WO2024078185A1 - 一种终端天线 - Google Patents

一种终端天线 Download PDF

Info

Publication number
WO2024078185A1
WO2024078185A1 PCT/CN2023/116554 CN2023116554W WO2024078185A1 WO 2024078185 A1 WO2024078185 A1 WO 2024078185A1 CN 2023116554 W CN2023116554 W CN 2023116554W WO 2024078185 A1 WO2024078185 A1 WO 2024078185A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
feeding
differential mode
wavelength
Prior art date
Application number
PCT/CN2023/116554
Other languages
English (en)
French (fr)
Inventor
周大为
李元鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024078185A1 publication Critical patent/WO2024078185A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the field of antenna technology, and in particular to a terminal antenna.
  • Electronic devices can provide wireless communication functions through antennas installed therein. With the development of electronic devices, the requirements for wireless communication quality are getting higher and higher. At the same time, the concentration of electronic devices is getting higher and higher, and the design space left for antennas is getting more and more limited. Therefore, the antennas in electronic devices need to provide better radiation performance and have smaller size.
  • the embodiment of the present application provides a terminal antenna.
  • the antenna solution achieves the effect of high radiation performance when the radiator is smaller than 1/2 wavelength through the antenna design of the present invention.
  • a terminal antenna which is applied to an electronic device.
  • the antenna includes a first radiator, the length of which is less than a first value, and the first value corresponds to 1/2 wavelength of the antenna operating frequency.
  • a first feeding point and a second feeding point are respectively provided at both ends of the first radiator, and the first feeding point and the second feeding point are respectively connected to two signal output ends of a differential mode feeding structure, and the two signal output ends have different polarities, and the two signals are equal-amplitude and anti-phase signals.
  • the antenna can be excited on the radiator whose length is less than 1/2 wavelength.
  • port matching can also be performed before the differential mode feed is fed into the radiator, so that the feed signal can match the antenna port and achieve better radiation performance in the working frequency band.
  • the feed signal output by the differential mode feeding structure and then input to the first radiator has a high impedance port characteristic.
  • the high impedance port characteristic is achieved by a series capacitor.
  • the capacitor can be used to adjust the impedance characteristics of the signal so that the signal input to the radiator can have a high impedance characteristic.
  • other methods can also be used to make the signal input to the radiator have a high impedance characteristic.
  • the length of the first radiator is less than or equal to 1/4 wavelength of the operating frequency.
  • the length of the first radiator is less than or equal to 1/8 wavelength of the operating frequency.
  • the smaller the length of the radiator the smaller the maximum current amplitude difference on the radiator.
  • the maximum current amplitude difference can be adjusted to a smaller range, thereby obtaining a better radiation effect.
  • the differential mode feeding structure includes: a first feed source and a second feed source, wherein the first pole of the first feed source is coupled to the first feeding point, and the second pole of the second feed source is coupled to the second feeding point.
  • the second pole is a negative pole.
  • the first pole is a negative pole and the second pole is a positive pole.
  • the differential mode feeding structure includes a third feed source, a first pole of the third feed source is coupled to the first feeding point, and the first pole of the third feed source is coupled to the second feeding point via an inverting component, and the inverting component is used to provide a 180-degree inverting function.
  • the first radiator in the present application can be excited by a differential mode feeding structure with a single feed source or a differential mode feeding structure with a dual feed source.
  • a matching circuit is provided between the differential-mode feeding structure and the first radiator, and the matching circuit is used to adjust the feeding signal output by the differential-mode feeding structure to a high-impedance port characteristic.
  • the antenna when the antenna is working, the antenna works in a 0.5 times wavelength mode.
  • the antenna can work in a fundamental mode.
  • the maximum current amplitude difference on the first radiator is less than a second value
  • the second value is the maximum current amplitude difference on the radiator when the dipole antenna is working
  • the radiator length of the dipole antenna is the first value
  • the first radiator is in a long strip shape, and a straight line where a long side of the first radiator lies is parallel to a reference ground.
  • the first radiator includes a first part, a second part and a third part connected in sequence, the first part being perpendicular to a reference ground and the third part being perpendicular to the reference ground, and the second part being arranged between the first part and the third part.
  • the middle position of the first radiator also includes a grounding branch.
  • the electrical length of the radiator can be less than 1/2 of the working wavelength.
  • the first radiator is divided into at least two radiating units by at least one gap. Two ends of each radiating unit are respectively connected to two signal output ends of the differential mode feeding structure. The output ends of the differential mode feeding structure connected to the same side of any two radiating units have the same polarity.
  • the size of the gap is within the range of [0.1 mm, 5 mm].
  • the maximum current amplitude difference on each radiating unit can be further reduced, thereby improving the overall radiation performance of the antenna.
  • At least one capacitor is connected in series with the first radiator.
  • at least a portion of the first radiator is included between any two of the capacitors.
  • the maximum current amplitude difference on the radiator is further reduced. It can be understood that when multiple capacitors are connected in series on the first radiator, any two capacitors may not be connected to each other. For example, any two capacitors can be connected through a part of the first radiator. This can better adjust the maximum current amplitude difference. The more capacitors there are, the better the corresponding effect.
  • a terminal antenna which is applied to an electronic device.
  • the antenna includes a first radiator, the length of the first radiator is a first value, and the first value corresponds to 1/2 wavelength of the antenna operating frequency.
  • the first radiator is provided with a first feeding point and a second feeding point at both ends, respectively, and the first feeding point and the second feeding point are respectively connected to two signal output ends of a differential mode feeding structure, the two signal output ends have different polarities, and the two signals are equal amplitude and anti-phase signals.
  • the feeding signal output by the differential mode feeding structure and then input to the first radiator has a high impedance port characteristic, wherein the high impedance port characteristic is realized by a series capacitor.
  • a new feeding form is provided, such as high-impedance differential mode feeding provided at both ends of the radiator. Based on this feeding form, the excitation of the 0.5 wavelength mode of the dipole antenna can also be achieved.
  • an electronic device in a third aspect, is provided, the electronic device being provided with a terminal antenna as provided in the first aspect and any one of its possible designs, or a terminal antenna as provided in the second aspect.
  • the electronic device transmits or receives a signal, the signal is transmitted or received through the terminal antenna.
  • FIG1 is a schematic diagram of an antenna link in an electronic device
  • FIG2 is a schematic diagram of feeding a dipole antenna
  • FIG3 is a schematic diagram of feeding a dipole antenna
  • FIG4 is a schematic diagram of a terminal antenna solution provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of eigenmode current distribution of a dipole antenna provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of current amplitude distribution of a dipole antenna provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of current amplitude distribution of a dipole antenna with differential-mode feeding at both ends provided in an embodiment of the present application;
  • FIG8 is a matching schematic diagram of a dipole antenna with differential-mode feeding at both ends provided in an embodiment of the present application;
  • FIG9 is a schematic diagram of a current amplitude difference of a dipole antenna provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the current amplitude difference of an antenna with two-terminal differential-mode feeding provided by an embodiment of the present application;
  • FIG11 is a simulation schematic diagram of an antenna solution provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a simulation of S11 in an unmatched state provided by an embodiment of the present application.
  • FIG13 is a schematic diagram of an S parameter simulation in a high impedance matching state of a port provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of a current distribution simulation in a high-impedance matching state of a port provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of a magnetic field simulation in a high-impedance matching state of a port provided in an embodiment of the present application
  • FIG16 is a schematic diagram of a directional diagram simulation in a high-impedance matching state of a port provided in an embodiment of the present application
  • FIG17 is a simulation schematic diagram of an antenna solution provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of the structures of two terminal antennas provided in an embodiment of the present application.
  • FIG19 is a schematic diagram of the structure of a terminal antenna provided in an embodiment of the present application.
  • FIG20 is a schematic diagram of the structure of a terminal antenna provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of a terminal antenna provided in an embodiment of the present application.
  • FIG. 22 is a schematic diagram of the structure of a terminal antenna provided in an embodiment of the present application.
  • At least one antenna connected to a feed source may be provided in the electronic device.
  • the antenna may realize the function of radiating or receiving electromagnetic waves under the excitation of the feed source, thereby enabling the electronic device to provide the above-mentioned wireless communication function.
  • the antennas provided in the electronic device may be in various forms. However, these different antenna forms may be derived from several basic antennas.
  • the basic antennas may include dipole antennas, monopole antennas, slot antennas, etc.
  • antenna forms such as dipole antennas and monopole antennas that radiate through radiators can also be called wire antennas.
  • antenna forms such as slot antennas that radiate through slots surrounded by metal materials can also be called slot antennas.
  • the radiator of the dipole antenna may include a radiator 21 and a radiator 22, each corresponding to a 1/4 wavelength size of the working frequency band.
  • the long sides of the radiator 21 and the radiator 22 may be arranged in parallel, such as on the same straight line.
  • the ends of the radiator 21 and the radiator 22 that are close to each other may be respectively provided with a feeding point.
  • the differential mode feeding can include two feed sources, such as feed source 23 and feed source 24.
  • the positive pole of one feed source (such as feed source 23) in the differential mode feeding can be connected to the feeding point of a radiator (such as radiator 21).
  • the negative pole of another feed source (such as feed source 24) in the differential mode feeding can be connected to the feeding point of another radiator (such as radiator 22).
  • the ends of the two feed sources away from the radiator are respectively coupled to the ground.
  • the radiator of the dipole antenna may include a radiator 21 and a radiator 22, each corresponding to a 1/4 wavelength size of the working frequency band.
  • the long sides of the radiator 21 and the radiator 22 may be arranged in parallel, such as on the same straight line. Feeding points may be respectively arranged at the ends of the radiator 21 and the radiator 22 that are close to each other.
  • the positive and negative electrodes of the feed source can be coupled to the feeding points of the radiator 21 and the radiator 22, respectively.
  • the positive electrode of the feed source 25 can be coupled to the feeding point of the radiator 21, and the negative electrode of the feed source 25 can be coupled to the feeding point of the radiator 22.
