stage 40 and the mechanical arm 612 can be translated together along the linear shaft 611.
  • the linear shaft 611 is mounted to the ceiling 1011 of the irradiation room 101, and the mechanical arm 612 extends toward the floor 1012 of the irradiation room 101 as a whole.
  • the linear shaft 611 can also be mounted to other surfaces, such as a wall or a floor; the linear shaft 611 is constructed as a slide rail 6111 fixed to the ceiling 1011 and a support 6112 connected to the mechanical arm 612, and the support 6112 slides along the slide rail 6111. It can be understood that other structures can also be used.
  • the linear axis is directly fixed on the ceiling 1011, and no additional linear axis fixing mechanism such as a steel structure gantry is set, so as to reduce the amount of steel used in the irradiation room and avoid secondary radiation caused by neutron activation of the fixing mechanism.
  • the mechanical arm 612 is a multi-axis mechanical arm connecting the support 6112 and the stage 40.
  • the stage positioning device 60 also includes a driving mechanism 62 to drive the movement of the linear axis 611 and the mechanical arm 612, and the control device 70 controls the driving mechanism 62.
  • the extension direction 6113 of the linear axis 611 is parallel to the direction N of the neutron beam coming out of the beam outlet 25 and irradiating the irradiated body on the stage 40, so that during the stage positioning process, the mechanical arm 612 is translated as a whole in a direction parallel to the direction N of the neutron beam, and most of the mechanical arm is located in the space between the slide rail and the neutron beam outlet, so as to reduce the radioactivity generated by neutron activation of various parts of the mechanical arm and the shortened life caused by it.
  • the distance H1 from the sliding surface S of the slide rail 6111 and the support 6112 to the center of the beam outlet 25 in the direction perpendicular to the sliding surface S is less than 2 meters, which provides sufficient operating space for the stage positioning device 60 to position the stage 40 at a desired position relative to the beam outlet 40.
  • the sliding surface S is parallel to the plane where the ceiling is located.
  • the stage positioning device 60 can also have other settings, such as not including the linear axis 611, the stage 40 is connected to and supported by the mechanical arm 612; or the mechanical arm 612 includes more or fewer arms.
  • a sensor 80 may be provided on the platform 40 or the platform positioning device 60. As shown in FIG. 17 , the sensor 80 is provided on the positioning mechanism 61 and the platform 40. In one embodiment, the sensor 80 is an anti-collision sensor provided on the platform 40 and the robot arm 612. When the edge of the platform or the robot arm contacts other objects or other objects reach the sensor setting range, the sensor 80 may be provided on the platform 40 or the robot arm 612. When the sensor is triggered, it sends a signal and transmits it to the control device 70, and the control device 70 controls the driving mechanism 62 to stop driving the movement of the positioning mechanism 61, that is, controls the loading platform 40 to stop moving.
  • the control device 70 controls the driving mechanism 62 to stop driving the movement of the positioning mechanism 61, that is, controls the loading platform 40 to stop moving.
  • the anti-collision sensor can be a mechanical sensor, a photoelectric sensor, a radar sensor, an ultrasonic sensor, a laser rangefinder, etc.; it can be understood that the anti-collision sensor can also send a human perception signal, and the operator can manually control the driving mechanism to stop driving according to the perceived signal; it is also possible not to control the loading platform to stop moving, but to perform other safety operations, such as performing the reverse movement before the collision.
  • the control device 70 includes at least one user interface 71, which allows an operator to interactively participate in controlling the stage positioning device 60.
  • the control device 70 also includes a system control module 72 and a positioning control module 73.
  • the user interface 71 is connected to the system control module 72, and the system control module 72 is connected to the positioning control module 73.
  • the positioning control module 73 is connected to the drive mechanism 62 and controls the drive mechanism 62.
  • the system control module 72 receives the instruction issued by the user interface 71, the system control module 72 transmits the instruction to the positioning control module 73, and the positioning control module 73 automatically controls the movement of the positioning mechanism 61.
  • the position information of the positioning mechanism 61 can be fed back to the system control module 72 through the positioning control module 73 and transmitted to the user interface 71 for status indication.
  • the operating status or data of the drive mechanism 62 will also be fed back to the system control module 72 through the positioning control module 73.
  • the system control module 72 or the positioning control module 73 controls the drive mechanism 62 according to this information, and the system control module 72 can also transmit this information to the user interface 71 for status indication.
  • the sensor 80 is also connected to the system control module 72. After receiving the signal from the sensor 80, the system control module 72 sends a command to the positioning control module 73 to control the movement of the stage positioning device 60, and transmits the signal from the sensor 80 to the user interface 71 for status indication. It can be understood that the system control module 72 and the positioning control module 73 can be integrated together, or there can be other hardware settings.
  • the neutron capture therapy system 100 also includes a treatment planning device 90, which performs dose simulation calculation and generates a treatment plan (such as through a Monte Carlo simulation program) based on the parameters of the therapeutic neutron beam N generated by the neutron generator 10 and the medical image data of the irradiated part.
  • the treatment plan can determine the position of the irradiated part relative to the neutron generator 10 during the irradiation treatment and the corresponding irradiation time.
  • the control device 70 (system control module 71) is connected to the treatment planning device 90 and receives the treatment plan data, thereby controlling the movement of the stage positioning devices 60, 60' and the neutron beam N generated by the neutron generator 10 according to the treatment plan data.
  • the irradiated body 200 is first simulated positioned in the simulation positioning room 104 according to the treatment plan pre-formulated by the treatment planning device 90.
  • the platform positioning device 60' is connected to the platform 40, as shown in Figure 18.
  • the platform 40 is placed on the platform transfer device 401, and the transfer vehicle 401 is positioned in the simulation positioning room 104 (irradiation room 101) by the transfer vehicle positioning mechanism 402.
  • At least two holes 4021 are set on the ground of the simulation positioning room 104 (irradiation room 101), and at least two pins 4022 are correspondingly set on the transfer vehicle 401.
  • the pins 4022 are inserted into the holes 4021 for positioning.
  • the transfer vehicle 401 can also be positioned in other ways.
  • the relative position of the platform 40 placed on the transfer vehicle 401 is also determined, such as by a limiting mechanism 403 (for example, a boss set on the transfer vehicle) to position the platform 401.
  • the position of the platform 40 is limited, therefore, when the platform 40 is placed on the positioned transfer vehicle 401, the position relative to the simulation positioning chamber 104 (irradiation chamber 101) is determined.
  • the platform 40 is built into the simulation positioning chamber 104 at the initial position A (having the same positional relationship as the irradiation chamber 101), and the control device 70 controls the platform positioning device 60' in the simulation positioning chamber 104 to move to a position where it can be connected to the platform 40, and enables the connecting device 300 to lock the platform positioning device 60' with the platform 40, specifically referring to Figures 11 and 12, the positioning member 4011 provided on the support rod 806 is used to realize the positioning of the platform positioning device 60' and the platform 40, and the platform positioning device 60' moves to the side of the mounting table 501 and fits closely with the positioning member 4011, and at this time, the platform positioning device 60' can be quickly connected to the platform.
  • the irradiated object 200 is placed on the support table 40, and the irradiated object 200 is positioned and fixed according to the position of the irradiated part determined by the pre-established treatment plan relative to the neutron generating device 10 during irradiation therapy.
  • the treatment planning device 90 or the control device 70 calculates the coordinate position of the support table 40 determined by the treatment plan based on the positioning at this time, and the relative position of the irradiated object and the support table can be determined by scanning the positioned irradiated object and the support table through CT, optical scanning, etc., so as to calculate the coordinates of the support table determined by the treatment plan according to the position of the irradiated part determined by the treatment plan relative to the neutron generating device 10 during irradiation therapy. It can be understood that the coordinate position of the support table 40 can also be calculated by other methods.
  • the control device 70 automatically controls the stage positioning device 60' to move the stage 40 from the initial position A to the coordinate position (treatment plan position B) according to the calculated coordinates. After the stage 40 moves to the coordinate position (treatment plan position B), the operator can further adjust the simulated positioning position C through the user interface 71 as needed; when an error occurs during the movement of the stage 40 and the stage positioning device 60', the movement path of the stage positioning device 60' is recalculated or the treatment plan is regenerated.
  • the positioning accuracy is high and the speed is fast.
  • an instruction indicating that the simulated positioning is completed is sent through the user interface 71, and the control device 70 records the coordinate position at this time (simulated positioning position C), and controls the stage positioning device 60 to return the stage 40 to the initial position A (the stage 40 is just placed on the positioned transfer vehicle 401); the control device 70 controls the connecting device 300 to unlock, release the stage 40, and controls the stage positioning device 60 to move to a position separated from the treatment bed 40; releases the transfer vehicle positioning mechanism 402, and uses the transfer vehicle 401 to transport the stage 40 and the irradiated object 200 to the irradiation room 101.
  • the transfer vehicle 401 After arriving at the irradiation room 101, irradiation positioning is started.
  • the transfer vehicle 401 is provided with a transfer vehicle positioning mechanism 402 in the irradiation room 101 that is the same as that in the simulation positioning room 104, that is, the transfer vehicle 401 can be positioned in the irradiation room according to the same fixed position as in the simulation positioning room 104 through the transfer vehicle positioning mechanism 402, and then the stage positioning device 60 in the irradiation room 101 is controlled to move to a position (initial position A) that can be connected to the stage 40, and the connection device 300 is controlled to lock the stage positioning device 60 with the stage 40.
  • the control device 70 controls the stage 40 to move to the simulation positioning position C according to the coordinate position determined by the simulation positioning, and can be further adjusted through the user interface 71 as needed. After the adjustment is in place, the irradiation position D is determined. The operator exits the irradiation room 101 and releases the transfer vehicle positioning mechanism 402 to move the transfer vehicle 401 out.
