WO2024078082A1 - 一种提高纳米材料在植物叶面生物有效性的方法 - Google Patents
一种提高纳米材料在植物叶面生物有效性的方法 Download PDFInfo
- Publication number
- WO2024078082A1 WO2024078082A1 PCT/CN2023/108090 CN2023108090W WO2024078082A1 WO 2024078082 A1 WO2024078082 A1 WO 2024078082A1 CN 2023108090 W CN2023108090 W CN 2023108090W WO 2024078082 A1 WO2024078082 A1 WO 2024078082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanosi
- cds
- resorcinol
- mixed solution
- formaldehyde
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims abstract description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002114 nanocomposite Substances 0.000 claims abstract description 16
- 241000196324 Embryophyta Species 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 73
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 60
- 239000011259 mixed solution Substances 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000008098 formaldehyde solution Substances 0.000 claims description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 6
- 240000008042 Zea mays Species 0.000 abstract description 10
- 235000002017 Zea mays subsp mays Nutrition 0.000 abstract description 10
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 abstract description 8
- 235000005822 corn Nutrition 0.000 abstract description 8
- 238000005507 spraying Methods 0.000 abstract description 7
- 230000000243 photosynthetic effect Effects 0.000 abstract description 6
- 239000003337 fertilizer Substances 0.000 abstract description 5
- 239000002028 Biomass Substances 0.000 abstract description 3
- 208000003643 Callosities Diseases 0.000 abstract 1
- 206010020649 Hyperkeratosis Diseases 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002015 leaf growth Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05D—INORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
- C05D9/00—Other inorganic fertilisers
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G3/00—Mixtures of one or more fertilisers with additives not having a specially fertilising activity
- C05G3/40—Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting fertiliser dosage or release rate; for affecting solubility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
Definitions
- the invention specifically relates to a method for improving the biological effectiveness of nano materials on plant leaves, and belongs to the technical field of fertilizers.
- the purpose of the present invention is to improve the bioavailability of nanomaterials.
- a method for improving the bioavailability of nanomaterials on plant leaves comprising the following steps:
- NanoSi is dissolved in ethanol, and then carbon dots CDs are added and the solution is slowly stirred until the solution evaporates to obtain a solid nanocomposite material Nano-CDs.
- a method for preparing a nanocomposite material having high plant foliar bioavailability comprising the following steps:
- NanoSi is dissolved in ethanol, and then carbon dots CDs are added and the solution is slowly stirred until the solution evaporates to obtain a solid nanocomposite material Nano-CDs.
- the concentration of ammonia water in the mixed solution of step (1) is 28 wt %.
- the volume ratio of ammonia water, deionized water and ethanol is It is 3:10:70.
- the formaldehyde solution in the mixed solution of step (1), is a 37 wt % aqueous solution.
- the mass ratio of formaldehyde solution to deionized water is (0.25-0.3):10.
- the amount of resorcinol added relative to deionized water is 0.2 g/10 mL.
- the volume fraction of ethyl orthosilicate relative to deionized water is 6%.
- step (1) during the process of continuously adding formaldehyde and resorcinol to the mixed solution, the amount of resorcinol added is twice the amount of resorcinol used in the mixed solution.
- step (1) during the process of continuously adding formaldehyde and resorcinol to the mixed solution, the amount of formaldehyde added is twice the amount of formaldehyde in the mixed solution.
- step (1) calcination refers to continuous calcination at 550° C. for 5 hours.
- step (1) specifically comprises:
- step (2) carbon dots CDs are prepared by the following method: citric acid and ethylenediamine are synthesized by a hydrothermal method.
- the dosage of citric acid and ethylenediamine is (1-2) g: (300-350) ⁇ L.
- the hydrothermal method is carried out at 200° C. for 12 hours.
- step (2) the amount of NanoSi dissolved in ethanol is 450 mL/100 mg.
- step (2) the mass ratio of NanoSi to carbon dots CDs is 1:1.
- step (2) the rotation speed of slow stirring is 150 rpm.
