WO2021249038A1 - 照射参数选取装置及其使用方法 - Google Patents

照射参数选取装置及其使用方法 Download PDF

Info

Publication number
WO2021249038A1
WO2021249038A1 PCT/CN2021/088852 CN2021088852W WO2021249038A1 WO 2021249038 A1 WO2021249038 A1 WO 2021249038A1 CN 2021088852 W CN2021088852 W CN 2021088852W WO 2021249038 A1 WO2021249038 A1 WO 2021249038A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
parameters
irradiation parameters
parameter selection
selection device
Prior art date
Application number
PCT/CN2021/088852
Other languages
English (en)
French (fr)
Inventor
陈韦霖
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Publication of WO2021249038A1 publication Critical patent/WO2021249038A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Definitions

  • the invention relates to a parameter selection device and a use method thereof, in particular to an irradiation parameter selection device and a use method thereof.
  • radiotherapy such as cobalt sixty, linear accelerator, and electron beam has become one of the main methods of cancer treatment.
  • traditional photon or electron therapy is limited by the physical conditions of radiation itself. While killing tumor cells, it will also cause damage to a large number of normal tissues along the beam path.
  • traditional radiotherapy For more radiation-resistant malignant tumors (such as: glioblastoma multiforme, melanoma), the treatment effect is often poor.
  • neutron capture therapy is a combination of the above two concepts, such as Boron Neutron Capture Therapy (BNCT), which uses the specific aggregation of boron-containing drugs in tumor cells and precise beam control to provide A better cancer treatment option than traditional radiation.
  • BNCT Boron Neutron Capture Therapy
  • Boron neutron capture therapy uses boron ( 10 B) drugs that have high capture cross-section characteristics for thermal neutrons.
  • the 10B(n, ⁇ )7Li neutron capture and nuclear fission reactions generate two heavy charges of 4 He and 7 Li. Particles.
  • the total range of the two particles is about the size of a cell. Therefore, the radiation damage to organisms can be limited to the cell level.
  • boron-containing drugs are selectively aggregated in tumor cells and matched with an appropriate neutron source, It can kill tumor cells locally without causing too much damage to normal tissues.
  • the present inventor provides a device for selecting an irradiation parameter that can reduce the error rate and a method of use thereof.
  • the present invention provides an irradiation parameter selection device, which includes: an input part, which inputs multiple groups of irradiation parameters; a calculation part, which calculates the dose distribution corresponding to each group of irradiation parameters input from the input part; and a display part, which displays at least one group Irradiation parameters and their corresponding dose distributions.
  • the irradiation parameter selection device further includes an optimal selection unit that selects at least one set of preferred irradiation parameters according to the dose distribution corresponding to each set of irradiation parameters calculated by the calculation unit.
  • the irradiation parameter selection device further includes a rejection unit that rejects the irradiation parameters that are not implementable among the irradiation parameters input to the input unit.
  • the present invention also provides a method for using an irradiation parameter selection device, which includes the following steps: an input part inputs multiple sets of irradiation parameters; a calculation part calculates the dose distribution corresponding to each set of irradiation parameters; and a display part displays at least one set of irradiation parameters and Its corresponding dose distribution.
  • the irradiation parameter selection device further includes a rejection unit
  • the use method further includes a step of the rejection unit rejecting the irradiation parameters that are not implementable among the irradiation parameters input to the input unit.
  • rejection unit rejects the unimplementable irradiation parameters before the calculation unit performs dose distribution calculation on each group of irradiation parameters.
  • the display unit outputs the irradiation parameters and the corresponding dose distribution data in the form of 3D or 2D images.
  • the irradiation parameter selection device further includes a rejection unit, and the method of use further includes the rejection unit rejecting the irradiation parameters input to the input unit that are not implementable before the preferred irradiation parameter is selected by the selection unit
  • the optimal part selects a set of optimal irradiating parameters.
  • Figure 1 is a schematic diagram of the boron neutron capture reaction.
  • Figure 2 is the 10 B(n, ⁇ ) 7 Li neutron capture nuclear reaction equation.
  • Fig. 3 is a schematic diagram of a neutron capture treatment device in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a control system in an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an irradiation parameter selection device according to the first embodiment of the present invention.
  • Fig. 6 is a schematic diagram of an irradiation parameter selection device according to the second embodiment of the present invention. .
  • Fig. 7 is a schematic diagram of an irradiation parameter selection device according to the third embodiment of the present invention. .
  • boron neutron capture therapy is the most common, and the neutrons for boron neutron capture therapy can be supplied by nuclear reactors or accelerators.
  • Boron Neutron Capture Therapy is the use of boron-containing ( 10 B) drugs with high thermal neutron capture cross-section characteristics, through 10 B (n, ⁇ ) 7 Li neutron capture and nuclear fission reaction Two types of heavily charged particles, 4 He and 7 Li, are produced. 1 and 2, which respectively show the schematic diagram of the boron neutron capture reaction and the 10 B(n, ⁇ ) 7 Li neutron capture nuclear reaction equation.
  • the average energy of the two heavily charged particles is about 2.33MeV, which has a high Linear Energy Transfer (LET) and short-range characteristics.
  • the linear energy and range of ⁇ particles are 150keV/ ⁇ m and 8 ⁇ m, respectively, while the 7 Li heavy-load particles are 175keV/ ⁇ m and 5 ⁇ m.
  • the total range of the two particles is about It is equivalent to the size of a cell, so the radiation damage to organisms can be limited to the cell level.
  • boron-containing drugs selectively accumulate in tumor cells, with an appropriate neutron radiation source, they can achieve the goal of accurately killing tumor cells without causing too much damage to normal tissues.
