WO2024077532A1 - 铅铋反应堆氧传感器在线检测装置及方法 - Google Patents

铅铋反应堆氧传感器在线检测装置及方法 Download PDF

Info

Publication number
WO2024077532A1
WO2024077532A1 PCT/CN2022/124979 CN2022124979W WO2024077532A1 WO 2024077532 A1 WO2024077532 A1 WO 2024077532A1 CN 2022124979 W CN2022124979 W CN 2022124979W WO 2024077532 A1 WO2024077532 A1 WO 2024077532A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen sensor
lead
bismuth
tested
electrode
Prior art date
Application number
PCT/CN2022/124979
Other languages
English (en)
French (fr)
Inventor
张鑫童
曾献
胡宸
邹青
罗益玮
袁嘉祺
赵园
郭墉
廖仲辉
段承杰
崔大伟
林继铭
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to PCT/CN2022/124979 priority Critical patent/WO2024077532A1/zh
Publication of WO2024077532A1 publication Critical patent/WO2024077532A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools

Definitions

  • the present invention relates to the technical field of corrosion detection, and in particular to an online detection device and method for a lead-bismuth reactor oxygen sensor.
  • Lead-based fast reactors have the advantages of high safety, strong fuel value-added capacity, and transmutable radioactive nuclides, and have broad development space.
  • the corrosion of lead-based alloy coolants on structural steel is one of the key technical issues that need to be solved urgently. Corrosion can cause irreversible damage to structural steel, and the resulting metal oxide impurities may block the circuit and core flow channel, causing local blockage accidents, which can seriously endanger the safety of the reactor.
  • the corrosion problem of lead-based alloys on structural materials can be prevented by producing and maintaining a protective oxide film on the surface of stainless steel.
  • the correct formation of the oxide film depends on the accurate measurement and control of the oxygen concentration.
  • the oxygen concentration in liquid metal measured by oxygen sensors prepared with solid electrolytes has been well confirmed.
  • time drift is often shown, that is, the output voltage value shifts with the increase of usage time, and the measured value is inconsistent with the theoretical value, which leads to inaccurate test results.
  • the oxygen sensor status detection method is mostly applied to gas oxygen sensors, and the method and device are not suitable for lead-bismuth reactors.
  • the oxygen sensor monitoring in lead-bismuth reactors is mainly achieved by disassembling the oxygen sensor and then calibrating it. This method takes a long time to analyze, cannot achieve online measurement, and is easy to damage the oxygen sensor during the disassembly process.
  • the technical problem to be solved by the present invention is to provide an online detection device and method for a lead-bismuth reactor oxygen sensor.
  • the technical solution adopted by the present invention to solve the technical problem is: to provide an online detection device for a lead-bismuth reactor oxygen sensor, including a lead-bismuth container filled with liquid lead-bismuth and used for inserting an oxygen sensor to be tested, an electrochemical workstation and a data processing system;
  • the reference electrode and the counter electrode of the electrochemical workstation are respectively connected to the reference electrode of the oxygen sensor to be tested, and the sensing electrode and the working electrode of the electrochemical workstation are respectively connected to liquid lead bismuth through leads;
  • the electrochemical workstation applies disturbance signals of sinusoidal alternating voltage or sinusoidal alternating current of different frequencies to the oxygen sensor to be tested, and the oxygen sensor to be tested generates a corresponding response signal according to the received disturbance signal.
  • the data acquisition system and the data processing system of the electrochemical workstation process the response signal to obtain the electrochemical impedance spectrum of the oxygen sensor to be tested.
  • the oxygen sensor to be tested is a potentiometric oxygen sensor.
  • the oxygen sensor to be tested is a Pt/Air reference oxygen sensor, an LSM/Air reference oxygen sensor, an LSCF/Air reference oxygen sensor, a Bi/Bi 2 O 3 reference oxygen sensor or a Cu/Cu 2 O reference oxygen sensor.
  • the lead-bismuth reactor oxygen sensor online detection device also includes an electrode connector, which is arranged on the lead-bismuth container, and the leads of the sensing electrode and the working electrode of the electrochemical workstation are respectively connected to the electrode connector, and the liquid lead-bismuth is connected through the electrode connector.
  • the lead-bismuth reactor oxygen sensor online detection device also includes a thermocouple; the thermocouple is inserted into the liquid lead-bismuth and close to the oxygen sensor to be tested, and is used to detect temperature changes near the oxygen sensor to be tested.
  • the present invention also provides an online detection method for a lead-bismuth reactor oxygen sensor, comprising the following steps:
  • the electrochemical workstation applies a disturbance signal of a sinusoidal alternating voltage or a sinusoidal alternating current of different frequencies to the oxygen sensor to be tested;
  • the oxygen sensor to be tested generates a corresponding response signal according to the received disturbance signal and sends it to the electrochemical workstation;
  • the data acquisition system and the data processing system of the electrochemical workstation process the response signal to obtain an electrochemical impedance spectrum of the oxygen sensor to be tested.
