WO2024077989A1 - 空调器及其控制方法 - Google Patents

空调器及其控制方法 Download PDF

Info

Publication number
WO2024077989A1
WO2024077989A1 PCT/CN2023/099959 CN2023099959W WO2024077989A1 WO 2024077989 A1 WO2024077989 A1 WO 2024077989A1 CN 2023099959 W CN2023099959 W CN 2023099959W WO 2024077989 A1 WO2024077989 A1 WO 2024077989A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
preset
air conditioner
stop valve
Prior art date
Application number
PCT/CN2023/099959
Other languages
English (en)
French (fr)
Inventor
郭小惠
张恒
刘心怡
车闫瑾
井旭
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211249984.8A external-priority patent/CN115654582A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024077989A1 publication Critical patent/WO2024077989A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the present disclosure relates to the technical field of air conditioning equipment, and in particular to an air conditioner and a control method thereof.
  • the present disclosure provides an air conditioner, the air conditioner comprising an outdoor unit, an indoor unit, a compressor and a controller.
  • the indoor unit is connected to the outdoor unit.
  • the controller is configured to: obtain the exhaust pressure and suction pressure of the compressor during the refrigerant recovery process; determine the compression ratio of the compressor according to the exhaust pressure and suction pressure of the compressor; determine the calculated speed adjustment value of the compressor according to the compression ratio of the compressor and a preset target compression ratio; determine the target speed of the compressor according to the current speed of the compressor and the calculated speed adjustment value, and control the compressor to operate at the target speed.
  • the present disclosure provides a control method for an air conditioner, wherein the air conditioner includes a compressor, a first pressure sensor, a second pressure sensor, and a controller.
  • the first pressure sensor is configured to detect the exhaust pressure of the compressor.
  • the second pressure sensor is configured to detect the suction pressure of the compressor.
  • the controller is coupled to the compressor, the first pressure sensor, and the second pressure sensor.
  • the method includes: in the refrigerant recovery process, obtaining the exhaust pressure of the compressor through the first pressure sensor, and obtaining the suction pressure of the compressor through the second pressure sensor; determining the compression ratio of the compressor according to the exhaust pressure and suction pressure of the compressor; determining the calculated speed adjustment value of the compressor according to the compression ratio and the preset target compression ratio; determining the target speed of the compressor according to the current speed of the compressor and the speed adjustment value, and controlling the compressor to operate at the target speed.
  • the present disclosure provides a control method for an air conditioner, wherein the air conditioner includes an outdoor unit, an indoor unit, a compressor, a first throttling device, a third stop valve, a refrigerant recovery pipeline, a fourth stop valve, a fifth stop valve, a concentration sensor and a controller.
  • the indoor unit is connected to the outdoor unit;
  • the first throttling device is arranged on the first refrigerant pipeline and is configured to adjust the refrigerant flow in the first refrigerant pipeline.
  • the third stop valve is arranged on the third refrigerant pipeline between the first throttling device and the indoor unit and is configured to control the connection and cutoff of the third refrigerant pipeline.
  • the first end of the refrigerant recovery pipeline is connected to the fourth refrigerant pipeline between the first throttling device and the third stop valve, and the second end of the refrigerant recovery pipeline is connected to the eighth refrigerant pipeline between the gas-liquid separator and the fifth stop valve.
  • the fourth stop valve is arranged in the refrigerant recovery pipeline and is configured to control the connection and cutoff of the refrigerant recovery pipeline.
  • the fifth stop valve is arranged on the seventh circulation pipeline between the indoor unit and the gas-liquid separator and is configured to control the connection and cutoff of the seventh circulation pipeline.
  • the concentration sensor is configured to detect the refrigerant concentration of the environment in which the indoor unit is located.
  • the controller is coupled to the indoor unit, the outdoor unit, the compressor, the first throttling device, the third stop valve, the refrigerant recovery pipeline, the fourth stop valve, the fifth stop valve and the concentration sensor.
  • the method includes: when the concentration sensor detects that the refrigerant concentration of the environment in which the indoor unit is located is greater than or equal to a preset threshold, if it is determined that the air conditioner is in a cooling mode, the first throttling device is controlled to be closed and the fourth stop valve is controlled to be opened.
  • FIG1 is a structural diagram of an air conditioner according to some embodiments.
  • FIG2 is another structural diagram of an air conditioner according to some embodiments.
  • FIG3 is a connection diagram of a four-way valve of an air conditioner according to some embodiments.
  • FIG4 is a cycle schematic diagram of an air conditioner in a cooling mode according to some embodiments.
  • FIG5 is a block diagram of a hardware configuration of an air conditioner according to some embodiments.
  • FIG6 is a flow chart of a control method of an air conditioner according to some embodiments.
  • FIG7 is a flow chart of another control method of an air conditioner according to some embodiments.
  • FIG8 is a schematic diagram of a refrigerant leakage amount during a refrigerant recovery process of an air conditioner according to some embodiments
  • FIG9 is a schematic diagram of another refrigerant leakage amount during a refrigerant recovery process of an air conditioner according to some embodiments.
  • FIG10 is a flow chart of another control method of an air conditioner according to some embodiments.
  • FIG11 is another structural diagram of an air conditioner according to some embodiments.
  • FIG12 is another structural diagram of an air conditioner according to some embodiments.
  • FIG13 is another structural diagram of an air conditioner according to some embodiments.
  • FIG14 is another structural diagram of an air conditioner according to some embodiments.
  • FIG15 is a structural diagram of multiple indoor units in an air conditioner according to some embodiments.
  • FIG16 is another structural diagram of an air conditioner according to some embodiments.
  • FIG17 is a structural diagram of multiple indoor units in another air conditioner according to some embodiments.
  • FIG18 is a flow chart of a control method of an air conditioner according to some embodiments.
  • FIG19 is a flow chart of another method for controlling an air conditioner according to some embodiments.
  • FIG20 is a flow chart of another control method of an air conditioner according to some embodiments.
  • FIG. 21 is a hardware structure diagram of a controller according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • FIG1 is a structural diagram of an air conditioner according to some embodiments. As shown in FIG1 , an air conditioner 10 includes an indoor The indoor unit 11 and the outdoor unit 12.
  • the indoor unit 11 is an indoor hanging unit, in which case the indoor unit 11 is usually installed on an indoor wall, etc.
  • the indoor unit 11 is an indoor cabinet unit, in which case the indoor unit 11 is usually placed on an indoor floor.
  • the present disclosure does not limit the type of the indoor unit 11.
  • the outdoor unit 12 is usually arranged outdoors and is configured to assist in heat exchange of the indoor environment.
  • the outdoor unit 12 can be connected to a plurality of indoor units 11. Usually, since the outdoor unit 12 is located outdoors on the opposite side of the indoor unit 11 across a wall, the outdoor unit 12 is indicated by a dotted line in FIG. 1 .
  • Fig. 2 is another structural diagram of an air conditioner according to some embodiments. As shown in Fig. 2, the air conditioner 10 further includes a first refrigerant pipeline 13, a second refrigerant pipeline 14 and a controller 15 (as shown in Fig. 5).
  • the indoor unit 11 includes: an indoor heat exchanger 111, an indoor fan 112 and an indoor throttling device 113.
  • the outdoor unit 12 includes: a compressor 121, a four-way valve 122, an outdoor heat exchanger 123, an outdoor fan 124, an outdoor throttling device 125, a gas-liquid separator 126, a first stop valve 127, a second stop valve 128, a first pressure sensor 129 and a second pressure sensor 130.
  • the first refrigerant pipeline 13 is respectively connected to the indoor heat exchanger 111 and the outdoor heat exchanger 123.
  • the air conditioner 10 operates in the cooling mode, the refrigerant flows from the outdoor heat exchanger 123 through the first refrigerant pipeline 13 into the indoor heat exchanger 111.
  • the second refrigerant pipeline 14 is respectively connected to the indoor heat exchanger 111 and the four-way valve 122.
  • the first stop valve 127 is provided on the first refrigerant pipeline 13, and is configured to control the conduction and disconnection of the first refrigerant pipeline 13.
  • the second stop valve 128 is provided on the second refrigerant pipeline 14, and is configured to control the conduction and disconnection of the second refrigerant pipeline 14.
  • the first stop valve 127 and the second stop valve 128 can be devices capable of controlling the conduction and disconnection of the refrigerant pipeline, such as solenoid valves, etc., or can be devices capable of controlling the opening, such as electronic expansion valves, etc.
  • the first refrigerant pipeline 13 and the second refrigerant pipeline 14 are filled with refrigerant, such as refrigerant R32.
  • the compressor 121, the condenser (the indoor heat exchanger 111 or the outdoor heat exchanger 123), the throttling device (the indoor throttling device 113 or the outdoor throttling device 125), and the evaporator (the outdoor heat exchanger 123 or the indoor heat exchanger 111) perform the refrigerant cycle of the air conditioner 10.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion, and evaporation, and circulates and supplies the refrigerant to the conditioned side.
  • the indoor heat exchanger 111 liquefies or vaporizes the refrigerant by exchanging heat between indoor air and the refrigerant passing through the indoor heat exchanger 111.
  • the outdoor heat exchanger 123 is configured to liquefy or vaporize the refrigerant by exchanging heat between outdoor air and the refrigerant passing through the outdoor heat exchanger 123.
  • the indoor fan 112 generates an airflow of indoor air passing through the indoor heat exchanger 111, and is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the indoor heat exchanger 111 and the indoor air to assist in temperature regulation.
  • the outdoor fan 124 generates an airflow of outdoor air passing through the outdoor heat exchanger 123, and is configured to promote heat exchange between the refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 123 and the outdoor air.
  • the indoor throttling device 113 and the outdoor throttling device 125 are configured to adjust the refrigerant flow in the pipeline of the air conditioner 10.
  • the indoor throttling device 113 and the outdoor throttling device 125 are, for example, electronic expansion valves.
  • the refrigerant pressure flowing through the outdoor heat exchanger 123 and the indoor heat exchanger 111 is adjusted by the opening size of the electronic expansion valve to adjust the refrigerant flow between the outdoor heat exchanger 123 and the indoor heat exchanger 111. If the opening of the electronic expansion valve is reduced, the flow resistance of the refrigerant passing through the electronic expansion valve increases. If the opening of the electronic expansion valve is increased, the flow resistance of the refrigerant passing through the electronic expansion valve decreases.
  • the flow and pressure of the refrigerant flowing between the outdoor heat exchanger 123 and the indoor heat exchanger 111 will affect the heat exchange performance of the outdoor heat exchanger 123 and the indoor heat exchanger 111.
  • the compressor 121 is configured to compress the gas phase refrigerant in a low temperature and low pressure state and discharge the compressed high temperature and high pressure gas phase refrigerant, and the high temperature and high pressure gas phase refrigerant flows into the condenser.
  • the compressor 121 includes an air intake port 1211 and an air exhaust port 1212.
  • the air intake port 1211 is connected to the gas-liquid separator 126, and the air exhaust port 1212 is connected to the four-way valve 122. It should be noted that in the cooling mode, the outdoor heat exchanger 123 acts as a condenser; in the heating mode, the indoor heat exchanger 111 acts as a condenser.
  • the first pressure sensor 129 is configured to detect the exhaust pressure of the compressor 121.
  • the second pressure sensor 130 is configured to detect the suction pressure of the compressor 121.
  • the four-way valve 122 is configured to achieve the air conditioner 10 by changing the flow direction of the refrigerant in the pipeline of the air conditioner 10. Conversion between cooling and heating.
  • FIG3 is a connection diagram of a four-way valve of an air conditioner according to some embodiments.
  • the four-way valve 122 includes four ports, namely, a D port, an E port, an S port, and a C port.
  • the D port is connected to the compressor 121
  • the E port is connected to the indoor heat exchanger 111
  • the S port is connected to the gas-liquid separator 126
  • the C port is connected to the outdoor heat exchanger 123.
  • the air conditioner 10 operates in cooling mode
  • the D port is connected to the C port
  • the E port is connected to the S port.
  • the air conditioner 10 operates in heating mode
  • the D port is connected to the E port
  • the C port is connected to the S port.
