WO2024078298A1 - 成像镜组、内窥镜物镜及内窥镜 - Google Patents

成像镜组、内窥镜物镜及内窥镜 Download PDF

Info

Publication number
WO2024078298A1
WO2024078298A1 PCT/CN2023/120626 CN2023120626W WO2024078298A1 WO 2024078298 A1 WO2024078298 A1 WO 2024078298A1 CN 2023120626 W CN2023120626 W CN 2023120626W WO 2024078298 A1 WO2024078298 A1 WO 2024078298A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging lens
lens assembly
lens
imaging
optical axis
Prior art date
Application number
PCT/CN2023/120626
Other languages
English (en)
French (fr)
Inventor
马健
周新
赵源
Original Assignee
微创优通医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211234837.3A external-priority patent/CN115586624A/zh
Priority claimed from CN202222659479.2U external-priority patent/CN218383453U/zh
Application filed by 微创优通医疗科技(上海)有限公司 filed Critical 微创优通医疗科技(上海)有限公司
Publication of WO2024078298A1 publication Critical patent/WO2024078298A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present application relates to the technical field of endoscopes, and in particular to an imaging lens assembly, an endoscope objective lens and an endoscope.
  • Endoscopes can be inserted into the patient's body to perform more accurate diagnosis or treatment, so their application in the medical field is becoming more and more widespread. Since the tissues in the patient's body are relatively fragile, endoscopes can easily cause damage to the patient during diagnosis or treatment, especially for endoscopes used to observe the digestive organs, bronchi, nasal cavity, throat, urinary organs and uterus, which have more stringent requirements on size. However, current endoscopes are too large and can easily cause damage to patients.
  • An imaging lens assembly wherein the number of lenses having optical power in the imaging lens assembly is four, and the imaging lens assembly comprises, in order from the object side to the image side along the optical axis:
  • a second lens having positive refractive power wherein the image side surface of the second lens is convex at the near optical axis;
  • a third lens having positive refractive power wherein both the object-side surface and the image-side surface of the third lens are convex at the near optical axis;
  • a fourth lens having negative optical power wherein the object side surface of the fourth lens is concave at the near optical axis, and the image side surface of the fourth lens is convex at the near optical axis;
  • the imaging lens assembly satisfies the following conditional formula: 150deg/mm ⁇ FOV/SD11 ⁇ 189deg/mm;
  • FOV is the maximum field of view angle of the imaging lens assembly
  • SD11 is the maximum effective semi-aperture of the object side of the first lens.
  • the imaging lens assembly satisfies the following condition: 0.7 ⁇ SD11/f ⁇ 1.1;
  • f is the effective focal length of the imaging lens assembly.
  • the imaging lens assembly satisfies the following condition: 1.6 ⁇ f*tan(HFOV)/ImgH ⁇ 2.2;
  • f is the effective focal length of the imaging lens assembly
  • HFOV is half of the maximum field of view of the imaging lens assembly
  • ImgH is half of the image height corresponding to the maximum field of view of the imaging lens assembly.
  • the imaging lens assembly satisfies the following condition: 2.9 ⁇ TTL/ImgH ⁇ 3.8;
  • TTL is the distance from the object side surface of the first lens to the imaging surface of the imaging lens assembly on the optical axis
  • ImgH is half of the image height corresponding to the maximum field angle of the imaging lens assembly.
  • the imaging lens assembly satisfies the following condition: 1.4mm-1 ⁇ FNO/TTL ⁇ 2mm-1;
  • FNO is the aperture number of the imaging lens assembly
  • TTL is the distance from the object side of the first lens to the imaging surface of the imaging lens assembly on the optical axis.
  • the maximum effective semi-aperture of the object side surface of the first lens is larger than the maximum effective semi-aperture of the image side surface of the fourth lens, and the maximum effective semi-apertures of the object side surface of the second lens and the object side surface of the third lens are both smaller than the maximum effective semi-aperture of the image side surface of the fourth lens.
  • the imaging lens assembly satisfies the following condition:
  • SD42 is the maximum effective semi-aperture of the image side of the fourth lens
  • SD21 is the maximum effective semi-aperture of the object side of the second lens.
  • the imaging lens assembly satisfies the following condition: 3.4 ⁇ TTL/f ⁇ 4;
  • TTL is the distance from the object side of the first lens to the imaging surface of the imaging lens assembly on the optical axis
  • f is the effective focal length of the imaging lens assembly.
  • the imaging lens assembly satisfies the following condition: 0.9 ⁇ Bf/f ⁇ 1.4;
  • Bf is the distance from the image side surface of the fourth lens to the imaging surface of the imaging lens assembly on the optical axis, and f is the effective focal length of the imaging lens assembly.
  • the first lens is made of glass, and the second lens, the third lens, and the fourth lens are all made of plastic.
  • the first lens, the second lens, the third lens and the fourth lens are all made of plastic.
  • An endoscope objective lens comprises a photosensitive element and an imaging lens assembly as described in any of the above embodiments, wherein the photosensitive element is arranged on the image side of the imaging lens assembly.
  • An endoscope comprises the endoscope objective lens as described above.
  • FIG. 1 is a schematic structural diagram of an imaging lens assembly in a first embodiment.
  • FIG. 2 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the first embodiment.
  • FIG. 3 is a schematic structural diagram of an imaging lens assembly in the second embodiment.
  • FIG. 4 is an astigmatism curve diagram, a distortion curve diagram and a magnification chromatic aberration curve diagram of the imaging lens assembly in the second embodiment.
  • FIG. 5 is a schematic structural diagram of an imaging lens assembly in the third embodiment.
  • FIG. 6 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the third embodiment.
  • FIG. 7 is a schematic structural diagram of an imaging lens assembly in a fourth embodiment.
  • FIG. 8 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the fourth embodiment.
  • FIG. 9 is a schematic structural diagram of an imaging lens assembly in the fifth embodiment.
  • FIG. 10 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the fifth embodiment.
  • FIG. 11 is a schematic structural diagram of an imaging lens assembly in the sixth embodiment.
  • FIG. 12 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the sixth embodiment.
  • FIG. 13 is a schematic structural diagram of an imaging lens assembly in the seventh embodiment.
  • FIG. 14 is an astigmatism curve diagram, a distortion curve diagram, and a magnification chromatic aberration curve diagram of the imaging lens assembly in the seventh embodiment.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the imaging lens assembly 100 includes a first lens L1, a second lens L2, a third lens L3, and a fourth lens L4 in order from the object side to the image side along the optical axis.
  • the first lens L1 includes an object-side surface S1 and an image-side surface S2
  • the second lens L2 includes an object-side surface S3 and an image-side surface S4
  • the third lens L3 includes an object-side surface S5 and an image-side surface S6
  • the fourth lens L4 includes an object-side surface S7 and an image-side surface S8.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are coaxially arranged, and the common axis of each lens in the imaging lens assembly 100 is the optical axis of the imaging lens assembly 100.
  • the imaging lens assembly 100 may further include an imaging surface S9 located on the image side of the fourth lens L4, and light can be incident on the imaging surface S9 after being adjusted by the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4.
  • the first lens L1 has negative power
  • the image side surface S2 of the first lens L1 is concave at the near optical axis.
  • the second lens L2 has positive power
  • the image side surface S4 of the second lens L2 is convex at the near optical axis.
  • the third lens L3 has positive power
  • the object side surface S5 and the image side surface S6 of the third lens L3 are both convex at the near optical axis.
  • the fourth lens L4 has negative power, and the object side surface S7 of the fourth lens L4 is concave at the near optical axis, and the image side surface S8 is convex at the near optical axis.
  • the negative focal length of the first lens L1 combined with the concave surface of the image side surface S2 of the first lens L1 at the near optical axis, is conducive to the first lens L1 collecting large-angle light, thereby helping the imaging lens group 100 to achieve wide-angle characteristics, thereby meeting the needs of wide-range imaging.