  • the oxygen sensor to be tested is a potentiometric oxygen sensor.
  • the oxygen sensor to be tested is a Pt/Air reference oxygen sensor, an LSM/Air reference oxygen sensor, an LSCF/Air reference oxygen sensor, a Bi/Bi 2 O 3 reference oxygen sensor or a Cu/Cu 2 O reference oxygen sensor.
  • the sinusoidal alternating current applied in step 2 is less than 100 mA, the sinusoidal alternating voltage is less than 100 mV; and the frequency is 1 mHz-10 MHz.
  • the lead-bismuth reactor oxygen sensor online detection method further comprises the following steps:
  • the beneficial effects of the present invention are as follows: through the response of the oxygen sensor to be tested to the applied AC voltage within a specific frequency range, the operating status of the oxygen sensor to be tested can be monitored online by electrochemical impedance spectroscopy, which solves the urgent need for non-destructive, in-situ, and remote online monitoring of the operating status of the oxygen sensor in the lead-bismuth reactor, and is of great significance.
  • FIG1 is a schematic diagram of the connection structure of an online detection device for a lead-bismuth reactor oxygen sensor according to an embodiment of the present invention.
  • FIG. 2 is an electrochemical impedance spectrum of the LSCF/Air reference oxygen sensor under different temperature conditions in the present invention.
  • FIG3 is an electrochemical impedance spectrum of the Cu/Cu 2 O reference oxygen sensor at different operating times in the present invention.
  • an online detection device for a lead-bismuth reactor oxygen sensor includes a lead-bismuth container 10 , an electrochemical workstation 20 , and a data processing system 30 , and may also include an oxygen sensor 40 to be tested.
  • the lead-bismuth container 10 is used to hold liquid lead-bismuth, and the oxygen sensor 40 to be tested is used to be inserted in the liquid lead-bismuth to monitor the dissolved oxygen concentration in the liquid lead-bismuth.
  • the lead-bismuth container 10 for containing liquid lead-bismuth can be a pressure vessel, a pipeline, etc. in a lead-bismuth reactor according to actual applications.
  • the electrochemical workstation 20 is connected to the oxygen sensor 40 to be tested and the data processing system 30, and is used to apply a disturbance signal of a sinusoidal alternating voltage or a sinusoidal alternating current of different frequencies to the oxygen sensor 40 to be tested.
  • the oxygen sensor 40 to be tested generates a corresponding response signal according to the received disturbance signal and feeds it back to the data acquisition system of the electrochemical workstation 20.
  • the data processing system 30 processes the response signal received by the electrochemical workstation 20 to obtain the electrochemical impedance spectrum of the oxygen sensor 40 to be tested.
  • the data processing system 30 can be integrated into a control terminal, such as a computer or a control cabinet, etc., and can also be used for remote processing and analysis.
  • a control terminal such as a computer or a control cabinet, etc.
  • the oxygen sensor 40 to be tested is inserted into the lead-bismuth container 10 with its detection end and immersed in liquid lead-bismuth, and the connecting end of the oxygen sensor to be tested can be positioned on the top cover of the lead-bismuth container 10 and connected to the electrochemical workstation 20 .
  • the oxygen sensor 40 to be tested is a potentiometric oxygen sensor.
  • the oxygen sensor 40 to be tested may further be a Pt/Air reference oxygen sensor, an LSM/Air reference oxygen sensor, an LSCF/Air reference oxygen sensor, a Bi/Bi 2 O 3 reference oxygen sensor, or a Cu/Cu 2 O reference oxygen sensor, and the like.
  • the reference electrode and the counter electrode of the electrochemical workstation 20 are connected to the reference electrode of the oxygen sensor 40 to be tested through wires 21 and 22, respectively.
  • the sensing electrode and the working electrode of the electrochemical workstation 20 are connected to the liquid lead bismuth through leads 23 and 24, respectively.
  • the sensing electrode and the working electrode of the corresponding electrochemical workstation 20 are connected to the liquid lead bismuth.
  • the lead-bismuth reactor oxygen sensor online detection device of the present invention may also include an electrode connector 50, which is arranged on the lead-bismuth container 10.
  • the leads 23 and 24 of the sensing electrode and the working electrode of the electrochemical workstation 20 are respectively connected to the electrode connector, and the liquid lead bismuth is connected through the electrode connector 50.
  • the electrochemical workstation 20 applies disturbance signals of sinusoidal alternating voltage or sinusoidal alternating current of different frequencies to the oxygen sensor 40 to be tested, and the oxygen sensor 40 to be tested generates a corresponding response signal according to the received disturbance signal.
  • the data acquisition system and the data processing system 30 of the electrochemical workstation 20 process the response signal to obtain the electrochemical impedance spectrum of the oxygen sensor 40 to be tested.
  • the lead-bismuth reactor oxygen sensor online detection device of the present invention may also include a thermocouple 60.