- the present invention also prepares and provides a nano composite material with high plant leaf surface biological effectiveness based on the above method.
- the invention also provides application of the method or the nanocomposite material in improving agricultural output.
- the adhesion ability of the NanoSi-CDs of the present invention is improved by 50.6%-79.8% compared with CDs, and the rain resistance is improved by 1 cm.
- NanoSi-CDs is sprayed on the leaves, the photosynthesis of corn is increased by 110%-140% compared with CDs, the biomass is 2-4 times, and the effective period is extended by more than 10 days (slow-release performance).
- Figure 1 (A) TEM image of NanoSi; (B) TEM image of CDs; (C) TEM image of NanoSi-CDs; (D) TEM image of the lattice of NanoSi loaded on CDs; (E) PL spectra of CDs and NanoSi-CDs; (F) (G) (H) UV-vis, FITR and XPS spectra of CDs, NanoSi and NanoSi-CDs, respectively.
- Figure 2 (A) and (B) are the contact angles of CDs and NanoSi-CDs when the leaf growth angle is 0°; (C) and (D) are the contact angles of CDs and NanoSi-CDs when the leaf growth angle is 30°.
- Figure 3 shows the flushing effect of rainfall on foliar fertilizers CDs, NanoSi and NanoSi-CDs.
- A is an artificial rainfall simulation device;
- B is a photo of the effect on the 20th day under 2.5 cm rainfall;
- C, D and E are the net photosynthetic rate, electron transfer rate and chlorophyll content of the control, NanoSi, CDs and NanoSi-CDs treatments after 0.5 cm, 1.5 cm and 2.5 cm rainfall experiments respectively.
- FIG 4 shows, from left to right, the photos of the effects at 1, 10 and 20 days after spraying the materials;
- (B)-(H) photosynthetic parameters net photosynthetic rate, chlorophyll A, chlorophyll B, electron transfer rate, genes related to photosystem 2 (PSII) activity, genes related to photosystem 1 (PSI) activity and photosynthetic pathway diagram.
- FIG. 5 is a TEM photograph of the composite material obtained in Comparative Example 1.
- FIG. 6 is a TEM photograph of the composite material obtained in Comparative Example 2.
- Example 1 Preparation of nanomaterials (CDs and NanoSi) and their composites (NanoSi-CDs)
- Aqueous ammonia (28 wt%, 3 ml), deionized water (10 ml) and ethanol (AR, 95%, 70 ml) were added to a solution consisting of formaldehyde (37 wt%, 0.28 g) and resorcinol (0.2 g).
- the mixture was magnetically stirred at 500 rpm for 6 h at room temperature, and then ethyl orthosilicate (TEOS, AR, >98%, 0.6 ml) was added and stirred for 30 min.
- TEOS ethyl orthosilicate
- resorcinol (0.4 g) and formaldehyde (37 wt%, 0.56 g) were added, and the mixed solution was stirred for 2 h.
- CDs were synthesized by a hydrothermal method (200 °C and 12 h) using citric acid (1.05 g) and ethylenediamine (335 ⁇ L).
- NanoSi 100 mg was dissolved in 450 ml of ethanol and ultrasonicated for 6 h, and then 100 mg of CDs was added. Finally, the solution was slowly stirred at 150 rpm at 60 °C until the solution evaporated to obtain a solid Nano-CDs composite material.
- the contact angle of CDs and NanoSi-CDs at 1, 3 and 5 ⁇ L was measured using a contact angle meter at a growth angle of 0° and 30° on corn leaves ( Figure 2).
- the results showed that the contact angle of NanoSi-CDs on corn leaves was much smaller than that of CDs.
- the smaller contact angle proved that the material had a higher hydrophilicity, that is, it was not easy to roll off, which improved the adhesion of the material on the leaves.
- Table 1 shows the adhesion work measured using a contact angle meter, which further proves that the loaded NanoSi-CDs have a higher adhesion ability than CDs, that is, the adhesion ability of NanoSi-CDs is increased by 50.6%-79.8% relative to CDs.