  • the resulting mixed radiation field that is, the beam contains low to high energy neutrons and photons; for deep tumors, boron neutrons
  • the human head tissue prosthesis is used to calculate the dose distribution, and the prosthetic beam quality factor is used as the medium. Design reference for sub-beams.
  • the International Atomic Energy Agency has given five recommendations for air beam quality factors for neutron sources used in clinical boron neutron capture therapy. These five recommendations can be used to compare the pros and cons of different neutron sources and serve as The reference basis for selecting the neutron generation method and designing the beam shaping body.
  • the five recommendations are as follows:
  • the energy range of superthermal neutrons is between 0.5eV and 40keV, the energy range of thermal neutrons is less than 0.5eV, and the energy range of fast neutrons is greater than 40keV.
  • the neutron beam flux and the concentration of boron-containing drugs in the tumor jointly determine the clinical treatment time. If the concentration of the boron-containing drug in the tumor is high enough, the requirement for the neutron beam flux can be reduced; on the contrary, if the concentration of the boron-containing drug in the tumor is low, a high flux of superthermal neutrons is required to give the tumor a sufficient dose.
  • the IAEA's requirement for the flux of the superthermal neutron beam is that the number of superthermal neutrons per square centimeter per second is greater than 10 9.
  • the neutron beam under this flux can roughly control the treatment of current boron-containing drugs. Within one hour, short treatment time not only has advantages in patient positioning and comfort, but also can effectively utilize the limited residence time of boron-containing drugs in tumors.
  • fast neutrons can cause unnecessary normal tissue doses, they are regarded as pollution.
  • the dose is positively correlated with neutron energy. Therefore, the content of fast neutrons should be minimized in the design of neutron beams.
  • Fast neutron pollution is defined as the dose of fast neutrons per unit of superthermal neutron flux.
  • the IAEA's recommendation for fast neutron pollution is less than 2 x 10 -13 Gy-cm 2 /n.
  • Gamma rays are strong penetrating radiation, which will non-selectively cause the dose deposition of all tissues along the path of the neutron beam. Therefore, reducing the gamma-ray content is also a necessary requirement for beam design.
  • Gamma-ray pollution is defined as the unit superheated neutron flux The accompanying gamma-ray dose, the IAEA's recommendation for gamma-ray pollution is less than 2 x 10 -13 Gy-cm 2 /n.
  • thermal neutrons Due to the fast attenuation speed and poor penetration ability of thermal neutrons, most of the energy is deposited in the skin tissues after entering the human body. Except for epidermal tumors such as melanoma, which need to use thermal neutrons as the neutron source for boron neutron capture therapy, it is targeted at the brain Deep tumors such as tumors should reduce the content of thermal neutrons.
  • the IAEA recommends that the ratio of thermal neutron to superthermal neutron flux is less than 0.05.
  • the ratio of neutron current to flux represents the directionality of the beam. The larger the ratio, the better the beam forward.
  • the high forward neutral beam can reduce the surrounding normal tissue dose caused by neutron divergence. Improve the depth of treatment and flexibility of posture.
  • the IAEA recommends that the ratio of neutron current to flux be greater than 0.7.
  • the prosthesis is used to obtain the dose distribution in the tissue, and the beam quality factors of the prosthesis are derived based on the dose-depth curves of normal tissues and tumors.
  • the following three parameters can be used to compare the therapeutic benefits of different neutron beams.
  • the tumor dose is equal to the depth of the maximum dose of normal tissue. After this depth, the dose of tumor cells is less than the maximum dose of normal tissue, that is, the advantage of boron neutron capture is lost. This parameter represents the penetration ability of the beam. The larger the effective treatment depth, the deeper the tumor depth that can be treated, and the unit is cm.
  • the tumor dose rate of effective treatment depth is also equal to the maximum dose rate of normal tissue. Because the total dose received by normal tissue is a factor that affects the total dose that can be given to the tumor, the parameter affects the length of the treatment time. The greater the effective treatment depth and the dose rate, the shorter the irradiation time required to give a certain dose to the tumor, and the unit is Gy/mA -min.
  • the effective treatment dose ratio received by the tumor and normal tissue is called the effective treatment dose ratio; the average dose can be calculated by integrating the dose-depth curve.
  • Irradiation time ⁇ 30min (the proton current used by the accelerator is 10mA)
  • RBE Relative Biological Effectiveness
  • the neutron capture treatment equipment 100 for achieving neutron capture treatment is equipped with a neutron beam generating assembly 1, an irradiation room for irradiating a neutron beam to an irradiated object, such as a patient, 2.
  • a neutron beam generating assembly 1 for preparation work
  • communication room 4 connecting the irradiation room 2 and preparation room 3
  • management room 5 for implementing irradiation control
  • positioning device for positioning the patient (not shown), for placing the patient
  • the mounting table 6 that moves in the preparation room 3 and the irradiation room 2 and a control system 7 for controlling and managing the treatment process.
  • the neutron beam generating module 1 is configured to generate a neutron beam outside the irradiation chamber 2 and be capable of irradiating the neutron beam to a patient placed in the irradiation chamber 2, and the irradiation chamber 2 is provided with a collimator 20.
  • the preparation room 3 is a room for performing the preparation work required before irradiating the neutron beam to the patient.
  • the preparation room 3 is equipped with a simulated collimator 30.
  • the preparation work includes fixing the patient on the mounting table 6 and treating the tumor Carry out positioning and make three-dimensional positioning marks, etc.
  • the management room 5 is a room used to manage and control the overall treatment process performed by the boron neutron capture therapy device 100.
  • the system 7 controls the start and stop of the irradiation of the neutron beam, the position adjustment of the mounting table 6, and the like.