  • the positive focal length of the second lens L2, combined with the convex surface of the image side surface S4 of the second lens L2 at the near optical axis, is conducive to the second lens L2 correcting the aberration generated when the first lens L1 introduces large-angle light, thereby helping to improve the imaging quality of the imaging lens group 100.
  • the first lens L1, the second lens L2, and the third lens The reasonable configuration of the focal length and surface shape of L3 is also conducive to the smooth transition of light between the first lens L1, the second lens L2 and the third lens L3, thereby helping to reduce the aberration sensitivity of the imaging lens group 100, thereby improving the imaging quality of the imaging lens group 100 while achieving wide-angle characteristics and miniaturized design.
  • the negative focal length of the fourth lens L4 combined with the concave-convex surface shape of the fourth lens L4 at the near optical axis, is conducive to the fourth lens L4 reasonably deflecting the light and diverging it to the imaging surface S9, thereby making it easier for the incident angle of the light on the imaging surface S9 to match the photosensitive element, and is conducive to increasing the size of the imaging surface S9 of the imaging lens group 100, thereby helping to improve the imaging quality of the imaging lens group 100, and at the same time, it is also conducive to shortening the back focal length of the imaging lens group 100, thereby helping to achieve miniaturized design of the imaging lens group 100.
  • the description of the surface shape of a lens at the near optical axis can be understood as the surface shape of the portion of the lens corresponding to the area through which the paraxial light passes.
  • the imaging lens assembly 100 satisfies the conditional formula: 150deg/mm ⁇ FOV/SD11 ⁇ 189deg/mm; wherein FOV is the maximum field of view of the imaging lens assembly 100, and SD11 is the maximum effective semi-aperture of the object side surface S1 of the first lens L1. Satisfying the above conditional formula is conducive to reducing the effective aperture of the imaging lens assembly 100, thereby realizing a miniaturized design, and is also conducive to the imaging lens assembly 100 realizing wide-angle characteristics to meet the needs of wide-range imaging, and is also conducive to the imaging lens assembly 100 having good imaging quality.
  • the imaging lens assembly 100 can achieve a compact design, wide-angle characteristics, and high imaging quality.
  • the imaging lens assembly 100 satisfies the conditional expression: 0.7 ⁇ SD11/f ⁇ 1.1; wherein f is the effective focal length of the imaging lens assembly 100. Satisfying the above conditional expression is conducive to reducing the effective aperture and total length of the imaging lens assembly 100 to achieve a miniaturized design, and is also conducive to improving the imaging quality of the imaging lens assembly 100. If the above conditional expression is exceeded, the effective aperture of the first lens L1 is too large, which is not conducive to the realization of a miniaturized design.
  • the effective focal length of the imaging lens assembly 100 is too short, resulting in limited light deflection space in the axial direction of the imaging lens assembly 100, which is not conducive to good light adjustment, and thus is not conducive to improving the imaging quality. If the above conditional expression is lower than the lower limit, the effective focal length of the imaging lens assembly 100 is too long, resulting in a total length of the imaging lens assembly 100 being too long, which is also not conducive to the realization of a miniaturized design.
  • the imaging lens assembly 100 satisfies the conditional formula: 1.6 ⁇ f*tan(HFOV)/ImgH ⁇ 2.2; wherein f is the effective focal length of the imaging lens assembly 100, HFOV is half of the maximum field of view of the imaging lens assembly 100, and ImgH is half of the image height corresponding to the maximum field of view of the imaging lens assembly 100.
  • the imaging lens assembly 100 can achieve wide-angle characteristics while also having good imaging quality.
  • the upper limit of the above conditional formula is exceeded, the field of view of the imaging lens assembly 100 is too large, which may easily lead to aberrations such as distortion in the edge field of view that are difficult to correct, and is not conducive to improving the imaging quality.
  • the upper limit of the above conditional formula is lower than the lower limit of the above conditional formula, it is not conducive to the imaging lens assembly 100 to achieve wide-angle characteristics.
  • the imaging lens assembly 100 satisfies the conditional formula: 2.9 ⁇ TTL/ImgH ⁇ 3.8; wherein TTL is the distance on the optical axis from the object side surface S1 of the first lens L1 to the imaging surface S9 of the imaging lens assembly 100, that is, the total optical length of the imaging lens assembly 100, and ImgH is half of the image height corresponding to the maximum field angle of the imaging lens assembly 100. Satisfying the above conditional formula is conducive to reducing the effective aperture and the total optical length of the imaging lens assembly 100, thereby facilitating the realization of a miniaturized design.
  • the total length of the imaging lens assembly 100 is too long, which is not conducive to realizing a miniaturized design of the imaging lens assembly 100. If the above conditional formula is lower than the lower limit, the size of the imaging surface S9 of the imaging lens assembly 100 is too large, which is not conducive to reducing the effective aperture of the imaging lens assembly 100, and is also not conducive to realizing a miniaturized design of the imaging lens assembly 100.
  • the imaging lens assembly 100 satisfies the conditional formula: 1.4mm -1 ⁇ FNO/TTL ⁇ 2mm -1 ; wherein FNO is the aperture number of the imaging lens assembly 100, and TTL is the distance on the optical axis from the object side surface S1 of the first lens L1 to the imaging surface S9 of the imaging lens assembly 100. Satisfying the above conditional formula is conducive to reducing the effective aperture and total length of the imaging lens assembly 100, thereby facilitating the miniaturization design of the imaging lens assembly 100, and is also conducive to ensuring that the aperture of the imaging lens assembly 100 is not too small, thereby facilitating the imaging lens assembly 100 to obtain sufficient light input and have good imaging quality.
  • the aperture number of the imaging lens assembly 100 exceeds the upper limit of the above conditional formula, the aperture number of the imaging lens assembly 100 is too large, resulting in an aperture that is too small, which is not conducive to improving the light input of the imaging lens assembly 100, and is likely to cause the relative illumination of the imaging to be too low, thereby not conducive to improving the imaging quality. If the aperture number of the imaging lens assembly 100 is below the lower limit of the above conditional formula, the effective aperture of the imaging lens assembly 100 is too large, and the total length is also too large, which is not conducive to the realization of miniaturization design.
  • the maximum effective semi-aperture of the object-side surface S1 of the first lens L1 is greater than the maximum effective semi-aperture of the image-side surface S8 of the fourth lens L4, and the maximum effective semi-apertures of the object-side surface S3 of the second lens L2 and the object-side surface S5 of the third lens L3 are both smaller than the maximum effective semi-aperture of the image-side surface S8 of the fourth lens L4.
  • the maximum effective aperture of the object-side surface S1 of the first lens L1 is large enough, which is beneficial for the first lens L1 to effectively collect light of a large angle, thereby facilitating the realization of wide-angle characteristics, and is beneficial for the light collected by the first lens L1 to fill the aperture of the imaging lens assembly 100 at the second lens L2 and the third lens L3, thereby facilitating the improvement of the relative illumination of the imaging to improve the imaging quality of the imaging lens assembly 100, and is also beneficial for the fourth lens L4 to effectively transmit the light to the imaging surface S9, which is beneficial for expanding the size of the imaging surface S9, and making the incident angle of the light on the imaging surface S9 better match the photosensitive element, thereby improving the imaging quality of the imaging lens assembly 100.
  • the imaging lens assembly 100 satisfies the conditional formula: 1.4 ⁇ SD11/SD42 ⁇ 1.8; wherein SD42 is the maximum effective semi-aperture of the image side surface S8 of the fourth lens L4. Satisfying the above conditional formula is beneficial for the first lens L1 to effectively collect large-angle light, and is also beneficial for the fourth lens L4 to effectively transmit light to the imaging surface S9, thereby facilitating the realization of wide-angle characteristics and large image surface characteristics.
