WO2023125709A1 - 双向充电机、供电系统、电源管理方法及装置 - Google Patents

双向充电机、供电系统、电源管理方法及装置 Download PDF

Info

Publication number
WO2023125709A1
WO2023125709A1 PCT/CN2022/142968 CN2022142968W WO2023125709A1 WO 2023125709 A1 WO2023125709 A1 WO 2023125709A1 CN 2022142968 W CN2022142968 W CN 2022142968W WO 2023125709 A1 WO2023125709 A1 WO 2023125709A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
rechargeable battery
load
bidirectional
power supply
Prior art date
Application number
PCT/CN2022/142968
Other languages
English (en)
French (fr)
Inventor
刘炳
张建平
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2023125709A1 publication Critical patent/WO2023125709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a bidirectional charger, a power supply system, a power management method and device, electronic equipment, and a storage medium.
  • emergency backup power supplies At present, important power loads, such as hospitals, data centers, and power dispatch management departments, have emergency backup power supplies.
  • the emergency backup power supply When the power grid fails, the emergency backup power supply is used for power supply through internal circuit switching. Adding an emergency backup power supply will increase the cost of the equipment, and the state of the emergency backup power supply needs to be checked and maintained regularly, which further increases the operation and maintenance cost.
  • the battery in the emergency backup power supply is in a charged floating state for a long time, posing hidden dangers to line safety.
  • the technical problem to be solved by the present invention is to provide a two-way charger, a power supply system, and a power management method in order to overcome the disadvantages of high cost and potential safety hazards in the prior art of using an emergency backup power supply as the load for uninterrupted power supply. And devices, electronic equipment, storage media.
  • a charger in a first aspect, includes a bidirectional converter and a controller; the controller is electrically connected to the bidirectional converter; the bidirectional converter is connected to a rechargeable battery, wherein,
  • the bidirectional converter has a charging mode and a discharging mode. In the charging mode, the bidirectional converter charges the rechargeable battery; in the discharging mode, the bidirectional converter releases the charged battery. The electrical energy stored in the battery;
  • the controller is used to control the bidirectional converter to switch between the charging mode and the discharging mode, so as to charge or discharge the rechargeable battery.
  • the bidirectional charger can switch between the charging mode and the discharging mode.
  • the bidirectional charger In the charging mode, the bidirectional charger can charge the rechargeable battery.
  • the bidirectional charger When in the discharging mode, the bidirectional charger can release the electric energy of the rechargeable battery to supply power to the load. Therefore, it is possible to supply power to electric loads with high stability and reliability.
  • the bidirectional converter includes a rectification circuit and an inverter circuit, one end of the rectification circuit is connected to the rechargeable battery, and the other end of the rectification circuit is electrically connected to one end of the inverter circuit;
  • the bidirectional converter is in the charging mode, and the other end of the inverter circuit is used as the input end of the bidirectional converter; when the bidirectional converter is in the discharging mode, the other end of the inverter circuit is used as the input end of the bidirectional converter.
  • the output terminal of the bidirectional converter is a rectification circuit and an inverter circuit, one end of the rectification circuit is connected to the rechargeable battery, and the other end of the rectification circuit is electrically connected to one end of the inverter circuit;
  • the bidirectional converter is in the charging mode, and the other end of the inverter circuit is used as the input end of the bidirectional converter; when the bidirectional converter is in the discharging mode, the other end of the inverter circuit is used as the input end of the
  • a bidirectional converter is realized through a rectifier circuit and an inverter circuit, which can provide stable and reliable electric energy for the load.
  • the bidirectional converter also includes:
  • a second filter circuit one end of the rectification circuit is connected to the rechargeable battery through the second filter circuit;
  • a battery protection device one end of the rectification circuit is connected to the rechargeable battery through the battery protection device;
  • a soft starter the other end of the rectifier circuit is electrically connected to one end of the inverter circuit through the soft starter;
  • a first static switch one end of the rectifier circuit is connected to the rechargeable battery through the first static switch;
  • the second static switch is connected to the other end of the inverter circuit.
  • a power supply system including an energy storage power supply and a load, the load includes a power grid and/or electric equipment, and the energy storage power supply includes a rechargeable battery and the bidirectional charger described in any one of the above, so The bidirectional charger is electrically connected to the load and the rechargeable battery respectively.
  • the power supply system is used as an emergency backup power source for the grid and electrical equipment.
  • the grid can supply power to the grid and electrical equipment to ensure that it will not lose power within a certain period of time.
  • the power supply system can transmit electric energy to the grid to relieve the overload pressure of the grid and effectively cope with the peak power consumption.
  • the energy storage power supply is configured to be installed in a battery swapping station of an electric vehicle.
  • the energy storage power supply when the power grid is normally powered, can provide charging and battery replacement services for electric vehicles; when the power grid is interrupted or the grid is overloaded, the energy storage power supply supplies power to the load.
  • the utilization rate of the energy storage power supply in the power exchange station is improved.
  • the power exchange station can be used as an emergency backup power supply for the power grid or electrical equipment.
  • the electrical equipment does not need to be equipped with an emergency backup power supply, which can save a lot of costs, and the power exchange station can be effectively Relieve the peak power consumption pressure on the power grid.
  • the power supply system further includes a switch assembly, and the bidirectional charger is connected to the load through the switch assembly.
  • the switch component can seamlessly switch when it is determined that the power grid is interrupted, or send a reminder to remind the operation and maintenance personnel to switch the switch, and switch the two-way charger from being connected to the incoming power supply to connecting to the load, so as to timely provide Load power supply to avoid equipment damage and data loss caused by load power failure.
  • a power management method including:
  • the bidirectional charger When receiving a load power supply request, the bidirectional charger is controlled to release the electric energy stored in the rechargeable battery to supply power to the load.
  • the power supply system provided by the embodiment of the present invention can be used to supply power to the grid and electrical equipment to ensure that it will not lose power within a certain period of time or alleviate the peak pressure of the grid. Electric equipment does not need to be equipped with an emergency backup power supply, which can save a lot of costs and can effectively cope with peak power consumption.
  • controlling the bidirectional charger to charge the rechargeable battery includes:
  • the rechargeable battery is charged when the remaining power is less than the power threshold, so as to ensure that the rechargeable battery always has a certain amount of power to supply power to the load when receiving a power supply request.
  • controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes:
  • step of controlling the two-way charger to release the electric energy stored in the rechargeable battery to supply power to the load includes:
  • the bidirectional charger is controlled to release the electric energy stored in the rechargeable battery to supply power to the load.
  • controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes:
  • control the two-way charger to supply power to some of the electric equipment included in the load, and the total power supply demand of the partial electric equipment is not greater than the power supply capacity of the rechargeable battery; or, reduce The output voltage and/or frequency of the bidirectional charger supplies power to all or part of the electrical equipment included in the load.
  • the step of controlling the bidirectional charger to supply power to some electric devices included in the load includes:
  • the step of controlling the bidirectional charger to charge the rechargeable battery includes:
  • the step of controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes:
  • a power management device including:
  • the first control module is used for the control module to control the bidirectional charger to store the electric energy of the incoming power supply in the rechargeable battery, so that the rechargeable battery can supply power to the electric vehicle after receiving a power replacement request;
  • the second control module is configured to control the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load when a load power supply request is received.
