WO2024077882A1 - 换电站充电的控制方法、系统、设备及存储介质 - Google Patents

换电站充电的控制方法、系统、设备及存储介质 Download PDF

Info

Publication number
WO2024077882A1
WO2024077882A1 PCT/CN2023/085031 CN2023085031W WO2024077882A1 WO 2024077882 A1 WO2024077882 A1 WO 2024077882A1 CN 2023085031 W CN2023085031 W CN 2023085031W WO 2024077882 A1 WO2024077882 A1 WO 2024077882A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
swap station
batteries
power
charging
Prior art date
Application number
PCT/CN2023/085031
Other languages
English (en)
French (fr)
Inventor
张建平
刘炳
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2024077882A1 publication Critical patent/WO2024077882A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the technical field of battery swap stations, and in particular to a control method, system, device and storage medium for charging at a battery swap station.
  • the price of substation resources is also an important part of the construction cost of battery swap stations. If the demand for substation resources can be reduced as much as possible while ensuring that the service capacity remains unchanged, the construction cost of battery swap stations will be significantly reduced.
  • the substation resources in a battery swap station cannot meet the battery swap demand in a certain period of time in the future.
  • the current operation mode of the battery swap station is, on the one hand, implemented according to the maximum charging power method (that is, selecting higher substation resources to meet the charging needs of the replaced battery).
  • This method has a high demand for substation resources, which increases the difficulty and cost of building battery swap stations; on the other hand, the battery swap station charging method of charging as you go (that is, charging immediately after replacing the battery) is adopted. This method will have relatively obvious peak and trough periods within a single natural day, and cannot guarantee that the charging needs of users will be met.
  • the technical problem to be solved by the present invention is to overcome the defects of the existing battery swapping operation mode in the prior art, that is, the high demand for substation resources and the inability to guarantee the charging needs of users, and to provide a control method, system, equipment and storage medium for charging at a battery swap station.
  • a first aspect of the present invention provides a control method for charging at a battery swap station, the control method comprising:
  • the target battery is controlled to discharge and/or stop charging so that the output power of the battery swap station within a preset time is not less than the required power, and the output power of the battery swap station includes the rated power and the discharge power of the transformer.
  • the present invention selects target batteries from the batteries of the battery swap station based on the comparison result between the power demand of the battery swap station and the rated power of the transformer, and controls the target battery to discharge and/or stop charging, so that the output power of the battery swap station within the preset time is not less than the power demand, which meets the charging needs of users and improves the user experience.
  • the charging service capacity of the battery swap station remains basically unchanged, the requirements for transformer specifications can be reduced, the demand for substation resources can be reduced, and the difficulty and cost of station construction can be reduced.
  • the power load curve of the battery swap station will continue to be close to full load during peak hours, and the load is stable, which is conducive to grid dispatching.
  • the battery swap station includes a bidirectional charger, and the step of controlling the target battery to discharge and/or stop charging so that the output power of the battery swap station within a preset time is not less than the required power includes:
  • the target battery is controlled to discharge through the bidirectional charger so that the output power of the battery swap station within a preset time is not less than the required power.
  • the step of controlling the target battery to discharge through the bidirectional charger comprises:
  • the target battery is controlled to discharge other batteries and/or other electrical devices through the bidirectional charger.
  • the present invention uses a bidirectional charger in the battery swap station, which not only ensures that each battery swap battery is charged, but also can discharge other batteries.
  • the step of selecting the target battery from the batteries in the battery swap station includes:
  • the target battery is selected from the batteries of the battery swap station according to the state of charge of the battery of the battery swap station.
  • the step of selecting the target battery from the batteries of the battery swap station according to the state of charge of the battery of the battery swap station comprises:
  • the step of controlling the target battery to discharge and/or stop charging comprises:
  • the target battery is controlled to discharge to the first preset state of charge.
  • the present invention selects batteries whose current state of charge is higher than a first preset state of charge as target batteries for discharge, thereby avoiding affecting the battery reserve of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, and improving user experience.
  • control method further comprises:
  • the present invention lowers the first preset state of charge and selects batteries whose current state of charge is higher than the first preset state of charge as target batteries for discharge, thereby avoiding affecting the battery reserves of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, and improving the user experience.
  • the step of selecting the target battery from the batteries of the battery swap station according to the state of charge of the battery of the battery swap station comprises:
  • a battery whose state of charge is within a second preset state of charge is selected from the batteries in the battery swap station as the target battery.
  • the second preset state of charge is greater than or equal to 30% and less than or equal to 60%.
  • the present invention selects batteries with a charge state within a second preset charge state as target batteries for discharging and/or stopping charging, thereby avoiding affecting the battery reserve of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, improving user experience, and preventing batteries with too low a charge state from being over-discharged and causing battery loss.
  • the step of controlling the target battery to discharge through the bidirectional charger comprises:
  • the number and discharge power of the target batteries are determined according to the power difference.
  • the present invention can accurately determine the number of target batteries and the discharge power through the power difference between the required power and the rated power of the transformer, so as to avoid wasting charging resources.
  • the step of determining whether the required power is greater than the rated power of the transformer comprises:
  • Whether the required power is greater than the rated power of the transformer is determined according to the relationship between the number of reserve batteries and the number of required batteries.
  • the charging power of the battery swap station battery is adjusted so that the required power is not greater than the rated power of the transformer.
  • the number of reserve batteries when the number of reserve batteries is not less than the number of required batteries, it means that the battery swap load of the battery swap station can still be tolerated in the short term.
  • the required power can not exceed the rated power of the transformer as the control target, and the charging power of each fast-charging battery can be reduced on average. For batteries in a slow charging state, no adjustment is made to ensure the number of reserve batteries in the battery swap station.
  • the step of adjusting the charging power of the battery in the battery swap station so that the required power is not greater than the rated power of the transformer includes:
  • the present invention increases the power upper limit of the new battery according to preset rules when a new battery is replaced in the battery swap station.
  • the power upper limit of the battery fast charging section is dynamically calculated and adjusted to ensure that the required power is not greater than the rated power of the transformer, thereby avoiding system disturbances and improving system stability.
  • the step of obtaining the number of reserve batteries and the number of required batteries of the battery swap station after the preset time period includes:
  • the number of reserve batteries of the battery swap station after the preset time period is calculated based on the charging status information.
  • the step of obtaining the number of reserve batteries and the number of required batteries of the battery swap station after the preset time period includes:
  • the required number of batteries for the battery swap station after the preset time period is obtained based on the corresponding relationship.
  • a second aspect of the present invention provides a control system for charging at a battery swap station, the control system comprising an acquisition module, a first judgment module, a screening module and a control module;
  • the acquisition module is used to obtain the required power of the battery swap station and the rated power of the transformer;
  • the first judgment module is used to judge whether the required power is greater than the rated power of the transformer, and if so, call the screening module;
  • the screening module is used to screen out target batteries from batteries in the battery swap station;
  • the control module is used to control the target battery to discharge and/or stop charging so that the output power of the battery swap station within a preset time is not less than the required power, and the output power of the battery swap station includes the rated power and discharge power of the transformer.
  • the present invention selects target batteries from batteries in the battery swap station based on the comparison result between the required power of the battery swap station and the rated power of the transformer, and Control the target battery to discharge and/or stop charging so that the output power of the battery swap station within the preset time is not less than the required power, which meets the user's charging needs and improves the user experience.
  • the charging service capacity of the battery swap station remains basically unchanged, the requirements for transformer specifications can be reduced, the demand for substation resources can be reduced, and the difficulty and cost of station construction can be reduced.
  • the power load curve of the battery swap station will continue to be close to full load during peak hours, with a stable load, which is conducive to grid dispatching.
  • the battery swap station includes a bidirectional charger
  • the control module is used to control the target battery to discharge through the bidirectional charger so that the output power of the battery swap station within a preset time is not less than the required power.
  • control module is used to control the target battery to discharge other batteries and/or other electrical equipment through the bidirectional charger, so that the output power of the battery swap station within a preset time is not less than the required power.
  • the present invention uses a bidirectional charger in the battery swap station, which not only ensures that each battery swap battery is charged, but also can discharge other batteries.
  • the screening module is used to screen out the target battery from the batteries of the battery swap station according to the state of charge of the batteries of the battery swap station.
  • the screening module is used to screen out batteries whose current state of charge is higher than a first preset state of charge from the batteries in the battery swap station as the target batteries;
  • the control module is used for controlling the target battery to discharge to the first preset state of charge.
