WO2024077920A1 - 一种基于毫米波的开关电源 - Google Patents
一种基于毫米波的开关电源 Download PDFInfo
- Publication number
- WO2024077920A1 WO2024077920A1 PCT/CN2023/089745 CN2023089745W WO2024077920A1 WO 2024077920 A1 WO2024077920 A1 WO 2024077920A1 CN 2023089745 W CN2023089745 W CN 2023089745W WO 2024077920 A1 WO2024077920 A1 WO 2024077920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- millimeter wave
- input
- output end
- output
- circuit
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 27
- 238000004804 winding Methods 0.000 claims abstract description 14
- 230000005669 field effect Effects 0.000 claims description 33
- 238000002955 isolation Methods 0.000 abstract description 17
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 230000008054 signal transmission Effects 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33571—Half-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the utility model relates to a switching power supply technology, in particular to a switching power supply based on a millimeter wave isolator chip.
- a switching power supply is a high-frequency power conversion device that usually converts the input AC power into a specific form of DC power for charging load equipment. By controlling the on and off of the switch, the working power of the power transformer is controlled to meet the needs of different power circuits. Switching power supplies are widely used in automation control, military equipment, scientific research equipment, LED lighting, industrial control equipment, communication equipment, power equipment and other fields.
- High-power switching power supplies often use half-bridge or full-bridge topologies, and capacitor isolators or coil isolators are often used for logic control and feedback; capacitor circuits require special oxide layer materials, and coil circuits have problems such as area; with the widespread application of third-generation semiconductors in high-power switching power supplies, higher requirements are placed on efficiency and lower latency to achieve signal logic control processing; when the switching frequency gets higher and higher, capacitor isolators or coil isolators will inevitably become smaller and smaller, and the spacing will become smaller and smaller, thus failing to meet the isolation requirements. Due to the characteristic relationship between frequency and capacitance and inductance, the design of switching power supplies has reached a bottleneck, and it is difficult to break through. The design of high-frequency high-power switching power supplies has become an urgent problem to be solved.
- the utility model provides a switching power supply based on millimeter waves, which utilizes the transmission characteristics of millimeter wave signals to control the efficient transmission of high-frequency signals, thereby meeting the efficient and rapid operation of the switching power supply, and solving the problems of poor transient control, low working efficiency and frequency limitation of existing half-bridge switching power supplies.
- a millimeter-wave-based switching power supply comprising an input voltage circuit, an upper bridge and a lower bridge LLC circuit of a transformer primary winding, a millimeter-wave switch control chip, and an output voltage circuit
- the upper bridge LLC circuit comprises a first capacitor C1, an inductor L1, and an input end and an output end of the millimeter-wave switch control chip
- the lower bridge LLC circuit comprises a second capacitor C2, the inductor L1, and the millimeter-wave switch control chip The output terminal and the ground terminal;
- the output end of the input voltage circuit is respectively connected to the first end of the first capacitor C1 and the input end of the millimeter wave switch control chip;
- the output end of the millimeter wave switch control chip is connected to the first end of the inductor L1;
- the second end of the inductor L1 is connected to the first end of the primary winding of the transformer
- the second end of the first capacitor C1 is connected to the first end of the second capacitor C2 and the second end of the primary winding of the transformer respectively;
- the second end of the second capacitor C2 and the grounding end of the millimeter wave switch control chip are respectively connected to the ground.
- the beneficial effects of the utility model are: based on the application of the millimeter wave isolator chip in the half-bridge switching power supply, the short-distance transmission method using millimeter waves as the carrier can reach a bandwidth of 100Kbps to 10Gbps , with high speed, and high-frequency transmission can be achieved through the antenna without the need for optical coupling and additional isolation layers. Even if the product is broken down, the antenna will not cause a metal short circuit, and signal isolation can be achieved, thereby achieving good isolation while ensuring fast signal transmission speed, small delay, high efficiency, and greater safety.
- FIG1 is a schematic diagram of the structure of a millimeter wave switching power supply according to an embodiment of the utility model
- FIG2 is a schematic diagram of the structure of a millimeter wave switch control chip according to an embodiment of the present invention.
- FIG3 is a schematic diagram of a structure of a millimeter wave isolator chip according to an embodiment of the utility model
- FIG4 is a schematic diagram of the structure of a first circuit of a millimeter wave isolator according to an embodiment of the utility model
- FIG5 is a schematic diagram of the structure of a second circuit of a millimeter wave isolator according to an embodiment of the utility model
- FIG6 is a schematic diagram of the structure of the upper bridge driving circuit according to an embodiment of the utility model
- FIG7 is a schematic structural diagram of an implementation method of a millimeter wave switching power supply according to an embodiment of the utility model
- the switching power supply based on the millimeter wave isolator chip of the present application can be applied to high-power half-bridge switching power supplies, such as the isolation between the low-voltage circuit and the high-voltage circuit in the high-voltage circuit; and the isolation between the digital logic control circuit and the feedback loop in the switching power supply, which is described below through specific implementation methods:
- a millimeter-wave-based switching power supply includes an input voltage circuit, an upper bridge and a lower bridge LLC circuit of a primary winding of a transformer, a millimeter-wave switch control chip, and an output voltage circuit, wherein the upper bridge LLC circuit includes a first capacitor C1, an inductor L1, and an input end and an output end of the millimeter-wave switch control chip, and the lower bridge LLC circuit includes a second capacitor C2, the inductor L1, and an output end and a ground end of the millimeter-wave switch control chip;
- the output end of the input voltage circuit is respectively connected to the first end of the first capacitor C1 and the input end of the millimeter wave switch control chip;
- the output end of the millimeter wave switch control chip is connected to the first end of the inductor L1;
- the second end of the inductor L1 is connected to the first end of the primary winding of the transformer
- the second end of the first capacitor C1 is connected to the first end of the second capacitor C2 and the second end of the primary winding of the transformer respectively;
- the second end of the second capacitor C2 and the grounding end of the millimeter wave switch control chip are respectively connected to the ground.