  • the power supply system provided by the embodiment of the present invention can be used to supply power to the power grid and electrical equipment to ensure that they will not lose power within a certain period of time or alleviate the peak power consumption pressure of the power grid. Electric equipment does not need to be equipped with an emergency backup power supply, which can save a lot of cost and effectively relieve the peak power consumption pressure of the power grid.
  • the positive progress effect of the present invention is that: the bidirectional charger provided by the present invention can be switched between the charging mode and the discharging mode.
  • the bidirectional charger can charge the rechargeable battery.
  • the bidirectional charger can release The electric energy of the rechargeable battery supplies power to the load, thereby being able to supply power to the electric load with high stability and reliability.
  • FIG. 1 is a block diagram of a bidirectional charger provided by an exemplary embodiment of the present invention
  • Fig. 2 is a circuit diagram of a bidirectional charger provided by an exemplary embodiment of the present invention.
  • Fig. 3 is a block diagram of a power supply system provided by an exemplary embodiment of the present invention.
  • FIG. 4 is a flowchart of a power management method provided by an exemplary embodiment of the present invention.
  • Fig. 5 is a schematic diagram of modules of a power management device provided by an exemplary embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram of a bidirectional charger provided by an exemplary embodiment of the present invention.
  • the bidirectional charger 1 includes a bidirectional converter 11 and a controller 12 .
  • the controller 12 is electrically connected to the bidirectional converter 11 .
  • the bidirectional converter 11 has a charging mode and a discharging mode, and the controller 12 is used to control the bidirectional converter 11 to switch between the charging mode and the discharging mode, so that the rechargeable battery 2 connected to the bidirectional converter 11 is charged or discharge.
  • the bidirectional charger can switch between the charging mode and the discharging mode.
  • the bidirectional charger can charge the rechargeable battery.
  • the bidirectional charger can release the electric energy of the rechargeable battery to the load. Power supply, so that it can supply power to the electric load, and has high stability and reliability.
  • the bidirectional converter 11 When the bidirectional converter 11 is in the charging mode, the bidirectional converter 11 charges the rechargeable battery. Specifically, the bidirectional converter 11 stores the electric energy of the incoming power supply 5 connected thereto in the rechargeable battery, thereby charging the rechargeable battery.
  • the incoming power supply 5 may include, but is not limited to, a power grid (providing mains power) and a micro-grid.
  • the bidirectional converter 11 When the bidirectional converter 11 is in the discharge mode, the bidirectional converter 11 is switched to be connected to the load 3 and releases the electric energy stored in the rechargeable battery to supply power to the load 3 .
  • the electric energy released by the rechargeable battery can be used to charge the electric vehicle, and can also supply energy for other loads.
  • Other loads can be electrical equipment in various living and production places, for example, but not limited to, medical equipment in hospitals, various dispatching equipment, data storage equipment and other electrical equipment, as well as power grids.
  • the mode switching of the bidirectional converter 11 can be manually triggered, that is, the mode switching is manually triggered when there is a need; the mode switching of the bidirectional converter 11 can also be automatically triggered according to the power supply status of the incoming power supply 5, for example, when it is determined When the incoming power supply 5 interrupts the power supply, the controller 12 controls the bidirectional converter 11 to be in the discharge mode; when the incoming power supply 5 supplies power normally, the controller 12 controls the bidirectional converter 11 to be in the charging mode.
  • the bidirectional converter 11 includes a rectification circuit 111 and an inverter circuit 112, one end of the rectification circuit 111 is connected to the rechargeable battery 2, and the other end of the rectification circuit 111 is electrically connected to one end of the inverter circuit 112. connect.
  • the controller realizes switching the mode of the bidirectional converter 11 to the charging mode by controlling the PWM (Pulse Width Modulation, pulse width modulation technology) of each switching device in the rectification circuit 111 and the inverter circuit 112.
  • PWM Pulse Width Modulation, pulse width modulation technology
  • the other end (A, B, C, N terminals) of the inverter circuit 112 is connected to the incoming power supply 5 as the input terminal of the bidirectional converter 11, and one end of the rectifier circuit 111 is used as a bidirectional
  • the output terminal of the converter 11, the rectification circuit 111 and the inverter circuit 112 store the electric energy of the line power supply 5 in the rechargeable battery.
  • the controller switches the mode of the bidirectional converter 11 to the discharge mode by controlling the PWM of each switching device in the rectification circuit 111 and the inverter circuit 112 .
  • the bidirectional converter is in the discharge mode, the other end (A, B, C, N terminals) of the inverter circuit 112 is connected to the load as the output terminal of the bidirectional converter 11, and one end of the rectifier circuit 111 is used as the bidirectional converter 11, the rectifier circuit 111 and the inverter circuit 112 release the electric energy stored in the rechargeable battery to supply power for the load.
  • the controller can also control the output voltage/current of the inverter circuit by adjusting the PWM, so as to meet the power supply requirements of different loads.
  • the bidirectional converter further includes: a first filtering circuit 113 .
  • the first filter circuit 113 is connected to the other end of the inverter circuit 112 .
  • the filter circuit 113 is connected to the load.
  • the first filtering circuit 113 can improve the anti-interference performance of the bidirectional converter and output stable electric energy.
  • the first filter circuit 113 is not limited to be implemented by the LC filter circuit in the figure, and can also be implemented by a capacitor filter circuit, an inductance filter circuit and an RC filter.
  • the bidirectional converter further includes: a second filtering circuit 114 .
  • One end of the rectification circuit 111 is connected to the rechargeable battery 2 through the second filter circuit 114 .
  • the second filter circuit 114 can improve the anti-interference performance of the bidirectional converter and output stable electric energy.
  • the second filter circuit 114 is not limited to be implemented by the inductance filter circuit in the figure, and can also be implemented by a capacitor filter circuit, an LC filter circuit and an RC filter circuit.
  • the bidirectional converter further includes: a battery protection device 115 .
  • One end of the rectification circuit 111 is connected to the rechargeable battery 2 through a battery protection device 115 .
  • the battery protection device 115 can protect various components of the bidirectional converter.
  • the bidirectional converter further includes: a first static switch 116, and the bidirectional converter is connected to the rechargeable battery through the first static switch.
  • the first static switch can disconnect the rechargeable battery from the bidirectional converter to avoid damage to the rechargeable battery due to the abnormal incoming power supply 5 .
  • the bidirectional converter further includes: a second static switch 117 connected to the other end of the inverter circuit.
  • the bidirectional converter When the bidirectional converter is in the charging mode, the other end of the inverter circuit 112 is connected to the line power supply 5 through the second static switch.
  • the second static switch 117 can disconnect the bidirectional converter and the incoming power supply 5, so as to avoid damage to the components of the bidirectional converter due to the abnormal incoming power supply 5. Devices and rechargeable batteries will be damaged.
  • the bidirectional converter is in the discharge mode, the other end of the inverter circuit 112 is connected to the load through the second static switch 117 .
  • the second static switch can disconnect the connection between the bidirectional converter and the load, so as to avoid damage to the components of the bidirectional converter and the rechargeable battery due to the load fault.
  • the bidirectional converter further includes: a soft starter, the other end of the rectifier circuit is electrically connected to one end of the inverter circuit through the soft starter, and the soft starter can ensure smooth startup of the bidirectional converter and reduce startup current, to avoid starting over-current tripping and causing damage to components.
