WO2024078202A1 - 光学透镜系统、取像装置及电子设备 - Google Patents

光学透镜系统、取像装置及电子设备 Download PDF

Info

Publication number
WO2024078202A1
WO2024078202A1 PCT/CN2023/117056 CN2023117056W WO2024078202A1 WO 2024078202 A1 WO2024078202 A1 WO 2024078202A1 CN 2023117056 W CN2023117056 W CN 2023117056W WO 2024078202 A1 WO2024078202 A1 WO 2024078202A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
optical
optical lens
object side
Prior art date
Application number
PCT/CN2023/117056
Other languages
English (en)
French (fr)
Inventor
马力
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024078202A1 publication Critical patent/WO2024078202A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present application relates to the technical field of optical lenses, and in particular to an optical lens system, an imaging device provided with the optical lens, and an electronic device provided with the imaging device.
  • the present application provides an optical lens system, which includes, from the object side to the image side, the following:
  • the object side surfaces and image side surfaces of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are all aspherical surfaces, and the optical lens system satisfies the following conditional formula:
  • TTL/EFL 1.55; where TTL is the total optical length of the optical lens system, and EFL is the effective focal length of the optical lens system.
  • the present application also provides an imaging device, which includes the above-mentioned optical lens system and a photosensitive element, wherein the photosensitive element is located on the image side of the optical lens system.
  • the present application also provides an electronic device, which comprises a housing and the above-mentioned imaging device, wherein the imaging device is installed in the housing.
  • FIG1 is a schematic structural diagram of an optical lens system according to a first embodiment of the present application.
  • FIG2 is a graph of F-Tan (Theta) distortion of the optical lens system in FIG1 ;
  • FIG3 is a graph of field curvature of the optical lens system in FIG1 ;
  • FIG4 is a magnification chromatic aberration curve diagram of the optical lens system in FIG1 ;
  • FIG5 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG1 ;
  • FIG6 is a schematic structural diagram of an optical lens system according to a second embodiment of the present application.
  • FIG7 is a graph of F-Tan (Theta) distortion of the optical lens system in FIG6 ;
  • FIG8 is a magnification chromatic aberration curve diagram of the optical lens system in FIG6 ;
  • FIG9 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG6 ;
  • FIG10 is a schematic structural diagram of an optical lens system according to a third embodiment of the present application.
  • FIG11 is a graph of F-Tan (Theta) distortion of the optical lens system in FIG10 ;
  • FIG12 is a graph showing a magnification chromatic aberration of the optical lens system in FIG10 ;
  • FIG13 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG10 ;
  • FIG14 is a schematic structural diagram of an optical lens system according to a fourth embodiment of the present application.
  • FIG15 is a graph of field curvature of the optical lens system of FIG14.
  • FIG16 is a graph of F-Tan (Theta) distortion of the optical lens system in FIG14 ;
  • FIG17 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG14 ;
  • FIG18 is a graph showing a magnification chromatic aberration of the optical lens system in FIG14 ;
  • FIG19 is a schematic structural diagram of an optical lens system according to a fifth embodiment of the present application.
  • FIG20 is a graph of F-Tan (Theta) distortion of the optical lens system of FIG19 ;
  • FIG21 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG20 ;
  • FIG22 is a graph showing a magnification chromatic aberration of the optical lens system in FIG20 ;
  • FIG23 is a schematic structural diagram of an optical lens system according to a sixth embodiment of the present application.
  • FIG24 is a graph of F-Tan (Theta) distortion of the optical lens system of FIG23;
  • FIG25 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG23 ;
  • FIG26 is a graph showing a magnification chromatic aberration of the optical lens system in FIG23 ;
  • FIG27 is a schematic structural diagram of an optical lens system according to a seventh embodiment of the present application.
  • FIG28 is a graph of F-Tan (Theta) distortion of the optical lens system of FIG27;
  • FIG29 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG27 ;
  • FIG30 is a graph showing magnification chromatic aberration of the optical lens system in FIG27;
  • FIG31 is a schematic structural diagram of an optical lens system according to an eighth embodiment of the present application.
  • FIG32 is a graph of F-Tan (Theta) distortion of the optical lens system of FIG31 ;
  • FIG33 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG31 ;
  • FIG34 is a graph showing a magnification chromatic aberration of the optical lens system in FIG31 ;
  • FIG35 is a schematic structural diagram of an optical lens system according to a ninth embodiment of the present application.
  • FIG36 is a graph of F-Tan (Theta) distortion of the optical lens system of FIG35 ;
  • FIG37 is a graph showing longitudinal spherical aberration values of the optical lens system in FIG35 ;
  • FIG38 is a graph showing a magnification chromatic aberration of the optical lens system in FIG35 ;
  • FIG39 is a schematic structural diagram of an imaging device according to an embodiment of the present application.
  • FIG40 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • the present application provides an optical lens system, which comprises, from the object side to the image side, the following:
  • the object side surfaces and image side surfaces of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are all aspherical surfaces, and the optical lens system satisfies the following conditional formula:
  • TTL/EFL 1.55; where TTL is the total optical length of the optical lens system, and EFL is the effective focal length of the optical lens system.
  • the prism is a right-angle prism
  • an exit surface of the right-angle prism faces the object side surface of the first lens
  • the optical axis of the optical lens system is perpendicular to the exit surface
  • the exit surface and/or the incident surface of the right-angle prism is configured as a diffractive aspherical surface.
  • the object side surface or the image side surface of at least one lens among the first lens, the second lens, the third lens, the fourth lens and the fifth lens is set as a diffraction surface.
  • the aperture value of the optical lens system is 2.4.
  • the focal length of the optical lens system ranges from 14 mm to 16 mm, and the equivalent full-frame focal length of the optical lens system ranges from 60 mm to 67.5 mm.
  • optical lens system satisfies the following conditional formula:
  • FOV is the horizontal field of view of the optical lens system.
  • optical lens system satisfies the following conditional formula:
  • BFL is the back focal length of the optical lens system.
  • optical lens system satisfies the following conditional formula:
  • r1 is the radius of the object side surface of the first lens
  • r2 is the radius of the image side surface of the first lens
  • optical lens system satisfies the following conditional formula:
  • d1 is the thickness of the first lens at the near optical axis
  • d2 is the thickness interval between the first lens and the second lens.
  • optical lens system satisfies the following conditional formula:
  • D is the optical effective aperture of the fifth lens.
  • the length from the object side surface of the first lens of the optical lens system to the image side surface of the fifth lens along the optical axis direction is less than 10 mm.
  • the exit surface and/or the incident surface of the right-angle prism adopts a diffraction surface of an aspherical substrate, and the diffraction center wavelength is 555 nm.
  • the object side surface of the first lens adopts a diffraction surface of an aspherical substrate, and the diffraction center wavelength is 555 nm.
  • equation of the aspheric surface is:
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the object side surface of the first lens is convex
  • the image side surface of the first lens is concave
  • the curvature radius of the object side surface of the first lens ranges from 7.6 mm to 8.5 mm
  • the curvature radius of the image side surface of the first lens ranges from -80 mm to -90 mm.
  • the object side surface of the second lens is convex, and the image side surface of the second lens is concave; the curvature radius of the object side surface of the second lens ranges from 6.5 mm to 8 mm, and the curvature radius of the image side surface of the second lens ranges from 3.7 mm to 4.2 mm.
  • the object side surface of the third lens is convex
  • the image side surface of the third lens is convex
  • the curvature radius of the object side surface of the third lens ranges from 24.5 mm to 25.5 mm
  • the curvature radius of the image side surface of the third lens ranges from -10 mm to -10.5 mm.
  • the object side surface of the fourth lens is concave, and the image side surface of the fourth lens is convex; the curvature radius of the object side surface of the fourth lens ranges from 55 mm to 105 mm, and the curvature radius of the image side surface of the fourth lens ranges from -30 mm to -55 mm.
  • the object side surface of the fifth lens is concave at the near optical axis
  • the image side surface of the second lens is concave at the near optical axis
  • the curvature radius of the object side surface of the fifth lens ranges from 20 mm to 45 mm
  • the curvature radius of the image side surface of the fifth lens ranges from 4.5 mm to 5.5 mm.
  • the present application also provides an imaging device, which includes an optical lens system and a photosensitive element, wherein the photosensitive element is located on the image side of the optical lens system;
  • the optical lens system includes, from the object side to the image side, a prism with total reflection, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, and a fifth lens with negative refractive power; wherein the object side surface and the image side surface of the first lens, the second lens, the third lens, the fourth lens and the fifth lens are all aspherical surfaces, and the optical lens system satisfies the following conditional formula: TTL/EFL ⁇ 1.05; wherein TTL is the total optical length of the optical lens system, and EFL is the effective focal length of the optical lens system.
  • the present application also provides an electronic device, which includes a shell and an imaging device, the imaging device includes an optical lens system and a photosensitive element, the photosensitive element is located on the image side of the optical lens system;
  • the optical lens system includes, from the object side to the image side, a prism with total reflection, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, and a fifth lens with negative refractive power; wherein the object side surface and the image side surface of the first lens, the second lens, the third lens, the fourth lens and the fifth lens are all aspherical surfaces, and the optical lens system satisfies the following conditional formula: TTL/EFL ⁇ 1.05; wherein TTL is the total optical length of the optical lens system, EFL is the effective focal length of the optical lens system, and the imaging device is installed on the shell.
  • the optical lens system 100 of the embodiment of the present application is suitable for a telephoto lens.
  • the optical lens system can be applied to the lens of a camera device such as a mobile phone, a computer, a tablet computer, a vehicle-mounted lens, a monitoring lens, a security lens, a medical lens, a game console, a robot, etc.
  • the optical lens system 100 includes, from the object side to the image side, a prism with total reflection, a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, and a fifth lens 60 with negative refractive power; wherein the object side surface and the image side surface of the first lens 20, the second lens 30, the third lens 40, the fourth lens 50, and the fifth lens 60 are all aspherical surfaces, that is, the object side surface and the image side surface of all lenses in the optical lens system 100 are all aspherical surfaces, and the optical lens system 100 satisfies the following conditional formula:
  • TTL is the total optical length of the optical lens system
  • EFL is the effective focal length of the optical lens system
  • the first lens 20 to the fifth lens 60 of the optical lens system 100 of the present application cooperate with a prism to fold the light path to realize the periscope imaging function, so that the optical lens system 100 forms a periscope telephoto lens, which can meet the photography requirements of a large image plane telephoto lens without reducing the imaging quality requirements; because TTL/EFL in the optical lens system 100 is less than 1.05, the total optical length of the optical lens system is reduced, so that the optical lens system 100 of the present application has a good imaging effect while ensuring miniaturization and ultra-thinness, realizes the characteristics of ultra-wide angle, and improves the imaging quality.
  • the prism is a right-angle prism 10 with total reflection
  • the right-angle prism 10 can be but not limited to transparent materials such as glass or plastic, and the refractive index of the right-angle prism 10 meets the total reflection requirement; further, the right-angle prism 10 can be selected but not limited to H-ZE13GT or other materials with higher refractive index.
  • the right-angle prism 10 includes an exit surface 102 and an incident surface 101 perpendicular to each other, and a bottom surface 104 connected between the exit surface 102 and the incident surface 101, that is, the top angle ⁇ between the exit surface 102 and the incident surface 101 is 90 degrees, the exit surface 102 of the right-angle prism 10 faces the object side of the first lens 20, and the incident surface 101 of the right-angle prism 10 is parallel to the optical axis L of the optical lens system 100. That is, the optical axis L of the optical lens system 100 is perpendicular to the exit surface 102, and the optical axis L is parallel to the incident surface 101 of the right-angle prism 10.
  • the light enters the right angle prism 10 from the incident surface 101 of the right angle prism 10, and is reflected by the bottom surface 104. Light emitted from the exit surface 102 of the corner prism 10 enters the first lens 20 .
  • the first lens 20 can be made of glass or plastic.
  • the first lens 20 is made of plastic with a high Abbe number material.
  • the first lens 20 is in a meniscus shape facing the image side.
  • the first lens 20 has an object side surface 22 and an image side surface 24. Both the object side surface 22 and the image side surface 24 are aspherical surfaces, and the first lens 20 has a positive refractive power.
  • the object side surface 22 of the first lens 20 is a convex surface
  • the image side surface 24 of the first lens 20 is a concave surface.
  • the image side surface 24 is a concave surface, which can effectively enable the light reflected by the object to be captured by the optical lens system, and can enhance the convergence of the field of view light outside the optical axis L to enter the imaging surface of the optical lens system.
  • the curvature radius of the object side surface 22 of the first lens 20 ranges from 7.6mm to 8.5mm, and the curvature radius of the image side surface 24 of the first lens 20 ranges from -80mm to -90mm; preferably, the curvature radius of the object side surface 22 is 7.83mm, and the curvature radius of the image side surface 24 is -87.05mm.