  • the simulated positioning in the simulated positioning room 104 saves the working time of positioning the irradiated body 200 before irradiation treatment in the irradiation room 101. While performing the simulated positioning, another irradiated body can also be irradiated, thereby increasing the utilization rate of the equipment.
  • the stage positioning device 60, 60' when the stage positioning device 60, 60' is locked and connected with the stage 40, when the stage 40 needs to move from the initial position A, the stage positioning device 60, 60' can be controlled to first raise the stage 40, and then the transfer vehicle positioning mechanism 402 is released to move the transfer vehicle 401 out, and then the stage positioning device 60, 60' is controlled to move further, so as to prevent the stage positioning device 60, 60' from causing position interference with the transfer vehicle 401.
  • the irradiation chamber 101 and the simulation positioning chamber 104 are both provided with the same laser positioning devices 601, 601' with the same positional relationship.
  • the operator can mark the irradiated object 200 according to the position where the laser generated by the laser positioning device hits the irradiated object 200, and adjust or verify the position of the irradiated object 200 in the simulation positioning chamber 104 and the irradiation chamber 101 according to the mark made, so as to ensure that the irradiated object 200 has the same position in the simulation positioning chamber 104 and the irradiation chamber 101.
  • the laser positioning device is provided to make positioning more convenient and quick.
  • the laser generated by the laser positioning device 601, 601' can also determine the position consistent with the central axis X, X' of the beam outlet 25, 25', as shown in Figure 14, that is, the position where the laser generated by the laser positioning device 60, 60' hits the irradiated body 200 represents the position where the central axis of the beam coming out of the beam outlet 25, 25' is incident on the irradiated body 200.
  • the incident point of the beam central axis simulated according to the treatment plan is marked on the irradiated body 200 in the voxel prosthesis tissue model, so that the beam incident position determined during simulated positioning and irradiation treatment is more accurate.
  • the irradiation room 101 and the simulation positioning room 104 may also be provided with the same optical verification devices 602 and 602' with the same positional relationship to collect the position of the mounting table 40 and the image of the irradiated body 200, transmit the data to the system control module 72, compare with the treatment plan and other information, and make adjustments or perform other treatment controls according to the results.
  • the system control module 72 may also receive other data information, such as the data of the neutron generating device, the irradiated body information, etc., and control other devices such as the neutron generating device.
  • the stage 40 now has an irradiation position D.
  • the operator sends an instruction to start irradiation through the user interface 71.
  • the system control module 72 controls the neutron generation device 10 to start generating neutron beam N to irradiate the irradiated object 200 on the stage 40.
  • the system control module 72 controls the neutron generation device 10 to stop irradiating the irradiated object 200 on the stage 40 with the neutron beam N, and transmits information to the user interface 71 to indicate the end of treatment.
  • the system control module 72 sends an instruction to the positioning control module 73 to control the stage positioning device 60 to move the stage 40 from the irradiation position D to the end position E, and the stage 40 is away from the beam exit 25.
  • the stage 40 moves the stage 40 away from the beam exit 25.
  • the position can prevent the irradiated body 200 from being irradiated by residual radiation after the treatment, thereby reducing unnecessary radiation dose.
  • Figures 19 to 21 they are schematic diagrams of the state of the mounting table 40 and the mounting table positioning device 60 in different positions after the treatment.
  • the linear axis 611 is controlled to move the mounting table 40 from the irradiation position D away from the beam outlet 25 to the first intermediate position F along the extension direction 6113 parallel to the linear axis 611, so that the mounting table 40 can quickly move away from the beam outlet 25, thereby avoiding to the greatest extent possible the irradiated object 200 from being continuously irradiated by residual radiation after the treatment is completed;
  • the robot arm 612 is controlled to move the mounting table 40 to the second intermediate position G where the extension direction 41 of the mounting table 40 is basically parallel to the extension direction 6113 of the linear axis 611, so as to prevent the mounting table 40 and the like from interfering with the transfer bed and the like at the end position E or blocking the shielding door exit of the irradiation room 101, thereby facilitating the subsequent irradiated object 200 to leave the irradiation room 101;
  • the robot arm 612 is controlled to move the mounting table 40 from the second intermediate position G to the end position E close to
  • the connecting device 300 can also be controlled to unlock and send the loading platform 40 back to the simulation positioning chamber 104; or the connecting device 300 can be controlled to unlock first, and the irradiated object 200 and the loading platform 40 are sent out of the irradiation chamber 101 together, and after the irradiated object 200 leaves the loading platform 40, the loading platform 40 is sent back to the simulation positioning chamber 104, such as through the transfer vehicle 401.
  • the end position E can be the same as the initial position A, and the transfer vehicle 401 is also positioned in the irradiation chamber 101 by the transfer vehicle positioning mechanism 402, and the robot arm 612 moves the loading platform 40 to the initial position A (end position E) where the loading platform 40 is just placed on the transfer vehicle 401.
  • the minimum distance H2 from the platform 40 to the plane perpendicular to the direction of the neutron beam N where the center of the beam outlet 25 is located is not less than 2500 mm, ensuring that it will not be exposed to a large dose of residual radiation; at the end position E, the height H3 of the supporting surface 42 of the platform 40 from the ground is not greater than 600 mm, facilitating the transfer of the irradiated object 200 or the platform 40.
  • the system control module 72 may automatically control the stage 40 to move away from the beam exit 25 according to a signal indicating that the irradiation time has arrived or a signal indicating that the irradiation of the neutron beam N has stopped; or the operator may input an instruction to move the stage away from the beam exit in the user interface 71 according to the status indication of the end of treatment on the user interface 71, such as by clicking a corresponding button in the human-computer interaction control interface 713, and then the system control module 72 controls the stage 40 to move away from the beam exit 25 according to the instruction.
  • the stage control method of this embodiment includes:
  • the platform positioning device 60' in the simulation positioning room 104 is connected to the platform 40 and locked with the platform 40, and the irradiated object 200 is positioned and fixed on the platform 40 according to the treatment plan data, and then the treatment plan coordinates of the platform 40, i.e., the coordinates of the treatment plan position B, are calculated according to the treatment plan data and the position of the irradiated object 200;
  • S20 Control the stage positioning device 60' to move the stage 40 to the treatment plan position B according to the treatment plan coordinates, and further adjust it to the simulated positioning position C as needed, and record the coordinates of the simulated positioning position C.
  • the simulated positioning position C may also be the treatment plan position B;
  • S40 Control the stage positioning device 60 to move the stage 40 to the simulated positioning position C according to the coordinates of the simulated positioning position C, and further adjust it to the irradiation position D as needed, and then start irradiating the neutron beam N to the irradiated object 200.
  • the irradiation position D can also be the simulated positioning position C;
  • stage positioning device 60 is controlled to move the stage 40 to the end position E, that is, the stage 40 is controlled to be away from the beam exit 25 .
  • step S20 may also include, when an error occurs in the process of the stage 40 moving to the treatment plan position B, returning to recalculate the movement path of the stage positioning device 60' or returning to regenerate the treatment plan.
  • the method of controlling the stage 40 to be away from the beam outlet 25 in step S50 further includes:
  • S53 Control the robot arm 612 to move the mounting platform 40 from the second intermediate position G to the end position E close to the ground.
  • the instruction inputted in the user interface 71 to move the stage away from the beam exit may be to realize the automatic and continuous execution of steps S51-S53 by one button or to execute steps S51-S53 in steps by three buttons corresponding to steps S51-S53 respectively, or other setting modes may be adopted. It is understood that steps S51 and S53 may also be to first control the mechanical arm 612 to move the stage 40 close to the ground, and then control the linear axis 611 to move the stage 40 away from the beam exit 25 along the extension direction 6113 parallel to the linear axis 611, and step S52 may also be after S53; or the linear axis 611 and the mechanical arm 612 may be controlled simultaneously to move the stage 40 to the end position E. It is understood that, according to specific requirements, the height of the stage relative to the ground at the end position E may also be other positions that are different from the height of the stage relative to the ground at the irradiation position D.
  • the above positions A-G are based on the preset reference points on the loading table 40. It can be understood that the transfer vehicle may not be provided.
  • the same loading tables are provided in the simulation positioning room and the irradiation room, respectively, and the irradiated object is placed in the same position in the simulation positioning room and the irradiation room (such as by a positioning mechanism provided on the loading table), and the same initial position is determined (such as by a laser positioning device).