  • the imaging lens assembly 100 satisfies the conditional formula: 2.3 ⁇ SD11/SD21 ⁇ 3.4; wherein SD21 is the maximum effective semi-aperture of the object-side surface S3 of the second lens L2.
  • conditional formula 2.3 ⁇ SD11/SD21 ⁇ 3.4; wherein SD21 is the maximum effective semi-aperture of the object-side surface S3 of the second lens L2.
  • the imaging lens assembly 100 satisfies the conditional formula: 3.4 ⁇ TTL/f ⁇ 4; wherein TTL is the distance on the optical axis from the object side surface S1 of the first lens L1 to the imaging surface S9 of the imaging lens assembly 100, that is, the total optical length of the imaging lens assembly 100, and f is the effective focal length of the imaging lens assembly 100. Satisfying the above conditional formula is conducive to shortening the total length of the imaging lens assembly 100 and realizing a miniaturized design, and at the same time, it can also allow the imaging lens assembly 100 to have enough space to reasonably deflect light, which is conducive to improving the imaging quality.
  • the imaging lens assembly 100 satisfies the conditional formula: 0.9 ⁇ Bf/f ⁇ 1.4; wherein Bf is the distance on the optical axis from the image side surface S8 of the fourth lens L4 to the imaging surface S9 of the imaging lens assembly 100, that is, the back focal length of the imaging lens assembly 100, and f is the effective focal length of the imaging lens assembly 100.
  • the imaging lens assembly 100 can also have a sufficiently large back focal space, which is beneficial to the focusing of the imaging lens assembly 100 and also beneficial to better assembly of the imaging lens assembly 100 with the photosensitive element.
  • the imaging lens assembly 100 satisfies the conditional formula: 120° ⁇ FOV ⁇ 140°.
  • the imaging lens assembly 100 has a wide-angle characteristic, and when applied to an endoscope, it is conducive to meeting the need for wide-range imaging, thereby reducing the risk of missed detection.
  • the field of view of the imaging lens assembly 100 will not be too large, which can avoid excessively severe distortion and other aberrations in the edge field of view, thereby facilitating the improvement of imaging quality.
  • the imaging lens assembly 100 satisfies the conditional formula: 0.8mm ⁇ ImgH ⁇ 1mm; wherein ImgH is half of the image height corresponding to the maximum field angle of the imaging lens assembly 100.
  • the imaging lens assembly 100 can have a large image plane characteristic, so that it can match a photosensitive element with a higher pixel to obtain good imaging quality, and it is also beneficial to reduce the aberration of the edge field of view, improve the relative illumination of the edge field of view, and also help improve the imaging quality of the imaging lens assembly 100.
  • the imaging lens assembly 100 can match a photosensitive element having a rectangular photosensitive surface, and the imaging surface S9 of the imaging lens assembly 100 coincides with the photosensitive surface of the photosensitive element.
  • the effective pixel area on the imaging surface S9 has a horizontal direction and a diagonal direction
  • the FOV can be understood as the maximum field of view angle of the imaging lens assembly 100 in the diagonal direction
  • ImgH can be understood as half of the size of the effective pixel area of the imaging lens assembly 100 in the diagonal direction.
  • the imaging surface S9 can be understood as a virtual surface formed by the convergence point of the system light on the image side of the fourth lens L4, and when the imaging lens group 100 is matched with the photosensitive element, the imaging surface S9 coincides with the photosensitive surface of the photosensitive element, so that the light adjusted by the system can form a clear image on the photosensitive surface.
  • the imaging lens assembly 100 is provided with an aperture ST, and the aperture ST can be disposed between the second lens L2 and the third lens L3.
  • the central arrangement of the aperture ST enables the imaging lens assembly 100 to have sufficient light input while achieving miniaturization, thereby facilitating the improvement of the imaging quality of the imaging lens assembly 100.
  • the imaging lens assembly 100 may further include an infrared cutoff filter 110.
  • the infrared cutoff filter 110 may be disposed between the first lens L1 and the second lens L2.
  • the infrared cutoff filter 110 is used to filter out infrared light and prevent infrared light from being emitted. The light reaches the imaging surface S9 and affects the imaging quality of the imaging lens assembly 100.
  • the infrared cut-off filter 110 can also be arranged between any other two lenses, or between the fourth lens L4 and the imaging surface S9, as long as there is enough space for the infrared cut-off filter 110 to be installed.
  • the imaging lens assembly 100 further includes a protective glass 120.
  • the protective glass 120 may be disposed between the fourth lens L4 and the imaging surface S9.
  • the protective glass 120 is used to protect a photosensitive element disposed at the imaging surface S9.
  • the object side and image side of each lens of the imaging lens assembly 100 are both aspherical surfaces, and the surface shapes of the object side and image side of each lens near the optical axis and at the circumference may be different.
  • the use of aspherical structures can increase the flexibility of lens design, effectively correct spherical aberration, and improve imaging quality.
  • the material of each lens in the imaging lens assembly 100 can be plastic. Using plastic lenses can reduce the weight of the imaging lens assembly 100 and reduce production costs, and with the small size of the imaging lens assembly 100, a lightweight design of the imaging lens assembly 100 can be achieved.
  • the first lens L1 may be made of glass
  • the second lens L2, the third lens L3, and the fourth lens L4 may be made of plastic.
  • the use of glass material can make the first lens L1 have good wear resistance and biocompatibility, so that when the imaging lens group 100 is used in an endoscope, the front-end lens is not easily damaged by collision, which can save the setting of the front-end protective glass and is not likely to have a negative impact on the user's health.
  • the three lenses behind are made of plastic material, which is conducive to the miniaturization design of the imaging lens group 100 and reduces the weight and cost of the imaging lens group 100.
  • the above material combinations are only examples of the imaging lens group 100 in some embodiments, and the materials of each lens of the imaging lens group 100 can also be glass, or can be any combination of glass and plastic materials.
  • the reference wavelength of the above effective focal lengths is 587.6nm.
  • FIG1 is a schematic diagram of the structure of the imaging lens assembly 100 in the first embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object-side surfaces and image-side surfaces of the first lens L1 , the second lens L2 , the third lens L3 , and the fourth lens L4 are all aspherical surfaces, and the same is true for other embodiments.
  • the object side surface of the first lens L1 is a flat surface at the near optical axis, and the image side surface is a concave surface at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • Table 1 below shows the curvature radius, thickness, refractive index, Abbe number, effective focal length of each lens of the imaging lens group 100 in the first embodiment, as well as the effective focal length f, maximum field angle FOV and aperture number FNO of the imaging lens group 100.
  • the components from the first lens L1 to the imaging surface S9 are arranged in the order of the components from top to bottom in Table 1.
  • the first row of the first lens L1 represents the object side surface S1 of the first lens L1
  • the second row represents the image side surface S2 of the first lens L1, and so on.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the first lens L1 on the optical axis 110
  • the second value is the distance from the image side surface S2 of the first lens L1 to the next surface in the image direction (the object side surface of the second lens L2) on the optical axis 110.
  • the meanings of other values in the thickness parameter column can be deduced from this.
  • the reference wavelength of the refractive index, Abbe number and effective focal length of each lens is 587.6nm.
  • the imaging lens assembly 100 may not be provided with the infrared cutoff filter 110 and the protective glass 120, but the distance between the first lens L1 and the second lens L2, and the distance between the fourth lens L4 and the imaging surface S9 remain unchanged.