  • the thickness range of the object side surface 22 and the thickness range of the image side surface 24 of the first lens 20 are both 1.1mm-1.25mm.
  • the thickness of the object side surface 22 and the image side surface 24 of the first lens 20 are both 1.22mm.
  • the refractive index range of the first lens 20 is 1.5-1.58.
  • the refractive index of the first lens 20 is 1.546.
  • the dispersion coefficient range of the first lens 20 is 50-55.814.
  • the dispersion coefficient of the first lens 20 is 55.814.
  • the focal length range of the first lens 20 is 13-13.8.
  • the focal length of the first lens 20 is 13.22.
  • the object side surface 22 of the first lens 20 is convex; the image side surface 24 of the first lens 20 is concave near the optical axis and is flat at the circumference.
  • the second lens 30 can be made of glass or plastic.
  • the second lens 30 is made of high refractive index plastic material, and the second lens 30 is in a meniscus shape facing the image plane; specifically, the second lens 30 has an object side surface 32 and an image side surface 34, both of which are aspherical surfaces, and the second lens 30 has negative refractive power.
  • the object side surface 32 of the second lens 30 is a convex surface
  • the image side surface 34 of the second lens 30 is a concave surface.
  • the radius of curvature of the object side surface 32 of the second lens 30 ranges from 6.5 mm to 8 mm, and the radius of curvature of the image side surface 34 of the second lens 30 ranges from 3.7 mm to 4.2 mm; preferably, the radius of curvature of the object side surface 32 is 7.88 mm, and the radius of curvature of the image side surface 34 is 4.1 mm.
  • the thickness range of the object side surface 32 and the thickness range of the image side surface 34 of the second lens 30 are both 0.75mm-0.85mm.
  • the thickness of the object side surface 32 and the thickness of the image side surface 34 of the second lens 30 are both 0.824mm.
  • the refractive index range of the second lens 30 is 1.6-1.67.
  • the refractive index of the second lens 30 is 1.67.
  • the dispersion coefficient range of the second lens 30 is 19.39-35.
  • the dispersion coefficient of the second lens 30 is 19.39.
  • the focal length range of the second lens 30 is -15 to -13.5.
  • the focal length of the second lens 30 is -13.865.
  • the object side surface 32 of the second lens 30 is convex near the optical axis L and is flat at the circumference; the image side surface 34 of the second lens 30 is concave near the optical axis and is flat at the circumference.
  • the diameter of the second lens 30 is smaller than the diameter of the first lens 20, and the projection of the outer peripheral wall of the second lens 30 on the image side surface 24 of the first lens 20 along the optical axis L is located on the concave surface of the image side surface 24.
  • the diameter of the second lens 30 may also be equal to the diameter of the first lens 20, and the image side surface 24 of the first lens 20 is a concave surface.
  • the third lens 40 can be made of glass or plastic.
  • the third lens 40 is made of high Abbe number material, and the third lens 40 is in a biconvex shape convex toward both the image plane and the object plane; specifically, the third lens 40 has an object side surface 42 and an image side surface 44, both of which are aspherical surfaces, and the third lens 40 has positive refractive power.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L.
  • the radius of curvature of the object side surface 42 of the third lens 40 ranges from 24.5mm to 25.5mm, and the radius of curvature of the image side surface 44 of the third lens 40 ranges from -10mm to -10.5mm; preferably, the radius of curvature of the object side surface 42 is 25.269mm, and the radius of curvature of the image side surface 44 is -10.21mm.
  • the object side surface 42 and the image side surface 44 of the third lens 40 have a thickness range of 1.3 mm to 1.7 mm.
  • the object side surface 42 and the image side surface 44 of the third lens 40 have a thickness range of 1.327 mm.
  • the refractive index of the third lens 40 ranges from 1.5 to 1.58.
  • the refractive index of the third lens 40 is 1.546.
  • the dispersion coefficient of the third lens 40 ranges from 50 to 55.814.
  • the dispersion coefficient of the third lens 40 is 55.814.
  • the focal length range is 13.2 to 13.7, and preferably, the focal length of the third lens 40 is 13.495.
  • the object side surface 42 of the third lens 40 is convex
  • the image side surface 44 of the third lens 40 is convex near the optical axis and concave at the circumference.
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 30 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface of the image side surface 34. In some embodiments, the diameter of the third lens 40 can also be equal to the diameter of the second lens 30.
  • the fourth lens 50 can be made of glass or plastic.
  • the third lens 40 is made of a high refractive index material, and the fourth lens 50 is in a meniscus shape facing the object plane; specifically, the fourth lens 50 has an object side surface 52 and an image side surface 54, both of which are aspherical surfaces, and the fourth lens 50 has positive refractive power.
  • the object side surface 52 of the fourth lens 50 is a concave surface, and the image side surface 54 of the fourth lens 50 is a convex surface.
  • the curvature radius of the object side surface 52 of the fourth lens 50 ranges from 55mm to 105mm, and the curvature radius of the image side surface 54 of the fourth lens 50 ranges from -30mm to -55mm; preferably, the curvature radius of the object side surface 52 is 100.27mm, and the curvature radius of the image side surface 54 is -34.45mm.
  • the thickness range of the object side surface 52 and the thickness range of the image side surface 54 of the fourth lens 50 are both 1.35mm-1.6mm.
  • the thickness of the object side surface 52 and the thickness of the image side surface 54 of the fourth lens 50 are both 1.385mm.
  • the refractive index range of the fourth lens 50 is 1.6-1.67.
  • the refractive index of the fourth lens 50 is 1.67.
  • the dispersion coefficient range of the fourth lens 50 is 19.39-35.
  • the dispersion coefficient of the fourth lens 50 is 19.39.
  • the focal length range of the fourth lens 50 is 36-43.
  • the focal length of the fourth lens 50 is 38.08.
  • the object side surface 52 of the fourth lens 50 is a concave surface
  • the image side surface 54 of the fourth lens 50 is a convex surface near the optical axis and a flat surface at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40.
  • the diameter of the fourth lens 50 may also be equal to the diameter of the third lens 40.
  • the fifth lens 60 can be made of glass or plastic.
  • the fifth lens 60 is made of high Abbe number material, and the fifth lens 60 is in a meniscus shape facing the object plane; specifically, the fifth lens 60 has an object side surface 62 and an image side surface 64, both of which are aspherical surfaces, and the fifth lens 60 has negative refractive power.
  • the object side surface 62 of the fifth lens 60 is concave at the near optical axis L; the image side surface 64 of the fifth lens 60 is concave at the near optical axis L.
  • the radius of curvature of the object side surface 62 of the fifth lens 60 ranges from 20 mm to 45 mm, and the radius of curvature of the image side surface 64 of the fifth lens 60 ranges from 4.5 mm to 5.5 mm; preferably, the radius of curvature of the object side surface 62 is 22.59 mm, and the radius of curvature of the image side surface 64 is 4.94 mm.
  • the thickness range of the object side surface 62 and the thickness range of the image side surface 64 of the fifth lens 60 are both 0.68mm-0.82mm.
  • the thickness of the object side surface 62 and the thickness of the image side surface 64 of the fifth lens 60 are both 0.807mm.
  • the refractive index range of the fifth lens 60 is 1.5-1.58.
  • the refractive index of the fifth lens 60 is 1.546.
  • the dispersion coefficient range of the fifth lens 60 is 50-55.814.
  • the dispersion coefficient of the fifth lens 60 is 55.814.
  • the focal length range of the fifth lens 60 is -11.8 to -11.2.
  • the focal length of the fifth lens 60 is -11.78.
  • the object side surface 62 of the fifth lens 60 is concave at the near optical axis L and is flat at the circumference; the image side surface 64 of the fifth lens 60 is concave at the near optical axis, convex at the circumference, and flat at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50.
  • the diameter of the fifth lens 60 may also be equal to the diameter of the fourth lens 50 .
  • the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 in the present application are designed to optimize the aberration of the optical lens system 100, so that the aberration of the optical lens system 100 is optimized to the minimum, thereby improving the imaging quality of the optical lens system 100; and shortening the total length of the optical lens system 100 to meet the miniaturization development trend of the optical lens system 100.
  • the right-angle prism 10 is a glass lens; the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 are all plastic lenses. Since the right-angle prism 10 is a glass lens, it can better withstand the influence of the ambient temperature on the object side. At the same time, the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 are plastic lenses, which can well reduce the weight of the optical lens system 100 and reduce the production cost. In addition, the optical lens system of the glass lens and the plastic lens is relatively The optical lens system including only plastic lenses has higher light transmittance and more stable chemical properties, which can improve the imaging quality under different light and dark contrasts.
  • the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 are aspherical lenses.
  • Aspherical lenses are beneficial for correcting the aberration of the optical lens system and improving the imaging quality of the optical lens system. They can be easily made into shapes other than spherical surfaces, obtain more control variables, and obtain the advantages of good imaging with fewer lenses, thereby reducing the number of lenses and meeting miniaturization requirements.
  • “Aspherical lens” refers to a lens with at least one aspherical surface.
  • the optical lens system 100 further includes an aperture 80.
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20.
  • the aperture value of the optical lens system 100 is 2.4.
  • the thickness range of the aperture 80 is: -0.5mm to -0.8mm.
  • the focal length of the optical lens system is in the range of 14 mm-16 mm, and the equivalent full-frame focal length of the optical lens system is in the range of 60 mm-67.5 mm, thereby achieving a 2.5x magnification function.
  • the optical lens system 100 further includes an infrared cut-off filter 90.
  • the infrared cut-off filter 90 is located between the fifth lens 60 and the imaging surface 105.
  • the infrared cut-off filter 90 has a first surface 92 and a second surface 94.
  • the infrared cut-off filter 90 can be made of glass or an optical film.
  • the infrared cut-off filter 90 is used to cut off infrared rays, achieve high transmittance of visible light, thereby blocking infrared light that interferes with imaging quality, preventing infrared rays from passing through the lens of the camera device to cause image distortion, and making the resulting image more consistent with the perception of the human eye.
  • the optical lens system further comprises a protective glass, the protective glass covers the sensor; the protective glass is used to protect the sensor.
  • the sensor is 1/1.56” inch, and the half image height (IMGH) is 5.12.
  • the optical lens system satisfies the following conditional formula:
  • FOV is the horizontal field of view of the optical lens system.
  • FOV of the optical lens system of the present application can be but not limited to 36.3°, 36.4°, 36.46°, 35.01°, 35.53°, 35.72°, 32.43°, 32.47°, 32.9°, etc.; more specifically, the optical lens system of the present application satisfies: FOV is greater than or equal to 32° and less than or equal to 38°, that is, 32° ⁇ HFOV ⁇ 38°.
  • the optical lens system satisfies the following conditional formula:
  • BFL is the back focal length of the optical lens system, that is, the back focal length of the optical lens system 100 must be greater than 5.4 mm.
  • the optical lens system satisfies the following conditional formula:
  • r1 is the radius of the object-side surface 22 of the first lens 20
  • r2 is the radius of the image-side surface 24 of the first lens 20 .
  • the optical lens system satisfies the following conditional formula:
  • d1 is the thickness of the first lens 20 at the near optical axis
  • d2 is the axial center thickness of the thickness interval between the first lens 20 and the second lens 30
  • d1 is the thickness of the first lens 20 at the near optical axis (i.e., the center) along the axial direction of the first lens 20.
  • the optical lens system satisfies the following conditional formula:
  • D is the optical effective aperture of the fifth lens 60. That is, D can be, but is not limited to, 2.90 mm, 2.92 mm, 2.85 mm, etc.
  • the optical lens system satisfies the following condition: the length from the object side surface 22 of the first lens 20 of the optical lens system to the image side surface 64 of the fifth lens 60 along the optical axis direction is less than 10 mm. That is, the length from the object side surface 22 of the first lens 20 to the image side surface 64 of the fifth lens 60 along the optical axis direction of the optical lens system can be, but not limited to, 9.5 mm, 9.6 mm, 9.8 mm, etc., so that the overall length of the optical lens system is relatively short, which is conducive to the trend of miniaturization of lenses.
  • the right-angle prism 10 provides efficient internal total reflection of incident light to the lens group of the optical lens system, the first lens 20 provides positive refractive power, the second lens 30 provides negative refractive power, the third lens 40 provides positive refractive power, the fourth lens 50 provides positive refractive power, and the fifth lens 60 provides negative refractive power.
  • the optical focal lengths of the first lens 20 to the fifth lens 60 are reasonably configured, and a clear image is obtained in combination with the image processing algorithm at the back end of the optical lens system, so that the optical lens system has a higher imaging quality.
  • optical lens system 100 of the present application is further described in detail below in conjunction with specific embodiments.
  • the optical lens system 100 of the present embodiment includes, from the object side to the image side, a right angle prism 10 with total reflection, an aperture 80, a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105.
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the first lens 20 is made of plastic with a high Abbe number material, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the aperture 80 is disposed on the flat surface; the image side surface 24 of the first lens 20 is concave.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and can be flat at the circumference; the image side surface 34 is concave.