- millimeter waves are used as short-distance transmission methods for carriers, and the bandwidth can reach 100Kbps to 10Gbps.
- the speed is fast, and high-frequency transmission can be achieved through antennas without the need for optical couplers and additional isolation layers. Even if the product is broken down, the antenna will not cause a metal short circuit, and signal isolation can be achieved, thereby achieving good isolation while ensuring fast signal transmission speed, low delay, high efficiency, and greater safety.
- the millimeter wave switch control chip includes an input logic control circuit, a millimeter wave isolator chip, an upper bridge drive circuit, a lower bridge drive circuit, an upper bridge switch Q1, and a lower bridge switch Q2;
- the first input terminal of the input logic control circuit is connected to the first pulse width modulation signal PWM1 input, the second input terminal is connected to the logic control signal Logic input, and the third input terminal is connected to the second pulse width modulation signal PWM2 input;
- the first output terminal of the input logic control circuit is connected to the first input terminal of the millimeter wave isolator chip
- the second output end is connected to the second input end of the millimeter wave isolator chip
- the first output end of the millimeter wave isolator chip is connected to the input end of the upper bridge driving circuit, and the second output end is connected to the input end of the lower bridge driving circuit;
- the output end of the upper bridge driving circuit is connected to the input end of the upper bridge switch Q1;
- the output end of the lower bridge driving circuit is connected to the input end of the lower bridge switch Q2;
- the first output end of the upper bridge switch Q1 is connected to the input end of the millimeter wave switch control chip;
- the second output end of the upper bridge switch Q1 is connected to the first output end of the lower bridge switch Q2 and the output end of the millimeter wave switch control chip respectively, and the connection point is the output end of the millimeter wave switch control chip;
- the second output end of the lower bridge switch Q2 is connected to the ground end of the millimeter wave switch control chip.
- the switch control chip based on millimeter wave is a PIP/RF package chip, and the millimeter wave circuit is applied to the safety isolation circuit.
- the two PWM signals in the safety zone namely PWM1 and PWM2 signals, and the logic control signal Logic signal, are generated by a microcontroller executed on the corresponding control program, such as MCU, or the charging protocol chip of the switching power supply.
- the PWM1, PWM2, and Logic are input to the input logic control circuit, they are output to the millimeter wave isolator chip through logic control.
- the PWM1 signal and the output first logic signal Logic1 are output after passing through the millimeter wave isolator chip, and are output and driven by the upper bridge drive circuit to output and drive the switch Q1; the PWM2 signal and the output second logic signal Logic2 are output after passing through the millimeter wave isolator chip, and are output and driven by the lower bridge drive circuit to output and drive the switch Q2.
- the working state of the upper bridge switch Q1 and the lower bridge switch Q2 when connected to the switch circuit is determined by the logic state of the first logic signal Logic1 and the second logic signal Logic2 output by the input Logic signal through the input logic control circuit.
- the PWM1 signal and the PWM2 signal control the closing and opening of the upper bridge switch Q1 and the lower bridge switch Q2 respectively.
- the alternating closing of Q1 and Q2 affects the alternating current in the upper and lower bridge LLC circuits, thereby generating a resonant frequency and affecting the charging power of the output voltage circuit.
- the upper bridge switch Q1 and the lower bridge switch Q2 are determined by the logic control signal input from the safety zone. Only one switch can be in the starting working cycle while the other is in the non-starting state. This ensures that the half-bridge power switch works efficiently.
- the upper bridge switch Q1 and the lower bridge switch Q2 are high-power switch semiconductor devices. Because in an actual switching power supply, when the switch is turned on, the circuit in which it is located is a high-voltage circuit, which requires a relatively high A device that can withstand large current or large voltage.
- the semiconductor switch can be a field effect transistor, a metal oxide semiconductor field effect transistor (MOSFETs), silicon carbide (SiC), or gallium nitride (GaN).
- the millimeter wave isolator chip is a chip integrating two millimeter wave isolator structures, the input end of the upper bridge millimeter wave isolator is connected to the first output end of the input logic control circuit, and the output end is connected to the input end of the upper bridge drive circuit; the input end of the lower bridge millimeter wave isolator is connected to the second output end of the input logic control circuit, and the output end is connected to the input end of the lower bridge drive circuit.
- the two millimeter wave isolators are isolators of the same structure, and the two millimeter wave isolators are isolated from each other, and do not interfere with each other when transmitting millimeter wave signals in the middle.
- the two millimeter wave isolators are used in safety isolation circuits.
- the structure of the millimeter wave isolator includes a millimeter wave transmitting end and a millimeter wave receiving end
- the millimeter wave transmitting end includes a digital-to-analog converter, a first baseband amplifier, a first mixer, a first phase-locked loop, a first power amplifier, a first filter, and a millimeter wave transmitting antenna
- the millimeter wave receiving end includes a second filter, a second power amplifier, a second mixer, a second phase-locked loop, a second baseband amplifier, an analog-to-digital converter, and a millimeter wave receiving antenna.
