WO2024088170A1 - 硼中子捕获治疗系统及其工作方法 - Google Patents

硼中子捕获治疗系统及其工作方法 Download PDF

Info

Publication number
WO2024088170A1
WO2024088170A1 PCT/CN2023/125637 CN2023125637W WO2024088170A1 WO 2024088170 A1 WO2024088170 A1 WO 2024088170A1 CN 2023125637 W CN2023125637 W CN 2023125637W WO 2024088170 A1 WO2024088170 A1 WO 2024088170A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
positioning
treatment plan
data management
treatment
Prior art date
Application number
PCT/CN2023/125637
Other languages
English (en)
French (fr)
Inventor
刘渊豪
陈江
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Publication of WO2024088170A1 publication Critical patent/WO2024088170A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present application relates to the technical field of radiotherapy, and in particular to a boron neutron capture therapy system and a working method thereof.
  • radiotherapy has become one of the main means of cancer treatment.
  • traditional photon or electron therapy is limited by the physical conditions of radiation itself. While killing tumor cells, it will also cause damage to a large number of normal tissues along the beam path.
  • traditional radiotherapy is often not effective for the treatment of malignant tumors that are more resistant to radiation (such as glioblastoma multiforme and melanoma).
  • boron neutron capture therapy in neutron capture therapy provides a better cancer treatment option than traditional radiotherapy by specifically aggregating boron-containing drugs in tumor cells and coordinating precise neutron beam control.
  • the entire treatment process involves many steps and involves a correspondingly large number of devices.
  • the treatment steps include image information acquisition, treatment plan formulation, simulated positioning, pre-irradiation positioning, irradiation implementation, etc.
  • the equipment involved includes image acquisition equipment, data management equipment, control systems, positioning systems, etc. Different steps involve different equipment.
  • image acquisition equipment data management equipment
  • control systems positioning systems
  • Different steps involve different equipment.
  • During the treatment process it is necessary to integrate the information obtained by these devices to control the treatment process.
  • These devices are usually provided by different suppliers. Each device works as an independent working unit and cannot exchange information with each other, so they cannot work together. Some devices are not suitable for being in operation throughout the treatment process, which leads to obstacles in the information exchange of these devices during the treatment process.
  • the present invention provides a boron neutron capture therapy system, comprising:
  • a boron concentration acquisition module is used to obtain the blood boron concentration data of the irradiated body
  • a neutron beam irradiation module used for generating a neutron beam
  • a treatment planning module used to generate a treatment plan
  • a positioning module at least used to calculate the positioning position of the irradiated object
  • a loading module used for moving the irradiated object to the positioning position
  • a data management module is used to store information data generated by at least one of the boron concentration acquisition module, the neutron beam irradiation module, the treatment planning module, the positioning module and the loading module, and/or to exchange information with at least one of the boron concentration acquisition module, the neutron beam irradiation module, the treatment planning module, the positioning module and the loading module.
  • the boron neutron capture therapy system also includes an image acquisition module for acquiring medical image data of the irradiated body, the treatment planning module generates the treatment plan based on the medical image data, the treatment planning module interacts with the data management module for information data and stores the treatment plan in the data management module.
  • the treatment planning module obtains a voxel prosthesis tissue model based on the medical image data of the irradiated body, and generates the treatment plan based on the voxel prosthesis tissue model through simulation.
  • the positioning module obtains the treatment plan from the data management module, and calculates a preset positioning position based on the treatment plan.
  • the positioning module obtains the treatment plan from the data management module, and calculates a simulated positioning position based on the treatment plan.
  • the positioning module calculates the positioning motion parameters based on the simulated positioning position, and the loading module moves the irradiated object to the treatment positioning position based on the positioning motion parameters.
  • the loading module After the irradiated object moves to the treatment positioning position, the loading module generates positioning information and sends the positioning information to the data management module.
  • the boron neutron capture therapy system further includes an irradiation control module, which obtains the positioning information and the treatment plan from the data management and The neutron beam irradiation module is controlled to generate a neutron beam.
  • Another aspect of the present invention provides a method for operating a boron neutron capture therapy system, which comprises the following steps:
  • the treatment planning module generates a treatment plan based on medical imaging data
  • the treatment plan is stored in a data management module
  • the positioning module obtains the treatment plan from the data management module and calculates the positioning position of the irradiated body based on the treatment plan;
  • the loading module moves the irradiated object to the positioning position
  • the irradiation control module obtains the treatment plan from the data management module, and controls the neutron beam irradiation module to generate a neutron beam based on the treatment plan.
  • the treatment planning module is used to define tissue boron concentration information in the medical imaging data of the irradiated body, obtain a voxel prosthesis tissue model with tissue type and the tissue boron concentration information, and simulate and generate the treatment plan based on the voxel prosthesis tissue model.
  • the positioning module obtains the treatment plan from the data management module, obtains a preset positioning position based on the treatment plan, and evaluates whether the preset positioning position meets the preset conditions; when the preset positioning position does not meet the preset conditions, the treatment plan is updated and stored in the data management module.
  • the positioning module obtains the treatment plan from the data management module, and obtains a simulated positioning position based on the treatment plan, and further calculates a positioning motion parameter based on the simulated positioning position.
  • the positioning module controls the loading module to move the irradiated object to the treatment positioning position based on the positioning motion parameters.
  • the positioning module obtains the treatment plan from the data management module, obtains a simulated positioning position based on the treatment plan, then calculates positioning motion parameters based on the simulated positioning position, and stores the positioning motion parameters in the data management module;
  • the loading module obtains the positioning motion parameters from the data management module, and moves the irradiated object to the treatment positioning position based on the positioning motion parameters.
  • the boron neutron capture therapy system of the present invention comprises a module for storing a boron concentration acquisition module, a treatment plan module, a neutron beam irradiation module, a positioning module, a loading module and a simulation loading module.
  • the data management module for information, during the operation of the boron neutron capture therapy system, at least one of the remaining modules can transmit relevant data to the data management module, and can also obtain required data from the data management module to perform corresponding calculations and/or controls.
  • the data management module receives and stores information data generated by at least one of the boron concentration acquisition module, the neutron beam irradiation module, the positioning module, the treatment plan module, the loading module and the irradiation control module 9, and/or exchanges information with at least one of these modules, thereby simplifying the data processing process, improving the degree of automation of the boron neutron capture therapy system, and reducing its operating complexity.
  • FIG1 is a schematic diagram of a boron neutron capture therapy system according to the present invention.
  • FIG2 is a schematic diagram of the layout of the boron neutron capture therapy system of the present invention.
  • FIG3 is a schematic diagram of a beam shaping body of the present invention.
  • FIG. 4 is a schematic diagram of a loading module and a positioning module in an irradiation chamber of a boron neutron capture therapy system of the present invention.
  • 1-image acquisition module 2-boron concentration acquisition module, 3-neutron beam irradiation module, 31-neutron generation device, 311-accelerator, 312-target, 32-beam shaping body, 321-retarder, 322-reflector, 323-thermal neutron absorber, 324-radiation shielding body, 325-beam outlet, 33-collimator, 4-positioning module, 5-treatment planning module, 6-data management module, 7-loading module, 71-loading table, 72-mechanical arm, 73-driving part, 8-simulation loading module, 82-simulation loading table, 81-simulation beam outlet, 9-irradiation control module, 20-irradiation room, 21-first positioning device, 30-preparation room, 31-second positioning device, S-irradiated body.
  • a neutron capture therapy system especially a boron neutron capture therapy system, is further described in detail below as an embodiment of the present invention.
  • the boron neutron capture therapy system in this embodiment includes an image acquisition module 1, a boron concentration module 2, and a degree acquisition module 2, neutron beam irradiation module 3, positioning module 4, treatment planning module 5, data management module 6, loading module 7 and irradiation control module 9.
  • the image acquisition module 1 is used to acquire a three-dimensional medical image of the irradiated body S including the lesion;
  • the boron concentration acquisition module 2 is used to detect the boron concentration in the blood of the irradiated body S;
  • the neutron beam irradiation module 3 is used to generate a neutron beam for treatment;
  • the treatment plan module 5 performs dose simulation calculation based on the three-dimensional medical image of the irradiated body S and generates a treatment plan, and the treatment plan includes information such as irradiation position, irradiation direction and irradiation time;
  • the positioning module 4 is at least used to calculate the positioning position of the irradiated body S according to the treatment plan generated by the treatment plan module 5;
  • the loading module 7 is used to move the irradiated body S to the positioning position;
  • the irradiation control module 9 controls the entire treatment process according to the treatment plan;
  • the data management module 6 is at least used to receive and store information data generated
  • the main principle of BNCT is that after the irradiated body S takes or is injected with a boron ( B- 10) drug, the boron (B-10) drug selectively accumulates in tumor cells. Then, the boron ( B -10) drug has a high capture cross-section for thermal neutrons, and generates two heavily charged particles, 4 He and 7 Li, through 10 B(n, ⁇ ) 7 Li neutron capture and nuclear fission reactions.