  • the controller 15 refers to a device that can generate an operation control signal according to the instruction operation code and the timing signal to instruct the air conditioner 10 to execute the control instruction.
  • the controller 15 is coupled to the various components of the air conditioner 10 and is configured to control the operation of the various components of the air conditioner 10 so that the various components of the air conditioner 10 operate, thereby realizing various predetermined functions of the air conditioner 10.
  • the controller 15 can be integrated in the outdoor unit 12.
  • FIG4 is a cycle principle diagram of an air conditioner in cooling mode according to some embodiments. As shown in FIG4, when the air conditioner 10 operates in cooling mode, the C port and the D port of the four-way valve 122 are connected, and the S port and the E port are connected. At this time, the outdoor heat exchanger 123 acts as a condenser, and the indoor heat exchanger 111 acts as an evaporator.
  • the gas phase refrigerant in a low temperature and low pressure state is compressed by the compressor 121 and converted into a high temperature and high pressure gas phase refrigerant.
  • the high temperature and high pressure gas phase refrigerant flows into the outdoor heat exchanger 123 through the four-way valve 122.
  • the outdoor heat exchanger 123 condenses the high temperature and high pressure gas phase refrigerant into a high pressure liquid phase refrigerant, and the heat is released to the surrounding environment during the condensation process.
  • the outdoor throttling device 125 and the indoor throttling device 113 throttle and reduce the pressure of the high pressure liquid phase refrigerant to become a gas-liquid two-phase refrigerant in a low pressure state.
  • the indoor heat exchanger 111 absorbs heat from the surrounding environment and evaporates the low pressure gas-liquid two-phase refrigerant to form a low temperature and low pressure gas phase refrigerant.
  • the low temperature and low pressure gas phase refrigerant returns to the compressor 121 through the four-way valve 122 to form a refrigeration cycle.
  • Fig. 5 is a block diagram of a hardware configuration of an air conditioner according to some embodiments.
  • the air conditioner 10 may further include at least one of the following: an ambient temperature sensor 16 , a refrigerant leakage detection device 17 , a communicator 18 or a memory 19 .
  • the ambient temperature sensor 16 is configured to detect the outdoor ambient temperature.
  • the refrigerant leakage detection device 17 is configured to detect whether a refrigerant leakage occurs in the air conditioner 10 and send the refrigerant leakage information to the controller 15 .
  • the communicator 18 is configured to establish a communication connection with other network entities. For example, the communicator 18 establishes a communication connection with a terminal device.
  • the memory 19 is configured to store software programs and data.
  • the controller 15 executes various functions and data processing of the air conditioner 10 by running the software programs or data stored in the memory 19.
  • the memory 19 stores an operating system for running the air conditioner 10.
  • the memory 19 in some embodiments of the present disclosure may store an operating system and various application programs, and may also store code for executing the control method of the air conditioner 10 provided in some embodiments of the present disclosure.
  • the refrigerant needs to circulate in the refrigerant circulation pipeline between the outdoor unit and the indoor unit.
  • the refrigerant circulation pipeline there is a risk of refrigerant leakage.
  • the refrigerants currently used in air conditioners (such as R290, R32, etc.) are flammable, so if the air conditioner leaks refrigerant, it may cause dangerous accidents such as fire and explosion; and if the refrigerant leakage of the air conditioner occurs indoors, due to the closed indoor space, poor air flow, and close distance to people, the risk factor is higher and it is more likely to pose a threat to human life.
  • the air conditioner 10 can perform refrigerant leakage detection, and automatically recover the refrigerant when a refrigerant leakage is determined.
  • the maintenance personnel may input a refrigerant leakage detection instruction to the air conditioner 10 through a terminal device connected to the air conditioner 10.
  • the air conditioner 10 may perform a refrigerant leakage detection operation through the refrigerant leakage detection device 17.
  • the air conditioner 10 can automatically start the refrigerant leakage detection device 17 at a preset time interval to perform refrigerant leakage detection.
  • the preset time interval can be pre-set when the air conditioner 10 leaves the factory, and the present disclosure does not limit this.
  • the controller 15 can automatically control various components of the air conditioner 10. Refrigerant recovery.
  • the air conditioner 10 may receive a refrigerant recovery instruction and perform refrigerant recovery based on the instruction.
  • the controller 15 may send a prompt message to a remote controller of the air conditioner 10 , a terminal device connected to the air conditioner 10 , etc., to remind the user that a refrigerant leak has occurred in the air conditioner 10 .
  • the maintenance personnel may input a recovery control instruction through a terminal device connected to the air conditioner 10.
  • the air conditioner 10 may control various components of the air conditioner 10 to recover the refrigerant.
  • the air conditioner in the control strategy for recovering the leaked refrigerant, the air conditioner mostly controls the speed of the compressor according to the ambient temperature.
  • the air conditioner controls the compressor to operate at a first preset speed; when the ambient temperature is higher than or equal to the predetermined ambient temperature value, the air conditioner controls the compressor to operate at a second preset speed, and the first preset speed is higher than the second preset speed.
  • the compressor can only operate at a fixed speed (such as the first preset speed or the second preset speed) at any time, resulting in the compressor may not be able to operate at the target speed at that time, reducing the recovery rate of the refrigerant.
  • the air conditioner 10 recovers the refrigerant at the fastest speed and can recover more refrigerant.
  • an embodiment of the present disclosure provides a control method for refrigerant recovery of an air conditioner 10 , which is applied to a controller 15 .
  • Fig. 6 is a flow chart of a control method of an air conditioner according to some embodiments. As shown in Fig. 6, some embodiments of the present disclosure provide a control method of an air conditioner 10, the method comprising S101 to S105.
  • the controller 15 opens the indoor throttling device 113 , the outdoor throttling device 125 , the first stop valve 127 and the second stop valve 128 .
  • the controller 15 obtains the exhaust pressure of the compressor 121 measured by the first pressure sensor 129 and the suction pressure of the compressor 121 measured by the second pressure sensor 130 .
  • the compression ratio of the compressor 121 is a ratio of the exhaust pressure of the compressor 121 to the suction pressure.
  • the compression ratio of the compressor 121 can be obtained by formula (1).
  • E(t) N(t)/I(t) Formula (1)
  • E(t) is the compression ratio of the compressor 121 ; N(t) is the exhaust pressure of the compressor 121 ; and I(t) is the suction pressure of the compressor 121 .
  • the calculated speed adjustment value of the compressor 121 is obtained by formula (2).
  • ⁇ H(t) A ⁇ (E(t)-E(0))+B Formula (2)
  • ⁇ H(t) is the calculated speed adjustment value of the compressor 121; A is the first preset coefficient; B is the second preset coefficient; E(t) is the compression ratio of the compressor and E(0) is the preset target compression ratio.
  • the first preset coefficient and the second preset coefficient are both constants.
  • the target speed of the compressor 121 is the sum of the calculated speed adjustment value ⁇ H(t) and the current speed of the compressor 121 .
  • the target speed of the compressor 121 can be obtained by formula (3).
  • H(t+1) H(t)+ ⁇ H(t) Formula (3)
  • the control method of the air conditioner 10 determines the compression ratio of the compressor 121 by acquiring the exhaust pressure and the suction pressure of the compressor 121, and determines the target speed H(t+1) of the compressor 121 based on the compression ratio of the compressor 121, and finally controls the compressor 121 to operate at the target speed H(t+1).
  • the compressor 121 can operate at the target speed at any time. This not only improves the speed of refrigerant recovery, but also can recover more refrigerant, which is conducive to reducing the amount of refrigerant leaking into the room.
  • FIG. 7 is a flow chart of another control method of an air conditioner according to some embodiments. As shown in FIG. 7 , in some embodiments of the present disclosure, the control method further includes S201 to S202 .
  • the first preset condition includes that the exhaust pressure of the compressor 121 is greater than or equal to the first preset exhaust pressure.
  • the first preset condition may further include at least one of the following: the exhaust pressure change rate of the compressor 121 is greater than or equal to a preset exhaust pressure change rate, or the outdoor temperature is greater than or equal to a preset temperature.
  • a target speed H(t+1) of the compressor 121 is determined according to a preset speed adjustment value of the compressor 121 and a current speed H(t) of the compressor 121 .
  • the difference between the preset speed adjustment value of the compressor 121 and the current speed H(t) of the compressor 121 is used as the target speed H(t+1) of the compressor 121.
  • the target speed of the compressor 121 can be obtained by formula (4).
  • H(t+1) H(t)-M Formula (4)
  • M is the preset speed adjustment value.
  • M is the first preset speed adjustment value.
  • M when the exhaust pressure of the compressor 121 is greater than or equal to the first preset exhaust pressure and less than the third preset exhaust pressure, M is the first preset speed adjustment value.
  • M is the second preset speed adjustment value.
  • the third preset exhaust pressure is greater than the first preset exhaust pressure
  • the second preset speed adjustment value is greater than the first preset speed adjustment value
  • M is the third preset speed adjustment value.
  • the preset exhaust pressure change rate includes a first preset exhaust pressure change rate and a second preset exhaust pressure change rate.
  • the second preset exhaust pressure change rate is greater than the first preset exhaust pressure change rate.
  • M is the third preset speed adjustment value.
  • M is the fourth preset speed adjustment value. The fourth preset speed adjustment value is greater than the third preset speed adjustment value.
  • M is the fifth preset speed adjustment value.
  • the preset temperature includes a first preset temperature and a second preset temperature, wherein the second preset temperature is greater than the first preset temperature.
  • M is the fifth preset speed adjustment value.
  • M is the sixth preset speed adjustment value.
  • the sixth preset speed adjustment value is greater than the fifth preset speed adjustment value.
  • the first preset speed adjustment value is less than or equal to the third preset speed adjustment value.
  • the third preset speed adjustment value is less than or equal to the fifth preset speed adjustment value.
  • the controller 15 substitutes the different preset speed adjustment values M obtained under the above-mentioned different situations into formula 4 for calculation, obtains the target speed of the compressor 121 under different situations, and controls the compressor 121 to operate at the target speed under different situations. This can increase the speed of recovering the refrigerant, and can also recover more refrigerant, which is beneficial to reduce the amount of refrigerant leaking into the room.
  • the total refrigerant leakage includes the first part of the refrigerant leakage during the refrigerant recovery process, and the second part of the refrigerant leakage remaining inside the indoor unit 11 at the end of the refrigerant recovery.
  • FIG8 is a schematic diagram of a refrigerant leakage amount during a refrigerant recovery process of an air conditioner according to some embodiments.
  • Pd0 is a first preset exhaust pressure
  • curves Pd1 (t) and Pd2 (t) are variation curves of the exhaust pressure of the compressor 121
  • curves H1 (t) and H2 (t) are variation curves of the target speed H(t+1) of the compressor 121
  • curves m_leak1 (t) and m_leak2 (t) are variation curves of the first part of the refrigerant leakage amount.
  • the change curve of the compressor 121 is shown as curve Pd 1 (t), curve H 1 (t) and curve m_leak 1 (t); in the case where the first preset condition includes that the exhaust pressure of the compressor 121 is greater than or equal to the first preset exhaust pressure, the change curve of the compressor 121 is shown as curve Pd 2 (t), curve H 2 (t) and curve m_leak 2 (t).
  • a corresponding to m_leak 1 and B corresponding to m_rest 1 respectively represent the remaining first part of the refrigerant leakage and the second part of the refrigerant leakage; in the case where the first preset condition includes that the exhaust pressure of the compressor 121 is greater than or equal to the first preset exhaust pressure, A' corresponding to m_leak 2 and B' corresponding to m_rest 2 respectively represent the remaining first part of the refrigerant leakage and the second part of the refrigerant leakage.
  • the controller 15 controls the compressor 121 to reduce the speed so that the compressor 121 maintains a relatively high speed operation, which can extend the operation time of the refrigerant recovery operation, so that the amount of refrigerant recovered by the air conditioner 10 increases, and the remaining second part of the refrigerant leakage decreases.
  • the reduction in the second part of the refrigerant leakage (the value of B-B') is greater than the increase in the first part of the refrigerant leakage (the value of A'-A), thereby improving the recovery rate of the refrigerant and reducing the total refrigerant leakage.