- the input end of the digital-to-analog converter is connected to the input end of the input logic control circuit, and the output end is connected to the first input end of the first mixer; the second input end of the first mixer is connected to the output end of the phase-locked loop, and the output end is connected to the input end of the first power amplifier; the output end of the first power amplifier is connected to the input end of the first filter; the output end of the first filter is connected to the millimeter-wave transmitting antenna; the input end of the second filter is connected to the output end of the millimeter-wave receiving antenna, and the output end is connected to the input end of the second power amplifier; the output end of the second power amplifier is connected to the first input end of the second mixer; the second input end of the second mixer is connected to the output end of the second phase-locked loop, and the output end is connected to the input end of the second baseband filter; the output end of the second baseband filter is connected to the input end of the analog-to-digital converter; the output end of the analog-to-digital converter is
- another structure of the millimeter wave isolator includes a millimeter wave transmitting end and a millimeter wave receiving end.
- the millimeter wave transmitting end includes an oscillator, a modulator, a third power amplifier and a transmitting antenna;
- the millimeter wave receiving end includes a fourth power amplifier, an envelope detector and a receiving antenna;
- the output terminal of the oscillator is connected to the first input terminal of the modulator
- the second input end of the modulator is the input end of the millimeter wave isolator, and the output end is connected to the input end of the third power amplifier;
- the output end of the third power amplifier is connected to the transmitting antenna
- the input end of the fourth power amplifier is connected to the receiving antenna, and the output end is connected to the input end of the envelope detector;
- the output end of the envelope detector is the output end of the millimeter wave isolator
- the pulse width modulation signal and the logic control signal enter the modulator (Modulator) and the modulated signal is amplified and sent out through the transmitting antenna.
- the receiving antenna receives the signal, amplifies it, and then detects it through the envelope detector (Envelope detector) before entering the driving circuit.
- FIGS 4 and 5 show the structure diagrams of the two different millimeter wave isolators mentioned above. This solution does not limit the specific structure of the millimeter wave isolator.
- the millimeter wave isolator that uses the millimeter wave as a carrier to transmit signals can also be used as the structure of the millimeter wave isolator. This can prevent high voltage from breaking through the circuit and the design requirements for circuit components caused by excessive frequency.
- the upper bridge drive circuit and the lower bridge drive circuit adopt the same circuit structure.
- the upper bridge drive circuit includes UVLO output undervoltage lockout, an upper bridge logic drive circuit, and field effect transistors M1 and M2.
- the first output end of the upper bridge logic drive circuit is connected to the input end of the field effect transistor M1, and the second output end of the upper bridge logic drive circuit is connected to the input end of the field effect transistor M2; the first output end of the field effect transistor M1 is connected to the UVLO input end; the second output end of the field effect transistor M1 and the first output end of the field effect transistor M2 are respectively connected to the input end of the upper bridge switch Q1; the second output end of the field effect transistor M2 is connected to the output end of the millimeter wave switch control chip.
- the upper bridge logic drive circuit is a microcontroller executed on a corresponding control program, such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA), which is used to generate logic signals to drive the field effect transistor to perform corresponding operations.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- the working principle of the lower bridge driving circuit is similar.
- the lower bridge driving circuit includes a UVLO output undervoltage lockout, a lower bridge logic driving circuit, and a field effect transistor M3 and a field effect transistor M4.
- the first output end of the lower bridge logic driving circuit is connected to the input end of the field effect transistor M3, and the second output end of the lower bridge logic driving circuit is connected to the input end of the field effect transistor M4.
- the first output end of the body transistor M3 is connected to the UVLO input end; the second output end of the field effect transistor M3 and the first output end of the field effect transistor M4 are respectively connected to the input end of the lower bridge switch Q2; the second output end of the field effect transistor M4 is connected to the ground end of the millimeter wave switch control chip.
- the input voltage circuit includes a filter circuit, a rectifier circuit, and an energy storage circuit; the input end of the filter circuit is connected to the AC power supply end, and the output end is connected to the input end of the rectifier circuit, for filtering the AC power supply; the output end of the rectifier circuit is respectively connected to the first end of the energy storage circuit and the second end of the primary coil winding of the charging circuit, for rectifying the AC power supply to output DC power; the third end of the rectifier circuit and the second end of the energy storage circuit are respectively connected to the ground.
- the output voltage circuit includes the primary winding of the transformer, the secondary winding of the transformer, a rectifier diode, and a filter capacitor.
- FIG7 shows a structural diagram of a millimeter-wave-based switching power supply. This scheme does not limit the specific structure of the input voltage circuit and the output voltage circuit, and the circuit structure of the input voltage and output voltage that achieve the same function is sufficient.
- the utility model provides a millimeter-wave-based switching power supply, which uses a millimeter-wave transceiver to achieve circuit isolation.
- millimeter waves are used as a short-distance transmission method for the carrier, and the bandwidth can reach 100Kbps to 10Gbps, with a fast speed.
- the antenna can achieve both high-frequency transmission and signal isolation, and the chip design can be well integrated without the need for optical coupling and additional isolation layers.
- Standard CMOS technology and standard packaging technology can be used for product production, with low production cost.