  • the average energy of the two heavily charged particles is about 2.33 MeV, and they have high linear energy transfer (LET) and short range characteristics.
  • the total range of the two particles is approximately equivalent to the size of a cell. Therefore, the radiation damage caused to the organism can be limited to the cellular level, and the purpose of locally killing tumor cells can be achieved without causing too much damage to normal tissues.
  • the device for acquiring three-dimensional medical images can be CT, MRI, PET, ultrasound and other imaging devices.
  • the present application preferably uses CT equipment.
  • the image acquisition module 1 uses electronic computed tomography (CT) to acquire medical image data of the irradiated body S.
  • the medical image data of the irradiated body S includes the coordinate matrix and CT value matrix of the medical image voxel model of the part to be irradiated (lesion, i.e., tumor cell) in the medical image coordinate system.
  • the image acquisition module 1 transmits the medical image data to the data management module 6.
  • the detection of boron concentration can be achieved by inductively coupled plasma spectroscopy, high-resolution ⁇ -radioautography, charged ion spectroscopy, neutron capture camera, nuclear magnetic resonance and magnetic resonance imaging, positron emission tomography, prompt gamma-ray spectrometer, etc.
  • the device involved in the above detection method is called boron concentration acquisition module 2. After the irradiated body S takes or injects the boron ( B- 10) containing medicine for a period of time, the boron concentration acquisition module 2 acquires the boron concentration of the irradiated body S, and the boron concentration acquisition module 2 transmits the detected boron concentration information to the data management module 6.
  • the neutron beam irradiation module 3 includes a neutron generating device 31, a beam shaping body 32 and a collimator 33.
  • the neutron generating device 31 includes an accelerator 311 and a target material 312.
  • the accelerator 311 is used to accelerate charged particles (such as protons, deuterons, etc.) to generate charged particle lines such as proton lines.
  • the charged particle lines irradiate the target material 312 and react with the target material 312 to generate neutron lines (neutron beams).
  • the target material 312 is preferably a metal target material 312.
  • the appropriate nuclear reaction is selected based on the required neutron yield and energy, the energy and current of the accelerated charged particles that can be provided, and the physical and chemical properties of the metal target material 312.
  • the nuclear reactions that are often discussed are 7 Li (p, n) 7 Be and 9 Be (p, n) 9 B, both of which are endothermic reactions.
  • a target material 312 made of lithium metal is used.
  • the material of the target 312 can also be made of metal materials other than lithium and beryllium, such as tantalum (Ta) or tungsten (W); the target 312 can be in the shape of a disk, or other solid shapes, or a liquid (liquid metal); the accelerator 311 can be a linear accelerator, a cyclotron, a synchrotron, or a synchrocyclotron. In other embodiments, the neutron generating device 31 can be a nuclear reactor without using the accelerator 311 and the target 312.
  • metal materials other than lithium and beryllium such as tantalum (Ta) or tungsten (W)
  • the target 312 can be in the shape of a disk, or other solid shapes, or a liquid (liquid metal)
  • the accelerator 311 can be a linear accelerator, a cyclotron, a synchrotron, or a synchrocyclotron.
  • the neutron generating device 31 can be a nuclear reactor without using the accelerator 311 and the target 312.
  • the neutron source of the boron neutron capture therapy comes from a nuclear reactor or a nuclear reaction between accelerated charged particles and the target material 312
  • what is actually produced is a mixed radiation field, that is, the generated beam contains neutrons and photons ranging from low energy to high energy.
  • the generated beam contains neutrons and photons ranging from low energy to high energy.
  • the beam shaper 32 can adjust the beam quality of the neutron beam generated by the neutron generator 31 and reduce unnecessary dose deposition.
  • the collimator 33 is used to converge the neutron beam so that the neutron beam has a higher targeting during the treatment process.
  • the beam shaping body 32 includes a retarder 321, a reflector 322, a thermal neutron absorber 323, a radiation shield 324 and a beam outlet 325.
  • the retarder 321 can adjust the energy of fast neutrons (>40keV) from the neutron generator 31 to the epithermal neutron energy region (0.5eV-40keV) and reduce the content of thermal neutrons ( ⁇ 0.5eV) as much as possible; the retarder 321 is made of a material with a large cross section for fast neutrons and a small cross section for epithermal neutrons.
  • the retarder 321 is made of D2O , AlF3 , FluentalTM, CaF2 ,
  • the reflector 322 surrounds the retarder 321 and reflects the neutrons that diffuse through the retarder 321 back to the neutron beam to improve the utilization rate of the neutrons.
  • the reflector 322 is made of a material with strong neutron reflection ability.
  • the reflector 322 is made of at least one of Pb or Ni.
  • the thermal neutron absorber 323 is arranged at the rear of the retarder 321 to absorb the thermal neutrons that pass through the retarder 321 to reduce the content of thermal neutrons in the neutron beam.
  • the reflector 322 is made of a material with a large cross section for interacting with thermal neutrons.
  • the thermal neutron absorber 323 is made of Li -6 .
  • the material of the retarder 321 contains Li -6
  • the radiation shielding body 324 is used to shield the neutrons and photons leaking from the part other than the beam outlet 325, and the material of the radiation shielding body 324 includes at least one of a photon shielding material and a neutron shielding material.
  • the material of the radiation shielding body 324 includes a photon shielding material lead (Pb) and a neutron shielding material polyethylene (PE).
  • the collimator 33 is arranged at the rear of the beam outlet 325.
  • the epithermal neutron beam coming out of the collimator 33 is irradiated to the irradiated body S. After passing through the shallow normal tissue of the irradiated body S, the epithermal neutron beam is slowed down to thermal neutrons to reach the tumor cells to achieve the purpose of treatment.
  • the beam shaping body 32 may have other structures as long as an epithermal neutron beam that meets the treatment requirements can be obtained; the present invention may not have a collimator 33, and the beam directly irradiates the irradiated body S after exiting the beam outlet 325 of the beam shaping body 32.
  • the outlet of the collimator 33 may also be interpreted as the beam outlet 325.
  • the treatment planning module acquires the image data from the image acquisition module 1, performs dose simulation calculation and generates a treatment plan, and transmits the treatment plan to the data management module 6.
  • the treatment planning module 5 converts the CT value matrix in the medical image data into a tissue type information matrix to obtain a voxel prosthesis tissue model with tissue type.
  • the treatment planning module 5 can also define the boron concentration information of the tissue in the medical image data of the irradiated body S. Based on this, the treatment planning module 5 can obtain a voxel prosthesis tissue model with tissue type and tissue boron concentration information, and simulates and calculates the treatment plan based on the voxel prosthesis tissue model with tissue type and tissue boron concentration information.
  • the data processing process of converting the CT value matrix in the medical image data into a tissue type information matrix and defining the boron concentration information of the tissue in the medical image data of the irradiated body S to obtain a voxel prosthesis tissue model with tissue type and tissue boron concentration information can also be performed in the data management module 6.
  • the mounting module 7 includes a mounting table 71 for mounting the irradiated object S, a mechanical arm 72 connected to the mounting table 71 and driving the mounting table 71 to move, and a driving member 73 for driving the mechanical arm 72 to move.
  • the boron neutron capture therapy system is contained in a concrete building as a whole.
  • the boron neutron capture therapy system further includes a preparation room 30 and an irradiation room 20.
  • the loading table 71 loads the irradiated body S in the irradiation room 20 for neutron beam irradiation treatment.
  • Each one or more irradiation rooms 20 are equipped with a preparation room 30.
  • the preparation room 30 is used to perform preparatory work such as pre-positioning of the irradiated body S before irradiation treatment and injection of boron medicine. Pre-positioning in the preparation room 30 can save the working time of positioning the irradiated body S before irradiation treatment in the irradiation room 20.
  • the boron neutron capture therapy system further includes a simulation loading module 8 disposed in the preparation room 30.
  • the simulation loading module 8 includes a simulation loading table 82, a simulation mechanical arm (not shown), a simulation drive unit (not shown) and a simulation beam outlet 81.