  • the bidirectional converter further includes a voltage source E/2 connected in parallel between the rectification circuit 111 and the inverter circuit 112 to protect the bus voltage.
  • An embodiment of the present invention also provides a block diagram of a power supply system, the power supply system includes an energy storage power supply and a load, the load includes a power grid and/or electrical equipment, the energy storage power supply includes a rechargeable battery and any of the above-mentioned embodiments provides
  • the bidirectional charger is electrically connected to the load and the rechargeable battery respectively.
  • the rechargeable battery selects the battery with larger capacity.
  • the number of two-way chargers in the system can be one or more, and multiple two-way chargers supply power to the load independently of each other.
  • the embodiment of the present invention does not specifically limit the number of bidirectional chargers.
  • the power grid can be used as both the incoming power supply 5 and the load.
  • the grid When the grid is running normally, that is, when it can supply power normally, the grid serves as the incoming power supply 5 of the power supply system, and the bidirectional charger stores the electric energy of the incoming power supply 5 in the rechargeable battery.
  • the power grid fails (that is, power supply is interrupted) or is overloaded, the power grid can be used as the load of the power supply system, and the two-way charger releases the electric energy stored in the rechargeable battery to the power grid; or, the two-way charger releases the electric energy stored in the rechargeable battery directly to the user. Power supply for electrical equipment.
  • the inverter circuit can be connected to the grid through a transformer, and the output voltage of the inverter circuit is boosted to the target amplitude by the transformer. After the value is provided to the grid.
  • the power supply system provided by the embodiment of the present invention can be used to supply power to the grid and electrical equipment to ensure that it will not lose power within a certain period of time or alleviate the peak power consumption pressure of the grid. Electric equipment does not need to be equipped with an emergency backup power supply, which can save a lot of cost and effectively relieve the peak power consumption pressure of the power grid.
  • the energy storage power source is configured to be installed in a battery swapping station of an electric vehicle.
  • the energy storage power supply can provide charging and battery replacement services for electric vehicles; when the power grid is interrupted or the grid is overloaded, the energy storage power supply supplies power to the load.
  • the load is a load that has been agreed upon with the power exchange station and has authority, including at least one of the power grid, power consumption equipment outside the power exchange station, and power consumption equipment in the power exchange station.
  • the power exchange station can be used as an emergency backup power source for the power grid or electrical equipment.
  • the electrical equipment does not need to be equipped with an emergency backup power supply, which can save a lot of costs, and the power exchange station can effectively relieve the power peak pressure of the power grid.
  • the power supply system further includes a switch set 4 , and the bidirectional charger is connected to the incoming power supply 5 or the load through the switch set 4 .
  • the bidirectional charger is connected to the incoming power supply 5 through the switch assembly; when the power supply of the grid is interrupted or the grid is overloaded, the switch assembly performs switching so that the bidirectional charger is connected to the load.
  • the load is a load that has an agreement with the power station and has authority.
  • the switch component 4 can seamlessly switch when it is determined that the power supply of the grid is interrupted, or send a reminder to remind the operation and maintenance personnel to switch the switch, and switch the bidirectional charger from being connected to the incoming power supply 5 to being connected to the load, so as to supply power to the load in time , to avoid equipment damage and data loss caused by load power failure.
  • Fig. 4 is a flowchart of a power management method provided by an exemplary embodiment of the present invention, the power management method includes the following steps:
  • Step 401 control the bidirectional charger to charge the rechargeable battery, so that the rechargeable battery can be installed on the electric vehicle to supply power for the electric vehicle when a battery replacement request is received.
  • the step of controlling the bidirectional charger to charge the rechargeable battery includes: controlling the switching of the switch assembly so that the bidirectional converter is connected to the incoming power supply, and controlling the bidirectional converter to switch to charging In mode, the electric energy of the incoming power supply is stored in the rechargeable battery.
  • the step of controlling the two-way charger to charge the rechargeable battery includes: detecting the remaining power of the rechargeable battery, and controlling the two-way charger to charge the rechargeable battery when the remaining power of the rechargeable battery is less than a power threshold.
  • the remaining power of the rechargeable battery is less than the power threshold, it will be charged to ensure that the rechargeable battery always has a certain amount of power to supply power to the load when receiving the load power supply request.
  • Step 402 When receiving the load power supply request, control the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load.
  • the step of controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes: acquiring the power demand parameter of the load; releasing the electric energy stored in the rechargeable battery to supply power to the load according to the power demand parameter.
  • the power demand parameters may include, but are not limited to: power supply duration, power supply voltage, power supply current, power supply frequency, and the like.
  • the step before the step of controlling the two-way charger to release the electric energy stored in the rechargeable battery to supply power to the load, the step includes: verifying the authority of the load according to the load power supply request; if the authority verification is passed, control the two-way charger to release the electric energy stored in the rechargeable battery to supply the load powered by. Only supply power to authorized loads to avoid random access of loads and cause confusion.
  • the parameters used for permission verification include at least one of the following: a device identifier of the payload, a location of the payload, and user information of a user to which the payload belongs.
  • the step of controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes: judging whether the power supply demand of the load is greater than the power supply capability of the rechargeable battery; If the capacity is sufficient, then control the two-way charger to supply power to all the electrical equipment included in the load; if the judgment result is yes, it means that the power supply capacity of the rechargeable battery is not enough to supply power to all the electrical equipment, then control the two-way charger to supply power to the load Part of the included electrical equipment is powered, and the total power supply demand of some electrical equipment is not greater than the power supply capacity of the rechargeable battery; or, after reducing the output voltage and/or frequency of the two-way charger, it supplies power to all or part of the electrical equipment included in the load.
  • the power supply demand may be characterized by, but not limited to, the following parameters: voltage, power, current, power supply duration, and the like.
  • the power supply capability can be characterized by, but not limited to, the following parameters: remaining power, output power, output current, output voltage, and the like.
  • the step of controlling the two-way charger to supply power to some electric devices included in the load includes: obtaining the power supply priority of each electric device included in the load; Electrical equipment.
  • the power supply capacity of the rechargeable battery is not enough to supply power to all electrical equipment, it will give priority to supply power to important loads to ensure that the important loads can operate normally.
  • the priority of the electrical equipment can be set according to the actual situation.
  • the step of controlling the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load includes: controlling the switching of the switch assembly so that the bidirectional converter is connected to the load, and controlling the bidirectional converter Switch to discharge mode to release the electric energy stored in the rechargeable battery to supply power to the load.
  • the two-way charger when the power supply of the grid is interrupted or the grid is overloaded, can release the electric energy stored in the rechargeable battery to supply power to loads such as the grid and electrical equipment, ensuring that it will not lose power within a certain period of time or alleviate the power consumption of the grid. peak pressure. Electric equipment does not need to be equipped with an emergency backup power supply, which can save a lot of cost and effectively relieve the peak power consumption pressure of the power grid.
  • the present invention also provides embodiments of a power management device.
  • Fig. 5 is a block diagram of a power management device provided by an exemplary embodiment of the present invention, the power management device includes:
  • the first control module 51 is used for the control module to control the bidirectional charger to store the electric energy of the incoming power supply in the rechargeable battery, so that the rechargeable battery can supply power to the electric vehicle after receiving the battery replacement request;
  • the second control module 52 is configured to control the bidirectional charger to release the electric energy stored in the rechargeable battery to supply power to the load when a load power supply request is received.