  • the rotation speed of the compressor 121 changes, and the exhaust pressure of the compressor 121, the first part leakage amount and the second part leakage amount also change accordingly.
  • FIG9 is a schematic diagram of another refrigerant leakage amount of an air conditioner in a refrigerant recovery process according to some embodiments. As shown in FIG9, different from the curve shown in FIG8, FIG9 also includes a curve Pd 3 (t) for the variation curve of the exhaust pressure of the compressor 121, a curve H 3 (t) for the variation curve of the target speed H(t+1) of the compressor 121, and a curve m_leak 3 (t) for the variation curve of the first part of the refrigerant leakage amount.
  • a curve Pd 3 (t) for the variation curve of the exhaust pressure of the compressor 121
  • a curve H 3 (t) for the variation curve of the target speed H(t+1) of the compressor 121
  • m_leak 3 (t) for the variation curve of the first part of the refrigerant leakage amount.
  • the variation curve of the compressor 121 is shown as the curve Pd 3 (t), the curve H 3 (t) and the curve m_leak 3 (t).
  • the A “corresponding to m_leak 3 " and the B “corresponding to m_rest 3 " respectively represent the remaining first part of the refrigerant leakage amount and the second part of the refrigerant leakage amount.
  • the controller 15 controls the compressor 121 to operate at the target speed, which can avoid the speed adjustment of the compressor 121 failing to keep up with the change in exhaust pressure, and can also extend the operating time of the refrigerant recovery work, thereby improving the refrigerant recovery rate and reducing the total refrigerant leakage.
  • the exhaust pressure of the compressor 121 is greater than or equal to the first preset exhaust pressure
  • the exhaust pressure change rate is greater than or equal to the preset exhaust pressure change rate
  • the outdoor temperature is greater than or equal to the preset temperature
  • the second part of the refrigerant leakage accounts for a large proportion of the total refrigerant leakage.
  • the controller when the compressor 121 does not meet the first preset condition, sequentially executes S102 to S105 to control the operation of the compressor 121 .
  • Fig. 10 is a flow chart of another control method of an air conditioner according to some embodiments. As shown in Fig. 10, in some embodiments of the present disclosure, after S105, the method may further include S301 to S308.
  • the air conditioner 10 first runs for a first preset time, and then the controller 15 controls the first stop valve to close, so that the refrigerant circulates in advance, so as to recover a portion of the refrigerant in the indoor unit 11 in advance.
  • the second preset condition includes at least one of the following: the suction pressure of the compressor 121 is less than or equal to the preset suction pressure; the exhaust pressure of the compressor 121 is greater than or equal to the second preset exhaust pressure; or, the recovery time of the refrigerant recovery process reaches a third preset time; wherein the third preset time is greater than or equal to the first preset time.
  • the controller 15 controls the second stop valve 128 to close, and controls the compressor 121 to continue to operate.
  • the second stop valve 128 needs to be in a closed state.
  • the second preset time length is greater than or equal to the first preset time length, and the third preset time length is less than or equal to the second preset time length.
  • the controller 15 controls the compressor 121 to stop running, and the refrigerant recovery work ends.
  • the preset target compression ratio, the first preset coefficient, the second preset coefficient, the preset speed adjustment value, the first preset time, the preset intake pressure, the second preset exhaust pressure, the third preset time and the second preset time can all be pre-set by the management personnel of the air conditioner 10 when it leaves the factory, or can be obtained by the controller 15 from other air conditioners, and the present disclosure is not limited to this.
  • Fig. 11 is a structural diagram of an air conditioner according to some embodiments. As shown in Fig. 11 , the main difference between the air conditioner in Fig. 11 and the air conditioner in Fig. 2 is that the air conditioner 10 in Fig. 11 includes a first throttling device 140 and a third stop valve 141 .
  • the compressor 121, the outdoor unit 12, the first throttling device 140, the third stop valve 141, the indoor unit 11 and the gas-liquid separator 126 form a refrigerant circulation loop, so that the refrigerant can circulate in the refrigerant circulation loop.
  • the first throttling device 140 is located on the first refrigerant pipeline 13 between the outdoor unit 12 and the indoor unit 11, and is configured to adjust the refrigerant flow of the first refrigerant pipeline 13.
  • the first throttling device 140 is, for example, an electronic expansion valve.
  • the third stop valve 141 is located on the third refrigerant pipeline between the first throttling device 140 and the indoor unit 11, and is configured to control the connection and cutoff of the third refrigerant pipeline.
  • the air conditioner 10 also includes a refrigerant recovery pipeline 20, the first end 201 of the refrigerant recovery pipeline 20 is connected to the fourth refrigerant pipeline between the first throttling device 140 and the third stop valve 141, and the second end 202 of the refrigerant recovery pipeline 20 is connected to the fifth refrigerant pipeline between the compressor 121 and the outdoor unit 12.
  • the air conditioner 10 further includes a fourth stop valve 142 , which is disposed on the refrigerant recovery pipeline 20 and is configured to control the connection and disconnection of the refrigerant recovery pipeline 20 .
  • the fourth stop valve 142 is, for example, a solenoid valve or an electronic expansion valve.
  • the air conditioner 10 further includes a concentration sensor 143.
  • the concentration sensor 143 is located on the indoor unit 11, is coupled to the controller 15, and is configured to detect the refrigerant concentration of the environment in which the indoor unit 11 is located, and sends the detected refrigerant concentration of the environment in which the indoor unit 11 is located to the controller 15.
  • Fig. 12 is another structure diagram of an air conditioner according to some embodiments. As shown in Fig. 12 , in some embodiments of the present disclosure, the concentration sensor 143 includes a first concentration sensor 1431 , and the air conditioner 10 may further include a second throttling device 144 .
  • the second throttling device 144 is disposed on the sixth refrigerant pipeline between the indoor unit 11 and the third stop valve 141, and is configured to adjust the refrigerant flow of the sixth refrigerant pipeline.
  • the second throttling device 144 is, for example, an electronic expansion valve.
  • FIG. 13 is another structural diagram of an air conditioner according to some embodiments. As shown in FIG. 13, in some embodiments of the present disclosure, the air conditioner 10 may further include a fifth stop valve 145 in addition to a pressure sensor (such as the second pressure sensor 130).
  • the controller 15 is coupled to the first throttling device 140 , the third stop valve 141 , the fourth stop valve 142 , the first concentration sensor 1431 , the second throttling device 144 and the fifth stop valve 145 .
  • the fifth stop valve 145 is located on the seventh refrigerant pipeline between the gas-liquid separator 126 and the indoor unit 11, and is configured to control the connection and disconnection of the seventh refrigerant pipeline.
  • the third refrigerant pipeline is a part of the first refrigerant pipeline 13 , and the third refrigerant pipeline includes a fourth refrigerant pipeline and a sixth refrigerant pipeline.
  • FIG. 14 is another structural diagram of an air conditioner according to some embodiments.
  • the outdoor unit 12 includes an outdoor fan 124 and an outdoor heat exchanger 123
  • the indoor unit 11 includes an indoor fan 112 and an indoor heat exchanger 111 .
  • FIG15 is a structural diagram of multiple indoor units in an air conditioner according to some embodiments.
  • the air conditioner 10 may further include multiple indoor units 11. Taking the air conditioner 10 including two indoor units 11 as an example, at this time, the air conditioner 10 further includes: a third throttling device 146, and the concentration sensor 143 further includes a second concentration sensor 1432.
  • the two indoor units 11 include a first indoor unit 1101 and a second indoor unit 1102, and the two indoor units 11 can be connected in parallel.
  • the third throttling device 146 is disposed on the circulation pipeline between the outdoor unit 12 and the second indoor unit 1102, and is configured to adjust the refrigerant flow of the circulation pipeline between the second indoor unit 1102 and the outdoor unit 12.
  • the third throttling device 146 is, for example, an electronic expansion valve.
  • the second concentration sensor 1432 is located on the second indoor unit 1102 , and is configured to detect the refrigerant concentration of the environment in which the second indoor unit 1102 is located, and send the detected refrigerant concentration of the environment in which the second indoor unit 1102 is located to the controller 15 .
  • the controller 15 is coupled to both the third throttling device 146 and the second concentration sensor 1432 .
  • FIG16 is another structural diagram of an air conditioner according to some embodiments.
  • the main difference between the air conditioner in FIG16 and the air conditioner in FIG14 is that the second end 202 of the refrigerant recovery pipeline 20 in FIG16 is connected to the eighth refrigerant pipeline between the gas-liquid separator 126 and the fifth stop valve 145. This disclosure will not elaborate on this.
  • FIG17 is a structural diagram of multiple indoor units in another air conditioner according to some embodiments.
  • the air conditioner 10 shown in FIG16 may also include multiple indoor units 11.
  • the air conditioner 10 includes two indoor units 11 (e.g., the first indoor unit 1101 and the second indoor unit 1102).
  • the main difference between the air conditioner in FIG17 and the air conditioner in FIG16 is that the air conditioner 10 in FIG17 also includes: a fourth throttling device 147, and the concentration sensor 143 also includes a first Three concentration sensors 1433.
  • the two indoor units 11 include a first indoor unit 1101 and a second indoor unit 1102, and the two indoor units 11 can be connected in parallel.
  • the fourth throttling device 147 is disposed on the circulation pipeline between the outdoor unit 12 and the second indoor unit 1102, and is configured to adjust the refrigerant flow of the circulation pipeline between the second indoor unit 1102 and the outdoor unit 12.
  • the fourth throttling device 147 is, for example, an electronic expansion valve.
  • the third concentration sensor 1433 is located on the second indoor unit 1102 , and is configured to detect the refrigerant concentration of the environment in which the second indoor unit 1102 is located, and send the detected refrigerant concentration of the environment in which the second indoor unit 1102 is located to the controller 15 .
  • the controller 15 is coupled to both the fourth throttling device 147 and the third concentration sensor 1433 .
  • Fig. 18 is a flow chart of a control method for an air conditioner according to some embodiments. As shown in Fig. 18, in some embodiments of the present disclosure, the method includes S10 to S13.
  • the concentration sensor 143 detects that the refrigerant concentration of the environment in which the indoor unit 11 is located is greater than or equal to a preset threshold, it means that the refrigerant concentration of the environment in which the indoor unit 11 is located is too high and a refrigerant leakage has occurred.
  • the controller 15 controls the first throttling device 140 to close and controls the fourth stop valve 142 to open.
  • the high-temperature and high-pressure gas phase refrigerant generated by the compressor 121 can enter the indoor unit 11 through the refrigerant recovery pipeline 20 to discharge the refrigerant in the indoor unit 11, so that the refrigerant concentration in the indoor unit 11 can be quickly reduced, and the refrigerant in the indoor unit 11 can be quickly recovered in the case of refrigerant leakage in the air conditioner 10, and the leakage amount of the refrigerant in the indoor unit 11 is timely reduced, and the probability of dangerous situations is reduced.
  • the first throttling device 140 is controlled to be closed and the fourth stop valve 142 is controlled to be opened.
  • the pressure on the suction port 1211 side of the compressor 121 is greater than the pressure on the indoor unit 11 side, and the refrigerant in the indoor unit 11 enters the gas-liquid separator 126 from the refrigerant recovery pipeline 20 based on the pressure difference, which can quickly reduce the refrigerant concentration of the indoor unit 11, and realize the rapid recovery of the refrigerant in the indoor unit 11 in the case of refrigerant leakage in the air conditioner 10, timely reduce the leakage of the refrigerant in the indoor unit 11, and reduce the probability of dangerous situations.
  • the controller 15 controls the air conditioner 10 to enter the cooling mode, so that the indoor heat exchanger 111 works as an evaporator, reduces the refrigerant concentration in the indoor unit 11, and prevents the refrigerant in the indoor unit 11 from continuing to leak into the environment where the indoor unit 11 is located.
  • controller 15 controls the air conditioner 10 to enter the cooling mode
  • increasing the operating gears of the indoor fan 112 and the outdoor fan 124 can increase the rate at which the liquid refrigerant in the indoor unit 11 is converted into the gaseous refrigerant, quickly reduce the refrigerant concentration in the indoor unit 11, and achieve rapid recovery of the refrigerant in the indoor unit 11 in the event of a refrigerant leak in the air conditioner 10, timely reduce the amount of refrigerant leakage in the indoor unit 11, and reduce the probability of a dangerous situation.