  • the mounting table 6 is used to carry the patient to perform rotation, translation, and lifting movements together.
  • the control system 7 is only a general term here. It can be a set of total control system, that is, the start and stop of the neutron beam irradiation, the position adjustment of the mounting table 6, etc. are all controlled by a set of systems, or it can be multiple systems.
  • a set of control systems, that is, the start and stop of the irradiation of the neutron beam, and the position adjustment of the mounting table 6 are respectively controlled by a set of control systems.
  • the stage 6 on which the patient is placed is adjusted to the corresponding position.
  • the control system 7 includes irradiation parameter selection devices 71, 71', 71" for selecting the optimal irradiation point and irradiation angle, a conversion part 72 for converting the preferred irradiation parameters into coordinate parameters of the mounting table 6, and the mounting table 6.
  • the adjustment unit 73 adjusted to a predetermined position and the start-stop unit 74 control the start and stop of the irradiation of the neutron beam.
  • each group of irradiation parameters includes the irradiation point and the irradiation angle of the neutron beam.
  • the irradiation parameter selection device 71 includes an input unit 711, a calculation unit 712 and a display unit 715.
  • the input unit 711 sequentially inputs multiple sets of irradiation parameters into the calculation unit 712
  • the calculation unit 712 calculates the dose distribution corresponding to each set of irradiation parameters
  • the display unit 715 displays at least one set of irradiation parameters and their corresponding dose distributions.
  • the display unit 715 can output the irradiation parameters and their corresponding dose distribution data in the form of 3D or 2D images.
  • the doctor or physicist can more intuitively judge the pros and cons of each set of irradiation parameters, so that the doctor Or a physicist can easily select at least a set of preferred irradiation parameters to treat the patient.
  • the removing unit 715 removes these unavailable irradiation points and irradiation angles. Therefore, before performing actual treatment, doctors or physicists need to eliminate unimplementable irradiation parameters based on their own experience or with the help of some instruments in combination with the actual situation of the patient.
  • the irradiation parameter selection device 71' also includes a rejecting part 713, and the rejecting part 713 inputs the unimplementable among the irradiation parameters input to the input part 711
  • the irradiation parameters are eliminated.
  • the elimination unit 713 eliminates the irradiation parameters that cannot be implemented before the calculation unit 712 completes the dose distribution of all the irradiation parameters input to the input unit 711. In this way, the number of irradiation parameters that need to be calculated for the dose distribution is reduced, and unnecessary Time waste and wastage of the irradiation parameter selection device 71.
  • the rejection unit 713 may also reject the irradiation parameters that cannot be implemented after the calculation unit 712 has completed the dose distribution of all the irradiation parameters input to the input unit 711. After the calculation of the dose distribution, the non-implementable irradiation parameters are eliminated, resulting in a waste of time caused by unnecessary dose distribution calculations.
  • the irradiation parameter selection device 71" in order to select the preferred irradiation parameters more quickly, also includes an optimal part 714, which is based on the dose corresponding to each set of irradiation parameters calculated by the calculation part 712 At least one group of preferred irradiation parameters is selected for the distribution.
  • the selection unit 714 selects a group of optimal irradiation parameters among the remaining irradiation parameters after the rejection unit 713 rejects the unimplementable irradiation parameters. At this time, the display unit 715 only displays a group of irradiation parameters.
  • the selection unit 714 may also perform the selection of the preferred irradiation parameters before the rejection unit 713 rejects the unimplementable irradiation parameters. In this case, the selection unit 714 needs to select multiple sets of preferred irradiation parameters. The irradiation parameters that cannot be implemented are excluded from the preferred multiple sets of irradiation parameters. At this time, the display unit 715 displays at least one set of irradiation parameters.
  • the irradiation parameter selection device 71" disclosed in the third embodiment may not include the rejection unit 713.
  • the optimization unit 714 completes the input and input unit 711 in the calculation unit 712. After the dose distributions of all the irradiation parameters are selected, multiple sets of preferred irradiation parameters are selected. At this time, the display unit 715 displays at least one set of irradiation parameters. Then, the doctor or physicist needs to eliminate the unimplementable irradiation parameters from the preferred sets of irradiation parameters based on their own experience or with the aid of some instruments combined with the actual situation of the patient.
  • the irradiation parameters input from the input unit 711 to the calculation unit 712 may be selected by a doctor or a physicist based on experience, or may be selected randomly through software or according to a certain rule.
  • the method of using the irradiation parameter selection device 71 disclosed in Embodiment 1 includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the calculation part 712 calculates the dose distribution corresponding to each group of irradiation points and irradiation angles; the display part 715 displays At least one set of irradiation parameters and their corresponding dose distributions.
  • the method of using the irradiation parameter selection device 71' disclosed in the second implementation column includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the rejection part 713 rejects the irradiation parameters that cannot be implemented; the calculation part 712 calculates each remaining group of irradiation The dose distribution corresponding to the point and the irradiation angle; the display part 715 displays at least one set of irradiation parameters and their corresponding dose distribution.