  • the beam outlet 325 of the neutron beam irradiation module 3 is at least partially arranged in the irradiation chamber 20, the stage 71, the robot 72 and the driving unit are arranged in the irradiation chamber 20, the simulated beam outlet 81, the simulated stage 82, the simulated robot and the simulated driving unit are arranged in the preparation room 30, and the structures and relative positions of the simulated beam outlet 81, the simulated stage 82 and the simulated robot are respectively the same as the structures and relative positions of the beam outlet 325, the stage 71 and the robot 72 in the irradiation chamber 20.
  • the loading platform 71 and the mechanical arm 72, and the simulation loading platform 82 and the simulation mechanical arm are firmly connected together by a detachable connection method.
  • the simulation loading platform 82 is removed from the simulation mechanical arm while ensuring that the relative position relationship between the irradiated body S and the simulation loading platform 82 remains unchanged. Then, the simulation loading platform 82 with the irradiated body S restrained is transported to the irradiation room 20 by a cart or other equipment and installed on the mechanical arm 72 of the positioning module 4.
  • the loading platform 71 and the simulation loading platform 82 use the same component, which not only saves equipment costs, but also reduces the number of times the irradiated body S is restrained to the loading platform 71.
  • the first positioning device 21 and the second positioning device 31 are respectively provided with the same number.
  • the first positioning device 21 and the second positioning device 31 are composed of three laser emitters. Specifically, laser emitters are respectively installed on the three sides of the beam outlet 325 and the simulated beam outlet 81, and the three laser beams generated by the three laser emitters intersect at a certain point. Further, auxiliary laser positioning devices are respectively provided at the beam outlet 325 and the simulated beam outlet 81, and the laser lines of the auxiliary laser positioning devices coincide with the central axes of the beam outlet 325 and the simulated beam outlet 81, respectively.
  • the intersection points of the three laser beams of the first positioning device 21 and the second positioning device 31 are respectively located on the central axes of the beam outlet 325 and the simulated beam outlet 81.
  • the three laser emitters are respectively provided on the left and right sides and the upper side of the beam outlet 325. Specifically, they can be provided on the walls on the left and right sides of the beam outlet 325 and the ceiling on the upper side.
  • the setting position is not limited thereto.
  • the present invention also discloses a working method of a boron neutron capture therapy system, which comprises the following steps:
  • the treatment planning module 5 performs dose simulation calculation based on the medical imaging data and generates a treatment plan.
  • the image acquisition module 1 obtains the medical imaging data of the body to be irradiated 3 and transmits it to the treatment planning module 5.
  • the treatment planning module 5 simulates and calculates the treatment plan based on the medical imaging data.
  • the treatment plan includes at least one set of information such as the irradiation position, irradiation direction, and irradiation time under a preset boron concentration.
  • the treatment plan includes multiple sets of information such as the irradiation position, irradiation direction, and irradiation time under different preset boron concentrations.
  • the image acquisition module 1 is used to scan the irradiated body S to obtain three-dimensional medical image data of the irradiated body S including at least the lesion, and the image acquisition module 1 transmits the medical image data of the irradiated body S to the treatment plan module 5.
  • the treatment plan module 5 establishes a voxel prosthesis tissue model with tissue type and tissue boron concentration information based on the medical image data, and uses a Monte Carlo simulation program to simulate the nuclear particle collision trajectory and energy distribution in the internal three-dimensional space of the irradiated body S when the irradiated body S is irradiated by a neutron beam.
  • the dose distribution of the three-dimensional voxel prosthesis tissue model at different irradiation angles and irradiation times is calculated by sampling different irradiation angles, and finally a treatment plan is generated by combining the dose distribution and dose indicators (such as prescription doses) and dose limits (such as average doses and maximum doses).
  • the treatment plan module 5 is provided with a neutron beam model established based on the source data of the neutron irradiation module 3.
  • the image acquisition module 1 is used to scan the irradiated body S to obtain three-dimensional medical image data of the irradiated body S including at least the lesion
  • the boron concentration acquisition module 2 is used to perform boron concentration acquisition to obtain the boron concentration of the irradiated body S
  • the image acquisition module 1 transmits the medical image data of the irradiated body S to the treatment plan module 5
  • the boron concentration acquisition module 2 transmits the boron concentration data to the data management module 6
  • the treatment plan module 5 obtains the boron concentration data from the data management module 6, and establishes a voxel prosthesis tissue model with tissue type and tissue boron concentration information in combination with the medical image data
  • uses a Monte Carlo simulation program to simulate the nuclear particle collision trajectory and energy distribution in the internal three-dimensional space when the irradiated body S is
  • Treatment plans are stored in the data management module:
  • the treatment planning module 5 transmits the treatment plan to the data management module 6, and the data management module 6 stores the treatment plan.
  • the positioning module 4 obtains the treatment plan from the data management module 6 and calculates the positioning position corresponding to the treatment plan. In this step, the positioning position is a preset positioning position, and then the preset positioning position information is transmitted to the data management module 6.
  • the simulation loading module 8 obtains the preset positioning position from the data management module 6, and drives the simulation mechanical arm to move the simulation loading platform 82 to move the irradiated body S to the preset positioning position. During the movement, due to the interference between the simulation loading platform 82 or the simulation mechanical arm or the irradiated body S and the equipment, the irradiated body S cannot reach certain preset positioning positions. If the irradiated body S cannot reach the preset positioning position, the simulation loading module 8 transmits the information that the preset positioning position cannot be reached to the data management module 6.
  • the treatment plan module 5 updates the treatment plan, and repeats this step until the irradiated body S can reach the preset positioning position corresponding to the treatment plan, thereby realizing multi-system equipment collaboration and automatically adjusting the treatment plan.
  • the positioning module 4 calculates the positioning adjustment information and transmits it to the data management module 6.
  • the data management module 6 transmits the positioning adjustment information to the treatment plan module 5.
  • the treatment plan module 5 updates the treatment plan based on the positioning adjustment information, thereby realizing fast and efficient automatic adjustment of the treatment plan.
  • the operator directly updates the treatment plan and transmits the latest treatment plan to the data management module 6.
  • the verification of whether the treatment plan is feasible is performed by the simulation loading module 8 in the preparation room 20.
  • this step can be performed in the irradiation room 30 using the loading module 7.
  • the specific steps refer to the above description and are not repeated here.
  • the boron concentration information can be the preset boron concentration information or the actual boron concentration detected by the boron concentration acquisition module 2.
  • the positioning module 4 obtains the treatment plan from the data management module, and calculates the positioning position that the irradiated body S needs to reach during the irradiation treatment based on the treatment plan, further calculates the positioning motion parameters according to the positioning position, and transmits the positioning motion parameters to the data management module 6;
  • the simulated loading module 8 obtains the positioning motion parameters from the data management module 6, and controls the movement of the simulated robot arm based on the positioning motion parameters to drive the simulated loading platform 82 to move the irradiated body S to the positioning position.
  • the positioning position of this step is the simulated positioning position, and then the position where the intersection of the three laser beams of the first positioning device 21 intersects with the irradiated body S is marked.
  • the loading module 4 obtains the positioning motion parameters from the data management module 6, and controls the driving unit to drive the mechanical arm 72 to move according to the positioning motion parameters, so as to drive the loading platform 71 to move the irradiated body S to the positioning position and generate positioning information.
  • the loading module 4 transmits the positioning information to the data management module 6.
  • the positioning position of this step is the treatment positioning position. Specifically:
  • the simulated loading platform 82 is separated from the simulated robotic arm, and the simulated loading platform 82 that restrains the irradiated object S is transported to the irradiation room 20 using a cart or other equipment, and the simulated loading platform 82 is installed on the robotic arm 72.
  • the loading platform 71 in the irradiation room 20 is the simulated loading platform 82 transported from the preparation room 30 to the irradiation room 20.
  • the relative position relationship between the simulated robot arm, the first positioning device 21 and the simulated beam outlet 81 is completely consistent with the relative position relationship between the robot arm 72, the second positioning device 31 and the beam outlet 325.
  • the loading module 7 If the mark of the irradiated object S coincides with the mark of the irradiated object S, it is determined that the loading module 7 has been put into position, and the loading module 7 generates positioning information and transmits the positioning information to the data management module 6; if the intersection of the laser of the second positioning device 31 does not coincide with the mark of the irradiated object S, it is determined that the loading module 7 is not put into position, and the position of the loading platform 71 needs to be adjusted according to the mark until the intersection of the laser of the second positioning device 31 coincides with the mark of the irradiated object S.