  • the present invention selects batteries whose current state of charge is higher than a first preset state of charge as target batteries for discharge, thereby avoiding affecting the battery reserve of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, and improving user experience.
  • control system further includes a second judgment module and an adjustment module;
  • the second judgment module is used to judge whether the output power of the battery swap station is less than the required power, and if so, call the adjustment module;
  • the adjustment module is used to lower the first preset state of charge.
  • the present invention lowers the first preset state of charge and selects batteries whose current state of charge is higher than the first preset state of charge as target batteries for discharge, thereby avoiding affecting the battery reserves of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, and improving the user experience.
  • the screening module is used to screen out batteries with a state of charge within a second preset state of charge from the batteries in the battery swap station as the target batteries.
  • the second preset state of charge is greater than or equal to 30% and less than or equal to 60%.
  • the present invention selects batteries with a charge state within a second preset charge state as target batteries for discharging and/or stopping charging, thereby avoiding affecting the battery reserve of the battery swap station, meeting the power demand of the battery swap station and the charging needs of users, ensuring the normal operation of the battery swap station, improving user experience, and preventing batteries with too low a charge state from being over-discharged and causing battery loss.
  • control module includes a first acquisition unit and a determination unit;
  • the first acquisition unit is used to acquire the power difference between the required power and the rated power of the transformer
  • the determination unit is used to determine the number and discharge power of the target batteries according to the power difference.
  • the present invention can accurately determine the number of target batteries and the discharge power through the power difference between the required power and the rated power of the transformer, so as to avoid wasting charging resources.
  • the first judgment module includes a second acquisition unit and a first judgment unit;
  • the second acquisition unit is used to acquire the number of reserve batteries and the number of required batteries of the battery swap station after the preset time period;
  • the first judgment unit is used to judge whether the required power is greater than the rated power of the transformer according to the relationship between the number of the reserve batteries and the number of the required batteries.
  • the first determination module further includes an adjustment unit;
  • the first judgment unit is used to call the adjustment unit if it is judged that the number of reserve batteries is not less than the required number of batteries;
  • the adjustment unit is used to adjust the charging power of the battery of the battery swap station so that the required power is not greater than the rated power of the transformer.
  • the adjustment unit includes a first calculation subunit, a judgment subunit, a first adjustment subunit and a second adjustment subunit;
  • the first calculation subunit is used to calculate the power upper limit value of all battery fast charging segments
  • the judging subunit is used to judge whether a new battery is replaced in the battery swap station, and if so, call the first adjusting subunit; if not, call the second adjusting subunit;
  • the first adjustment subunit is used to increase the power upper limit value of the new battery according to a preset rule
  • the second adjustment subunit is used to dynamically calculate and adjust the power upper limit value of the battery fast charging section so that the required power is not greater than the rated power of the transformer.
  • the present invention increases the power upper limit of the new battery according to preset rules when a new battery is replaced in the battery swap station.
  • the power upper limit of the battery fast charging section is dynamically calculated and adjusted so that the required power is not greater than the rated power of the transformer, thereby avoiding system disturbances and improving system stability.
  • the second acquisition unit includes a first acquisition subunit and a second calculation subunit;
  • the first acquisition subunit is used to acquire charging status information of the battery in the battery swap station
  • the second calculation subunit is used to calculate the number of reserve batteries in the battery swap station after the preset time period based on the charging status information.
  • the second acquisition unit further includes a second acquisition subunit and a fitting subunit;
  • the second acquisition subunit is used to obtain the correspondence between the historical time period in the battery swap station and the number of batteries actually used in the historical time period;
  • the fitting subunit is used to fit the corresponding relationship to obtain the required battery quantity of the battery swap station after the preset time period.
  • a third aspect of the present invention provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the control method for charging at a battery swap station as described in the first aspect when executing the computer program.
  • a fourth aspect of the present invention provides a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the control method for charging at a battery swap station described in the first aspect is implemented.
  • the present invention selects target batteries from the batteries of the battery swap station based on the comparison result between the power demand of the battery swap station and the rated power of the transformer, and controls the target battery to discharge and/or stop charging, so that the output power of the battery swap station within the preset time is not less than the power demand, which meets the charging needs of users and improves the user experience.
  • the charging service capacity of the battery swap station remains basically unchanged, the requirements for transformer specifications can be reduced, the demand for substation resources can be reduced, and the difficulty and cost of station construction can be reduced.
  • the power load curve of the battery swap station will continue to be close to full load during peak hours, and the load is stable, which is conducive to grid dispatching.
  • FIG1 is a first flow chart of a method for controlling charging at a battery swap station according to Embodiment 1 of the present invention.
  • FIG2 is a second flow chart of the control method for charging at a battery swap station according to Embodiment 1 of the present invention.
  • FIG3 is a schematic diagram of the structure of a control system for charging at a battery swap station according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of an electronic device according to Embodiment 3 of the present invention.
  • This embodiment provides a control method for charging at a battery swap station, as shown in FIG1 , the control method includes:
  • Step 101 Obtain the required power of the battery swap station and the rated power of the transformer;
  • Step 102 determine whether the required power is greater than the rated power of the transformer. If so, it means that the transformer is in an overload state, and the current limiting mode is started, and then step 103 is executed; if not, it means that the transformer can meet the required power of the battery swap station, and then step 105 is executed;
  • Step 103 selecting a target battery from batteries in the battery swap station
  • Step 104 Control the target battery to discharge and/or stop charging so that the output power of the battery swap station within a preset time is not less than the required power, and the output power of the battery swap station includes the rated power of the transformer and the discharge power.
  • the required power and the output power of the battery swap station are determined by setting a real-time current sampling device.
  • the preset time period is set according to actual conditions and is not specifically limited here.
  • Step 105 Do not adjust the battery.
  • some batteries i.e., target batteries
  • some batteries are switched to a discharge state and/or a charging stop state to make the power in the line more sufficient.
  • target batteries i.e., batteries to be discharged and/or stopped charging.
  • fully charged batteries can be selected to be discharged to the minimum battery power acceptable to the customer to meet the user's charging needs and improve the user experience.
  • this embodiment can reduce the requirements for transformer specifications, reduce the demand for substation resources, and also reduce the difficulty and cost of station construction; and due to the control of the power demand of the battery swap station and the rated power of the transformer, the power load curve of the battery swap station will continue to be close to full load during peak hours, and the load is stable, which is conducive to grid scheduling.
  • the battery swap station includes a bidirectional charger
  • step 104 includes:
  • Step 104 - 1 control the target battery to discharge through the bidirectional charger so that the output power of the battery swap station within a preset time is not less than the required power.
  • a bidirectional charger is used in the battery swap station, which can ensure that each battery is charged and other batteries are discharged.
  • bidirectional chargers include but are not limited to PCS architecture chargers and V2G chargers.
  • step 104-1 includes:
  • Step 104-1-1 control the target battery to discharge other batteries and/or other electrical equipment through the bidirectional charger, so that the output power of the battery swap station within a preset time is not less than the required power.
  • the other electrical equipment may be a flash charging pile or other electrical equipment.
  • step 103 includes:
  • Step 103 - 1 select a target battery from the batteries in the battery swap station according to the state of charge of the batteries in the battery swap station.
  • step 103-1 includes:
  • Step 103-1-1 selecting batteries whose current state of charge is higher than a first preset state of charge from batteries in the battery swap station as target batteries;
  • Step 104 includes:
  • Step 1041 Control the target battery to discharge to a first preset state of charge.
  • the first preset state of charge is set according to actual conditions to meet the charging needs of the user, preferably 90%-98%, and may also be other states of charge, which are not specifically limited here.
  • the partially charged batteries can be discharged with a small current to other batteries and/or other electrical devices through the bidirectional charger.
  • Batteries with a current state of charge higher than the first preset state of charge are selected as target batteries for discharge, so as to avoid affecting the battery reserve of the battery swap station, meet the power demand of the battery swap station and the charging needs of users, ensure the normal operation of the battery swap station, and improve the user experience.
  • control method further includes:
  • Step 1042 determine whether the output power of the battery swap station is less than the required power, if so, execute step 1043;
  • Step 1043 lower the first preset state of charge.
  • the first preset state of charge is lowered according to actual conditions.
  • the first preset state of charge is lowered to the lowest state of charge acceptable to the user to avoid affecting the battery reserve of the battery swap station, so as to meet the user's charging needs and improve the user experience.