  • the method of using the irradiation parameter selection device 71' disclosed in the second embodiment includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the calculation part 712 calculates the dose distribution corresponding to each group of irradiation points and irradiation angles The rejecting part 713 rejects the irradiation parameters that cannot be implemented; the display part 715 displays at least one set of irradiation parameters and their corresponding dose distributions.
  • the method of using the irradiation parameter selection device 71" disclosed in the third embodiment includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the rejection part 713 rejects the irradiation parameters that cannot be implemented; the calculation part 712 calculates each remaining group of irradiation The dose distribution corresponding to the point and the irradiation angle; the optimal part 714 selects a set of optimal irradiation parameters among the remaining irradiation parameters; the display part 715 displays a set of optimal irradiation parameters and their corresponding dose distribution.
  • the method of using the irradiation parameter selection device 71" disclosed in the third embodiment includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the calculation part 712 calculates the corresponding values of each remaining group of irradiation points and irradiation angles. Dose distribution; the optimal part 714 selects multiple sets of preferred irradiation parameters; the display part 715 displays multiple sets of preferred irradiation parameters and their corresponding dose distributions.
  • the method of using the irradiation parameter selection device 71" disclosed in the third embodiment includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the calculation part 712 calculates the corresponding values of each remaining group of irradiation points and irradiation angles. Dose distribution; the rejection part 713 rejects the irradiation parameters that are not feasible; the selection part 714 selects a set of optimal irradiation parameters among the remaining irradiation parameters; the display part 715 displays a set of optimal irradiation parameters and their corresponding dose distributions.
  • the method of using the irradiation parameter selection device 71" disclosed in the third embodiment includes the following steps: the input part 711 inputs multiple sets of irradiation points and irradiation angles; the calculation part 712 calculates the corresponding values of each remaining group of irradiation points and irradiation angles. Dose distribution; the optimal part 714 selects multiple sets of preferred irradiation parameters among the remaining irradiation parameters; the rejection part 713 rejects the irradiation parameters that cannot be implemented; the display part 715 displays at least one set of preferred irradiation parameters and their corresponding dose distributions.
  • the conversion unit 72 After obtaining the optimal irradiation point and irradiation angle that can be implemented, the conversion unit 72 combines the patient's CT/MRI/PET-CT information, positioning information, and structural information of the stage 6 to convert the parameters of the irradiation point and irradiation angle For the coordinate parameters that the stage 6 needs to move into position during the irradiation process, the adjustment unit 73 adjusts the stage 6 to a predetermined position based on the coordinate information obtained from the conversion unit 72.
  • the positioning device After the mounting table 6 is adjusted to a predetermined position, the positioning device further confirms whether the irradiation point and irradiation angle of the neutron beam relative to the patient's tumor are the same as the preselected optimal irradiation point and irradiation angle corresponding to the implementation. If not, artificial Manually adjust the position of the patient or the position of the stage 6 to ensure that the neutron neutron beam irradiates the patient's tumor at the best irradiation point and irradiation angle, or drive the adjustment unit 73 to adjust the position of the stage 6 to ensure that the neutron neutron beam is optimally irradiated Point and irradiation angle irradiate the patient's tumor.
  • a first screen door 21 is provided between the irradiation room 2 and the communication room 4, and a second screen door 31 is provided between the communication room 4 and the preparation room 3.
  • a shield wall with a labyrinth can be used instead of the first screen door 21 and the second screen door 31.
  • the shape of the labyrinth includes, but is not limited to, a "Z" shape, a "bow” shape, and a "J" shape.
  • the calculation unit 712 of the present invention uses one of the Monte Carlo method, the Collapsed Cone algorithm, or the pencil beam algorithm to calculate the dose distribution corresponding to each set of irradiation parameters.
  • the Monte Carlo method realistically simulates the process of energy deposition of a large number of particles, and the simulation results are more accurate.
  • the pencil beam algorithm is a convolutional stacking algorithm based on the pencil beam core. It divides the continuous beam into many small beams, and obtains the dose deposition of each small beam in the medium respectively, and the dose of each small beam The contribution is superimposed to obtain the total dose deposited by the entire beam in the body.
  • the pencil beam method has simple algorithm and fast calculation speed.
  • the Collapsed Cone algorithm is a convolutional superposition algorithm with a point core as a model.
  • the Collapsed Cone algorithm can handle the problem of obtaining the dose distribution in the electronic imbalance area.
  • the input part 711 of the irradiation parameter selection device 71, 71', 71" of the present invention inputs multiple sets of irradiation parameters at one time for the calculation part to calculate the dose distribution corresponding to each set of irradiation parameters, which simplifies the selection of irradiation parameters for treatment of patients Step: After inputting multiple sets of irradiation parameters at once, the dose distribution is calculated uniformly, and finally the appropriate irradiation parameters are selected from all the calculation results to treat the patient.
  • doctors are liberated from repetitive labor, preventing misoperations that may be caused by multiple repetitive labor, and avoiding the need for physicists and doctors to wait for a long time by the equipment to continuously monitor the operation of the equipment to input the irradiation at the appropriate time Manpower loss caused by parameters.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种中子束的照射参数选取装置及其使用方法,所述照射参数选取装置包括:一种照射参数选取装置,其包括:输入部,输入多组照射参数;计算部,计算从输入部输入的每组照射参数对应的剂量分布及显示部,显示至少一组照射参数及其对应的剂量分布。所述照射参数选取装置的输入部一次性输入多组照射参数供所述计算部计算每组照射参数对应的剂量分布,简化了选取用于对患者进行治疗的照射参数的步骤,舍去了多次循环输入、计算、判断的过程,将物理师或医生从重复性的劳动中解放,防止了多次重复性劳动可能带来的误操作。