  • the concrete wall in this embodiment is made of boron-containing barite concrete with a thickness of more than 1m and a density of 3g/cc. Boron-containing concrete has better neutron absorption performance. In addition to enhancing the radiation shielding effect of concrete, it can also reduce the neutron exposure of metal materials in concrete. It can be understood that it can also have other thicknesses or densities or be replaced with other materials. The thickness, density or material of the concrete wall can also be different. It can be understood that the present invention can also be applied to other types of neutron irradiation systems; it can also be applied to other radiation irradiation systems, such as proton therapy systems, heavy ion therapy systems, etc. In this case, the neutron generator can be replaced by other radiation generators, and the material of the concrete can be replaced as needed; the mounting platform can also be a mounting platform for other irradiated objects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Automatic Assembly (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

一种载置台(40)定位系统,包括载置台(40)、载置台定位装置(60)、载置台转运装置(401)以及连接装置(300),载置台(40)用于承载患者(200),载置台定位装置(60)用于移动并定位载置台(40),载置台转运装置(401)用于支撑和移动载置台(40),连接装置(300)用于锁紧载置台(40)与载置台定位装置(60),通过设置连接装置(300),使得载置台定位装置(60)能够快速与载置台(40)进行锁紧固定,节省了治疗时非必要的定位步骤;一种载置台(40)定位方法,包括转动第一连接组件(500)至夹持位置,使得第一连接组件(500)与第二连接组件(700)锁紧,移动载置台定位装置(60),对载置台(40)进行定位,载置台定位装置(60)与载置台(40)之间的锁紧动作一步到位且操作简单方便,极大地节省了载置台(40)整体的定位时间。

Description

载置台定位系统、载置台定位方法及放射治疗系统 技术领域
本发明涉及一种治疗定位系统及方法,特别是涉及一种载置台定位系统、载置台定位方法及放射治疗系统。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一,然后传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗中的标靶治疗改变便被应用于放射线治疗中,而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等,其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由硼药物在肿瘤细胞的特异性聚集,配合精准的中子射束照射,提供比传统放射线更好的癌症治疗选择。
为了实现精准的中子束照射,在模拟定位室内,需要通过CT影像等结合激光定位系统对患者的肿瘤位置进行精确定位并作标记,在治疗室内,需要通过激光定位系统结合在模拟定位室中做的标记对患者进行定位,从而使得中子束对准肿瘤进行照射,其中激光定位系统采用激光发射器,由于激光发射器固定安装于模拟定位室和治疗室的墙壁和天花板上,因此需要定位装置驱动载置台同时对其进行快速精准定位,在中子捕获治疗过程中,如何快速准确地对载置台和定位装置之间进行锁紧固定从而获取精准的定位,是中子射束能否精准实施治疗的关键一步。
因此,提出一种载置台定位系统及载置台定位方法来解决上述问题。
发明内容
基于此,为解决传统技术中载置台与定位装置之间如何快速锁紧固定以获取精准的定位标记的问题,本发明一方面提供一种载置台定位系统,包括载置台、载置台定位装置、载置台转运装置以及连接装置,载置台用于承载患者,载置台定位装置用于移动并定位载置台,载置台转运装置用于支撑和移动载置台,连接装置,具有锁紧载置台和载置台定位装置的夹持位置和使得载置台和载置台定位装置脱离的释放位置,连接装置包括相互配合的第一连接组件和第二连接组件,其中,第一连接组件和第二连接组件相对设置在载置台和载置台定位 装置上。通过载置台转运装置将载置台以及患者转移至载置台定位装置处,连接装置能够对载置台和载置台定位装置之间进行快速夹持锁紧,减少定位时间,其一:在模拟定位室内通过设置连接装置,结合载置台定位装置能够对载置台快速定位以获得精准的定位标记,从而节约在治疗室内进行照射治疗前对患者模拟定位的工作时间,其二:在治疗室内通过设置连接装置,结合载置台定位装置能够根据模拟定位室中获取的定位标记对载置台以及患者进行快速精准地定位,能够有效地避免治疗室中患者以及医护人员非必要的粒子照射剂量。
在其中一个实施例中,第一连接组件包括安装台以及设于安装台上的锁紧件,安装台开设有用于与第二连接组件进行对准匹配的槽口,锁紧件转动预设角度后能够与穿过槽口的第二连接组件卡紧连接。通过安装台对整个第一连接组件进行安装,锁紧件分布在安装台上,当安装台与第二连接组件对准后,第二连接组件的一部分能够穿过安装台上的槽口使得第一连接组件与第二连接组件紧密贴合,此时转动锁紧件至夹持位置即可完成锁紧,锁紧动作一步到位且操作简单方便,极大地节省了载置台整体的定位时间。
在其中一个实施例中,锁紧件包括相对于安装台活动连接的驱动部、锁紧部以及设于安装台上的限位部,驱动部用于驱动锁紧部转动至与第二连接组件锁紧的夹持位置或与第二连接组件脱离的释放位置,限位部具有用于限位驱动部的限位端。驱动部通过人工驱动使其转动,驱动部转动的同时带动锁紧部转动,锁紧部的初始状态是远离槽口的,不会阻碍第一连接组件与第二连接组件的对准贴合,锁紧部的转动锁紧过程是逐渐向两侧槽口靠近的过程,直至锁紧部与第二连接组件穿过槽口的部分卡合,此时锁紧件与第二连接组件锁紧,实现载置台定位装置与载置台之间的锁紧固定,便于后续载置台定位装置对载置台的移动和定位,限位部用于限制驱动部的转动幅度,当驱动部转动至限位部第一限位端的时候,锁紧部与第二连接组件之间脱离,实现二者之间的释放解锁,此时载置台定位装置能够脱离载置台,当驱动部转动至限位部第二限位端的时候,锁紧部与第二连接组件之间连接结合,实现二者之间的锁紧固定,此时载置台定位装置与载置台之间能够锁紧固定。
在其中一个实施例中,限位端朝向驱动部的一侧设有止挡,驱动部设置有对应于止挡的被止挡,锁紧部位于夹持位置时,被止挡与止挡连接,锁定驱动部与锁紧部的位置。止挡以及被止挡用于实现驱动部的卡位,当驱动部转动至被止挡与止挡相连接的位置时,驱动部被卡紧从而停止运动,由此锁紧部随着驱动部转动至夹持位置或释放位置时也停止运动,即当驱动部转动至被止挡与止挡连接的止挡位置时,锁紧部也转动到位。
在其中一个实施例中,第二连接组件包括能够穿过槽口的卡位件以及限位安装台的限位件,卡位件的一侧设置有卡位部,限位件设有多个。卡位件可以穿过槽口使得第二连接组件 一侧与第一连接组件一侧相贴合,从而实现载置台与载置台定位装置的结合。卡位部用于夹持并卡位锁紧部,当驱动部转动至第二限位端的止挡与被止挡卡接的位置时,锁紧部同步转动至其端部嵌入卡位部,此时止挡与被止挡可以使得锁紧部不会发生偏移,通过止挡与被止挡对驱动部以及锁紧部的限位,以及通过锁紧部与卡位部的卡合,实现载置台与载置台定位装置的固定锁紧。
在其中一个实施例中,载置台转运装置包括脚轮以及设于脚轮上的缓冲组件,缓冲组件包括下支座、上支座以及配置于上支座与下支座之间的缓冲件,上支座与下支座活动连接,上支座能够相对于下支座进行转动。载置台在进行定位之前置于载置台转运装置上,载置台转运装置通过其底部设置的脚轮进行移动,能够移动载置台至指定位置,当出现意外情况,载置台转运装置受到向下的压力时,缓冲组件能够缓冲外界压力对载置台转运装置的支撑结构和脚轮的冲击力影响,起到保护载置台转运装置的作用。下支座以及上支座之间容纳以及安装有缓冲件,当载置台转运装置受到下压的外力时,外力传递至上支座使得上支座能够发生转动,并将压力传导至缓冲件形成缓冲,保护脚轮避免其受损。
在其中一个实施例中,载置台转运装置上设有定位件,定位件用于载置台转运装置与载置台定位装置进行相对位置的定位。载置台转运装置通过定位件与载置台定位装置进行贴合定位,实现对载置台转运装置的初步定位,由此第一连接组件和第二连接组件在后续操作中能够更加迅速地结合,有利于后续载置台定位装置对载置台的定位工作。
在其中一个实施例中,载置台转运装置上设有开口,开口用于容纳夹持组件。载置台上设置的第一连接组件或者第二连接组件位于开口处,使得第一连接组件能够在开口处与第二连接组件对准匹配。
本发明的第二方面提供一种载置台定位方法,包括移动载置台转运装置至与载置台定位装置对位的预设位置,其中,载置台放置于载置台转运装置上,载置台及载置台定位装置上相对设置第一连接组件和第二连接组件,移动载置台转运装置至预设位置的作用是将载置台转运装置进行初步定位;移动载置台定位装置,使得第一连接组件与第二连接组件对准匹配,即移动载置台定位装置使得第一连接组件和第二连接组件处于贴合状态;转动第一连接组件至夹持位置,使得第一连接组件与第二连接组件锁紧,通过第一连接组件和第二连接组件的锁紧,实现载置台定位装置与载置台之间的固定;移动载置台定位装置,对载置台进行坐标位置定位,即载置台定位装置将载置台从初始位置移动到设定的坐标位置从而实现载置台的定位。