  • the positioning module 4 calculates the simulated positioning motion parameters during the simulated positioning, and compensates and calculates the positioning motion parameters based on the difference in the relative position relationship between the simulated robot arm and the simulated beam outlet 81 in the preparation room 30 and the irradiation room 20 and the relative position relationship between the robot arm 72 and the beam outlet 325.
  • the robot arm 72 moves into position according to the positioning motion parameters, it is assumed that the loading module 7 has been positioned.
  • the irradiation control module 9 obtains the confirmation result of the positioning from the data management module 6, and performs other safety checks after confirming that the positioning is in place. After meeting the requirements, the relevant equipment is started to perform neutron beam irradiation treatment.
  • the boron concentration acquisition module 2 acquires the boron concentration in real time or periodically, and transmits the detection result to the data management module 6.
  • the data management module 6 adjusts the remaining irradiation time in combination with the final treatment plan and the current boron concentration, and transmits the remaining irradiation time to the data management module 6; the irradiation control module 9 obtains the remaining irradiation time from the data management module 6, controls the operating time of the equipment according to the remaining irradiation time, and shuts down the equipment when the remaining irradiation time is zero to terminate the neutron beam irradiation and end the treatment.
  • the boron neutron capture therapy system also includes a display module for displaying the treatment plan including at least the irradiation time during the entire treatment process.
  • the display module can be set up separately or combined with the irradiation control module 7 or the data management module 6.
  • the boron neutron capture therapy system may also include a control room (not shown) and other spaces used for auxiliary treatment. The operator controls the irradiation therapy process in the control room.
  • the irradiation control module 7 may not be provided separately, but the irradiation control module 9 may be integrated into the data management module 6, that is, the data management module 6 has the functions of data storage, integration and system control. Function.
  • the positioning module 4 calculates the positioning motion parameters and transmits them to the data management module 6.
  • the loading module 7 and/or the simulation loading module 8 obtain the positioning motion parameters from the data management module 6 to control the motion of the mechanical arm 72 and the simulation mechanical arm.
  • the positioning module 4 can directly control the movement of the mechanical arm 72 and the simulation mechanical arm to move the irradiated body S to the treatment positioning position and the simulation positioning position.
  • the preparation room 30 may not be set, and accordingly, the simulation positioning is not performed.
  • the loading module 4 obtains the positioning motion parameters from the data management module 6, and performs positioning in the irradiation room 20 according to the positioning motion parameters. After the positioning is in place, the positioning module 4 transmits the positioning information to the data management module 6.
  • the irradiation control module 7 obtains the positioning confirmation result from the data management module 6, and performs other safety checks after confirming that the positioning is in place. After meeting the requirements, the relevant equipment is started to perform neutron beam irradiation therapy.
  • the preset positioning positions, simulated positioning positions and treatment positioning positions described above are all positioning positions obtained by the positioning module 4 based on the treatment plan. For the convenience of distinction, different names are used according to the steps of obtaining the positioning positions and the different spaces in which they are located.
  • the preset positioning positions, simulated positioning positions and treatment positioning positions are collectively referred to as positioning positions.
  • the loading module can be understood as the loading module 7 or the simulated loading module 8.
  • the boron neutron capture therapy system of the present invention comprises a data management module 6 for storing information generated by at least one of a boron concentration acquisition module 2, a treatment plan module 5, a neutron beam irradiation module 3, a positioning module 4, a loading module 7 and a simulation loading module 8.