  • step 103-1-1 and step 1041 are repeated.
  • Step 103-1 also includes:
  • Step 103-1-11 select batteries with a charge state within a second preset charge state from the batteries in the battery swap station as target batteries.
  • the second preset state of charge is greater than or equal to 30% and less than or equal to 60%. Stop charging the target battery at the second preset state of charge, or use a bidirectional charger to discharge other batteries and/or other electrical devices with a small current to avoid affecting the battery reserve of the battery swap station, meet the power demand of the battery swap station and the charging needs of users, ensure the normal operation of the battery swap station, and provide It improves the user experience and prevents batteries with a low state of charge from being over-discharged, which can lead to battery loss.
  • step 104-1 includes:
  • Step 104-11 obtaining the power difference between the required power and the rated power of the transformer
  • Step 104-12 determining the number and discharge power of target batteries according to the power difference
  • Step 104-13 the target batteries of the controlled number are discharged and/or charging is stopped through the bidirectional charger according to the discharge power, so that the output power of the battery swap station within the preset time is not less than the required power.
  • step 102 includes:
  • Step 1021 obtaining the number of reserve batteries and the number of required batteries of the battery swap station after a preset time period
  • the number of reserve batteries includes the number of fully charged batteries (the number of fully charged batteries) and the number of slow-charge batteries;
  • BX represents the number of reserve batteries
  • Bfull represents the number of fully charged batteries
  • Bslow represents the number of slow-charging batteries.
  • step 1021 includes:
  • Step 1021-11 obtaining charging status information of the battery in the battery swap station
  • the charging status information includes the charging time required for the battery to reach a fully charged state
  • Step 1021 - 12 Calculate the number of reserve batteries at the battery swap station after a preset time period based on the charging status information.
  • Step 1021 also includes:
  • Step 1021-111 obtaining the correspondence between the historical time period in the battery swap station and the number of batteries actually used in the historical time period;
  • Step 1021-112 based on the corresponding relationship, the required number of batteries for the battery swap station after the preset time period is obtained.
  • Step 1022 Determine whether the required power is greater than the rated power of the transformer based on the relationship between the number of reserve batteries and the number of required batteries.
  • Step 1023 If it is determined that the number of reserve batteries is not less than the number of required batteries, the charging power of the battery swap station is adjusted so that the required power is not greater than the rated power of the transformer.
  • the required power can not exceed the rated power of the transformer as the control target, and the charging power of each fast-charging battery can be reduced on average. For batteries in the slow charging state, no adjustment will be made.
  • Step 1023 includes:
  • Step 1023-1 calculating the power upper limit value of all battery fast charging segments
  • Step 1023-2 determine whether a new battery has been replaced in the battery swap station, if so, execute step 1023-3; if not, execute step 1023-4;
  • Step 1023-3 Increase the upper power limit of the new battery according to a preset rule
  • the preset rules can be set according to actual conditions, for example, the upper limit charging current of a new battery starts from 0 and increases by 1A each time;
  • Step 1023-4 Dynamically calculate and adjust the power upper limit of the battery fast charging stage so that the required power is not greater than the rated power of the transformer.
  • a current real-time sampling device is set at the low-voltage side of the transformer, such as the current real-time sampling device It can be a CT, an electric meter, or other devices.
  • the rated current I set (A) of the low-voltage side of the transformer can be appropriately reduced based on the maximum current of the actual transformer (i.e., box-type transformer) to ensure safe operation;
  • e.SOC min i.e., the minimum battery power acceptable to the user under special circumstances
  • f.Balarm number of batteries required. When the number of batteries ready to use in the battery swap station is less than this value, the station should enter emergency response status.
  • the central controller monitors the following information in the battery swap station in real time:
  • the power demand of the battery swap station is calculated in real time based on the above data.
  • the power demand is not greater than the rated power of the transformer, no adjustment is made to the battery charging.
  • the power demand is greater than the rated power of the transformer, it means that the transformer is in an overloaded state.
  • the current limiting mode is started (i.e., active current limiting is required), and the number of reserve batteries BX of the battery swap station after a preset time period is calculated based on the number of fully charged batteries Bfull and the number of slow-charged batteries Bslow.
  • the power demand and the output power of the battery swap station are determined by setting a real-time current sampling device.
  • the maximum demand current value ID of the battery swap station can be calculated based on the brand, model and SOC (state of charge) of the fast-charged battery in the battery swap station.
  • ID is not greater than I set , no adjustment is made to the battery charging (i.e., the battery is charged normally); when ID is greater than I
  • I set it means that the box transformer will be in an overloaded state.
  • the current limiting mode is started (that is, active current limiting is required).
  • the number of reserve batteries BX of the battery swap station after the preset time period is calculated.
  • the bidirectional charger can be used to discharge other batteries with a small current.
  • other charging positions are managed according to the average current limiting method, and these positions can be charged at a faster or even fastest speed until BX is not less than Balarm and there is a slight margin. Then the emergency charging mode is ended, that is, the emergency state is exited and the SOC reduction is cancelled.
  • This embodiment selects a target battery from the batteries in the battery swap station based on the comparison result between the required power of the battery swap station and the rated power of the transformer, and controls the target battery to discharge and/or stop charging, so that the output power of the battery swap station within a preset time is not less than the required power, thereby meeting the user's charging needs and improving the user experience.
  • This embodiment provides a control system for charging at a battery swap station, as shown in FIG3 , the control system includes an acquisition module 21 , a first judgment module 22 , a screening module 23 and a control module 24 ;
  • the acquisition module 21 is used to obtain the required power of the battery swap station and the rated power of the transformer;
  • the first judgment module 22 is used to judge whether the required power is greater than the rated power of the transformer. If so, it means that the transformer is in an overload state, and the current limiting mode is started, and the screening module 23 is called; if not, it means that the transformer can meet the required power of the battery swap station, and no adjustment is made to the battery charging;
  • the screening module 23 is used to screen out target batteries from batteries in the battery swap station;
  • the control module 24 is used to control the target battery to discharge and/or stop charging so that the output power of the battery swap station within a preset time is not less than the required power.
  • the output power of the station includes the rated power of the transformer and the discharge power.
  • the preset time period is set according to actual conditions and is not specifically limited here.
  • some batteries i.e., target batteries
  • some batteries are switched to a discharge state and/or a charging stop state to make the power in the line more sufficient.
  • targets batteries i.e., batteries to be discharged and/or stopped charging
  • fully charged batteries can be selected to be discharged to the minimum battery power acceptable to the customer to meet the user's charging needs and improve user experience.
  • the battery swap station includes a bidirectional charger
  • the control module 24 is used to control the target battery to discharge through the bidirectional charger so that the output power of the battery swap station within a preset time is not less than the required power.
  • a bidirectional charger is used in the battery swap station, which can ensure that each battery is charged and other batteries are discharged.
  • bidirectional chargers include but are not limited to PCS architecture chargers and V2G chargers.
  • control module 24 is used to control the target battery to discharge other batteries and/or other electrical equipment through the bidirectional charger, so that the output power of the battery swap station within a preset time is not less than the required power.
  • the other electrical equipment may be a flash charging pile or other electrical equipment.
  • the screening module 23 is used to screen out target batteries from the batteries in the battery swap station according to the charge status of the batteries in the battery swap station.
  • the screening module 23 is used to screen out batteries whose current state of charge is higher than a first preset state of charge from the batteries in the battery swap station as target batteries;
  • the control module 24 is used to control the target battery to discharge to a first preset state of charge.
  • the first preset state of charge is set according to actual conditions to meet the charging needs of the user, preferably 90%-98%, and may also be other states of charge, which are not specifically limited here.
  • control system further includes a second determination module 25 and an adjustment module 26;
  • the second judgment module 25 is used to judge whether the output power of the battery swap station is less than the required power, and if so, call the adjustment module 26;
  • the adjustment module 26 is used to lower the first preset state of charge.
  • the lowered first preset state of charge is set according to the actual situation.
  • the first preset state of charge is lowered to the lowest state of charge acceptable to the user to avoid affecting the battery reserve of the battery swap station, so as to meet the user's charging needs and improve the user experience.
  • the screening module 23 is used to screen out batteries with a state of charge within a second preset state of charge from the batteries in the battery swap station as target batteries.