在其中一个实施例中,载置台转运装置设有定位件和开口,移动载置台转运装置至与载 置台定位装置对位的预设位置包括,载置台转运装置通过定位件与载置台定位装置一侧贴合,第一连接组件与第二连接组件在开口处对准贴合。定位件起到将载置台转运装置相对于载置台定位装置初步定位的作用,开口起到便于载置台定位装置上下移动的作用,使得第一连接组件能够穿过开口与第二连接组件相匹配。
在其中一个实施例中,第一连接组件包括驱动部、锁紧部以及限位部,限位部设置有止挡,驱动部设置有对应于止挡的被止挡,第二连接组件包括卡位部,转动第一连接组件至夹持位置使得第一连接组件与第二连接组件锁紧包括,转动驱动部至止挡与被止挡之间卡紧,同时锁紧部被转动至卡位部实现锁紧。转动驱动部,同时锁紧部也会随着驱动部转动,止挡与被止挡的结合用于限制驱动部的运动,使得驱动部以及锁紧部转动到位后停止转动且不会发生偏移,增强锁紧件的稳定性。
本发明第三方面提供一种放射治疗系统,包括放射线产生装置,以及,载置台定位系统。
在其中一个实施例中,放射治疗系统为中子捕获治疗系统,放射线产生装置为中子产生装置。
本发明一方面提供的载置台定位系统,通过设置连接装置,使得载置台定位装置能够快速与载置台进行锁紧固定,节省了治疗时非必要的定位步骤,而后通过载置台定位装置为病患提供快速精准的坐标位置定位,节省了定位前的操作时间,从而有效地避免了非必要的粒子照射剂量。
本发明第二方面提供的载置台定位方法,载置台定位装置通过该方法步骤对载置台进行定位,其中载置台定位装置与载置台之间的锁紧动作一步到位且操作简单方便,极大地节省了载置台整体的定位时间,使得载置台的照射定位更佳方便、快捷、准确。
附图说明
图1为一实施例的中子捕获治疗系统的结构示意图;
图2为一实施例的载置台定位系统的整体结构示意图;
图3为一实施例中载置台定位系统中的连接装置的结构示意图;
图4为一实施例中载置台定位系统中的第一连接组件的结构示意图;
图5为一实施例中载置台定位系统中连接装置处于夹持位置的状态示意图;
图6为一实施例中载置台定位系统中连接装置处于释放位置的状态示意图;
图7为一实施例中载置台定位系统中的第二连接组件的结构示意图;
图8为一实施例中载置台定位系统中的限位件与安装台的匹配示意图;
图9为一实施例中载置台定位系统中的载置台转运装置的结构示意图;
图10为一实施例中载置台定位系统中的缓冲组件的结构示意图;
图11为一实施例中载置台定位系统中的载置台转运装置与载置台定位装置在预设位置对位的状态示意图;
图12为图11中的局部放大图;
图13为一实施例中载置台定位方法中的载置台定位装置对载置台定位的状态示意图;
图14为一实施例中中子捕获治疗系统的载置台定位的示意图;
图15为一实施例中中子捕获治疗系统的载置台定位装置的结构示意图;
图16为图15在另一方向的示意图;
图17为一实施例中中子捕获治疗系统的模块示意图;
图18为一实施例中中子捕获治疗系统的载置台转运装置及转运车定位机构的示意图;
图19为一实施例中中子捕获治疗系统的载置台定位装置在不同位置的状态示意图;
图20为图19在平行于地面方向的俯视图;
图21为图20在OO平面的剖视图;
图22为一实施例中中子捕获治疗系统的载置台控制方法的流程图;
图23为一实施例中中子捕获治疗系统的控制载置台远离射束出口的方法流程图。
附图标号:
中子捕获治疗系统100、照射室101、带电粒子束生成室102、分隔壁103、模拟定位室
104、天花板1011、地板1012、中子产生装置10、加速器11、射束整形体20、反射体21、缓速体22、热中子吸收体23、辐射屏蔽体24、射束出口25、准直器30、载置台40、辐射屏蔽装置50、患者200、载置台转运装置401、脚轮404、连接装置300、第一连接组件500、安装台501、锁紧件502、槽口503、驱动部504、锁紧部505、限位部506、限位端507、止挡508、被止挡509、法兰连接件510、第二连接组件700、卡位件701、卡位部702、限位件703、缓冲组件800、下支座801、上支座802、缓冲件803、凸块804、销轴805、支撑杆806、定位件4011、开口4012、转运车定位机构402、孔4021、销4022、载置台定位装置60、定位机构61、驱动机构62、激光定位装置601、线性轴611、机械臂612、滑轨6111、支座6112、控制装置70、用户界面71、系统控制模块72、定位控制模块73、传感器80、治疗计划装置90。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体 实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1,图1示出了本发明一实施例中放射线照射系统优选为硼中子捕获治疗系统100,包括中子产生装置10、射束整形体20、准直器30和载置台40。中子产生装置10包括加速 器11和靶材T,加速器11对带电粒子(如质子、氘核等)进行加速,产生如质子线的带电粒子线P,带电粒子线P照射到靶材T并与靶材T作用产生中子线(中子束)N,靶材T优选为金属靶材。依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、金属靶材的物化性等特性来挑选合适的核反应,常被讨论的核反应有7Li(p,n)7Be及9Be(p,n)9B,这两种反应皆为吸热反应。两种核反应的能量阈值分别为1.881MeV和2.055MeV,由于硼中子捕获治疗的理想中子源为keV能量等级的超热中子,理论上若使用能量仅稍高于阈值的质子轰击金属锂靶材,可产生相对低能的中子,不须太多的缓速处理便可用于临床,然而锂金属(Li)和铍金属(Be)两种靶材与阈值能量的质子作用截面不高,为产生足够大的中子通量,通常选用较高能量的质子来引发核反应。理想的靶材应具备高中子产率、产生的中子能量分布接近超热中子能区(将在下文详细描述)、无太多强穿辐射产生、安全便宜易于操作且耐高温等特性,但实际上并无法找到符合所有要求的核反应,本发明的实施例中采用锂金属制成的靶材。但是本领域技术人员熟知的,靶材T的材料也可以由锂、铍之外的金属材料制成,例如由钽(Ta)或钨(W)等形成;靶材T可以为圆板状,也可以为其他固体形状,也可以使用液状物(液体金属)。加速器11可以是直线加速器、回旋加速器、同步加速器、同步回旋加速器,中子产生装置10也可以是核反应堆而不采用加速器和靶材。无论硼中子捕获治疗的中子源来自核反应堆或加速器带电粒子与靶材的核反应,产生的实际上皆为混合辐射场,即射束包含了低能至高能的中子、光子。对于深部肿瘤的硼中子捕获治疗,除了超热中子外,其余的辐射线含量越多,造成正常组织非选择性剂量沉积的比例越大,因此这些会造成不必要剂量的辐射应尽量降低。另外,对于被照射体的正常组织来说,各种辐射线应避免过多,同样造成不必要的剂量沉积。
中子产生装置10产生的中子束N依次通过射束整形体20和准直器30照射向载置台40上的被照射体200。射束整形体20能够调整中子产生装置10产生的中子束N的射束品质,准直器30用以汇聚中子束N,使中子束N在进行治疗的过程中具有较高的靶向性。载置台40及被照射体200的位置也可以进行调整,使射束对准被照射体200体内的肿瘤细胞M,这些调整可以人工手动操作的,也可以是通过一系列控制机构自动实现的(下文详述)。可以理解,本发明也可以不具有准直器,射束从射束整形体20出来后直接照射向载置台40上的被照射体200。
射束整形体20进一步包括反射体21、缓速体22、热中子吸收体23、辐射屏蔽体24和射束出口25,中子产生装置10生成的中子由于能谱很广,除了超热中子满足治疗需要以外,需要尽可能的减少其他种类的中子及光子含量以避免对操作人员或被照射体造成伤害,因此 从中子产生装置10出来的中子需要经过缓速体22将其中的快中子能量(>40keV)调整到超热中子能区(0.5eV-40keV)并尽可能减少热中子(<0.5eV),缓速体22由与快中子作用截面大、超热中子作用截面小的材料制成,作为一种优选实施例,缓速体22由D2O、AlF3、FluentalTM、CaF2、Li2CO3、MgF2和Al2O3中的至少一种制成;反射体21包围缓速体22,并将穿过缓速体22向四周扩散的中子反射回中子射束N以提高中子的利用率,由具有中子反射能力强的材料制成,作为一种优选实施例,反射体21由Pb或Ni中的至少一种制成;缓速体22后部有一个热中子吸收体23,由与热中子作用截面大的材料制成,作为一种优选实施例,热中子吸收体23由Li-6制成,热中子吸收体23用于吸收穿过缓速体22的热中子以减少中子束N中热中子的含量,避免治疗时与浅层正常组织造成过多剂量,可以理解,热中子吸收体也可以是和缓速体一体的,缓速体的材料中含有Li-6;辐射屏蔽体24用于屏蔽从射束出口25以外部分渗漏的中子和光子,辐射屏蔽体24的材料包括光子屏蔽材料和中子屏蔽材料中的至少一种,作为一种优选实施例,辐射屏蔽体24的材料包括光子屏蔽材料铅(Pb)和中子屏蔽材料聚乙烯(PE)。准直器30设置在射束出口25后部,从准直器30出来的超热中子束向被照射体200照射,经浅层正常组织后被缓速为热中子到达肿瘤细胞M。可以理解,射束整形体20还可以有其他的构造,只要能够获得治疗所需超热中子束即可;为描述方便,当设置有准直器30时,准直器30的出口也可以看做是下文所述的射束出口25。
被照射体200服用或注射含硼(B-10)药物后,含硼药物选择性地聚集在肿瘤细胞M中,然后利用含硼(B-10)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂反应产生4He和7Li两个重荷电粒子。两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α粒子的线性能量转移与射程分别为150keV/μm、8μm,而7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