  • the aspheric coefficients of the object side or image side of each lens of the imaging lens assembly 100 are given in Table 2.
  • the surface numbers S1-S8 represent the object side or image side S1-S8 respectively.
  • K-A8 from top to bottom represent the types of aspheric coefficients respectively, where K represents the cone coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 represents the eighth-order aspheric coefficient.
  • the formula of the aspheric coefficient is as follows:
  • Z is the distance from the corresponding point on the aspherical surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspherical surface to the optical axis 110
  • c is the curvature of the aspherical vertex
  • K is the cone coefficient
  • Ai is the coefficient corresponding to the i-th high-order term in the aspherical surface shape formula.
  • FIG. 2 shows, from left to right, the astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens assembly 100 in the first embodiment.
  • the astigmatism curve in FIG. 2 shows that the sagittal field curvature and the meridional field curvature of the imaging lens assembly 100 are both small, the field curvature and astigmatism of each field of view are well corrected, the center and edge of the field of view have clear images, and the imaging lens assembly 100 has a large depth of field effect.
  • the distortion curve in FIG. 2 that the distortion of the entire field of view of the imaging lens assembly 100 is small, the image deformation caused by the main beam is small, and the imaging quality of the system is excellent.
  • the magnification chromatic aberration curve in FIG. 2 shows that the maximum difference between different wavelengths is less than 2um, and the magnification chromatic aberration of the imaging lens assembly 100 is well corrected, and has good imaging quality.
  • FIG. 3 is a schematic diagram of the structure of an imaging lens assembly 100 in the second embodiment.
  • the imaging lens assembly 100 comprises an object lens assembly 102 and an object lens assembly 104.
  • the optical system includes, from side to image side, a first lens L1 with negative power, an infrared cut filter 110 , a second lens L2 with positive power, an aperture ST, a third lens L3 with positive power, a fourth lens L4 with negative power, and a protective glass 120 .
  • the object side surface of the first lens L1 is concave at the near optical axis, and the image side surface is concave at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 4, and the definitions of each parameter therein can be obtained from the first embodiment.
  • Figure 4 shows, from left to right, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens assembly 100 in the second embodiment. It can be seen from Figure 4 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • FIG. 5 is a schematic diagram of the structure of the imaging lens assembly 100 in the third embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object side surface of the first lens L1 is a flat surface at the near optical axis, and the image side surface is a concave surface at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 6, and the definitions of each parameter therein can be obtained from the first embodiment.
  • Figure 6 shows, from left to right, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens assembly 100 in the third embodiment. It can be seen from Figure 6 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • FIG. 7 is a schematic diagram of the structure of an imaging lens assembly 100 in the fourth embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object side surface of the first lens L1 is concave at the near optical axis, and the image side surface is concave at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 8, and the definitions of each parameter therein can be obtained from the first embodiment.
  • Figure 8 shows, from left to right, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens assembly 100 in the fourth embodiment. It can be seen from Figure 8 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • FIG. 9 is a schematic diagram of the structure of the imaging lens assembly 100 in the fifth embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object side surface of the first lens L1 is a flat surface at the near optical axis, and the image side surface is a concave surface at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 10, and the definitions of the parameters therein can be obtained from the first embodiment.
  • Figure 10 shows, from left to right, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens assembly 100 in the fifth embodiment. It can be seen from Figure 10 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • FIG. 11 is a schematic diagram of the structure of the imaging lens assembly 100 in the sixth embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object side surface of the first lens L1 is concave at the near optical axis, and the image side surface is concave at the near optical axis;
  • the object side surface of the second lens L2 is convex at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 12, and the definitions of the parameters therein can be obtained from the first embodiment.
  • Figure 12 shows, from left to right, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens assembly 100 in the sixth embodiment. It can be seen from Figure 12 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • FIG. 13 is a schematic diagram of the structure of the imaging lens assembly 100 in the seventh embodiment.
  • the imaging lens assembly 100 includes, from the object side to the image side, a first lens L1 with negative optical power, an infrared cut-off filter 110, a second lens L2 with positive optical power, an aperture ST, a third lens L3 with positive optical power, a fourth lens L4 with negative optical power, and a protective glass 120.
  • the object side surface of the first lens L1 is concave at the near optical axis, and the image side surface is concave at the near optical axis;
  • the object side surface of the second lens L2 is concave at the near optical axis, and the image side surface is convex at the near optical axis;
  • the object-side surface of the third lens L3 is convex at the near optical axis, and the image-side surface is convex at the near optical axis;
  • the object-side surface of the fourth lens L4 is concave at the near optical axis, and the image-side surface is convex at the near optical axis.
  • the aspheric coefficients of the image-side surface or the object-side surface of each lens of the imaging lens assembly 100 are given in Table 14, and the definitions of each parameter therein can be obtained from the first embodiment.
  • Figure 14 shows, from left to right, the astigmatism curve, distortion curve and magnification chromatic aberration curve of the imaging lens assembly 100 in the seventh embodiment. It can be seen from Figure 14 that the field curvature astigmatism, distortion and magnification chromatic aberration of the imaging lens assembly 100 are all well corrected, and the imaging lens assembly 100 has good imaging quality.
  • the imaging lens assembly 100 in the first embodiment to the seventh embodiment satisfies the data in the following Table 15.
  • the effects that can be obtained by satisfying the following data can refer to the above description.
  • the present application also provides an endoscope objective lens (not shown), comprising a photosensitive element and an imaging lens group 100 as described in any of the above embodiments.
  • the photosensitive surface of the photosensitive element coincides with the imaging surface S9 of the imaging lens group 100.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal oxide semiconductor device (CMOS Sensor).
  • CCD charge coupled device
  • CMOS Sensor complementary metal oxide semiconductor device
  • the present application also provides an endoscope (not shown), including a housing and an endoscope objective lens described in any of the above embodiments, the endoscope objective lens is arranged in the housing, and the housing can be a fixed structure of the endoscope objective lens.
  • the endoscope can be applied to the medical field, for example, to perform medical diagnosis on patients, specifically, the endoscope includes but is not limited to an endoscope for observing digestive organs, bronchi, nasal cavity, pharynx, urinary organs and uterus.
  • the above-mentioned endoscope objective lens is used in the endoscope, and the endoscope objective lens can take into account the realization of miniaturized design, wide-angle characteristics and high imaging quality, so that when the endoscope is applied to the medical field, it can minimize the damage to the patient, and can also obtain images of the lesion area in a large range to avoid the risk of missed detection, and can also form a high-definition lesion image to improve the accuracy of diagnosis.