Description

照射参数选取装置及其使用方法 技术领域
本发明涉及一种参数选取装置及其使用方法,尤其涉及一种照射参数选取装置及其使用方法。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT),借由含硼药物在肿瘤细胞的特异性集聚,配合精准的射束调控,提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗是利用含硼( 10B)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂反应产生 4He和 7Li两个重荷电粒子,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,当含硼药物选择性地聚集在肿瘤细胞中,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
现有BNCT治疗计划采用前瞻性计划方法,即由医生设定并输入照射参数后经计算得出该条件对应的剂量分布,因此决定照射参数是至关重要的一步。现有治疗计划制订一次治疗计划时只允许输入一组照射参数,若该照射参数对应的计算结果不符合要求,需要医生重新开始该次治疗计划并重新设定并输入照射参数。该工作流程要求大量的重复性劳动,不仅枯燥而且易出现人为失误。
因此,有必要提出一种能够降低失误率的照射参数选取装置及其使用方法。
发明内容
为了克服现有技术的缺陷,本发明人提供一种能够降低失误率的照射参数选取装置及其使用方法。
本发明提供一种照射参数选取装置,其包括:输入部,输入多组照射参数;计算部,计算从所述输入部输入的每组照射参数对应的剂量分布;及显示部,显示至少一组照射参数及其对应的剂量分布。
进一步地,所述照射参数选取装置还包括择优部,所述择优部根据所述计算部计算出的每组照射参数对应的剂量分布选取至少一组优选的照射参数。
进一步地,所述照射参数选取装置还包括剔除部,所述剔除部将输入所述输入部的照射参数中不可实施的照射参数剔除。
本发明还提供一种照射参数选取装置的使用方法,其包括以下步骤:输入部输入多组照射参数;计算部计算每一组照射参数对应的剂量分布;及显示部显示至少一组照射参数及其对应的剂量分布。
进一步地,所述照射参数选取装置还包括剔除部,所述使用方法还包括所述剔除部将输入所述输入部的照射参数中不可实施的照射参数剔除的步骤。
进一步地,所述剔除部在所述计算部对每一组照射参数进行剂量分布计算之前将不可实施的照射参数剔除。
进一步地,所述显示部将照射参数及其对应的剂量分布的数据以3D或2D图像的形式输出。
本发明还提供一种照射参数选取装置的使用方法,其包括以下步骤:输入部输入多组照射参数;计算部计算每一组照射参数对应的剂量分布;及择优部根据所述计算部计算出的每组照射参数对应的剂量分布选择至少一组优选的照射参数;显示部显示所述择优部选取的至少一组照射参数及其对应的剂量分布。
进一步地,所述照射参数选取装置还包括剔除部,所述使用方法还包括所述剔除部在所述择优部选取优选的照射参数之前剔除输入所述输入部的所述照射参数中不可实施的照射参数的步骤,所述择优部选取一组最佳的照射参数。
进一步地,所述剔除部在所述计算部对每一组照射参数进行剂量分布计算之前将不可实施的照射参数剔除。
附图说明
图1是硼中子捕获反应示意图。
图2是 10B(n,α) 7Li中子捕获核反应方程式。
图3是本发明实施例中的中子捕获治疗设备的示意图。
图4是本发明实施例中的控制系统的示意图。
图5是本发明实施例一的照射参数选取装置的示意图。
图6是本发明实施例二的照射参数选取装置的示意图。。
图7是本发明实施例三的照射参数选取装置的示意图。。
具体实施方式
下面结合附图对本发明的实施例做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
中子捕获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加,其中以硼中子捕获治疗最为常见,供应硼中子捕获治疗的中子可以由核反应堆或加速器供应。硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT)是利用含硼( 10B)药物对热中子具有高捕获截面的特性,借由 10B(n,α) 7Li中子捕获及核分裂反应产生 4He和 7Li两种重荷电粒子。参照图1和图2,其分别示出了硼中子捕获反应的示意图和 10B(n,α) 7Li中子捕获核反应方程式,两种重荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)和短射程的特征,α粒子的线性能量与射程分别为150keV/μm、8μm,而 7Li重荷粒子则为175keV/μm、5μm,两种粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级。当含硼药物选择性地聚集在肿瘤细胞中时,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到精准杀死肿瘤细胞的目的。
无论硼中子捕获治疗的中子源来自核反应堆或带电粒子与靶材的核反应,产生的皆为混合辐射场,即射束包含了低能至高能的中子、光子;对于深部肿瘤的硼中子捕获治疗,除了超热中子外,其余的辐射线含量越多,造成正常组织非选择性剂量沉积的比例越大,因此这些会造成不必要剂量沉积的辐射应尽量降低。为更了解中子在人体中的剂量分布,除了空气射束品质因素之外,本发明的实施例中使用人体头部组织假体进行剂量分布计算,并以假体射束品质因素来作为中子射束的设计参考。
国际原子能机构(IAEA)针对临床硼中子捕获治疗用的中子源,给定了五项空气射束品质因素建议,此五项建议可用于比较不同中子源的优劣,并供以作为挑选中子产生途径、设计射束整形体时的参考依据。这五项建议分别如下:
超热中子射束通量Epithermal neutron flux>1 x 10 9n/cm 2s
快中子污染Fast neutron contamination<2 x 10 -13Gy-cm 2/n
光子污染Photon contamination<2 x 10 -13Gy-cm 2/n
热中子与超热中子通量比值thermal to epithermal neutron flux ratio<0.05中子电流与通量比值epithermal neutron current to flux ratio>0.7
注:超热中子能区在0.5eV到40keV之间,热中子能区小于0.5eV,快中子能区大于40keV。1、超热中子射束通量:
中子射束通量和肿瘤中含硼药物浓度共同决定了临床治疗时间。若肿瘤含硼药物浓度够高,对于中子射束通量的要求便可降低;反之,若肿瘤中含硼药物浓度低,则需高通量超热中子来给予肿瘤足够的剂量。IAEA对于超热中子射束通量的要求为每秒每平方厘米的超热中子个数大于10 9,此通量下的中子射束对于目前的含硼药物而言可大致控制治疗时间在一小时内,短治疗时间除了对病人定位和舒适度有优势外,也可较有效利用含硼药物在肿瘤内有限的滞留时间。
2、快中子污染:
由于快中子会造成不必要的正常组织剂量,因此视之为污染,此剂量大小和中子能量呈正相关,因此在中子射束设计上应尽量减少快中子的含量。快中子污染定义为单位超热中子通量伴随的快中子剂量,IAEA对快中子污染的建议为小于2 x 10 -13Gy-cm 2/n。
3、光子污染(γ射线污染):
γ射线属于强穿辐射,会非选择性地造成中子射束路径上所有组织的剂量沉积,因此降低γ射线含量也是射束设计的必要要求,γ射线污染定义为单位超热中子通量伴随的γ射线剂量,IAEA对γ射线污染的建议为小于2 x 10 -13Gy-cm 2/n。
4、热中子与超热中子通量比值:
由于热中子衰减速度快、穿透能力差,进入人体后大部分能量沉积在皮肤组织,除黑色素细胞瘤等表皮肿瘤需用热中子作为硼中子捕获治疗的中子源外,针对脑瘤等深层肿瘤应降低热中子含量。IAEA对热中子与超热中子通量比值建议为小于0.05。
5、中子电流与通量比值:
中子电流与通量比值代表了射束的方向性,比值越大表示射束前向性佳,高前向性的中自射束可减少因中子发散造成的周围正常组织剂量,另外也提高了可治疗深度及摆位姿势弹性。IAEA对中子电流与通量比值建议为大于0.7。
利用假体得到组织内的剂量分布,根据正常组织及肿瘤的剂量-深度曲线,推得假体射束 品质因素。如下三个参数可用于进行不同中子射束治疗效益的比较。
1、有效治疗深度:
肿瘤剂量等于正常组织最大剂量的深度,在此深度之后的位置,肿瘤细胞得到的剂量小于正常组织最大剂量,即失去了硼中子捕获的优势。此参数代表射束的穿透能力,有效治疗深度越大表示可治疗的肿瘤深度越深,单位为cm。
2、有效治疗深度剂量率:
即有效治疗深度的肿瘤剂量率,亦等于正常组织的最大剂量率。因正常组织接收总剂量为影响可给予肿瘤总剂量大小的因素,因此参数影响治疗时间的长短,有效治疗深度剂量率越大表示给予肿瘤一定剂量所需的照射时间越短,单位为Gy/mA-min。
3、有效治疗剂量比:
从大脑表面到有效治疗深度,肿瘤和正常组织接收的平均剂量比值,称之为有效治疗剂量比;平均剂量的计算,可由剂量-深度曲线积分得到。有效治疗剂量比值越大,代表该射束的治疗效益越好。
为了使射束整形体在设计上有比较依据,除了五项IAEA建议的空气中射束品质因素和上述的三个参数,本发明实施例中也利用如下的用于评估射束剂量表现优劣的参数:
1、照射时间≤30min(加速器使用的质子电流为10mA)
2、30.0RBE-Gy可治疗深度≥7cm
3、肿瘤最大剂量≥60.0RBE-Gy
4、正常脑组织最大剂量≤12.5RBE-Gy
5、皮肤最大剂量≤11.0RBE-Gy
注:RBE(Relative Biological Effectiveness)为相对生物效应,由于光子、中子会造成的生物效应不同,所以如上的剂量项均分别乘上不同组织的相对生物效应以求得等效剂量。
如图3所示,实现中子捕获治疗的中子捕获治疗设备100具备中子束产生组件1、用于向被照射体,例如患者,照射中子束的照射室2、用于进行照射前准备工作的准备室3、连通照射室2与准备室3的联络室4、用于实施照射控制的管理室5、用于对患者进行定位的定位装置(未图示)、用于载置患者的在准备室3和照射室2内移动的载置台6及用于对治疗过程进行控制、管理的控制系统7。
中子束产生组件1构成为在照射室2外产生中子束并能够向放置于照射室2内的患者照 射中子束,照射室2内设有准直器20。准备室3为用于实施向患者照射中子束前所需的准备的工作的房间,准备室3内设有模拟准直器30,准备工作包括将患者固定于载置台6、对患者的肿瘤进行定位并做好三维定位标记等。管理室5为用于管理、控制硼中子捕捉疗法设备100实施的整体治疗工序的房间,例如,管理人员从管理室5的室内肉眼确认准备室3中的准备工作的状况、管理人员操作控制系统7来控制中子束的照射的开始、停止、载置台6的位置调整等,载置台6用于承载患者一起做旋转、平移和升降运动。控制系统7在此处仅是一个总称,其可以是一套总的控制系统,即中子束的照射的开始、停止、载置台6的位置调整等都由一套系统控制,也可以是多套控制系统,即中子束的照射的开始、停止、载置台6的位置调整等分别由一套控制系统进行控制。
下文针对不同实施例进行详述,相同的构件在不同的实施例中为了简化采用了相同的数字标识,相似的构件在不同实施例中分别以相同数字标识加“’”或“””以示区别。
参图4所示,在进行硼中子捕获治疗之前,管理人员需要明确中子束从何种角度照射患者能最大限度的杀死肿瘤细胞并尽可能能的降低辐射线对周围正常组织的损伤,确定最佳照射点和照射角度之后将载置患者的载置台6调整到对应位置。具体地,控制系统7包括选取最佳照射点和照射角度的照射参数选取装置71、71’、71”、将优选的照射参数转换为载置台6的坐标参数的转换部72、将载置台6调整到预定位置的调整部73及控制中子束的照射的开始、停止的启停部74。
参照图5所示,每一组照射参数包括中子束的照射点和照射角度,实施例一中,照射参数选取装置71包括输入部711、计算部712和显示部715。输入部711将多组照射参数依次输入到计算部712中,计算部712计算出每组照射参数对应的剂量分布,显示部715显示至少一组照射参数及其对应的剂量分布。显示部715可以将照射参数及其对应的剂量分布的数据以3D或2D图像的形式输出,这种情况下,医生或物理师可以更直观地判断出每组照射参数的优劣,从而,医生或物理师可以非常容易地选取至少一组优选的照射参数对患者实施治疗。
因准直器20的位置是固定的且照射室2内还设置对患者进行定位的定位装置等设备,存在患者的某些摆位无法实现和治疗床的某些运动位置受干涉的情况,另外,患者某些部位,例如眼睛等器官,不能被照射,因此某些照射点和照射角度是无法实施照射的,在实际治疗过程中,剔除部715即剔除这些无法实施的照射点和照射角度。所以,在进行实际治疗之前,医生或物理师需要根据自身经验或借助某些仪器结合患者的实际情况剔除不可实施的照射参数。
参照图6所示,实施例二中,为了更精确、快捷地剔除不可实施的照射参数,照射参数选取装置71’还包括剔除部713,剔除部713将输入输入部711的照射参数中不可实施的照射参数剔除。优选地,剔除部713在计算部712完成对输入输入部711的所有照射参数的剂量分布之前剔除无法实施的照射参数,如此,减少了需要进行剂量分布计算的照射参数的数量,避免不必要的时间浪费和对照射参数选取装置71的损耗。