- the spray bottle was calibrated to deliver 80 ml of artificial rain for every 100 sprays, which is equivalent to about 0.5 cm of rainfall.
- the scouring effect of NanoSi-CDs was tested at rainfall levels of 0.5, 1.5 and 2.5 cm. Each sample had 10 replicates. After the rainfall test, various indicators of the corn crop were measured. The results showed that CDs had almost no effect on corn photosynthesis at a rainfall of 1.5 cm, proving that CDs were almost all washed to the ground by rain at this rainfall; while NanoSi-CDs still maintained a high photosynthesis-promoting effect at a rainfall of 2.5 cm. This experiment further proved that NanoSi improved the adhesion of CDs on leaves.
- Maize seedlings with uniform germination and growth were selected and transferred to pots containing 1.5 kg of soil (2 plants per pot). Each plant was sprayed with 5 mL of CDs, NanoSi and NanoSi-CDs dispersions (all at a concentration of 10 mg ⁇ L -1 ), and the control group was ultrapure water (CK). Maize leaves were then collected on the 1st, 5th, 10th, 15th and 20th days after spraying the materials for 7 consecutive days to measure photosynthetic parameters.
- step (3) the amount of ethanol in step (3) was replaced by 300 mL and 600 mL (i.e., NanoSi), respectively, and the other factors remained unchanged to obtain the corresponding composite material.
- the morphology of the corresponding composite materials was characterized, and it was found that no carbon dot lattice was found on the surface of the corresponding composite materials, indicating that the method failed to achieve effective carbon dot loading.
- step (3) the rotation speed in step (3) was replaced from 150 rpm to 100 rpm and 300 rpm respectively, while other parameters remained unchanged, to obtain the corresponding composite material.
- the morphology of the corresponding composite materials was characterized, and it was found that no carbon dot lattice was found on the surface of the corresponding composite materials, indicating that effective carbon dot loading was not achieved under this method.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Fertilizers (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