  • a data management module 6 for storing information generated by at least one of a boron concentration acquisition module 2, a treatment plan module 5, a neutron beam irradiation module 3, a positioning module 4, a loading module 7 and a simulation loading module 8.
  • at least one of the remaining modules can transmit relevant data to the data management module 6, and can also obtain required data from the data management module 6 to perform corresponding calculations and/or controls.
  • the boron concentration acquisition module 2 can be used to acquire the boron concentration of other irradiated bodies S after completing one concentration acquisition and transmitting the detection data to the data management module 6, and the utilization rate of the equipment is greatly improved; in addition, the data management module 6 receives and stores information data generated by at least one of the boron concentration acquisition module 2, the neutron beam irradiation module 3, the positioning module 4, the treatment planning module 5, the loading module 7 and the irradiation control module 9, and/or exchanges information with at least one of these modules, which simplifies the data processing process, improves the degree of automation of the boron neutron capture therapy system, and reduces its operation complexity.
  • the boron concentration acquisition module 2 detects the boron concentration in the irradiated body S in real time or periodically, and adjusts the irradiation time according to the detected boron concentration, thereby ensuring the consistency between the irradiation therapy actually implemented and the treatment plan.
  • the boron neutron capture therapy system of the present invention improves the degree of automation of the treatment process, improves the operating efficiency of each device, ensures the consistency of the actual irradiation therapy and the treatment plan, and at the same time reduces the possibility of human error and reduces the radiation exposure time of the operator.
  • steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种硼中子捕获治疗系统及其工作方法,硼中子捕获治疗系统包括用于获取被照射体血硼浓度数据的硼浓度获取模块、用于产生中子束的中子束照射模块、用于生成治疗计划的治疗计划模块、至少用于计算被照射体的摆位位置的摆位模块、用于将被照射体移动至摆位位置的载置模块及数据管理模块,数据管理模块用于存储上述模块中的至少一个模块产生的信息数据的,和/或与上述模块中的至少一个模块进行信息交互,避免不必要的开机造成的资源浪费、辐射性损伤、提高了各个设备的运行效率、简化了数据处理的流程、提高了系统的自动化程度、降低了系统运行复杂度。

Description

硼中子捕获治疗系统及其工作方法 技术领域
本申请涉及放射治疗技术领域,特别是涉及一种硼中子捕获治疗系统及其工作方法。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等,放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少对肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源治疗方法,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗中的硼中子捕获治疗借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供了一种比传统放射线治疗更好的癌症治疗选择。
硼中子俘获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加,但是从临床实践来说,整个治疗过程所包含的步骤较多,涉及的设备相应的也比较多。具体的,治疗步骤包括影像信息获取、治疗方案制定、模拟摆位、照射前摆位、照射实施等,所涉及的设备包括影像获取设备、数据管理设备、控制系统、摆位系统等,不同的步骤会涉及不同的设备。在治疗过程中需要整合这些设备所获取的信息进行治疗进程的控制,而这些设备通常都是由不同的供应商提供,每一个设备作为一个独立的工作单元在工作,彼此之间无法之间进行信息交互,从而彼此之间无法协同工作,而有些设备不适合在整个治疗过程中都处于运行状态,从而导致在治疗过程中该些设备的信息交互存在障碍。
发明内容
基于此,有必要针对上述技术问题,提供一种能够便于信息交互及提高系统的自动化程度的硼中子捕获治疗系统及其工作方法。
本发明一方面提供一种硼中子捕获治疗系统,其包括:
硼浓度获取模块,用于获取被照射体血硼浓度数据;
中子束照射模块,用于产生中子束;
治疗计划模块,用于生成治疗计划;
摆位模块,至少用于计算所述被照射体的摆位位置;
载置模块,用于将所述被照射体移动至所述摆位位置;及
数据管理模块,用于存储所述硼浓度获取模块、所述中子束照射模块、所述治疗计划模块、所述摆位模块和所述载置模块中的至少一个模块产生的信息数据,和/或与所述硼浓度获取模块、所述中子束照射模块、所述治疗计划模块、所述摆位模块和所述载置模块中的至少一个模块进行信息交互。
进一步的,硼中子捕获治疗系统还包括影像获取模块,用于获取所述被照射体的医学影像数据,所述治疗计划模块基于所述医学影像数据生成所述治疗计划,所述治疗计划模块与所述数据管理模块进行信息数据交互并将所述治疗计划存储至所述数据管理模块。
进一步的,所述治疗计划模块基于所述被照射体的医学影像数据获得体素假体组织模型,并基于所述体素假体组织模型模拟生成所述治疗计划。
进一步的,所述摆位模块从所述数据管理模块获得所述治疗计划,并基于所述治疗计划计算得到预设摆位位置。
进一步的,所述摆位模块从所述数据管理模块获得所述治疗计划,并基于所述治疗计划计算得到模拟摆位位置。
进一步的,所述摆位模块基于所述模拟摆位位置计算得到摆位运动参数,所述载置模块基于所述摆位运动参数将所述被照射体移动至治疗摆位位置。
进一步的,所述被照射体运动至所述治疗摆位位置后,所述载置模块生成摆位到位信息并将所述摆位到位信息发送至所述数据管理模块。
进一步的,硼中子捕获治疗系统还包括照射控制模块,所述照射控制模块从所述数据管理获取所述摆位到位信息和所述治疗计划,并基于所述治疗计划 控制所述中子束照射模块产生中子束。
本发明的另一方面提供一种硼中子捕获治疗系统的工作方法,其包括以下步骤:
治疗计划模块基于医学影像数据生成治疗计划;
所述治疗计划存储至数据管理模块;
摆位模块从所述数据管理模块获取所述治疗计划并基于所述治疗计划计算被照射体的摆位位置;
载置模块将所述被照射体移动至所述摆位位置;
照射控制模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划控制中子束照射模块产生中子束。
进一步的,所述治疗计划模块用于在所述被照射体的医学影像数据中定义组织硼浓度信息,获得带有组织种类和所述组织硼浓度信息的体素假体组织模型,并基于所述体素假体组织模型模拟生成所述治疗计划。
进一步的,所述摆位模块从所述数据管理模块获取所述治疗计划,基于所述治疗计划获得预设摆位位置,并评估所述预设摆位位置是否符合预设条件,当所述预设摆位位置不符合所述预设条件时,更新所述治疗计划,并存储至所述数据管理模块。
进一步的,所述摆位模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划获得模拟摆位位置,进一步基于所述模拟摆位位置计算得到摆位运动参数,所述摆位模块基于所述摆位运动参数控制所述载置模块将所述被照射体运动至治疗摆位位置。
进一步的,所述摆位模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划获得模拟摆位位置,然后基于所述模拟摆位位置计算得到摆位运动参数,并将所述摆位运动参数存储至所述数据管理模块,所述载置模块从所述数据管理模块获取所述摆位运动参数,并基于所述摆位运动参数将所述被照射体运动至治疗摆位位置。