  • the dipole antenna can be excited by the excitation method shown in Figure 2 or Figure 3. Therefore, when the dipole antenna or other antenna forms derived from the dipole antenna are set in an electronic device, it can work in the fundamental mode (such as 1/2 wavelength mode) or high-order mode (such as 1 times wavelength mode, 3/2 times wavelength mode, etc.) through the excitation method shown in Figure 2 or Figure 3 to achieve coverage of the working frequency band.
  • the fundamental mode such as 1/2 wavelength mode
  • high-order mode such as 1 times wavelength mode, 3/2 times wavelength mode, etc.
  • the radiator length corresponds to 1/2 wavelength of the working frequency band.
  • the embodiments of the present application provide a new terminal antenna form.
  • the antenna can have a radiator size smaller than 1/2 wavelength and can provide good radiation performance.
  • FIG4 is a schematic diagram of a terminal antenna provided in an embodiment of the present application.
  • the antenna can be fed from both ends of the radiator in the form of differential mode feeding to excite the operation of the antenna.
  • the radiator of the antenna may include a radiator 31 having a size smaller than 1/2 wavelength of the working frequency band.
  • differential mode feeding can be interpreted as: feeding equal-amplitude and anti-phase feeding signals into the two feeding points of the antenna at the same time to excite the antenna.
  • the two feeding points of the antenna can be respectively set at the ends of the two ends of the radiator 31.
  • the following first discusses the antenna scheme provided in the embodiment of the present application from the perspective of the antenna eigenmode, the differential mode feeding
  • the scheme mechanism is illustrated by way of example.
  • FIG5 shows a schematic diagram of the eigenmode current distribution of a dipole antenna, and the dipole antenna is shown in FIG2 or FIG3.
  • the antenna radiator is taken as radiator 11, and the length corresponds to 1/2 wavelength of the working frequency band as an example.
  • the eigenmode current distribution of the dipole antenna in 1/2 wavelength mode (fundamental mode), 1 wavelength mode, 1.5 wavelength mode, and 2 wavelength mode are respectively given.
  • the current amplitude schematic curve represents the current distribution on the radiator. According to the figure, the farther the curve is from the radiator, the larger the corresponding current amplitude is, and the larger the current is. Conversely, the closer the current amplitude schematic curve is to the radiator, the smaller the corresponding current amplitude is, and the smaller the current is.
  • the antenna radiator may include two points with smaller current amplitudes (hereinafter referred to as small current points) and one point with larger current amplitude (hereinafter referred to as large current point).
  • small current points may be located in the middle of the radiator, and the points with smaller current amplitude may be located at both ends of the radiator.
  • large current point may be located in the middle of the radiator, and the points with smaller current amplitude may be located at both ends of the radiator.
  • the antenna radiator may include three small current points and two large current points.
  • the large current points are located in the middle of the left half and the right half of the radiator, and the positions of the small current points may include the two ends of the radiator and the middle of the two large current points.
  • the antenna radiator may include four small current points and three large current points.
  • the two ends of the radiator are small current points.
  • the small current points and the large current points are alternately distributed on the radiator.
  • the antenna radiator may include five small current points and four large current points.
  • the two ends of the radiator are small current points.
  • the small current points and the large current points are alternately distributed on the radiator.
  • the middle position of the radiator is the point where the current is large.
  • the middle position of the radiator is the point where the current is small. N is a positive integer.
  • the positional relationship between the large current point and the small current point cannot determine the direction of the current flow.
  • the current intensity can change periodically, while the direction of the current flow can remain unchanged.
  • the direction of the current flow can also have an inverting point.
  • a corresponding feed source may be provided to achieve excitation of the corresponding mode.
  • the excitation of the corresponding wavelength mode on the radiator can be achieved.
  • the low-resistance feed source may include a 50 ohm feed source or a 75 ohm feed source.
  • each mode take the fundamental mode (1/2 wavelength) as an example.
  • the radiator 11 can be divided into two radiators of 1/4 wavelength size from the middle position, such as the radiator 21 and the radiator 22 in the aforementioned example.
  • a single feed source (such as feed source 23) can be connected at the point where the current of the fundamental mode corresponding to the eigenmode is large (such as between the radiator 21 and the radiator 22), or a differential mode feed can be connected as shown in Figure 2, thereby exciting the dipole antenna to operate in the 1/2 wavelength mode.
  • the dipole antenna can generate a resonance of the 1/2 wavelength mode corresponding to the electrical length of its radiator to cover the working frequency band.
  • the dipole antenna scheme shown in Figure 2 or Figure 3 can be obtained.
  • the high impedance can be an impedance state corresponding to the impedance matching condition close to an open circuit.
  • the high impedance feed source can include a 200 ohm feed source or a 500 ohm feed source.
  • a high-resistance differential mode feed source can be connected to each of the points where the intrinsic mode current corresponding to the fundamental mode is small (such as the two ends of the radiator 11).
  • the two differential mode feed sources can constitute a differential mode feeding structure for the radiator 11.
  • a current distribution with a large current in the middle and small currents on both sides can be excited on the radiator 11, which is the same as the intrinsic mode current distribution of the fundamental mode as shown in Figure 5.
  • the differential mode feeding as shown in Figure 7 the excitation of the 1/2 wavelength mode of the dipole antenna can be achieved.
  • the high-impedance feed source may include any of the following two types:
  • the port characteristics of the signal source emitted by the low-impedance feed source are matched to a high-impedance state through the matching circuit.
  • components such as capacitors can be set in series in the matching circuit to achieve the adjustment of the port impedance.
  • the differential mode feeding structure may include a feed source 81 and a feed source 82 that output an equal-amplitude anti-phase feed signal to the radiator.
  • Matching circuits may be respectively set between the two feed sources and the radiator that respectively provide equal-amplitude anti-phase.
  • a matching circuit M1 is set between the feed source 81 and one end of the radiator 11.
  • a matching circuit M2 is set between the feed source 82 and the other end of the radiator 11.
  • the signals emitted by the feed source 81 and the feed source 82 have high-impedance port characteristics and are connected to the two ends of the radiator 11. In this way, the setting of high-impedance differential mode feeding at both ends of the radiator (such as the radiator 11) of the dipole antenna is realized.
  • FIG. 7 and FIG. 8 are only a schematic diagram of the fundamental mode excitation of the dipole antenna.
  • the high-impedance differential mode feeding provided in the embodiment of the present application can also be used to effectively excite the corresponding mode at the point where the intrinsic mode current is small.
  • the setting method can refer to the description of the above-mentioned FIG. 7 and FIG. 8, which will not be repeated here.
  • the feeding mechanism of the high-impedance differential mode feeding is different from that of the ordinary feeding form, making the excitation mode of the existing antenna more diversified.
  • the feeding of other derivative antenna forms corresponding to the dipole antenna can also refer to the scheme of high-impedance differential mode feeding at the point where the intrinsic mode current is small provided in this application, and flexibly select the feeding mechanism.
  • high-impedance differential mode feeding is referred to as differential mode feeding.
  • the differential mode feeding scheme mechanism provided in the embodiment of the present application is exemplarily described from the perspective of the antenna eigenmode. Based on the differential mode feeding mechanism, the implementation of the antenna scheme with a smaller size (such as less than 1/2 wavelength) provided in the embodiment of the present application is described below.
  • the dipole antenna can be excited by differential mode feeding provided at both ends.
  • the current amplitude at the middle position of the radiator 11 whose length corresponds to 1/2 wavelength of the working frequency band is the largest, and the current amplitude at both ends is the smallest.
  • the maximum current amplitude difference distributed on the radiator 11 is the amplitude difference as shown in FIG. 9 91.
  • the energy distribution in the space near the radiator will tend to converge toward the middle position (such as the middle position in the area between the radiator 11 and the reference ground).
  • This tendency of energy to converge in space is obviously not conducive to antenna radiation.
  • the dielectric loss in areas with higher energy density (such as the space near the middle position of the radiator 11) will increase significantly, thereby reducing the radiation performance of the antenna (such as radiation efficiency, system efficiency, etc.).
  • the length of the radiator arranged between the two feed sources of differential mode feeding can be less than 1/2 wavelength, thereby reducing the maximum current amplitude difference of the current distributed on the radiator, thereby avoiding the tendency of the above energy to converge to the middle position in the area between the radiator 11 and the reference ground, and improving the antenna radiation performance.
  • the length of the antenna radiator can be less than 1/2 wavelength corresponding to the working frequency band.
  • the radiator can be the radiator 31 shown in Figure 10.
  • the feed source is still arranged at both ends of the radiator 31.
  • the current intensity distribution conforms to the characteristics of being large in the middle and small on both sides.
  • the corresponding current amplitude schematic curve will also move downward on the basis of the example shown in Figure 9.
  • the current amplitude schematic curve shown in Figure 10 corresponds to a part in the middle of the curve shown in Figure 9.
  • the maximum current amplitude difference of the distributed current on the effective radiation area is reduced from the maximum current amplitude difference 91 to the maximum current amplitude difference 92, wherein the maximum current amplitude difference 91 is the maximum current amplitude difference of the distributed current on the effective radiation area of the radiator 11 whose length corresponds to 1/2 wavelength of the working frequency band when the dipole antenna is working; the maximum current amplitude difference 92 is the maximum current amplitude difference of the distributed current on the effective radiation area of the radiator 11 whose length is less than 1/2 wavelength of the working frequency band.
  • FIG. 9 and 10 illustrate the implementation mechanism of the antenna scheme provided in the embodiment of the present application from the perspective of current intensity.
  • the length of the radiator 31 is less than 1/2 of the working wavelength. It can be understood that as the length of the radiator decreases, the corresponding maximum current amplitude difference is also smaller.
  • the maximum current amplitude difference on the radiator can be less than the preset amplitude threshold. Then, it can also be approximately considered that when the length of the radiator is less than or equal to 1/4, the current on the radiator tends to be uniform, and the corresponding radiation performance is also better.
  • the energy distribution in the space near the radiator (such as between the radiator and the reference) is more uniform, so that there will be no large loss caused by energy concentration.
  • the maximum current amplitude difference is small, corresponding to the current on the radiator tending to be uniform, which can also improve the radiation performance of the antenna.
  • the antenna may include a radiator 31, and the length of the radiator 31 may be less than 1/2 wavelength of the working frequency band.
  • the size of the radiator corresponding to 1/2 wavelength can be close to 120mm.