  • the thermocouple 60 is inserted into the liquid lead-bismuth and close to the oxygen sensor 40 to be tested, and is used to detect the temperature change near the oxygen sensor 40 to be tested. Combined with the electrochemical impedance spectrum of the oxygen sensor 40 to be tested, the change of the electrochemical impedance spectrum at different temperatures can be analyzed.
  • the lead-bismuth reactor oxygen sensor online detection device of the present invention can realize continuous and automatic detection and recording of electrochemical impedance spectrum characteristic parameter data of the oxygen sensor in the lead-bismuth reactor, and judge the operating state of the oxygen sensor according to the change of the electrochemical impedance spectrum.
  • the lead-bismuth reactor oxygen sensor online detection method of the present invention is implemented by using the above-mentioned lead-bismuth reactor oxygen sensor online detection device.
  • the lead-bismuth reactor oxygen sensor online detection method may include the following steps:
  • the detection end of the oxygen sensor 40 to be tested is inserted into the lead-bismuth container 10 and immersed in the liquid lead-bismuth, and the connection end of the oxygen sensor 40 to be tested is located above the liquid lead-bismuth, and can be specifically positioned on the outside or the top cover of the lead-bismuth container 10.
  • the reference electrode and the counter electrode of the electrochemical workstation 20 are connected to the reference electrode on the connection end of the oxygen sensor 40 to be tested through wires 21 and 22, respectively; the sensing electrode and the working electrode of the electrochemical workstation 20 are connected to the liquid lead-bismuth through leads 23 and 24 and an electrode connector 50, respectively.
  • the oxygen sensor 40 to be tested is a potentiometric oxygen sensor, and can be a Pt/Air reference oxygen sensor, a LSM/Air reference oxygen sensor, a LSCF/Air reference oxygen sensor, a Bi/Bi 2 O 3 reference oxygen sensor, or a Cu/Cu 2 O reference oxygen sensor.
  • the electrochemical workstation 20 applies disturbance signals of sinusoidal alternating voltage or sinusoidal alternating current of different frequencies to the oxygen sensor 40 to be tested.
  • the applied sinusoidal AC current is less than 100 mA and the sinusoidal AC voltage is less than 100 mV.
  • the frequency of the disturbance signal is 1mHz-10MHz.
  • the oxygen sensor 40 to be tested generates a corresponding response signal according to the received disturbance signal and sends the response signal to the data acquisition system of the electrochemical workstation 20 .
  • the data acquisition system and the data processing system 30 of the electrochemical workstation 20 process the response signal to obtain the electrochemical impedance spectrum of the oxygen sensor 40 to be tested.
  • the electrochemical impedance spectrum can be expressed in the form of Warburg diagram, admittance diagram, capacitance diagram, Nyquist diagram, Bode diagram, etc., with Nyquist diagram and Bode diagram being preferred.
  • the temperature near the oxygen sensor 40 to be tested can also be detected by the thermocouple 60 inserted in the liquid lead bismuth. Combined with the electrochemical impedance spectrum of the oxygen sensor 40 to be tested, the change of the electrochemical impedance spectrum at different temperatures can be analyzed.
  • the electrochemical impedance spectrum of the oxygen sensor 40 to be tested is obtained regularly, and the corresponding operating state of the oxygen sensor 40 to be tested is judged according to the comparison between the electrochemical impedance spectra, and whether the oxygen sensor 40 to be tested has a fault problem is analyzed.
  • the main faults of the oxygen sensor 40 to be tested include impurity deposition on the surface of the oxygen sensor, oxygen sensor rupture, short circuit, etc., all of which will cause deviations in the output of the oxygen sensor.
  • the impedance of the oxygen sensor 40 to be tested increases compared to the initial impedance, indicating that impurities may be deposited on the surface of the oxygen sensor sensitive element, which will cause the electrochemical performance of the oxygen sensor to weaken and the oxygen concentration test error to increase; if the impedance of the oxygen sensor decreases, there may be a risk of short circuit or even rupture of the oxygen sensor.
  • electrochemical impedance test is performed on the oxygen sensor to be tested regularly, and the test results are analyzed.
  • FIG. 2 is the electrochemical impedance spectrum of the LSCF/Air reference oxygen sensor under different temperature conditions, where Z' on the X-axis is the real part and -Z" on the Y-axis is the imaginary part.
  • Z' on the X-axis is the real part
  • -Z" on the Y-axis is the imaginary part.
  • Figure 3 is the electrochemical impedance spectrum of the Cu/Cu 2 O reference oxygen sensor. It can be seen from the figure that after stable operation for 1000 hours under the conditions of constant temperature and constant oxygen concentration (saturated oxygen) at 450°C, the electrochemical impedance increases significantly, which will cause the accuracy of the oxygen sensor in measuring oxygen concentration to decrease.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种铅铋反应堆氧传感器在线检测装置及方法,铅铋反应堆氧传感器在线检测装置包括装有液态铅铋并用于待测氧传感器(40)插设其中的铅铋容器(10)、电化学工作站(20)及数据处理系统(30);电化学工作站(20)的参考电极和对电极分别连接待测氧传感器(40)的参比电极,电化学工作站(20)的传感电极和工作电极分别通过引线(23,24)连接至液态铅铋。铅铋反应堆氧传感器在线检测装置,通过待测氧传感器(40)对在特定频率范围内施加交流电压的响应,实现以电化学阻抗谱在线监测待测氧传感器(40)运行状态。