  • the diameter of the second lens 30 is equal to the diameter of the first lens 20.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material, and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave near the optical axis L and is a plane at the circumference; the image side surface 54 is convex near the optical axis L and is a plane at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the image side surface 44 of the third lens 40 is located on the plane of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the object side surface 62 of the fifth lens 60 is located on the plane of the object side surface 62.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100 are shown in Tables 1 and 2 below.
  • FOV is the field of view angle of the optical lens system 100 in the diagonal direction
  • FNO is the aperture number of the optical lens system
  • f is the system focal length of the optical lens system 100
  • TTL is the system length of the optical lens system 100.
  • Table 2 is the aspheric surface data of the first embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the first embodiment of the present application is 15.233 mm
  • the system length (Total Track Length, TTL) is 15.58 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 36.3 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100 in the first embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100, thereby meeting the miniaturization of the optical lens system 100 and effectively correcting various aberrations, thereby having a higher imaging quality.
  • the optical lens system 100 a of the present embodiment includes, from the object side to the image side, a right-angle prism 10 with total reflection, an aperture 80 , a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105 .
  • the right-angle prism 10 is made of transparent glass and has total reflection.
  • the exit surface 102 of the right-angle prism 10 faces the object-side surface 22 of the first lens 20 , and the optical axis L is perpendicular to the exit surface 102 .
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the first lens 20 is made of plastic with a high Abbe number material, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the aperture 80 is disposed on the flat surface; the image side surface 24 of the first lens 20 is concave.
  • the second lens 30 is made of high refractive index glass and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and has a circular
  • the diameter of the second lens 30 is equal to the diameter of the first lens 20.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material, and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave near the optical axis L and is a plane at the circumference; the image side surface 54 is convex near the optical axis L and is a plane at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the image side surface 44 of the third lens 40 is located on the plane of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the object side surface 62 of the fifth lens 60 is located on the plane of the object side surface 62.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100a are shown in Tables 3 and 4 below.
  • FOV is the field angle of the optical lens system 100a in the diagonal direction
  • FNO is the aperture number of the optical lens system 100a
  • f is the system focal length of the optical lens system 100a
  • TTL is the system length of the optical lens system 100a.
  • Table 4 is the aspheric surface data of the second embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the second embodiment of the present application is 15.129 mm
  • the system length (Total Track Length, TTL) is 15.58 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 36.4 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100a in the second embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100a, thereby meeting the miniaturization of the optical lens system 100a, and effectively correcting various aberrations, and having a higher imaging quality.
  • the optical lens system 100 b of the present embodiment includes, from the object side to the image side, a right-angle prism 10 with total reflection, an aperture 80 , a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105 .
  • the right-angle prism 10 is made of transparent glass and has total reflection.
  • the exit surface 102 of the right-angle prism 10 faces the object-side surface 22 of the first lens 20 , and the optical axis L is perpendicular to the exit surface 102 .
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the first lens 20 is made of glass with a high Abbe number material, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the aperture 80 is disposed on the flat surface; the image side surface 24 of the first lens 20 is concave.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and can be flat at the circumference; the image side surface 34 is concave.
  • the diameter of the second lens 30 is equal to the diameter of the first lens 20.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material, and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave near the optical axis L and is a plane at the circumference; the image side surface 54 is convex near the optical axis L and is a plane at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the image side surface 44 of the third lens 40 is located on the plane of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50, and the projection of the outer peripheral wall of the fourth lens 50 along the optical axis L on the object side surface 62 of the fifth lens 60 is located on the plane of the object side surface 62.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100b are shown in Tables 5 and 6 below.
  • FOV is the field angle of the optical lens system 100b in the diagonal direction
  • FNO is the aperture number of the optical lens system 100b
  • f is the system focal length of the optical lens system 100b
  • TTL is the system length of the optical lens system 100b.
  • the parameters of the aspheric surfaces of the optical lens system 100b are shown in Table 6 below:
  • Table 6 is the aspheric surface data of the third embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the third embodiment of the present application is 15.12 mm
  • the system length (Total Track Length, TTL) is 15.58 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 36.46 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100 b in the third embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100 b, thereby meeting the miniaturization of the optical lens system 100 b and effectively correcting various aberrations, thereby having a higher imaging quality.
  • the optical lens system may also include more than 5 lenses as needed.
  • a transparent lens is provided on the object side of the right-angle prism of the optical lens system to protect the optical lens system.
  • the exit surface 102 of the right angle prism 10a of the optical lens system 100c of this embodiment facing the first lens 20 is set as a diffractive aspheric surface 103, that is, the exit surface of the right angle prism 10a is set as a diffractive aspheric surface 103.
  • the right angle prism 10a adopts a diffractive surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the sag of the surface; r is the radial coordinate; a 1 -a 7 are the coefficients of the even-order terms r 2 -r 14 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100c includes, from the object side to the image side, a right-angle prism 10a whose light-emitting surface is set as a diffractive aspheric surface, a first lens 20 with positive refractive power, an aperture 80, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105.
  • the right angle prism 10a is made of transparent glass, and the output surface of the right angle prism 10a is set as a diffractive aspheric surface.
  • the first lens 20 is made of plastic material with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, while the image side surface 24 is concave near the optical axis L and is flat at the circumference.
  • the aperture 80 is disposed around the image-side surface 24 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and can be a flat surface at the circumference;
  • the image side surface 34 is concave near the optical axis L and is a flat surface at the circumference.
  • the diameter of the second lens 30 is smaller than that of the first lens 20.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the direction of the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave near the optical axis L; the image side surface 54 is convex near the optical axis L and is flat at the circumference.
  • the diameter of the fourth lens 50 is smaller than that of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100 are shown in Tables 7 and 8 below.
  • FOV is the field angle of the optical lens system 100c in the diagonal direction
  • FNO is the aperture number of the optical lens system 100c
  • f is the system focal length of the optical lens system 100c
  • TTL is the system length of the optical lens system 100c.
  • Table 8 is the aspheric surface data of the fourth embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the fourth embodiment of the present application is 15.5 mm
  • the system length (Total Track Length, TTL) is 15.9 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 35.01 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100c in the fourth embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100c, thereby meeting the miniaturization of the optical lens system 100c, and effectively correcting various aberrations, and having a high imaging quality.
  • the exit surface 102 of the right angle prism 10a of the optical lens system 100d of this embodiment facing the first lens 20 is set as a diffractive aspheric surface 103, that is, the exit surface of the right angle prism 10a is set as a diffractive aspheric surface 103.
  • the right angle prism 10a adopts a diffractive surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the sag of the surface; r is the radial coordinate; a 1 -a 7 are the coefficients of the even-order terms r 2 -r 14 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100c includes, from the object side to the image side, a right-angle prism 10a whose light-emitting surface is set as a diffractive aspheric surface, a first lens 20 with positive refractive power, an aperture 80, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, A fourth lens element 50 with positive refractive power, a fifth lens element 60 with negative refractive power, an infrared cut filter 90 and an imaging surface 105 .
  • the right angle prism 10a is made of transparent glass, and the output surface of the right angle prism 10a is set as a diffractive aspheric surface.
  • the first lens 20 is made of glass with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the image side surface 24 is concave near the optical axis L.
  • the aperture 80 is disposed around the image-side surface 24 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and may be flat at the circumference; the image side surface 34 is concave near the optical axis L.
  • the diameter of the second lens 30 is equal to the diameter of the first lens 20.
  • the third lens 40 is made of glass with a high Abbe number material, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface near the optical axis L and a flat surface at the circumference;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave near the optical axis L and is flat at the circumference; the image side surface 54 is convex.
  • the diameter of the fourth lens 50 is smaller than that of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50.
  • the design parameters of the prism 10a-fifth lens 60 of the optical lens system 100 are shown in Tables 9 and 10 below.
  • FOV is the field angle of the optical lens system 100d in the diagonal direction
  • FNO is the aperture number of the optical lens system 100d
  • f is the system focal length of the optical lens system 100d
  • TTL is the system length of the optical lens system 100d.
  • the parameters of the aspheric surfaces of the optical lens system 100d are shown in Table 10 below:
  • Table 10 is the aspheric surface data of the fifth embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the fifth embodiment of the present application is 15.5 mm
  • the system length (Total Track Length, TTL) is 15.8 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 35.53 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100d in the fifth embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100d, thereby meeting the miniaturization of the optical lens system 100d, and effectively correcting various aberrations, and having a high imaging quality.
  • the right angle prism 10a of the optical lens system 100e of this embodiment faces the exit of the first lens 20.
  • the surface 102 is set as a diffractive aspheric surface 103, that is, the exit surface of the right angle prism 10a is set as a diffractive aspheric surface 103.
  • the right angle prism 10a adopts a diffractive surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the vector height of the surface; r is the radial coordinate; a 1 --a 7 are the coefficients of the even-order terms a 1 --a 7 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100e includes, from the object side to the image side, a right-angle prism 10a whose light-emitting surface is set as a diffractive aspheric surface, a first lens 20 with positive refractive power, an aperture 80, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cut-off filter 90 and an imaging surface 105.
  • the right angle prism 10a is made of transparent glass, and the output surface 102 of the right angle prism 10a is set as a diffractive aspheric surface.
  • the first lens 20 is made of plastic material with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, while the image side surface 24 is concave near the optical axis L and is flat at the circumference.
  • the aperture 80 is disposed around the image-side surface 24 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is a convex surface; the image side surface 34 is a concave surface near the optical axis L.
  • the diameter of the second lens 30 is smaller than the diameter of the first lens 20, and the projection of the outer peripheral wall of the second lens 30 on the image side surface 24 of the first lens 20 along the optical axis L is located on the concave surface.
  • the third lens 40 is made of glass with a high Abbe number material, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface near the optical axis L;
  • the diameter of the third lens 40 is smaller than the diameter of the second lens 30, and the projection of the outer peripheral wall of the third lens 40 on the image side surface 34 of the second lens 30 along the optical axis L is located on the concave surface.
  • the fourth lens 50 is made of high refractive index plastic material and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is a plane surface; the image side surface 54 is a convex surface.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is greater than the diameter of the fourth lens 50.
  • the design parameters of the prism 10a-fifth lens 60 of the optical lens system 100e are shown in Tables 11 and 12 below.
  • FOV is the field angle of the optical lens system 100e in the diagonal direction
  • FNO is the aperture number of the optical lens system 100e
  • f is the system focal length of the optical lens system 100e
  • TTL is the system length of the optical lens system 100e.
  • Table 12 is the aspheric surface data of the sixth embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the sixth embodiment of the present application is 15.23 mm
  • the system length (Total Track Length, TTL) is 15.6 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 35.72 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100e in the sixth embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100e, thereby meeting the requirements of light.
  • the optical lens system 100e is miniaturized and effectively corrects various aberrations, thereby achieving high imaging quality.