本实施例中,被照射体200和射束出口25之间还设置了辐射屏蔽装置50,屏蔽从射束出口25出来的射束对被照射体正常组织的辐射,可以理解,也可以不设置辐射屏蔽装置50。硼中子捕获治疗系统100整体容纳在混凝土构造的建筑物中,具体来说,硼中子捕获治疗系统100还包括照射室101和带电粒子束生成室102,载置台40上的被照射体200在照射室101中进行中子束N照射的治疗,带电粒子束生成室102至少部分容纳加速器11,射束整形体20至少部分容纳在照射室101和带电粒子束生成室102的分隔壁103内。可以理解,分隔壁103可以是将照射室101和带电粒子束生成室102完全隔开的;也可以是照射室101和带电粒子 束生成室102之间的部分隔断,照射室101和带电粒子束生成室102是相通的。靶材T可以有一个或多个,带电粒子线P可选择地与其中一个或几个靶材T作用或同时与多个靶材T作用,以生成一个或多个治疗用中子束N。与靶材T的个数相应,射束整形体20、准直器30、载置台40也可以为一个或多个;多个载置台可以设置在同一个照射室内,也可以为每个载置台设置一个单独的照射室。照射室101和带电粒子束生成室102为混凝土壁W(包括分隔壁103)包围形成的空间,混凝土结构可以屏蔽硼中子捕获治疗系统100工作过程中泄露的中子及其他辐射线。硼中子捕获治疗系统100还可以包括准备室、控制室和其他用于辅助治疗的空间(图未示)。每一个照射室可以配置一个准备室,用于进行照射治疗前注射硼药、治疗计划模拟等准备工作。控制室用于控制加速器、射束传输部、载置台定位装置等,对整个照射过程进行控制和管理,管理人员在控制室内还可以同时监控多个照射室。硼中子捕获治疗系统100还可以包括模拟定位室104(下文详述),用于进行照射治疗前被照射体200的模拟定位,模拟定位室104内设置有与射束出口25相同的模拟射束出口25’,节省在照射室101进行被照射体200定位的时间,增加照射室101的利用率,可以理解,模拟定位室也可以用作准备室。
中子捕获治疗系统100还包括载置台定位系统,参阅图2,图2示出了本发明一实施例中载置台定位系统的整体结构示意图,载置台定位系统包括载置台40、载置台定位装置60、载置台转运装置401以及连接装置300,载置台40用于承载患者(被照射体);载置台定位装置60用于移动并定位载置台40,以及在移动定位时对载置台40进行支撑;载置台转运装置401用于转运载置台40时对其进行支撑;连接装置300具有锁紧载置台40和载置台定位装置60的夹持位置和使得载置台40和载置台定位装置60脱离的释放位置,连接装置300包括相互配合的第一连接组件500和第二连接组件700,其中,第一连接组件500和第二连接组件700相对设置在载置台40和载置台定位装置60上。
参阅图3,图3示出了本发明一实施例中载置台定位系统中的连接装置300的结构示意图,连接装置300用于锁紧和释放载置台40以及载置台定位装置60,第一连接组件500可以设置在载置台40上也可以设置在载置台定位装置60上,相对应地第二连接组件700可以设置在载置台定位装置60上也可以设置在载置台40上,位于夹持位置时(参见图5),第一连接组件500和第二连接组件700被锁紧固定,使得载置台40和载置台定位装置60之间固定,便于移动载置台定位装置60对载置台40进行定位,位于释放位置时(参见图6),第一连接组件500和第二连接组件700可以分离,使得载置台40和载置台定位装置60之间也可以互相分离,从而使得载置台40从载置台定位装置60上脱离。
参阅图4,图4示出了本发明一实施例中载置台定位系统中的第一连接组件的结构示意图,第一连接组件500包括安装台501以及设于安装台501上的锁紧件502,安装台501开设有用于与第二连接组件700进行对准匹配的槽口503,锁紧件502转动预设角度后能够与穿过槽口503的第二连接组件700连接。本实施例中将第一连接组件500设置在载置台定位装置60上,安装台501用于布设锁紧件502以及第一连接组件500的安装,安装台501的一侧表面设有法兰连接件510,通过法兰连接件510将安装台501安装在载置台定位装置60的机械臂612上,安装台501为具有一定厚度的板/块状,锁紧件502设置在安装台501上,锁紧件502与法兰连接件510设置在安装台501的同一侧面,锁紧件502的数量不限,本实施例中安装台501上设置两个锁紧件502,每个锁紧件502对应设有两个槽口503,槽口503位于锁紧件502的两侧,槽口503可供第二连接组件700的一部分穿过,进而转动锁紧件502进行锁紧操作,实现载置台定位装置60和载置台40的固定锁紧。
在一些实施例中,锁紧件502包括相对于安装台501活动连接的驱动部504、锁紧部505以及设于安装台501上的限位部506,驱动部504用于驱动锁紧部的505转动第二连接组件,限位部506具有用于限制驱动部504位移的限位端507。驱动部504呈把手/杆状,驱动部504作为整个锁紧件502操作转动的部位,驱动部504与锁紧部505之间通过销轴固定连接,销轴与安装台501转动连接,当驱动部504转动时,锁紧部505也随之转动,锁紧部505为块/板状,锁紧部505具有两个工作状态,其一是被转动至远离槽口503的位置,即垂直于同组两个槽口503的连线,此时第二连接组件锁紧部505处于释放位置,不会阻挡第二连接组件700的移动;其二是被转动至靠近槽口503的位置,即平行于同组两个槽口503的连线,此时第二连接组件锁紧部505处于夹持位置,可以限制第二连接组件700的移动,使得第一连接组件500与第二连接组件700紧紧贴合,从而将载置台定位装置60与载置台40固定连接。限位部506呈弧形,其弧形开口朝向驱动部504,限位部506的两端均为限位端507,限位端507用于限制驱动部504的运动,两个限位端507限定了驱动部504的两个工作位置,其一是驱动部504被转动至第一个限位端507时,此时对应锁紧部505为释放状态,参阅图6,其二是驱动部504被转动至第二个限位端507时,此时对应锁紧部505为锁紧状态,参阅图5。
参阅图5和图6,图5示出了本发明一实施例中载置台定位系统中连接装置处于夹持位置的状态示意图,图6示出了本发明一实施例中载置台定位系统中连接装置处于释放位置的状态示意图,限位端507朝向驱动部504的一侧设有止挡508,驱动部504设置有对应于止挡508的被止挡509,锁紧部505位于夹持位置时,被止挡509与止挡508连接,实现锁紧 部505与第二连接组件700的锁紧。止挡508以及被止挡509用于将驱动部504锁紧在限位端507,止挡508外凸于限位端507的内侧,可以为一个凸起,被止挡509内陷于驱动部504的一端,可以为一个凹槽,止挡508与被止挡509之间互相配合,驱动部504的一端在限位部506的内侧可以任意滑动,而当驱动部504绕着销轴至其一端的被止挡509与止挡508卡接住的时候,此时驱动部504被限制转动,当驱动部504被转动至第一个限位端的止挡508与被止挡509卡接时,此时对应锁紧部505被转动至释放位置,当驱动部504被转动至第二个限位端的止挡508与被止挡509卡接时,此时对应锁紧部505被转动至夹持位置。
参阅图7,图7示出了本发明一实施例中载置台定位系统中的第二连接组件的结构示意图,第二连接组件700包括能够穿过槽口503的卡位件701以及限位安装台501的限位件703,卡位件701的一侧设置有用于容纳锁紧件502的卡位部702,限位件703设有多个。本实施例中第二连接组件700设置在载置台40的背面,卡位件701的数量为四个,分别对应四个槽口503,卡位件701为具有一定高度厚度的条/柱状,当卡位件701穿过槽口503之后,卡位件701上设有卡位部702的部分突出于安装台501,卡位部702具体为一个凹槽,锁紧部505被转动至夹持位置时,锁紧部505卡接在两个相对的卡位部702内,实现锁紧部505的锁紧。
参阅图8,图8示出了本发明一实施例中载置台定位系统中的限位件703与安装台501的匹配示意图,限位件703呈柱状,限位件703固定在第二夹持件700的侧边,限位件703可以设置多个,所包围形成的区域用于容纳安装台501,限位件703对应于安装台501的外沿形状设置,具体的,安装台501的横截面为矩形,多个限位件703也包围形成矩形,用于限位安装台501,当第一连接组件500由机械臂移动至第二连接组件700的下方时,通过限位件703限位并辅助安装台501上的槽口503快速对准卡位件701进行插接。限位件703朝向安装台501的一侧被构造为斜面,该斜面为向远离第二连接组件700的方向倾斜的斜面,连接装置300的装配过程中,安装台501刚接触到限位件703时,由于斜面的设置,安装台501与第二连接组件700之间留有预设的调整距离,优选为1-5mm的调整距离,使得安装台501上槽口503的位置更准确地对准卡位件701的位置,从而起到辅助第一连接组件500和第二连接组件700快速对准的功能。
参阅图9,图9示出了本发明一实施例中载置台定位系统中的载置台转运装置的结构示意图,载置台转运装置401包括用于移动的脚轮404以及设于脚轮404上的缓冲组件800,以及参阅图10,图10示出了本发明一实施例中载置台定位系统中的缓冲组件的结构示意图,缓冲组件800包括下支座801、上支座802以及配置于上支座802与下支座801之间的缓冲件803,上支座802与下支座801活动连接,上支座802能够相对于下支座801进行转动, 可以理解的是,上支座与下支座之间也可以不进行接触连接,上支座与下支座分别固定在缓冲组件的上下两端。载置台转运装置401具体为转运车、治疗床推车等,载置台转运装置401通过脚轮404移动转运载置台40,缓冲组件800用于缓冲脚轮404承受的压力,保护脚轮404,下支座801为平板状,下支座801固定在脚轮404上,下支座801上一侧设置有凸块804,上支座802纵截面呈倒L型,上支座802和下支座801整体组合呈C型,下支座801底部中间位置开设有槽口,槽口与凸块804位置对应,上支座802的底部通过销轴805与下支座801转动连接,上支座802的顶部与转运车401的支撑杆806连接,缓冲件803起到缓冲作用,缓冲件803具体为矩形弹簧,在上支座802一侧和下支座801的一侧均设置有导向杆,缓冲件803环绕导向杆设置,同时两个导向杆不会阻碍上支座802朝向下支座801的方向转动。在载置台定位装置60移动载置台40时,若出现操作失误,如机械臂612应该抬升但被操作为下压,或者其他意外情况,导致转运车401突然受到向下的压力,压力通过支撑杆806传导至上支座802,上支座802受力后绕销轴805转动,并将力传导至缓冲件803,缓冲件803发生压缩形变,进而对向下的力的作用形成缓冲,起到保护脚轮404的作用。