  • the first control module 51 is used for:
  • the second control module 52 includes:
  • an acquisition unit configured to acquire the power demand parameter of the load
  • a control unit configured to release the electric energy stored in the rechargeable battery to supply power for the load according to the power demand parameter.
  • the verification module is configured to verify the authority of the load according to the power supply request of the load, and call the second control module when the authority verification is passed.
  • the second control module includes:
  • a judging unit configured to judge whether the power supply demand of the load is greater than the power supply capability of the rechargeable battery; power supply for electrical equipment; if the judgment result is yes, call the control unit to control the bidirectional charger to supply power to some electrical equipment included in the load, and the total power supply demand of the partial electrical equipment is not greater than the charging The power supply capacity of the battery; or, after reducing the output voltage and/or frequency of the bidirectional charger, it can supply power to all or part of the electrical equipment included in the load.
  • control unit when controlling the bidirectional charger to supply power to some electric devices included in the load, the control unit is used to
  • the first module is specifically used for:
  • the second control module is specifically used for
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the present invention. It can be understood and implemented by those skilled in the art without creative effort.
  • Fig. 6 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present invention, showing a block diagram of an exemplary electronic device 60 suitable for implementing the embodiments of the present invention.
  • the electronic device 60 shown in FIG. 6 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
  • the electronic device 60 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • Components of the electronic device 60 may include, but are not limited to: at least one processor 61 , at least one memory 62 , and a bus 63 connecting different system components (including the memory 62 and the processor 61 ).
  • the bus 63 includes a data bus, an address bus and a control bus.
  • the memory 62 may include a volatile memory, such as a random access memory (RAM) 621 and/or a cache memory 622 , and may further include a read only memory (ROM) 623 .
  • RAM random access memory
  • ROM read only memory
  • Memory 62 may also include a program tool 625 (or utility) having a set (at least one) of program modules 624, such program modules 624 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples may include the realization of the network environment.
  • program tool 625 or utility
  • program modules 624 including but not limited to: an operating system, one or more application programs, other program modules, and program data, each or some combination of these examples may include the realization of the network environment.
  • the processor 61 executes various functional applications and data processing by running computer programs stored in the memory 62 , such as the methods provided in any of the above-mentioned embodiments.
  • Electronic device 60 may also communicate with one or more external devices 64 (eg, keyboards, pointing devices, etc.). Such communication may occur through input/output (I/O) interface 65 . Also, the model-generating electronic device 60 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) via a network adapter 66 . As shown, network adapter 66 communicates with other modules of model generation electronics 60 via bus 63 .
  • networks eg, a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet
  • model generation electronics 60 including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID ( disk array) systems, tape drives, and data backup storage systems.
  • An embodiment of the present invention further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method provided in any of the foregoing embodiments is implemented.