  • the exit surface 102 and the incident surface 101 of the right-angle prism 10a are both configured as diffraction surfaces, that is, the incident surface 101 and the exit surface 102 of the right-angle prism 10a are both configured as diffraction surfaces.
  • the object side surface or image side surface of at least one of the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 of the optical lens system 100f of the present embodiment is set as a diffraction surface; specifically, at least one of the object side surface 22 and the image side surface 24 of the first lens 20, the object side surface 32 and the image side surface 34 of the second lens 30, the object side surface 42 and the image side surface 44 of the third lens 400, the object side surface 52 and the image side surface 54 of the fourth lens 50 and the object side surface 62 and the image side surface 64 of the fifth lens 60 is set as a diffraction surface.
  • the object side surface 22 of the first lens 20 adopts a diffraction surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the sag of the surface; r is the radial coordinate; a 1 -a 7 are the coefficients of the even-order terms r 2 -r 14 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100f includes, from the object side to the image side, a right-angle prism 10 with total reflection, an aperture 80, a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105.
  • the right angle prism 10 is made of transparent glass, and the emission surface 102 of the right angle prism 10 is perpendicular to the optical axis of the optical lens system 100f.
  • the aperture 80 is disposed around the image-side surface 24 of the first lens 20 , and the aperture value of the optical lens system 100 is 2.4.
  • the first lens 20 is made of plastic material with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the image side surface 24 is concave.
  • the object side surface 22 is set as a diffraction surface.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex near the optical axis L and is flat at the circumference; the image side surface 34 is concave.
  • the diameter of the second lens 30 is smaller than the diameter of the first lens 20, and the projection of the outer peripheral wall of the second lens 30 on the image side surface 24 of the first lens 20 along the optical axis L is located on the concave surface.
  • the third lens 40 is made of glass with a high Abbe number and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference; the diameter of the third lens 40 is equal to the diameter of the second lens 30.
  • the diameter of lens 30 is made of glass with a high Abbe number and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 34 of the second lens 30 is a convex surface at the near optical axis L and a flat surface at the circumference
  • the diameter of the third lens 40 is equal to the diameter of the second lens 30.
  • the diameter of lens 30 is made of glass with a high Abbe number and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40
  • the fourth lens 50 is made of high refractive index plastic material and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is a concave surface
  • the image side surface 54 is a convex surface.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is equal to the diameter of the fourth lens 50.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100f are shown in Tables 13 and 14 below.
  • FOV is the field angle of the optical lens system 100f in the diagonal direction
  • FNO is the aperture number of the optical lens system 100f
  • f is the system focal length of the optical lens system 100f
  • TTL is the system length of the optical lens system 100f.
  • Table 14 is the aspheric surface data of the seventh embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the seventh embodiment of the present application is 15.35 mm
  • the system length (Total Track Length, TTL) is 15.51 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 32.43 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100f in the seventh embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100f, thereby meeting the miniaturization of the optical lens system 100f, and effectively correcting various aberrations, with high imaging quality.
  • the object side surface or image side surface of at least one of the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 of the optical lens system 100g of the present embodiment is set as a diffraction surface.
  • the object side surface 22 of the first lens 20 adopts a diffraction surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the sag of the surface; r is the radial coordinate; a 1 -a 7 are the coefficients of the even-order terms r 2 -r 14 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100g includes, from the object side to the image side, a right-angle prism 10 with total reflection, an aperture 80, a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105.
  • the right-angle prism 10 is made of transparent glass, and the emission surface 102 of the right-angle prism 10 is perpendicular to the optical axis of the optical lens system 100g.
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20 , and the aperture value of the optical lens system 100 g is 2.4.
  • the first lens 20 is made of plastic material with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the image side surface 24 is concave near the optical axis L and is flat at the circumference.
  • the object side surface 22 is set as a diffraction surface.
  • the second lens 30 is made of high refractive index plastic material and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is a convex surface
  • the image side surface 34 is a concave surface.
  • the diameter of the second lens 30 is smaller than the diameter of the first lens 20, and the projection of the outer peripheral wall of the second lens 30 on the image side surface 24 of the first lens 20 along the optical axis L is located on the concave surface.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 44 of the third lens 40 is a convex surface at the near optical axis L and a flat surface at the circumference; the diameter of the third lens 40 is equal to the diameter of the second lens 30.
  • the fourth lens 50 is made of high refractive index plastic material and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is a concave surface
  • the image side surface 54 is a convex surface near the optical axis L and a flat surface at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40.
  • the fifth lens 60 is made of plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is smaller than that of the fourth lens 50.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100g are shown in Tables 15 and 16 below.
  • FOV is the field angle of the optical lens system 100g in the diagonal direction
  • FNO is the aperture number of the optical lens system 100g
  • f is the system focal length of the optical lens system 100g
  • TTL is the system length of the optical lens system 100g.
  • the parameters of the aspheric surfaces of the optical lens system 100g are shown in Table 16 below:
  • Table 16 is the aspheric surface data of the eighth embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the eighth embodiment of the present application is 15.57 mm
  • the system length (Total Track Length, TTL) is 15.89 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 32.47 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100g in the eighth embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100g, thereby meeting the miniaturization of the optical lens system 100g, and effectively correcting various aberrations, with high imaging quality.
  • the object side surface or image side surface of at least one of the first lens 20, the second lens 30, the third lens 40, the fourth lens 50 and the fifth lens 60 of the optical lens system 100h of this embodiment is set as a diffraction surface.
  • the object side surface 22 of the first lens 20 adopts a diffraction surface design of an aspheric substrate, and the diffraction center wavelength is 555nm; wherein the aspheric equation is:
  • z is the sag of the surface; r is the radial coordinate; a 1 -a 7 are the coefficients of the even-order terms r 2 -r 14 respectively; k is the cone coefficient; and c is the curvature.
  • a 1 , A 2 and A 3 are the coefficients of different terms, and r is the radial coordinate.
  • the optical lens system 100h includes, from the object side to the image side, a right-angle prism 10 with total reflection, an aperture 80, a first lens 20 with positive refractive power, a second lens 30 with negative refractive power, a third lens 40 with positive refractive power, a fourth lens 50 with positive refractive power, a fifth lens 60 with negative refractive power, an infrared cutoff filter 90 and an imaging surface 105.
  • the right-angle prism 10 is made of transparent glass, and the emission surface 102 of the right-angle prism 10 is perpendicular to the optical axis of the optical lens system 100g.
  • the aperture 80 is disposed around the object-side surface 22 of the first lens 20 , and the aperture value of the optical lens system 100 g is 2.4.
  • the first lens 20 is made of glass with a high Abbe number, and has an object side surface 22 and an image side surface 24.
  • the object side surface 22 is convex near the optical axis L and is flat at the circumference, and the image side surface 24 is concave.
  • the object side surface 22 is set as a diffraction surface.
  • the second lens 30 is made of high refractive index plastic material, and has an object side surface 32 and an image side surface 34.
  • the object side surface 32 is convex at the near optical axis L and is a plane at the circumference; the image side surface 34 is concave at the near optical axis L and is a plane at the circumference.
  • the diameter of the second lens 30 is smaller than the diameter of the first lens 20, and the projection of the outer peripheral wall of the second lens 30 on the image side surface 24 of the first lens 20 along the optical axis L is located on the concave surface.
  • the third lens 40 is made of a plastic material with a high Abbe number, and has an object side surface 42 and an image side surface 44.
  • the object side surface 42 of the third lens 40 is a convex surface
  • the image side surface 44 of the third lens 40 is a convex surface at the near optical axis L and a flat surface at the circumference; the diameter of the third lens 40 is equal to the diameter of the second lens 30.
  • the fourth lens 50 is made of high refractive index plastic material, and has an object side surface 52 and an image side surface 54.
  • the object side surface 52 is concave at the near optical axis L and is flat at the circumference
  • the image side surface 54 is convex at the near optical axis L and is flat at the circumference.
  • the diameter of the fourth lens 50 is smaller than the diameter of the third lens 40.
  • the fifth lens 60 is made of a plastic material with a high Abbe number, and has an object side surface 62 and an image side surface 64.
  • the object side surface 62 is concave near the optical axis L and is flat at the circumference;
  • the image side surface 64 is concave near the optical axis L and is first convex and then concave at the circumference.
  • the diameter of the fifth lens 60 is equal to the diameter of the fourth lens 50.
  • design parameters of the first lens 20 to the fifth lens 60 of the optical lens system 100h are shown in Tables 17 and 18 below.
  • FOV is the field angle of the optical lens system 100h in the diagonal direction
  • FNO is the aperture number of the optical lens system 100h
  • f is the system focal length of the optical lens system 100h
  • TTL is the system length of the optical lens system 100h.
  • Table 18 is the aspheric surface data of the ninth embodiment, wherein A4-A20 are the 4th to 20th order aspheric surface coefficients of each surface.
  • the system focal length f of the ninth embodiment of the present application is 15.54 mm
  • the system length (Total Track Length, TTL) is 15.51 mm
  • the field of view (Field Of View, FOV) at the maximum image height is 32.9 degrees
  • the aperture value (f-number) is 2.4.
  • the optical lens system 100h in the ninth embodiment of the present application is conducive to ensuring that the light of the lens can have a good imaging effect, while effectively increasing the aperture value and greatly reducing the system length of the optical lens system 100h, thereby meeting the miniaturization of the optical lens system 100h, and effectively correcting various aberrations, with high imaging quality.
  • two or more object side surfaces or image side surfaces among the object side surface 22 and the image side surface 24 of the first lens 20, the object side surface 32 and the image side surface 34 of the second lens 30, the object side surface 42 and the image side surface 44 of the third lens 400, the object side surface 52 and the image side surface 54 of the fourth lens 50, and the object side surface 62 and the image side surface 64 of the fifth lens 60 are set as diffraction surfaces.
  • the object side surface 22 of the first lens 20 and the object side surface 32 of the second lens 30 of the optical lens system are both set as diffraction surfaces
  • the image side surface 34 of the second lens 30 and the object side surface 52 of the fourth lens 50 are both set as diffraction surfaces
  • the object side surface 22 of the first lens 20, the object side surface 42 of the third lens 400, and the image side surface 54 of the fourth lens 50 are all set as diffraction surfaces.
  • Figure 39 is a schematic diagram of the structure of an imaging device 300 according to an embodiment of the present application.
  • the present application also provides an imaging device 300 including any one of the above optical lens systems of the present application and a photosensitive element 310.
  • the photosensitive element 310 is located on the image side of the optical lens system.
  • the photosensitive element 310 can be a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) sensor.
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the photosensitive element 310 is 1/1.56” inch and has a half image height (IMGH) of 5.12.
  • the imaging device 300 of the present application can not only meet the demand for large image plane and long focal length photography, thereby bringing huge benefits to the performance improvement and lens yield, but also can effectively increase the aperture or reduce TTL, and perform miniaturized design.
  • FIG40 is a schematic diagram of the structure of an electronic device 500 according to an embodiment of the present application.
  • the present application also provides an electronic device 500 , which includes a housing 510 and an imaging device 300 according to the present application.
  • the imaging device 300 is installed in the housing 510 .
  • the electronic device 500 of the present application includes but is not limited to mobile phones, tablet computers, computers, laptops, monitors, vehicle-mounted imaging devices, cameras, smart watches, smart bracelets, smart glasses, e-book readers, portable multimedia players, mobile medical devices, etc.
  • the imaging device 300 of the electronic device 500 of the present application has a small thickness, which is beneficial to reducing the volume of the electronic device 500.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请提供一种光学透镜系统、取像装置及电子设备。本申请提供的光学透镜系统由物侧到像侧依次包括:具有全反射的棱镜、具有正屈折力的第一透镜、具有负屈折力的第二透镜;具有正屈折力的第三透镜、具有正屈折力的第四透镜,及具有负屈折力的第五透镜;其中,第一透镜、第二透镜、第三透镜、第四透镜及第五透镜的物侧面和像侧面均为非球面,光学透镜系统满足以下条件式:TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。本申请的光学透镜系统形成潜望长焦镜头,可以满足大像面长焦镜头的拍照需求,且在保证小型化及超薄化的同时具有较好的成像效果,提升了成像质量。