参阅图11,图11示出了一实施例中载置台定位系统中的载置台转运装置与载置台定位装置在预设位置对位的状态示意图,载置台转运装置401上设有定位件4011,定位件4011用于载置台转运装置401与载置台定位装置60进行相对位置的定位。具体参阅图22的放大图,定位件4011呈L型,定位件4011设置在载置台转运装置401的支撑杆806上,载置台定位装置60的机械臂612通过法兰连接件510与安装台501连接,通过定位件4011与安装台501的侧面紧靠贴合的方式得到载置台转运装置401的初步位置。
在一些实施例中,载置台转运装置401上设有开口4012,开口4012用于容纳连接装置300。当载置台40放置在载置台转运装置401上时,第二连接组件700位于开口4012处,第一连接组件500能够穿过开口4012,并在开口4012的位置与第二连接组件700进行配合,当载置台转运装置401通过定位件4011进行初步定位后,载置台定位装置60以及第一连接组件500快速移动至开口4012的位置,使得第一连接组件500和第二连接组件700对准贴合。
本领域技术人员知道的是,本发明的一实施例提供的一种载置台定位方法是上述载置台定位装置和载置台锁定的具体方法:
S11:移动载置台转运装置401至与载置台定位装置60对位的预设位置,其中,载置台转运装置401上放置有载置台40,载置台40及载置台定位装置60上相对设置第一连接组件500及第二连接组件700;
具体地,参见图11和图12,载置台转运装置401设有定位件4011和开口4012,定位 件4011为L型,机械臂612通过法兰连接件510与安装台501连接,安装台501为矩形,利用L型的定位件4011与载置台定位装置60上连接的安装台501的直角侧边紧靠贴合,此时是载置台定位装置60与载置台转运装置401的初步定位,使得载置台定位装置60可以快速移动至开口4012的位置,并穿过开口4012使第一连接组件500靠近第二连接组件700,实现载置台定位装置60带动第一连接组件500快速地靠近第二连接组件700的功能。
S12:移动载置台定位装置60,第一连接组件500与第二连接组件700进行对准贴合;
具体地,参见图8,第一连接组件500包括安装台501,安装台501上开设有槽口503,第二连接组件700包括卡位件701,载置台转运装置401被初步定位后静止不动,随后载置台定位装置60移动至开口4012处,第二连接组件700侧边设置有多个限位件703,机械臂612抬升,将安装台501移动到限位件703包围形成的区域内,卡位件701穿过槽口503,机械臂612继续抬升,使得第一连接组件500逐渐向第二连接组件700靠拢,直到贴合。
S13:转动第一连接组件500至夹持位置,使得第一连接组件500与第二连接组件70锁紧;
具体地,参见图8,第一连接组件500包括驱动部504、锁紧部505以及限位部506,限位部506配置有止挡508,驱动部504设置有对应于止挡508的被止挡509,第二连接组件700包括卡位件701,卡位件701上开设有卡位部702,转动驱动部504,锁紧部505也随之转动,驱动部504被转动至止挡508与被止挡509之间卡紧,同时锁紧部505被转动至卡位部702之间实现锁紧。
S14:移动载置台定位装置60,对载置台40进行坐标位置定位;
具体地,参见图13,在照射室中,通过控制装置70根据模拟定位确定的坐标位置控制机械臂612将载置台40运动到模拟定位位置,移动到位后即确定照射位置,随后对患者200进行照射。
S15:转动第一连接组件500至释放位置,使得第一连接组件500与第二连接组件700脱离;
具体地,参见图6,照射完毕后,通过控制装置70控制载置台定位装置60将载置台40移动到载置台转运装置401上,反向转动驱动部504,锁紧部505也随之转动,驱动部504被转动直至限位部506另一端的止挡508与驱动部504上的被止挡509之间卡紧,同时锁紧部505被转动至远离卡位部702的位置实现脱离。
结合图14,中子捕获治疗系统100还包括控制装置70,载置台40及载置台40上的被照射体200由载置台定位装置60支撑,控制装置70与载置台定位装置60连接并能够控制载置 台定位装置60,控制装置70还可以与中子产生装置10连接并能够控制中子产生装置10向载置台40上的被照射体200照射中子束N。本实施例中,照射室101和模拟定位室104内分别设置有相同的载置台定位装置60、60’并与射束出口25和模拟射束出口25’具有相同的位置关系,即在照射室101和模拟定位室104内定义了相同的载置台40及载置台定位装置60、60’的运行坐标系XYZ并以沿中子束N方向距离射束出口25、模拟射束出口25’中心一定距离处的参考点作为坐标原点,通过载置台定位装置60、60’分别进行载置台40及载置台40上的被照射体200的模拟定位和照射定位,采用相同的载置台定位装置,使得照射定位更加方便、快捷、准确。为描述方便,以下仅具体介绍照射室101内的载置台定位装置60的构造。
如图15-图17所示,在一实施例中,载置台定位装置60包括定位机构61,定位机构61包括线性轴611和机械臂612,机械臂612设置在线性轴611和载置台40之间,将载置台40通过机械臂612连接到线性轴611并能够使载置台40和机械臂612一同沿线性轴611平移。本实施例中线性轴611安装到照射室101的天花板1011,机械臂612整体上朝向照射室101的地板1012延伸,可以理解,线性轴611也可以安装到其他表面,如墙壁或地板;线性轴611构造为固定到天花板1011的滑轨6111和与机械臂612连接的支座6112,支座6112沿滑轨6111滑动,可以理解,也可以为其他构造。线性轴直接固定在天花板1011上,不额外设置线性轴固定机构如钢结构龙门架,减少照射室内的钢的用量,避免固定机构被中子活化造成二次辐射。机械臂612为连接支座6112和载置台40的多轴机械臂,载置台定位装置60还包括驱动机构62来驱动线性轴611及机械臂612的运动,控制装置70控制驱动机构62。线性轴611的延伸方向6113与从射束出口25出来照射到该载置台40上的被照射体的中子束N方向平行,从而在载置台定位过程中,机械臂612整体沿与中子束N方向平行的方向平移,机械臂大部分位于滑轨和中子束出口之间的空间,降低机械臂各个部件被中子活化产生的放射性及引起的寿命缩短。滑轨6111与支座6112的滑动表面S到射束出口25的中心在垂直于滑动表面S方向的距离H1小于2米,为载置台定位装置60提供足够的操作空间,将载置台40相对于射束出口40定位在所需的位置。本实施例中,滑动表面S平行于天花板所在的平面,可以理解,载置台定位装置60还可以有其他的设置,如不包括线性轴611,载置台40与机械臂612连接并由机械臂612支撑;或机械臂612包括更多或更少的臂。
载置台40或载置台定位装置60上可以设置传感器80,如图17所示,传感器80设置在定位机构61和载置台40上,在一实施例中,传感器80为设置在载置台40及机械臂612上的防碰撞传感器,当载置台或机械臂边缘接触到其他物体或有其他物体到达传感器设定范围 时便触发传感器发出信号并传输到控制装置70,控制装置70控制驱动机构62停止驱动定位机构61的运动,即控制载置台40停止运动。防碰撞传感器可以是机械传感器、光电传感器、雷达传感器、超声波传感器、激光测距仪等;可以理解,防碰撞传感器还可以发出人体感知信号,操作者根据感知到的信号可以手动控制驱动机构停止驱动;也可以不是控制载置台停止运动,而是执行其他的安全操作,如进行碰撞前的逆运动。
控制装置70包括至少一个用户界面71,允许操作者交互参与控制载置台定位装置60。控制装置70还包括系统控制模块72和定位控制模块73,用户界面71与系统控制模块72连接,系统控制模块72与定位控制模块73连接,定位控制模块73与驱动机构62连接并控制驱动机构62。当系统控制模块72接收到用户界面71发出的指令后,系统控制模块72将指令传输到定位控制模块73,并由定位控制模块73自动控制定位机构61的运动,定位机构61的位置信息通过定位控制模块73可以反馈到系统控制模块72并传输到用户界面71进行状态指示。驱动机构62的运行状态或数据也会通过定位控制模块73反馈到系统控制模块72,系统控制模块72或定位控制模块73根据这些信息控制驱动机构62,系统控制模块72也可以将这些信息传输到用户界面71进行状态指示。传感器80也连接到系统控制模块72,系统控制模块72接收到传感器80的信号后发送指令到定位控制模块73控制载置台定位装置60的运动,并将传感器80的信号传输到用户界面71进行状态指示。可以理解,系统控制模块72和定位控制模块73可以是集成在一起的,也可以有其他的硬件设置。
中子捕获治疗系统100还包括治疗计划装置90,治疗计划装置90根据中子产生装置10产生的治疗用中子束N的参数和被照射部位的医学影像数据进行剂量模拟计算并生成治疗计划(如通过蒙特卡罗模拟程序),治疗计划能够确定被照射部位在照射治疗时相对于中子产生装置10的位置及相应的照射时间。控制装置70(系统控制模块71)与治疗计划装置90连接并接收治疗计划数据,从而根据治疗计划数据控制载置台定位装置60、60’的运动及中子产生装置10产生的中子束N。
开始照射治疗前,先在模拟定位室104内根据治疗计划装置90预先制定的治疗计划对被照射体200进行模拟定位。首先,将载置台定位装置60’与载置台40连接,如图18,本实施例中将载置台40放置在载置台转运装置401上,转运车401在模拟定位室104(照射室101)内通过转运车定位机构402进行定位,在模拟定位室104(照射室101)的地面设置至少2个孔4021(图未示),转运车401上对应设置至少2个销4022,将销4022插入孔4021中进行定位,可以理解,也可以通过其他方式对转运车401进行定位。载置台40放置在转运车401上的相对位置也是确定的,如通过限位机构403(例如设置在转运车上的凸台)对载置台40 的位置进行限定,因此,载置台40放置在定位好后的转运车401上时,相对于模拟定位室104(照射室101)的位置就是确定的。此时,载置台40在模拟定位室104内置于初始位置A(具有与照射室101相同的位置关系),控制装置70控制模拟定位室104内的载置台定位装置60’运动到能够与载置台40连接的位置,并使得连接装置300将载置台定位装置60’与载置台40锁定,具体参阅图11、图12,通过设置在支撑杆806上的定位件4011,实现载置台定位装置60’与载置台40的定位,载置台定位装置60’运动到安装台501的侧面与定位件4011紧靠贴合,此时载置台定位装置60’能够与载置台快速连接。