  • the operating gears of the indoor fan 112 and the outdoor fan 124 may be adjusted to the maximum gear.
  • the shutdown prompt information is used to prompt the user that the refrigerant recovery work is completed and to prompt the user to inspect the air conditioner 10.
  • the air conditioner 10 itself can send a shutdown prompt message.
  • the shutdown prompt message sent by the air conditioner 10 can be in the form of one or more of text, voice, vibration, or animation, etc., and the present disclosure does not limit this.
  • the air conditioner 10 establishes a communication connection with the terminal device and sends a shutdown prompt message to the terminal device.
  • FIG. 19 is a flow chart of another control method of an air conditioner according to some embodiments. As shown in FIG. 19 , in some embodiments of the present disclosure, the control method further includes S20 .
  • the controller 15 increases the operating frequency of the compressor 121 and controls the second throttling device 144 to increase its opening, so that the compressor 121 can quickly generate high-temperature and high-pressure gas-phase refrigerant, and the high-temperature and high-pressure gas-phase refrigerant generated by the compressor 121 can enter the indoor unit 11 through the second throttling device 144, quickly evaporate the refrigerant in the indoor unit 11, thereby increasing the evaporation rate of the refrigerant in the indoor unit 11, and thereby increasing the refrigerant recovery rate of the air conditioner 10.
  • the operating frequency of the compressor 121 is increased, and the second throttling device 144 is controlled to increase the opening degree, thereby increasing the pressure difference between the compressor 121 and the indoor unit 11 side.
  • the refrigerant in the indoor unit 11 can enter the gas-liquid separator 126 from the refrigerant recovery pipeline 20 based on the pressure difference, thereby quickly reducing the refrigerant concentration in the indoor unit 11 and improving the refrigerant recovery rate of the air conditioner 10.
  • the operating frequency of the compressor 121 when the operating frequency of the compressor 121 is increased, the operating frequency of the compressor 121 can be increased to the maximum operating frequency of the compressor 121.
  • the second throttling device 144 when the second throttling device 144 is controlled to increase the opening, the second throttling device 144 can be controlled to adjust the opening to the maximum opening.
  • FIG. 20 is a flowchart of another control method of an air conditioner according to some embodiments. As shown in FIG. 20 , in some embodiments of the present disclosure, after S11 or S20 , the method further includes S31 to S32 .
  • the controller 15 controls the fourth stop valve 142 to close after controlling the fourth stop valve 142 to open for a fourth preset time period, controls the third stop valve 141 to close, and obtains the suction pressure value of the compressor 121, and determines whether the refrigerant in the indoor unit 11 has been discharged according to the suction pressure value of the compressor 121.
  • the fourth preset time length may be preset when the air conditioner 10 leaves the factory, and the present disclosure does not impose any limitation on this.
  • the fourth preset time length may be 0 to 30 seconds.
  • the fourth preset time length may be 20 to 120 seconds.
  • the refrigerant in the indoor unit 11 is sucked into the gas-liquid separator 126 based on the pressure difference between the compressor 121 and the indoor unit 11. This process consumes a long time, so the fourth preset time length can be made longer to determine whether the refrigerant in the indoor unit 11 has been discharged.
  • the fifth stop valve 145 is controlled to be closed, and the second throttling device 144 is controlled to reduce the opening degree.
  • the controller 15 controls the fifth stop valve 145 to close, and controls the second throttling device 144 to reduce the opening, so as to complete the recovery of the refrigerant in the indoor unit 11.
  • the controller 15 when the controller 15 controls the second throttling device 144 to reduce the opening, the controller 15 may control the second throttling device 144 to adjust the opening to the minimum opening.
  • the preset pressure threshold is preset when the air conditioner 10 leaves the factory.
  • the preset pressure threshold is 0.1 MPa.
  • the refrigerant leakage problem of the air conditioner is usually solved by closing the blocking valve disposed at the inlet and outlet side of the indoor unit where the refrigerant leakage occurs, or by using conventional recovery technology to recover part of the refrigerant to the outside to prevent the refrigerant from leaking into the room.
  • this can only prevent all the leaked refrigerant from flowing into the room, and does not fully consider how to recover more leaked refrigerant.
  • a control method for an air conditioner is disclosed.
  • the controller 15 controls the air conditioner 100 to enter a cooling mode, and controls the first throttling device to close and the fourth stop valve 142 to open, so that the high-temperature and high-pressure gaseous refrigerant generated by the compressor can enter the indoor unit through the refrigerant recovery pipeline, so as to discharge the refrigerant in the indoor unit and quickly reduce the refrigerant concentration in the indoor unit, thereby realizing rapid recovery of the refrigerant in the indoor unit in the event of a refrigerant leak in the air conditioner, and timely reducing the leakage of the refrigerant in the indoor unit, thereby reducing the probability of a dangerous situation.
  • FIG21 is a hardware structure diagram of a controller according to some embodiments. As shown in FIG21, an embodiment of the present disclosure provides a controller 15, the controller 15 includes a processor 151, and in some embodiments of the present disclosure, the controller 15 also includes a memory 152 and a communication interface 153 connected to the processor 151. The processor 151, the memory 152 and the communication interface 153 are connected via a bus 154.