Abstract

本申请涉及一种成像镜组(100),包括:具有负光焦度的第一透镜(L1),像侧面(S2)于近光轴处为凹面;具有正光焦度的第二透镜(L2),像侧面(S4)于近光轴处为凸面;具有正光焦度的第三透镜(L3),物侧面(S5)和像侧面(S6)于近光轴处均为凸面;具有负光焦度的第四透镜(L4),物侧面(S7)于近光轴处为凹面,像侧面(S8)于近光轴处为凸面;成像镜组(100)满足:150deg/mm≤FOV/SD11≤189deg/mm。

Description

成像镜组、内窥镜物镜及内窥镜
相关申请
本申请要求2022年10月10日申请的,申请号为2022112348373,名称为“成像镜组、内窥镜物镜及内窥镜”的中国专利申请的优先权,以及2022年10月10日申请的,申请号为2022226594792,名称为“成像镜组、内窥镜物镜及内窥镜”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及内窥镜技术领域,特别是涉及一种成像镜组、内窥镜物镜及内窥镜。
背景技术
内窥镜能够伸入病患体内,进行更加精准地诊断或治疗,因而内窥镜在医疗领域的应用也越来越广泛。由于病患体内组织较为脆弱,内窥镜在诊断或治疗时容易对病患造成损伤,尤其是用于观察消化器官、支气管、鼻腔、咽喉、泌尿器官及子宫等的内窥镜对体积的要求更加严格。然而,目前的内窥镜尺寸过大,容易对病患造成损伤。
发明内容
一种成像镜组,所述成像镜组中具有光焦度的透镜的数量为四片,且所述成像镜组沿光轴由物侧至像侧依次包括:
具有负光焦度的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
具有正光焦度的第二透镜,所述第二透镜的像侧面于近光轴处为凸面;
具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面于近光轴处均为凸面;以及,
具有负光焦度的第四透镜,所述第四透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面;
所述成像镜组满足以下条件式:
150deg/mm≤FOV/SD11≤189deg/mm;
其中,FOV为所述成像镜组的最大视场角,SD11为所述第一透镜的物侧面的最大有效半口径。
在其中一个实施例中,所述成像镜组满足以下条件式:
0.7≤SD11/f≤1.1;
其中,f为所述成像镜组的有效焦距。
在其中一个实施例中,所述成像镜组满足以下条件式:
1.6≤f*tan(HFOV)/ImgH≤2.2;
其中,f为所述成像镜组的有效焦距,HFOV为所述成像镜组的最大视场角的一半,ImgH为所述成像镜组的最大视场角所对应的像高的一半。
在其中一个实施例中,所述成像镜组满足以下条件式:
2.9≤TTL/ImgH≤3.8;
其中,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离,ImgH为所述成像镜组的最大视场角所对应的像高的一半。
在其中一个实施例中,所述成像镜组满足以下条件式:
1.4mm-1≤FNO/TTL≤2mm-1;
其中,FNO为所述成像镜组的光圈数,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离。
在其中一个实施例中,所述第一透镜的物侧面的最大有效半口径大于所述第四透镜的像侧面的最大有效半口径,所述第二透镜的物侧面和所述第三透镜的物侧面的最大有效半口径均小于所述第四透镜的像侧面的最大有效半口径。
在其中一个实施例中,所述成像镜组满足以下条件式:
1.4≤SD11/SD42≤1.8;和/或,
2.3≤SD11/SD21≤3.4;
其中,SD42为所述第四透镜的像侧面的最大有效半口径;SD21为所述第二透镜的物侧面的最大有效半口径。
在其中一个实施例中,所述成像镜组满足以下条件式:
3.4≤TTL/f≤4;
其中,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离,f为所述成像镜组的有效焦距。
在其中一个实施例中,所述成像镜组满足以下条件式:
0.9≤Bf/f≤1.4;
其中,Bf为所述第四透镜的像侧面至所述成像镜组的成像面于光轴上的距离,f为所述成像镜组的有效焦距。
在其中一个实施例中,所述第一透镜的材质为玻璃,所述第二透镜、所述第三透镜以及所述第四透镜的材质均为塑料。
在其中一个实施例中,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的材质均为塑料。
一种内窥镜物镜,包括感光元件以及如上述任一实施例所述的成像镜组,所述感光元件设置于所述成像镜组的像侧。
一种内窥镜,包括如上所述的内窥镜物镜。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为第一实施例中成像镜组的结构示意图。
图2为第一实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图3为第二实施例中成像镜组的结构示意图。
图4为第二实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图5为第三实施例中成像镜组的结构示意图。
图6为第三实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图7为第四实施例中成像镜组的结构示意图。
图8为第四实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图9为第五实施例中成像镜组的结构示意图。
图10为第五实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图11为第六实施例中成像镜组的结构示意图。
图12为第六实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
图13为第七实施例中成像镜组的结构示意图。
图14为第七实施例中成像镜组的像散曲线图、畸变曲线图和倍率色差曲线图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,成像镜组100沿光轴由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8。第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4同轴设置,成像镜组100中各透镜共同的轴线即为成像镜组100的光轴。在一些实施例中,成像镜组100还可包括位于第四透镜L4像侧的成像面S9,光线经第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4的调节后能够入射到成像面S9。
具体地,在一些实例中,第一透镜L1具有负光焦度,第一透镜L1的像侧面S2于近光轴处为凹面。第二透镜L2具有正光焦度,第二透镜L2的像侧面S4于近光轴处为凸面。第三透镜L3具有正光焦度,第三透镜L3的物侧面S5和像侧面S6于近光轴处均为凸面。第四透镜L4具有负光焦度,第四透镜L4的物侧面S7于近光轴处为凹面,像侧面S8于近光轴处为凸面。
其中,第一透镜L1的负光焦度,配合第一透镜L1的像侧面S2于近光轴处的凹面型,有利于第一透镜L1收集大角度光线,从而有利于成像镜组100实现广角特性,从而能够满足大范围取像的需求。第二透镜L2的正光焦度,配合第二透镜L2的像侧面S4于近光轴处的凸面面型,有利于第二透镜L2校正第一透镜L1引入大角度光线时产生的像差,从而有利于提升成像镜组100的成像质量。第三透镜L3的正光焦度,配合第三透镜L3于近光轴处的双凸面型,使得第三透镜L3能够与第二透镜L2配合以有效会聚光线,从而有利于缩短成像镜组100的总长,实现小型化设计。第一透镜L1、第二透镜L2以及第三透镜 L3的光焦度和面型的合理配置还有利于光线在第一透镜L1、第二透镜L2和第三透镜L3之间平缓过渡,从而有利于降低成像镜组100的像差敏感度,进而在实现广角特性和小型化设计的同时提升成像镜组100的成像质量。第四透镜L4的负光焦度,配合第四透镜L4于近光轴处的凹凸面型,有利于第四透镜L4合理将光线偏折而发散至成像面S9,从而有利于使得光线在成像面S9上的入射角更容易与感光元件匹配,并有利于增大成像镜组100的成像面S9尺寸,进而有利于提升成像镜组100的成像质量,同时还有利于缩短成像镜组100的后焦距,从而有利于成像镜组100实现小型化设计。需要说明的是,在本申请中,描述某一透镜于近光轴处的面型,可以理解为该透镜与近轴光线经过的区域相对应的部分的面型。
进一步地,在一些实施例中,成像镜组100满足条件式:150deg/mm≤FOV/SD11≤189deg/mm;其中,FOV为成像镜组100的最大视场角,SD11为第一透镜L1的物侧面S1的最大有效半口径。满足上述条件式,有利于缩小成像镜组100的有效口径,从而实现小型化设计,同时有利于成像镜组100实现广角特性,以满足大范围取像的需求,另外还有利于成像镜组100具有良好的成像质量。超过上述条件式的上限,成像镜组100的视场角过大,边缘视场容易产生难以校正的畸变等像差,不利于成像质量的提升。低于上述条件式的下限,不利于广角特性的实现,也不利于缩小成像镜组100的有效口径。
具备上述光焦度和面型特征并满足上述条件式时,成像镜组100能够兼顾小型化设计、广角特性以及高成像质量的实现。