  • the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read-only memory, erasable programmable read-only memory, optical storage device, magnetic storage device or any of the above-mentioned the right combination.
  • the embodiment of the present invention can also be implemented in the form of a program product, which includes program code, and when the program product runs on the terminal device, the program code is used to make the terminal device Execute the method for realizing any one of the foregoing embodiments.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, or used as an independent
  • the package executes, partly on the user device and partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了双向充电机、供电系统、电源管理方法及装置、电子设备、存储介质。双向充电机包括双向变流器和控制器;控制器与双向变流器电连接;双向变流器连接充电电池,双向变流器具有充电模式和放电模式,处于充电模式时,双向变流器为充电电池充电;处于放电模式时,双向变流器释放充电电池存储的电能;控制器用于控制双向变流器在充电模式和放电模式之间切换,以使充电电池充电或放电。本发明提供的双向充电机能够在充电模式和放电模式之间切换,处于充电模式时,双向充电机能够给充电电池充电,处于放电模式时,双向充电机能够释放充电电池的电能给负载供电,稳定可靠性高。

Description

双向充电机、供电系统、电源管理方法及装置
本申请要求申请日为2021/12/30的中国专利申请2021116596734的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种双向充电机、供电系统、电源管理方法及装置、电子设备、存储介质。
背景技术
目前,重要的用电负荷,如医院、数据中心、电力调度管理部门都设有紧急备电电源,当发生电网失电时,即通过内部电路切换,使用紧急备电电源进行供电。增设紧急备电电源,会增加设备成本,还需要对紧急备电电源的状态需要定期的检修、维护,进一步增加了运维成本。另外,紧急备电电源中的电池长期处于带电浮充状态,存在线路安全隐患。
发明内容
本发明要解决的技术问题是为了克服现有技术中采用紧急备电电源为负荷进行不间断供电的方式,成本高、且存在线路安全隐患的缺陷,提供双向充电机、供电系统、电源管理方法及装置、电子设备、存储介质。
本发明是通过下述技术方案来解决上述技术问题:
第一方面,提供一种充电机,所述双向充电机包括双向变流器和控制器;所述控制器与所述双向变流器电连接;所述双向变流器连接充电电池,其中,
所述双向变流器具有充电模式和放电模式,处于所述充电模式时,所述双向变流器为所述充电电池充电;处于所述放电模式时,所述双向变流器释放所述充电电池存储的电能;
所述控制器用于控制所述双向变流器在所述充电模式和所述放电模式之间切换,以使所述充电电池充电或放电。
本方案中,双向充电机能够在充电模式和放电模式之间切换,处于充电模式时,双向充电机能够给充电电池充电,处于放电模式时,双向充电机能够释放充电电池的电能给负载供电,从而能够为用电负荷供电,且稳定可靠性高。
可选地,所述双向变流器包括整流电路和逆变电路,所述整流电路的一端与所述充电电池连接,所述整流电路的另一端与所述逆变电路的一端电连接;当所述双向变流器处于充电模式,所述逆变电路的另一端作为所述双向变流器的输入端;当所述双向变流器处于放电模式,所述逆变电路的另一端作为所述双向变流器的输出端。
本方案中,通过整流电路和逆变电路实现双向变流器,能够为负载提供稳定可靠的电能。
可选地,所述双向变流器还包括:
第一滤波电路,连接于所述逆变电路的另一端;
和/或,第二滤波电路,所述整流电路的一端通过所述第二滤波电路与所述充电电池连接;
和/或,电池保护装置,所述整流电路的一端通过所述电池保护装置与所述充电电池连接;
和/或,软启动器,所述整流电路的另一端通过所述软启动器与所述逆变电路的一端电连接;
和/或,第一静态开关,所述整流电路的一端通过所述第一静态开关与所述充电电池连接;
和/或,第二静态开关,连接于所述逆变电路的另一端。
本方案中,能够起到保护电路、负载,提供稳定电能的作用。
第二方面,提供一种供电系统,包括储能电源和负载,所述负载包括电网和/或用电设备,所述储能电源包括充电电池和上述任一项所述的双向充电机,所述双向充电机分别与所述负载和所述充电电池电连接。
本方案中,供电系统作为电网、用电设备的紧急备电电源,在电网中断供电时,能够给电网、用电设备供电,确保其一定期间内不会失电。或者,在电网用电高峰时期,电网出现过负荷时,供电系统可向电网输送电能以缓解电网过负荷压力,有效应对用电高峰。
可选地,所述储能电源被配置为设于电动汽车的换电站内。
本方案中,当电网正常供电时,储能电源能够为电动汽车提供充电、换电服务;当电网中断供电或电网过负荷时,储能电源为负载供电。提高了换电站内储能电源的利用率,换电站可以用作电网或用电设备等的紧急备电电源,用电设备无需另设紧急备电电源,可以节省大量成本,且换电站可有效缓解电网的用电高峰压力。
可选地,所述供电系统还包括开关组件,所述双向充电机通过所述开关组件与所述负载连接。
本方案中,开关组件能够在确定电网中断供电时,进行无缝切换,或者发出提醒以提示运维人员进行开关切换,将双向充电机从与进线电源连接切换为与负载连接,以及时给负载供电,避免因负载掉电引起的设备损坏、数据丢失。
第三方面,提供一种电源管理方法,包括:
控制双向充电机对充电电池充电,以在接收到换电请求时,所述充电电池能够安装至电动汽车上为所述电动汽车供电;
在接收到负载供电请求时,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
本方案中,在电网中断供电或电网过负荷时,可以通过本发明实施例提供的供电系统给电网、用电设备供电,确保其一定期间内不会失电或缓解电网用电高峰压力。用电设备无需另设紧急备电电源,可以节省大量成本,也可有效应对用电高峰。
可选地,控制双向充电机对充电电池充电,包括:
检测所述充电电池的剩余电量,当所述充电电池的剩余电量小于电量阈值时,控制所述双向充电机为所述充电电池充电。
本方案中,充电电池的剩余电量小于电量阈值时即进行充电,确保充电电池始终有一定电量能够在接收到供电请求时给负载供电。
可选地,控制所述双向充电机释放所述充电电池存储的电能为负载供电,包括:
获取所述负载的用电需求参数;
根据所述用电需求参数释放所述充电电池存储的电能为所述负载供电。
本方案中,按需提供电能,对负载起到保护作用,避免电压、电流过大损坏负载。
可选地,所述控制所述双向充电机释放所述充电电池存储的电能为负载供电的步骤之前包括:
根据所述负载供电请求对所述负载进行权限验证;
权限验证通过,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
本方案中,仅对有权限的负载进行供电,避免负载乱接入,引起混乱。
可选地,控制所述双向充电机释放所述充电电池存储的电能为负载供电,包括:
判断所述负载的供电需求是否大于所述充电电池的供电能力;
在判断结果为否的情况下,控制所述双向充电机为所述负载包含的全部用电设备供电;
在判断结果为是的情况下,控制所述双向充电机为所述负载包含的部分用电设备供电,所述部分用电设备的供电总需求不大于所述充电电池的供电能力;或者,降低所述 双向充电机的输出电压和/或频率后为所述负载包含的全部或者部分用电设备供电。
可选地,所述控制所述双向充电机为所述负载包含的部分用电设备供电的步骤包括:
获取所述负载包含的各个用电设备的供电优先级;
将所述供电优先级排序靠前的用电设备确定为所述部分用电设备。
本方案中,在充电电池的供电能力不足够为所有的用电设备供电时,优先给重要的负载供电,确保重要的负载能够正常运行。其中,用电设备的优先级可以根据实际情况自行设置。
可选地,所述控制双向充电机对充电电池充电的步骤包括:
控制开关组件的开关切换,以使双向充电机与进线电源连接,并控制所述双向充电机切换至充电模式,将所述进线电源的电能存储于所述充电电池;
所述控制所述双向充电机释放所述充电电池存储的电能为负载供电的步骤包括:
控制开关组件的开关切换,以使所述双向充电机与所述负载连接,并控制所述双向充电机切换至放电模式,释放所述充电电池存储的电能为所述负载供电。
本方案中,通过开关组件,能够实现无缝切换,避免因负载掉电引起的设备损坏、数据丢失。
第四方面,提供一种电源管理装置,包括:
第一控制模块,用于控制模块控制所述双向充电机将进线电源的电能存储于充电电池,以在接收到换电请求后,所述充电电池能够给电动汽车供电;
第二控制模块,用于在接收到负载供电请求的情况下,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