- the standardized packaging process is easy to integrate in consumer products, and even if the product is broken down, the antenna will not cause a metal short circuit, thereby achieving good isolation while ensuring fast signal transmission speed, low delay, high efficiency, and greater safety.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Transmitters (AREA)
Abstract
本实用新型公开基于毫米波的开关电源,包括输入电压电路、变压器初级绕组的上桥和下桥LLC电路、毫米波开关控制芯片以及输出电压电路,其中,上桥LLC电路包括第一电容C1、电感L1以及所述毫米波开关控制芯片的输入端、输出端,下桥LLC电路包括第二电容C2、所述电感L1以及所述毫米波开关控制芯片的输出端、接地端。采用毫米波作为载波的短距离传输方式,通过天线既可以实现无线传输,也能够实现信号的隔离,不需要光耦及额外的隔离层,从而能够保证信号传输速度快、延时小、效率高,并且更加安全。
Description
本实用新型涉及开关电源技术,尤其涉及一种基于毫米波隔离器芯片的开关电源。
开关电源是一种高频化电能转换装置,通常是将输入的交流电源转化成特定形式的直流电源,以供负载设备充电,通过控制开关的闭合与关断,来控制电源变压器的工作功率,从而满足不同功率电路的需求。开关电源广泛应用在自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备等领域。
大功率开关电源常用半桥或全桥拓扑结构,逻辑控制及反馈常用电容式隔离器或线圈式隔离器;电容式电路需要特别的氧化层材料,线圈电路有面积等问题;随着第三代半导体广泛应用于大功率开关电源,对效率提出更高的要求,更低延迟,来实现信号逻辑控制处理;当开关频率越来越高时,电容式隔离器或线圈式隔离器必然越做越小而间距就越来越小,从而无法满足隔离要求。正因频率和电容电感的特性关系使开关电源设计到达了瓶颈,很难往上突破,针对高频率的大功率开关电源设计成为亟待解决的问题。
实用新型内容
本实用新型提供一种基于毫米波的开关电源,利用毫米波信号的传输特性,控制高频信号高效传输,从而满足开关电源高效、快速地工作,以解决现有半桥式开关电源的瞬态控制差、工作效率低以及受频率限制等问题。
为了解决上述技术问题,本实用新型采用的一种技术方案为:
一种基于毫米波的开关电源,包括输入电压电路、变压器初级绕组的上桥和下桥LLC电路、毫米波开关控制芯片以及输出电压电路,其中,所述上桥LLC电路包括第一电容C1、电感L1以及所述毫米波开关控制芯片的输入端、输出端,所述下桥LLC电路包括第二电容C2、所述电感L1以及所述毫米波开关控制芯片
的输出端、接地端;
所述输入电压电路的输出端分别与所述第一电容C1的第一端、所述毫米波开关控制芯片的输入端相连;
所述毫米波开关控制芯片的输出端与所述电感L1的第一端相连;
所述电感L1的第二端与所述变压器初级绕组的第一端相连;
所述第一电容C1的第二端分别与所述第二电容C2的第一端、所述变压器初级绕组的第二端相连;
所述第二电容C2的第二端、所述毫米波开关控制芯片的接地端分别与地相连。
本实用新型的有益效果在于:基于毫米波隔离器芯片在半桥式开关电源的应用,采用毫米波作为载波的短距离传输方式,带宽能够达到100Kbps到10Gbps,速度快,通过天线既可以实现高频传输,不需要光耦及额外的隔离层。并且即便产品被击穿,天线也不会造成金属短路,能够实现信号的隔离,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。
图1为本实用新型实施例的一种毫米波开关电源的结构示意图;
图2为本实用新型实施例的一种基于毫米波开关控制芯片的结构示意图;
图3为本实用新型实施例的毫米波隔离器芯片的一种结构示意图;
图4为本实用新型实施例的一种毫米波隔离器的第一种电路的结构示意图;
图5为本实用新型实施例的一种毫米波隔离器的第二种电路的结构示意图;
图6为本实用新型实施例的上桥驱动电路结构示意图;
图7为本实用新型实施例的一种毫米波开关电源的一种实现方式的结构示意图;
为详细说明本实用新型的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
本申请上述基于毫米波隔离器芯片的开关电源,能够适用于大功率半桥式开关电源中,比如高压电路中低压区电路与高压区电路之间的隔离;以及开关电源中数字逻辑控制电路与反馈回路之间的隔离,以下通过具体实施方式进行说明:
在一个可选的实施方式中,如图1所示,一种基于毫米波的开关电源,包括输入电压电路、变压器初级绕组的上桥和下桥LLC电路、毫米波开关控制芯片以及输出电压电路,其中,所述上桥LLC电路包括第一电容C1、电感L1以及所述毫米波开关控制芯片的输入端、输出端,所述下桥LLC电路包括第二电容C2、所述电感L1以及所述毫米波开关控制芯片的输出端、接地端;
所述输入电压电路的输出端分别与所述第一电容C1的第一端、所述毫米波开关控制芯片的输入端相连;
所述毫米波开关控制芯片的输出端与所述电感L1的第一端相连;
所述电感L1的第二端与所述变压器初级绕组的第一端相连;
所述第一电容C1的第二端分别与所述第二电容C2的第一端、所述变压器初级绕组的第二端相连;
所述第二电容C2的第二端、所述毫米波开关控制芯片的接地端分别与地相连。
基于毫米波隔离器芯片在半桥式开关电源的应用,采用毫米波作为载波的短距离传输方式,带宽能够达到100Kbps到10Gbps,速度快,通过天线既可以实现高频传输,不需要光耦及额外的隔离层。并且即便产品被击穿,天线也不会造成金属短路,能够实现信号的隔离,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。
其中,如图2所示,所述毫米波开关控制芯片包括输入逻辑控制电路、毫米波隔离器芯片、上桥驱动电路、下桥驱动电路、上桥开关Q1、下桥开关Q2;