一种提高纳米材料在植物叶面生物有效性的方法,属于肥料技术领域。具体涉及一种改善纳米材料在植物叶面生物有效性的方法,包括如下步骤:制备NanoSi和CDs;将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料NanoSi-CDs。所得NanoSi-CDs的粘附能力相对于CDs提高了50.6%-79.8%,耐雨能力提升了1cm;在叶面喷施NanoSi-CDs后,玉米光合相对于CDs提高了110%-140%,生物量2-4倍,作用有效期延长了10日以上。
Description
本发明具体涉及一种提高纳米材料在植物叶面生物有效性的方法,属于肥料技术领域。
目前粮食需求显著增加,然而无法实现理想的作物产量,同时通常会造成严重的环境问题。近些年由于纳米材料在农业上的应用更加普遍,其中,由于纳米材料对环境危害更小;从自身特性上,其粒径小,活性更强,生物有效性更高,让纳米农药和肥料的利用效率相对于传统农肥提高了10%-30%,而更高的利用效率又取决于材料的喷施方式,一般来讲,叶面喷施要比根灌的效率要高出10%-40%左右。因此,从以上材料的生物有效性的角度考虑可为解决农业产量危机提供了可靠的思路。然而,叶面喷施材料会面临材料滚落的问题,因此,进一步提高材料在叶面的截留率可以更加提高材料的生物有效性。
发明内容
针对以上技术问题和应用目的,本发明的目的在于如何提高改善纳米材料生物有效性。
本发明的技术方案是:
提供一种改善纳米材料在植物叶面生物有效性的方法,包括如下步骤:
(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;
(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs。
提供一种具有高植物叶面生物有效性的纳米复合材料的制备方法,包括如下步骤:
(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;
(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs。
在本发明的一种实施方式中,步骤(1)所述混合液中,氨水的浓度为28wt%。
在本发明的一种实施方式中,步骤(1)所述混合液中,氨水、去离子水、乙醇的体积比
为3:10:70。
在本发明的一种实施方式中,步骤(1)所述混合液中,甲醛溶液为37wt%的水溶液。
在本发明的一种实施方式中,步骤(1)所述混合液中,甲醛溶液与去离子水的质量比为(0.25-0.3):10。
在本发明的一种实施方式中,步骤(1)所述混合液中,间苯二酚相对去离子水的添加量为0.2g/10mL。
在本发明的一种实施方式中,步骤(1)所述混合液中,原硅酸乙酯相对去离子水的体积分数为6%。
在本发明的一种实施方式中,步骤(1)中,混合液继续加入甲醛和间苯二酚的过程中,间苯二酚的添加量为混合液中间苯二酚用量的2倍。
在本发明的一种实施方式中,步骤(1)中,混合液继续加入甲醛和间苯二酚的过程中,甲醛的添加量为混合液中甲醛用量的2倍。
在本发明的一种实施方式中,步骤(1)中,煅烧是指在550℃下连续煅烧5小时。
在本发明的一种实施方式中,步骤(1)具体包括:
将氨水(28wt%,3ml)、去离子水(10ml)和乙醇(AR,95%,70ml)添加到由甲醛溶液(37wt%、0.28g)和间苯二酚(0.2g)组成的溶液中;在室温下以500rpm的速度将混合物磁搅拌6h,然后添加原硅酸乙酯(TEOS,AR,>98%,0.6ml)并搅拌30min;然后,添加间苯二酚(0.4g)和甲醛溶液(37wt%,0.56g),并搅拌混合溶液2h;随后,以4000rpm的速度离心固体10min,用乙醇洗涤,并在50℃干燥。最后,将所得固体在550℃(加热速率为2℃/min)下连续煅烧5小时得到NanoSi。
在本发明的一种实施方式中,步骤(2)中,碳点CDs通过如下方法制得:柠檬酸和乙二胺通过水热法合成得到。
在本发明的一种实施方式中,柠檬酸与乙二胺的用量条件为(1-2)g:(300-350)μL。
在本发明的一种实施方式中,水热法的条件是200℃下反应12h。
在本发明的一种实施方式中,步骤(2)中,溶解在乙醇相对NanoSi的用量为450mL/100mg。
在本发明的一种实施方式中,步骤(2)中,NanoSi与碳点CDs的质量比1:1。
在本发明的一种实施方式中,步骤(2)中,缓慢搅拌的转速为150rpm。
本发明基于上述方法还制备提供了一种具有高植物叶面生物有效性的纳米复合材料。
本发明还提供了上述方法或者上述纳米复合材料在提高农业产量方面的应用。
本发明具有以下有益的技术效果:
本发明NanoSi-CDs的粘附能力相对于CDs提高了50.6%-79.8%,耐雨能力提升了1cm。
本发明在叶面喷施NanoSi-CDs后,玉米光合相对于CDs提高了110%-140%,生物量2-4倍,作用有效期延长了10日以上(缓释性能)。