  • the second preset state of charge is greater than or equal to 30% and less than or equal to 60%. Stop charging the target battery with the second preset state of charge, or discharge other batteries and/or other electrical devices with a small current through a bidirectional charger to avoid affecting the battery reserve of the battery swap station, meet the power demand of the battery swap station and the charging needs of users, ensure the normal operation of the battery swap station, improve user experience, and prevent batteries with too low state of charge from being over-discharged and causing battery loss.
  • control module 24 includes a first acquisition unit 241 and a determination unit 242 ;
  • the first acquisition unit 241 is used to obtain the power difference between the required power and the rated power of the transformer;
  • the determination unit 242 is used to determine the number and discharge power of the target batteries according to the power difference
  • the first judgment module 22 includes a second acquisition unit 221 and a first judgment unit 222 ;
  • the second acquisition unit 221 is used to acquire the number of reserve batteries and the number of required batteries of the battery swap station after a preset time period;
  • the number of reserve batteries includes the number of fully charged batteries (the number of fully charged batteries) and the number of slow-charge batteries;
  • BX represents the number of reserve batteries
  • Bfull represents the number of fully charged batteries
  • Bslow represents the number of slow-charging batteries.
  • the second acquisition unit 221 includes a first acquisition subunit 2211 and a second calculation subunit 2212 ;
  • the first acquisition subunit 2211 is used to obtain the charging status information of the battery in the battery swap station;
  • the charging status information includes the charging time required for the battery to reach a fully charged state
  • the second calculation subunit 2212 is used to calculate the number of reserve batteries in the battery swap station after a preset time period based on the charging status information.
  • the second acquisition unit 221 further includes a second acquisition subunit 2213 and a fitting subunit 2214 ;
  • the second acquisition subunit 2213 is used to obtain the correspondence between the historical time period in the battery swap station and the number of batteries actually used in the historical time period;
  • the fitting subunit 2214 is used to obtain the required number of batteries of the battery swap station after a preset time period based on the corresponding relationship.
  • the first judging unit 222 is used to judge whether the required power is greater than the rated power of the transformer according to the relationship between the number of reserve batteries and the number of required batteries.
  • the first judgment module 22 further includes an adjustment unit 223;
  • the first judging unit 222 is used to call the adjusting unit 223 if it is judged that the number of reserve batteries is not less than the number of required batteries;
  • the adjustment unit 223 is used to adjust the charging power of the battery in the battery swap station so that the required power is not greater than the rated power of the transformer.
  • the adjustment unit 223 includes a first calculation subunit 2231 , a judgment subunit 2232 , a first adjustment subunit 2233 , and a second adjustment subunit 2234 ;
  • the first calculation subunit 2231 is used to calculate the power upper limit value of all battery fast charging sections
  • the judging subunit 2232 is used to judge whether a new battery is replaced in the battery swap station. If so, the first adjusting subunit 2233 is called; if not, the second adjusting subunit 2234 is called;
  • the first adjustment subunit 2233 is used to increase the power upper limit value of the new battery according to a preset rule
  • the preset rules can be set according to actual conditions, for example, the upper limit charging current of a new battery starts from 0 and increases by 1A each time;
  • the second adjustment subunit 2234 is used to dynamically calculate and adjust the power upper limit of the battery fast charging stage so that the required power is not greater than the rated power of the transformer.
  • This embodiment selects a target battery from the batteries in the battery swap station based on the comparison result between the required power of the battery swap station and the rated power of the transformer, and controls the target battery to discharge and/or stop charging, so that the output power of the battery swap station within a preset time is not less than the required power, thereby meeting the user's charging needs and improving the user experience.
  • FIG4 is a schematic diagram of the structure of an electronic device provided in Embodiment 3 of the present invention.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the control method for charging at a battery swap station in Embodiment 1 is implemented.
  • the electronic device 30 shown in FIG4 is only an example and should not impose any limitation on the functions and scope of use of the embodiments of the present invention.