  • the length of the radiator 31 can be less than
  • the length of the radiator 31 may be equivalent to 1/4 wavelength of the working frequency band, such as being set to 60 mm.
  • a feed source 1301 and a feed source 1302 may be provided at both ends of the radiator 31, respectively.
  • the feed source 1301 and the feed source 1302 may constitute a differential mode feeding structure.
  • the positive electrode of the feed source 1301 may be coupled to one end of the radiator 31, and the negative electrode of the feed source 1301 may be grounded.
  • the negative electrode of the feed source 1302 may be coupled to the other end of the radiator 31, and the positive electrode of the feed source 1302 may be grounded.
  • respective corresponding matching circuits may be provided between the positive electrode of the feed source 1301 and the radiator 31, and between the negative electrode of the feed source 1302 and the radiator 31.
  • the feed source 1301 and the feed source 1302 can transmit a feeding signal having a high-impedance port characteristic to the radiator 31.
  • the devices in the matching circuit for providing high-impedance port characteristics may be different, thereby enabling the resonance position excited on the radiator 31 to correspond to and cover the working frequency bands in different scenarios.
  • FIG12 shows a schematic diagram of S11 generated when the antenna shown in FIG11 is excited by a differential mode feeding structure without matching.
  • Figure 13 shows a high-impedance port matching effect.
  • the resonance tuning of the antenna excitation can cover 800MHz.
  • the radiation efficiency of the antenna near 800MHz is as high as -0.5dB, and the system efficiency peak is also more than -0.5dB.
  • FIG14 shows a schematic diagram of the current simulation on the radiator and the surrounding floor when the antenna is working.
  • the direction of the arrow is used to indicate the current flow direction at the current moment, and the deeper the arrow, the larger the corresponding current amplitude.
  • the differential mode feeding provided in the embodiment of the present application can effectively excite the same-phase current on the radiator. There is no significant change in the current intensity on the radiator, which corresponds to the aforementioned description that the maximum current amplitude difference on the radiator is reduced.
  • FIG15 shows a schematic diagram of the magnetic field simulation on the radiator and the surrounding floor when the antenna is working. The direction of the arrow is used to indicate the direction of the magnetic flux lines at the current moment, and the deeper the arrow, the larger the corresponding magnetic field intensity.
  • the differential mode feeding provided in the embodiment of the present application can excite magnetic fields of similar intensity in the space around the radiator (such as in the area between the radiator and the reference ground) for radiation, reducing the maximum magnetic field amplitude difference corresponding to the maximum current amplitude difference on the radiator.
  • FIG16 also shows a schematic diagram of the directional pattern simulation of the antenna solution provided in the embodiment of the present application, when operating at 800MHz.
  • the radiator length is equivalent to 1/4 of the working wavelength.
  • Figure 17 an example of a simulation model in which the radiator length is 30 mm, which is equivalent to 1/8 of the working wavelength, is shown. It can be understood that in this example, the radiator length is further reduced, the corresponding maximum current amplitude difference is smaller, the current distribution on the radiator is more uniform, and the radiation performance is better.
  • the radiator length can be flexibly selected according to the required radiation performance and bandwidth requirements.
  • multiple antenna schemes with shorter lengths as described in Figure 17 can also be set to achieve coverage of the same frequency band, thereby improving the overall coverage bandwidth.
  • the embodiments of the present application also provide several examples of antenna forms that are different from the structure shown in FIG. 4 .
  • FIG. 18 for some other implementation forms of terminal antennas provided in the embodiments of the present application.
  • Each implementation provided in this example has similar structural features to the antenna shown in FIG. 4: the length of the radiator is less than 1/2 wavelength of the working frequency band, and two feed sources of differential mode feeding are coupled to both ends of the radiator.
  • the two feed sources of differential mode feeding can be connected to the radiator in the form of high impedance to feed the antenna.
  • the antenna radiator in this example may include a radiator 1911.
  • the radiator 1911 may include a first portion parallel to (or nearly parallel to) the floor, and the electrical length of the first portion may be less than 1/2 wavelength of the working frequency band.
  • a branch 1912 may be provided as the second portion of the radiator 1911.
  • One end of the second portion is connected to the middle position of the first portion, and the other end of the second portion is grounded.
  • Two feed sources for high-impedance differential mode feeding are provided at both ends of the first portion.
  • the antenna radiator may include a radiator 1921.
  • the electrical length of the radiator 1921 may be less than 1/2 wavelength of the working frequency band.
  • Two symmetrical L-shaped bending structures may be provided on the radiator 1921.
  • the two L-shaped bending structures divide the radiator 1921 into a first part parallel to (or approximately parallel to) the floor, a second part perpendicular to (or approximately perpendicular to) the floor, and a third part.
  • the first part is located between the second part and the third part, and is connected end to end.
  • One end of the radiator 1921 on the second part and one end on the third part are on the same side of the first part.
  • High-impedance differential mode feeding is fed into both ends of the radiator 1921 for excitation.
  • the two structures shown in FIG. 18 are only examples, and the antenna solution provided in the embodiment of the present application may also have other variations.
  • the antenna form in which the electrical length of the radiator is less than 1/2 wavelength of the working frequency band and the two ends are connected to high-impedance differential mode feeding should be included in the scope of the technical solution provided in the embodiment of the present application.
  • the high impedance differential mode feed can also be set on the radiator, rather than all on the end surface of the radiator. In this way, the above technical effect can be obtained between the radiator and the reference ground between the high impedance differential mode feed.
  • the radiator 31 can be split into multiple radiating units (such as greater than or equal to 2 radiating units).
  • the radiators of the multiple radiating units are arranged in parallel, for example, the long sides of the radiators of the multiple radiating units are arranged on the same straight line. Any two adjacent radiating units of the multiple radiating units are separated by a gap. The size of the gap can be [0.1mm-5mm]. Both ends of each radiating unit are respectively connected to the high-impedance differential mode feed in the aforementioned embodiment.
  • the total length of the multiple radiating units is less than 1/2 wavelength of the working frequency band.
  • the radiating units may include radiators 2001, radiators 2002, radiators 2003, and radiators 2004.
  • the long sides of the radiators 2001, radiators 2002, radiators 2003, and radiators 2004 are arranged on the same straight line, and the total length is less than 1/2 wavelength of the working frequency band.
  • the left ends of radiators 2001, radiators 2002, radiators 2003, and radiators 2004 are respectively coupled to one feed source in differential mode feeding.
  • radiators 2001, radiators 2002, radiators 2003, and radiators 2004 are respectively coupled to another feed source in differential mode feeding.
  • differential mode feeding of each radiating unit is achieved.
  • a matching circuit can be set on the link between each radiating unit and the feed source to achieve high impedance port characteristic matching of the feed signal.
  • each radiating unit is connected to a high-impedance differential mode feed, so that a smaller maximum current amplitude difference is obtained on each radiating unit compared to the radiator 31. Therefore, when the antenna scheme composed of the multiple radiating units is working, the maximum current amplitude difference on the radiator is smaller, which can achieve a more significant effect of improving the radiation performance. Based on this description, the more radiating units are split, the more obvious the corresponding improvement effect.
  • the differential mode feeding is realized by two feed sources as an example for explanation. It can be understood that in other embodiments, the technical solution provided by the embodiment of the present application can also be realized by a single feed source in combination with a component having an inverting function.
  • the antenna structure shown in FIG. 19 is taken as an example.
  • FIG. 20, which is a schematic diagram of the composition of another antenna provided by the embodiment of the present application.
  • the radiator 31 is split into four radiating units as an example.
  • a feed source can be provided in the antenna scheme.
  • the feed source can be a high-impedance feed source. One end of the feed source is grounded, and the other end can be coupled to the same end of the radiator 2001-radiator 2004.
  • the positive pole of the feed source can be coupled to the right end of the radiator 2001-radiator 2004 respectively.
  • the positive pole of the feed source can also be coupled to the left end of the radiator 2001-radiator 2004 through a 180° inverter.
  • the antenna scheme shown in FIG20 has a smaller maximum current amplitude difference on the radiator, which can achieve a more significant improvement in radiation performance. Based on this description, the more radiating units are obtained by splitting, the more obvious the corresponding improvement effect is.
  • Fig. 21 is a schematic diagram of another antenna solution provided in an embodiment of the present application, wherein a modification based on the antenna solution shown in Fig. 4 is taken as an example.
  • the antenna radiator may be a radiator 31 whose electrical length is less than 1/2 wavelength of the working frequency band. Both ends of the radiator 31 may be connected to high-impedance differential mode feeding respectively.
  • at least one capacitor may be connected in series to the radiator 31.
  • the series capacitor 2201 is taken as an example. Thus, a current distribution with a smaller maximum current amplitude difference is obtained on the radiator 31.
  • capacitor 2201 can have energy storage characteristics. Under the excitation of differential mode feeding, the current generated on the radiator 31 can charge capacitor 2201. Therefore, when the phase of the feeding signal changes over time, due to the existence of capacitor 2201, the current change near the position of capacitor 2201 on the radiator 31 will be significantly delayed compared to the change of the feeding signal. For example, when the current at the feed source increases, the current near the position of capacitor 2201 still does not decrease; for another example, when the current at the feed source decreases, the current near the position of capacitor 2201 still does not increase. In this way, the current amplitude distribution on the entire radiator 31 no longer follows the characteristics of large in the middle and small on both sides as shown in Figure 10.
  • the distribution of current amplitude on the radiator 31 is more regionally balanced. That is, the current amplitude at both ends of the radiator 31 is relatively increased, and the current amplitude near the position of capacitor 2201 on the radiator 31 is relatively increased. This further reduces the current amplitude difference on the radiator 31, that is, a current distribution with a smaller maximum current amplitude difference is obtained.
  • a magnetic field distribution with a smaller maximum magnetic field amplitude difference can be obtained between the radiator 31 and the reference ground.
  • capacitor 2201 and capacitor 2202 are connected in series on the radiator 31.
  • the capacitor 2201 and the capacitor 2202 can divide the radiator 31 into three parts. The three parts are connected sequentially via the capacitor 2201 and the capacitor 2202.
  • the maximum current amplitude difference is adjusted at the corresponding positions on the radiator by the capacitor 2202 and the capacitor 2201, respectively, so as to obtain a smaller maximum current amplitude difference as a whole.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例公开了一种终端天线,涉及天线技术领域,通过本发明设计,实现辐射体小于1/2波长情况下的高辐射性能的效果。具体方案为:该天线包括第一辐射体,该第一辐射体的长度小于第一值,该第一值对应于该天线工作频率的1/2波长。该第一辐射体的两端分别设置有第一馈电点和第二馈电点,该第一馈电点和该第二馈电点分别连接差模馈电结构的两个信号输出端,该两个信号输出端具有不同极性,该两个信号为等幅反相的信号。