Description

铅铋反应堆氧传感器在线检测装置及方法 技术领域
本发明涉及腐蚀检测技术领域,尤其涉及一种铅铋反应堆氧传感器在线检测装置及方法。
背景技术
铅基快堆具有安全性高、燃料增值能力强、可嬗变放射性核素等优点,有广阔的发展空间,铅基合金冷却剂对结构钢材的腐蚀是其亟待解决的关键技术问题之一。腐蚀会对结构钢材造成不可逆转的损害,并且所产生的金属氧化物杂质可能会堵塞回路和堆芯流道,造成局部堵流事故,严重时会危及反应堆的安全。
铅基合金对于结构材料的腐蚀问题可以通过在不锈钢表面产生并保持一层保护性氧化膜来防止,氧化膜的正确形成取决于氧浓度的精准测量与控制,利用固体电解质制备的氧传感器测量液态金属中的氧浓度已经得到了很好的证实。在使用氧传感器进行长期监测时,经常表现出时间漂移,即输出电压值随使用时间的增加而发生偏移,测量值与理论值不一致,这导致测试结果不准确。在铅铋反应堆运行过程中,必须实时监测氧传感器的功能是否正常,以确保氧传感器输出信号的准确性。采用合适的方法进行在线无损、原位、远程的检测铅铋反应堆中氧传感器的运行状态,是铅铋反应堆冷却剂中氧浓度控制急需解决的一个问题。
目前氧传感器状态检测方法多应用于气体氧传感器,其方法及装置不适用于铅铋反应堆。此外,铅铋反应堆中氧传感器监测主要通过拆卸氧传感器后再校准来实现,这种方法分析过程耗时长,无法实现在线测量,而且拆卸过程中容易对氧传感器造成损害。
技术问题
本发明要解决的技术问题在于,提供一种铅铋反应堆氧传感器在线检测装置及方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种铅铋反应堆氧传感器在线检测装置,包括装有液态铅铋并用于待测氧传感器插设其中的铅铋容器、电化学工作站及数据处理系统;
所述电化学工作站的参考电极和对电极分别连接所述待测氧传感器的参比电极,所述电化学工作站的传感电极和工作电极分别通过引线连接至液态铅铋;
所述电化学工作站对所述待测氧传感器施加不同频率的正弦交流电压或正弦交流电流的扰动信号,所述待测氧传感器根据接收的扰动信号产生相应的响应信号,所述电化学工作站的数据采集系统与所述数据处理系统对所述响应信号进行处理,得到待测氧传感器的电化学阻抗谱。
优选地,所述待测氧传感器为电位式氧传感器。
优选地,所述待测氧传感器为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器。
优选地,所述铅铋反应堆氧传感器在线检测装置还包括电极接头,所述电极接头设置在所述铅铋容器上,所述电化学工作站的传感电极和工作电极的引线分别连接至所述电极接头,通过所述电极接头连接液态铅铋。
优选地,所述铅铋反应堆氧传感器在线检测装置还包括热电偶;所述热电偶插入液态铅铋中并靠近所述待测氧传感器,用于检测所述待测氧传感器附近温度变化。
本发明还提供一种铅铋反应堆氧传感器在线检测方法,包括以下步骤:
S1、将待测氧传感器插入装有液态铅铋的铅铋容器,将待测氧传感器的参比电极与电化学工作站的参考电极和对电极连接,所述电化学工作站的传感电极和工作电极分别通过引线连接至液态铅铋;
S2、所述电化学工作站对所述待测氧传感器施加不同频率的正弦交流电压或正弦交流电流的扰动信号;
S3、所述待测氧传感器根据接收的扰动信号产生相应的响应信号并发送至所述电化学工作站;
S4、所述电化学工作站的数据采集系统与所述数据处理系统对所述响应信号进行处理,得到待测氧传感器的电化学阻抗谱。
优选地,所述待测氧传感器为电位式氧传感器。
优选地,所述待测氧传感器为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器。
优选地,步骤S2中,所述步骤2中所施加的正弦交流电流低于100 mA,正弦交流电压低于100 mV;所述频率为1mHz-10MHz。