图1(A)NanoSi的TEM图片;(B)CDs的TEM照片;(C)NanoSi-CDs的TEM照片;(D)CDs负载上NanoSi的晶格TEM图片;(E)CDs和NanoSi-CDs的PL图谱;(F)(G)(H)分别为CDs、NanoSi及NanoSi-CDs的UV-vis、FITR和XPS谱图。
图2(A)和(B)分别是CDs和NanoSi-CDs在叶片生长角为0°时的接触角;(C)和(D)分别是CDs和NanoSi-CDs在叶片生长角为30°时的接触角。
图3为降雨对叶面肥CDs、NanoSi及NanoSi-CDs的冲刷作用。A为人工模拟降雨装置;B为2.5cm降雨量下第20天的效应照片;C、D和E分别为对照、NanoSi、CDs和NanoSi-CDs处理下在0.5cm、1.5cm和2.5cm降雨量实验后的净光合速率、电子传递速率和叶绿素含量。
图4(A)从左到右分别为喷施材料后第1、10和20天的效应照片;(B)-(H)光合参数:净光合速率、叶绿素A、叶绿素B、电子传递速率、光系统2(PSII)活性相关基因、光系统1(PSI)活性相关基因和光合通路图。
图5为对比例1所得复合材料的TEM照片。
图6为对比例2所得复合材料的TEM照片。
以下结合具体实施例,对本发明做进一步描述。
以下所提供的实施例并非用以限制本发明所涵盖的范围,所描述的步骤也不是用以限制其执行顺序。本领域技术人员结合现有公知常识对本发明做显而易见的改进,亦落入本发明要求的保护范围之内。
实施例1:纳米材料(CDs和NanoSi)及其复合物(NanoSi-CDs)的制备
(1)将氨水(28wt%,3ml)、去离子水(10ml)和乙醇(AR,95%,70ml)添加到由甲醛(37wt%、0.28g)和间苯二酚(0.2g)组成的溶液中。在室温下以500rpm的速度将混合物磁搅拌6h,然后添加原硅酸乙酯(TEOS,AR,>98%,0.6ml)并搅拌30min。然后,添加间苯二酚(0.4g)和甲醛(37wt%,0.56g),并搅拌混合溶液2h。随后,以4000rpm的速度离心固体10min,用乙醇洗涤,并在50℃干燥。最后,将所得固体在550℃(加热速率
为2℃/min)下连续煅烧5小时得到NanoSi。
(2)使用柠檬酸(1.05g)和乙二胺(335μL)通过水热法(200℃和12h)合成CDs。
(3)将100mg NanoSi溶解在450ml乙醇中,并超声波处理6h,然后添加100mg CDs。最后,在60℃下以150rpm转速缓慢搅拌溶液,直到溶液挥发,以获得固体纳米Nano-CDs复合材料。
利用透射电子显微镜(TEM)对CDs、NanoSi及NanoSi-CDs的形态及尺寸进行表征,结果表明,NanoSi呈球状,表面有大量毛状体物质,直径为250.6±30.5nm,毛状体长为30.5±6.8nm(图1A)。CDs粒径在2.55±0.23nm(图1B),并且在NanoSi上发现碳点晶格(图1D),证明CDs被成功负载到NanoSi上。图1E荧光光谱再次证明NanoSi上有碳点荧光。CDs、NanoSi及NanoSi-CDs的UV-vis、FITR和XPS图谱(图1F-H)进一步证明CDs被成功负载到NanoSi上。(图1F-H)。
实施例2:NanoSi粘附性能测试
使用接触角测量仪在玉米叶片生长角0°和30°测量CDs和NanoSi-CDs分别在1、3和5μL下的接触角(图2)。结果发现NanoSi-CDs在玉米叶片上的接触角远远小于CDs,接触角更小证明材料有更高的亲水性,即不易滚落,提高了材料在叶片上的粘附能力。表1是使用接触角测量仪测定的粘附功进一步证明负载后的NanoSi-CDs相比CDs有更高的粘附能力,即NanoSi-CDs的粘附能力相对于CDs提高了50.6%-79.8%。
表1 CDs和NanoSi-CDs在叶片表面的粘附功
实施例3:雨密性实验
为了模拟雨水对NanoSi-CDs的冲刷作用设计人工雨水,将3μmol Mg(NO3)2、7μmol MgCl2、15μmol CaCl2、6μmol NH4Cl、10μmol Na2SO4、62μmolNaCl和8μmol KCl溶解在超纯水中。采用喷雾瓶法(图3A)模拟降雨过程。人工雨水被灌入喷雾瓶,“雨水”是用一个装有触发泵喷雾装置的水瓶从前面喷洒的,水瓶离地高度为0.5米,距离玉米叶片约0.3米。喷雾瓶经过校准,每100次喷射可输送80毫升人工雨水,相当于约0.5厘米的降雨量。在0.5、1.5和2.5cm的降雨量水平下测试NanoSi-CDs的冲刷效果。每个样本有10个重复。在降雨试验后,测定了玉米作物的各项指标。结果发现CDs在1.5cm降雨量下对玉米光合效果几乎没有,证明CDs在此降雨量下几乎全部被雨水冲落到地面;而NanoSi-CDs在2.5cm降雨量下仍然保持较高的光合促进效果,本实验进一步证明NanoSi提高了CDs在叶片上的粘附能力。
实施例4:材料生物有效性提高的生物效应
选择发芽和生长均匀的玉米幼苗,并转移到含有1.5kg土壤的盆栽(每个盆栽2株)。每株植物喷洒5mL的CDs、NanoSi和NanoSi-CDs分散液(浓度均为10mg·L-1),对照组为超纯水(CK)。随后在连续7天喷洒材料后的第1、5、10、15和20天采集玉米叶片测定光合参数。