本发明硼中子捕获治疗系统包括用于存储硼浓度获取模块、治疗计划模块、中子束照射模块、摆位模块、载置模块及模拟载置模块中的至少一个模块生成 的信息的数据管理模块,在硼中子捕获治疗系统的工作过程中,其余模块中的至少一个模块能够将相关数据传输至数据管理模块,同时能够从数据管理模块获取需要的数据执行相应的计算和/或控制,因此在相关模块完成其对应的工作之后即可关闭或执行下一轮工作,避免不必要的开机造成的资源浪费、辐射性损伤、提高了各个设备的运行效率;另外,数据管理模块接收、存储硼浓度获取模块、中子束照射模块、摆位模块、治疗计划模块、载置模块及照射控制模块9中的至少一个模块生成的信息数据,和/或与该些模块中的至少一个模块进行信息交互,简化了数据处理的流程、提高了硼中子捕获治疗系统的自动化程度、降低了其运行复杂度。
附图说明
图1为本发明硼中子捕获治疗系统的示意图;
图2为本发明硼中子捕获治疗系统的布局示意图;
图3为本发明射束整形体的示意图;
图4为本发明硼中子捕获治疗系统的照射室内的载置模块及定位模块的示意图。
其中,1-影像获取模块、2-硼浓度获取模块、3-中子束照射模块、31-中子产生装置、311-加速器、312-靶材、32-射束整形体、321-缓速体、322-反射体、323-热中子吸收体、324-辐射屏蔽体、325-射束出口、33-准直器、4-摆位模块、5-治疗计划模块、6-数据管理模块、7-载置模块、71-载置台、72-机械臂、73-驱动件、8-模拟载置模块、82-模拟载置台、81-模拟射束出口、9-照射控制模块、20-照射室、21-第一定位装置、30-准备室、31-第二定位装置、S-被照射体。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
作为一种优选的,下面以中子捕获治疗系统,尤其是硼中子捕获治疗系统为本发明的实施例进一步进行详细说明。
如图1所示,本实施例中的硼中子捕获治疗系统包括影像获取模块1、硼浓 度获取模块2、中子束照射模块3、摆位模块4、治疗计划模块5、数据管理模块6、载置模块7和照射控制模块9。其中,影像获取模块1用于获取被照射体S的包含病灶的三维医学影像;硼浓度获取模块2用于检测被照射体S血液中的硼浓度;中子束照射模块3用于产生治疗用中子束;治疗计划模块5根据被照射体S的三维医学影像进行剂量模拟计算并生成治疗计划,治疗计划包括照射位置、照射方向及照射时间等信息;摆位模块4至少用于根据治疗计划模块5生成的治疗计划计算被照射体S的摆位位置;载置模块7用于将被照射体S移动至摆位位置;照射控制模块9根据治疗计划控制整个治疗进程;数据管理模块6至少用于接收、存储硼浓度获取模块2、中子束照射模块3、摆位模块4、治疗计划模块5、载置模块7及照射控制模块9中的至少一个模块生成的信息数据,和/或与浓度获取模块2、放射线照射模块3、摆位模块4、治疗计划模块5、载置模块7及照射控制模块9中的至少一个模块进行信息交互。
硼中子捕获治疗的主要原理为:被照射体S服用或注射含硼(B-10)药物后,含硼药物选择性地聚集在肿瘤细胞中,然后利用含硼(B-10)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂反应产生4He和7Li两个重荷电粒子,两重荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,能够在不对正常组织造成太大伤害的前提下达到局部杀死肿瘤细胞的目的。
获取三维医学影像的设备可以是CT、MRI、PET、超声等影像设备,本申请优选的采用CT设备影像获取模块1采用电子计算机断层扫描(Computed Tomography,CT)获取被照射体S的医学影像数据。被照射体S的医学影像数据包括待照射部位(病灶,即肿瘤细胞)的医学影像体素模型在医学影像坐标系下的坐标矩阵及CT值矩阵,影像获取模块1将医学影像数据传输至数据管理模块6。
硼浓度的检测可由电感耦合等离子体光谱法、高分辨率α放射自显影、带电离子能谱法、中子俘获相机、核磁共振和磁共振成像、正电子发射断层成像、瞬发γ射线能谱仪等实现,以上检测方法涉及的装置称为硼浓度获取模块2。被 照射体S服用或注射含硼(B-10)药物一段时间后,硼浓度获取模块2对被照射体S进行硼浓度获取,硼浓度获取模块2将检测得到的硼浓度信息传输至数据管理模块6。
结合图2和图3所示,本申请揭示的实施例中,中子束照射模块3包括中子产生装置31、射束整形体32及准直器33。中子产生装置31包括加速器311和靶材312,加速器311用于对带电粒子(如质子、氘核等)进行加速,产生如质子线的带电粒子线,带电粒子线照射到靶材312并与靶材312作用产生中子线(中子束),靶材312优选为金属靶材312。依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、金属靶材312的物化性等特性来挑选合适的核反应,常被讨论的核反应有7Li(p,n)7Be及9Be(p,n)9B,这两种反应皆为吸热反应。本发明的实施例中采用锂金属制成的靶材312。但是本领域技术人员熟知的,靶材312的材料也可以由锂、铍之外的金属材料制成,例如由钽(Ta)或钨(W)等形成;靶材312可以为圆板状,也可以为其他固体形状,也可以使用液状物(液体金属);加速器311可以是直线加速器、回旋加速器、同步加速器、同步回旋加速器。在其他实施方式在,中子产生装置31可以是核反应堆而不采用加速器311和靶材312。
无论硼中子捕获治疗的中子源来自核反应堆或加速带电粒子与靶材312的核反应,产生的实际上皆为混合辐射场,即产生的射束包含了低能至高能的中子、光子。对于深部肿瘤的硼中子捕获治疗,除了超热中子外,其余的辐射线含量越多,造成正常组织非选择性剂量沉积的比例越大,因此这些会造成不必要剂量沉积的辐射线含量应尽量降低。射束整形体32能够调整中子产生装置31产生的中子束的射束品质,降低不必要的剂量沉积,准直器33用以汇聚中子束,使中子束在进行治疗的过程中具有较高的靶向性。
射束整形体32包括缓速体321、反射体322、热中子吸收体323、辐射屏蔽体324和射束出口325。缓速体321能够将从中子产生装置31出来的快中子能量(>40keV)调整到超热中子能区(0.5eV-40keV)并尽可能减少热中子(<0.5eV)含量;缓速体321由与快中子作用截面大、与超热中子作用截面小的材料制成,作为一种优选实施例,缓速体321由D2O、AlF3、FluentalTM、CaF2、 Li2CO3、MgF2和Al2O3中的至少一种制成;反射体322包围缓速体321,并将穿过缓速体321向四周扩散的中子反射回中子射束以提高中子的利用率,其由中子反射能力强的材料制成,作为一种优选实施例,反射体322由Pb或Ni中的至少一种制成;在中子束的传输路径上,热中子吸收体323设置于缓速体321后部,用于吸收穿过缓速体321的热中子以减少中子束中热中子的含量,其由与热中子作用截面大的材料制成,作为一种优选实施例,热中子吸收体323由Li-6制成,在其他实施例中,由于缓速体321的材料中含有Li-6,热中子吸收体323可以不单独设置,而是以缓速体321作为热中子吸收体323;辐射屏蔽体324用于屏蔽从射束出口325以外部分渗漏的中子和光子,辐射屏蔽体324的材料包括光子屏蔽材料和中子屏蔽材料中的至少一种,作为一种优选实施例,辐射屏蔽体324的材料包括光子屏蔽材料铅(Pb)和中子屏蔽材料聚乙烯(PE)。
准直器33设置在射束出口325后部,从准直器33出来的超热中子束照向被照射体S,超热中子束经被照射体S的浅层正常组织后被缓速为热中子到达肿瘤细胞实现治疗目的。
可以理解,射束整形体32还可以有其他的构造,只要能够获得满足治疗要求的超热中子束即可;本发明也可以不具有准直器33,射束从射束整形体32的射束出口325出来后直接照射向被照射体S。为描述方便,当设置有准直器33时,准直器33的出口也可以解释为射束出口325。
治疗计划模块从影像获取模块1获取影像数据进行剂量模拟计算并生成治疗计划,并将治疗计划传输至数据管理模块6。具体的,治疗计划模块5从将医学影像数据中的CT值矩阵转换为组织种类信息矩阵,得到带有组织种类体素假体组织模型,进一步的,治疗计划模块5还可以在被照射体S的医学影像数据中定义组织的硼浓度信息,据此治疗计划模块5即可得到带有组织种类和组织硼浓度信息的体素假体组织模型,并基于带有组织种类和组织硼浓度信息的体素假体组织模型进行模拟计算生成治疗计划。可以理解的,将医学影像数据中的CT值矩阵转换为组织种类信息矩阵及在被照射体S的医学影像数据中定义组织的硼浓度信息得到带有组织种类和组织硼浓度信息的体素假体组织模型的数据处理过程亦可以在数据管理模块6中进行。
结合图2和图4所所示,载置模块7包括载置被照射体S的载置台71、与载置台71连接并带动载置台71运动的机械臂72及驱动机械臂72运动的驱动件73。
硼中子捕获治疗系统整体容纳在混凝土构造的建筑物中,具体来说,硼中子捕获治疗系统还包括准备室30和照射室20。载置台71载置被照射体S在照射室20中进行中子束照射的治疗,每一个或多个照射室20配置一个准备室30,准备室30用于进行照射治疗前被照射体S的预摆位、注射硼药等准备工作,在准备室30内进行预摆位能够节约在照射室20内进行照射治疗前对被照射体S进行摆位的工作时间,在准备室30进行准备工作的同时在照射室20内可以对另一被照射体S进行照射治疗,增加了设备的利用率。进一步的,硼中子捕获治疗系统还包括设置在准备室30内的模拟载置模块8,模拟载置模块8包括模拟载置台82、模拟机械臂(未图示)、模拟驱动部(未图示)及模拟射束出口81。
中子束照射模块3的射束出口325至少部分设置在照射室20内,载置台71、机械臂72及驱动部设置在照射室20内,模拟射束出口81、模拟载置台82、模拟机械臂及模拟驱动部设置在准备室30内,模拟射束出口81、模拟载置台82及模拟机械臂的结构、相对位置分别与照射室20内的射束出口325、载置台71及机械臂72的结构、相对位置对应相同。
本发明揭示的实施例中,载置台71与机械臂72、模拟载置台82与模拟机械臂之间采用可拆卸的连接方式稳固的连接在一起,被照射体S在准备室30的模拟载置台82上模拟摆位完成之后,在确保被照射体S与模拟载置台82之间的相对位置关系不变的情况下,将模拟载置台82从模拟机械臂上拆卸下来,然后通过推车等设备将束缚有被照射体S的模拟载置台82运输至照射室20并安装至摆位模块4的机械臂72上,能够最大限度且简单的在照射室20内还原预摆位时被照射体S与载置台71之间的相对位置关系,节约手术准备时间,另外,载置台71和模拟载置台82采用的是同一个部件,既节约设备成本,又能减少将被照射体S束缚至载置台71的次数。
继续参照图2和图4所示,为提高摆位的精确度,照射室20和准备室30 内分别设置由数量相同的第一定位装置21、第二定位装置31,本发明揭示的实施例中,第一定位装置21、第二定位装置31由三个激光发射器组成。具体的,分别在射束出口325和模拟射束出口81的三侧分别安装激光发射器,三个激光发射器产生的三束激光在某一点相交。进一步的,在射束出口325和模拟射束出口81处分别设置辅助激光定位装置,辅助激光定位装置的激光线分别与射束出口325、模拟射束出口81的中心轴线重合,第一定位装置21、第二定位装置31的三个激光束的交点分别位于射束出口325、模拟射束出口81的中心轴线上。本发明揭示的实施例中,三个激光发射器分别设置于射束出口325的左右两侧和上侧,具体的,可以设置于射束出口325的左右两侧的墙壁和上侧的天花板上,当然,其设置位置不限于此。