Description

光学透镜系统、取像装置及电子设备
本申请要求于2022年10月14日提交中国专利局、申请号为202211259665.5、申请名称为“光学透镜系统、取像装置及电子设备”的申请专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学透镜技术领域,特别涉及一种光学透镜系统、设有所述光学透镜的取像装置,以及设有所述取像装置的电子设备。
背景技术
随着便携式智能电子产品、汽车自动驾驶、人机界面与游戏、工业机器视觉与测量、安防监控等技术的发展,对这些设备上的摄影镜头的技术提出了更高的要求,以便满足各设备的功能。现有的手机或移动终端的摄影镜头模组镜头的长焦镜头像面偏小,对用户长距离拍摄成像体验较差,且不能满足设备小型化的要求。
发明内容
本申请提供一种光学透镜系统,其由物侧至像侧依次包括:
具有全反射的棱镜;
具有正屈折力的第一透镜;
具有负屈折力的第二透镜;
具有正屈折力的第三透镜;
具有正屈折力的第四透镜;及
具有负屈折力的第五透镜;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜的物侧面和像侧面均为非球面,所述光学透镜系统满足以下条件式:
TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。
本申请还提供一种取像装置,其包括上述的光学透镜系统及感光元件,所述感光元件位于所述光学透镜系统的像侧。
本申请还提供一种电子设备,其包括外壳及上述的取像装置,所述取像装置安装在所述外壳。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例光学透镜系统的结构示意图;
图2是图1中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图3是图1中的光学透镜系统的场曲曲线图;
图4是图1中的光学透镜系统的倍率色差曲线图;
图5是图1中的光学透镜系统的纵向球面差值曲线图;
图6是本申请第二实施例光学透镜系统的结构示意图;
图7是图6中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图8是图6中的光学透镜系统的倍率色差曲线图;
图9是图6中的光学透镜系统的纵向球面差值曲线图;
图10是本申请第三实施例光学透镜系统的结构示意图;
图11是图10中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图12是图10中的光学透镜系统的倍率色差曲线图;
图13是图10中的光学透镜系统的纵向球面差值曲线图;
图14是本申请第四实施例光学透镜系统的结构示意图;
图15是图14中的光学透镜系统的场曲曲线图;
图16是图14中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图17是图14中的光学透镜系统的纵向球面差值曲线图;
图18是图14中的光学透镜系统的倍率色差曲线图;
图19是本申请第五实施例光学透镜系统的结构示意图;
图20是图19中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图21是图20中的光学透镜系统的纵向球面差值曲线图;
图22是图20中的光学透镜系统的倍率色差曲线图;
图23是本申请第六实施例光学透镜系统的结构示意图;
图24是图23中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图25是图23中的光学透镜系统的纵向球面差值曲线图;
图26是图23中的光学透镜系统的倍率色差曲线图;
图27是本申请第七实施例光学透镜系统的结构示意图;
图28是图27中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图29是图27中的光学透镜系统的纵向球面差值曲线图;
图30是图27中的光学透镜系统的倍率色差曲线图;
图31是本申请第八实施例光学透镜系统的结构示意图;
图32是图31中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图33是图31中的光学透镜系统的纵向球面差值曲线图;
图34是图31中的光学透镜系统的倍率色差曲线图;
图35是本申请第九实施例光学透镜系统的结构示意图;
图36是图35中的光学透镜系统的F-Tan(Theta)畸变曲线图;
图37是图35中的光学透镜系统的纵向球面差值曲线图;
图38是图35中的光学透镜系统的倍率色差曲线图;
图39是本申请实施例的取像装置的结构示意图;
图40是本申请实施例的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。用语“自然状态”是指,装置或元件在不受外部力的状态,外部力例如拉力或压力等。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置在……上”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
一方面,本申请提供一种光学透镜系统,其由物侧至像侧依次包括:
具有全反射的棱镜;
具有正屈折力的第一透镜;
具有负屈折力的第二透镜;
具有正屈折力的第三透镜;
具有正屈折力的第四透镜;及
具有负屈折力的第五透镜;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜的物侧面和像侧面均为非球面,所述光学透镜系统满足以下条件式:
TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。
可选地,所述棱镜为直角棱镜,所述直角棱镜的出射面朝向所述第一透镜的物侧面,所述光学透镜系统的光轴垂直于所述出射面。
可选地,所述直角棱镜的出射面和/或入射面设置为衍射非球面。
可选地,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜中的至少一透镜的物侧面或像侧面设为衍射面。
可选地,所述光学透镜系统的光圈值为2.4。
可选地,所述光学透镜系统的焦距的范围为14mm-16mm,所述光学透镜系统的等效全画幅焦距的范围为60mm-67.5mm。
可选地,所述光学透镜系统满足以下条件式:
32°≤FOV≤38°;
其中,FOV为所述光学透镜系统的水平视场角。
可选地,所述光学透镜系统满足以下条件式:
BFL>5.4mm;
其中,BFL为光学透镜系统的后焦长度。
可选地,所述光学透镜系统满足以下条件式:
r1/r2>-0.15;
其中,r1为第一透镜的物侧面的半径,r2为第一透镜的像侧面的半径。
可选地,所述光学透镜系统满足以下条件式:
d1/d2<2.95;
其中,d1为第一透镜的近光轴处的厚度,d2为第一透镜与第二透镜之间厚度间隔。
可选地,所述光学透镜系统满足以下条件式:
D<2.95mm;
其中,D为第五透镜的光学有效口径。
可选地,从所述光学透镜系统的第一透镜的物侧面沿光轴方向至所述第五透镜的像侧面的长度小于10mm。
可选地,所述直角棱镜的出射面和/或入射面采用非球面基底的衍射面,衍射中心波长为555nm。
可选地,所述第一透镜的物侧面采用非球面基底的衍射面,衍射中心波长为555nm。
可选地,所述非球面的方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率;衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
可选地,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面,所述第一透镜的物侧面的曲率半径范围为7.6mm~8.5mm,所述第一透镜的像侧面的曲率半径范围为-80mm~-90mm。
可选地,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;所述第二透镜的物侧面的曲率半径范围为6.5mm~8mm,所述第二透镜的像侧面的曲率半径范围为3.7mm~4.2mm。
可选地,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面,所述第三透镜的物侧面的曲率半径范围为24.5mm~25.5mm,所述第三透镜的像侧面的曲率半径范围为-10mm~-10.5mm。
可选地,所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面;所述第四透镜的物侧面的曲率半径范围为55mm~105mm,所述第四透镜的像侧面的曲率半径范围为-30mm~-55mm。
可选地,所述第五透镜的物侧面在近光轴处为凹面,所述第二透镜的像侧面在近光轴处为凹面,所述第五透镜的物侧面的曲率半径范围为20mm-45mm,所述第五透镜的像侧面的曲率半径范围为4.5mm~5.5mm。
另一方面,本申请还提供一种取像装置,其包括光学透镜系统及感光元件,所述感光元件位于所述光学透镜系统的像侧;所述光学透镜系统由物侧至像侧依次包括包括具有全反射的棱镜、具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜的物侧面和像侧面均为非球面,所述光学透镜系统满足以下条件式:TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。
再一方面,本申请还提供一种电子设备,其包括壳体及取像装置,所述取像装置包括光学透镜系统及感光元件,所述感光元件位于所述光学透镜系统的像侧;所述光学透镜系统由物侧至像侧依次包括包括具有全反射的棱镜、具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜的物侧面和像侧面均为非球面,所述光学透镜系统满足以下条件式:TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距,所述取像装置安装在所述外壳。
请参阅图1,本申请实施例的光学透镜系统100适用于长焦镜头,具体地,所述光学透镜系统适可应用于手机、电脑、平板电脑、车载、监控、安防、医疗、游戏机、机器人等摄像装置的镜头。所述光学透镜系统100由物侧至像侧依次包括具有全反射的棱镜、具有正屈折力的第一透镜20,具有负屈折力的第二透镜30,具有正屈折力的第三透镜40,具有正屈折力的第四透镜50,及具有负屈折力的第五透镜60;其中,第一透镜20、第二透镜30、第三透镜40、第四透镜50及第五透镜60的物侧面和像侧面均为非球面,也就是光学透镜系统100中的所有透镜的物侧面和像侧面均为非球面,光学透镜系统100满足以下条件式:
TTL/EFL<1.05;
其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。
本申请的光学透镜系统100的第一透镜20至第五透镜60搭配棱镜对光路进行折转以实现潜望成像的功能,使得光学透镜系统100形成潜望长焦镜头,在不降低成像质量要求的情况下,可以满足大像面长焦镜头的拍照需求;由于光学透镜系统100中的TTL/EFL<1.05,降低了光学透镜系统的光学总长,从而使得本申请的光学透镜系统100在保证小型化及超薄化的同时具有较好的成像效果,实现超大广角的特性,提升了成像质量。
本申请的光学透镜系统100中,所述棱镜为具有全反射的直角棱镜10,直角棱镜10可以是但不限于玻璃或塑料等透明材料,直角棱镜10的折射率满足全反射要求;进一步地,直角棱镜10可以选择但不限于H-ZE13GT或者其他折射率更高的材料。具体地,直角棱镜10包括相互垂直的出射面102和入射面101,以及连接于出射面102与入射面101之间的底面104,即出射面102与入射面101之间的顶角θ为90度,直角棱镜10的出射面102面朝第一透镜20的物侧面,直角棱镜10的入射面101平行于光学透镜系统100的光轴L。也就是,光学透镜系统100的光轴L垂直于出射面102,光轴L平行于直角棱镜10的入射面101。光线自直角棱镜10的入射面101进入该直角棱镜10经底面104反射后,从直 角棱镜10的出射面102射出而进入第一透镜20。
本申请的光学透镜系统100中,第一透镜20可以为玻璃材质或塑料材质,本实施例中,第一透镜20采用高阿贝数材料的塑料,第一透镜20呈朝向像侧的弯月形具体地,第一透镜20具有物侧面22及像侧面24,物侧面22和像侧面24均为非球面,第一透镜20具有正屈折力。第一透镜20的物侧面22为凸面,第一透镜20的像侧面24为凹面,像侧面24为凹面,可有效的使被摄物体反射的光线能被所述光学透镜系统所获取,可加强光轴L外视场光线的汇聚,进入所述光学透镜系统的成像面。第一透镜20的物侧面22的曲率半径范围为7.6mm~8.5mm,第一透镜20的像侧面24的曲率半径范围为-80mm~-90mm;优选地,物侧面22的曲率半径为7.83mm,像侧面24的曲率半径为-87.05mm。第一透镜20的物侧面22的厚度范围及像侧面24的厚度范围均为1.1mm-1.25mm,优选地,第一透镜20的物侧面22的厚度及像侧面24的厚度均为1.22mm。第一透镜20的折射率范围为1.5-1.58,优选地,第一透镜20的折射率为1.546。第一透镜20的色散系数范围为50-55.814,优选地,第一透镜20的色散系数为55.814。第一透镜20的焦距范围为13-13.8,优选地,第一透镜20的焦距为13.22。在一些实施例中,第一透镜20的物侧面22为凸面;第一透镜20的像侧面24近光轴处为凹面,圆周处为平面。
本申请的光学透镜系统100中,第二透镜30可以为玻璃材质或塑料材质,本实施例中,第二透镜30采用高折射率塑料材料,第二透镜30呈朝向像面的弯月形;具体地,第二透镜30具有物侧面32及像侧面34,物侧面32和像侧面34均为非球面,第二透镜30具有负屈折力。第二透镜30的物侧面32为凸面,第二透镜30的像侧面34为凹面。第二透镜30的物侧面32的曲率半径范围为6.5mm~8mm,第二透镜30的像侧面34的曲率半径范围为3.7mm~4.2mm;优选地,物侧面32的曲率半径为7.88mm,像侧面34的曲率半径为4.1mm。第二透镜30的物侧面32的厚度范围及像侧面34的厚度范围均为0.75mm-0.85mm,优选地,第二透镜30的物侧面32的厚度及像侧面34的厚度均为0.824mm。第二透镜30的折射率范围为1.6-1.67,优选地,第二透镜30的折射率为1.67。第二透镜30的色散系数范围为19.39-35,优选地,第二透镜30的色散系数为19.39。第二透镜30的焦距范围为-15~-13.5,优选地,第二透镜30的焦距为-13.865。在一些实施例中,第二透镜30的物侧面32近光轴L处为凸面,圆周口处为平面;第二透镜30的像侧面34近光轴处为凹面,圆周处为平面。在一些实施例中,第二透镜30的直径小于第一透镜20的直径,第二透镜30的外周壁沿光轴L在第一透镜20的像侧面24上的投影位于像侧面24的凹面上。在一些实施例中,第二透镜30的直径也可以等于第一透镜20的直径,第一透镜20的像侧面24为凹面。
本申请的光学透镜系统100中,第三透镜40可以为玻璃材质或塑料材质,本实施例中,第三透镜40采用高阿贝数材料,第三透镜40呈朝向像面和物面均凸出的双凸形状;具体地,第三透镜40具有物侧面42及像侧面44,物侧面42和像侧面44均为非球面,第三透镜40具有正屈折力。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面。第三透镜40的物侧面42的曲率半径范围为24.5mm~25.5mm,第三透镜40的像侧面44的曲率半径范围为-10mm~-10.5mm;优选地,物侧面42的曲率半径为25.269mm,像侧面44的曲率半径为-10.21mm。第三透镜40的物侧面42的厚度范围及像侧面44的厚度范围均为1.3mm-1.7mm,优选地,第三透镜40的物侧面42的厚度及像侧面44的厚度均为1.327mm。第三透镜40的折射率范围为1.5-1.58,优选地,第三透镜40的折射率为1.546。第三透镜40的色散系数范围为50-55.814,优选地,第三透镜40的色散系数为55.814。第三透镜40的 焦距范围为13.2~13.7,优选地,第三透镜40的焦距为13.495。在一些实施例中,第三透镜40的物侧面42为凸面,第三透镜40的像侧面44近光轴处为凸面,圆周处为凹面。在一些实施例中,第三透镜40的直径小于第二透镜30的直径,第三透镜30的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于像侧面34的凹面上。在一些实施例中,第三透镜40的直径也可以等于第二透镜30的直径。
本申请的光学透镜系统100中,第四透镜50可以为玻璃材质或塑料材质,本实施例中,第三透镜40采用高折射率材料,第四透镜50呈朝向物面的弯月形;具体地,第四透镜50具有物侧面52及像侧面54,物侧面52和像侧面54均为非球面,第四透镜50具有正屈折力。第四透镜50的物侧面52为凹面,第四透镜50的像侧面54为凸面。第四透镜50的物侧面52的曲率半径范围为55mm~105mm,第四透镜50的像侧面54的曲率半径范围为-30mm~-55mm;优选地,物侧面52的曲率半径为100.27mm,像侧面54的曲率半径为-34.45mm。第四透镜50的物侧面52的厚度范围及像侧面54的厚度范围均为1.35mm-1.6mm,优选地,第四透镜50的物侧面52的厚度及像侧面54的厚度均为1.385mm。第四透镜50的折射率范围为1.6-1.67,优选地,第四透镜50的折射率为1.67。第四透镜50的色散系数范围为19.39-35,优选地,第四透镜50的色散系数为19.39。第四透镜50的焦距范围为36~43,优选地,第四透镜50的焦距为38.08。在一些实施例中,第四透镜50的物侧面52为凹面,第四透镜50的像侧面54近光轴处为凸面,圆周处为平面。在一些实施例中,第四透镜50的直径小于第三透镜40的直径。在一些实施例中,第四透镜50的直径也可以等于第三透镜40的直径。
本申请的光学透镜系统100中,第五透镜60可以为玻璃材质或塑料材质,本实施例中,第五透镜60采用高阿贝数材料,第五透镜60呈朝向物面的弯月形;具体地,第五透镜60具有物侧面62及像侧面64,物侧面62和像侧面64均为非球面,第五透镜60具有负屈折力。第五透镜60的物侧面62在近光轴L处为凹面;第五透镜60的像侧面64在近光轴L处为凹面。第五透镜60的物侧面62的曲率半径范围为20mm~45mm,第五透镜60的像侧面64的曲率半径范围为4.5mm~5.5mm;优选地,物侧面62的曲率半径为22.59mm,像侧面64的曲率半径为4.94mm。第五透镜60的物侧面62的厚度范围及像侧面64的厚度范围均为0.68mm-0.82mm,优选地,第五透镜60的物侧面62的厚度及像侧面64的厚度均为0.807mm。第五透镜60的折射率范围为1.5-1.58,优选地,第五透镜60的折射率为1.546。第五透镜60的色散系数范围为50-55.814,优选地,第五透镜60的色散系数为55.814。第五透镜60的焦距范围为-11.8~-11.2,优选地,第五透镜60的焦距为-11.78。在一些实施例中,第五透镜60的物侧面62在近光轴L处为凹面,圆周处为平面;第五透镜60的像侧面64近光轴处为凹面,圆周处为凸面,圆周处为平面。在一些实施例中,第五透镜60的直径大于第四透镜50的直径。在一些实施例中,第五透镜60的直径也可以等于第四透镜50的直径。
本申请中的第一透镜20、第二透镜30、第三透镜40、第四透镜50及第五透镜60的搭配设计以进行光学透镜系统100的像差优化,使得光学透镜系统100像差优化到最小,从而提升光学透镜系统100的成像品质;且使光学透镜系统100的系统总长缩短,以满足光学透镜系统100的小型化发展趋势。
在一些实施例中,直角棱镜10为玻璃透镜;第一透镜20、第二透镜30、第三透镜40、第四透镜50和第五透镜60均为塑料透镜。由于直角棱镜10设为玻璃透镜,能够较好地耐受物侧的环境温度影响,同时,第一透镜20、第二透镜30、第三透镜40、第四透镜50和第五透镜60为塑料透镜,能很好的降低光学透镜系统100的重量并降低生产成本。此外,玻璃透镜和塑料透镜混合的所述光学透镜系统相对 于仅包括塑料透镜的光学透镜系统具有更高的透光率和更稳定的化学性能,能够改善在不同明暗对比度下的成像品质。
在一些实施例中,第一透镜20、第二透镜30、第三透镜40、第四透镜50和第五透镜60为非球面透镜。非球面透镜有利于校正所述光学透镜系统的像差,提高所述光学透镜系统的成像品质。可以容易制作成球面以外的形状,获得更多的控制变数,以较少枚数的透镜获得良好成像的优点,进而减少透镜数量,满足小型化。“非球面透镜”指至少一面为非球面的透镜。
本实施例中,光学透镜系统100还包括光圈80,具体地,光圈80围设于第一透镜20的物侧面22的围周。优选地,光学透镜系统100的光圈值为2.4。光圈80的厚度范围是:-0.5mm~-0.8mm。
优选地,所述光学透镜系统的焦距的范围为14mm-16mm,所述光学透镜系统的等效全画幅焦距的范围为60mm-67.5mm,从而能实现2.5倍放大功能。
本申请的光学透镜系统100中,较佳地,光学透镜系统100还包括红外截止滤光片90。红外截止滤光片90位于第五透镜60与成像面105之间。红外截止滤光片90具有第一面92和第二面94。红外截止滤光片90可以为玻璃材质或光学膜,红外截止滤光片90用于截止红外线,实现可见光的高透,从而阻挡干扰成像质量的红外光,阻止红外线穿过摄像装置的镜头造成图片失真,使所成影像更加符合人眼的感觉。
本申请光学透镜系统中,较佳地,所述光学透镜系统还包括保护玻璃,所述保护玻璃覆盖于所述感应器;所述保护玻璃用于保护所述感应器。优选地,感应器为1/1.56”英寸,半像高(IMGH)为5.12。
在一些实施例中,所述光学透镜系统满足以下条件式:
32°≤FOV≤38°;
其中,FOV为所述光学透镜系统的水平视场角。具体地,本申请的光学透镜系统的FOV可以是但不限于36.3°、36.4°、36.46°、35.01°、35.53°、35.72°、32.43°、32.47°、32.9°等;更具体地,本申请所述光学透镜系统满足:FOV大于等于32°且小于等于38°,即32°≤HFOV≤38°。
在一些实施例中,所述光学透镜系统满足以下条件式:
BFL>5.4mm;
其中,BFL为光学透镜系统的后焦长度。也就是光学透镜系统100的后焦长度需大于5.4mm。
在一些实施例中,所述光学透镜系统满足以下条件式:
r1/r2>-0.15;
其中,r1为第一透镜20的物侧面22的半径,r2为第一透镜20的像侧面24的半径。
在一些实施例中,所述光学透镜系统满足以下条件式:
d1/d2<2.95;
其中,d1为第一透镜20的近光轴处的厚度,d2为第一透镜20与第二透镜30之间厚度间隔的轴向中心厚度;进一步的,d1为第一透镜20的近光轴(即中心处)沿其第一透镜20的轴向的厚度。
在一些实施例中,所述光学透镜系统满足以下条件式:
D<2.95mm;
其中,D为第五透镜60的光学有效口径。也就是说,D可以是但不限于2.90mm、2.92mm、2.85mm等。
在一些实施例中,所述光学透镜系统满足以下条件:从所述光学透镜系统的第一透镜20的物侧面22沿光轴方向至第五透镜60的像侧面64的长度小于10mm。也就是从第一透镜20的物侧面22沿所述光学透镜系统的光轴方向至第五透镜60的像侧面64的长度可以是但不限9.5mm、9.6mm、9.8mm等,从而使得所述光学透镜系统的整体长度较短,有利于镜头小型化发展的趋势。
通过直角棱镜10提供高效地内部全反射入射光给所述光学透镜系统的透镜组,第一透镜20提供正屈折力、第二透镜30提供负屈折力、第三透镜40提供正屈折力、第四透镜50提供正屈折力及第五透镜60提供负屈折力,合理配置第一透镜20至第五透镜60的光焦度,以及结合所述光学透镜系统后端的图像处理算法得到清晰的图像,以使所述光学透镜系统具有较高的成像品质。
以下结合具体实施例对本申请的光学透镜系统100做进一步详细描述。
《第一实施例》
请一并参阅图1至图5,本实施例的光学透镜系统100由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
光圈80围设于第一透镜20的物侧面22的周围,光学透镜系统100的光圈值为2.4。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,光圈80设于所述平面;第一透镜20的像侧面24为凹面。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32近光轴L处为凸面,圆周处可以为平面;像侧面34为凹面。第二透镜30的直径等于第一透镜20的直。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52近光轴L为凹面,圆周处为平面;像侧面54近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径,第四透镜50的外周壁沿光轴L在第三透镜40的像侧面44上的投影位于第三透镜40的平面。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径,第四透镜50的外周壁沿光轴L在第五透镜60的物侧面62上的投影位于所述物侧面62的平面。
在第一实施例中,光学透镜系统100的第一透镜20-第五透镜60的设计参数如下表1及表2所示。