在一些实施例中,成像镜组100满足条件式:0.7≤SD11/f≤1.1;其中,f为成像镜组100的有效焦距。满足上述条件式,有利于缩小成像镜组100的有效口径和总长以实现小型化设计,同时也有利于提升成像镜组100的成像质量。超过上述条件式的上限,第一透镜L1的有效口径过大,不利于小型化设计的实现,同时成像镜组100的有效焦距过短,导致成像镜组100轴向上的光线偏折空间受限,不利于良好地调节光线,从而不利于成像质量的提升。低于上述条件式的下限,成像镜组100的有效焦距过长,导致成像镜组100的总长过长,同样不利于小型化设计的实现。
在一些实施例中,成像镜组100满足条件式:1.6≤f*tan(HFOV)/ImgH≤2.2;其中,f为成像镜组100的有效焦距,HFOV为成像镜组100的最大视场角的一半,ImgH为成像镜组100的最大视场角所对应的像高的一半。满足上述条件式,成像镜组100在实现广角特性的同时,也能够具备良好的成像质量。超过上述条件式的上限,成像镜组100的视场角过大,容易导致边缘视场出现难以校正的畸变等像差,不利于成像质量的提升。低于上述条件式的下限,不利于成像镜组100实现广角特性。
在一些实施例中,成像镜组100满足条件式:2.9≤TTL/ImgH≤3.8;其中,TTL为第一透镜L1的物侧面S1至成像镜组100的成像面S9于光轴上的距离,即成像镜组100的光学总长,ImgH为成像镜组100的最大视场角所对应的像高的一半。满足上述条件式,有利于缩小成像镜组100的有效口径以及光学总长,从而有利于小型化设计的实现。超过上述条件式的上限,成像镜组100的总长过长,不利于成像镜组100实现小型化设计。低于上述条件式的下限,成像镜组100的成像面S9尺寸过大,不利于减小成像镜组100的有效口径,同样不利于成像镜组100实现小型化设计。
在一些实施例中,成像镜组100满足条件式:1.4mm-1≤FNO/TTL≤2mm-1;其中,FNO为成像镜组100的光圈数,TTL为第一透镜L1的物侧面S1至成像镜组100的成像面S9于光轴上的距离。满足上述条件式,有利于缩小成像镜组100的有效口径和总长,从而有利于成像镜组100实现小型化设计,同时也有利于使得成像镜组100的光圈不会过小,从而有利于成像镜组100获得充足的进光量而具备良好的成像质量。超过上述条件式的上限,成像镜组100的光圈数过大,导致光圈过小,不利于提升成像镜组100的进光量,容易导致成像的相对照度过低,从而不利于成像质量的提升。低于上述条件式的下限,成像镜组100的有效口径过大,总长也过大,不利于小型化设计的实现。
在一些实施例中,第一透镜L1的物侧面S1的最大有效半口径大于第四透镜L4的像侧面S8的最大有效半口径,第二透镜L2的物侧面S3和第三透镜L3的物侧面S5的最大有效半口径均小于第四透镜L4的像侧面S8的最大有效半口径。如此设置,在缩小成像镜组100的有效口径以实现小型化设计的同时,第一透镜L1的物侧面S1的最大有效口径足够大,有利于第一透镜L1有效收集大角度的光线,从而有利于广角特性的实现,并且有利于第一透镜L1收集的光线在第二透镜L2和第三透镜L3充满成像镜组100的光阑,从而有利于提升成像的相对照度以提升成像镜组100的成像质量,另外还有利于第四透镜L4将光线有效传输到成像面S9,有利于扩大成像面S9尺寸,并使得光线在成像面S9上的入射角更好地匹配感光元件,从而提升成像镜组100的成像质量。
在一些实施例中,成像镜组100满足条件式:1.4≤SD11/SD42≤1.8;其中,SD42为第四透镜L4的像侧面S8的最大有效半口径。满足上述条件式,有利于第一透镜L1有效收集大角度光线,也有利于第四透镜L4有效将光线传输至成像面S9,从而有利于广角特性和大像面特性的实现。
在一些实施例中,成像镜组100满足条件式:2.3≤SD11/SD21≤3.4;其中,SD21为第二透镜L2的物侧面S3的最大有效半口径。满足上述条件式,第一透镜L1和第二透镜L2能够合理配合,有利于像差的相互较正,同时有利于广角特性的实现。
在一些实施例中,成像镜组100满足条件式:3.4≤TTL/f≤4;其中,TTL为第一透镜L1的物侧面S1至成像镜组100的成像面S9于光轴上的距离,即成像镜组100的光学总长,f为成像镜组100的有效焦距。满足上述条件式,有利于缩短成像镜组100的总长,实现小型化设计,同时也能够使得成像镜组100有足够的空间合理偏折光线,有利于成像质量的提升。
在一些实施例中,成像镜组100满足条件式:0.9≤Bf/f≤1.4;其中,Bf为第四透镜L4的像侧面S8至成像镜组100的成像面S9于光轴上的距离,即成像镜组100的后焦距,f为成像镜组100的有效焦距。满足上述条件式,在缩短成像镜组100的总长以实现小型化设计的同时,也能够使得成像镜组100有足够大的后焦空间,有利于成像镜组100的调焦,也有利于成像镜组100更好地与感光元件组装。
在一些实施例中,成像镜组100满足条件式:120°≤FOV≤140°。满足上述条件式,成像镜组100具备广角特性,应用于内窥镜中时,有利于满足大范围取像的需求,从而降低漏查风险,同时,成像镜组100的视场角也不会过大,能够避免边缘视场产生过于严重的畸变等像差,从而有利于成像质量的提升。
在一些实施例中,成像镜组100满足条件式:0.8mm≤ImgH≤1mm;其中,ImgH为成像镜组100的最大视场角所对应的像高的一半。满足上述条件式,成像镜组100能够具备大像面特性,从而能够匹配更高像素的感光元件以获得良好的成像质量,同时也有利于降低边缘视场的像差,提升边缘视场的相对照度,也有利于提升成像镜组100的成像质量。
需要说明的是,在一些实施例中,成像镜组100可以匹配具有矩形感光面的感光元件,成像镜组100的成像面S9与感光元件的感光面重合。此时,成像面S9上有效像素区域具有水平方向以及对角线方向,则FOV可以理解为成像镜组100对角线方向的最大视场角,ImgH可以理解为成像镜组100的有效像素区域在对角线方向的尺寸的一半。
可以理解的是,在本申请中,成像面S9可以理解为系统光线在第四透镜L4的像侧的汇聚点构成的虚拟面,而当成像镜组100与感光元件匹配时,成像面S9与感光元件的感光面重合,以使得经系统调节后的光线能够在感光面上形成清晰图像。
在一些实施例中,成像镜组100设置有光阑ST,光阑ST可设置于第二透镜L2和第三透镜L3之间。光阑ST中置的设置,使得成像镜组100在实现小型化特性的同时,也能够具有充足的进光量,从而有利于提升成像镜组100的成像质量。
在一些实施例中,成像镜组100还可包括红外截止滤光片110,红外截止滤光片110可设于第一透镜L1和第二透镜L2之间,红外截止滤光片110用于滤除红外光,防止红外 光到达成像面S9而影响成像镜组100的成像质量。当然,红外截止滤光片110还可设于其余任意两透镜之间,或者设于第四透镜L4和成像面S9之间,只要有足够的空间供红外截止滤光片110装配即可。
在一些实施例中,成像镜组100还包括保护玻璃120,保护玻璃120可设于第四透镜L4和成像面S9之间,保护玻璃120用于保护设于成像面S9处的感光元件。
在一些实施例中,成像镜组100的各透镜的物侧面和像侧面均为非球面,则各透镜的物侧面和像侧面于近光轴处及于圆周处的面型可能不同。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。
在一些实施例中,成像镜组100中的各透镜的材质可以均为塑料。采用塑料材质的透镜能够减少成像镜组100的重量并降低生产成本,配合成像镜组100的小尺寸以实现成像镜组100的轻薄化设计。
在另一些实施例中,第一透镜L1的材质可以为玻璃,第二透镜L2、第三透镜L3和第四透镜L4的材质为塑料。采用玻璃材质,能够使得第一透镜L1具备良好的耐磨性能和生物相容性,使得成像镜组100应用于内窥镜中时,最前端的透镜不容易因碰撞而损坏,能够节省前端保护玻璃的设置,也不容易对用户的健康造成负面影响。而后三片透镜采用塑料材质,有利于成像镜组100的小型化设计,同时降低成像镜组100的重量和成本。当然,以上材质搭配仅为一些实施例中成像镜组100的示例,成像镜组100各透镜的材质还可以均为玻璃,或者可以为玻璃和塑料材质的任意组合。
以上有效焦距的参考波长均为587.6nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请再参见图1,图1为第一实施例中的成像镜组100的结构示意图。成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1、第二透镜L2、第三透镜L3以及第四透镜L4的物侧面和像侧面均为非球面,其他实施例也相同。
第一透镜L1的物侧面于近光轴处为平面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
以下表1示出了第一实施例中成像镜组100各透镜的曲率半径、厚度、折射率、阿贝数、有效焦距以及成像镜组100的有效焦距f、最大视场角FOV和光圈数FNO等详细参数。表1中由第一透镜L1至成像面S9的各元件依次按照表1从上至下的各元件的顺序排列。第一透镜L1的第一行表示第一透镜L1的物侧面S1,第二行表示第一透镜L1的像侧面S2,以此类推。第一透镜L1的“厚度”参数列中的第一个数值为第一透镜L1于光轴110上的厚度,第二个数值为第一透镜L1的像侧面S2至像侧方向的后一表面(第二透镜L2的物侧面)于光轴110上的距离,厚度参数列其他数值的含义可由此推得。其中,各透镜的折射率、阿贝数和有效焦距的参考波长均为587.6nm。
需要注意的是,在该实施例及以下各实施例中,成像镜组100也可不设置红外截止滤光片110和保护玻璃120,但第一透镜L1和第二透镜L2之间的间距,以及第四透镜L4和成像面S9之间的间距保持不变。
表1