所述输入逻辑控制电路的第一输入端接第一脉冲宽度调制信号PWM1输入、第二输入端接逻辑控制信号Logic输入、第三输入端接第二脉冲宽度调制信号PWM2输入;
所述输入逻辑控制电路的第一输出端与所述毫米波隔离器芯片的第一输入
端相连、第二输出端与所述毫米波隔离器芯片的第二输入端相连;
所述毫米波隔离器芯片的第一输出端与所述上桥驱动电路的输入端相连、第二输出端与所述下桥驱动电路的输入端相连;
所述上桥驱动电路的输出端与所述上桥开关Q1的输入端相连;
所述下桥驱动电路的输出端与所述下桥开关Q2的输入端相连;
所述上桥开关Q1的第一输出端与所述毫米波开关控制芯片的输入端相连;
所述上桥开关Q1的第二输出端分别与所述下桥开关Q2的第一输出端、所述毫米波开关控制芯片的输出端相连,且连接点即为所述毫米波开关控制芯片的输出端;
所述下桥开关Q2的第二输出端与所述毫米波开关控制芯片的接地端相连。
其中,基于毫米波的开关控制芯片为PIP/RF合封芯片,毫米波电路应用于安全隔离电路,安全区的两路PWM信号即PWM1和PWM2信号,以及逻辑控制信号Logic信号,由相应的控制程序上执行的微型控制器,比如MCU,或者所述开关电源的充电协议芯片所产生,当所述PWM1、PWM2、Logic输入到所述输入逻辑控制电路后,经由逻辑控制分别输出到所述毫米波隔离器芯片中,PWM1信号和输出第一逻辑信号Logic1经所述毫米波隔离器芯片后,输出并经所述上桥驱动电路,输出并驱动所述开关Q1;PWM2信号和输出第二逻辑信号Logic2经所述毫米波隔离器芯片后,输出并经所述下桥驱动电路,输出并驱动所述开关Q2。所述上桥开关Q1、下桥开关Q2的接入开关电路时的工作状态,分别由所述输入的Logic信号经由所述输入逻辑控制电路输出的第一逻辑信号Logic1、第二逻辑信号Logic2逻辑状态决定。所述PWM1信号、所述PWM2信号分别控制所述上桥开关Q1、下桥开关Q2的闭合与断开,通过Q1、Q2的交替闭合,影响上下桥LLC电路中的交替变化电流,从而产生谐振频率,影响输出电压电路的充电功率。而所述上桥开关Q1、下桥开关Q2在电路中,由所述安全区输入的逻辑控制信号来决定其工作状态,只能一个开关在启动工作周期时,另一个处于未启动状态。从而保证所述半桥式电源开关高效率工作。
在一可选实施例中,所述上桥开关Q1、下桥开关Q2为大功率开关半导体器件。因为在实际开关电源中,所述开关导通时,所在电路为高压电路,需要较
大承受大电流或者大电压器件,此时该半导体开关可以为场效应晶体管、金属氧化物半导体场效应晶体管(MOSFETs),碳化硅(SiC),氮化镓(GaN)。
在一可选实施方式中,如图3所示,所述毫米波隔离器芯片为集成两个毫米波隔离器结构的芯片,所述上桥毫米波隔离器的输入端与所述输入逻辑控制电路的第一输出端相连、输出端与所述上桥驱动电路输入端相连;所述下桥毫米波隔离器的输入端与所述输入逻辑控制电路的第二输出端相连、输出端与所述下桥驱动电路输入端相连。为保证电路稳定性,所述两个毫米波隔离器为相同结构的隔离器,且两个毫米波隔离器相互隔离,中间传输毫米波信号时互不干扰。所述两个毫米波隔离器应用于安全隔离电路。
进一步地,如图4所示,所述毫米波隔离器一结构为,包括毫米波发送端与毫米波接收端,所述毫米波发送端包括数模转换器、第一基带放大器、第一混频器、第一锁相环和第一功率放大器和第一滤波器以及毫米波发送天线;所述毫米波接受端包括第二滤波器、第二功率放大器、第二混频器、第二锁相环、第二基带放大器和模数转换器以及毫米波接收天线。所述数模转换器输入端与所述输入逻辑控制电路的输入端连接、输出端与所述第一混频器的第一输入端连接;所述第一混频器的第二输入端与所述锁相环的输出端连接,输出端与所述第一功率放大器的输入端连接;所述第一功率放大器的输出端与所述第一滤波器的输入端连接;所述第一滤波器的输出端与所述毫米波发送天线连接;所述第二滤波器的输入端与所述毫米波接收天线输出端连接、输出端与所述第二功率放大器的输入端连接;所述第二功率放大器的输出端与所述第二混频器的第一输入端连接;所述第二混频器的第二输入端与所述第二锁相环的输出端连接,输出端与所述第二基带滤波器的输入端连接;所述第二基带滤波器的输出端与所述模数转换器的输入端连接;所述模数转换器的输出端与所述输入逻辑控制电路相连。
进一步地,如图5所示,所述毫米波隔离器另一结构为,包括毫米波发送端与毫米波接收端,
所述毫米波发送端包括振荡器、调制器、第三功率放大器和发送天线;
所述毫米波接收端包括第四功率放大器、包络检波器和接收天线;
所述振荡器的输出端与所述调制器的第一输入端连接;
所述调制器的第二输入端为所述毫米波隔离器的输入端,输出端与所述第三功率放大器的输入端连接;
所述第三功率放大器的输出端与所述发送天线连接;
所述第四功率放大器的输入端与所述接收天线连接,输出端与所述包络检波器的输入端连接;
所述包络检波器的输出端为所述毫米波隔离器的输出端;
本实施方式中,脉冲宽度调制信号和逻辑控制信号进入调制器(Modulator)调制信号后经放大通过发送天线发出,接收天线接收信号后经放大再由包络检波器(Envelope detector)检波后进入驱动电路。
图4、5所示为上述两种不同的毫米波隔离器的结构图,本方案不对改毫米波隔离器具体结构做限制,通过毫米波作为载波,传输信号的毫米波隔离器亦可作为毫米波隔离器的结构。从而达到防止高压击穿电路,以及频率过高造成对电路元器件的设计要求。
在一个可选的实施例中,所述上桥驱动电路、下桥驱动电路采用相同的电路结构,以上桥驱动电路为例,如图6所示,包括UVLO输出欠压锁定、上桥逻辑驱动电路以及场效应晶体管M1、场效应晶体管M2,所述上桥逻辑驱动电路的第一输出端与所述场效应晶体管M1的输入端相连、所述上桥逻辑驱动电路的第二输出端与所述场效应晶体管M2的输入端相连;所述场效应晶体管M1的第一输出端接所述UVLO输入端;所述场效应晶体管M1的第二输出端、所述场效应晶体管M2的第一输出端分别与所述上桥开关Q1的输入端相连;所述场效应晶体管M2的第二输出端与所述毫米波开关控制芯片的输出端相连。所述上桥逻辑驱动电路是在相应的控制程序上执行的微型控制器,比如专用集成电路(ASIC)或者现场可编程门阵列(FPGA),用于产生逻辑信号,从而驱动场效应晶体管执行相应操作。下桥驱动电路工作原理类似,所述下桥驱动电路包括UVLO输出欠压锁定、下桥逻辑驱动电路以及场效应晶体管M3、场效应晶体管M4,所述下桥逻辑驱动电路的第一输出端与所述场效应晶体管M3的输入端相连、所述下桥逻辑驱动电路的第二输出端与所述场效应晶体管M4的输入端相连;所述场效应晶