  • the processor 151 is used to execute the computer program code stored in the memory 152, so as to implement a method for controlling an air conditioner provided in an embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其控制方法,空调器包括室外机(12)、室内机(11)、压缩机(121)和控制器(15),室内机(11)与室外机(12)连通,控制器(15)被配置为:在冷媒回收过程中,获取压缩机(121)当前的排气压力和吸气压力,根据压缩机(121)的排气压力和吸气压力,确定压缩机(121)的压缩比,根据压缩机(121)的压缩比和预设目标压缩比,确定压缩机(121)的计算转速调节值,根据压缩机(121)的当前转速和计算转速调节值,确定压缩机(121)的目标转速,并控制压缩机(121)以目标转速运转。

Description

空调器及其控制方法
本申请要求于2023年02月28日提交的、申请号为202310186767.7的中国专利申请的优先权;以及于2022年10月12日提交的、申请号为202211249984.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节设备技术领域,尤其涉及一种空调器及其控制方法。
背景技术
随着生活水平的提高,基于人们对于体感温度舒适度的需求,空调器已经走进了千家万户,成为人们日常生活中必备的电器。空调器在运行过程中需要冷媒在室外机和室内机之间的冷媒循环管路中进行循环。
发明内容
一方面,本公开提供一种空调器,所述空调器包括室外机、室内机、压缩机和控制器。所述室内机与所述室外机连通。所述控制器,被配置为:在冷媒回收过程中,获取所述压缩机的排气压力和吸气压力;根据所述压缩机的排气压力和吸气压力,确定所述压缩机的压缩比;根据所述压缩机的压缩比和预设目标压缩比,确定所述压缩机的计算转速调节值根据所述压缩机的当前转速和所述计算转速调节值,确定所述压缩机的目标转速,并控制所述压缩机以所述目标转速运转。
另一方面,本公开提供一种空调器的控制方法,其中,所述空调器包括压缩机、第一压力传感器、第二压力传感器和控制器。所述第一压力传感器被配置为检测所述压缩机的排气压力。所述第二压力传感器被配置为检测所述压缩机的吸气压力。所述控制器与所述压缩机、所述第一压力传感器和所述第二压力传感器耦接。所述方法包括:在冷媒回收过程中,通过所述第一压力传感器获取所述压缩机的排气压力,通过所述第二压力传感器获取所述压缩机的吸气压力;根据所述压缩机的排气压力和吸气压力,确定所述压缩机的压缩比;根据所述压缩比和预设目标压缩比,确定所述压缩机的计算转速调节值;根据所述压缩机的当前转速和所述转速调节值,确定所述压缩机的目标转速,并控制所述压缩机以所述目标转速运转。
又一方面,本公开提供一种空调器的控制方法,其中,所述空调器包括室外机、室内机、压缩机、第一节流装置、第三截止阀、冷媒回收管路、第四截止阀、第五截止阀、浓度传感器和控制器。所述室内机与所述室外机连通;所述第一节流装置设置于所述第一冷媒管路上,被配置为调节所述第一冷媒管路中的冷媒流量。所述第三截止阀设置于所述第一节流装置与所述室内机之间的第三冷媒管路上,被配置为控制所述第三冷媒管路的连通与截断。所述冷媒回收管路的第一端连通与所述第一节流装置以及所述第三截止阀之间的第四冷媒管路,所述冷媒回收管路的第二端连通与所述气液分离器以及所述第五截止阀之间的第八冷媒管路。所述第四截止阀设置于所述冷媒回收管路中,被配置为控制所述冷媒回收管路的连通与截断。所述第五截止阀设置于所述室内机与所述气液分离器之间的第七循环管路,被配置为控制所述第七循环管路的连通与截断。所述浓度传感器被配置为检测室内机所处环境的冷媒浓度。所述控制器与所述室内机、所述室外机、所述压缩机、所述第一节流装置、所述第三截止阀、所述冷媒回收管路、所述第四截止阀、所述第五截止阀和所述浓度传感器耦接。所述方法包括:当通过所述浓度传感器检测到所述室内机所处环境的冷媒浓度大于或等于预设阈值,若确定所述空调器处于制冷模式,则控制所述第一节流装置关闭,控制所述第四截止阀开启。
附图说明
图1为根据一些实施例的空调器的一种结构图;
图2为根据一些实施例的空调器的另一种结构图;
图3为根据一些实施例的空调器的四通阀的连接图;
图4为根据一些实施例的空调器在制冷模式下的的一种循环原理图;
图5为根据一些实施例的空调器的一种硬件配置框图;
图6为根据一些实施例的空调器的一种控制方法的流程图;
图7为根据一些实施例的空调器的另一种控制方法的流程图;
图8为根据一些实施例的空调器在冷媒回收过程中的一种冷媒泄漏量的示意图;
图9为根据一些实施例的空调器在冷媒回收过程中的另一种冷媒泄漏量的示意图;
图10为根据一些实施例的空调器的又一种控制方法的流程图;
图11为根据一些实施例的空调器的又一种结构图;
图12为根据一些实施例的空调器的又一种结构图;
图13为根据一些实施例的空调器的又一种结构图;
图14为根据一些实施例的空调器的又一种结构图;
图15为根据一些实施例的一种空调器中多室内机的结构图;
图16为根据一些实施例的空调器的又一种结构图;
图17为根据一些实施例的另一种空调器中多室内机的结构图;
图18为根据一些实施例的空调器的一种控制方法的流程图;
图19为根据一些实施例的空调器的另一种控制方法的流程图;
图20为根据一些实施例的空调器的又一种控制方法的流程图;
图21为根据一些实施例的一种控制器的硬件结构图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
图1为根据一些实施例的空调器的一种结构图。如图1所示,空调器10包括室内 机11和室外机12。
在一些实施例中,室内机11为室内挂机,此时,室内机11通常安装在室内壁面等。在另一些实施例中,室内机11为室内柜机,此时,室内机11通常放置于室内地板。本公开对室内机11的类型不作限定。
室外机12通常设置在户外,被配置为辅助室内环境换热。室外机12可以与多个室内机11连接。通常,由于室外机12隔着墙壁位于与室内机11相反一侧的户外,因此,在图1中用虚线来表示室外机12。
图2为根据一些实施例的空调器的另一种结构图。如图2所示,空调器10还包括第一冷媒管路13、第二冷媒管路14以及控制器15(如图5中所示)。
室内机11包括:室内换热器111、室内风扇112和室内节流装置113。室外机12包括:压缩机121、四通阀122、室外换热器123、室外风扇124、室外节流装置125、气液分离器126、第一截止阀127、第二截止阀128、第一压力传感器129和第二压力传感器130。第一冷媒管路13分别与室内换热器111和室外换热器123连通,在空调器10运行在制冷模式下,冷媒由室外换热器123通过第一冷媒管路13流入室内换热器111。第二冷媒管路14分别与室内换热器111和四通阀122连通。
第一截止阀127设置在第一冷媒管路13上,被配置为控制第一冷媒管路13的导通与断开。第二截止阀128设置在第二冷媒管路14上,被配置为控制第二冷媒管路14的导通与断开。第一截止阀127和第二截止阀128可以是能够控制冷媒管路导通与断开的装置,例如电磁阀等,也可以是能够控制开度的装置,例如电子膨胀阀等。
在一些实施例中,第一冷媒管路13和第二冷媒管路14中充注有冷媒,冷媒例如为冷媒R32。
压缩机121、冷凝器(室内换热器111或室外换热器123)、节流装置(室内节流装置113或室外节流装置125)和蒸发器(室外换热器123或室内换热器111)来执行空调器10的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
室内换热器111通过将室内空气与在室内换热器111中传输的冷媒进行热交换对冷媒进行液化或汽化中的一种。室外换热器123被配置为通过将室外空气与在室外换热器123中传输的冷媒进行热交换对冷媒进行液化或汽化中的另一种。
室内风扇112产生通过室内换热器111的室内空气的气流,被配置为促进在室内换热器111的传热管中流动的冷媒与室内空气的热交换,以辅助温度调节。室外风扇124产生通过室外换热器123的室外空气的气流,被配置为促进在室外换热器123的传热管中流动的冷媒与室外空气的热交换。
室内节流装置113和室外节流装置125被配置为调节空调器10的管路内的冷媒流量。室内节流装置113和室外节流装置125例如为电子膨胀阀。由电子膨胀阀的开度大小调节流经室外换热器123和室内换热器111的冷媒压力,以调节流通于室外换热器123和室内换热器111之间的冷媒流量。若减小电子膨胀阀的开度,则通过电子膨胀阀的冷媒的流路阻力增加。若增加电子膨胀阀的开度,则通过电子膨胀阀的冷媒的流路阻力减小。流通于室外换热器123和室内换热器111之间的冷媒的流量和压力将影响室外换热器123和室内换热器111的换热性能。压缩机121被配置为压缩处于低温低压状态的气相冷媒并排出压缩后的高温高压的气相冷媒,高温高压的气相冷媒流入冷凝器。压缩机121包括吸气口1211和排气口1212,吸气口1211与气液分离器126连通,排气口1212与四通阀122连通。需要说明的是,在制冷模式下,室外换热器123作为冷凝器;在制热模式下,室内换热器111作为冷凝器。
第一压力传感器129被配置为检测压缩机121的排气压力。第二压力传感器130被配置为检测压缩机121的吸气压力。
四通阀122被配置为通过改变冷媒在空调器10的管路内的流向来实现空调器10 在制冷、制热之间的相互转换。
图3为根据一些实施例的一种空调器的四通阀的连接图。如图3所示,四通阀122包括四个端口,分别为D端口、E端口、S端口和C端口。D端口与压缩机121连接,E端口与室内换热器111连接,S端口与气液分离器126连接,C端口与室外换热器123连接。当空调器10运行在制冷模式时,D端口与C端口连通,E端口与S端口连通。当空调器10运行在制热模式时,D端口与E端口连通,C端口与S端口连通。
在本公开一些实施例中,控制器15是指可以根据指令操作码和时序信号,产生操作控制信号,指示空调器10执行控制指令的装置。控制器15与空调器10的各部件耦接,被配置为控制空调器10的各部件工作,使空调器10各部件运行,从而实现空调器10的各预定功能。在本公开一些实施例中,控制器15可以集成于室外机12中。
图4为根据一些实施例的空调器在制冷模式下的的一种循环原理图。如图4所示,当空调器10运行在制冷模式时,四通阀122的C端口和D端口连通,S端口和E端口连通。此时,室外换热器123作为冷凝器,室内换热器111作为蒸发器。
低温低压状态的气相冷媒经压缩机121压缩后转变为高温高压的气相冷媒,高温高压的气相冷媒通过四通阀122流入室外换热器123。室外换热器123将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境。室外节流装置125和室内节流装置113将高压状态的液相冷媒节流降压之后变成低压状态的气液两相态冷媒,室内换热器111从周围环境中吸取热量并将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒经四通阀122返回到压缩机121中,形成制冷循环。
图5为根据一些实施例的空调器的一种硬件配置框图。如图5所示,在一些实施例中,空调器10还可以包括以下至少之一:环境温度传感器16、冷媒泄漏检测装置17、通信器18或存储器19。
环境温度传感器16被配置为检测室外环境温度。
冷媒泄漏检测装置17被配置为检测空调器10中是否发生冷媒泄漏,并将冷媒泄漏信息发送给控制器15。
通信器18被配置为与其他网络实体建立通信连接。例如,通信器18与终端设备建立通信连接。
存储器19被配置为存储软件程序及数据。控制器15通过运行存储在存储器19中的软件程序或数据,来执行空调器10的各种功能和数据处理。存储器19存储有使空调器10运行的操作系统。本公开一些实施例中的存储器19可以存储操作系统及各种应用程序,还可以存储执行本公开一些实施例提供的空调器10的控制方法的代码。
空调器在运行过程中需要冷媒在室外机和室内机之间的冷媒循环管路中进行循环。冷媒在该冷媒循环管路进行循环的过程中,存在发生冷媒泄露的风险。目前空调器使用的冷媒(如R290、R32等)具有可燃性,所以空调器在发生冷媒泄露后,可能会导致火灾、爆炸等危险事故的发生;并且,如果空调器的冷媒泄漏发生在室内,由于室内空间密闭,空气流动差,距离人比较近等原因,危险系数更高,更容易对人的生命构成威胁。
在一些实施例中,在空调器10的运行过程中,空调器10可以进行冷媒泄漏检测,并在确定冷媒泄漏时,自动进行冷媒回收。
例如,维护人员可以通过与空调器10连接的终端设备等向空调器10输入冷媒泄漏检测指令。空调器10响应于该冷媒泄漏检测指令,可以通过冷媒泄漏检测装置17进行冷媒泄漏检测工作。
再例如,空调器10可以以预设的时间间隔自动启动冷媒泄漏检测装置17,以进行冷媒泄漏检测工作。预设时间间隔可以是空调器10出厂时预先设定的,本公开对此不作限制。
在一些实施例中,在确定冷媒泄漏时,控制器15可以自动控制空调器10的各部 件进行冷媒回收。
在另一些实施例中,在确定冷媒泄漏时,空调器10可以接收冷媒回收指令,并基于该指令,进行冷媒回收。
在一些实施例中,在确定冷媒泄漏时,控制器15可以向空调器10的遥控器、与空调器10连接的终端设备等发出提示信息,以提醒用户空调器10的冷媒发生了泄漏。
类似地,维护人员可以通过与空调器10连接的终端设备等输入回收控制指令。空调器10响应于该回收控制指令,可以控制空调器10的各部件进行冷媒回收。
相关技术中,在回收泄漏的冷媒的控制策略中,大多是空调器根据环境温度控制压缩机的转速。在环境温度低于预定的环境温度值时,空调器控制压缩机以第一预设转速运转;在环境温度高于或等于预定的环境温度值时,空调器控制压缩机以第二预设转速运转,第一预设转速高于第二预设转速。然而,在这种方式中,压缩机在任一时刻,只能以固定转速(例如第一预设转速或第二预设转速)运转,导致压缩机在某一时刻可能不能以该时刻下的目标转速运转,降低了冷媒的回收率。