表1中FOV为光学透镜系统100的对角线方向的视场角,FNO为所述光学透镜系统的光圈数,f为光学透镜系统100的系统焦距,TTL为光学透镜系统100的系统长度。
在第一实施例中,光学透镜系统100的各非球面之参数如下表2表示:

表2为第一实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第一实施例的系统焦距f为15.233mm,系统长度(Total Track Length,TTL)为15.58mm,最大像高处的视场角(Field Of View,FOV)为36.3度,光圈值(f-number)达2.4。
由图1至图5可知,本申请第一实施例中的光学透镜系统100有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100的系统长度,从而能满足光学透镜系统100的小型化,并有效修正各类像差,具有较高的成像品质。
《第二实施例》
请一并参阅图6至图9,本实施例的光学透镜系统100a由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10采用透明玻璃材质,直角棱镜10具有全反射,直角棱镜10的出射面102面朝第一透镜20的物侧面22,且光轴L垂直于该出射面102。
光圈80围设于第一透镜20的物侧面22的周围,光学透镜系统100的光圈值为2.4。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,光圈80设于所述平面;第一透镜20的像侧面24为凹面。
第二透镜30为高折射率玻璃材质,具有物侧面32及像侧面34。物侧面32近光轴L处为凸面,圆 周处可以为平面;像侧面34为凹面。第二透镜30的直径等于第一透镜20的直。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52近光轴L为凹面,圆周处为平面;像侧面54近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径,第四透镜50的外周壁沿光轴L在第三透镜40的像侧面44上的投影位于第三透镜40的平面。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径,第四透镜50的外周壁沿光轴L在第五透镜60的物侧面62上的投影位于所述物侧面62的平面。
在第二实施例中,光学透镜系统100a的第一透镜20-第五透镜60的设计参数如下表3及表4所示。
表3中FOV为光学透镜系统100a的对角线方向的视场角,FNO为所述光学透镜系统100a的光圈数,f为光学透镜系统100a的系统焦距,TTL为光学透镜系统100a的系统长度。
在第二实施例中,光学透镜系统100a的各非球面之参数如下表4表示:


表4为第二实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第二实施例的系统焦距f为15.129mm,系统长度(Total Track Length,TTL)为15.58mm,最大像高处的视场角(Field Of View,FOV)为36.4度,光圈值(f-number)达2.4。
由图6至图9可知,本申请第二实施例中的光学透镜系统100a有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100a的系统长度,从而能满足光学透镜系统100a的小型化,并有效修正各类像差,具有较高的成像品质。
《第三实施例》
请一并参阅图10至图13,本实施例的光学透镜系统100b由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10采用透明玻璃材质,直角棱镜10具有全反射,直角棱镜10的出射面102面朝第一透镜20的物侧面22,且光轴L垂直于该出射面102。
光圈80围设于第一透镜20的物侧面22的周围,光学透镜系统100的光圈值为2.4。
第一透镜20为高阿贝数材料的玻璃材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,光圈80设于所述平面;第一透镜20的像侧面24为凹面。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32近光轴L处为凸面,圆周处可以为平面;像侧面34为凹面。第二透镜30的直径等于第一透镜20的直径。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52近光轴L为凹面,圆周处为平面;像侧面54近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径,第四透镜50的外周壁沿光轴L在第三透镜40的像侧面44上的投影位于第三透镜40的平面。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径,第四透镜50的外周壁沿光轴L在第五透镜60的物侧面62上的投影位于所述物侧面62的平面。
在第三实施例中,光学透镜系统100b的第一透镜20-第五透镜60的设计参数如下表5及表6所示。