体管M3的第一输出端接所述UVLO输入端;所述场效应晶体管M3的第二输出端、所述场效应晶体管M4的第一输出端分别与所述下桥开关Q2的输入端相连;所述场效应晶体管M4的第二输出端与所述毫米波开关控制芯片的接地端相连。
在一个可选的实施例中,如图7所示,所述输入电压电路包括滤波电路、整流电路、储能电路;所述滤波电路的输入端与交流电源端连接、输出端与所述整流电路的输入端连接,用于对所述交流电源滤波;所述整流电路的输出端分别与所述储能电路的第一端、所述充电电路的初级线圈绕组第二端连接,用于对所述交流电源进行整流以输出直流电;所述整流电路的第三端、所述储能电路的第二端分别与地相连。所述输出电压电路包括所述变压器的初级绕组、变压器的次级绕组、整流二极管、滤波电容,所述变压器的次级绕组第一端与所述整流二极管的第一端相连,所述整流二极管的第二端与所述滤波电容的第一端相连,所述滤波电容的第二端与地相连。所述滤波电容的第一端与第二端作为输出端,给负载供电以实现电压输出。图7所示为一种基于毫米波的开关电源的结构图,本方案不对输入电压电路、输出电压电路具体结构做限制,实现相同功能的输入电压、输出电压的电路结构即可。
综上所述,本实用新型提供的一种基于毫米波的开关电源,借助毫米波收发器实现电路的隔离,在半桥式开关电源的开关电路中,采用毫米波作为载波的短距离传输方式,带宽能够达到100Kbps到10Gbps,速度快,通过天线既可以实现高频的传输,也能够实现信号的隔离,并且通过芯片的设计能够很好地实现集成化,不需要光耦及额外的隔离层,可以采用标准CMOS工艺以及标准的封装工艺进行产品化生成,生成成本低,标准化的封装工艺容易集成在消费品类产品中,并且即便产品被击穿,天线也不会造成金属短路,从而在实现良好的隔离的同时能够保证信号传输速度快、延时小、效率高,并且更加安全。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本实用新型的专利保护范围内。
Claims (7)
- 一种基于毫米波的开关电源,包括输入电压电路、变压器初级绕组的上桥和下桥LLC电路、毫米波开关控制芯片以及输出电压电路,其特征在于,所述上桥LLC电路包括第一电容C1、电感L1以及所述毫米波开关控制芯片的输入端、输出端,所述下桥LLC电路包括第二电容C2、所述电感L1以及所述毫米波开关控制芯片的输出端、接地端;所述输入电压电路的输出端分别与所述第一电容C1的第一端、所述毫米波开关控制芯片的输入端相连;所述毫米波开关控制芯片的输出端与所述电感L1的第一端相连;所述电感L1的第二端与所述变压器初级绕组的第一端相连;所述第一电容C1的第二端分别与所述第二电容C2的第一端、所述变压器初级绕组的第二端相连;所述第二电容C2的第二端、所述毫米波开关控制芯片的接地端分别与地相连。
- 根据权利要求1所述的开关电源,其特征在于,所述毫米波开关控制芯片包括输入逻辑控制电路、毫米波隔离器芯片、上桥驱动电路、下桥驱动电路、上桥开关Q1、下桥开关Q2;所述输入逻辑控制电路的第一输入端接第一脉冲宽度调制信号PWM1输入、第二输入端接逻辑控制信号Logic输入、第三输入端接第二脉冲宽度调制信号PWM2输入;所述输入逻辑控制电路的第一输出端与所述毫米波隔离器芯片的第一输入端相连、第二输出端与所述毫米波隔离器芯片的第二输入端相连;所述毫米波隔离器芯片的第一输出端与所述上桥驱动电路的输入端相连、第二输出端与所述下桥驱动电路的输入端相连;所述上桥驱动电路的输出端与所述上桥开关Q1的输入端相连;所述下桥驱动电路的输出端与所述下桥开关Q2的输入端相连;所述上桥开关Q1的第一输出端与所述毫米波开关控制芯片的输入端相连;所述上桥开关Q1的第二输出端分别与所述下桥开关Q2的第一输出端、所述毫米波开关控制芯片的输出端相连;所述下桥开关Q2的第二输出端与所述毫米波开关控制芯片的接地端相连。
- 根据权利要求2所述的开关电源,其特征在于,所述毫米波隔离器芯片为集成两个毫米波隔离器结构,所述毫米波隔离器芯片包括上桥毫米波隔离器和下桥毫米波隔离器;所述上桥毫米波隔离器的输入端与所述输入逻辑控制电路的第一输出端相连、输出端与所述上桥驱动电路输入端相连;所述下桥毫米波隔离器的输入端与所述输入逻辑控制电路的第二输出端相连、输出端与所述下桥驱动电路输入端相连。
- 根据权利要求2所述的开关电源,其特征在于,所述毫米波隔离器包括毫米波发送端与毫米波接收端;所述毫米波发送端包括数模转换器、第一基带放大器、第一混频器、第一锁相环和第一功率放大器和第一滤波器以及毫米波发送天线;所述毫米波接受端包括第二滤波器、第二功率放大器、第二混频器、第二锁相环、第二基带放大器和模数转换器以及毫米波接收天线;所述数模转换器输入端与所述输入逻辑控制电路的输入端连接、输出端与所述第一混频器的第一输入端连接;所述第一混频器的第二输入端与所述锁相环的输出端连接,输出端与所述第一功率放大器的输入端连接;所述第一功率放大器的输出端与所述第一滤波器的输入端连接;所述第一滤波器的输出端与所述毫米波发送天线连接;所述第二滤波器的输入端与所述毫米波接收天线输出端连接、输出端与所述第二功率放大器的输入端连接;所述第二功率放大器的输出端与所述第二混频器的第一输入端连接;所述第二混频器的第二输入端与所述第二锁相环的输出端连接,输出端与所述第二基带滤波器的输入端连接;所述第二基带滤波器的输出端与所述模数转换器的输入端连接;所述模数转换器的输出端与所述输入逻辑控制电路相连。
- 根据权利要求2所述的开关电源,其特征在于,所述毫米波隔离器包括 毫米波发送端与毫米波接收端;所述毫米波发送端包括振荡器、调制器、第三功率放大器和发送天线;所述毫米波接收端包括第四功率放大器、包络检波器和接收天线;所述振荡器的输出端与所述调制器的第一输入端连接;所述调制器的第二输入端为所述毫米波隔离器的输入端,输出端与所述第三功率放大器的输入端连接;所述第三功率放大器的输出端与所述发送天线连接;所述第四功率放大器的输入端与所述接收天线连接,输出端与所述包络检波器的输入端连接;所述包络检波器的输出端为所述毫米波隔离器的输出端。