需要说明的是,当压缩机121运行在目标转速时,空调器10回收冷媒的速度最快,且能够回收更多的冷媒。
为了解决上述问题,本公开实施例提供一种空调器10的冷媒回收的控制方法,应用于控制器15。
图6为根据一些实施例的空调器的一种控制方法的流程图。如图6所示,本公开一些实施例提供一种空调器10的控制方法,该方法包括S101至S105。
S101、打开室内节流装置113、室外节流装置125、第一截止阀127和第二截止阀128。
在冷媒回收过程开始时,控制器15打开室内节流装置113、室外节流装置125、第一截止阀127和第二截止阀128。
S102、在冷媒回收过程中,获取压缩机121的排气压力和吸气压力。
控制器15获取第一压力传感器129测得的压缩机121的排气压力和第二压力传感器130测得的压缩机121的吸气压力。
S103、根据压缩机121的排气压力和吸气压力,确定压缩机121的压缩比。
压缩机121的压缩比为压缩机121的排气压力与吸气压力的比值。
在本公开一些实施例中,压缩机121的压缩比可以由公式(1)得到。
E(t)=N(t)/I(t)            公式(1)
其中,E(t)为压缩机121的压缩比;N(t)为压缩机121的排气压力;I(t)为压缩机121的吸气压力。
S104、根据压缩机121的压缩比E(t)和预设目标压缩比,确定压缩机121的计算转速调节值。
在本公开一些实施例中,压缩机121的计算转速调节值由公式(2)得到。
ΔH(t)=A×(E(t)-E(0))+B      公式(2)
其中,ΔH(t)为压缩机121的计算转速调节值;A为第一预设系数;B为第二预设系数;E(t)为压缩机的压缩比E(0)为预设目标压缩比。
在本公开一些实施例中,第一预设系数和第二预设系数均为常数。
S105、根据压缩机121的当前转速和计算转速调节值ΔH(t),确定压缩机121的目标转速,并控制压缩机121以目标转速运转。
压缩机121的目标转速为计算转速调节值ΔH(t)与压缩机121的当前转速之和。
在本公开一些实施例中,压缩机121的目标转速可以由公式(3)得到。
H(t+1)=H(t)+ΔH(t)         公式(3)
其中,H(t+1)为压缩机121的目标转速;H(t)为压缩机121的当前转速;ΔH(t)为计算转速调节值。
本公开一些实施提供的空调器10的控制方法,通过获取的压缩机121的排气压力和吸气压力,确定压缩机121的压缩比,并基于压缩机121的压缩比,确定压缩机121的目标转速H(t+1),最终控制压缩机121以目标转速H(t+1)运转。如此,使得空调器10在冷媒回收过程中,压缩机121能够在任一时刻下均以目标转速运转。这样既提高了回收冷媒的速度,又能够回收更多的冷媒,从而有利于减少泄漏进室内的冷媒量。
图7为根据一些实施例的空调器的另一种控制方法的流程图,如图7所示,在本公开一些实施例中,该控制方法还包括S201至S202。
S201、在冷媒回收过程中,判断压缩机121是否满足第一预设条件。
第一预设条件包括压缩机121的排气压力大于或等于第一预设排气压力。
在本公开一些实施例中,第一预设条件还可以包括以下至少之一:压缩机121的排气压力变化率大于或等于预设排气压力变化率,或,室外温度大于或等于预设温度。
S202、若确定压缩机121满足第一预设条件,则根据压缩机121的预设转速调节值和压缩机121的当前转速H(t),确定压缩机121的目标转速H(t+1)。
在本公开一些实施例中,当压缩机121满足第一预设条件时,将压缩机121的预设转速调节值与压缩机121的当前转速H(t)之差作为压缩机121的目标转速H(t+1)。
压缩机121的目标转速可以由公式(4)得到。
H(t+1)=H(t)-M          公式(4)
其中,M为预设转速调节值。
在本公开一些实施例中,当压缩机121的排气压力大于或等于第一预设排气压力时,M为第一预设转速调节值。
在本公开另一些实施例中,当压缩机121的排气压力大于或等于第一预设排气压力,且小于第三预设排气压力时,M为第一预设转速调节值。当压缩机121的排气压力大于或等于第三预设排气压力时,M为第二预设转速调节值。
其中,第三预设排气压力大于第一预设排气压力,第二预设转速调节值大于第一预设转速调节值。
在本公开一些实施例中,当压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于预设排气压力变化率时,M为第三预设转速调节值。
在本公开另一些实施例中,预设排气压力变化率包括第一预设排气压力变化率和第二预设排气压力变化率。第二预设排气压力变化率大于第一预设排气压力变化率。
例如,当压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于第一预设排气压力变化率,且小于第二预设排气压力变化率时,M为第三预设转速调节值。当压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于第二预设排气压力变化率时,M为第四预设转速调节值。其中,第四预设转速调节值大于第三预设转速调节值。
在本公开一些实施例中,当压缩机121的排气压力大于或等于第一预设排气压力,排气压力变化率大于或等于预设排气压力变化率,并且,室外温度大于或等于预设温度时,M为第五预设转速调节值。
在本公开另一些实施例中,预设温度包括第一预设温度和第二预设温度。其中,第二预设温度大于第一预设温度。
例如,当压缩机121的排气压力大于或等于第一预设排气压力,排气压力变化率大于或等于预设排气压力变化率,并且,室外温度大于或等于第一预设温度,且小于第二预设温度时,M为第五预设转速调节值。在压缩机121的排气压力大于或等于第一预设排气压力,排气压力变化率大于或等于预设排气压力变化率,并且,室外温度大于或等于第二预设温度时,M为第六预设转速调节值。其中,第六预设转速调节值大于第五预设转速调节值。
在本公开一些实施例中,第一预设转速调节值小于或等于第三预设转速调节值, 第三预设转速调节值小于或等于第五预设转速调节值。
控制器15将上述不同情况下得到的不同的预设转速调节值M代入公式4进行计算,得到压缩机121在不同情况下的目标转速,并控制压缩机121在不同情况下均以目标转速进行运转,这样可以提高回收冷媒的速度,还可以回收更多的冷媒,有利于减少泄漏进室内的冷媒量。
可以理解的是,在冷媒回收之前,空调器10内部除了已经泄漏的冷媒外,室内机11内部还存在未泄漏的冷媒。若不及时回收室内机11内部的冷媒,该冷媒也将有可能泄漏至室内,导致冷媒泄漏量增加。因此,需要尽可能多的回收室内机11内部的冷媒,以减少冷媒泄漏量。
然而,在回收室内机内部的冷媒的过程中,会有第一预定量的冷媒泄漏至室内。在冷媒回收结束时,还会有第二预定量的冷媒未被回收,留在室内机11内部,该第二预定量的冷媒将有可能会泄漏至室内。因此,在回收室内机11内部的冷媒的过程中,也存在冷媒泄漏。总冷媒泄漏量包括冷媒回收过程中的第一部分冷媒泄漏量,和冷媒回收结束时,室内机11内部剩余的第二部分冷媒泄漏量。在冷媒回收过程中,当压缩机121的排气压力大于或等于第一预设排气压力时,压缩机121的转速发生了变化,压缩机121的排气压力、第一部分泄漏量和第二部分泄漏量也随之变化。
图8为根据一些实施例的空调器在冷媒回收过程中的一种冷媒泄漏量的示意图。如图8所示,Pd0为第一预设排气压力,曲线Pd1(t)和曲线Pd2(t)为压缩机121的排气压力的变化曲线,曲线H1(t)和曲线H2(t)为压缩机121的目标转速H(t+1)的变化曲线,曲线m_leak1(t)和曲线m_leak2(t)为第一部分冷媒泄漏量的变化曲线。
其中,在图6所示的实施例的情况下,压缩机121的变化曲线如曲线Pd1(t)、曲线H1(t)和曲线m_leak1(t)所示;在第一预设条件包括压缩机121的排气压力大于或等于第一预设排气压力的情况下,压缩机121的变化曲线如曲线Pd2(t)、曲线H2(t)和曲线m_leak2(t)所示。在图6所示的实施例的情况下,m_leak1对应的A和m_rest1对应的B分别表示剩余的第一部分冷媒泄漏量和第二部分冷媒泄漏量;在第一预设条件包括压缩机121的排气压力大于或等于第一预设排气压力的情况下,m_leak2对应的A’和m_rest2对应的B’分别表示剩余的第一部分冷媒泄漏量和第二部分冷媒泄漏量。
当压缩机121的排气压力大于或等于第一预设排气压力时,控制器15控制压缩机121减小转速,使压缩机121维持较高的转速运转,这样可以延长冷媒回收工作的运行时长,使得空调器10回收的冷媒量增加,剩余的第二部分冷媒泄漏量减少。如图8所示,第二部分冷媒泄漏量的减少量(B-B’的值)大于第一部分冷媒泄漏量的增加量(A’-A的值),从而提升冷媒的回收率,减少总冷媒泄漏量。
在冷媒回收过程中,在压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于预设排气压力变化率的情况下,压缩机121的转速发生了变化,压缩机121的排气压力、第一部分泄漏量和第二部分泄漏量也随之变化。
图9为根据一些实施例的空调器在冷媒回收过程中的另一种冷媒泄漏量的示意图。如图9所示,与图8所示的曲线不同的是,图9中还包括曲线Pd3(t)为压缩机121的排气压力的变化曲线,曲线H3(t)为压缩机121的目标转速H(t+1)的变化曲线,曲线m_leak3(t)为第一部分冷媒泄漏量的变化曲线。在压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于预设排气压力变化率的情况下,压缩机121的变化曲线如曲线Pd3(t)、曲线H3(t)和曲线m_leak3(t)所示。在压缩机121的排气压力大于或等于第一预设排气压力,并且,排气压力变化率大于或等于预设排气压力变化率的情况下,m_leak3对应的A”和m_rest3对应的B”分别表示剩余的第一部分冷媒泄漏量和第二部分冷媒泄漏量。
当压缩机121的排气压力变化率大于或等于预设排气压力变化率时,控制器15控制压缩机121以目标转速运转,可以避免压缩机121的转速的调节跟不上排气压力的变化,还可以延长冷媒回收工作的运行时长,从而提升冷媒的回收率,减少总冷媒泄漏量。
在冷媒回收过程中,在压缩机121的排气压力大于或等于第一预设排气压力,排气压力变化率大于或等于预设排气压力变化率,并且,室外温度大于或等于预设温度的情况下,当室外环境温度大于或等于预设温度时,第二部分冷媒泄漏量在总冷媒泄漏量的占比较大,此时需要控制压缩机121减小转速,可以延长冷媒回收工作的运行时长,从而提升冷媒的回收率,减少总冷媒泄漏量。
在本公开一些实施例中,当压缩机121不满足第一预设条件时,控制器依次执行S102至S105控制压缩机121的运转。
图10为根据一些实施例的空调器的又一种控制方法的流程图。如图10所示,在本公开一些实施例中,在S105之后,该方法还可以包括S301至S308。
S301、判断冷媒回收过程的回收时长是否达到第一预设时长,若是,则执行S302,若否,则继续执行S102。
S302、控制第一截止阀127关闭。
空调器10先运行第一预设时长,然后控制器15控制第一截止阀关闭,使冷媒提前循环,以提前回收室内机11中的一部分冷媒。
S303、继续执行S102至S105。
S304、判断压缩机121是否满足第二预设条件,若是,则执行S305,若否,则继续执行S303。
在本公开一些实施例中,第二预设条件包括以下至少之一:压缩机121的吸气压力小于或等于预设吸气压力;压缩机121的排气压力大于或等于第二预设排气压力;或,冷媒回收过程的回收时长达到第三预设时长;其中,第三预设时长大于或等于第一预设时长。
S305、控制第二截止阀128关闭。
在本公开一些实施例中,若确定压缩机121满足第二预设条件,控制器15控制第二截止阀128关闭,且控制压缩机121继续运转。
可以理解的是,在压缩机121停止运转前,为了防止冷媒通过第二冷媒管路从室外机12回流至室内机11,第二截止阀128需要处于关闭状态。
S306、继续执行S102至S105。
S307、判断冷媒回收过程的回收时长是否大于或等于第二预设时长,若是,则执行S308,若否,则继续执行S306。
其中,第二预设时长大于或等于第一预设时长,且第三预设时长小于或等于第二预设时长。
S308、控制压缩机121停止运转。
在冷媒回收过程的回收时长达到第二预设时长时,控制器15控制压缩机121停止运转,冷媒回收工作结束。
需要说明的是,预设目标压缩比、第一预设系数、第二预设系数、预设转速调节值、第一预设时长、预设吸气压力、第二预设排气压力、第三预设时长和第二预设时长均可以由空调器10在出厂时管理人员预先设定,也可以是控制器15从其他空调器处获取的,本公开对此不予限定。
图11为根据一些实施例的一种空调器的结构图。如图11所示,图11中的空调器与图2中的空调器的主要区别在于,图11中的空调器10包括第一节流装置140和第三截止阀141。
在本公开一些实施例中,压缩机121、室外机12、第一节流装置140、第三截止阀 141、室内机11和气液分离器126组成冷媒循环回路,使得冷媒能够在冷媒循环回路中循环流通。第一节流装置140位于室外机12与室内机11之间的第一冷媒管路13上,被配置为调节第一冷媒管路13的冷媒流量。第一节流装置140例如为电子膨胀阀。
第三截止阀141位于第一节流装置140与室内机11之间的第三冷媒管路上,被配置为控制第三冷媒管路的连通与截断。
在本公开一些实施例中,如图11所示,空调器10还包括冷媒回收管路20,冷媒回收管路20的第一端201与第一节流装置140与第三截止阀141之间的第四冷媒管路连通,冷媒回收管路20的第二端202与压缩机121与室外机12之间的第五冷媒管路连通。
在本公开一些实施例中,空调器10还包括第四截止阀142,第四截止阀142设置于冷媒回收管路20上,且被配置为控制冷媒回收管路20的连通与截断。
第四截止阀142例如是电磁阀,或电子膨胀阀等。
在本公开一些实施例中,空调器10还包括浓度传感器143。浓度传感器143位于室内机11上,浓度传感器143与控制器15耦接,且被配置为检测室内机11所处环境的冷媒浓度,并将检测到的室内机11所处环境的冷媒浓度发送至控制器15。