然后,将被照射体200放置到载置台40上,根据预先制定的治疗计划确定的被照射部位在照射治疗时相对于中子产生装置10的位置对被照射体200进行摆位固定,治疗计划装置90或控制装置70根据此时的摆位计算治疗计划确定的载置台40的坐标位置,可以通过CT、光学扫描等对摆位后的被照射体和载置台进行扫描确定被照射体和载置台的相对位置,从而根据治疗计划确定的被照射部位在照射治疗时相对于中子产生装置10的位置计算治疗计划确定的载置台的坐标,可以理解,也可以通过其他方式进行载置台40的坐标位置的计算。
控制装置70根据计算的坐标自动控制载置台定位装置60’将载置台40从初始位置A运动到坐标位置(治疗计划位置B)。载置台40运动到坐标位置(治疗计划位置B)后,根据需要操作者还可以通过用户界面71再进一步调节即确定模拟定位位置C;当载置台40及载置台定位装置60’运动过程中出现错误,则返回重新计算载置台定位装置60’的运动路径或返回重新生成治疗计划。通过自动计算载置台的治疗计划位置的坐标,并通过载置台定位装置自动控制载置台运动到治疗计划位置,使得定位准确度高、速度快。
接着,通过用户界面71发送模拟定位完成的指令,控制装置70记录此时的坐标位置(模拟定位位置C),并控制载置台定位装置60使载置台40回到初始位置A(载置台40正好放置在定位好后的转运车401上);控制装置70控制连接装置300解锁,释放载置台40,并控制载置台定位装置60运动到与治疗床40分离的位置;释放转运车定位机构402,用转运车401将载置台40及被照射体200运送到照射室101。
到照射室101后开始进行照射定位,转运车401在照射室101内设置有与模拟定位室104内相同的转运车定位机构402,即转运车401在照射室内能够按照与模拟定位室104内相同的固定位置通过转运车定位机构402进行定位,然后控制照射室101内的载置台定位装置60运动到能够与载置台40连接的位置(初始位置A),并控制连接装置300将载置台定位装置60与载置台40锁定。控制装置70根据模拟定位确定的坐标位置控制载置台40运动到模拟定位位置C,根据需要还可以通过用户界面71进一步调节,调整到位后即确定照射位置D, 操作者退出照射室101并释放转运车定位机构402将转运车401移出。模拟定位室104内的模拟定位节约了在照射室101内进行照射治疗前对被照射体200定位的工作时间,在进行模拟定位的同时还可以对另一被照射体进行照射治疗,增加了设备的利用率。一实施例中,当载置台定位装置60、60’与载置台40锁定连接后,载置台40需从初始位置A运动时,可以是控制载置台定位装置60、60’先将载置台40抬高,然后释放转运车定位机构402将转运车401移出后再控制载置台定位装置60、60’进一步运动,防止载置台定位装置60、60’与转运车401产生位置干涉。
在一些实施例中,照射室101和模拟定位室104内均设置相同的且具有同样的位置关系的激光定位装置601、601’,操作者可以根据激光定位装置产生的激光打到被照射体200上的位置在被照射体200上做标记,并根据做好的标记调整或验证被照射体200在模拟定位室104和照射室101的位置,以确保被照射体200在模拟定位室104和照射室101具有相同的位置。设置激光定位装置,使定位更加方便和快捷。
激光定位装置601、601’产生的激光还可以确定与射束出口25、25’的中心轴线X、X’一致的位置,如图14中所示,即激光定位装置60、60’产生的激光打到被照射体200上的位置代表了射束出口25、25’出来的射束中心轴线入射到被照射体200上的位置,根据治疗计划模拟的射束中心轴线在体素假体组织模型的入射点在被照射体200上做标记,使得模拟定位和照射治疗时确定的射束入射位置更加准确。
照射室101和模拟定位室104内还可以设置相同的且具有同样的位置关系的光学验证装置602、602’对载置台40位置和被照射体200图像进行采集,将数据传输到系统控制模块72,与治疗计划等信息进行比较,并根据结果进行调整或执行其他治疗控制。系统控制模块72还可以接收其他数据信息,如中子产生装置的数据、被照射体信息等,并对中子产生装置等其他装置进行控制。
载置台40及被照射体200的位置调整好后,此时载置台40具有照射位置D,操作者通过用户界面71发送开始照射的指令,系统控制模块72在判断达到开始照射的条件后,控制中子产生装置10开始产生中子束N对载置台40上的被照射体200进行照射治疗。到达预先确定的照射时间(如治疗计划数据确定的照射时间)后,系统控制模块72控制中子产生装置10停止对载置台40上的被照射体200照射中子束N,并将信息传输到用户界面71中进行治疗结束的状态指示,系统控制模块72在治疗结束后发送指令到定位控制模块73控制载置台定位装置60将载置台40从照射位置D移动到结束位置E,载置台40远离射束出口25。停止照射中子束N后射束出口25仍会有较多的辐射线残留,将载置台40移动到远离射束出口25 的位置可以避免被照射体200治疗结束后继续受到残余辐射线的照射,降低不必要的辐射剂量。参阅图19-图21,为治疗结束后,载置台40及载置台定位装置60在不同位置的状态示意图。治疗结束后,首先,控制线性轴611使载置台40沿平行于线性轴611的延伸方向6113从照射位置D远离射束出口25移动到第一中间位置F,以实现载置台40快速远离射束出口25,最大程度地避免治疗结束后被照射体200继续受到残余的辐射线照射;其次,控制机械臂612使载置台40运动到载置台40的延伸方向41基本平行于线性轴611的延伸方向6113的第二中间位置G,防止载置台40等在结束位置E与转运床等出现位置干涉或挡住照射室101的屏蔽门出口,为之后的被照射体200离开照射室101提供便利;最后,控制机械臂612使载置台40靠近地面从第二中间位置G移动到结束位置E,靠近地面便于被照射体200从照射室101离开。被照射体200离开后,还可以控制连接装置300解锁,将载置台40送回模拟定位室104;或者先控制连接装置300解锁,将被照射体200与载置台40一起送出照射室101,待被照射体200从载置台40离开后,再将载置台40送回模拟定位室104,如通过转运车401,此时,结束位置E可以与初始位置A相同,转运车401在照射室101中也通过转运车定位机构402定位,机械臂612将载置台40移动到载置台40正好置于转运车401上的初始位置A(结束位置E)。在结束位置E,载置台40到射束出口25的中心所在的垂直于中子束N方向的平面的最小距离H2不小于2500mm,确保不会受到大剂量的残余辐射线照射;在结束位置E,载置台40的承载面42距离地面的高度H3不大于600mm,方便被照射体200或载置台40的转移。
治疗结束后,可以是系统控制模块72根据到达照射时间的信号或停止照射中子束N的信号自动控制载置台40远离射束出口25;也可以是操作人员根据用户界面71的治疗结束的状态指示在用户界面71输入载置台远离射束出口的指令,如通过点击人机交互控制界面713中相应的按键,然后系统控制模块72根据该指令控制载置台40远离射束出口25。
如图22,简单来说,本实施例的载置台控制方法,包括:
S10:在模拟定位室104内将模拟定位室104内的载置台定位装置60’连接到载置台40并与载置台40锁定,并将被照射体200在载置台40上根据治疗计划数据进行摆位固定,然后根据治疗计划数据和被照射体200的摆位计算载置台40的治疗计划坐标,即治疗计划位置B的坐标;
S20:根据治疗计划坐标控制载置台定位装置60’将载置台40移动到治疗计划位置B,根据需要再进一步调节到模拟定位位置C,记录模拟定位位置C的坐标,可以理解,也可以是模拟定位位置C就是治疗计划位置B;
S30:将载置台定位装置60’与载置台40解锁,并将载置台40及载置台40上的被照射体200移动到照射室101,将照射室101内的载置台定位装置60连接到载置台40并与载置台40锁定;
S40:根据模拟定位位置C的坐标控制载置台定位装置60将载置台40移动到模拟定位位置C,根据需要再进一步调节到照射位置D,然后开始对被照射体200照射中子束N的治疗,可以理解,也可以是照射位置D就是模拟定位位置C;
S50:在治疗结束后,即停止对被照射体200照射中子束N后,控制载置台定位装置60使载置台40移动到结束位置E,即控制载置台40远离射束出口25。
可以理解,步骤S20中还可以包括,当载置台40移动到治疗计划位置B的过程中出现错误,则返回重新计算载置台定位装置60’的运动路径或返回重新生成治疗计划。
如图23,具体地,步骤S50中控制载置台40远离射束出口25的方法进一步包括:
S51:控制线性轴611使载置台40沿平行于线性轴611的延伸方向6113从照射位置D远离射束出口25移动到第一中间位置F;
S52:控制机械臂612使载置台40运动到载置台40的延伸方向41基本平行于线性轴611的延伸方向6113的第二中间位置G;
S53:控制机械臂612使载置台40靠近地面从第二中间位置G移动到结束位置E。
在用户界面71输入的载置台远离射束出口的指令,可以是通过一个按键实现步骤S51-S53自动连续进行或者通过与步骤S51-S53分别相应的三个按键分步执行步骤S51-S53,也可以有其他的设置方式。可以理解,步骤S51和S53也可以是先控制机械臂612使载置台40靠近地面移动,再控制线性轴611使载置台40沿平行于线性轴611的延伸方向6113远离射束出口25移动,步骤S52也可以在S53之后;或者同时控制线性轴611和机械臂612使载置台40移动到结束位置E。可以理解,根据具体需求,结束位置E时载置台相对于地面的高度也可以是与照射位置D时载置台相对于地面的高度相比有变化的其他位置。
上述位置A-G均以载置台40上预设的参考点为标准,可以理解,也可以不设置转运车,模拟定位室和照射室内分别设置有相同的载置台,并将被照射体在模拟定位室和照射室内进行相同的摆位(如通过设置在载置台上的定位机构),并确定相同的初始位置(如通过激光定位装置)。