优选地,所述铅铋反应堆氧传感器在线检测方法还包括以下步骤:
S5、通过定期获得的所述待测氧传感器的电化学阻抗谱,根据所述电化学阻抗谱之间的对比判断待测氧传感器的相应运行状态,分析待测氧传感器是否存在故障问题。
有益效果
本发明的有益效果:通过待测氧传感器对在特定频率范围内施加交流电压的响应,实现以电化学阻抗谱在线监测待测氧传感器运行状态,解决铅铋反应堆中氧传感器运行状态无损、原位、远程在线监测的迫切需求,具有重要的意义。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例的铅铋反应堆氧传感器在线检测装置的连接结构示意图。
图2是本发明中不同温度条件下LSCF/Air参比氧传感器的电化学阻抗谱图。
图3是本发明中不同运行时间Cu/Cu 2O参比氧传感器的电化学阻抗谱图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明一实施例的铅铋反应堆氧传感器在线检测装置,包括铅铋容器10、电化学工作站20及数据处理系统30,还可包括待测氧传感器40。
其中,铅铋容器10用于装液态铅铋,待测氧传感器40用于插设在液态铅铋中,用于监测液态铅铋中溶解氧浓度。容纳液态铅铋的铅铋容器10可以根据实际应用为铅铋反应堆中压力容器、管道等等。电化学工作站20连接待测氧传感器40和数据处理系统30,用于对待测氧传感器40施加不同频率的正弦交流电压或正弦交流电流的扰动信号,待测氧传感器40根据接收的扰动信号产生相应的响应信号并反馈至电化学工作站20的数据采集系统,数据处理系统30对电化学工作站20接收的响应信号进行处理,得到待测氧传感器40的电化学阻抗谱。
数据处理系统30可以集成在控制终端中,如计算机或控制柜等等,同时还用于远程处理分析。
具体地,在铅铋容器10中,待测氧传感器40以其检测端插入铅铋容器10并浸入液体铅铋中,待测氧传感器的连接端则可定位在铅铋容器10的顶盖上并与电化学工作站20连接。
本发明中,待测氧传感器40选用电位式氧传感器。
待测氧传感器40进一步可为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器等等。
电化学工作站20的参考电极和对电极分别通过导线21、22连接待测氧传感器40的参比电极,电化学工作站20的传感电极和工作电极分别通过引线23、24连接至液态铅铋。
对应电化学工作站20的传感电极和工作电极连接液态铅铋,本发明的铅铋反应堆氧传感器在线检测装置还可包括电极接头50,电极接头50设置在铅铋容器10上,电化学工作站20的传感电极和工作电极的引线23、24分别连接至电极接头,通过电极接头50连接液态铅铋。
本发明的铅铋反应堆氧传感器在线检测装置工作时,电化学工作站20对待测氧传感器40施加不同频率的正弦交流电压或正弦交流电流的扰动信号,待测氧传感器40根据接收的扰动信号产生相应的响应信号,电化学工作站20的数据采集系统与数据处理系统30对响应信号进行处理,得到待测氧传感器40的电化学阻抗谱。
在实际铅铋反应堆应用中,通过待测氧传感器40的电化学阻抗谱与该氧传感器初始运行期间的电化学阻抗谱之间的对比,可以判断待测氧传感器40的相应运行状态,及时发现待测氧传感器40故障问题,确保待测氧传感器40输出信号的准确性。
进一步地,本发明的铅铋反应堆氧传感器在线检测装置还可包括热电偶60。热电偶60插入液态铅铋中并靠近待测氧传感器40,用于检测待测氧传感器40附近温度变化。结合待测氧传感器40的电化学阻抗谱,可以分析在不同温度下电化学阻抗谱的变化情况。
本发明的铅铋反应堆氧传感器在线检测装置能够实现对铅铋反应堆中氧传感器的电化学阻抗谱特征参数数据进行连续、自动检测与记录工作,并根据电化学阻抗谱的变化判断氧传感器运行状态。