本方案中,在电网中断供电时,可以通过本发明实施例提供的供电系统给电网、用电设备供电,确保其一定期间内不会失电或缓解电网用电高峰压力。用电设备无需另设紧急备电电源,可以节省大量成本,也能够有效缓解电网的用电高峰压力。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明提供的双向充电机能够在充电模式和放电模式之间切换,处于充电模式时,双向充电机能够给充电电池充电,处于放电模式时,双向充电机能够释放充电电池的电能给负载供电,从而能够为用电负荷供电,且稳定可靠性高。
附图说明
图1为本发明一示例性实施例提供的一种双向充电机的模块示意图;
图2为本发明一示例性实施例提供的一种双向充电机的电路图;
图3为本发明一示例性实施例提供的一种供电系统的模块示意图;
图4为本发明一示例性实施例提供的一种电源管理方法的流程图;
图5为本发明一示例性实施例提供的一种电源管理装置的模块示意;
图6为本发明一示例实施例示出的一种电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
图1为本发明一示例性实施例提供的一种双向充电机的模块示意图,该双向充电机1包括双向变流器11和控制器12。控制器12与双向变流器11电连接。其中,双向变流器11具有充电模式和放电模式,控制器12用于控制双向变流器11在充电模式和放电模式之间切换,以使与双向变流器11连接的充电电池2充电或放电。
本发明实施例中,双向充电机能够在充电模式和放电模式之间切换,处于充电模式时,双向充电机能够给充电电池充电,处于放电模式时,双向充电机能够释放充电电池的电能给负载供电,从而能够为用电负荷供电,且稳定可靠性高。
当双向变流器11处于充电模式时,双向变流器11为充电电池充电,具体的,双向变流器11将与其连接的进线电源5的电能存储于充电电池,实现为充电电池充电。进线电源5可以但不限于包括电网(提供市电)、微电网。
当双向变流器11处于放电模式时,双向变流器11切换为与负载3连接,并释放充电电池存储的电能为负载3供电。充电电池释放的电能可以给电动车辆充电,也可以为其他的负载供能。其他的负载可以为各种生活、生产场所中的用电设备,例如,可以但不限于包括医院的医疗设备、各类调度设备、数据存储设备等用电设备,以及电网。
双向变流器11的模式切换可以人工手动触发,也即在有需求的时候手动触发模式切换;双向变流器11的模式切换也可以依据进线电源5的供电状态自动触发,例如,当确定进线电源5中断供电时,控制器12控制双向变流器11处于放电模式;当进线电源5正常供电时,控制器12控制双向变流器11处于充电模式。
在一个实施例中,参见图2,双向变流器11包括整流电路111和逆变电路112,整流电路111的一端与充电电池2连接,整流电路111的另一端与逆变电路112的一端电连接。
控制器通过控制整流电路111和逆变电路112中各个开关器件的PWM(Pulse Width Modulation,脉冲宽度调制技术),实现将双向变流器11的模式切换为充电模式。当双向变流器处于充电模式时,逆变电路112的另一端(A、B、C、N端)作为双向变流器11的输入端连接于进线电源5,整流电路111的一端作为双向变流器11的输出端,整流电路111和逆变电路112将进线电源5的电能存储于充电电池。
控制器通过控制整流电路111和逆变电路112中各个开关器件的PWM,实现将双向变流器11的模式切换为放电模式。当双向变流器处于放电模式时,逆变电路112的另一端(A、B、C、N端)作为双向变流器11的输出端连接于负载,整流电路111的一端作为双向变流器11的输入端,整流电路111和逆变电路112释放充电电池存储的电能为所述负载供电。
在一个实施例中,控制器还可以通过调节PWM控制逆变电路输出的电压/电流,以满足不同负载的供电需求。
在一个实施例中,双向变流器还包括:第一滤波电路113。第一滤波电路113连接于逆变电路112的另一端。当双向变流器处于充电模式时,逆变电路112的另一端通过第一滤波电路113与进线电源5连接,当双向变流器处于放电模式时,逆变电路112的另一端通过第一滤波电路113与负载连接。第一滤波电路113能够提高双向变流器的抗干扰性,输出稳定电能。第一滤波电路113不限于通过图中的LC滤波电路实现,还可以通过电容滤波电路、电感滤波电路和RC滤波实现电路。
在一个实施例中,双向变流器还包括:第二滤波电路114。整流电路111的一端通过第二滤波电路114与充电电池2连接。第二滤波电路114能够提高双向变流器的抗干扰性,输出稳定电能。第二滤波电路114不限于通过图中的电感滤波电路实现,还可以通过电容滤波电路、LC滤波电路和RC滤波实现电路。
在一个实施例中,双向变流器还包括:电池保护装置115。整流电路111的一端通过电池保护装置115与充电电池2连接。电池保护装置115能够对双向变流器的各元器件起到保护作用。
在一个实施例中,双向变流器还包括:第一静态开关116,双向变流器通过第一静态开关与充电电池连接。在进线电源5不正常时,例如电压不稳定时,第一静态开关能够断开充电电池与双向变流器的连接,避免因进线电源5不正常对充电电池造成损坏。
在一个实施例中,双向变流器还包括:第二静态开关117,连接于逆变电路的另一端。当双向变流器处于充电模式时,逆变电路112的另一端通过第二静态开关与进线电源5连接。当进线电源5不正常时,例如电压不稳定时,第二静态开关117能够断开双向变 流器与进线电源5的连接,避免因进线电源5不正常对双向变流器的元器件以及充电电池造成损坏。当双向变流器处于放电模式时,逆变电路112的另一端通过第二静态开关117与负载连接。当负载发生短路等故障时,第二静态开关能够断开双向变流器与负载的连接,避免因负载故障对双向变流器的元器件以及充电电池造成损坏。
在一个实施例中,双向变流器还包括:软启动器,整流电路的另一端通过软启动器与逆变电路的一端电连接,软启动器能够确保双向变流器实现平滑启动,降低启动电流,避免启动过流跳闸,对元器件造成损坏。
在一个实施例中,双向变流器还包括并联于整流电路111与逆变电路112之间的电压源E/2,以对母线电压起到保护作用。
本发明实施例还提供的一种供电系统的模块示意图,该供电系统,包括储能电源和负载,负载包括电网和/或用电设备,储能电源包括充电电池和上述任一实施例提供的双向充电机,双向充电机分别与负载和充电电池电连接。
其中,充电电池选用容量较大的电池。系统中双向充电机的数量可以是一台也可以是多台,多台双向充电机相互之间独立为负载供电。对于双向充电机的数量,本发明实施例不作特别限定。
电网既可以作为进线电源5也可以作为负载。当电网正常运行,也即能够正常供电时,电网作为供电系统的进线电源5,双向充电机将进线电源5的电能存储于充电电池。当电网出现故障(也即中断供电),或过负荷时时,电网可以作为供电系统的负载,双向充电机释放充电电池存储的电能至电网;或者,双向充电机释放充电电池存储的电能直接至用电设备供电。
可以理解的,双向充电机给电网供电时,若逆变电路输出的电压达不到电网的供电需求,逆变电路可以通过变压器与电网连接,逆变电路输出的电压经过变压器升压至目标幅值后提供给电网。
从而,在电网中断供电或电网过负荷时,可以通过本发明实施例提供的供电系统给电网、用电设备供电,确保其一定期间内不会失电或缓解电网用电高峰压力。用电设备无需另设紧急备电电源,可以节省大量成本,也能够有效缓解电网的用电高峰压力。
在一个实施例中,储能电源被配置为设于电动汽车的换电站内。当电网正常供电时,储能电源能够为电动汽车提供充电、换电服务;当电网中断供电或电网过负荷时,储能电源为负载供电。该负载为与换电站有过协议约定、有权限的负载,包括电网、换电站外的用电设备和换电站内的用电设备中的至少一种。本实施中,换电站可以用作电网或用电设备等的紧急备电电源,用电设备无需另设紧急备电电源,可以节省大量成本,且换 电站可有效缓解电网的用电高峰压力。
在一个实施例中,参见图3,供电系统还包括开关组4,双向充电机通过开关组件4与进线电源5或者负载连接。当电网正常供电时,双向充电机通过开关组件与进线电源5连接;当电网中断供电或电网过负荷时,开关组件进行开关切换,使得双向充电机与负载连接。该负载为与换电站有过协议约定的、有权限的负载。
开关组件4能够在确定电网中断供电时,进行无缝切换,或者发出提醒以提示运维人员进行开关切换,将双向充电机从与进线电源5连接切换为与负载连接,以及时给负载供电,避免因负载掉电引起的设备损坏、数据丢失。
图4为本发明一示例性实施例提供的一种电源管理方法的流程图,该电源管理方法包括以下步骤:
步骤401、控制双向充电机对充电电池充电,以在接收到换电请求时,充电电池能够安装至电动汽车上为电动汽车供电。
双向充电机的硬件电路参见上述任一实施例介绍,此处不再赘述。
在一个实施例中,参见图3,控制双向充电机对充电电池充电的步骤包括:控制开关组件的开关切换,以使双向变流器与进线电源连接,并控制双向变流器切换至充电模式,将进线电源的电能存储于充电电池。
在一个实施例中,控制双向充电机对充电电池充电的步骤包括:检测充电电池的剩余电量,当充电电池的剩余电量小于电量阈值时,控制双向充电机为充电电池充电。充电电池的剩余电量小于电量阈值时即进行充电,确保充电电池始终有一定电量能够在接收到负载供电请求时给负载供电。
步骤402、在接收到负载供电请求时,控制双向充电机释放充电电池存储的电能为负载供电。
在一个实施例中,控制双向充电机释放充电电池存储的电能为负载供电步骤包括:获取负载的用电需求参数;根据用电需求参数释放充电电池存储的电能为负载供电。按需提供电能,对负载起到保护作用,避免电压、电流过大损坏负载。其中,用电需求参数可以但不限于包括:供电时长、供电电压、供电电流、供电频率等。