Description

一种终端天线
本申请要求于2022年10月14日提交国家知识产权局、申请号为202211261353.8、发明名称为“一种终端天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种终端天线。
背景技术
电子设备可以通过其中设置的天线,提供无线通信功能。随着电子设备的发展,对无线通信质量要求越来越高,同时电子设备集中度越来越高,留给天线的设计空间越来越有限。那么就需要电子设备中的天线能够提供更好的辐射性能以及具有更小的尺寸。
发明内容
本申请实施例提供一种终端天线。该天线方案通过本发明天线设计,实现辐射体小于1/2波长情况下的高辐射性能的效果。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种终端天线,该天线应用于电子设备中。该天线包括第一辐射体,该第一辐射体的长度小于第一值,该第一值对应于该天线工作频率的1/2波长。该第一辐射体的两端分别设置有第一馈电点和第二馈电点,该第一馈电点和该第二馈电点分别连接差模馈电结构的两个信号输出端,该两个信号输出端具有不同极性,该两个信号为等幅反相的信号。
这样,基于本示例提供的技术方案,通过设置在两端的差模馈电进行信号馈入,能够在长度小于1/2波长的辐射体上实现对天线的激励。在一些实现中,差模馈电馈入辐射体之前,还可以进行端口匹配,以便于馈电信号能够与天线端口相匹配,在工作频段实现较好的辐射性能。
可选的,由该差模馈电结构输出,然后输入到该第一辐射体上的馈电信号具有高阻抗的端口特性。其中,该高阻抗的端口特性通过串联电容实现。这样,通过串联电容,能够实现输出低阻抗馈电信号的差模馈电结构在本申请提供方案中的应用。该电容可以用于调整信号的阻抗特性,使得输入辐射体的信号可以具有高阻抗特性。当然,在另一些实施例中,也可以使用其他方式使得输入辐射体的信号具有高阻抗特性。
可选的,该第一辐射体的长度小于或等于工作频率的1/4波长。
可选的,该第一辐射体的长度小于或等于工作频率的1/8波长。
可以理解的是,辐射体长度越小,则辐射体上的最大电流幅度差越小。本示例中,在第一辐射体(或第一辐射体的电长度)小于1/4波长或1/8波长时,则最大电流幅度差可以被调整到较小的范围内,从而获取更好的辐射效果。
可选的,该差模馈电结构包括:第一馈源和第二馈源,该第一馈源的第一极与该第一馈电点耦接,该第二馈源的第二极与该第二馈电点耦接。其中,该第一极为正极,该 第二极为负极。或者,该第一极为负极,该第二极为正极。
可选的,该差模馈电结构包括第三馈源,该第三馈源的第一极与该第一馈电点耦接,该第三馈源的第一极通过反相部件与该第二馈电点耦接,该反相部件用于提供180度的反相功能。
这样,通过单馈源的差模馈电结构或者双馈源的差模馈电结构都可以实现对本申请中第一辐射体的激励。
可选的,该差模馈电结构与该第一辐射体之间设置有匹配电路,该匹配电路用于将该差模馈电结构输出的馈电信号的调整为高阻抗的端口特性。
可选的,该天线工作时,该天线工作在0.5倍波长模式。由此,该天线可以工作在基模。
可选的,该天线工作时,该第一辐射体上的最大电流幅度差小于第二值,该第二值为偶极子天线工作时辐射体上的最大电流幅度差,该偶极子天线的辐射体长度为该第一值。
可选的,该第一辐射体呈长条形,该第一辐射体的长边所在直线平行于参考地。
可选的,该第一辐射体包括顺序连接的第一部分、第二部分以及第三部分,垂直于参考地的第一部分以及垂直于参考地的第三部分,该第二部分设置在该第一部分和该第三部分之间。
可选的,该第一辐射体的中间位置还包括接地枝节。
上述示例中,提供了几种不同的辐射体的结构实现。可以理解的是,在任一种实现中,辐射体的电长度都可以小于工作波长的1/2。
可选的,该第一辐射体由至少一个缝隙分割为至少两个辐射单元。每个辐射单元的两端分别连接该差模馈电结构的两个信号输出端。任意两个辐射单元的同一侧连接的差模馈电结构的输出端极性相同。
可选的,该缝隙的大小包括在[0.1mm,5mm]的范围内。
这样,通过缝隙将辐射体分割为多个辐射单元,可以使得在每个辐射单元上的最大电流幅度差进一步缩小,从而提升天线整体的辐射性能。
可选的,该第一辐射体上串联设置有至少一个电容。在该第一辐射体上串联有多个电容时,任意两个该电容之间包括第一辐射体的至少部分。
该示例中,基于电容的储能特性,使得辐射体上的最大电流幅度差进一步缩小。可以理解的是,在第一辐射体上串联有多个电容时,任意两个电容可以互不连接。比如,任意两个电容之间都可以通过第一辐射体的一部分连接。由此起到更好的对最大电流幅度差的调整。电容数量越多,则对应的效果越好。
第二方面,提供一种终端天线,该天线应用于电子设备中。该天线包括第一辐射体,该第一辐射体的长度为第一值,该第一值对应于该天线工作频率的1/2波长。该第一辐射体的两端分别设置有第一馈电点和第二馈电点,该第一馈电点和该第二馈电点分别连接差模馈电结构的两个信号输出端,该两个信号输出端具有不同极性,该两个信号为等幅反相的信号。
可选的,由该差模馈电结构输出,然后输入到该第一辐射体上的馈电信号具有高阻抗的端口特性。其中,该高阻抗的端口特性通过串联电容实现。
该示例中,提供了一种新的馈电形式,如设置在辐射体两端的高阻差模馈电。基于该馈电形式,也能够实现对偶极子天线的0.5倍波长模式的激励。
第三方面,提供一种电子设备,该电子设备设置有如第一方面及其可能的设计中任一项提供的终端天线,或者如第二方面提供的终端天线。该电子设备在进行信号发射或接收时,通过该终端天线进行信号的发射或接收。
应当理解的是,上述第二方面以及第三方面提供的技术方案,其技术特征可对应到第一方面及其可能的设计中提供的方案,因此能够达到的有益效果类似,此处不再赘述。
附图说明
图1为一种电子设备中天线链路的示意图;
图2为一种偶极子天线的馈电示意图;
图3为一种偶极子天线的馈电示意图;
图4为本申请实施例提供的一种终端天线方案的示意图;
图5为本申请实施例提供的一种偶极子天线本征模电流分布示意图;
图6为本申请实施例提供的一种偶极子天线电流幅度分布的示意图;
图7为本申请实施例提供的一种两端差模馈电的偶极子天线的电流幅度分布的示意图;
图8为本申请实施例提供的一种两端差模馈电的偶极子天线的匹配示意图;
图9为本申请实施例提供的一种偶极子天线电流幅度差异的示意图;
图10为本申请实施例提供的一种两端差模馈电的天线的电流幅度差异示意图;
图11为本申请实施例提供的一种天线方案的仿真示意图;
图12为本申请实施例提供的一种未匹配状态下的S11仿真示意图;
图13为本申请实施例提供的一种端口高阻匹配状态下的S参数仿真示意图;
图14为本申请实施例提供的一种端口高阻匹配状态下的电流分布仿真示意图;
图15为本申请实施例提供的一种端口高阻匹配状态下的磁场仿真示意图;
图16为本申请实施例提供的一种端口高阻匹配状态下的方向图仿真示意图;
图17为本申请实施例提供的一种天线方案的仿真示意图;
图18为本申请实施例提供的两种终端天线的结构示意图;
图19为本申请实施例提供的一种终端天线的结构示意图;
图20为本申请实施例提供的一种终端天线的结构示意图;
图21为本申请实施例提供的一种终端天线的结构示意图;
图22为本申请实施例提供的一种终端天线的结构示意图。
具体实施方式
目前,大多数电子设备都可以提供无线通信功能。
作为一种示例,结合图1,以电子设备为手机为例。在电子设备中可以设置有至少一个与馈源连接的天线。该天线可以在馈源的激励下,实现电磁波的辐射或接收功能,进而使得电子设备提供上述无线通信功能。
可以理解的是,在电子设备中设置的天线形式可以是多样的。然而这些不同的天线形式都可以是基于几种基本天线衍生获得的。该基本天线可以包括偶极子天线、单极子天线、缝隙天线等。
其中,偶极子天线以及单极子天线等通过辐射体进行辐射的天线形式又可以称为线天线。对应的,缝隙天线等通过金属材料围成的缝隙进行辐射的天线形式又可以称为槽天线。
示例性的,结合图2,为一种偶极子天线的激励方式示例。在该示例中,偶极子天线的辐射体可以包括分别对应工作频段的1/4波长尺寸的辐射体21以及辐射体22。辐射体21以及辐射体22的长边可以平行设置,如设置在同一条直线上。辐射体21以及辐射体22互相靠近的一端可以分别设置有馈电点。
在本示例中,通过等幅反相的差模(Differential Mode,DM)馈电形式,分别对辐射体21以及辐射体22上的馈电点进行馈电,就能够实现对偶极子天线的激励。例如,如图2所示,该差模馈电可以包括两个馈源,如馈源23以及馈源24。该差模馈电中的一个馈源(如馈源23)的正极可以连接到一个辐射体(如辐射体21)的馈电点。该差模馈电中的另一个馈源(如馈源24)的负极可以连接到另一个辐射体(如辐射体22)的馈电点。两个馈源的远离辐射体的一端分别耦接到地。这样,在该天线工作在基模时,在辐射体21以及辐射体22上就可以形成同向的电流分布。
如图3所示,还提供了另一种偶极子天线的传统激励方式。在该示例中,偶极子天线的辐射体可以包括分别对应工作频段的1/4波长尺寸的辐射体21以及辐射体22。辐射体21以及辐射体22的长边可以平行设置,如设置在同一条直线上。辐射体21以及辐射体22互相靠近的一端可以分别设置有馈电点。
在本示例中,馈源正负极可以分别耦接到辐射体21以及辐射体22的馈电点。比如,馈源25的正极可以耦接到辐射体21的馈电点,馈源25的负极可以耦接到辐射体22的馈电点。这样,在该天线工作在基模时,在辐射体21以及辐射体22上就可以形成类似于如图2的天线上同向的电流分布。
结合前述说明,通过如图2或图3所示的激励方式,就能够实现对偶极子天线的激励。由此,该偶极子天线或者基于该偶极子天线衍生获取的其他天线形式设置在电子设备中时,就能够通过如图2或图3的激励方式,工作在基模(如1/2波长模式),或者高次模(如1倍波长模式、3/2倍波长模式等),实现对工作频段的覆盖。
可以理解的是,为了使得偶极子天线能够正常工作,需要保证辐射体长度与工作频段的1/2波长相对应。工作频段越小,对应的波长越大,对辐射体长度也就提出越高的要求。
这样,就需要新的天线形式,提供较好的辐射性能以及具有较小尺寸的天线。
为了解决上述问题,本申请实施例提供一种新的终端天线形式。该天线可以具有小于1/2波长的辐射体尺寸,同时能够提供较好的辐射性能。