本发明的铅铋反应堆氧传感器在线检测方法,采用上述的铅铋反应堆氧传感器在线检测装置实现。参考图1,在一些实施例中,该铅铋反应堆氧传感器在线检测方法可包括以下步骤:
S1、将待测氧传感器40插入装有液态铅铋的铅铋容器10,将待测氧传感器40的参比电极与电化学工作站20的参考电极和对电极连接,电化学工作站20的传感电极和工作电极分别通过引线23、24连接至液态铅铋。
其中,将待测氧传感器40的检测端插入铅铋容器10并浸入液体铅铋中,待测氧传感器40的连接端处于液态铅铋上方,具体可定位在铅铋容器10的外部或顶盖上。电化学工作站20的参考电极和对电极分别通过导线21、22连接待测氧传感器40的连接端上的参比电极;电化学工作站20的传感电极和工作电极分别通过引线23、24和电极接头50连接至液态铅铋。
待测氧传感器40选用电位式氧传感器。待测氧传感器40进一步可为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器等等。
S2、电化学工作站20对待测氧传感器40施加不同频率的正弦交流电压或正弦交流电流的扰动信号。
所施加的正弦交流电流低于100 mA,正弦交流电压低于100 mV。
扰动信号的频率为1mHz-10MHz。
S3、待测氧传感器40根据接收的扰动信号产生相应的响应信号并发送至电化学工作站20的数据采集系统。
S4、电化学工作站20的数据采集系统与数据处理系统30对响应信号进行处理,得到待测氧传感器40的电化学阻抗谱。
电化学阻抗谱的表示方法包括Warburg图、导纳图、电容图、Nyquist图和Bode图等形式,优选Nyquist图和Bode图。
在获得电化学阻抗谱同时,还可以根据插设在液态铅铋中的热电偶60检测获得待测氧传感器40附近的温度,结合待测氧传感器40的电化学阻抗谱,可以分析在不同温度下电化学阻抗谱的变化情况。
S5、长期运行期间,通过定期获得的待测氧传感器40的电化学阻抗谱,根据电化学阻抗谱之间的对比判断待测氧传感器40的相应运行状态,分析待测氧传感器40是否存在故障问题。
待测氧传感器40的故障主要包括氧传感器表面杂质沉积、氧传感器破裂、短路等,该些原因都会导致氧传感器输出发生偏差。外界温度、氧浓度等条件稳定时,与初始阻抗相比,待测氧传感器40的阻抗增大,表明氧传感器敏感元件表面可能有杂质沉积,这将导致氧传感器的电化学性能减弱,氧浓度测试误差增大;氧传感器阻抗减小,可能存在氧传感器短路甚至破裂风险。
通过上述的在线检测方法,定期内对待测氧传感器进行电化学阻抗测试,并对测试结果进行分析。
以LSCF/Air参比氧传感器作为待测氧传感器40为例进行说明:图2为不同温度条件下LSCF/Air参比氧传感器的电化学阻抗谱,图中X轴的Z'为实部,Y轴的-Z”为虚部。由图2所示可知,温度越高,氧传感器敏感元件导电性能越高,待测氧传感器的电化学阻抗谱越小。
以Cu/Cu 2O参比氧传感器作为待测氧传感器40为例进行说明:图3为Cu/Cu 2O参比氧传感器的电化学阻抗谱,由图可看出在450 ℃恒温恒氧浓度(饱和氧)条件下稳定运行1000 h后,电化学阻抗明显增大,这会导致氧传感器对氧浓度测量的准确性下降。
若氧传感器的电化学阻抗无明显变化,则代表待测氧传感器运行状态正常;若发生明显变化,则代表待测氧传感器运行异常,需要对异常氧传感器进行检修处理;检修完毕,继续按照流程对氧传感器进行电化学阻抗测试,实现对氧传感器运行状态的无损、原位、远程在线监测。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种铅铋反应堆氧传感器在线检测装置,其特征在于,包括装有液态铅铋并用于待测氧传感器插设其中的铅铋容器、电化学工作站及数据处理系统;