本发明还揭示一种硼中子捕获治疗系统的工作方法,其包括以下步骤:
生成治疗计划:
治疗计划模块5基于医学影像数据进行剂量模拟计算并生成治疗计划。具体的,影像获取模块1获取得到待照射体3的医学影像数据传输至治疗计划模块5治疗计划模块5基于医学影像数据进行模拟、计算生成治疗计划,治疗计划包括至少一组预设硼浓度下的照射位置、照射方向及照射时间等信息。当然在其他优选的实施方式中,治疗计划包括多组不同的预设硼浓度下的照射位置、照射方向及照射时间等信息。
更具体的,在进行治疗之前,采用影像获取模块1对被照射体S进行影像扫描获取至少包含病灶在内被照射体S的三维医学影像数据,影像获取模块1将被照射体S的医学影像数据传输至治疗计划模块5,治疗计划模块5基于医学影像数据建立带有组织种类和组织硼浓度信息的体素假体组织模型,采用蒙特卡罗模拟程序模拟被照射体S被中子束照射时内部三维空间中核粒子碰撞轨迹和能量分布,通过对不同照射角度取样模拟计算出三维体素假体组织模型在不同照射角度和照射时间下的剂量分布,最终结合剂量分布情况和剂量指标(如处方剂量)、剂量限值(如平均剂量、最大剂量)生成治疗计划。其中治疗计划模块5中设置有基于中子照射模块3的射源数据建立的中子束模型。
在其他可选的实施方式中,在进行治疗之前,被照射体S服用或注射含硼 药物,经过预定时间的药物沉积之后采用影像获取模块1对被照射体S进行影像扫描获取至少包含病灶在内被照射体S的三维医学影像数据,并采用硼浓度获取模块2进行硼浓度获取被照射体S的硼浓度,影像获取模块1将被照射体S的医学影像数据传输至治疗计划模块5,硼浓度获取模块2将硼浓度数据传输至数据管理模块6,治疗计划模块5从数据管理模块6获取得到硼浓度数据,结合医学影像数据建立带有组织种类和组织硼浓度信息的体素假体组织模型,采用蒙特卡罗模拟程序模拟被照射体S被中子束照射时内部三维空间中核粒子碰撞轨迹和能量分布,通过对不同照射角度取样模拟计算出三维体素假体组织模型在不同照射角度和照射时间下的剂量分布,最终结合剂量分布情况和剂量指标(如处方剂量)、剂量限值(如平均剂量、最大剂量)生成治疗计划。其中治疗计划模块5中设置有基于中子照射模块3的射源数据建立的中子束模型。
治疗计划存储至数据管理模块:
治疗计划模块5将治疗计划传输至数据管理模块6,数据管理模块6对治疗计划进行存储,摆位模块4从数据管理模块6获取治疗计划并计算得到治疗计划对应的摆位位置,此步骤中,摆位位置为预设摆位位置,然后将预设摆位位置信息传输至数据管理模块6。
模拟载置模块8从数据管理模块6获取预设摆位位置,并驱动模拟机械臂运动带动模拟载置台82运动而将被照射体S运动至预设摆位位置,在运动程中,因为模拟载置台82或模拟机械臂或被照射体S与设备之间存在干涉,导致被照射体S无法达到某些预设摆位位置,若被照射体S无法达到预设摆位位置,则模拟载置模块8将该预设摆位位置无法到达的信息传输至数据管理模块6,数据管理模块6将预设摆位位置无法达到信息传递至治疗计划模块5后,治疗计划模块5更新治疗计划,重复此步骤,直到被照射体S能够达到治疗计划对应的预设摆位位置,从而实现多系统设备协同,自动调整治疗计划。更优选的实施方式中,若被照射体S无法达到预设摆位位置,摆位模块4计算出摆位调整信息并传输至数据管理模块6,数据管理模块6将摆位调整信息传输至治疗计划模块5,治疗计划模块5基于摆位调整信息更新治疗计划,从而实现快速高效自动调节治疗计划。当然,在其他可选的实施方式中,若被照射体S无法达到预设 摆位位置,操作者直接更新治疗计划,并将最新治疗计划传输至数据管理模块6中。
在此实施例中,验证治疗计划是否可行由模拟载置模块8在准备室20内进行,在其他实施例中,此步骤可以在照射室30内采用载置模块7进行,具体步骤参照上述描述,在此不做赘述。可以理解的,硼浓度信息可以是预设硼浓度信息,也可以是硼浓度获取模块2检测到的实际硼浓度。
获取摆位运动参数:
摆位模块4从数据管理模块获取治疗计划,并基于治疗计划计算得到被照射体S在照射治疗时需要达到的摆位位置,进一步根据摆位位置计算出摆位运动参数,并将摆位运动参数传输至数据管理模块6;
模拟摆位:
模拟载置模块8从数据管理模块6获取摆位运动参数,并基于摆位运动参数控制模拟机械臂运动而带动模拟载置台82将被照射体S运动至摆位位置,此步骤的摆位位置为模拟摆位位置,然后在第一定位装置21的三束激光的交点与被照射体S相交的位置做标记。
治疗摆位:
载置模块4从数据管理模块6获取摆位运动参数,并根据摆位运动参数控制驱动部驱动机械臂72运行而带动载置台71移动以将被照射体S移动到摆位位置并生成摆位到位信息,载置模块4将摆位到位信息传输至数据管理模块6,此步骤的摆位位置为治疗摆位位置,具体的:
模拟摆位完成之后,在保持被照射体S与模拟载置台82之间的相对位置关系不变的情况下,将模拟载置台82与模拟机械臂分离,采用推车等设备将束缚被照射体S的模拟载置台82运输至照射室20内并将模拟载置台82安装至机械臂72,在本发明揭示的实施例中,照射室20内的载置台71即为从准备室30运输至照射室20内的模拟载置台82。
由于在本实施方式中,在准备室30和照射室20中,模拟机械臂及第一定位装置21和模拟射束出口81的相对位置关系与机械臂72及第二定位装置31和射束出口325的相对位置关系完全一致,当第二定位装置31的激光的交点与 被照射体S的标记重合,则确定载置模块7已经摆位到位,载置模块7生成摆位到位信息并将摆位到位信息传输至数据管理模块6;若第二定位装置31的激光的交点与被照射体S的标记不重合,则判断载置模块7未摆位到位,需要根据该标记调整载置台71的位置,直到第二定位装置31的激光交点与被照射体S的标记重合。
在其他实施方式中,可以不设置第一定位装置21和第二定位装置3,摆位模块4在模拟摆位时计算出模拟摆位运动参数,并结合准备室30和照射室20中,模拟机械臂和模拟射束出口81的相对位置关系与机械臂72和射束出口325的相对位置的关系的差异,补偿计算出摆位运动参数,当机械臂72的根据摆位运动参数运动到位时,默认载置模块7已摆位到位。
执行照射:
照射控制模块9从数据管理模块6获取摆位到位确认结果,确定摆位到位后进行其他安全检查,符合要求后启动相关设备进行中子束照射治疗。
进一步的,在对被照射体S进行中子束照射治疗的过程中,需持续性地向被照射体S供给硼,当被照射体S体内的硼浓度发生变化时,产生核反应的中子剂量相应的发生变化,此时,需要根据被照射体S体内的实际硼浓度调整照射时间,具体的:硼浓度获取模块2实时或周期性的进行硼浓度获取,并将检测结果传输至数据管理模块6,数据管理模块6结合最终治疗计划及当前硼浓度调整剩余照射时间,并将剩余照射时间传输至数据管理模块6;照射控制模块9从数据管理模块6获取剩余照射时间,根据剩余照射时间控制设备的运行时间,并在剩余照射时间为零时关闭设备以终止中子束照射结束治疗。
进一步的,硼中子捕获治疗系统还包括显示模块,用于在整个治疗过程中显示至少包括照射时间在内的治疗计划,显示模块可以单独设置,也可以和照射控制模块7或数据管理模块6合二为一。
硼中子捕获治疗系统还可以包括控制室(图未示)和其他用于辅助治疗的空间,操作者在控制室内进行照射治疗进程的控制。
在其他实施方式中,可以不单独设置照射控制模块7,而是将照射控制模块9集成至数据管理模块6,即数据管理模块6兼具数据存储、整合及系统控制的 功能。
在上述实施例中,摆位模块4计算出摆位运动参数之后将其传输至数据管理模块6,载置模块7和/或模拟载置模块8从数据管理模块6获取摆位运动参数进行机机械臂72、模拟机械臂的运动控制,在其他实施例中,摆位模块4能够直接控制机械臂72和模拟机械臂运动而将被照射体S移动至治疗摆位位置和模拟摆位位置。在其他实时方式中,可以不设置准备室30,相应的,不进行模拟摆位,载置模块4从数据管理模块6获取摆位运动参数,根据摆位运动参数在照射室20进行摆位,摆位到位之后摆位模块4将摆位到位信息传输至数据管理模块6,照射控制模块7从数据管理模块6获取摆位到位确认结果,确定摆位到位后进行其他安全检查,符合要求后启动相关设备进行中子束照射治疗。
以上所描述的预设摆位位置、模拟摆位位置和治疗摆位位置均是由摆位模块4基于治疗计划获得的摆位位置,为便于区分,根据摆位位置获得的步骤和所处空间的不同采用不同的名称进行命名,预设摆位位置、模拟摆位位置和治疗摆位位置统称为摆位位置。在不进行特别强调的情况下,载置模块可以理解为载置模块7或模拟载置模块8。
本发明硼中子捕获治疗系统包括用于存储硼浓度获取模块2、治疗计划模块5、中子束照射模块3、摆位模块4、载置模块7及模拟载置模块8中的至少一个模块生成的信息的数据管理模块6,在进行放射线照射治疗的过程中,其余模块中的至少一个模块能够将相关数据传输至数据管理模块6,同时能够从数据管理模块6获取需要的数据执行相应的计算和/或控制,因此在该模块完成其对应的工作之后即可关闭或执行下一轮工作,避免不必要的开机造成的资源浪费、辐射性损伤、提高了各个设备的运行效率,例如:硼浓度获取模块2在完成一次浓度获取并将检测数据传输至数据管理模块6之后即可用于其他被照射体S的硼浓度获取,设备的利用率被大大提高;另外,数据管理模块6接收、存储硼浓度获取模块2、中子束照射模块3、摆位模块4、治疗计划模块5、载置模块7及照射控制模块9中的至少一个模块生成的信息数据,和/或与该些模块中的至少一个模块进行信息交互,简化了数据处理的流程、提高了硼中子捕获治疗系统的自动化程度、降低了其运行复杂度。
更进一步的,在硼中子捕获治疗系统工作过程中,硼浓度获取模块2实时或周期性的检测被照射体S体内的硼浓度,并根据检测到的硼浓度调整照射时间,确保了实际实施的照射治疗与治疗计划的一致性。
综上,本发明硼中子捕获治疗系统提高治疗过程的自动化程度、提高了各个设备的运行效率、确保了实际实施的照射治疗与治疗计划的一致性,同时,降低人为错误发生的可能性及减少操作人员辐射性暴露的时间。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种硼中子捕获治疗系统,其特征在于,包括:
    硼浓度获取模块,用于获取被照射体血硼浓度数据;
    中子束照射模块,用于产生中子束;
    治疗计划模块,用于生成治疗计划;
    摆位模块,至少用于计算所述被照射体的摆位位置;
    载置模块,用于将所述被照射体移动至所述摆位位置;及
    数据管理模块,用于存储所述硼浓度获取模块、所述中子束照射模块、所述治疗计划模块、所述摆位模块和所述载置模块中的至少一个模块产生的信息数据,和/或与所述硼浓度获取模块、所述中子束照射模块、所述治疗计划模块、所述摆位模块和所述载置模块中的至少一个模块进行信息交互。
  2. 根据权利要求1所述的硼中子捕获治疗系统,其特征在于,还包括影像获取模块,用于获取所述被照射体的医学影像数据,所述治疗计划模块基于所述医学影像数据生成所述治疗计划,所述治疗计划模块与所述数据管理模块进行信息数据交互并将所述治疗计划存储至所述数据管理模块。