结果表明,在叶面喷施NanoSi-CDs后,玉米光合相对于CDs提高了110%-140%,生物量2-4倍,作用有效期延长了10日以上。
对比例1:
参照实施例1,将步骤(3)中乙醇的用量分别替换为300mL、600mL(即NanoSi),其他不变,制得相应的复合材料。
对相应的复合材料的形貌进行表征,结果发现:相应获得复合材料中均未在其表面发现碳点晶格。说明该方法下未能实现有效的碳点负载。
对比例2:
参照实施例1,将步骤(3)中转速由150rpm分别替换为100rpm、300rpm,其他不变,制得相应的复合材料。
对相应的复合材料的形貌进行表征,结果发现:相应获得复合材料中同样均未在其表面发现碳点晶格。说明该方法下也没有实现有效的碳点负载。
Claims (14)
- 一种改善纳米材料在植物叶面生物有效性的方法,其特征在于,包括如下步骤:(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs;步骤(1)所述混合液中,原硅酸乙酯相对去离子水的体积分数为6%;步骤(1)中,混合液继续加入甲醛和间苯二酚的过程中,间苯二酚的添加量为混合液中间苯二酚用量的2倍;甲醛的添加量为混合液中甲醛用量的2倍;步骤(2)中,乙醇相对NanoSi的用量为450mL/100mg;步骤(2)中,NanoSi与碳点CDs的质量比1:1;步骤(2)中,缓慢搅拌的转速为150rpm。
- 一种具有高植物叶面生物有效性的纳米复合材料的制备方法,其特征在于,包括如下步骤:(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs;步骤(1)所述混合液中,原硅酸乙酯相对去离子水的体积分数为6%;步骤(1)中,混合液继续加入甲醛和间苯二酚的过程中,间苯二酚的添加量为混合液中间苯二酚用量的2倍;甲醛的添加量为混合液中甲醛用量的2倍;步骤(2)中,乙醇相对NanoSi的用量为450mL/100mg;步骤(2)中,NanoSi与碳点CDs的质量比1:1;步骤(2)中,缓慢搅拌的转速为150rpm。
- 一种改善纳米材料在植物叶面生物有效性的方法,其特征在于,包括如下步骤:(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs。
- 一种具有高植物叶面生物有效性的纳米复合材料的制备方法,其特征在于,包括如下步骤:(1)将氨水、去离子水、乙醇、甲醛溶液和间苯二酚混合,混匀后加入原硅酸乙酯,搅拌获得混合液;然后向混合液继续加入甲醛和间苯二酚,搅拌进行反应,结束后,离心分离、收集固体,洗涤,干燥,煅烧,得到NanoSi;(2)将所得NanoSi溶解在乙醇中,然后加入碳点CDs,并缓慢搅拌溶液,直到溶液挥发,以获得固体纳米复合材料Nano-CDs。
- 根据权利要求1或2所述的方法,其特征在于,步骤(1)所述混合液中,原硅酸乙酯相对去离子水的体积分数为6%。
- 根据权利要求1或2所述的方法,其特征在于,步骤(1)中,混合液继续加入甲醛和间苯二酚的过程中,间苯二酚的添加量为混合液中间苯二酚用量的2倍;甲醛的添加量为混合液中甲醛用量的2倍。
- 根据权利要求1或2所述的方法,其特征在于,步骤(2)中,溶解在乙醇相对NanoSi的用量为450mL/100mg。
- 根据权利要求1或2所述的方法,其特征在于,步骤(2)中,NanoSi与碳点CDs的质量比1:1。
- 根据权利要求1或2所述的方法,其特征在于,步骤(2)中,缓慢搅拌的转速为150rpm。
- 权利要求1或2所述的方法获得的具有高植物叶面生物有效性的纳米复合材料。
- 权利要求3或4所述的方法获得的具有高植物叶面生物有效性的纳米复合材料。
- 权利要求1所述的方法在提高农业产量方面的应用。
- 权利要求9所述的纳米复合材料在提高农业产量方面的应用。
- 权利要求10所述的纳米复合材料在提高农业产量方面的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211248348.3A CN115521178B (zh) | 2022-10-12 | 2022-10-12 | 一种提高纳米材料在植物叶面生物有效性的方法 |
CN202211248348.3 | 2022-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078082A1 true WO2024078082A1 (zh) | 2024-04-18 |
Family
ID=84701158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/108090 WO2024078082A1 (zh) | 2022-10-12 | 2023-07-19 | 一种提高纳米材料在植物叶面生物有效性的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115521178B (zh) |