    所述电化学工作站的参考电极和对电极分别连接所述待测氧传感器的参比电极,所述电化学工作站的传感电极和工作电极分别通过引线连接至液态铅铋;
    所述电化学工作站对所述待测氧传感器施加不同频率的正弦交流电压或正弦交流电流的扰动信号,所述待测氧传感器根据接收的扰动信号产生相应的响应信号,所述电化学工作站的数据采集系统与所述数据处理系统对所述响应信号进行处理,得到待测氧传感器的电化学阻抗谱。
  2. 根据权利要求1所述的铅铋反应堆氧传感器在线检测装置,其特征在于,所述待测氧传感器为电位式氧传感器。
  3. 根据权利要求2所述的铅铋反应堆氧传感器在线检测装置,其特征在于,所述待测氧传感器为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器。
  4. 根据权利要求1所述的铅铋反应堆氧传感器在线检测装置,其特征在于, 所述铅铋反应堆氧传感器在线检测装置还包括电极接头,所述电极接头设置在所述铅铋容器上,所述电化学工作站的传感电极和工作电极的引线分别连接至所述电极接头,通过所述电极接头连接液态铅铋。
  5. 根据权利要求1-4任一项所述的铅铋反应堆氧传感器在线检测装置,其特征在于,所述铅铋反应堆氧传感器在线检测装置还包括热电偶;所述热电偶插入液态铅铋中并靠近所述待测氧传感器,用于检测所述待测氧传感器附近温度变化。
  6. 一种铅铋反应堆氧传感器在线检测方法,其特征在于,包括以下步骤:
    S1、将待测氧传感器插入装有液态铅铋的铅铋容器,将待测氧传感器的参比电极与电化学工作站的参考电极和对电极连接,所述电化学工作站的传感电极和工作电极分别通过引线连接至液态铅铋;
    S2、所述电化学工作站对所述待测氧传感器施加不同频率的正弦交流电压或正弦交流电流的扰动信号;
    S3、所述待测氧传感器根据接收的扰动信号产生相应的响应信号并发送至所述电化学工作站;
    S4、所述电化学工作站的数据采集系统与所述数据处理系统对所述响应信号进行处理,得到待测氧传感器的电化学阻抗谱。
  7. 根据权利要求6所述的铅铋反应堆氧传感器在线检测方法,其特征在于,所述待测氧传感器为电位式氧传感器。
  8. 根据权利要求7所述的铅铋反应堆氧传感器在线检测方法,其特征在于,所述待测氧传感器为Pt/Air参比氧传感器、LSM/Air参比氧传感器、LSCF/Air参比氧传感器、Bi/Bi 2O 3参比氧传感器或者Cu/Cu 2O参比氧传感器。
  9. 根据权利要求6所述的铅铋反应堆氧传感器在线检测方法,其特征在于,步骤S2中,所施加的正弦交流电流低于100 mA,正弦交流电压低于100 mV;所述频率为1mHz-10MHz。
  10. 根据权利要求6-9任一项所述的铅铋反应堆氧传感器在线检测方法,其特征在于,所述铅铋反应堆氧传感器在线检测方法还包括以下步骤:
    S5、通过定期获得的所述待测氧传感器的电化学阻抗谱,根据所述电化学阻抗谱之间的对比判断待测氧传感器的相应运行状态,分析待测氧传感器是否存在故障问题。
PCT/CN2022/124979 2022-10-12 2022-10-12 铅铋反应堆氧传感器在线检测装置及方法 WO2024077532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124979 WO2024077532A1 (zh) 2022-10-12 2022-10-12 铅铋反应堆氧传感器在线检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124979 WO2024077532A1 (zh) 2022-10-12 2022-10-12 铅铋反应堆氧传感器在线检测装置及方法