- 根据权利要求2所述的开关电源,其特征在于,所述上桥驱动电路包括UVLO输出欠压锁定、上桥逻辑驱动电路以及场效应晶体管M1、场效应晶体管M2;所述上桥逻辑驱动电路的第一输出端与所述场效应晶体管M1的输入端相连、所述上桥逻辑驱动电路的第二输出端与所述场效应晶体管M2的输入端相连;所述场效应晶体管M1的第一输出端接所述UVLO输入端;所述场效应晶体管M1的第二输出端、所述场效应晶体管M2的第一输出端分别与所述上桥开关Q1的输入端相连;所述场效应晶体管M2的第二输出端与所述毫米波开关控制芯片的输出端相连。
- 根据权利要求2所述的开关电源,其特征在于,所述下桥驱动电路包括UVLO输出欠压锁定、下桥逻辑驱动电路以及场效应晶体管M3、场效应晶体管M4;所述下桥逻辑驱动电路的第一输出端与所述场效应晶体管M3的输入端相连、所述下桥逻辑驱动电路的第二输出端与所述场效应晶体管M4的输入端相连;所述场效应晶体管M3的第一输出端接所述UVLO输入端;所述场效应晶体管M3的第二输出端、所述场效应晶体管M4的第一输出端分别与所述下桥开关Q2的输入端相连;所述场效应晶体管M4的第二输出端与所述毫米波开关控制芯片的接地端相连。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237028314A KR20240052717A (ko) | 2022-10-12 | 2023-04-21 | 밀리미터파 기반 스위칭 전원 공급 장치 |
GB2312748.3A GB2627548A (en) | 2022-10-12 | 2023-04-21 | Millimeter wave-based switching power supply |
DE212023000036.9U DE212023000036U1 (de) | 2022-10-12 | 2023-04-21 | Millimeterwellenbasiertes Schaltnetzteil |
US18/453,982 US20240128862A1 (en) | 2022-10-12 | 2023-08-22 | Millimeter wave-based switching power supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222682491.5 | 2022-10-12 | ||
CN202222682491.5U CN218570097U (zh) | 2022-10-12 | 2022-10-12 | 一种基于毫米波的开关电源 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/453,982 Continuation US20240128862A1 (en) | 2022-10-12 | 2023-08-22 | Millimeter wave-based switching power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024077920A1 true WO2024077920A1 (zh) | 2024-04-18 |
Family
ID=85315740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/089745 WO2024077920A1 (zh) | 2022-10-12 | 2023-04-21 | 一种基于毫米波的开关电源 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP3244142U (zh) |
CN (1) | CN218570097U (zh) |
FR (1) | FR3141017A3 (zh) |
TW (1) | TW202416645A (zh) |
WO (1) | WO2024077920A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240052717A (ko) * | 2022-10-12 | 2024-04-23 | 데코 인터그레이션 테크놀로지 컴퍼니 리미티드 | 밀리미터파 기반 스위칭 전원 공급 장치 |
CN218570097U (zh) * | 2022-10-12 | 2023-03-03 | 德氪微电子(深圳)有限公司 | 一种基于毫米波的开关电源 |
CN118399723B (zh) * | 2024-07-01 | 2024-08-27 | 德氪微电子(深圳)有限公司 | 栅极驱动电路及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100039047A1 (en) * | 2008-08-12 | 2010-02-18 | Rohm Co., Ltd. | Drive Device for Performing Electric Power Conversion by Using Switching Element |
CN106329895A (zh) * | 2015-06-17 | 2017-01-11 | 雅达电子国际有限公司 | Llc谐振变换器和抑制其输出电压中的纹波的方法 |
US20180191168A1 (en) * | 2017-01-04 | 2018-07-05 | National Instruments Corporation | Parallel Interleaved Multiphase LLC Current Sharing Control |
CN114793070A (zh) * | 2022-05-05 | 2022-07-26 | 以诺康医疗科技(苏州)有限公司 | 多路择一输出的隔离开关电源及llc开关电路 |
CN218570097U (zh) * | 2022-10-12 | 2023-03-03 | 德氪微电子(深圳)有限公司 | 一种基于毫米波的开关电源 |
-
2022
- 2022-10-12 CN CN202222682491.5U patent/CN218570097U/zh active Active
-
2023
- 2023-04-21 WO PCT/CN2023/089745 patent/WO2024077920A1/zh unknown
- 2023-08-17 JP JP2023002964U patent/JP3244142U/ja active Active