表5中FOV为光学透镜系统100b的对角线方向的视场角,FNO为所述光学透镜系统100b的光圈数,f为光学透镜系统100b的系统焦距,TTL为光学透镜系统100b的系统长度。
在第三实施例中,光学透镜系统100b的各非球面之参数如下表6表示:

表6为第三实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第三实施例的系统焦距f为15.12mm,系统长度(Total Track Length,TTL)为15.58mm,最大像高处的视场角(Field Of View,FOV)为36.46度,光圈值(f-number)达2.4。
由图10至图13可知,本申请第三实施例中的光学透镜系统100b有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100b的系统长度,从而能满足光学透镜系统100b的小型化,并有效修正各类像差,具有较高的成像品质。
在其他实施例中,光学透镜系统也可以根据需要包括5片以上的透镜。
在其他实施例中,光学透镜系统的直角棱镜的物侧设有透明镜片,以保护所述光学透镜系统。
《第四实施例》
请一并参阅图14至图17,本实施例的光学透镜系统100c的直角棱镜10a面朝第一透镜20的出射面102设为衍射非球面103,也就是直角棱镜10a的出射面设为衍射非球面103。直角棱镜10a采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100c由物侧至像侧依次包括出光面设为衍射非球面的直角棱镜10a、具有正屈折力的第一透镜20、光圈80、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10a采用透明玻璃材质,直角棱镜10a的出射面设为衍射非球面。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24近光轴L处为凹面,圆周处为平面。
光圈80围设于第一透镜20的像侧面24的周围,光学透镜系统100的光圈值为2.4。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32近光轴L处为凸面,圆周处可以为平面;像侧面34近光轴L处为凹面,圆周处为平面。第二透镜30的直径小于第一透镜20的直径。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L的方向在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52近光轴L为凹面;像侧面54近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径。
在第四实施例中,光学透镜系统100的第一透镜20-第五透镜60的设计参数如下表7及表8所示。

表7中FOV为光学透镜系统100c的对角线方向的视场角,FNO为所述光学透镜系统100c的光圈数,f为光学透镜系统100c的系统焦距,TTL为光学透镜系统100c的系统长度。
在第四实施例中,光学透镜系统100c的各非球面之参数如下表8表示:

表8为第四实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第四实施例的系统焦距f为15.5mm,系统长度(Total TrackLength,TTL)为15.9mm,最大像高处的视场角(Field OfView,FOV)为35.01度,光圈值(f-number)达2.4。
由图14至图17可知,本申请第四实施例中的光学透镜系统100c有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100c的系统长度,从而能满足光学透镜系统100c的小型化,并有效修正各类像差,具有较高的成像品质。
《第五实施例》
请一并参阅图18至图21,本实施例的光学透镜系统100d的直角棱镜10a面朝第一透镜20的出射面102设为衍射非球面103,也就是直角棱镜10a的出射面设为衍射非球面103。直角棱镜10a采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100c由物侧至像侧依次包括出光面设为衍射非球面的直角棱镜10a、具有正屈折力的第一透镜20、光圈80、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有 正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10a采用透明玻璃材质,直角棱镜10a的出射面设为衍射非球面。
第一透镜20为高阿贝数材料的玻璃材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24近光轴L处为凹面。
光圈80围设于第一透镜20的像侧面24的周围,光学透镜系统100的光圈值为2.4。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32近光轴L处为凸面,圆周处可以为平面;像侧面34近光轴L处为凹面。第二透镜30的直径等于第一透镜20的直径。
第三透镜40为高阿贝数材料的玻璃材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52近光轴L为凹面,圆周处为平面;像侧面54为凸面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径。
在第五实施例中,光学透镜系统100的棱镜10a-第五透镜60的设计参数如下表9及表10所示。

表9中FOV为光学透镜系统100d的对角线方向的视场角,FNO为所述光学透镜系统100d的光圈数,f为光学透镜系统100d的系统焦距,TTL为光学透镜系统100d的系统长度。
在第五实施例中,光学透镜系统100d的各非球面之参数如下表10表示:
表10为第五实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第五实施例的系统焦距f为15.5mm,系统长度(Total Track Length,TTL)为15.8mm,最大像高处的视场角(Field Of View,FOV)为35.53度,光圈值(f-number)达2.4。
由图18至图21可知,本申请第五实施例中的光学透镜系统100d有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100d的系统长度,从而能满足光学透镜系统100d的小型化,并有效修正各类像差,具有较高的成像品质。
《第六实施例》
请一并参阅图22至图25,本实施例的光学透镜系统100e的直角棱镜10a面朝第一透镜20的出射 面102设为衍射非球面103,也就是直角棱镜10a的出射面设为衍射非球面103。直角棱镜10a采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项a1--a7的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100e由物侧至像侧依次包括出光面设为衍射非球面的直角棱镜10a、具有正屈折力的第一透镜20、光圈80、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10a采用透明玻璃材质,直角棱镜10a的出射面102设为衍射非球面。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24近光轴L处为凹面,圆周处为平面。
光圈80围设于第一透镜20的像侧面24的周围,光学透镜系统100的光圈值为2.4。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32为凸面;像侧面34近光轴L处为凹面。第二透镜30的直径小于第一透镜20的直径,第二透镜30的外周壁沿光轴L在第一透镜20的像侧面24上的投影位于所述凹面。
第三透镜40为高阿贝数材料的玻璃材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面;第三透镜40的直径小于第二透镜30的直径,第三透镜40的外周壁沿光轴L在第二透镜30的像侧面34上的投影位于所述凹面。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52为平面;像侧面54为凸面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径大于第四透镜50的直径。
在第六实施例中,光学透镜系统100e的棱镜10a-第五透镜60的设计参数如下表11及表12所示。

表11中FOV为光学透镜系统100e的对角线方向的视场角,FNO为所述光学透镜系统100e的光圈数,f为光学透镜系统100e的系统焦距,TTL为光学透镜系统100e的系统长度。
在第六实施例中,光学透镜系统100e的各非球面之参数如下表12表示:

表12为第六实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第六实施例的系统焦距f为15.23mm,系统长度(Total Track Length,TTL)为15.6mm,最大像高处的视场角(Field Of View,FOV)为35.72度,光圈值(f-number)达2.4。
由图22至图25可知,本申请第六实施例中的光学透镜系统100e有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100e的系统长度,从而能满足光 学透镜系统100e的小型化,并有效修正各类像差,具有较高的成像品质。
在其他实施例中,直角棱镜10a的出射面102及入射面101均设为衍射面,即直角棱镜10a的入射面101和出射面102均设为衍射面。
《第七实施例》
请一并参阅图26至图29,本实施例的光学透镜系统100f的第一透镜20、第二透镜30、第三透镜40、第四透镜50及第五透镜60中的至少一透镜的物侧面或像侧面设为衍射面;具体地,第一透镜20的物侧面22及像侧面24、第二透镜30的物侧面32及像侧面34、第三透镜400的物侧面42及像侧面44、第四透镜50的物侧面52及像侧面54及第五透镜60的物侧面62及像侧面64中的至少一物侧面或像侧面设为的衍射面。本实施例中,第一透镜20的物侧面22采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100f由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10采用透明玻璃材质,直角棱镜10的出射面102垂直于光学透镜系统100f的光轴。
光圈80围设于第一透镜20的像侧面24的周围,光学透镜系统100的光圈值为2.4。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24为凹面。物侧面22设为衍射面。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32近光轴L为凸面,圆周处为平面;像侧面34为凹面。第二透镜30的直径小于第一透镜20的直径,第二透镜30的外周壁沿光轴L在第一透镜20的像侧面24上的投影位于所述凹面。
第三透镜40为高阿贝数材料的玻璃材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第二透镜30的像侧面34在近光轴L处为凸面,圆周处为平面;第三透镜40的直径等于第二 透镜30的直径。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52为凹面,像侧面54为凸面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径等于第四透镜50的直径。
在第七实施例中,光学透镜系统100f的第一透镜20-第五透镜60的设计参数如下表13及表14所示。
表13中FOV为光学透镜系统100f的对角线方向的视场角,FNO为所述光学透镜系统100f的光圈数,f为光学透镜系统100f的系统焦距,TTL为光学透镜系统100f的系统长度。
在第七实施例中,光学透镜系统100f的各非球面之参数如下表14表示:

表14为第七实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第七实施例的系统焦距f为15.35mm,系统长度(Total Track Length,TTL)为15.51mm,最大像高处的视场角(Field Of View,FOV)为32.43度,光圈值(f-number)达2.4。
由图26至图29可知,本申请第七实施例中的光学透镜系统100f有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100f的系统长度,从而能满足光学透镜系统100f的小型化,并有效修正各类像差,具有较高的成像品质。
《第八实施例》
请一并参阅图30至图33,本实施例的光学透镜系统100g的第一透镜20、第二透镜30、第三透镜40、第四透镜50及第五透镜60中的至少一透镜的物侧面或像侧面设为衍射面。本实施例中,第一透镜20的物侧面22采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100g由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10采用透明玻璃材质,直角棱镜10的出射面102垂直于光学透镜系统100g的光轴。
光圈80围设于第一透镜20的物侧面22的周围,光学透镜系统100g的光圈值为2.4。
第一透镜20为高阿贝数材料的塑料材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24近光轴L处为凹面,圆周处为平面。物侧面22设为衍射面。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32为凸面,像侧面34为凹面。第二透镜30的直径小于第一透镜20的直径,第二透镜30的外周壁沿光轴L在第一透镜20的像侧面24上的投影位于所述凹面。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第三透镜40的像侧面44在近光轴L处为凸面,圆周处为平面;第三透镜40的直径等于第二透镜30的直径。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52为凹面,像侧面54的像侧面54在近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62在近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径小于第四透镜50的直径。
在第八实施例中,光学透镜系统100g的第一透镜20-第五透镜60的设计参数如下表15及表16所示。

表15中FOV为光学透镜系统100g的对角线方向的视场角,FNO为所述光学透镜系统100g的光圈数,f为光学透镜系统100g的系统焦距,TTL为光学透镜系统100g的系统长度。
在第八实施例中,光学透镜系统100g的各非球面之参数如下表16表示:

表16为第八实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第八实施例的系统焦距f为15.57mm,系统长度(Total Track Length,TTL)为15.89mm,最大像高处的视场角(Field Of View,FOV)为32.47度,光圈值(f-number)达2.4。
由图30至图33可知,本申请第八实施例中的光学透镜系统100g有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100g的系统长度,从而能满足光学透镜系统100g的小型化,并有效修正各类像差,具有较高的成像品质。
《第九实施例》
请一并参阅图34至图38,本实施例的光学透镜系统100h的第一透镜20、第二透镜30、第三透镜40、第四透镜50及第五透镜60中的至少一透镜的物侧面或像侧面设为衍射面。本实施例中,第一透镜20的物侧面22采用非球面基底的衍射面设计,衍射中心波长为555nm;其中非球面方程式为:
其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率。
衍射面的相位函数方程式为:
Φ(r)=2π(A1r2+A2r4+A3r6+...)
其中A1、A2及A3分别为不同项的系数,r为径向坐标。
衍射面系数:
衍射阶:1;
构造波长:555nm;
本实施例中,光学透镜系统100h由物侧至像侧依次包括具有全反射的直角棱镜10、光圈80、具有正屈折力的第一透镜20、具有负屈折力的第二透镜30、具有正屈折力的第三透镜40、具有正屈折力的第四透镜50、具有负屈折力的第五透镜60、红外截止滤光片90及成像面105。
直角棱镜10采用透明玻璃材质,直角棱镜10的出射面102垂直于光学透镜系统100g的光轴。
光圈80围设于第一透镜20的物侧面22的周围,光学透镜系统100g的光圈值为2.4。
第一透镜20为高阿贝数材料的玻璃材质,具有物侧面22及像侧面24。物侧面22近光轴L处为凸面,圆周处为平面,像侧面24为凹面。物侧面22设为衍射面。
第二透镜30为高折射率塑料材质,具有物侧面32及像侧面34。物侧面32在近光轴L处为凸面,圆周处为平面;像侧面34在近光轴L处为凹面,圆周处为平面。第二透镜30的直径小于第一透镜20的直径,第二透镜30的外周壁沿光轴L在第一透镜20的像侧面24上的投影位于所述凹面。
第三透镜40为高阿贝数材料的塑料材质,具有物侧面42及像侧面44。第三透镜40的物侧面42为凸面,第三透镜40的像侧面44在近光轴L处为凸面,圆周处为平面;第三透镜40的直径等于第二透镜30的直径。
第四透镜50为高折射率塑料材质,具有物侧面52及像侧面54。物侧面52在近光轴L处为凹面,圆周处为平面,像侧面54的像侧面54在近光轴L处为凸面,圆周处为平面。第四透镜50的直径小于第三透镜40的直径。
第五透镜60为高阿贝数材料的塑料材质,具有物侧面62及像侧面64。物侧面62在近光轴L处为凹面,圆周处为平面;像侧面64近光轴L处为凹面,圆周处先为凸面再为凹面。第五透镜60的直径等于第四透镜50的直径。
在第九实施例中,光学透镜系统100h的第一透镜20-第五透镜60的设计参数如下表17及表18所示。