  • the electronic device 30 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 30 may include, but are not limited to: at least one processor 31, at least one memory 32, and a bus 33 connecting different system components (including the memory 32 and the processor 31).
  • the bus 33 includes a data bus, an address bus, and a control bus.
  • the memory 32 may include a volatile memory, such as a random access memory (RAM) 321 and/or a cache memory 322 , and may further include a read-only memory (ROM) 323 .
  • RAM random access memory
  • ROM read-only memory
  • the memory 32 may also include a program/utility 325 having a set (at least one) of program modules 324, such program modules 324 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • program modules 324 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each of which or some combination may include an implementation of a network environment.
  • the processor 31 executes various functional applications and data processing by running the computer programs stored in the memory 32, such as the control method for charging at a battery swap station according to Embodiment 1 of the present invention.
  • the electronic device 30 may also communicate with one or more external devices 34 (e.g., keyboards, pointing devices, etc.). Such communication may be performed via an input/output (I/O) interface 35.
  • the model generating device 30 may also communicate with one or more networks (e.g., a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) via a network adapter 36.
  • networks e.g., a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • the network adapter 36 communicates with other modules of the model generating device 30 via a bus 33.
  • the model generating device 30 may be combined with a network adapter 36.
  • the device 30 uses other hardware and/or software modules, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (disk array) systems, tape drives, and data backup storage systems, etc.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored.
  • the control method for charging at a battery swap station provided in Embodiment 1 is implemented.
  • the readable storage medium may include but is not limited to: a portable disk, a hard disk, a random access memory, a read-only memory, an erasable programmable read-only memory, an optical storage device, a magnetic storage device or any suitable combination of the above.
  • the present invention can also be implemented in the form of a program product, which includes a program code.
  • the program product runs on a terminal device, the program code is used to enable the terminal device to execute the control method for charging at a battery swap station described in Example 1.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be executed completely on the user device, partially on the user device, as an independent software package, partially on the user device and partially on a remote device, or completely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种换电站充电的控制方法,包括:步骤101、获取换电站的需求功率以及变压器额定功率;步骤102、判断需求功率是否大于变压器额定功率,若是,步骤103、从换电站电池中筛选出目标电池;步骤104、控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,换电站输出功率包括变压器额定功率和放电功率。还公开了一种换电站充电的控制系统、设备及存储介质。基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度。可以降低对变压器规格的要求,减少对于变电资源的需求,同时降低建站难度和成本。

Description

换电站充电的控制方法、系统、设备及存储介质
本申请要求申请日为2022年10月10日的中国专利申请202211236266.7的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及换电站技术领域,特别涉及一种换电站充电的控制方法、系统、设备及存储介质。
背景技术
随着新能源汽车的快速增加,电动汽车充换电站也随之迎来了大发展。在换电站建设过程中,变电资源(表现为变压器容量)是常见的稀缺资源,换电站常常无法同时得到足够的土地和电力资源。
同时,变电资源的价格也是换电站建设成本中的重要部分。如果能够保证服务能力不变的前提下,尽可能降低对变电资源的需求,将显著降低换电站的建设成本。
通常换电站内会出现变电资源不能满足未来某个时间段内换电需求,目前的换电站运行方式一方面会按照最大充电功率法实施(即选择较高的变电资源来满足换下电池的充电需求),这种方式对变电资源的需求较高,增加了换电站建站的难度和成本;另一方面采用随到随充的换电站充电方式(即换下电池立刻充),这种方式会出现在单个自然日内有比较明显的高峰和低谷时段,不能保证满足用户的充电需求。
发明内容
本发明要解决的技术问题是为了克服现有技术中现有的换电运行方式存在变电资源需求高、不能保证用户充电需求的缺陷,提供一种换电站充电的控制方法、系统、设备及存储介质。
本发明是通过下述技术方案来解决上述技术问题:
本发明第一方面提供了一种换电站充电的控制方法,所述控制方法包括:
获取所述换电站的需求功率以及变压器额定功率;
判断所述需求功率是否大于所述变压器额定功率,若是,则从换电站电池中筛选出目标电池;
控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率,所述换电站输出功率包括所述变压器额定功率和放电功率。
本发明基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度,在换电站充电服务能力基本不变的前提下,可以降低对变压器规格的要求,减少对于变电资源的需求,同时降低建站难度和成本。并且由于对换电站的需求功率以及变压器额定功率的控制,换电站用电负荷曲线在高峰时段将持续处于接近满载的状态,负荷平稳,有利于电网调度。
较佳地,所述换电站包括双向充电机,所述控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率的步骤包括:
控制所述目标电池通过所述双向充电机进行放电,以使预设时间内的换电站输出功率不小于所述需求功率。
较佳地,所述控制所述目标电池通过所述双向充电机进行放电的步骤包括:
控制所述目标电池通过所述双向充电机对其他电池和/或其他用电设备进行放电。
本发明在换电站中使用双向充电机,既确保了对每块换电电池进行充电,又可以对其他电池进行放电。
较佳地,所述从换电站电池中筛选出目标电池的步骤包括:
根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池。
较佳地,所述根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池的步骤包括:
从所述换电站电池中筛选出当前荷电状态高于第一预设荷电状态的电池作为所述目标电池;
所述控制所述目标电池进行放电和/或停止充电的步骤包括:
控制所述目标电池进行放电至所述第一预设荷电状态。
本发明筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
较佳地,所述控制所述目标电池进行放电至所述第一预设荷电状态的步骤之后,所述控制方法还包括:
判断所述换电站输出功率是否小于所述需求功率,若是,则调低所述第一预设荷电状态。
本发明通过调低第一预设荷电状态,并筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
较佳地,所述根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池的步骤包括:
从所述换电站电池中筛选出荷电状态在第二预设荷电状态的电池作为所述目标电池。
较佳地,所述第二预设荷电状态大于等于30%且小于等于60%。
本发明筛选出荷电状态在第二预设荷电状态的电池作为目标电池进行放电和/或停止充电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度,还可以防止荷电状态过低的电池处于过放的状态而导致电池的损耗。
较佳地,所述控制所述目标电池通过所述双向充电机进行放电的步骤包括:
获取所述需求功率与所述变压器额定功率的功率差值;
根据所述功率差值确定所述目标电池的数量及放电功率。