- 2023-08-21 FR FR2308829A patent/FR3141017A3/fr active Pending
- 2023-08-31 TW TW112133111A patent/TW202416645A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100039047A1 (en) * | 2008-08-12 | 2010-02-18 | Rohm Co., Ltd. | Drive Device for Performing Electric Power Conversion by Using Switching Element |
CN106329895A (zh) * | 2015-06-17 | 2017-01-11 | 雅达电子国际有限公司 | Llc谐振变换器和抑制其输出电压中的纹波的方法 |
US20180191168A1 (en) * | 2017-01-04 | 2018-07-05 | National Instruments Corporation | Parallel Interleaved Multiphase LLC Current Sharing Control |
CN114793070A (zh) * | 2022-05-05 | 2022-07-26 | 以诺康医疗科技(苏州)有限公司 | 多路择一输出的隔离开关电源及llc开关电路 |
CN218570097U (zh) * | 2022-10-12 | 2023-03-03 | 德氪微电子(深圳)有限公司 | 一种基于毫米波的开关电源 |
Non-Patent Citations (1)
Title |
---|
LIAO, JIANJUN; YU, HAISHENG; WANG, RUOXU: "Study on Pulse-Load Based Medium/Low-Power Switching Power Supply", MICROELECTRONICS, CN, vol. 40, no. 4, 20 August 2010 (2010-08-20), CN, pages 525 - 530, XP009554456, ISSN: 1004-3365 * |
Also Published As
Publication number | Publication date |
---|---|
FR3141017A3 (fr) | 2024-04-19 |
JP3244142U (ja) | 2023-10-13 |
CN218570097U (zh) | 2023-03-03 |
TW202416645A (zh) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024077920A1 (zh) | 一种基于毫米波的开关电源 | |
US9621056B2 (en) | Method of controlling phase-shift full-bridge converter in light load operation | |
US11750101B2 (en) | Resonant converter | |
Fichtenbaum et al. | Half-bridge GaN power ICs: Performance and application | |
WO2015029363A1 (ja) | ゲート駆動回路 | |
CN103339857A (zh) | 栅极驱动电路 | |
CN103944424B (zh) | 供用于功率转换器中的接收电路 | |
CN101630913A (zh) | 一种谐振变换器 | |
US10186908B2 (en) | Efficient power transmitting terminal, contactless power transmission device and power transmission method | |
Yue et al. | 15.4 A 52% Peak-Efficiency> 1W Isolated Power Transfer System Using Fully Integrated Magnetic-Core Transformer | |
CN218633715U (zh) | 一种基于毫米波的开关电源 | |
CN105186705A (zh) | 一种高效率的电能发射端、非接触电能传输装置和电能传输方法 | |
CN112688573A (zh) | 一种高频隔离双向变换器 | |
TWI495245B (zh) | 相移全橋轉換器輕載控制方法 | |
CN113162431A (zh) | 一种高效双向变换器 | |
CN220822907U (zh) | 一种基于毫米波隔离的软启动电源电路 | |
US20240128862A1 (en) | Millimeter wave-based switching power supply | |
CN218679074U (zh) | 一种毫米波隔离装置 | |
CN204858755U (zh) | 一种高效率的电能发射端和非接触电能传输装置 | |
WO2023016256A1 (zh) | 隔离反馈装置及电源设备 | |
TW202414904A (zh) | 毫米波隔離裝置 | |
CN220692998U (zh) | 一种基于死区时间同步调整的开关电源 | |
CN218633716U (zh) | 汽车dcdc低压供电电路 | |
CN218416211U (zh) | 一种高功率密度的逆变器 | |
CN218416210U (zh) | 汽车高功率密度的充电电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202312748 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20230421 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876132 Country of ref document: EP Kind code of ref document: A1 |