成像镜组100各透镜物侧面或像侧面的非球面系数由表2给出。其中,面序号从S1-S8分别表示物侧面或像侧面S1-S8。而从上到下的K-A8分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数。另外,非球面系数公式如下:
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
请参见图2,图2由左至右依次为第一实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图。由图2的像散曲线图可以看出,成像镜组100的弧矢场曲和子午场曲均较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像,成像镜组100具备大景深效果。由图2的畸变曲线图可以看出,成像镜组100全视场的畸变较小,由主光束引起的图像变形较小,系统的成像质量优良。由图2的倍率色差曲线图可以看出,不同波长的最大差值小于2um,成像镜组100的倍率色差得到了良好的校正,具备良好的成像质量。
第二实施例
请参见图3,图3为第二实施例中的成像镜组100的结构示意图,成像镜组100由物 侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
成像镜组100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出。
表4
请参见图4,图4由左至右依次为第二实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图4可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
第三实施例
请参见图5,图5为第三实施例中的成像镜组100的结构示意图,成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为平面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
成像镜组100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出。
表6
请参见图6,图6由左至右依次为第三实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图6可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
第四实施例
请参见图7,图7为第四实施例中的成像镜组100的结构示意图,成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
成像镜组100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出。
表8
请参见图8,图8由左至右依次为第四实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图8可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
第五实施例
请参见图9,图9为第五实施例中的成像镜组100的结构示意图,成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为平面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
成像镜组100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出。
表10
请参见图10,图10由左至右依次为第五实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图10可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
第六实施例
请参见图11,图11为第六实施例中的成像镜组100的结构示意图,成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
成像镜组100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出。
表12

请参见图12,图12由左至右依次为第六实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图12可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
第七实施例
请参见图13,图13为第七实施例中的成像镜组100的结构示意图,成像镜组100由物侧至像侧依次包括具有负光焦度的第一透镜L1、红外截止滤光片110、具有正光焦度的第二透镜L2、光阑ST、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4以及保护玻璃120。
第一透镜L1的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
第二透镜L2的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面;
第三透镜L3的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
第四透镜L4的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面。
另外,成像镜组100的各项参数由表13给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表13
成像镜组100各透镜像侧面或物侧面的非球面系数由表14给出,且其中各参数的定义可由第一实施例得出。
表14