本发明通过需求功率与变压器额定功率的功率差值能够准确的确定出目标电池的数量以及放电功率,以避免浪费充电资源。
较佳地,所述判断所述需求功率是否大于所述变压器额定功率的步骤包括:
获取所述预设时间段后换电站的储备电池数量以及需求电池数量;
根据所述储备电池数量与所述需求电池数量之间的关系判断所述需求功率是否大于所述变压器额定功率。
较佳地,若判断出所述储备电池数量不小于所述需求电池数量,则调整所述换电站电池的充电功率,以使所述需求功率不大于所述变压器额定功率。
在本发明中,当储备电池数量不小于需求电池数量,意味着短期内换电站的换电负荷尚可承受,可按照平均限功率法,以需求功率不超过变压器额定功率为控制目标,平均的降低每一块快充电池的充电功率,对于处于慢充状态的电池,则不做调整,以保证换电站的储备电池数量。
较佳地,所述调整所述换电站电池的充电功率,以使所述需求功率不大于所述变压器额定功率的步骤包括:
计算所有电池快充段的功率上限值;
判断所述换电站内是否换入新电池,若是,则按照预设规则上调所述新电池的功率上限值;若否,则动态计算调整电池快充段的功率上限值,以使所述需求功率不大于所述变压器额定功率。
本发明在换电站内换入新电池时按照预设规则上调新电池的功率上限值,在换电站内未换入新电池时动态计算调整电池快充段的功率上限值,以使需求功率不大于变压器额定功率,避免了系统发生扰动,提高了系统的稳定性。
较佳地,所述获取所述预设时间段后换电站的储备电池数量以及需求电池数量的步骤包括:
获取所述换电站内电池的充电状态信息;
基于所述充电状态信息计算所述预设时间段后换电站的储备电池数量。
较佳地,所述获取所述预设时间段后换电站的储备电池数量以及需求电池数量的步骤包括:
获取所述换电站内历史时间段与所述历史时间段内实际使用电池数量的对应关系;
基于所述对应关系拟合得到所述预设时间段后所述换电站的需求电池数量。
本发明第二方面提供了一种换电站充电的控制系统,所述控制系统包括获取模块、第一判断模块、筛选模块和控制模块;
所述获取模块用于获取所述换电站的需求功率以及变压器额定功率;
所述第一判断模块用于判断所述需求功率是否大于所述变压器额定功率,若是,则调用所述筛选模块;
所述筛选模块用于从换电站电池中筛选出目标电池;
所述控制模块用于控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率,所述换电站输出功率包括所述变压器额定功率和放电功率。
本发明基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并 控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度,在换电站充电服务能力基本不变的前提下,可以降低对变压器规格的要求,减少对于变电资源的需求,同时降低建站难度和成本。并且由于对换电站的需求功率以及变压器额定功率的控制,换电站用电负荷曲线在高峰时段将持续处于接近满载的状态,负荷平稳,有利于电网调度。
较佳地,所述换电站包括双向充电机,所述控制模块用于控制所述目标电池通过所述双向充电机进行放电,以使预设时间内的换电站输出功率不小于所述需求功率。
较佳地,所述控制模块用于控制所述目标电池通过所述双向充电机对其他电池和/或其他用电设备进行放电,以使预设时间内的换电站输出功率不小于所述需求功率。
本发明在换电站中使用双向充电机,既确保了对每块换电电池进行充电,又可以对其他电池进行放电。
较佳地,所述筛选模块用于根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池。
较佳地,所述筛选模块用于从所述换电站电池中筛选出当前荷电状态高于第一预设荷电状态的电池作为所述目标电池;
所述控制模块用于控制所述目标电池进行放电至所述第一预设荷电状态。
本发明筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
较佳地,所述控制系统还包括第二判断模块和调整模块;
所述第二判断模块用于判断所述换电站输出功率是否小于所述需求功率,若是,则调用所述调整模块;
所述调整模块用于调低所述第一预设荷电状态。
本发明通过调低第一预设荷电状态,并筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
较佳地,所述筛选模块用于从所述换电站电池中筛选出荷电状态在第二预设荷电状态的电池作为所述目标电池。
较佳地,所述第二预设荷电状态大于等于30%且小于等于60%。
本发明筛选出荷电状态在第二预设荷电状态的电池作为目标电池进行放电和/或停止充电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度,还可以防止荷电状态过低的电池处于过放的状态而导致电池的损耗。
较佳地,所述控制模块包括第一获取单元和确定单元;
所述第一获取单元用于获取所述需求功率与所述变压器额定功率的功率差值;
所述确定单元用于根据所述功率差值确定所述目标电池的数量及放电功率。
本发明通过需求功率与变压器额定功率的功率差值能够准确的确定出目标电池的数量以及放电功率,以避免浪费充电资源。
较佳地,所述第一判断模块包括第二获取单元和第一判断单元;
所述第二获取单元用于获取所述预设时间段后换电站的储备电池数量以及需求电池数量;
所述第一判断单元用于根据所述储备电池数量与所述需求电池数量之间的关系判断所述需求功率是否大于所述变压器额定功率。
较佳地,所述第一判断模块还包括调整单元;
所述第一判断单元用于若判断出所述储备电池数量不小于所述需求电池数量,则调用所述调整单元;
所述调整单元用于调整所述换电站电池的充电功率,以使所述需求功率不大于所述变压器额定功率。
较佳地,所述调整单元包括第一计算子单元、判断子单元、第一调整子单元以及第二调整子单元;
所述第一计算子单元用于计算所有电池快充段的功率上限值;
所述判断子单元用于判断所述换电站内是否换入新电池,若是,则调用所述第一调整子单元;若否,则调用所述第二调整子单元;
所述第一调整子单元用于按照预设规则上调所述新电池的功率上限值;
所述第二调整子单元用于动态计算调整电池快充段的功率上限值,以使所述需求功率不大于所述变压器额定功率。
本发明在换电站内换入新电池时按照预设规则上调新电池的功率上限值,在换电站内未换入新电池时动态计算调整电池快充段的功率上限值,以使需求功率不大于变压器额定功率,避免了系统发生扰动,提高了系统的稳定性。
较佳地,所述第二获取单元包括第一获取子单元和第二计算子单元;
所述第一获取子单元用于获取所述换电站内电池的充电状态信息;
所述第二计算子单元用于基于所述充电状态信息计算所述预设时间段后换电站的储备电池数量。
较佳地,所述第二获取单元还包括第二获取子单元和拟合子单元;
所述第二获取子单元用于获取所述换电站内历史时间段与所述历史时间段内实际使用电池数量的对应关系;
所述拟合子单元用于基于所述对应关系拟合得到所述预设时间段后所述换电站的需求电池数量。
本发明第三方面提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现第一方面所述的换电站充电的控制方法。
本发明第四方面提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的换电站充电的控制方法。
在符合本领域常识的基础上,所述各优选条件,可任意组合,即得本发明各较佳实施例。
本发明的积极进步效果在于:
本发明基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度,在换电站充电服务能力基本不变的前提下,可以降低对变压器规格的要求,减少对于变电资源的需求,同时降低建站难度和成本。并且由于对换电站的需求功率以及变压器额定功率的控制,换电站用电负荷曲线在高峰时段将持续处于接近满载的状态,负荷平稳,有利于电网调度。
附图说明
图1为本发明实施例1的换电站充电的控制方法的第一流程图。
图2为本发明实施例1的换电站充电的控制方法的第二流程图。
图3为本发明实施例2的换电站充电的控制系统的结构示意图。
图4为本发明实施例3的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种换电站充电的控制方法,如图1所示,该控制方法包括:
步骤101、获取换电站的需求功率以及变压器额定功率;
步骤102、判断需求功率是否大于变压器额定功率,若是,意味着变压器处于过载状态,启动限流模式,则执行步骤103;若否,意味着变压器能够满足换电站的需求功率,则执行步骤105;
步骤103、从换电站电池中筛选出目标电池;
步骤104、控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,换电站输出功率包括变压器额定功率和放电功率。在具体实施过程中,需求功率和换电站输出功率是通过设置电流实时采样装置确定的。
本实施例中,预设时间段根据实际情况进行设置,此处不做具体限定。
步骤105、不调整电池。
本实施例在出现变压器额定功率不能满足换电站的需求功率时,将部分电池(即目标电池)切换为放电状态和/或停止充电的状态,以使线路中的功率更加充足,需要说明的是,通常会选择荷电状态较少的电池作为目标电池(即作为放电和/或停止充电的电池)进行放电,特殊情况下,可以选择满电电池进行放电至客户可以接受的最低电池电量,以满足用户的充电需求,提高用户体验度。本实施例在换电站充电服务能力不变的前提下,可以降低对变压器规格的要求,减少了对变电资源的需求,同时也降低了建站难度和成本;并且由于对换电站的需求功率以及变压器额定功率的控制,换电站用电负荷曲线在高峰时段将持续处于接近满载的状态,负荷平稳,有利于电网调度。
在本实施例中,换电站包括双向充电机,步骤104包括:
步骤104-1、控制目标电池通过双向充电机进行放电,以使预设时间内的换电站输出功率不小于需求功率。
本实施例中,在换电站中使用双向充电机,既可以确保对每块换电电池进行充电,又可以对其他电池进行放电。
需要说明的是,双向充电机包括但不限于PCS架构充电机、V2G充电机。
具体的,步骤104-1包括:
步骤104-1-1、控制目标电池通过双向充电机对其他电池和/或其他用电设备进行放电,以使预设时间内的换电站输出功率不小于需求功率。
本实施例中,其他用电设备可以为闪充桩,也可以为其他用电设备。
具体的,步骤103包括:
步骤103-1、根据换电站电池的荷电状态从换电站电池中筛选出目标电池。
具体的,步骤103-1包括:
步骤103-1-1、从换电站电池中筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池;
步骤104包括:
步骤1041、控制目标电池进行放电至第一预设荷电状态。
本实施例中,第一预设荷电状态根据实际情况进行设置,以满足用户的充电需求,优选为90%-98%,也可以为其他荷电状态,此处不做具体限定。
在具体实施过程中,例如,如果换电站内部分满电电池的荷电状态高于第一预设荷电状态,此时该部分满电电池可以通过双向充电机对其他电池和/或其他用电设备进行小电流放电。筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
在步骤1041之后,该控制方法还包括:
步骤1042、判断换电站输出功率是否小于需求功率,若是,则执行步骤1043;
步骤1043、调低第一预设荷电状态。
本实施例中,调低的第一预设荷电状态根据实际情况进行设置,优选的,调低第一预设荷电状态至用户可以接受的最低荷电状态,避免影响换电站电池的储备,以满足用户的充电需求,提高用户体验度。
然后,重复步骤103-1-1和步骤1041。
步骤103-1还包括:
步骤103-1-11、从换电站电池中筛选出荷电状态在第二预设荷电状态的电池作为目标电池。
在本实施例中,第二预设荷电状态大于等于30%且小于等于60%。将荷电状态在第二预设荷电状态的目标电池停止充电,或者通过双向充电机对其他电池和/或其他用电设备进行小电流放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提 高了用户体验度,还可以防止荷电状态过低的电池处于过放的状态而导致电池的损耗。
在本实施例中,步骤104-1包括:
步骤104-11、获取需求功率与变压器额定功率的功率差值;
步骤104-12、根据功率差值确定目标电池的数量及放电功率;