图12为根据一些实施例的空调器的另一种结图。如图12所示,在本公开一些实施例中,浓度传感器143包括第一浓度传感器1431,空调器10还可以包括第二节流装置144。
第二节流装置144设置于室内机11与第三截止阀141之间的第六冷媒管路上,被配置为调节第六冷媒管路的冷媒流量。第二节流装置144例如为电子膨胀阀。图13为根据一些实施例的空调器的又一种结构图。如图13所示,在本公开一些实施例中,空调器10除了包括压力传感器(如第二压力传感器130)外,还可以包括第五截止阀145。
控制器15与第一节流装置140、第三截止阀141、第四截止阀142、第一浓度传感器1431、第二节流装置144和第五截止阀145均耦接。
在本公开一些实施例中第五截止阀145位于气液分离器126与室内机11之间的第七冷媒管路上,被配置为控制第七冷媒管路的连通与截断。
需要说明的是,第三冷媒管路为第一冷媒管路13的一部分,第三冷媒管路包括第四冷媒管路和第六冷媒管路。
图14为根据一些实施例的空调器的又一种结构图,如图14所示,室外机12包括室外风扇124和室外换热器123,室内机11包括室内风扇112和室内换热器111。
图15为根据一些实施例的一种空调器中多室内机的结构图,如图15所示,在本公开一些实施例中,空调器10还可以包括多台室内机11。以空调器10包括两台室内机11为例,此时,空调器10还包括:第三节流装置146,浓度传感器143还包括第二浓度传感器1432。
在本公开一些实施例中,如图15所示,两台室内机11包括第一室内机1101和第二室内机1102,两台室内机11可以以并联方式连接。第三节流装置146设置于室外机12与第二室内机1102之间的循环管路上,被配置为调节第二室内机1102与室外机12之间的循环管路的冷媒流量。第三节流装置146例如为电子膨胀阀。
第二浓度传感器1432位于第二室内机1102上,被配置为检测第二室内机1102所处环境的冷媒浓度,并将检测到的第二室内机1102所处环境的冷媒浓度发送至控制器15。
控制器15与第三节流装置146和第二浓度传感器1432均耦接。
图16为根据一些实施例的空调器的又一种结构图。图16中的空调器与图14中的空调器的主要区别在于,图16中的冷媒回收管路20的第二端202连通与气液分离器126和第五截止阀145之间的第八冷媒管路。本公开对此不做赘述。
图17为根据一些实施例的另一种空调器中多室内机的结构图。如图17所示,图16所示的空调器10也可以包括多个室内机11,以空调器10包括两个室内机11(例如第一室内机1101和第二室内机1102)为例,此时,图17中的空调器与图16中的空调器的主要区别在于,图17中的空调器10还包括:第四节流装置147,浓度传感器143还包括第 三浓度传感器1433。
在本公开一些实施例中,如图17所示,两台室内机11包括第一室内机1101和第二室内机1102,两台室内机11可以以并联方式连接。第四节流装置147设置于室外机12与第二室内机1102之间的循环管路上,被配置为调节第二室内机1102与室外机12之间的循环管路的冷媒流量。第四节流装置147例如为电子膨胀阀。
第三浓度传感器1433位于第二室内机1102上,被配置为检测第二室内机1102所处环境的冷媒浓度,并将检测到的第二室内机1102所处环境的冷媒浓度发送至控制器15。
控制器15与第四节流装置147和第三浓度传感器1433均耦接。
本公开实施例还提供一种空调器10的控制方法,该方法应用于控制器15。图18为根据一些实施例的空调器的一种控制方法的流程图。如图18所示,在本公开一些实施例中,该方法包括S10至S13。
S10、当检测到室内机11所处环境的冷媒浓度大于或等于预设阈值时,判断空调器10是否处于制冷模式,若是,则执行S11,若否,则执行S12。
当浓度传感器143检测到室内机11所处环境的冷媒浓度大于或等于预设阈值时,代表室内机11所处环境的冷媒浓度过高,发生了冷媒泄漏的情况。
S11、控制第一节流装置140关闭、控制第四截止阀142开启,并执行S13。
根据图11至图15中任一项所述的空调器10,在冷媒回收管路20的第二端202与第五冷媒管路连通的情况下,控制器15控制第一节流装置140关闭、控制第四截止阀142开启。在此情况下,由于空调器10处于制冷模式,压缩机121产生的高温高压的气相冷媒能够通过冷媒回收管路20进入室内机11,以将室内机11中的冷媒排出,这样,可以快速降低室内机11的冷媒浓度,实现了在空调器10发生冷媒泄漏的情况下对室内机11中冷媒的快速回收,及时降低了室内机11中冷媒的泄漏量,降低了危险情况发生的概率。
根据图16或图17所示的空调器10,在冷媒回收管路20的第二端202与第八冷媒管路连通的情况下,通过控制第一节流装置140关闭、控制第四截止阀142开启。在此情况下,由于空调器10处于制冷模式,压缩机121的吸气口1211侧压力大于室内机11侧压力,室内机11中的冷媒基于压力差从冷媒回收管路20进入气液分离器126中,可以快速降低室内机11的冷媒浓度,实现了在空调器10发生冷媒泄漏的情况下对室内机11中冷媒的快速回收,及时降低了室内机11中冷媒的泄漏量,降低了危险情况发生的概率。
S12、控制空调器10进入制冷模式,并增大室内风扇112和室外风扇124的运行档位,并继续执行S11。
若空调器10处于除制冷模式外的模式,则控制器15控制空调器10进入制冷模式,使得室内换热器111作为蒸发器进行工作,降低室内机11中的冷媒浓度,防止室内机11中的冷媒继续泄漏至室内机11所处环境。
在控制器15控制空调器10进入制冷模式的同时,增大室内风扇112和室外风扇124的运行档位,可以增加室内机11中的液相冷媒转化为气相冷媒的速率,快速降低室内机11中的冷媒浓度,实现了在空调器10发生冷媒泄漏的情况下对室内机11中冷媒的快速回收,及时降低室内机11中冷媒的泄漏量,降低了危险情况发生的概率。
在本公开一些实施例中,在增大室内风扇112和室外风扇124的运行档位时,可以将室内风扇112和室外风扇124的运行档位调整至最大档位。
S13、控制空调器10停机,并发出停机提示信息。
停机提示信息用于提示用户冷媒回收工作完成,并提示用户对空调器10进行检修。
在本公开一些实施例中,空调器10本身可以发出停机提示信息。空调器10发出的停机提示信息的形式可以为文字、语音、振动、或动画等形式中的一种或多种,本公开对此不作限制。
在本公开另一些实施例中,空调器10与终端设备建立通信连接,向终端设备发送停机提示信息。
图19为根据一些实施例的空调器的另一种控制方法的流程图,如图19所示,在本公开一些实施例中,该控制方法还包括S20。
S20、控制第一节流装置140关闭、控制第四截止阀142开启的同时,提高压缩机121的运行频率,并控制第二节流装置144增大开度。
参照图11至图15中的空调器10,在冷媒回收管路20的第二端202与第五冷媒管路连通的情况下,控制器15通过提高压缩机121的运行频率,和控制第二节流装置144增大开度,使压缩机121可以快速产生高温高压的气相冷媒,并且压缩机121产生的高温高压的气相冷媒可以通过第二节流装置144进入室内机11中,快速的将室内机11中的冷媒进行蒸发,提升了室内机11中冷媒蒸发的速率,进而提升了空调器10的冷媒回收速率。
参照图17或图18所示的空调器10,在冷媒回收管路20的第二端202与第八冷媒管路连通的情况下,提高压缩机121运行频率,以及控制第二节流装置144增大开度,增加压缩机121与室内机11侧的压力差,并且通过控制第二节流装置144增大开度,使得室内机11中的冷媒可以基于压力差从冷媒回收管路20进入气液分离器126中,可以快速降低室内机11中冷媒浓度,提升了空调器10的冷媒回收速率。
在本公开一些实施例中,在提高压缩机121的运行频率时,可以将压缩机121的运行频率提升至压缩机121可运行的最大运行频率。在控制第二节流装置144增大开度时,可以控制第二节流装置144将开度调整至最大开度。
图20为根据一些实施例的空调器的又一种控制方法的流程图,如图20所示,在本公开一些实施例中,在S11或者S20之后,该方法还包括S31至S32。
S31、在控制第四截止阀142开启经过第四预设时长后,控制第四截止阀142关闭,控制第三截止阀141关闭,并获取压缩机121的吸气压力值。
在本公开一些实施例中,为了识别出室内机11中的冷媒是否已经排出,控制器15在控制第四截止阀142开启经过第四预设时长之后,控制第四截止阀142关闭,控制第三截止阀141关闭,并获取压缩机121的吸气压力值,根据压缩机121的吸气压力值判断室内机11中的冷媒是否已经排出。
第四预设时长可以是空调器10出厂时预先设定的,本公开对此不作任何限定。例如,在冷媒回收管路20的第二端202与第五冷媒管路连通的情况下,第四预设时长可以是0~30s。在冷媒回收管路20的第二端202与第八冷媒管路连通的情况下,第四预设时长可以是20~120s。
可以理解的是,在冷媒回收管路20的第二端202与第八冷媒管路连通的情况下,是基于压缩机121与室内机11之间的压力差将室内机11中的冷媒吸入气液分离器126中,此过程消耗的时间较长,故可以使第四预设时长较长,来判断室内机11中的冷媒是否已经排出。
S32、当检测到压缩机121的吸气压力值小于或等于预设压力阈值时,控制第五截止阀145关闭,并控制第二节流装置144减小开度。
当检测到压缩机121的吸气压力值小于或等于预设压力阈值时,代表室内机11中的冷媒已经排出,也可以理解为当前室内机11中冷媒含量较少,无需再对室内机11进行冷媒回收工作,此时控制器15控制第五截止阀145关闭,并控制第二节流装置144减小开度,完成对于室内机11中冷媒的回收。
在本公开一些实施例中,控制器15在控制第二节流装置144减小开度时,可以控制第二节流装置144将开度调整至最小开度。
其中,预设压力阈值是空调器10出厂时预先设定的,例如,预设压力阈值为0.1Mpa。
相关技术中,对于空调器的冷媒泄漏的问题,通常通过关闭配置在发生了冷媒泄漏的室内机的出入口侧的阻断阀,或通过常规的回收技术将部分冷媒回收至室外,以阻断冷媒泄漏到室内。但是,这样只能阻止泄漏的全部冷媒流入室内,并没有充分考虑如何回收更多泄漏的冷媒的问题。
本公开一些实施例中空调器的控制方法,通过在空调器10中增加冷媒回收管路,当检测到室内机11所处环境的冷媒浓度大于或等于预设阈值时,控制器15控制空调器100进入制冷模式,并控制第一节流装置关闭,第四截止阀142开启,以使得压缩机产生的高温高压的气态冷媒可以通过冷媒回收管路进入到室内机中,以将室内机中的冷媒排出,快速降低室内机的冷媒浓度,实现了在空调器发生冷媒泄漏的情况下对室内机中冷媒的快速回收,以及时降低室内机中冷媒的泄漏量,从而降低了危险情况发生的概率。
图21为根据一些实施例的一种控制器的硬件结构图。如图21所示,本公开实施例提供一种控制器15,控制器15包括处理器151,在本公开一些实施例中,控制器15还包括与处理器151连接的存储器152和通信接口153。处理器151、存储器152和通信接口153通过总线154连接。
处理器151用于执行存储器152中存储的计算机程序代码,从而实现本公开实施例提供的一种空调器的控制方法。
本领域的技术人员将会理解,本申请的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种空调器,包括:
    室外机;
    室内机,所述室内机与所述室外机连通;
    压缩机;和
    控制器,被配置为:
    在冷媒回收过程中,获取所述压缩机当前的排气压力和吸气压力;
    根据所述压缩机的排气压力和吸气压力,确定所述压缩机的压缩比;
    根据所述压缩机的压缩比和预设目标压缩比,确定所述压缩机的计算转速调节值;
    根据所述压缩机的当前转速和所述计算转速调节值,确定所述压缩机的目标转速,并控制所述压缩机以所述目标转速运转。
  2. 根据权利要求1所述的空调器,其中,所述控制器还被配置为:
    在所述冷媒回收过程中,判断所述压缩机是否满足第一预设条件;所述第一预设条件包括:所述压缩机的排气压力大于或等于第一预设排气压力;
    若确定所述压缩机满足所述第一预设条件,则根据所述压缩机的预设转速调节值和所述压缩机的所述当前转速,确定所述压缩机的所述目标转速。
  3. 根据权利要求2所述的空调器,其中,所述第一预设条件还包括以下至少之一:
    所述压缩机的排气压力变化率大于或等于预设排气压力变化率;或,
    室外温度大于或等于预设温度。
  4. 根据权利要求1至3中任一项所述的空调器,其中,所述压缩机的计算转速调节值由以下公式计算得到:
    ΔH(t)=A×(E(t)-E(0))+B;
    其中,ΔH(t)为所述压缩机的计算转速调节值;A为第一预设系数;B为第二预设系数;E(t)为所述压缩机的压缩比;E(0)为所述预设目标压缩比。
  5. 根据权利要求1至4中任一项所述的空调器,其中,
    所述室外机包括室外换热器;
    所述室内机包括室内换热器,所述室内换热器与所述室外换热器通过第一冷媒管路连接,且所述室内换热器与四通阀通过第二冷媒管路连接;
    所述空调器还包括:
    第一截止阀,设置于所述第一冷媒管路上,被配置为控制所述第一冷媒管路的导通与断开;
    第二截止阀,设置于所述第二冷媒管路上,被配置为控制所述第二冷媒管路的导通与断开;
    所述控制器还被配置为:
    若确定所述冷媒回收过程的回收时长达到第一预设时长,则控制所述第一截止阀关闭,且控制所述压缩机继续运转;
    若确定所述压缩机满足第二预设条件,则控制所述第二截止阀关闭,且控制所述压缩机继续运转;
    若确定所述冷媒回收过程的回收时长达到第二预设时长,则控制所述压缩机停止运转;
    其中,所述第二预设时长大于或等于所述第一预设时长。
  6. 根据权利要求5所述的空调器,其中,所述第二预设条件包括以下至少之一:
    所述压缩机的吸气压力小于或等于预设吸气压力;
    所述压缩机的排气压力大于或等于第二预设排气压力;或,
    所述冷媒回收过程的回收时长达到第三预设时长;其中,所述第三预设时长大于或等于所述第一预设时长,且小于或等于所述第二预设时长。
  7. 根据权利要求1至6中任一项所述的空调器,其中,所述空调器还包括:
    第一压力传感器,所述第一压力传感器被配置为检测所述压缩机的排气压力;和