当然,剔除部713也可以在计算部712完成对输入输入部711的所有照射参数的剂量分布之后剔除无法实施的照射参数,相较于前者,在完成输入输入部711的每组照射参数对应的剂量分布的计算之后再剔除不可实施的照射参数,产生了不必要的剂量分布计算造成的时间上的浪费。
参照图7所示,实施例三中,为了更快捷第选取优选的照射参数,照射参数选取装置71”还包括择优部714,择优部714根据计算部712计算出的每组照射参数对应的剂量分布选取至少一组优选的照射参。
优选地,择优部714在剔除部713剔除不可实施的照射参数之后在剩余的照射参数之中选择一组最优的照射参数,此时,显示部715仅显示一组照射参数。
当然,择优部714也可以在剔除部713未剔除不可实施的照射参数之前进行优选照射参数的选取,在这种情况下,择优部714需要选取多组优选的照射参数,之后,剔除部713在优选的多组照射参数中剔除不可实施的照射参数,此时,显示部715显示至少一组照射参数。
实施例三揭示的照射参数选取装置71”可以不包括剔除部713。在实施例三揭示的照射参数选取装置71”不包括剔除部713时,择优部714在计算部712完成对输入输入部711的所有照射参数的剂量分布之后选取多组优选的照射参数,此时,显示部715显示至少一组照射参数。然后,医生或物理师需要根据自身经验或借助某些仪器结合患者的实际情况在优选的多组照射参数中剔除不可实施的照射参数。
其中,从输入部711输入计算部712的照射参数可以是医生或物理师根据经验进行选取的,也可以通过软件随机或按照一定规律进行选取。
结合图5至图7所示,下面将详述照射参数选取装置71、71’、71”的使用方法。
实施例1揭示的照射参数选取装置71的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;计算部712计算每一组照射点和照射角度对应的剂量分布;显示部715显示至少一组照射参数及其对应的剂量分布。
实施列二揭示的照射参数选取装置71’的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;剔除部713剔除不可实施的照射参数;计算部712计算剩余的每一组照 射点和照射角度对应的剂量分布;显示部715显示至少一组照射参数及其对应的剂量分布。
可选的,实施列二揭示的照射参数选取装置71’的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;计算部712计算每一组照射点和照射角度对应的剂量分布;剔除部713剔除不可实施的照射参数;显示部715显示至少一组照射参数及其对应的剂量分布。
实施例三揭示的照射参数选取装置71”的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;剔除部713剔除不可实施的照射参数;计算部712计算剩余的每一组照射点和照射角度对应的剂量分布;择优部714在剩余的照射参数之中选择一组最优的照射参数;显示部715显示一组最佳的照射参数及其对应的剂量分布。
可选的,实施例三揭示的照射参数选取装置71”的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;计算部712计算剩余的每一组照射点和照射角度对应的剂量分布;择优部714选取多组优选的照射参数;显示部715显示多组优选的照射参数及其对应的剂量分布。
可选的,实施例三揭示的照射参数选取装置71”的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;计算部712计算剩余的每一组照射点和照射角度对应的剂量分布;剔除部713剔除不可实施的照射参数;择优部714在剩余的照射参数之中选择一组最优的照射参数;显示部715显示一组最佳的照射参数及其对应的剂量分布。
可选的,实施例三揭示的照射参数选取装置71”的使用方法包括以下步骤:输入部711输入多组照射点和照射角度;计算部712计算剩余的每一组照射点和照射角度对应的剂量分布;择优部714在剩余的照射参数之中选择多组优选的照射参数;剔除部713剔除不可实施的照射参数;显示部715显示至少一组优选的照射参数及其对应的剂量分布。
在得到可实施的最佳照射点和照射角度之后,转换部72结合患者的CT/MRI/PET-CT信息、摆位信息、载置台6的结构信息等将该照射点和照射角度的参数转换为在照射过程中载置台6需要移动到位的坐标参数,然后调整部73根据从转换部72得到的坐标信息将载置台6调整到预定位置。将载置台6调整到预定位置之后,定位装置进一步确认中子束相对于患者肿瘤的照射点和照射角度是否与预先选取的可实施的最佳照射点和照射角度对应相同,若否,采用人工手动调整患者摆位或载置台6位置以确保中子中子束以最佳照射点和照射角度照射患者肿瘤,或驱动调整部73调整载置台6位置以确保中子中子束以最佳照射点和照射角度照射患者肿瘤。
为防止照射室2内的辐射散射到照射室2外,照射室2与联络室4之间设有第一屏蔽门21、联络室4与准备室3之间设有第二屏蔽门31。在其他实施方式中,可以采用设置迷道的 屏蔽墙代替第一屏蔽门21和第二屏蔽门31,迷道的形状包括但不限于“Z”形、“弓”形、“己”形。本发明的计算部712采用蒙特卡罗方法或Collapsed Cone算法或笔形束算法中的一种计算每一组照射参数对应的剂量分布。蒙特卡罗方法通过逼真模拟大量粒子能量沉积的过程,模拟结果较精确。笔形束算法以笔形束核为模型的卷积叠加算法,它把连续的射束分成很多细小的射束,分别获得每个小射束在介质中的剂量沉积,将每个小射束的剂量贡献叠加,从而得到整个射束在体内沉积的总剂量,笔形束法算法简单、计算速度快。Collapsed Cone算法是以点核为模型的卷积叠加算法,它将散射剂量的积分划分为具有一定立体角的同轴锥形筒串,位于筒串轴的散射体积单元释放的能量沿筒串轴线性传递、衰减、沉积。Collapsed Cone算法可以处理电子失衡区域的剂量分布获取问题。
本发明照射参数选取装置71、71’、71”的输入部711一次性输入多组照射参数供计算部计算每组照射参数对应的剂量分布,简化了选取用于对患者进行治疗的照射参数的步骤,一次性输入多组照射参数之后统一进行剂量分布的计算,最后从所有计算结果中选取合适的照射参数对患者进行治疗,舍去了多次循环输入、计算、判断的过程,将物理师或医生从重复性的劳动中解放,防止了多次重复性劳动可能带来的误操作,也避免物理师和医生需要长时间守候在设备旁边持续性的监控设备运行情况以在适当时机输入照射参数带来的人力损耗。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,都在本发明要求保护的范围之内。