表17中FOV为光学透镜系统100h的对角线方向的视场角,FNO为所述光学透镜系统100h的光圈数,f为光学透镜系统100h的系统焦距,TTL为光学透镜系统100h的系统长度。
在第九实施例中,光学透镜系统100h的各非球面之参数如下表18表示:

表18为第九实施例的非球面数据,其中,A4-A20为各表面第4-20阶非球面系数。
基于前述设计,本申请的第九实施例的系统焦距f为15.54mm,系统长度(Total Track Length,TTL)为15.51mm,最大像高处的视场角(Field Of View,FOV)为32.9度,光圈值(f-number)达2.4。
由图34至图38可知,本申请第九实施例中的光学透镜系统100h有利于保证镜头的光线能有较好的成像效果的同时,有效地增大了光圈值,大大降低了光学透镜系统100h的系统长度,从而能满足光学透镜系统100h的小型化,并有效修正各类像差,具有较高的成像品质。
在其他实施例中,第一透镜20的物侧面22及像侧面24、第二透镜30的物侧面32及像侧面34、第三透镜400的物侧面42及像侧面44、第四透镜50的物侧面52及像侧面54及第五透镜60的物侧面62及像侧面64中的两个或两个以上物侧面或像侧面设为的衍射面。例如,光学透镜系统的第一透镜20的物侧面22和第二透镜30的物侧面32均设为衍射面、第二透镜30的像侧面34和第四透镜50的物侧面52均设为衍射面,或者第一透镜20的物侧面22、第三透镜400的物侧面42及第四透镜50的像侧面54均设为衍射面。
请参阅图39,图39是本申请实施例的取像装置300的结构示意图。本申请还提供取像装置300包括本申请的上述任意一光学透镜系统及感光元件310。感光元件310位于该光学透镜系统的像侧。
本申请中感光元件310可以为感光耦合元件(Charge Coupled Device,CCD),也可以为互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS sensor)。优选地,感光元件310为1/1.56”英寸,半像高(IMGH)为5.12。
本申请的取像装置300不仅能实现大像面长焦拍照需求,进而对性能的提升以及镜头的良率带来巨大收益,且能有效增大光圈或者降低TTL,进行小型化设计。
所述取像装置300的其他特征描述请参考上述描述,在此不再赘述。
请参阅图40,图40是本申请实施例的电子设备500的结构示意图。本申请还提供一种电子设备500,其包括外壳510及本申请的取像装置300。所述取像装置300安装在所述外壳510。
本申请的电子设备500包括但不限于手机、平板电脑、电脑、笔记本电脑、显示器、车载取像装置、相机、智能手表、智能手环、智能眼镜、电子书籍阅读器、便携多媒体播放器、移动医疗装置等。
本申请的电子设备500的取像装置300厚度小,有利于减小电子设备500的体积。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 一种光学透镜系统,其特征在于,其由物侧至像侧依次包括:
    具有全反射的棱镜;
    具有正屈折力的第一透镜;
    具有负屈折力的第二透镜;
    具有正屈折力的第三透镜;
    具有正屈折力的第四透镜;及
    具有负屈折力的第五透镜;
    其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜的物侧面和像侧面均为非球面,所述光学透镜系统满足以下条件式:
    TTL/EFL<1.05;其中,TTL为光学透镜系统的光学总长,EFL为光学透镜系统的有效焦距。
  2. 根据权利要求1所述的光学透镜系统,其特征在于,所述棱镜为直角棱镜,所述直角棱镜的出射面朝向所述第一透镜的物侧面,所述光学透镜系统的光轴垂直于所述出射面。
  3. 根据权利要求2所述的光学透镜系统,其特征在于,所述直角棱镜的出射面和/或入射面设置为衍射非球面。
  4. 根据权利要求2所述的光学透镜系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜及所述第五透镜中的至少一透镜的物侧面或像侧面设为衍射面。
  5. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统的光圈值为2.4。
  6. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统的焦距的范围为14mm-16mm,所述光学透镜系统的等效全画幅焦距的范围为60mm-67.5mm。
  7. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    32°≤FOV≤38°;
    其中,FOV为所述光学透镜系统的水平视场角。
  8. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    BFL>5.4mm;
    其中,BFL为光学透镜系统的后焦长度。
  9. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    r1/r2>-0.15;
    其中,r1为第一透镜的物侧面的半径,r2为第一透镜的像侧面的半径。
  10. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    d1/d2<2.95;
    其中,d1为第一透镜的近光轴处的厚度,d2为第一透镜与第二透镜之间厚度间隔。
  11. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,所述光学透镜系统满足以下条件式:
    D<2.95mm;
    其中,D为第五透镜的光学有效口径。
  12. 根据权利要求1-4任意一项所述的光学透镜系统,其特征在于,从所述光学透镜系统的第一透镜的物侧面沿光轴方向至所述第五透镜的像侧面的长度小于10mm。
  13. 根据权利要求3所述的光学透镜系统,其特征在于,所述直角棱镜的出射面和/或入射面采用非球面基底的衍射面,衍射中心波长为555nm。
  14. 根据权利要求4所述的光学透镜系统,其特征在于,所述第一透镜的物侧面采用非球面基底的衍射面,衍射中心波长为555nm。
  15. 根据权利要求13或14所述的光学透镜系统,其特征在于,所述非球面的方程式为:
    其中,z为曲面的矢高;r为径向坐标;a1--a7分别为偶次项r2--r14的系数;k为圆锥系数;c为曲率;衍射面的相位函数方程式为:
    Φ(r)=2π(A1r2+A2r4+A3r6+...)
    其中A1、A2及A3分别为不同项的系数,r为径向坐标。
  16. 根据权利要求1所述的光学透镜系统,其特征在于,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面,所述第一透镜的物侧面的曲率半径范围为7.6mm~8.5mm,所述第一透镜的像侧面的曲率半径范围为-80mm~-90mm。
  17. 根据权利要求1所述的光学透镜系统,其特征在于,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;所述第二透镜的物侧面的曲率半径范围为6.5mm~8mm,所述第二透镜的像侧面的曲率半径范围为3.7mm~4.2mm。
  18. 根据权利要求1所述的光学透镜系统,其特征在于,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面,所述第三透镜的物侧面的曲率半径范围为24.5mm~25.5mm,所述第三透镜的像侧面的曲率半径范围为-10mm~-10.5mm。
  19. 根据权利要求1所述的光学透镜系统,其特征在于,所述第四透镜的物侧面为凹面,所述第四透镜的像侧面为凸面;所述第四透镜的物侧面的曲率半径范围为55mm~105mm,所述第四透镜的像侧面的曲率半径范围为-30mm~-55mm。
  20. 根据权利要求1所述的光学透镜系统,其特征在于,所述第五透镜的物侧面在近光轴处为凹面,所述第二透镜的像侧面在近光轴处为凹面,所述第五透镜的物侧面的曲率半径范围为20mm-45mm,所述第五透镜的像侧面的曲率半径范围为4.5mm~5.5mm。
  21. 一种取像装置,其特征在于,包括:
    权利要求1-20任一项所述的光学透镜系统;及
    感光元件,所述感光元件位于所述光学透镜系统的像侧。
  22. 一种电子设备,其特征在于,包括:
    外壳;及
    权利要求21所述的取像装置,所述取像装置安装在所述外壳。
PCT/CN2023/117056 2022-10-14 2023-09-05 光学透镜系统、取像装置及电子设备 WO2024078202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211259665.5A CN115576081A (zh) 2022-10-14 2022-10-14 光学透镜系统、取像装置及电子设备
CN202211259665.5 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024078202A1 true WO2024078202A1 (zh) 2024-04-18

Family

ID=84584546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117056 WO2024078202A1 (zh) 2022-10-14 2023-09-05 光学透镜系统、取像装置及电子设备

Country Status (2)

Country Link
CN (1) CN115576081A (zh)
WO (1) WO2024078202A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115576081A (zh) * 2022-10-14 2023-01-06 Oppo广东移动通信有限公司 光学透镜系统、取像装置及电子设备
CN117826376B (zh) * 2024-03-05 2024-06-11 江西联益光学有限公司 一种光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927939A (zh) * 2018-09-20 2020-03-27 南昌欧菲精密光学制品有限公司 光学成像系统、取像模组和电子装置
CN111308668A (zh) * 2020-04-03 2020-06-19 南昌欧菲精密光学制品有限公司 光学系统、镜头模组及终端设备
CN112505897A (zh) * 2020-12-18 2021-03-16 江西晶超光学有限公司 光学成像系统、取像模组及电子装置
CN112904528A (zh) * 2019-12-03 2021-06-04 江西晶超光学有限公司 光学成像系统、取像模组和电子设备
CN113759516A (zh) * 2021-09-23 2021-12-07 诚瑞光学(苏州)有限公司 摄像光学镜头
CN113777758A (zh) * 2021-09-24 2021-12-10 诚瑞光学(苏州)有限公司 摄像光学镜头
CN115576081A (zh) * 2022-10-14 2023-01-06 Oppo广东移动通信有限公司 光学透镜系统、取像装置及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249838A (ja) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp 結像光学系
CN111352220B (zh) * 2020-05-26 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927939A (zh) * 2018-09-20 2020-03-27 南昌欧菲精密光学制品有限公司 光学成像系统、取像模组和电子装置
CN112904528A (zh) * 2019-12-03 2021-06-04 江西晶超光学有限公司 光学成像系统、取像模组和电子设备
CN111308668A (zh) * 2020-04-03 2020-06-19 南昌欧菲精密光学制品有限公司 光学系统、镜头模组及终端设备
CN112505897A (zh) * 2020-12-18 2021-03-16 江西晶超光学有限公司 光学成像系统、取像模组及电子装置
CN113759516A (zh) * 2021-09-23 2021-12-07 诚瑞光学(苏州)有限公司 摄像光学镜头
CN113777758A (zh) * 2021-09-24 2021-12-10 诚瑞光学(苏州)有限公司 摄像光学镜头
CN115576081A (zh) * 2022-10-14 2023-01-06 Oppo广东移动通信有限公司 光学透镜系统、取像装置及电子设备

Also Published As

Publication number Publication date
CN115576081A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN211506003U (zh) 摄像镜头
TWI404972B (zh) 成像光學鏡組
TWI401467B (zh) 影像擷取透鏡組
TWI424217B (zh) 影像擷取鏡頭組
WO2024078202A1 (zh) 光学透镜系统、取像装置及电子设备
TW201344235A (zh) 影像擷取系統鏡片組
KR20160089743A (ko) 촬영 렌즈 및 이를 포함하는 촬영 장치
CN112180554B (zh) 光学镜头、摄像模组以及终端
CN111338063A (zh) 光学系统、镜头模组和电子设备
CN113391430A (zh) 光学系统、镜头模组和电子设备
WO2021196030A1 (zh) 光学系统、镜头模组和电子设备
CN211554450U (zh) 光学系统、摄像模组及电子装置
CN112285885A (zh) 光学成像系统、取像模组及电子装置
CN115437128A (zh) 一种光学镜头、摄像头模组及电子设备
CN211263926U (zh) 光学系统、摄像模组及电子装置
WO2023071480A1 (zh) 光学透镜系统、取像装置及电子设备
CN213122416U (zh) 光学系统、镜头模组和电子设备
CN214474193U (zh) 光学系统、摄像模组及电子设备
CN211786337U (zh) 光学系统、镜头模组及终端设备
CN214474191U (zh) 光学成像镜头、摄像模组及电子设备
TWI442128B (zh) 薄型化攝影透鏡組
WO2022088086A1 (zh) 光学成像系统、取像模组及电子装置
CN114740604A (zh) 光学系统、摄像模组和电子设备
CN211826689U (zh) 光学系统、镜头模组和电子设备
CN210401819U (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876407

Country of ref document: EP

Kind code of ref document: A1