    第二压力传感器,所述第二压力传感器被配置为检测所述压缩机的吸气压力;
    其中,所述控制器还被配置为:通过所述第一压力传感器获取所述压缩机的排气压力,通过所述第二压力传感器获取所述压缩机的吸气压力。
  8. 一种空调器的控制方法,其中,所述空调器包括:
    压缩机;
    第一压力传感器,被配置为检测所述压缩机的排气压力;
    第二压力传感器,被配置为检测所述压缩机的吸气压力;
    控制器,与所述压缩机、所述第一压力传感器和所述第二压力传感器耦接;
    所述方法包括:
    在冷媒回收过程中,通过所述第一压力传感器获取所述压缩机的排气压力,通过所述第二压力传感器获取所述压缩机的吸气压力;
    根据所述压缩机的排气压力和吸气压力,确定所述压缩机的压缩比;
    根据所述压缩比和预设目标压缩比,确定所述压缩机的计算转速调节值;
    根据所述压缩机的当前转速和所述转速调节值,确定所述压缩机的目标转速,并控制所述压缩机以所述目标转速运转。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    在所述冷媒回收过程中,判断所述压缩机是否满足第一预设条件;所述第一预设条件包括:所述压缩机的排气压力大于或等于第一预设排气压力;
    若确定所述压缩机满足所述第一预设条件,则根据所述压缩机的预设转速调节值和所述压缩机的所述当前转速,确定所述压缩机的所述目标转速。
  10. 根据权利要求9所述的方法,其中,所述第一预设条件还包括以下至少之一:
    所述压缩机的排气压力变化率大于或等于预设排气压力变化率;或,
    室外温度大于或等于预设温度。
  11. 根据权利要求8至10中任一项所述的方法,还包括:
    若确定所述冷媒回收过程的回收时长达到第一预设时长,则控制第一截止阀关闭,且控制所述压缩机继续运转;
    若确定所述压缩机满足第二预设条件,则控制第二截止阀关闭,且控制所述压缩机继续运转;
    若确定所述冷媒回收过程的回收时长达到第二预设时长,则控制所述压缩机停止运转;
    其中,第二预设时长大于或等于第一预设时长。
  12. 根据权利要求1至7中任一项空调器,还包括:
    第一节流装置,设置于第一冷媒管路上,被配置为调节所述第一冷媒管路中的冷媒流量;
    第三截止阀,设置于所述第一节流装置与所述室内机之间的第三冷媒管路上,被配置为控制所述第三冷媒管路的连通与截断;
    冷媒回收管路,所述冷媒回收管路的第一端连通与所述第一节流装置以及所述第三截止阀之间的第四循环管路,所述冷媒回收管路的第二端连通与所述压缩机以及所述室外机之间的第五循环管路;
    第四截止阀,设置于所述冷媒回收管路中,被配置为控制所述冷媒回收管路的连通与截断;
    浓度传感器,被配置为检测室内机所处环境的冷媒浓度;
    控制器,还被配置为:
    若确定所述浓度传感器检测到所述室内机所处环境的冷媒浓度大于或等于预设阈值, 且所述空调器处于制冷模式,则控制所述第一节流装置关闭,控制所述第四截止阀开启。
  13. 根据权利要求12所述的空调器,其中,所述空调器还包括第二节流装置,所述第二节流装置设置于所述第三截止阀与所述室内机之间的第六循环管路上,被配置为调节所述第六循环管路的冷媒流量;
    所述控制器还被配置为:
    在控制所述第一节流装置关闭、控制所述第四截止阀开启的同时,提高所述压缩机的运行频率,并控制所述第二节流装置增大开度。
  14. 根据权利要求13所述的空调器,其中,所述室外机还包括气液分离器,所述气液分离器设置于所述压缩机与所述室内机之间,被配置为将气相冷媒和液相冷媒进行分离;
    所述空调器还包括:
    第二压力传感器,设置于所述压缩机的吸气口处,被配置为检测所述压缩机的吸气压力值;
    第五截止阀,设置于所述室内机与所述气液分离器之间的第七循环管路,被配置为控制所述第七循环管路的连通与截断;
    所述控制器还被配置为:
    在控制所述第四截止阀开启经过第四预设时长后,控制所述第四截止阀关闭,控制所述第三截止阀关闭,并通过所述第二压力传感器获取所述压缩机的吸气压力值;
    若确定检测到所述压缩机的吸气压力值小于或等于预设压力阈值,则控制所述第五截止阀关闭,并控制所述第二节流装置减小开度。
  15. 根据权利要求12至14任一项所述的空调器,其中,
    所述室内机包括室内风扇;
    所述室外机还包括室外风扇;
    所述控制器还被配置为:
    若确定所述浓度传感器检测到所述室内机所处环境的冷媒浓度大于或等于预设阈值,且所述空调器当前处于除制冷模式外的模式,则控制所述空调器进入制冷模式,并增大所述室内风扇和所述室外风扇的运行档位。
  16. 一种空调器的控制方法,其中,所述空调器包括:
    室外机;
    室内机,所述室内机与所述室外机连通;
    压缩机;
    第一节流装置,设置于第一冷媒管路上,被配置为调节所述第一冷媒管路中的冷媒流量;
    第三截止阀,设置于所述第一节流装置与所述室内机之间的第三冷媒管路上,被配置为控制所述第三冷媒管路的连通与截断;
    冷媒回收管路,所述冷媒回收管路的第一端连通与所述第一节流装置以及所述第三截止阀之间的第四冷媒管路,所述冷媒回收管路的第二端连通与所述气液分离器以及所述第五截止阀之间的第八冷媒管路;
    第四截止阀,设置于所述冷媒回收管路中,被配置为控制所述冷媒回收管路的连通与截断;
    第五截止阀,设置于所述室内机与所述气液分离器之间的第七循环管路,被配置为控制所述第七循环管路的连通与截断;
    浓度传感器,被配置为检测室内机所处环境的冷媒浓度;和
    控制器,与所述室内机、所述室外机、所述压缩机、所述第一节流装置、所述第三截止阀、所述冷媒回收管路、所述第四截止阀、所述第五截止阀和所述浓度传感器耦接;所述方法包括:
    当通过所述浓度传感器检测到所述室内机所处环境的冷媒浓度大于或等于预设阈值,若确定所述空调器处于制冷模式,则控制所述第一节流装置关闭,控制所述第四截止阀开启。
  17. 根据权利要求16所述的方法,其中,所述空调器还包括第二节流装置,所述第二节流装置设置于所述第三截止阀与所述室内机之间的第六循环管路上,被配置为调节所述第六循环管路的冷媒流量;
    所述方法还包括:
    在控制所述第一节流装置关闭、控制所述第四截止阀开启的同时,提高所述压缩机的运行频率,并控制所述第二节流装置增大开度。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:在控制所述第四截止阀开启经过第四预设时长后,控制所述第四截止阀关闭,控制所述第三截止阀关闭,并通过所述第二压力传感器获取所述压缩机的吸气压力值;
    若确定检测到所述压缩机的吸气压力值小于或等于预设压力阈值,则控制所述第五截止阀关闭,并控制所述第二节流装置减小开度。
  19. 根据权利要求16至18任一项所述的方法,其中,
    所述室内机包括室内风扇;
    所述室外机还包括室外风扇;
    所述方法还包括:
    若确定所述浓度传感器检测到所述室内机所处环境的冷媒浓度大于或等于预设阈值,且所述空调器处于除制冷模式外的模式,则控制所述空调器进入制冷模式,并增大所述室内风扇和所述室外风扇的运行档位。
  20. 根据权利要求16至19任一项所述的方法,其中,所述方法还包括:
    若确定所述浓度传感器检测到室内机所处环境的冷媒浓度大于或等于预设阈值,且所述空调器处于制冷模式,则控制第一节流装置关闭、控制第四截止阀开启。
PCT/CN2023/099959 2022-10-12 2023-06-13 空调器及其控制方法 WO2024077989A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211249984.8 2022-10-12
CN202211249984.8A CN115654582A (zh) 2022-10-12 2022-10-12 一种空调系统及其控制方法
CN202310186767 2023-02-28
CN202310186767.7 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024077989A1 true WO2024077989A1 (zh) 2024-04-18

Family

ID=90668675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099959 WO2024077989A1 (zh) 2022-10-12 2023-06-13 空调器及其控制方法

Country Status (1)

Country Link
WO (1) WO2024077989A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087071A (ja) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル 空気調和機
CN107477795A (zh) * 2017-08-28 2017-12-15 广东美的制冷设备有限公司 可燃冷媒空调及其控制方法
JP2019143876A (ja) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル 空気調和システム
CN110986336A (zh) * 2019-11-28 2020-04-10 广东志高暖通设备股份有限公司 一种空调系统的压缩机频率控制方法与装置
US20200240686A1 (en) * 2017-10-12 2020-07-30 Daikin Industries, Ltd. Refrigeration apparatus
US20200271344A1 (en) * 2017-10-05 2020-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2021190121A1 (zh) * 2020-03-25 2021-09-30 青岛海尔空调电子有限公司 空调器控制方法和空调器
CN115164349A (zh) * 2022-06-30 2022-10-11 海信空调有限公司 空调
CN115654582A (zh) * 2022-10-12 2023-01-31 青岛海信日立空调系统有限公司 一种空调系统及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087071A (ja) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル 空気調和機
CN107477795A (zh) * 2017-08-28 2017-12-15 广东美的制冷设备有限公司 可燃冷媒空调及其控制方法
US20200271344A1 (en) * 2017-10-05 2020-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
US20200240686A1 (en) * 2017-10-12 2020-07-30 Daikin Industries, Ltd. Refrigeration apparatus
JP2019143876A (ja) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル 空気調和システム
CN110986336A (zh) * 2019-11-28 2020-04-10 广东志高暖通设备股份有限公司 一种空调系统的压缩机频率控制方法与装置
WO2021190121A1 (zh) * 2020-03-25 2021-09-30 青岛海尔空调电子有限公司 空调器控制方法和空调器
CN115164349A (zh) * 2022-06-30 2022-10-11 海信空调有限公司 空调
CN115654582A (zh) * 2022-10-12 2023-01-31 青岛海信日立空调系统有限公司 一种空调系统及其控制方法

Similar Documents

Publication Publication Date Title
WO2021233343A1 (zh) 多联机空调系统的回油控制方法
KR100579564B1 (ko) 냉동 사이클 장치의 전자 팽창밸브 제어 방법
CN107356006B (zh) 一种空调系统及空调器
CN108413586B (zh) 多联机的降噪控制方法及多联机
JPWO2016157519A1 (ja) 空気調和装置
CN112212467B (zh) 空调控制方法、装置及空调机组
CN114017898B (zh) 一种多联机系统
CN111306853B (zh) 一种实现连续制热的空调化霜方法及空调化霜系统
JP2008298335A (ja) 冷凍装置および同冷凍装置に用いられる冷媒追加充填キット並びに冷凍装置の冷媒追加充填方法
WO2019024683A1 (zh) 一种膨胀阀的控制方法及装置
CN112815512A (zh) 多联空调内机降噪方法、装置及多联空调系统
JP2002061996A (ja) 空気調和機
CN113757945B (zh) 空调器控制方法、装置、空调器以及计算机可读存储介质
JP5506433B2 (ja) マルチ型空気調和機
CN114110739A (zh) 一拖多制冷制热空调机
JP2010007996A (ja) 空気調和装置の試運転方法および空気調和装置
WO2024077989A1 (zh) 空调器及其控制方法
CN117642585A (zh) 多联机空调系统及多联机空调系统的容错控制方法
JP2017096568A (ja) 空気調和装置
JP2012107790A (ja) 空気調和装置
CN108195005B (zh) 一种三管制水源多联机及其控制方法
JP2010007997A (ja) 空気調和装置の冷媒量判定方法および空気調和装置
CN217031699U (zh) 一种冷媒回收装置及空调系统
CN110986224B (zh) 一种空调器及其控制方法、存储介质
WO2023083040A1 (zh) 空调器