在一个实施例中,控制双向充电机释放充电电池存储的电能为负载供电的步骤之前包括:根据负载供电请求对负载进行权限验证;权限验证通过,控制双向充电机释放充电电池存储的电能为负载供电。仅对有权限的负载进行供电,避免负载乱接入,引起混乱。用于权限验证的参数包括以下至少一种:负载的设备标识、负载所在位置、负载所属用户的用户信息。
在一个实施例中,控制双向充电机释放充电电池存储的电能为负载供电的步骤包括:判断负载的供电需求是否大于充电电池的供电能力;在判断结果为否的情况下,说明充电电池的供电能力足够,则控制双向充电机为负载包含的全部用电设备供电;在判断结果为是的情况下,说明充电电池的供电能力不足够为所有的用电设备供电,则控制双向充电机为负载包含的部分用电设备供电,部分用电设备的供电总需求不大于充电电池的供电能力;或者,降低双向充电机的输出电压和/或频率后为负载包含的全部或者部分用电设备供电。其中,供电需求可以但不限于通过以下参数表征:电压、功率、电流、供电时长等。供电能力可以但不限于通过以下参数表征:剩余电量、输出功率、输出电流、输出电压等。
在一个实施例中,控制双向充电机为负载包含的部分用电设备供电的步骤包括:获取负载包含的各个用电设备的供电优先级;将供电优先级排序靠前的用电设备确定为部分用电设备。在充电电池的供电能力不足够为所有的用电设备供电时,优先给重要的负载供电,确保重要的负载能够正常运行。其中,用电设备的优先级可以根据实际情况自行设置。
在一个实施例中,参见图3,控制双向充电机释放充电电池存储的电能为负载供电的步骤包括:控制开关组件的开关切换,以使双向变流器与负载连接,并控制双向变流器切换至放电模式,释放充电电池存储的电能为负载供电。
本发明实施例中,在电网中断供电或电网过负荷时,双向充电机能够释放充电电池存储的电能给电网、用电设备等负载供电,确保其一定期间内不会失电或缓解电网用电高峰压力。用电设备无需另设紧急备电电源,可以节省大量成本,也能够有效缓解电网的用电高峰压力。
与前述电源管理方法实施例相对应,本发明还提供了电源管理装置的实施例。
图5为本发明一示例性实施例提供的一种电源管理装置的模块示意,该电源管理装置包括:
第一控制模块51,用于控制模块控制双向充电机将进线电源的电能存储于充电电池,以在接收到换电请求后,充电电池能够给电动汽车供电;
第二控制模块52,用于在接收到负载供电请求的情况下,控制双向充电机释放充电电池存储的电能为负载供电。
可选地,所述第一控制模块51用于:
检测所述充电电池的剩余电量,当所述充电电池的剩余电量小于电量阈值时,控制所述双向充电机为所述充电电池充电。
可选地,第二控制模块52包括:
获取单元,用于获取所述负载的用电需求参数;
控制单元,用于根据所述用电需求参数释放所述充电电池存储的电能为所述负载供电。
可选地,还包括:
验证模块,用于根据所述负载供电请求对所述负载进行权限验证,并在权限验证通过时调用所述第二控制模块。
可选地,第二控制模块包括:
判断单元,用于判断所述负载的供电需求是否大于所述充电电池的供电能力;并在判断结果为否的情况下,调用控制单元以控制所述双向充电机为所述负载包含的全部用电设备供电;在判断结果为是的情况下,调用控制单元以控制所述双向充电机为所述负载包含的部分用电设备供电,所述部分用电设备的供电总需求不大于所述充电电池的供电能力;或者,降低所述双向充电机的输出电压和/或频率后为所述负载包含的全部或者部分用电设备供电。
可选地,在所述控制所述双向充电机为所述负载包含的部分用电设备供电时,所述控制单元用于
获取所述负载包含的各个用电设备的供电优先级;
将所述供电优先级排序靠前的用电设备确定为所述部分用电设备。
可选地,第一模块具体用于:
控制开关组件的开关切换,以使所述双向变流器与进线电源连接,并控制所述双向变流器切换至充电模式,将所述进线电源的电能存储于所述充电电池;
第二控制模块具体用于
控制开关组件的开关切换,以使所述双向变流器与所述负载连接,并控制所述双向变流器切换至放电模式,释放所述充电电池存储的电能为所述负载供电。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本发明方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
图6为本发明一示例实施例示出的一种电子设备的结构示意图,示出了适于用来实 现本发明实施方式的示例性电子设备60的框图。图6显示的电子设备60仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图6所示,电子设备60可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备60的组件可以包括但不限于:上述至少一个处理器61、上述至少一个存储器62、连接不同系统组件(包括存储器62和处理器61)的总线63。
总线63包括数据总线、地址总线和控制总线。
存储器62可以包括易失性存储器,例如随机存取存储器(RAM)621和/或高速缓存存储器622,还可以进一步包括只读存储器(ROM)623。
存储器62还可以包括具有一组(至少一个)程序模块624的程序工具625(或实用工具),这样的程序模块624包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器61通过运行存储在存储器62中的计算机程序,从而执行各种功能应用以及数据处理,例如上述任一实施例所提供的方法。
电子设备60也可以与一个或多个外部设备64(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口65进行。并且,模型生成的电子设备60还可以通过网络适配器66与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器66通过总线63与模型生成的电子设备60的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的电子设备60使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述任一实施例所提供的方法。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明实施例还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行 实现上述任一实施例的方法。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (16)

  1. 一种双向充电机,其特征在于,所述双向充电机包括双向变流器和控制器;所述控制器与所述双向变流器电连接;所述双向变流器连接充电电池,其中,
    所述双向变流器具有充电模式和放电模式,处于所述充电模式时,所述双向变流器为所述充电电池充电;处于所述放电模式时,所述双向变流器释放所述充电电池存储的电能;
    所述控制器用于控制所述双向变流器在所述充电模式和所述放电模式之间切换,以使所述充电电池充电或放电。
  2. 根据权利要求1所述的双向充电机,其特征在于,所述双向变流器包括整流电路和逆变电路,所述整流电路的一端与所述充电电池连接,所述整流电路的另一端与所述逆变电路的一端电连接;当所述双向变流器处于充电模式,所述逆变电路的另一端作为所述双向变流器的输入端;当所述双向变流器处于放电模式,所述逆变电路的另一端作为所述双向变流器的输出端。
  3. 根据权利要求2所述的双向充电机,其特征在于,所述双向变流器还包括:
    第一滤波电路,连接于所述逆变电路的另一端;
    和/或,第二滤波电路,所述整流电路的一端通过所述第二滤波电路与所述充电电池连接;
    和/或,电池保护装置,所述整流电路的一端通过所述电池保护装置与所述充电电池连接;
    和/或,软启动器,所述整流电路的另一端通过所述软启动器与所述逆变电路的一端电连接。
    和/或,第一静态开关,所述整流电路的一端通过所述第一静态开关与所述充电电池连接;
    和/或,第二静态开关,连接于所述逆变电路的另一端;
  4. 一种供电系统,其特征在于,包括储能电源和负载,所述负载包括电网和/或用电设备,所述储能电源包括充电电池和权利要求1-3中任一项所述的双向充电机,所述双向充电机分别与所述负载和所述充电电池电连接。
  5. 根据权利要求4所述的供电系统,其特征在于,所述储能电源被配置为设于电动汽车的换电站内。
  6. 根据权利要求4所述的双向充电机,其特征在于,所述供电系统还包括开关组件, 所述双向充电机通过所述开关组件与所述负载连接。
  7. 一种电源管理方法,其特征在于,包括:
    控制双向充电机对充电电池充电,以在接收到换电请求时,所述充电电池能够安装至电动汽车上为所述电动汽车供电;
    在接收到负载供电请求时,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
  8. 根据权利要求7所述的电源管理方法,其特征在于,控制双向充电机对充电电池充电,包括:
    检测所述充电电池的剩余电量,当所述充电电池的剩余电量小于电量阈值时,控制所述双向充电机为所述充电电池充电。
  9. 根据权利要求7所述的电源管理方法,其特征在于,控制所述双向充电机释放所述充电电池存储的电能为负载供电,包括:
    获取所述负载的用电需求参数;
    根据所述用电需求参数释放所述充电电池存储的电能为所述负载供电。
  10. 根据权利要求7所述的电源管理方法,其特征在于,所述控制所述双向充电机释放所述充电电池存储的电能为负载供电的步骤之前包括:
    根据所述负载供电请求对所述负载进行权限验证;
    权限验证通过,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
  11. 根据权利要求7所述的电源管理方法,其特征在于,控制所述双向充电机释放所述充电电池存储的电能为负载供电,包括:
    判断所述负载的供电需求是否大于所述充电电池的供电能力;
    在判断结果为否的情况下,控制所述双向充电机为所述负载包含的全部用电设备供电;
    在判断结果为是的情况下,控制所述双向充电机为所述负载包含的部分用电设备供电,所述部分用电设备的供电总需求不大于所述充电电池的供电能力;或者,降低所述双向充电机的输出电压和/或频率后为所述负载包含的全部或者部分用电设备供电。
  12. 根据权利要求11所述的电源管理方法,其特征在于,所述控制所述双向充电机为所述负载包含的部分用电设备供电的步骤包括:
    获取所述负载包含的各个用电设备的供电优先级;
    将所述供电优先级排序靠前的用电设备确定为所述部分用电设备。
  13. 根据权利要求7所述的电源管理方法,其特征在于,所述控制双向充电机对充电 电池充电的步骤包括:
    控制开关组件的开关切换,以使双向充电机与进线电源连接,并控制所述双向充电机切换至充电模式,将所述进线电源的电能存储于所述充电电池;
    所述控制所述双向充电机释放所述充电电池存储的电能为负载供电的步骤包括:
    控制开关组件的开关切换,以使所述双向充电机与所述负载连接,并控制所述双向充电机切换至放电模式,释放所述充电电池存储的电能为所述负载供电。
  14. 一种电源管理装置,其特征在于,包括:
    第一控制模块,用于控制模块控制双向充电机将进线电源的电能存储于充电电池,以在接收到换电请求后,所述充电电池能够给电动汽车供电;
    第二控制模块,用于在接收到负载供电请求的情况下,控制所述双向充电机释放所述充电电池存储的电能为负载供电。
  15. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求7至13中任一项所述的电源管理方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求7至13中任一项所述的电源管理方法。
PCT/CN2022/142968 2021-12-30 2022-12-28 双向充电机、供电系统、电源管理方法及装置 WO2023125709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111659673.4A CN115117953A (zh) 2021-12-30 2021-12-30 双向充电机、供电系统、电源管理方法及装置
CN202111659673.4 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125709A1 true WO2023125709A1 (zh) 2023-07-06

Family

ID=83324915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142968 WO2023125709A1 (zh) 2021-12-30 2022-12-28 双向充电机、供电系统、电源管理方法及装置

Country Status (2)

Country Link
CN (1) CN115117953A (zh)
WO (1) WO2023125709A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117997A (zh) * 2021-12-30 2022-09-27 奥动新能源汽车科技有限公司 电源管理系统、换电站及其电源管理方法、装置
CN115117953A (zh) * 2021-12-30 2022-09-27 奥动新能源汽车科技有限公司 双向充电机、供电系统、电源管理方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212518469U (zh) * 2020-07-15 2021-02-09 博众精工科技股份有限公司 一种充换电站的供电系统
JP2021177683A (ja) * 2020-05-08 2021-11-11 キヤノン株式会社 受電装置、その制御方法、及びプログラム
CN215343995U (zh) * 2021-06-15 2021-12-28 深圳拓邦股份有限公司 双向dc-dc电源充放电系统及电池充电换电设备
CN115117953A (zh) * 2021-12-30 2022-09-27 奥动新能源汽车科技有限公司 双向充电机、供电系统、电源管理方法及装置
CN115133434A (zh) * 2021-12-30 2022-09-30 奥动新能源汽车科技有限公司 可移动电力设备、电力系统和电力调度方法
CN115549224A (zh) * 2021-06-30 2022-12-30 佛山市顺德区美的电子科技有限公司 储能装置及其状态切换方法、便携空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021177683A (ja) * 2020-05-08 2021-11-11 キヤノン株式会社 受電装置、その制御方法、及びプログラム
CN212518469U (zh) * 2020-07-15 2021-02-09 博众精工科技股份有限公司 一种充换电站的供电系统
CN215343995U (zh) * 2021-06-15 2021-12-28 深圳拓邦股份有限公司 双向dc-dc电源充放电系统及电池充电换电设备
CN115549224A (zh) * 2021-06-30 2022-12-30 佛山市顺德区美的电子科技有限公司 储能装置及其状态切换方法、便携空调器
CN115117953A (zh) * 2021-12-30 2022-09-27 奥动新能源汽车科技有限公司 双向充电机、供电系统、电源管理方法及装置
CN115133434A (zh) * 2021-12-30 2022-09-30 奥动新能源汽车科技有限公司 可移动电力设备、电力系统和电力调度方法

Also Published As

Publication number Publication date
CN115117953A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2023125709A1 (zh) 双向充电机、供电系统、电源管理方法及装置
AU2021202731B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
US9071083B2 (en) Super capacitor supplemented server power
CN102368631B (zh) 一种高效可靠的数据中心电子设备供电架构
CN100478841C (zh) 向计算机提供电源
US11949273B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
EP3605788A1 (en) Aggregation system, method for controlling same, and complex power conversion device
CN203368071U (zh) 热插拔式不断电模组及其系统
EP4075638B1 (en) Energy storage system and method for controlling energy storage system
WO2023125511A1 (zh) 电源管理系统、换电站及其电源管理方法、装置
CN105429280A (zh) 不断电系统及其供应方法
WO2024041383A1 (zh) 储能系统及电池管理系统的供电控制方法
US20220326754A1 (en) Control method and control apparatus for power supply apparatus in data center
CN104917286A (zh) 一种高可靠性整机柜连续供电装置及方法
CN107980194A (zh) 冗余住宅电源
CN209709744U (zh) 一种退役动力电池梯次利用的通信基站供电系统
CN111987792A (zh) 供电设备及其供电方法
CN217282262U (zh) 双向充电机、供电系统
CN217282355U (zh) 电源管理系统、换电站
CN116513899A (zh) 电梯电源控制方法、系统、计算机设备和存储介质
KR102176096B1 (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
CN201898362U (zh) 锂电池充放电监控装置
CN211351805U (zh) 交直流一体储能设备和系统
CN111181240B (zh) 储能电池与ups的连接方法以及充放电控制方法
CN114938066A (zh) 一种数据中心供电系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914960

Country of ref document: EP

Kind code of ref document: A1