作为一种示例,图4为本申请实施例提供的一种终端天线的示意。该示例中,该天线可以采用差模馈电的形式,从辐射体的两端进行馈电,用于激励该天线的工作。此外,该天线的辐射体可以包括尺寸小于工作频段的1/2波长的辐射体31。其中,差模馈电可以解释为:在天线的两个馈电点同时馈入等幅反相的馈电信号,对天线进行激励。在本示例中,天线的两个馈电点可以分别设置在辐射体31的两端的端部。
以下结合附图,对本申请实施例提供的终端天线的方案实现以及效果进行详细说明。
以下首先从天线本征模的角度,对于本申请实施例提供的天线方案中,差模馈电的 方案机制进行示例性说明。
应当理解的是,对于任一种形态的辐射体而言,在不同的波长模式下,都具有各自对应的本征模分布。以本征模分布包括本征模电流分布为例。
作为一种示例,图5示出了偶极子天线的本征模电流分布的示意,偶极子天线如图2或图3所示。本示例中,以天线辐射体为辐射体11,长度对应到工作频段的1/2波长为例。在如图5的示例中,分别给出了偶极子天线在1/2倍波长模式(基模)下、1倍波长模式下、1.5倍波长模式下,以及2被波长模式下的本征模电流分布。其中,电流幅度示意曲线代表在辐射体上的电流分布,由图解析,该曲线距离辐射体越远,对应电流幅度越大,电流越大。反之,电流幅度示意曲线距离辐射体越近,对应电流幅度越小,电流越小。
如图5所示,在1/2倍波长(即半波长)模式下,天线辐射体上可以包括两个电流幅值较小的点(后面简称为电流小点),以及一个电流幅值较大的点(后面简称为电流大点)。该电流幅值较大的点可以位于辐射体的中间位置,电流幅值较小的点可以位于辐射体的两端。
在1倍波长模式下,天线辐射体上可以包括三个电流小点,以及两个电流大点。该电流大点分别位于辐射体左半部分以及右边部分的中间位置,电流小点的位置可以包括辐射体的两端,以及两个电流大点的中间位置。
在1.5倍波长模式下,天线辐射体上可以包括四个电流小点,以及三个电流大点。辐射体两端为电流小点。电流小点以及电流大点在辐射体上依次交替分布。
在2倍波长模式下,天线辐射体上可以包括五个电流小点,以及四个电流大点。辐射体两端为电流小点。电流小点以及电流大点在辐射体上依次交替分布。
结合上述不同模式下本征模电流分布的特征,在1/2M倍(即1/2×M倍,M为奇数)波长模式下,辐射体的中间位置为电流大点。对应的,在N倍波长模式下,辐射体的中间位置为电流小点。N为正整数。
需要说明的是,在本申请中,电流大点与电流小点的位置关系,并不能决定电流的流向。比如,在一些情况下,电流强度可以周期性变化,而电流的流向可以是不变的。而在另一些情况下,随着电流强度的周期性变化,电流的流向也可以是有反相点存在的。
结合上述图5示出的偶极子天线在不同模式下的本征模电流分布,可以设置对应的馈源,实现对应模式的激励。
示例性的,通过在本征模分布对应的电流大点接入低阻(如小于100欧姆)馈源,即可实现该辐射体上,对应波长模式的激励。例如,该低阻馈源可以包括50欧姆的馈源,或者75欧姆的馈源。
具体到各个模式,以基模(1/2倍波长)为例。辐射体11可以从中间位置划分为两个1/4波长尺寸的辐射体,如前述示例中的辐射体21以及辐射体22。如图6所示,可以在基模对应本征模的电流大点(如辐射体21以及辐射体22之间)接入单一馈源(如馈源23),或者如图2所示的接入差模馈电,由此激励偶极子天线工作在1/2倍波长模式下。这样,偶极子天线就可以产生与其辐射体的电长度相对应的1/2波长模式的谐振用于覆盖工作频段。由此也就可以获取如图2或图3所示的偶极子天线方案。
在本申请实施例中,基于如图5所示的偶极子天线的本征模电流分布,还可以在本 征模分布对应的两个不同电流小点分别接入高阻(如大于100欧姆)的差模馈源,实现对应模式的激励。其中,高阻可以为接近开路的阻抗匹配的情况对应的阻抗状态。例如,该高阻馈源可以包括200欧姆的馈源,或者500欧姆的馈源。
示例性的,继续以及基模为例。如图7所示,可以在基模对应的本征模电流小点(如辐射体11的两端),分别接入一个高阻的差模馈源。该两个差模馈源即可构成对辐射体11的差模馈电结构。这样,通过设置如图7所示的差模馈电,即可在辐射体11上激励中间大两边小的电流分布,与如图5所示的基模的本征模电流分布相同。也就是说,通过设置如图7所示的差模馈电,即可实现对偶极子天线的1/2波长模式的激励。
需要说明的是,本申请实施例中,高阻的馈源可以包括以下两种的任一种:
1、具有高阻态端口特性的信号源;
2、通过在低阻馈源和辐射体之间设置匹配电路,并通过匹配电路将低阻馈源发出的信号源的端口特性匹配到高阻态。例如,匹配电路中可以串联设置电容等部件,实现端口阻抗变大的调节。
示例性的,结合图8,以通过匹配电路获取高阻馈源为例,对本申请实施例中的高阻差模馈电的设置进行示例性说明。在本示例中,差模馈电结构可以包括向辐射体输出等幅反相的馈电信号的馈源81以及馈源82。在两个分别提供等幅反相的馈源以及辐射体之间,可以分别设置匹配电路。例如,在馈源81与辐射体11的一端之间,设置匹配电路M1。在馈源82与辐射体11的另一端之间,设置匹配电路M2。通过匹配电路M1以及匹配电路M2的调谐,使得馈源81以及馈源82发出的信号具有高阻的端口特性接入辐射体11的两端。由此就实现了高阻的差模馈电在偶极子天线的辐射体(如辐射体11)两端的设置。
可以理解的是,上述图7以及图8仅为对偶极子天线基模激励的一种示意。对于其他模式高次模式,也可以通过本申请实施例提供的高阻差模馈电,在对应模式的本征模电流小点进行有效的激励。其设置方式可以参考上述图7以及图8的说明,此处不再赘述。
这样,该高阻差模馈电的不同于普通馈电形式的馈电机制,使得现有天线的激励方式更加多样化。与偶极子天线相应的其他衍生天线形式的馈电也可以参考本申请中提供的在本征模电流小点进行高阻差模馈电的方案,进行馈电机制的灵活选取。以下示例中,将高阻差模馈电简称为差模馈电。
上述示例中,从天线本征模的角度,对于本申请实施例提供的差模馈电的方案机制进行了示例性说明。以下将基于该差模馈电机制,对本申请实施例提供的具有更小尺寸(如小于1/2波长)的天线方案的实现进行说明。
可以理解的是,结合如图5所示的本征模电流分布。在辐射体长度对应到工作频段的1/2波长的情况下,无论工作在何种模式,在辐射体上都可以分布有强度不同的电流。
参考图9,为偶极子天线工作在基模(即1/2波长模式)下,辐射体上电流强度的分布示意。该示例中,偶极子天线可以通过两端设置的差模馈电进行激励。
如图9所示,在该偶极子天线工作时,长度对应到工作频段的1/2波长的辐射体11的中间位置电流幅值最大,两端电流幅值最小。
那么,在该状态下,辐射体11上分布的最大电流幅度差即为如图9所示的幅度差 91。可以理解的是,最大电流幅度差越大,辐射体附近空间中的能量分布会呈现向中间位置(如辐射体11与参考地之间区域中的中间位置)汇聚的趋势。这种能量在空间中汇聚的趋势显然是不利于天线辐射的。例如,随着能量在空间中的汇聚,在能量密度较高的区域(如辐射体11靠近中间位置的附近空间中)的介质损耗会显著提升,从而降低天线的辐射性能(如辐射效率、系统效率等)。
在本申请实施例中,在差模馈电的两个馈源之间设置的辐射体长度可以小于1/2波长,由此使得电流在辐射体上分布的最大电流幅度差得以减小。进而避免上述能量向辐射体11与参考地之间区域中的中间位置汇聚的趋势,提升天线辐射性能。
示例性的,结合图10。本申请实施例提供的天线方案,天线辐射体的长度可以小于工作频段对应的1/2波长。比如,该辐射体可以为如图10所示的辐射体31。馈源依然设置在辐射体31的两端。应当理解的是,在基模的工作状态下,无论辐射体长度如何,电流强度分布均符合中间大两边小的特点。那么,在本示例中,随着辐射体的长度小于工作频段的1/2波长,对应的电流幅度示意曲线也就会在如图9所示的示例基础上向下移动。或者,该如图10所示的电流幅度示意曲线对应与如图9所示的曲线中取中间的一部分。由此,在如图10的示例中,有效辐射区域上分布电流的最大电流幅度差对应从最大电流幅度差91降低为最大电流幅度差92,其中,最大电流幅度差91为偶极子天线工作时,长度对应到工作频段的1/2波长的辐射体11的有效辐射区域上分布电流的最大电流幅度差;最大电流幅度差92为辐射体的长度小于工作频段的1/2波长的辐射体11的有效辐射区域上分布电流的最大电流幅度差。
也就是说,在如图10的示例中,随着辐射体上电流强度的幅度差变小,辐射体附近空间中的能量分布也就更加趋于分散。由此也就使得天线的辐射性能得到有效的提升。
上述图9以及图10是从电流强度的角度,对本申请实施例提供的天线方案的实现机制进行说明的。在如图10的示例中,辐射体31的长度小于工作波长的1/2。可以理解的是,随着辐射体长度的减小,对应的最大电流幅度差也越小。示例性的,在辐射体长度小于或等于工作波长的1/4,或者辐射体长度小于或等于工作波长的1/8时,则辐射体上的最大电流幅度差可以小于预设的幅度阈值。那么,也可以近似认为辐射体长度小于或等于1/4时,辐射体上的电流趋于均匀,对应的辐射性能也更好。可以理解的是,在辐射体上的电流趋于均匀的情况下,辐射体附近空间中(如辐射体与参考之间)的能量分布更加均匀,由此不会出现能量集中导致的损耗较大的情况。也就是说,本申请实施例中,最大电流幅度差较小,对应于辐射体上电流趋于均匀,也就能够使得该天线的辐射性能得到提升。
以下将结合具体仿真示意,对本申请实施例提供的辐射体尺寸小于1/2波长,差模高阻馈电的天线方案,在工作时的情况进行说明。
示例性的,结合图11,为本申请实施例提供的一种天线方案的仿真模型的示意。在本示例中,天线可以包括一个辐射体31,该辐射体31的长度可以小于工作频段的1/2波长。
例如,以工作频段高于700MHz(如800MHz),天线材料对应的介电常数(Dielectric constant,DK)为3.2,天线材料对应的介质损耗因子(Dissipation factor,DF)为0.01为例,1/2波长对应的辐射体尺寸可以接近于120mm。辐射体31的长度可以小于 该120mm。比如,辐射体31的长度可以相当于工作频段的1/4波长,如设置为60mm。
如图11所示,该辐射体31的两端可以分别设置有馈源1301以及馈源1302。该馈源1301以及馈源1302可以构成差模馈电结构。例如,馈源1301的正极可以与辐射体31的一端耦接,馈源1301的负极可以接地。馈源1302的负极可以与辐射体31的另一端耦接,馈源1302的正极可以接地。