步骤104-13、根据放电功率控制数量的目标电池通过双向充电机进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率。
具体的,步骤102包括:
步骤1021、获取预设时间段后换电站的储备电池数量以及需求电池数量;
本实施例中,储备电池数量包括满电电池的数量(已充满的电池数量)和慢充电池数量;
即BX=Bfull+Bslow
其中,BX表示储备电池数量,Bfull表示满电电池的数量,Bslow表示慢充电池数量。
其中,步骤1021包括:
步骤1021-11、获取换电站内电池的充电状态信息;
本实施例中,充电状态信息包括电池达到满电状态所需的充电时间;
步骤1021-12、基于充电状态信息计算预设时间段后换电站的储备电池数量。
步骤1021还包括:
步骤1021-111、获取换电站内历史时间段与历史时间段内实际使用电池数量的对应关系;
步骤1021-112、基于对应关系拟合得到预设时间段后换电站的需求电池数量。
步骤1022、根据储备电池数量与需求电池数量之间的关系判断需求功率是否大于变压器额定功率。
步骤1023、若判断出储备电池数量不小于需求电池数量,则调整换电站电池的充电功率,以使需求功率不大于变压器额定功率。
当储备电池数量不小于需求电池数量,意味着短期内换电站的换电负荷尚可承受,可按照平均限功率法,以需求功率不超过变压器额定功率为控制目标,平均的降低每一块快充电池的充电功率,对于处于慢充状态的电池,则不做调整。
步骤1023包括:
步骤1023-1、计算所有电池快充段的功率上限值;
步骤1023-2、判断换电站内是否换入新电池,若是,则执行步骤1023-3;若否,则执行步骤1023-4;
步骤1023-3、按照预设规则上调新电池的功率上限值;
本实施例中,预设规则可以根据实际情况进行设置,例如,按照新电池上限充电电流从0开始,每次上调1A;
步骤1023-4、动态计算调整电池快充段的功率上限值,以使需求功率不大于变压器额定功率。
在具体实施过程中,在变压器低压侧进线处设置一个电流实时采样装置,例如电流实时采样装置 可以为CT,也可以为电表,还可以为其他装置。
在换电站内,用户可以在设定运行边界中输入以下内容:
a.换电站内额定电池数量Bset;
b.变压器低压侧额定电流Iset(A),为了保障运行安全,可以在实际变压器(即箱变)最大电流基础上适当下调;
c.换电站额定服务能力(台/小时)Vset
d.电池平均充满时间Tset(小时);
e.SOCmin(即特殊情况下,用户可以接受的最低电池电量);
f.Balarm(需求电池数量),换电站内即将就绪电池少于该数值时,即应进入紧急响应状态。
在具体实施过程中,中央控制器实时监控换电站内的以下信息:
(1)实时监控箱变电流I;
(2)实时监控单体电池充电电流C(n),其中,n表示仓位编号;
(3)实时监控已充满的电池数量Bfull,其中,包括SOC>SOCmin,但仍然在充电的部分电池;
(4)实时监控可进行快充的电池数量Bfast;
(5)实时监控进行慢充的电池数量Bslow,且Bslow=Bset-Bfull-Bfast;
根据以上数据实时计算换电站的需求功率,当需求功率不大于变压器额定功率时,则不对电池充电做任何调整;当需求功率大于变压器额定功率时,意味着变压器处于过载状态,此时启动限流模式(即须进行主动限流),并根据满电电池的数量Bfull以及慢充电池数量Bslow计算预设时间段后换电站的储备电池数量BX,在具体实施过程中,需求功率和换电站输出功率是通过设置电流实时采样装置确定的,具体地,如图2所示,可以通过计算换电站的最大需求电流值ID,即可根据换电站内快充电池品牌、型号及其SOC(荷电状态)算出最大需求电流值ID,当ID不大于Iset时,则不对电池充电做任何调整(即电池正常充电);当ID大于Iset时,意味着箱变将处于过载状态,此时启动限流模式(即须进行主动限流),通过观察满电电池的数量Bfull以及慢充电池数量Bslow计算出预设时间段后换电站的储备电池数量BX,当BX不小于Balarm,则意味着短期内换电站的换电负荷尚可承受,此时可按照平均限流法,以总电流不超过Iset为控制目标,平均的降低每一块快充电池的充电电流,对于处于慢充状态的电池,则不做调整;当BX小于Balarm,则意味着换电站内的换电负荷已经太高,即将出现排队或不满电现象。此时需要紧急调整充电策略,进入紧急充电模式,以全力保障慢充,对于快充仓位做统一调整,具体地,根据BX与Balarm的差值,选择0~3个SOC在30%~60%之间的仓位停止充电,甚至可以选择向其他电池放电,和/或,降低充满电的SOC至SOCmin,如果站内部分满电电池电量高于SOCmin,此时可以通过双向充电机对其他电池进行小电流放电,此时再按照平均限流法管理其他充电仓位,而这些仓位已经可以以较快乃至最块速度进行充电,直到BX不小于Balarm并略有余量时,则结束紧急充电模式,即退出紧急状态,取消SOC的下调。
需要说明的是,当系统中发生扰动,例如部分电池停止充电时,此时总充电负荷下降,则可继续缓慢调整电流,如果是反向冲击,也即换入新电池时,则对于新电池,需要在每个控制周期内缓慢的 增加其充电速度,直至实现新的平衡(即增加新电池的电流,直至其充电电流和其他电池相等)。
本实施例基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度。
实施例2
本实施例提供一种换电站充电的控制系统,如图3所示,该控制系统包括获取模块21、第一判断模块22、筛选模块23和控制模块24;
获取模块21用于获取换电站的需求功率以及变压器额定功率;
第一判断模块22用于判断需求功率是否大于变压器额定功率,若是,意味着变压器处于过载状态,启动限流模式,则调用筛选模块23;若否,意味着变压器能够满足换电站的需求功率,则不对电池充电做任何调整;
筛选模块23用于从换电站电池中筛选出目标电池;
控制模块24用于控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,电站输出功率包括变压器额定功率和放电功率。
本实施例中,预设时间段根据实际情况进行设置,此处不做具体限定。
本实施例在出现变压器额定功率不能满足换电站的需求功率时,将部分电池(即目标电池)切换为放电状态和/或停止充电的状态,以使线路中的功率更加充足,需要说明的是,通常会选择荷电状态较少的电池作为目标电池(即作为放电和/或停止充电的电池)进行放电,特殊情况下,可以选择满电电池进行放电至客户可以接受的最低电池电量,以满足用户的充电需求,提高用户体验度。
在本实施例中,换电站包括双向充电机,控制模块24用于控制目标电池通过双向充电机进行放电,以使预设时间内的换电站输出功率不小于需求功率。
本实施例中,在换电站中使用双向充电机,既可以确保对每块换电电池进行充电,又可以对其他电池进行放电。
需要说明的是,双向充电机包括但不限于PCS架构充电机、V2G充电机。
在本实施例中,控制模块24用于控制目标电池通过双向充电机对其他电池和/或其他用电设备进行放电,以使预设时间内的换电站输出功率不小于需求功率。
本实施例中,其他用电设备可以为闪充桩,也可以为其他用电设备。
在本实施例中,筛选模块23用于根据换电站电池的荷电状态从换电站电池中筛选出目标电池。
具体的,筛选模块23用于从换电站电池中筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池;
控制模块24用于控制目标电池进行放电至第一预设荷电状态。
本实施例中,第一预设荷电状态根据实际情况进行设置,以满足用户的充电需求,优选为90%-98%,也可以为其他荷电状态,此处不做具体限定。
在具体实施过程中,例如,如果换电站内部分满电电池的荷电状态高于第一预设荷电状态,此时 该部分满电电池可以通过双向充电机对其他电池和/或其他用电设备进行小电流放电。筛选出当前荷电状态高于第一预设荷电状态的电池作为目标电池进行放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度。
在本实施例中,如图3所示,该控制系统还包括第二判断模块25和调整模块26;
第二判断模块25用于判断换电站输出功率是否小于需求功率,若是,则调用调整模块26;
调整模块26用于调低第一预设荷电状态。本实施例中,调低的第一预设荷电状态根据实际情况进行设置,优选的,调低第一预设荷电状态至用户可以接受的最低荷电状态,避免影响换电站电池的储备,以满足用户的充电需求,提高用户体验度。
筛选模块23用于从换电站电池中筛选出荷电状态在第二预设荷电状态的电池作为目标电池。
在本实施例中,第二预设荷电状态大于等于30%且小于等于60%。将荷电状态在第二预设荷电状态的目标电池停止充电,或者通过双向充电机对其他电池和/或其他用电设备进行小电流放电,避免影响换电站电池的储备,满足了换电站的需求功率以及用户的充电需求,确保了换电站的正常运行,提高了用户体验度,还可以防止荷电状态过低的电池处于过放的状态而导致电池的损耗。
在本实施例中,如图3所示,控制模块24包括第一获取单元241和确定单元242;
第一获取单元241用于获取需求功率与变压器额定功率的功率差值;
确定单元242用于根据功率差值确定目标电池的数量及放电功率;
如图3所示,第一判断模块22包括第二获取单元221和第一判断单元222;
第二获取单元221用于获取预设时间段后换电站的储备电池数量以及需求电池数量;
本实施例中,储备电池数量包括满电电池的数量(已充满的电池数量)和慢充电池数量;
即BX=Bfull+Bslow
其中,BX表示储备电池数量,Bfull表示满电电池的数量,Bslow表示慢充电池数量。
如图3所示,第二获取单元221包括第一获取子单元2211和第二计算子单元2212;
第一获取子单元2211用于获取换电站内电池的充电状态信息;
本实施例中,充电状态信息包括电池达到满电状态所需的充电时间;
第二计算子单元2212用于基于充电状态信息计算预设时间段后换电站的储备电池数量。
在一可实施的方案中,如图3所示,第二获取单元221还包括第二获取子单元2213和拟合子单元2214;
第二获取子单元2213用于获取换电站内历史时间段与历史时间段内实际使用电池数量的对应关系;
拟合子单元2214用于基于对应关系拟合得到预设时间段后换电站的需求电池数量。
第一判断单元222用于根据储备电池数量与需求电池数量之间的关系判断需求功率是否大于变压器额定功率。
如图3所示,第一判断模块22还包括调整单元223;
第一判断单元222用于若判断出储备电池数量不小于需求电池数量,则调用调整单元223;
调整单元223用于调整换电站电池的充电功率,以使需求功率不大于变压器额定功率。
如图3所示,调整单元223包括第一计算子单元2231、判断子单元2232、第一调整子单元2233以及第二调整子单元2234;
第一计算子单元2231用于计算所有电池快充段的功率上限值;
判断子单元2232用于判断换电站内是否换入新电池,若是,则调用第一调整子单元2233;若否,则调用第二调整子单元2234;
第一调整子单元2233用于按照预设规则上调新电池的功率上限值;
本实施例中,预设规则可以根据实际情况进行设置,例如,按照新电池上限充电电流从0开始,每次上调1A;
第二调整子单元2234用于动态计算调整电池快充段的功率上限值,以使需求功率不大于变压器额定功率。
本实施例基于换电站的需求功率与变压器额定功率的比较结果从换电站电池中筛选出目标电池,并控制目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于需求功率,满足了用户的充电需求,提高了用户体验度。
实施例3
图4为本发明实施例3提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现实施例1的换电站充电的控制方法。图4显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图4所示,电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1的换电站充电的控制方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图4所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成 的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例4