Claims (10)

  1. 一种照射参数选取装置,其特征在于:包括:
    输入部,输入多组照射参数;
    计算部,计算从所述输入部输入的每组照射参数对应的剂量分布;及
    显示部,显示至少一组照射参数及其对应的剂量分布。
  2. 根据权利要求1所述的照射参数选取装置,其特征在于:还包括择优部,所述择优部根据所述计算部计算出的每组照射参数对应的剂量分布选取至少一组优选的照射参数。
  3. 根据权利要求1或2所述的照射参数选取装置,其特征在于:还包括剔除部,所述剔除部将输入所述输入部的照射参数中不可实施的照射参数剔除。
  4. 如权利要求1所述的照射参数选取装置的使用方法,其特征在于:包括以下步骤:
    输入部输入多组照射参数;
    计算部计算每一组照射参数对应的剂量分布;及
    显示部显示至少一组照射参数及其对应的剂量分布。
  5. 根据权利要求4所述的照射参数选取装置的使用方法,其特征在于:所述照射参数选取装置还包括剔除部,所述使用方法还包括所述剔除部将输入所述输入部的照射参数中不可实施的照射参数剔除的步骤。
  6. 根据权利要求5所述的照射参数选取装置的使用方法,其特征在于:所述剔除部在所述计算部对每一组照射参数进行剂量分布计算之前将不可实施的照射参数剔除。
  7. 根据权利要求4至6项中任意一项所述的照射参数选取装置的使用方法,其特征在于:所述显示部将照射参数及其对应的剂量分布的数据以3D或2D图像的形式输出。
  8. 如权利要求2所述的照射参数选取装置的使用方法,其特征在于:包括以下步骤:
    输入部输入多组照射参数;
    计算部计算每一组照射参数对应的剂量分布;及
    择优部根据所述计算部计算出的每组照射参数对应的剂量分布选择至少一组优选的照射参数;
    显示部显示所述择优部选取的至少一组照射参数及其对应的剂量分布。
  9. 根据权利要求8所述的照射参数选取装置的使用方法,其特征在于:所述照射参数选取装置还包括剔除部,所述使用方法还包括所述剔除部在所述择优部选取优选的照射参数之前剔除输入所述输入部的所述照射参数中不可实施的照射参数的步骤,所述择优部选取一组 最佳的照射参数。
  10. 根据权利要求9所述的照射参数选取装置的使用方法,其特征在于:所述剔除部在所述计算部对每一组照射参数进行剂量分布计算之前将不可实施的照射参数剔除。
PCT/CN2021/088852 2020-06-11 2021-04-22 照射参数选取装置及其使用方法 WO2021249038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010528584.5A CN113797448B (zh) 2020-06-11 2020-06-11 照射参数选取装置及其使用方法
CN202010528584.5 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021249038A1 true WO2021249038A1 (zh) 2021-12-16

Family

ID=78845202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088852 WO2021249038A1 (zh) 2020-06-11 2021-04-22 照射参数选取装置及其使用方法

Country Status (2)

Country Link
CN (1) CN113797448B (zh)
WO (1) WO2021249038A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028192A (zh) * 2006-12-29 2007-09-05 成都川大奇林科技有限责任公司 一种光子束放射治疗适形照射的方法
CN101091818A (zh) * 2007-05-17 2007-12-26 大连现代高技术发展有限公司 肿瘤外照射治疗中可视化实时射野权重调整技术
CN103083820A (zh) * 2013-01-13 2013-05-08 中国科学院合肥物质科学研究院 一种剂量引导精确放射治疗系统
CN103239252A (zh) * 2012-02-09 2013-08-14 株式会社东芝 X射线诊断装置以及x射线诊断方法
US20150360056A1 (en) * 2014-06-16 2015-12-17 The Board Of Trustees Of The Leland Stanford Junior University Visualizing Radiation Therapy Beam in Real-Time in the context of Patient's Anatomy
CN108883303A (zh) * 2016-03-30 2018-11-23 株式会社日立制作所 粒子束剂量评价系统、计划装置、粒子束照射系统以及剂量评价方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864337A3 (en) * 1997-03-15 1999-03-10 Shenzhen OUR International Technology & Science Co., Ltd. Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device
US9314646B2 (en) * 2011-08-17 2016-04-19 Mitsubishi Electric Corporation Skin dose evaluation support apparatus and treatment planning apparatus
CN105930637A (zh) * 2016-04-02 2016-09-07 中北大学 一种自动确定目标函数权重的放射治疗方案优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028192A (zh) * 2006-12-29 2007-09-05 成都川大奇林科技有限责任公司 一种光子束放射治疗适形照射的方法
CN101091818A (zh) * 2007-05-17 2007-12-26 大连现代高技术发展有限公司 肿瘤外照射治疗中可视化实时射野权重调整技术
CN103239252A (zh) * 2012-02-09 2013-08-14 株式会社东芝 X射线诊断装置以及x射线诊断方法
CN103083820A (zh) * 2013-01-13 2013-05-08 中国科学院合肥物质科学研究院 一种剂量引导精确放射治疗系统
US20150360056A1 (en) * 2014-06-16 2015-12-17 The Board Of Trustees Of The Leland Stanford Junior University Visualizing Radiation Therapy Beam in Real-Time in the context of Patient's Anatomy
CN108883303A (zh) * 2016-03-30 2018-11-23 株式会社日立制作所 粒子束剂量评价系统、计划装置、粒子束照射系统以及剂量评价方法

Also Published As

Publication number Publication date
CN113797448B (zh) 2024-08-13
CN113797448A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
TWI610086B (zh) 射束的照射角度評價方法
WO2022037468A1 (zh) 放射线照射系统及其控制方法
TWI647657B (zh) Method for establishing smooth geometric model based on medical image data
AU2024200068A1 (en) Irradiation parameter selection apparatus and usage method thereof and control system comprising said apparatus and usage method thereof
JP2023531798A (ja) 放射線療法システム及びその治療計画生成方法
Johns et al. A precision cobalt 60 unit for fixed field and rotation therapy
WO2021249038A1 (zh) 照射参数选取装置及其使用方法
CN112546454A (zh) 中子捕获治疗设备及照射参数选取装置的使用方法
CN112546456B (zh) 用于中子捕获治疗的控制系统及其使用方法
CN112546455B (zh) 照射参数选取装置及其使用方法
WO2021249241A1 (zh) 放射治疗系统及其治疗计划生成方法
TWI853170B (zh) 放射治療系統及其治療計畫生成方法
Schreuder Technological developments allowing for the widespread clinical adoption of proton radiotherapy
RU2790515C1 (ru) Устройство для выбора параметров облучения, способ его применения, и система управления, содержащая указанное устройство, и способ ее применения
WO2024099385A1 (zh) 治疗计划系统、重叠自动检查方法及治疗计划的制定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822649

Country of ref document: EP

Kind code of ref document: A1