需要说明的是,结合前述对于高阻差模馈电的说明,在本申请的一些实施例中,可以在馈源1301的正极和辐射体31之间,以及馈源1302的负极和辐射体31之间分别设置各自对应的匹配电路(图11中未示出)。通过该匹配电路的调谐,使得该馈源1301以及馈源1302可以向辐射体31传输具有高阻的端口特性的馈电信号。
在不同的场景中,该用于提供高阻的端口特性的匹配电路中的器件可以不同,由此使得在辐射体31上激励的谐振位置能够对应覆盖不同场景下的工作频段。
作为一种示例,图12示出了该不进行匹配的情况下,如图11所示的天线在差模馈电结构的激励下,产生的S11的示意图。
图13给出了一种高阻的端口匹配的效果示意。如图13所示,通过该示例中的端口匹配,能够将天线激励的谐振调谐覆盖800MHz。如图13中的效率仿真示意,该天线在800MHz附近的辐射效率最高超过-0.5dB,系统效率峰值也超过-0.5dB。
图14示出了天线工作时,辐射体上以及周边地板上的电流仿真示意。其中,箭头方向用于指示当前时刻的电流流向,箭头越深对应电流幅度越大。可以看到,通过本申请实施例提供的差模馈电,在辐射体上能够有效地激励同相的电流。在辐射体上电流强度没有较大的变化,也就对应于前述说明中,减小了辐射体上的最大电流幅度差。图15示出了天线工作时,辐射体上以及周边地板上的磁场仿真示意。其中,箭头方向用于指示当前时刻的磁感线方向,箭头越深对应磁场强度越大。可以看到,通过本申请实施例提供的差模馈电,在辐射体周围空间中(如辐射体与参考地之间的区域中)能够激励强度接近的磁场进行辐射,减小了辐射体上的最大电流幅度差对应的最大磁场幅度差。
由此,基于如图14以及图15的分别从电流以及磁场的角度进行的仿真,能够说明本申请实施例提供的天线方案能够通过连接在辐射体(如辐射体31)两端的差模馈电,实现天线辐射体附近空间中的幅度差别较小的能量激励,达到提升辐射性能的效果。此外,图16还给出了本申请实施例提供的天线方案,工作在800MHz的情况下的方向图仿真示意。
上述图11-图16的说明中,以辐射体长度相当于工作波长的1/4为例。如图17所示,示出了辐射体长度为30mm,即相当于工作波长的1/8的仿真模型示例。可以理解的是,在该示例中,辐射体长度进一步减小,对应的最大电流幅度差更小,辐射体上的电流分布更均匀,则辐射性能也更好。在具体实施过程中,随着辐射体长度的减小,由于辐射介质面积的减小,可能会出现谐振带宽略微恶化的情况。因此,在具体实施过程中,辐射体长度可以根据所需的辐射性能以及带宽要求进行灵活选取。在一些实现中,也可以设置多个如图17所述的具有较短长度的天线方案,实现同一频段的覆盖,由此提升整体的覆盖带宽。
综上图10-图17的说明,本领域技术人员应当能够对本申请实施例提供的天线方案(如图4所示的天线方案)的工作机制以及效果有了详细的了解。
本申请实施例还提供几种不同于如图4所示结构的天线形式的示例。
示例性的,请参考图18,为本申请实施例提供的又一些终端天线的实现形式。本示例中提供的各个实现,与如图4所示的天线具有类似的结构特征:辐射体长度小于工作频段的1/2波长,辐射体两端分别耦接有差模馈电的两个馈源。该差模馈电的两个馈源可以通过高阻的形式接入辐射体,对天线进行馈电。
如图18中的1910所示,该示例中天线辐射体可以包括辐射体1911。该辐射体1911可以包括平行于(或接近于平行于)地板的第一部分,该第一部分的电长度可以小于工作频段的1/2波长。在第一部分的中间位置,即基模的电流最大点,可以设置枝节1912作为辐射体1911的第二部分。该第二部分的一端连接到第一部分的中间位置,第二部分的另一端接地。在第一部分的两端分别设置高阻差模馈电的两个馈源。
如图18中的1920示出了又一种天线的结构示意。该示例中天线辐射体可以包括辐射体1921。该辐射体1921的电长度可以小于工作频段的1/2波长。该辐射体1921上可以设置有两个对称的L形弯折结构。该两个L形弯折结构将辐射体1921划分为平行于(或近似平行于)地板的第一部分,与地板垂直(或近似垂直)的第二部分以及第三部分。第一部分位于第二部分和第三部分之间,并且首尾相连。该辐射体1921在第二部分上的一端与在第三部分上的一端在第一部分的同一侧。在辐射体1921的两端分别馈入高阻差模馈电进行激励。
可以理解的是,如图18所示的两个结构仅为一种示例,本申请实施例提供的天线方案还可以具有其他变形。在各种变形结构中,辐射体电长度小于工作频段的1/2波长,并且两端接入高阻差模馈电的天线形式,都应包括在本申请实施例提供的技术方案的范围内。
这样,通过尺寸小于工作频段的1/2波长以及两端接入高阻差模馈电的天线设置,能够在天线辐射体以及地板之间获取最大幅度差较小的能量分布,由此获取较好的辐射性能。
需要说明的是,在一些实现中,高阻差模馈电也可以设置在辐射体上,而不全部设置在辐射体的端面。这样,在高阻差模馈电之间的辐射体以及参考地之间,即可获取上述技术效果。
在本申请的另一些实施例中,基于上述如图4或图18所示的天线结构,还可以进行进一步的优化设计,从而获取更加好的辐射性能。
示例性的,在一些实施例中,以如图4所示的天线结构为例,可以将辐射体31拆分成多个辐射单元(如大于或等于2个辐射单元)。该多个辐射单元的辐射体平行设置,例如该多个辐射单元的辐射体长边设置在同一个直线上。该多个辐射体单元的任意两个相邻的辐射单元之间通过缝隙隔开。该缝隙的大小可以为[0.1mm-5mm]。每个辐射单元的两端分别接入前述实施例中的高阻差模馈电。与辐射体31对应的,该多个辐射单元的总长度小于工作频段的1/2波长。
作为一种示例,以将辐射体31拆分成4个辐射单元为例。参考图19,为本申请实施例提供的又一种天线方案的示意图。在本示例中,辐射单元可以包括辐射体2001、辐射体2002、辐射体2003以及辐射体2004。该辐射体2001、辐射体2002、辐射体2003以及辐射体2004的长边设置在同一条直线上,且总长小于工作频段的1/2波长。如图 19所示,辐射体2001、辐射体2002、辐射体2003以及辐射体2004的左侧一端分别与差模馈电中的一个馈源耦接。对应的,辐射体2001、辐射体2002、辐射体2003以及辐射体2004的右侧一端分别与差模馈电中的另一个馈源耦接。由此实现对每个辐射单元的差模馈电。在具体实现中,在每个辐射单元与馈源之间的链路上,都可设置匹配电路,实现馈电信号的高阻端口特性匹配。
可以理解的是,结合图10的原理性说明。将辐射体31拆分成多个辐射单元之后,通过对每个辐射单元接入高阻差模馈电,由此使得在每个辐射单元上分别获取相较于辐射体31上更小的最大电流幅度差。因此该多个辐射单元构成的天线方案工作时,其辐射体上的最大电流幅度差更小,能够实现更加显著提升辐射性能的效果。基于该说明,拆分获取的辐射单元数量越多,则对应的提升效果越明显。
上述示例中,均以通过两个馈源实现差模馈电为例进行说明的。可以理解的是,在另一些实施例中,通过单一馈源,结合具有反相功能的部件,也能够实现本申请实施例提供的技术方案。示例性的,以如图19所示的天线结构为例。请参考图20,为本申请实施例提供的又一种天线的组成示意图。在本示例中,继续以将辐射体31拆分成4个辐射单元为例。如图20所示,该天线方案中可以设置有一个馈源。例如,该馈源可以为高阻馈源。该馈源的一端接地,另一端可以耦接到辐射体2001-辐射体2004的同一端。例如,馈源的正极可以分别耦接到辐射体2001-辐射体2004的右端。馈源的正极还可以分别通过180°反相器,耦接到辐射体2001-辐射体2004的左端。这样,在每个辐射单元上就可以实现两端馈入等幅反相的差模信号的效果。类似于如图19所示的方案说明,该如图20所示的天线方案,其辐射体上的最大电流幅度差更小,能够实现更加显著提升辐射性能的效果。基于该说明,拆分获取的辐射单元数量越多,则对应的提升效果越明显。
结合如图19以及如图20的说明,能够通过设计多个差模馈电的辐射单元的方式,在辐射体上获取最大电流幅度差更小的电流分布,由此提升天线辐射性能。
在本申请的另一些实施例中,还可以通过其他方式达到上述目的。
示例性的,请参考图21,为本申请实施例提供的又一种天线方案的示意图。其中,以在如图4所示的天线方案基础上进行变形为例。
如图21所示,该天线方案中,天线辐射体可以为电长度小于工作频段1/2波长的辐射体31。该辐射体31的两端可以分别接入高阻差模馈电。在本示例中,辐射体31上可以串联有至少一个电容。例如,在图21的示例中,以串联电容2201为例。由此在辐射体31上获取最大电流幅度差更小的电流分布。
可以理解的是,电容2201可以具有储能特性。在差模馈电的激励下,辐射体31上产生的电流可以对电容2201进行充能。由此,在馈电信号随着时间推移发生相位变化时,由于电容2201的存在,辐射体31上靠近电容2201位置的电流变化相比于馈电信号的变化会出现显著的延迟。比如,在馈源处的电流增大时,电容2201位置附近的电流依然没有减小;又如,在馈源处的电流减小时,电容2201位置附近的电流依然没有增大。这样就使得整个辐射体31上的电流幅度分布不再遵循如图10所示的中间大两边小的特点。增加电容2201后,电流幅度在辐射体31上的分布更加区域平衡。也即辐射体31两端的电流幅度相对增大,辐射体31上设置电容2201位置附近的电流幅度相 对减小。由此也就在辐射体31上达到了进一步降低电流幅度差的效果,也即获取了最大电流幅度差更小的电流分布。对应到磁场,在辐射体31以及参考地之间就可以获取最大磁场幅度差更小的磁场分布。从而在如图4所示天线方案的基础上,获取更好的辐射性能。
可以理解的是,在辐射体31上设置的电容数量越多,则辐射体31上的电流幅度差越小,对应天线的辐射性能越高。示例性的,如图22所示,以在辐射体31上串联两个电容(如电容2201以及电容2202)为例。该电容2201以及电容2202可以将辐射体31划分为三部分。该三部分经由电容2201以及电容2202顺序连接。由此,通过电容2202以及电容2201分别在辐射体上的对应位置对最大电流幅度差进行调整,从而获取整体上更小的最大电流幅度差。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (18)