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现实施例1所提供的换电站充电的控制方法。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现实施例1所述的换电站充电的控制方法。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (17)

  1. 一种换电站充电的控制方法,其特征在于,所述控制方法包括:
    获取所述换电站的需求功率以及变压器额定功率;
    判断所述需求功率是否大于所述变压器额定功率,若是,则从换电站电池中筛选出目标电池;
    控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率,所述换电站输出功率包括所述变压器额定功率和放电功率。
  2. 如权利要求1所述的换电站充电的控制方法,其特征在于,所述换电站包括双向充电机,所述控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率的步骤包括:
    控制所述目标电池通过所述双向充电机进行放电,以使预设时间内的换电站输出功率不小于所述需求功率。
  3. 如权利要求2所述的换电站充电的控制方法,其特征在于,所述控制所述目标电池通过所述双向充电机进行放电的步骤包括:
    控制所述目标电池通过所述双向充电机对其他电池和/或其他用电设备进行放电。
  4. 如权利要求1所述的换电站充电的控制方法,其特征在于,所述从换电站电池中筛选出目标电池的步骤包括:
    根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池。
  5. 如权利要求4所述的换电站充电的控制方法,其特征在于,所述根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池的步骤包括:
    从所述换电站电池中筛选出当前荷电状态高于第一预设荷电状态的电池作为所述目标电池;
    所述控制所述目标电池进行放电和/或停止充电的步骤包括:
    控制所述目标电池进行放电至所述第一预设荷电状态。
  6. 如权利要求5所述的换电站充电的控制方法,其特征在于,所述控制所述目标电池进行放电至所述第一预设荷电状态的步骤之后,所述控制方法还包括:
    判断所述换电站输出功率是否小于所述需求功率,若是,则调低所述第一预设荷电状态。
  7. 如权利要求4所述的换电站充电的控制方法,其特征在于,所述根据所述换电站电池的荷电状态从所述换电站电池中筛选出所述目标电池的步骤包括:
    从所述换电站电池中筛选出荷电状态在第二预设荷电状态的电池作为所述目标电池。
  8. 如权利要求7所述的换电站充电的控制方法,其特征在于,所述第二预设荷电状态大于等于30%且小于等于60%。
  9. 如权利要求2所述的换电站充电的控制方法,其特征在于,所述控制所述目标电池通过所述双向充电机进行放电的步骤包括:
    获取所述需求功率与所述变压器额定功率的功率差值;
    根据所述功率差值确定所述目标电池的数量及放电功率。
  10. 如权利要求1所述的换电站充电的控制方法,其特征在于,所述判断所述需求功率是否大于所述变压器额定功率的步骤包括:
    获取所述预设时间段后换电站的储备电池数量以及需求电池数量;
    根据所述储备电池数量与所述需求电池数量之间的关系判断所述需求功率是否大于所述变压器额定功率。
  11. 如权利要求10所述的换电站充电的控制方法,其特征在于,若判断出所述储备电池数量不小于所述需求电池数量,则调整所述换电站电池的充电功率,以使所述需求功率不大于所述变压器额定功率。
  12. 如权利要求11所述的换电站充电的控制方法,其特征在于,所述调整所述换电站电池的充电功率,以使所述需求功率不大于所述变压器额定功率的步骤包括:
    计算所有电池快充段的功率上限值;
    判断所述换电站内是否换入新电池,若是,则按照预设规则上调所述新电池的功率上限值;若否,则动态计算调整电池快充段的功率上限值,以使所述需求功率不大于所述变压器额定功率。
  13. 如权利要求10所述的换电站充电的控制方法,其特征在于,所述获取所述预设时间段后换电站的储备电池数量以及需求电池数量的步骤包括:
    获取所述换电站内电池的充电状态信息;
    基于所述充电状态信息计算所述预设时间段后换电站的储备电池数量。
  14. 如权利要求10所述的换电站充电的控制方法,其特征在于,所述获取所述预设时间段后换电站的储备电池数量以及需求电池数量的步骤包括:
    获取所述换电站内历史时间段与所述历史时间段内实际使用电池数量的对应关系;
    基于所述对应关系拟合得到所述预设时间段后所述换电站的需求电池数量。
  15. 一种换电站充电的控制系统,其特征在于,所述控制系统包括获取模块、第一判断模块、筛选模块和控制模块;
    所述获取模块用于获取所述换电站的需求功率以及变压器额定功率;
    所述第一判断模块用于判断所述需求功率是否大于所述变压器额定功率,若是,则调用所述筛选模块;
    所述筛选模块用于从换电站电池中筛选出目标电池;
    所述控制模块用于控制所述目标电池进行放电和/或停止充电,以使预设时间内的换电站输出功率不小于所述需求功率,所述换电站输出功率包括所述变压器额定功率和放电功率。
  16. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-14中任一项所述的换电站充电的控制方法。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-14中任一项所述的换电站充电的控制方法。
PCT/CN2023/085031 2022-10-10 2023-03-30 换电站充电的控制方法、系统、设备及存储介质 WO2024077882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211236266.7 2022-10-10
CN202211236266.7A CN117901690A (zh) 2022-10-10 2022-10-10 换电站充电的控制方法、系统、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024077882A1 true WO2024077882A1 (zh) 2024-04-18

Family

ID=90668628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085031 WO2024077882A1 (zh) 2022-10-10 2023-03-30 换电站充电的控制方法、系统、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117901690A (zh)
WO (1) WO2024077882A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515027A (zh) * 2015-08-06 2016-04-20 樊朝晖 一种负荷曲线可配置的储能微网控制方法
CN109361245A (zh) * 2018-09-18 2019-02-19 深圳市车电网络有限公司 充电站的功率调配方法、装置及存储介质
CN109494783A (zh) * 2018-04-09 2019-03-19 江阴市新昶虹电力科技股份有限公司 一种带有储能电池系统的屋顶太阳能并网电站
CN111342481A (zh) * 2020-03-11 2020-06-26 佛山科学技术学院 一种基于储能的充电站配电变压器过载保护方法及系统
JP2020150717A (ja) * 2019-03-14 2020-09-17 三菱自動車工業株式会社 電動車両、電動車両の充放電システム
CN113471559A (zh) * 2021-05-21 2021-10-01 蓝谷智慧(北京)能源科技有限公司 换电站及电池充电方法、控制装置、介质与设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515027A (zh) * 2015-08-06 2016-04-20 樊朝晖 一种负荷曲线可配置的储能微网控制方法
CN109494783A (zh) * 2018-04-09 2019-03-19 江阴市新昶虹电力科技股份有限公司 一种带有储能电池系统的屋顶太阳能并网电站
CN109361245A (zh) * 2018-09-18 2019-02-19 深圳市车电网络有限公司 充电站的功率调配方法、装置及存储介质
JP2020150717A (ja) * 2019-03-14 2020-09-17 三菱自動車工業株式会社 電動車両、電動車両の充放電システム
CN111342481A (zh) * 2020-03-11 2020-06-26 佛山科学技术学院 一种基于储能的充电站配电变压器过载保护方法及系统
CN113471559A (zh) * 2021-05-21 2021-10-01 蓝谷智慧(北京)能源科技有限公司 换电站及电池充电方法、控制装置、介质与设备

Also Published As

Publication number Publication date
CN117901690A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2021068520A1 (zh) 充电设备功率分配方法、存储介质及系统
US9692233B2 (en) Method for controlling an energy storage system
EP2351189B1 (en) Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid
CN110571838B (zh) 一种储能电池早高峰负荷削减控制方法和装置
US11398729B1 (en) Adaptive load management based on system capacity in a microgrid environment
CN115378015B (zh) 微电网的运行控制方法、系统、设备和介质
CN112952910A (zh) 光储离网系统控制方法、装置、控制器及存储介质
JP7165876B2 (ja) 制御システム
WO2023125709A1 (zh) 双向充电机、供电系统、电源管理方法及装置
WO2023125637A1 (zh) 充电控制方法、系统、电子设备及计算机可读存储介质
CN114421505B (zh) 基于飞轮储能系统的控制方法、装置和电子设备
CN110061492B (zh) 考虑配电网供电可靠性的储能系统容量优化配置方法
CN113557647A (zh) 用于不间断电源的电网边缘控制器及其操作方法
WO2024077882A1 (zh) 换电站充电的控制方法、系统、设备及存储介质
CN116544991A (zh) 一种考虑风电不确定性的风储联合优化调度方法
CN110854916A (zh) 一种基于用户储能的能量平衡控制方法及装置
CN113224813B (zh) 离网光伏储能系统控制方法、装置、计算机及存储介质
CN108767883A (zh) 一种需求侧的响应处理方法
CN116937635A (zh) 一种用电量削峰填谷的方法及其相关设备
CN114285062A (zh) 一种双向可逆发电并网的充电桩系统
JP7480075B2 (ja) 蓄電装置管理システム及び蓄電装置管理方法
JP2020188539A (ja) Pcs用コントローラ
CN116418095B (zh) 一种低温充电保护方法、设备及存储介质
WO2024029111A1 (ja) 発電システムの制御装置、発電システムの制御方法、およびプログラム
CN115622097A (zh) 一种配电系统供电能力提升装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876095

Country of ref document: EP

Kind code of ref document: A1