本实施例中的混凝土壁为厚度1m以上、密度3g/c.c.的含硼重晶石混凝土制壁,含硼的混凝土具有更好的中子吸收性能,除了增强混凝土的辐射屏蔽效果,还可降低混凝土中金属材料受到的中子曝露量。可以理解,也可以具有其他厚度或密度或替换为其他材料,不同部 分的混凝土壁厚度、密度或材料也可以不同。可以理解,本发明还可以应用于其他类型的中子照射系统;也可以应用于其他放射线照射系统,如质子治疗系统、重离子治疗系统等,此时中子产生装置可以替换为其他放射线产生装置,混凝土的材料可以根据需要进行替换;载置台也可以为其他被照射体的载置台。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种载置台定位系统,其特征在于,包括:
    载置台,用于承载患者;
    载置台定位装置,移动并定位所述载置台;
    载置台转运装置,支撑和移动所述载置台;以及
    连接装置,具有锁紧所述载置台和所述载置台定位装置的夹持位置和使得所述载置台和所述载置台定位装置脱离的释放位置,所述连接装置包括相互配合的第一连接组件和第二连接组件,其中,所述第一连接组件和第二连接组件相对设置在所述载置台和所述载置台定位装置上。
  2. 根据权利要求1所述的载置台定位系统,其特征在于,所述第一连接组件包括安装台以及设于所述安装台上的锁紧件,所述锁紧件用于锁紧所述第二连接组件与所述安装台。
  3. 根据权利要求2所述的载置台定位系统,其特征在于,所述锁紧件包括相对于所述安装台活动连接的驱动部、锁紧部以及设于所述安装台上的限位部,所述驱动部用于驱动所述锁紧部的转动,所述限位部具有用于限位所述驱动部的限位端。
  4. 根据权利要求3所述的载置台定位系统,其特征在于,所述限位端朝向所述驱动部的一侧设有止挡,所述驱动部设置有对应于所述止挡的被止挡,所述锁紧部位于所述夹持位置时,所述被止挡与所述止挡连接。
  5. 根据权利要求2所述的载置台定位系统,其特征在于,所述安装台开设有用于与所述第二连接组件进行对准匹配的槽口。
  6. 根据权利要求5所述的载置台定位系统,其特征在于,所述第二连接组件包括能够穿过所述槽口的卡位件以及限位所述安装台的限位件,所述卡位件的一侧设置有卡位部,所述限位件设有多个。
  7. 根据权利要求6所述的载置台定位系统,其特征在于,所述限位件朝向所述安装台的一侧设为斜面。
  8. 根据权利要求1所述的载置台定位系统,其特征在于,所述载置台转运装置包括脚轮以及设于所述脚轮上的缓冲组件,所述缓冲组件包括下支座、上支座以及配置于所述上支座与下支座之间的缓冲件,所述上支座与所述下支座活动连接,所述上支座能够相对于所述下支座进行转动。
  9. 根据权利要求1所述的载置台定位系统,其特征在于,所述载置台转运装置上设有定位件,所述定位件用于所述载置台转运装置与所述载置台定位装置进行相对位置的定位。
  10. 根据权利要求9所述的载置台定位系统,其特征在于,所述定位件呈L型。
  11. 根据权利要求1所述的载置台定位系统,其特征在于,所述载置台转运装置上设有开口,所述开口用于容纳连接装置。
  12. 一种采用如权利要求1-11任一所述的载置台定位系统的载置台定位方法,其特征在于,所述方法包括:
    移动所述载置台转运装置至与所述载置台定位装置对位的预设位置,其中,所述载置台转运装置上放置有载置台,所述载置台及所述载置台定位装置上相对设置第一连接组件及第二连接组件;
    移动所述载置台定位装置,使得所述第一连接组件与所述第二连接组件对准贴合;
    转动所述第一连接组件至夹持位置,使得所述第一连接组件与所述第二连接组件锁紧;
    移动所述载置台定位装置,对所述载置台进行坐标位置定位。
  13. 根据权利要求12所述的载置台定位方法,其特征在于,所述载置台转运装置设有定位件和开口,所述移动所述载置台转运装置至与所述载置台定位装置对位的预设位置包括:所述载置台转运装置通过所述定位件与所述载置台定位装置一侧贴合,所述第一连接组件与所述第二连接组件在开口处对准贴合。
  14. 根据权利要求12所述的载置台定位方法,其特征在于,所述第一连接组件包括驱动部、锁紧部以及限位部,所述限位部设置有止挡,所述驱动部设置有对应于所述止挡的被止 挡,所述第二连接组件包括卡位部;所述转动所述第一连接组件至夹持位置,使得所述第一连接组件与所述第二连接组件锁紧包括:转动所述驱动部,直至所述止挡与被止挡之间卡紧,同时所述锁紧部被转动至所述卡位部实现锁紧。
  15. 一种放射治疗系统,其特征在于,包括放射线产生装置,
    以及,如权利要求1-11任一所述的载置台定位系统。
PCT/CN2023/120922 2022-10-14 2023-09-25 载置台定位系统、载置台定位方法及放射治疗系统 WO2024078307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211259602.XA CN117919605A (zh) 2022-10-14 2022-10-14 载置台定位系统及载置台定位方法
CN202211259602.X 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024078307A1 true WO2024078307A1 (zh) 2024-04-18

Family

ID=90668741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120922 WO2024078307A1 (zh) 2022-10-14 2023-09-25 载置台定位系统、载置台定位方法及放射治疗系统

Country Status (2)

Country Link
CN (1) CN117919605A (zh)
WO (1) WO2024078307A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313900A (ja) * 1997-08-04 1999-11-16 Sumitomo Heavy Ind Ltd 放射線治療用ベッドシステム
CN104763729A (zh) * 2015-04-15 2015-07-08 中国电子科技集团公司第二十二研究所 一种自锁式固紧器
US20180318420A1 (en) * 2016-01-20 2018-11-08 Fujidenolo Co. Ltd. Boron neutron capture therapy system
CN111744117A (zh) * 2019-03-29 2020-10-09 株式会社B点医疗 患者输送台车、粒子束照射系统及其工作方法
CN112741967A (zh) * 2019-10-29 2021-05-04 中硼(厦门)医疗器械有限公司 辐射线治疗系统
CN219090886U (zh) * 2022-10-14 2023-05-30 中硼(厦门)医疗器械有限公司 载置台定位系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313900A (ja) * 1997-08-04 1999-11-16 Sumitomo Heavy Ind Ltd 放射線治療用ベッドシステム
CN104763729A (zh) * 2015-04-15 2015-07-08 中国电子科技集团公司第二十二研究所 一种自锁式固紧器
US20180318420A1 (en) * 2016-01-20 2018-11-08 Fujidenolo Co. Ltd. Boron neutron capture therapy system
CN111744117A (zh) * 2019-03-29 2020-10-09 株式会社B点医疗 患者输送台车、粒子束照射系统及其工作方法
CN112741967A (zh) * 2019-10-29 2021-05-04 中硼(厦门)医疗器械有限公司 辐射线治疗系统
CN219090886U (zh) * 2022-10-14 2023-05-30 中硼(厦门)医疗器械有限公司 载置台定位系统

Also Published As

Publication number Publication date
TW202415419A (zh) 2024-04-16
CN117919605A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2022037468A1 (zh) 放射线照射系统及其控制方法
US20220296931A1 (en) Radiation irradiation system
CN110496321B (zh) 中子捕获治疗系统及载置台
CN211675930U (zh) 放射线照射系统
CN219090886U (zh) 载置台定位系统
WO2024078307A1 (zh) 载置台定位系统、载置台定位方法及放射治疗系统
CN220340413U (zh) 束流检测装置
US20240325789A1 (en) Radiation exposure system, and placement platform controlling method thereof
CN116328207A (zh) 放射线照射系统及其载置台控制方法
CN116328206A (zh) 放射线照射系统及其载置台控制方法
RU2820456C1 (ru) Система терапевтического облучения радиоактивным лучом и способ управления для нее
CN219814398U (zh) 辐照系统及用于辐照系统的动物固定装置
WO2024088227A1 (zh) 放射线治疗系统及其自动摆位方法
WO2024088170A1 (zh) 硼中子捕获治疗系统及其工作方法
WO2024199467A1 (zh) 准直器的安装装置和安装系统
WO2024153214A1 (zh) 放射性治疗系统及其摆位方法
WO2024183570A1 (zh) 束流检测装置
TW202430245A (zh) 放射性治療系統及其擺位方法
CN118490400A (zh) 辐照系统及用于辐照系统的动物固定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 23876512

Country of ref document: EP