WO (1) | WO2024078082A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115521178B (zh) * | 2022-10-12 | 2023-06-27 | 江南大学 | 一种提高纳米材料在植物叶面生物有效性的方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104804743A (zh) * | 2015-03-17 | 2015-07-29 | 中国科学院理化技术研究所 | 一种二氧化硅@量子点复合纳米颗粒的制备方法 |
CN109266324A (zh) * | 2018-10-16 | 2019-01-25 | 南京纳科伟业纳米技术有限公司 | 树枝状二氧化硅@碳点复合纳米颗粒及其制备方法 |
CN110278860A (zh) * | 2019-06-11 | 2019-09-27 | 华南农业大学 | 一种促进植物光合作用的叶片表面的纳米转光技术 |
CN112608733A (zh) * | 2020-12-29 | 2021-04-06 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种二氧化硅量子点复合材料的制备方法 |
CN112841218A (zh) * | 2021-01-21 | 2021-05-28 | 江南大学 | 一种采用纳米硅量子点防治玉米粘虫的方法 |
WO2021207807A2 (pt) * | 2020-01-31 | 2021-10-21 | Fundação Universidade De Brasilia | Potencializador de fotossíntese baseados em nanopartículas híbridas de carbono, seu processo de obtenção e seu uso como nanobioestimulantes e nanofertilizantes em cultivos agrícolas |
WO2022086447A1 (en) * | 2020-10-21 | 2022-04-28 | Nanyang Technological University | Doped carbon dots and uses thereof |
CN115521178A (zh) * | 2022-10-12 | 2022-12-27 | 江南大学 | 一种提高纳米材料在植物叶面生物有效性的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7153525B1 (en) * | 2000-03-22 | 2006-12-26 | The University Of Kentucky Research Foundation | Microemulsions as precursors to solid nanoparticles |
CN106809815B (zh) * | 2015-11-27 | 2019-10-08 | 中国科学院过程工程研究所 | 一种碳量子点、其制备方法及用途 |
CN108893102B (zh) * | 2018-04-27 | 2021-03-30 | 华南农业大学 | 一种NaYF4与碳点纳米复合材料及其制备方法及其应用 |
CN110330973B (zh) * | 2019-06-11 | 2021-10-19 | 华南农业大学 | 一种促进豆芽生长的碳点纳米复合发光材料及其制备方法和应用 |
CN112979353A (zh) * | 2021-01-12 | 2021-06-18 | 华南农业大学 | 一种低成本环保碳量子点纳米肥料的制备方法及应用 |
CN113563876B (zh) * | 2021-07-06 | 2022-09-27 | 江南大学 | 一种增强型黄光碳点及其制备方法和应用 |
CN115029138B (zh) * | 2022-06-23 | 2023-03-24 | 华中农业大学 | 一种含硒碳量子点及其在提高植物抗逆胁迫中的应用 |
-
2022
- 2022-10-12 CN CN202211248348.3A patent/CN115521178B/zh active Active
-
2023
- 2023-07-19 WO PCT/CN2023/108090 patent/WO2024078082A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104804743A (zh) * | 2015-03-17 | 2015-07-29 | 中国科学院理化技术研究所 | 一种二氧化硅@量子点复合纳米颗粒的制备方法 |
CN109266324A (zh) * | 2018-10-16 | 2019-01-25 | 南京纳科伟业纳米技术有限公司 | 树枝状二氧化硅@碳点复合纳米颗粒及其制备方法 |