  1. 一种终端天线,其特征在于,所述天线应用于电子设备中;
    所述天线包括第一辐射体,所述第一辐射体的长度小于第一值,所述第一值对应于所述天线工作频率的1/2波长;
    所述第一辐射体的两端分别设置有第一馈电点和第二馈电点,所述第一馈电点和所述第二馈电点分别连接差模馈电结构的两个信号输出端,所述两个信号输出端具有不同极性,所述两个信号为等幅反相的信号。
  2. 根据权利要求1所述的天线,其特征在于,所述第一辐射体的长度小于或等于工作频率的1/4波长。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第一辐射体的长度小于或等于工作频率的1/8波长。
  4. 根据权利要求1-3中任一项所述的天线,其特征在于,
    所述差模馈电结构包括:第一馈源和第二馈源,
    所述第一馈源的第一极与所述第一馈电点耦接,所述第二馈源的第二极与所述第二馈电点耦接;
    其中,所述第一极为正极,所述第二极为负极;或者,所述第一极为负极,所述第二极为正极。
  5. 根据权利要求1-4中任一项所述的天线,其特征在于,
    所述差模馈电结构包括第三馈源,
    所述第三馈源的第一极与所述第一馈电点耦接,所述第三馈源的第一极通过反相部件与所述第二馈电点耦接,所述反相部件用于提供180度的反相功能。
  6. 根据权利要求1-5中任一项所述的天线,其特征在于,由所述差模馈电结构输出,然后输入到所述第一辐射体上的馈电信号具有高阻抗的端口特性;其中,所述高阻抗的端口特性通过串联电容实现。
  7. 根据权利要求6所述的天线,其特征在于,
    所述差模馈电结构与所述第一辐射体之间设置有匹配电路,所述匹配电路用于将所述差模馈电结构输出的馈电信号调整为高阻抗的端口特性。
  8. 根据权利要求1-7中任一项所述的天线,其特征在于,所述天线工作时,所述天线工作在0.5倍波长模式。
  9. 根据权利要求1-8中任一项所述的天线,其特征在于,
    所述天线工作时,所述第一辐射体上的最大电流幅度差小于第二值,所述第二值为偶极子天线工作时辐射体上的最大电流幅度差,所述偶极子天线的辐射体长度为所述第一值。
  10. 根据权利要求1-9中任一项所述的天线,其特征在于,
    所述第一辐射体呈长条形,所述第一辐射体的长边所在直线平行于参考地。
  11. 根据权利要求1-9中任一项所述的天线,其特征在于,所述第一辐射体包括顺序连接的第一部分、第二部分以及第三部分,
    垂直于参考地的第一部分以及垂直于参考地的第三部分,所述第二部分设置在所述第一部分和所述第三部分之间。
  12. 根据权利要求10或11所述的天线,其特征在于,所述第一辐射体的中间位置还包括接地枝节。
  13. 根据权利要求1-12中任一项所述的天线,其特征在于,
    所述第一辐射体由至少一个缝隙分割为至少两个辐射单元;每个辐射单元的两端分别连接所述差模馈电结构的两个信号输出端;
    任意两个辐射单元的同一侧连接的差模馈电结构的输出端极性相同。
  14. 根据权利要求13所述的天线,其特征在于,所述缝隙的大小包括在[0.1mm,5mm]的范围内。
  15. 根据权利要求1-14中任一项所述的天线,其特征在于,所述第一辐射体上串联设置有至少一个电容;
    在所述第一辐射体上串联有多个电容时,任意两个所述电容之间包括第一辐射体的至少部分。
  16. 一种终端天线,其特征在于,所述天线应用于电子设备中;
    所述天线包括第一辐射体,所述第一辐射体的长度为第一值,所述第一值对应于所述天线工作频率的1/2波长;
    所述第一辐射体的两端分别设置有第一馈电点和第二馈电点,所述第一馈电点和所述第二馈电点分别连接差模馈电结构的两个信号输出端,所述两个信号输出端具有不同极性,所述两个信号为等幅反相的信号。
  17. 根据权利要求16所述的天线,其特征在于,由所述差模馈电结构输出,然后输入到所述第一辐射体上的馈电信号具有高阻抗的端口特性;其中,所述高阻抗的端口特性通过串联电容实现。
  18. 一种电子设备,其特征在于,所述电子设备设置有如权利要求1-15中任一项所述的终端天线,或者如权利要求16或17所述的终端天线;所述电子设备在进行信号发射或接收时,通过所述终端天线进行信号的发射或接收。
PCT/CN2023/116554 2022-10-14 2023-09-01 一种终端天线 WO2024078185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211261353.8 2022-10-14
CN202211261353.8A CN117937096A (zh) 2022-10-14 2022-10-14 一种终端天线