请参见图14,图14由左至右依次为第七实施例中成像镜组100的像散曲线图、畸变曲线图以及倍率色差曲线图,由图14可以看出,成像镜组100的场曲像散、畸变和倍率色差均得到了良好的校正,成像镜组100具备良好的成像质量。
另外,第一实施例至第七实施例中成像镜组100满足以下表15的数据,满足以下数据所能够获得的效果可参考上述记载。
表15
本申请还提供一种内窥镜物镜(图未示出),包括感光元件以及上述任一实施例所述的成像镜组100。感光元件的感光面与成像镜组100的成像面S9重合。具体地,感光元件可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在内窥镜物镜中采用上述成像镜组100,能够兼顾小型化设计、广角特性以及高成像质量的实现,从而有利于内窥镜物镜在内窥镜中的应用。
本申请还提供一种内窥镜(图未示出),包括壳体以及上述任一实施例所述的内窥镜物镜,内窥镜物镜设置于壳体内,壳体可以为内窥镜物镜的固定结构。内窥镜可以应用于医疗领域,例如应用于对病患进行医疗诊断,具体地,内窥镜包括但不限于为用于观察消化器官、支气管、鼻腔、咽喉、泌尿器官及子宫的内窥镜。在内窥镜中采用上述内窥镜物镜,内窥镜物镜能够兼顾小型化设计、广角特性以及高成像质量的实现,从而使得内窥镜应用于医疗领域时,能够最大程度降低对病患的损伤,也能够大范围获取病灶区域的图像,避免漏查风险,同时还也能够形成具有高清晰度的病变图像,提升诊断的准确性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种含四片透镜的成像镜组,其特征在于,所述成像镜组中具有光焦度的透镜的数量为四片,且所述成像镜组沿光轴由物侧至像侧依次包括:
    具有负光焦度的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
    具有正光焦度的第二透镜,所述第二透镜的像侧面于近光轴处为凸面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面于近光轴处均为凸面;以及,
    具有负光焦度的第四透镜,所述第四透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凸面;
    所述成像镜组满足以下条件式:
    150deg/mm≤FOV/SD11≤189deg/mm;
    其中,FOV为所述成像镜组的最大视场角,SD11为所述第一透镜的物侧面的最大有效半口径。
  2. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    0.7≤SD11/f≤1.1;
    其中,f为所述成像镜组的有效焦距。
  3. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    1.6≤f*tan(HFOV)/ImgH≤2.2;
    其中,f为所述成像镜组的有效焦距,HFOV为所述成像镜组的最大视场角的一半,ImgH为所述成像镜组的最大视场角所对应的像高的一半。
  4. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    2.9≤TTL/ImgH≤3.8;
    其中,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离,ImgH为所述成像镜组的最大视场角所对应的像高的一半。
  5. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    1.4mm-1≤FNO/TTL≤2mm-1
    其中,FNO为所述成像镜组的光圈数,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离。
  6. 根据权利要求1所述的成像镜组,其特征在于,所述第一透镜的物侧面的最大有效半口径大于所述第四透镜的像侧面的最大有效半口径,所述第二透镜的物侧面和所述第三透镜的物侧面的最大有效半口径均小于所述第四透镜的像侧面的最大有效半口径。
  7. 根据权利要求6所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    1.4≤SD11/SD42≤1.8
    其中,SD42为所述第四透镜的像侧面的最大有效半口径。
  8. 根据权利要求6所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    2.3≤SD11/SD21≤3.4;
    其中,SD21为所述第二透镜的物侧面的最大有效半口径。
  9. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    3.4≤TTL/f≤4;
    其中,TTL为所述第一透镜的物侧面至所述成像镜组的成像面于光轴上的距离,f为所述成像镜组的有效焦距。
  10. 根据权利要求1所述的成像镜组,其特征在于,所述成像镜组满足以下条件式:
    0.9≤Bf/f≤1.4;
    其中,Bf为所述第四透镜的像侧面至所述成像镜组的成像面于光轴上的距离,f为所 述成像镜组的有效焦距。
  11. 根据权利要求1所述的成像镜组,其特征在于,所述第一透镜的材质为玻璃,所述第二透镜、所述第三透镜以及所述第四透镜的材质均为塑料。
  12. 根据权利要求1所述的成像镜组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜以及所述第四透镜的材质均为塑料。
  13. 一种内窥镜物镜,其特征在于,包括感光元件以及权利要求1-12任一项所述的成像镜组,所述感光元件设置于所述成像镜组的像侧。
  14. 一种内窥镜,其特征在于,包括权利要求13所述的内窥镜物镜。
PCT/CN2023/120626 2022-10-10 2023-09-22 成像镜组、内窥镜物镜及内窥镜 WO2024078298A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211234837.3A CN115586624A (zh) 2022-10-10 2022-10-10 成像镜组、内窥镜物镜及内窥镜
CN202222659479.2 2022-10-10
CN202211234837.3 2022-10-10
CN202222659479.2U CN218383453U (zh) 2022-10-10 2022-10-10 成像镜组、内窥镜物镜及内窥镜

Publications (1)

Publication Number Publication Date
WO2024078298A1 true WO2024078298A1 (zh) 2024-04-18

Family

ID=90668716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120626 WO2024078298A1 (zh) 2022-10-10 2023-09-22 成像镜组、内窥镜物镜及内窥镜

Country Status (1)

Country Link
WO (1) WO2024078298A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130523A (ja) * 1991-10-31 1993-05-25 Olympus Optical Co Ltd 撮像装置
CN103562771A (zh) * 2011-11-22 2014-02-05 奥林巴斯医疗株式会社 内窥镜物镜光学系统
JP2016194604A (ja) * 2015-03-31 2016-11-17 コニカミノルタ株式会社 広角レンズ、レンズユニット、及び撮像装置
CN107111112A (zh) * 2015-06-23 2017-08-29 奥林巴斯株式会社 内窥镜用物镜光学系统
CN108508573A (zh) * 2017-02-27 2018-09-07 康达智株式会社 摄像镜头
CN115586624A (zh) * 2022-10-10 2023-01-10 微创优通医疗科技(上海)有限公司 成像镜组、内窥镜物镜及内窥镜
CN218383453U (zh) * 2022-10-10 2023-01-24 微创优通医疗科技(上海)有限公司 成像镜组、内窥镜物镜及内窥镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130523A (ja) * 1991-10-31 1993-05-25 Olympus Optical Co Ltd 撮像装置
CN103562771A (zh) * 2011-11-22 2014-02-05 奥林巴斯医疗株式会社 内窥镜物镜光学系统
JP2016194604A (ja) * 2015-03-31 2016-11-17 コニカミノルタ株式会社 広角レンズ、レンズユニット、及び撮像装置
CN107111112A (zh) * 2015-06-23 2017-08-29 奥林巴斯株式会社 内窥镜用物镜光学系统
CN108508573A (zh) * 2017-02-27 2018-09-07 康达智株式会社 摄像镜头
CN115586624A (zh) * 2022-10-10 2023-01-10 微创优通医疗科技(上海)有限公司 成像镜组、内窥镜物镜及内窥镜
CN218383453U (zh) * 2022-10-10 2023-01-24 微创优通医疗科技(上海)有限公司 成像镜组、内窥镜物镜及内窥镜

Similar Documents

Publication Publication Date Title
US8422150B2 (en) Objective optical system
US8767320B2 (en) Endoscope optical system and endoscope
JP5601924B2 (ja) 内視鏡用変倍光学系、及び内視鏡
US10942348B2 (en) Endoscope objective optical system
JP6525144B2 (ja) 広角レンズ、レンズユニット、及び撮像装置
CN116009221B (zh) 光学镜头及摄像模组
CN218383456U (zh) 变焦光学系统、内窥镜物镜及内窥镜
CN116009220B (zh) 光学镜头及摄像模组
JPH09230232A (ja) レトロフォーカス型レンズ
CN218383453U (zh) 成像镜组、内窥镜物镜及内窥镜
JP4150565B2 (ja) 内視鏡対物レンズ系
CN115586624A (zh) 成像镜组、内窥镜物镜及内窥镜
CN216210185U (zh) 光学系统、取像模组及内窥镜
CN217034394U (zh) 内窥镜光学系统、内窥镜物镜及内窥镜
CN107703606B (zh) 内窥镜用物镜光学系统以及内窥镜
WO2024078298A1 (zh) 成像镜组、内窥镜物镜及内窥镜
CN219552748U (zh) 摄像系统、内窥镜物镜及内窥镜
CN219021083U (zh) 光学镜组、内窥镜物镜及内窥镜
CN220024996U (zh) 内窥镜光学系统、物镜模组及内窥镜
CN218068409U (zh) 内窥镜光学系统、内窥镜物镜及内窥镜
CN116400492B (zh) 光学镜头、摄像模组及终端设备
CN117826369A (zh) 摄像系统、内窥镜物镜及内窥镜
US11016283B2 (en) Objective optical system, image pickup apparatus, and endoscope
CN117406410B (zh) 光学镜头及摄像模组
CN220438632U (zh) 物镜模组、内窥镜光学系统及内窥镜