CN110278860A (zh) * | 2019-06-11 | 2019-09-27 | 华南农业大学 | 一种促进植物光合作用的叶片表面的纳米转光技术 |
WO2021207807A2 (pt) * | 2020-01-31 | 2021-10-21 | Fundação Universidade De Brasilia | Potencializador de fotossíntese baseados em nanopartículas híbridas de carbono, seu processo de obtenção e seu uso como nanobioestimulantes e nanofertilizantes em cultivos agrícolas |
WO2022086447A1 (en) * | 2020-10-21 | 2022-04-28 | Nanyang Technological University | Doped carbon dots and uses thereof |
CN112608733A (zh) * | 2020-12-29 | 2021-04-06 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种二氧化硅量子点复合材料的制备方法 |
CN112841218A (zh) * | 2021-01-21 | 2021-05-28 | 江南大学 | 一种采用纳米硅量子点防治玉米粘虫的方法 |
CN115521178A (zh) * | 2022-10-12 | 2022-12-27 | 江南大学 | 一种提高纳米材料在植物叶面生物有效性的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115521178B (zh) | 2023-06-27 |
CN115521178A (zh) | 2022-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105524623B (zh) | 一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法 | |
WO2024078082A1 (zh) | 一种提高纳米材料在植物叶面生物有效性的方法 | |
CN106233857B (zh) | 一种稻田面源污染减排及水稻增产方法 | |
CN104119168B (zh) | 凹凸棒压缩营养土的生产方法 | |
CN102276364A (zh) | 一种含γ-聚谷氨酸的抗旱保水种衣剂及其制备方法 | |
CN105494471B (zh) | 苗木蘸根保湿剂及其制备方法和应用 | |
CN103539521B (zh) | 一种利用棉花杆配制的映山红栽培基质及其制备方法 | |
CN105875611A (zh) | 一种植物抗盐调节剂及其制备方法 | |
CN105000952A (zh) | 碳气凝胶作为纳米碳肥料增效剂在调节植物生长中的应用 | |
CN111234841A (zh) | 一种防病虫害新型土壤改良剂的制备和应用 | |
CN105612863A (zh) | 包衣种子制造方法及以此制造的包衣种子 | |
CN106699455A (zh) | 一种可降解含硫酸镁的缓释肥及其制备方法 | |
GB2594955A (en) | Seedstocks of Sphagnum | |
CN108770865B (zh) | 阿坝垂穗披碱草种子包衣剂 | |
CN108484258A (zh) | 海滨木槿复合肥的制备方法 | |
CN102206122A (zh) | 一种树木灌根营养液 | |
CN109220787A (zh) | 提高小麦单倍体苗成活率和加倍率的方法 | |
CN105379490B (zh) | 一种大穗型超高产水稻品种控穗增粒壮籽高效施肥方法 | |
CN107285834A (zh) | 一种高浓度液体水溶肥及其制备方法 | |
CN107501009A (zh) | 一种利用花生秸秆制备的花生专用肥及其制备方法 | |
JPS6256389A (ja) | ケイ酸カリウム液体肥料及びその製造方法 | |
CN106380352A (zh) | 一种腐植酸螯合铜的制备方法 | |
CN112088737A (zh) | 一种高品质水稻的精细化种植方法 | |
CN111573636A (zh) | 氮化碳材料作为植物肥料在促进光合作用中的应用 | |
CN110317116A (zh) | 一种甘蔗专用纳米激活增效复混肥及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023575832 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876288 Country of ref document: EP Kind code of ref document: A1 |