Publications (1)

Publication Number Publication Date
WO2024078185A1 true WO2024078185A1 (zh) 2024-04-18

Family

ID=90668740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116554 WO2024078185A1 (zh) 2022-10-14 2023-09-01 一种终端天线

Country Status (2)

Country Link
CN (1) CN117937096A (zh)
WO (1) WO2024078185A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024378A1 (en) * 2006-04-03 2008-01-31 Matsushita Electric Industrial Co., Ltd. Differential-feed slot antenna
CN104993240A (zh) * 2015-06-25 2015-10-21 上海安费诺永亿通讯电子有限公司 一种大幅度提高天线隔离度的方法及天线
CN108281766A (zh) * 2018-01-19 2018-07-13 广东欧珀移动通信有限公司 天线装置及电子设备
KR20200132618A (ko) * 2019-05-16 2020-11-25 주식회사 케이엠더블유 시프트 직렬 급전을 이용한 이중편파 안테나
CN113745832A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 天线和电子设备
CN114336013A (zh) * 2022-01-07 2022-04-12 荣耀终端有限公司 一种终端天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080024378A1 (en) * 2006-04-03 2008-01-31 Matsushita Electric Industrial Co., Ltd. Differential-feed slot antenna
CN104993240A (zh) * 2015-06-25 2015-10-21 上海安费诺永亿通讯电子有限公司 一种大幅度提高天线隔离度的方法及天线
CN108281766A (zh) * 2018-01-19 2018-07-13 广东欧珀移动通信有限公司 天线装置及电子设备
KR20200132618A (ko) * 2019-05-16 2020-11-25 주식회사 케이엠더블유 시프트 직렬 급전을 이용한 이중편파 안테나
CN113745832A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 天线和电子设备
CN114336013A (zh) * 2022-01-07 2022-04-12 荣耀终端有限公司 一种终端天线

Also Published As

Publication number Publication date
CN117937096A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN111293413B (zh) 基于交叉耦合结构的紧凑型宽带滤波天线及其mimo天线
JP5178970B2 (ja) アンテナ装置及び無線通信装置
CN109509962B (zh) 一种用于5g手机终端的双频mimo天线结构
EP1628359A1 (en) Small planar antenna with enhanced bandwidth and small strip radiator
US9825366B2 (en) Printed circuit board antenna and printed circuit board
CN110676575B (zh) 一种小型化的高增益双频wifi天线
EP2963736A1 (en) Multi-band antenna element and antenna
US11637361B2 (en) Antenna structure and wireless communication device
WO2021197399A1 (zh) 一种天线及终端
US11431085B2 (en) Antenna structure and wireless communication device using same
WO2011030703A1 (ja) 逆l型アンテナ
JP2008283251A (ja) 不平衡給電広帯域スロットアンテナ
US9461365B2 (en) LTE antenna pair for MIMO/diversity operation in the LTE/GSM bands
WO2018157661A1 (zh) 天线和终端
CN113922051A (zh) 一种具有自解耦特性的宽带mimo天线
WO2021190411A1 (zh) 天线、天线模组及无线网络设备
WO2024078185A1 (zh) 一种终端天线
JP2001144524A (ja) 多周波共用アンテナ
CN103219593A (zh) 一种采用短路引线的平面超宽带滤波天线
CN208489353U (zh) 一种应用于wlan的小型化双频pifa天线
CN115966900A (zh) 一种宽带高隔离双频mimo单极锥天线阵列
CN212751153U (zh) 一种无线终端天线
CN113571881B (zh) 一种小尺寸超宽带mimo天线
CN210430100U (zh) 一种具有ct耦合结构的滤波贴片天线
Kumar et al. Two-element MIMO Antenna with High isolation based on Zigzag-shaped Slot on the ground for 5G and IOT applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876390

Country of ref document: EP

Kind code of ref document: A1