  3. 根据权利要求1所述的硼中子捕获治疗系统,其特征在于,所述摆位模块从所述数据管理模块获得所述治疗计划,并基于所述治疗计划计算得到模拟摆位位置。
  4. 根据权利要求3所述的硼中子捕获治疗系统,其特征在于,所述摆位模块基于所述模拟摆位位置计算得到摆位运动参数,所述载置模块基于所述摆位运动参数将所述被照射体移动至治疗摆位位置。
  5. 根据权利要求4所述的硼中子捕获治疗系统,其特征在于,所述被照射体运动至所述治疗摆位位置后,所述载置模块生成摆位到位信息并将所述摆位到位信息发送至所述数据管理模块。
  6. 一种硼中子捕获治疗系统的工作方法,其特征在于,包括以下步骤:
    治疗计划模块基于医学影像数据生成治疗计划;
    所述治疗计划存储至数据管理模块;
    摆位模块从所述数据管理模块获取所述治疗计划并基于所述治疗计划计算被照射体的摆位位置;
    载置模块将所述被照射体移动至所述摆位位置;
    照射控制模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划控制中子束照射模块产生中子束。
  7. 根据权利要求6所述的工作方法,其特征在于,所述治疗计划模块用于在所述被照射体的医学影像数据中定义组织硼浓度信息,获得带有组织种类和所述组织硼浓度信息的体素假体组织模型,并基于所述体素假体组织模型模拟生成所述治疗计划。
  8. 根据权利要求6所述的工作方法,其特征在于,所述摆位模块从所述数据管理模块获取所述治疗计划,基于所述治疗计划获得预设摆位位置,并评估所述预设摆位位置是否符合预设条件,当所述预设摆位位置不符合所述预设条件时,更新所述治疗计划,并存储至所述数据管理模块。
  9. 根据权利要求6所述的工作方法,其特征在于,所述摆位模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划获得模拟摆位位置,进一步基于所述模拟摆位位置计算得到摆位运动参数,所述摆位模块基于所述摆位运动参数控制所述载置模块将所述被照射体运动至治疗摆位位置。
  10. 根据权利要求6所述的工作方法,其特征在于,所述摆位模块从所述数据管理模块获取所述治疗计划,并基于所述治疗计划获得模拟摆位位置,然后基于所述模拟摆位位置计算得到摆位运动参数,并将所述摆位运动参数存储至所述数据管理模块,所述载置模块从所述数据管理模块获取所述摆位运动参数,并基于所述摆位运动参数将所述被照射体运动至治疗摆位位置。
PCT/CN2023/125637 2022-10-24 2023-10-20 硼中子捕获治疗系统及其工作方法 WO2024088170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211302487 2022-10-24
CN202211302487.X 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024088170A1 true WO2024088170A1 (zh) 2024-05-02

Family

ID=90765177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125637 WO2024088170A1 (zh) 2022-10-24 2023-10-20 硼中子捕获治疗系统及其工作方法

Country Status (2)

Country Link
CN (1) CN117919607A (zh)
WO (1) WO2024088170A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587609A (zh) * 2015-02-03 2015-05-06 瑞地玛医学科技有限公司 放射治疗摆位定位装置及静态、动态靶区摆位方法
JP2015231497A (ja) * 2014-06-10 2015-12-24 フジデノロ株式会社 ホウ素中性子捕捉療法システム
JP2016214760A (ja) * 2015-05-25 2016-12-22 株式会社東芝 ホウ素中性子捕捉療法用治療装置及びその制御方法
CN108744320A (zh) * 2018-09-03 2018-11-06 东莞东阳光高能医疗设备有限公司 一种磁共振引导的硼中子俘获治疗系统及其操作方法
CN109011221A (zh) * 2018-09-04 2018-12-18 东莞东阳光高能医疗设备有限公司 一种剂量引导的中子俘获治疗系统及其操作方法
US20190209687A1 (en) * 2016-09-23 2019-07-11 Sumitomo Heavy Industries, Ltd. Neutron capture therapy system and therapy planning system for neutron capture therapy
JP2019122555A (ja) * 2018-01-16 2019-07-25 住友重機械工業株式会社 治療計画システム
CN112546454A (zh) * 2019-09-25 2021-03-26 中硼(厦门)医疗器械有限公司 中子捕获治疗设备及照射参数选取装置的使用方法
CN114367061A (zh) * 2020-10-14 2022-04-19 中硼(厦门)医疗器械有限公司 硼中子捕获治疗系统及其治疗计划生成方法
CN115364385A (zh) * 2022-07-07 2022-11-22 复旦大学附属肿瘤医院 一种应用于直肠癌的一站式智能放疗系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231497A (ja) * 2014-06-10 2015-12-24 フジデノロ株式会社 ホウ素中性子捕捉療法システム
CN104587609A (zh) * 2015-02-03 2015-05-06 瑞地玛医学科技有限公司 放射治疗摆位定位装置及静态、动态靶区摆位方法
JP2016214760A (ja) * 2015-05-25 2016-12-22 株式会社東芝 ホウ素中性子捕捉療法用治療装置及びその制御方法
US20190209687A1 (en) * 2016-09-23 2019-07-11 Sumitomo Heavy Industries, Ltd. Neutron capture therapy system and therapy planning system for neutron capture therapy
JP2019122555A (ja) * 2018-01-16 2019-07-25 住友重機械工業株式会社 治療計画システム
CN108744320A (zh) * 2018-09-03 2018-11-06 东莞东阳光高能医疗设备有限公司 一种磁共振引导的硼中子俘获治疗系统及其操作方法
CN109011221A (zh) * 2018-09-04 2018-12-18 东莞东阳光高能医疗设备有限公司 一种剂量引导的中子俘获治疗系统及其操作方法
CN112546454A (zh) * 2019-09-25 2021-03-26 中硼(厦门)医疗器械有限公司 中子捕获治疗设备及照射参数选取装置的使用方法
CN114367061A (zh) * 2020-10-14 2022-04-19 中硼(厦门)医疗器械有限公司 硼中子捕获治疗系统及其治疗计划生成方法
CN115364385A (zh) * 2022-07-07 2022-11-22 复旦大学附属肿瘤医院 一种应用于直肠癌的一站式智能放疗系统

Also Published As

Publication number Publication date
CN117919607A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
Schardt et al. Heavy-ion tumor therapy: Physical and radiobiological benefits
RU2721658C1 (ru) Устройство и способ экранирования излучения на основе медицинских изображений
US11938342B2 (en) Time optimized radiation treatment
WO2022037468A1 (zh) 放射线照射系统及其控制方法
CN104302357A (zh) 粒子束远程多向照射装置
WO2022001594A1 (zh) 放射治疗系统及其治疗计划生成方法
EP1541196A1 (en) Safe combination of radiation treatment and delivery of a treatment agent
US20220249867A1 (en) Independent stereotactic radiotherapy dose calculation and treatment plan verification
WO2024088170A1 (zh) 硼中子捕获治疗系统及其工作方法
US20230111230A1 (en) Radiotherapy system and treatment plan generation method therefor
WO2024088227A1 (zh) 放射线治疗系统及其自动摆位方法
TW202417083A (zh) 放射線治療系統及其自動擺位方法
AU2020355832A1 (en) Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof
WO2024099253A1 (zh) 硼中子捕获治疗系统及其工作方法
Magallanes Herńandez Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy
WO2024099385A1 (zh) 治疗计划系统、重叠自动检查方法及治疗计划的制定方法
JP7368024B2 (ja) Bnct治療システム
JP2019122555A (ja) 治療計画システム
WO2021249038A1 (zh) 照射参数选取装置及其使用方法
Tyson Electronic Compensation to Deliver a Total Body Radiation Dose
Day A Computerised treatment planning system for synchrotron radiotherapy
TW202325361A (zh) 放射線照射系統及其載置台控制方法
Popolizio Design and validation of a Robotic Patient Positioning System
CN116328206A (zh) 放射线照射系统及其载置台控制方法
Vestergaard et al. 2nd ESTRO Forum 2013 S115