Publications (1)

Publication Number Publication Date
WO2024077532A1 true WO2024077532A1 (zh) 2024-04-18

Family

ID=90668417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124979 WO2024077532A1 (zh) 2022-10-12 2022-10-12 铅铋反应堆氧传感器在线检测装置及方法

Country Status (1)

Country Link
WO (1) WO2024077532A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091209A1 (fr) * 1999-09-23 2001-04-11 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Capteur électrochimique à autodiagnostic
JP2003075401A (ja) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd 溶融金属の酸素濃度測定装置
CN103995036A (zh) * 2014-06-09 2014-08-20 河南理工大学 一种利用电化学阻抗谱实时监测水泥基材料裂缝的方法
CN104535719A (zh) * 2014-12-12 2015-04-22 中国科学院合肥物质科学研究院 一种适用于液态铅铋合金氧传感器校准的实验装置
WO2016099331A1 (ru) * 2014-12-15 2016-06-23 Открытое акционерное общество "АКМЭ - инжиниринг" Диагностика свинцово-висмутового теплоносителя быстрого реактора
CN106774481A (zh) * 2016-12-12 2017-05-31 中广核研究院有限公司 一种控制液态LBE/Pb冷却剂中氧浓度的装置及系统
US20180095054A1 (en) * 2016-09-30 2018-04-05 Endress+Hauser Conducta Inc. Characterization and failure analysis of a sensor using impedance frequency response spectra
CN108132291A (zh) * 2017-12-22 2018-06-08 东北大学 利用阻抗谱标定氧浓度的方法
JP2020193941A (ja) * 2019-05-30 2020-12-03 株式会社東芝 酸素濃度計測システムおよび酸素濃度計測方法
CN113984864A (zh) * 2021-11-26 2022-01-28 华北电力大学 一种一体式密封型液态铅铋合金氧浓度传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091209A1 (fr) * 1999-09-23 2001-04-11 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Capteur électrochimique à autodiagnostic
JP2003075401A (ja) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd 溶融金属の酸素濃度測定装置
CN103995036A (zh) * 2014-06-09 2014-08-20 河南理工大学 一种利用电化学阻抗谱实时监测水泥基材料裂缝的方法
CN104535719A (zh) * 2014-12-12 2015-04-22 中国科学院合肥物质科学研究院 一种适用于液态铅铋合金氧传感器校准的实验装置
WO2016099331A1 (ru) * 2014-12-15 2016-06-23 Открытое акционерное общество "АКМЭ - инжиниринг" Диагностика свинцово-висмутового теплоносителя быстрого реактора
US20180095054A1 (en) * 2016-09-30 2018-04-05 Endress+Hauser Conducta Inc. Characterization and failure analysis of a sensor using impedance frequency response spectra
CN106774481A (zh) * 2016-12-12 2017-05-31 中广核研究院有限公司 一种控制液态LBE/Pb冷却剂中氧浓度的装置及系统
CN108132291A (zh) * 2017-12-22 2018-06-08 东北大学 利用阻抗谱标定氧浓度的方法
JP2020193941A (ja) * 2019-05-30 2020-12-03 株式会社東芝 酸素濃度計測システムおよび酸素濃度計測方法
CN113984864A (zh) * 2021-11-26 2022-01-28 华北电力大学 一种一体式密封型液态铅铋合金氧浓度传感器

Similar Documents

Publication Publication Date Title
JP2581833B2 (ja) プラントの運転状態監視システム
CN100504368C (zh) 监控结构中缺陷的系统和方法
US5006786A (en) Device for in situ monitoring of corrosion rates of polarized or unpolarized metals
CN112129415A (zh) 一种基于温度动态校准的变电站红外测温装置及方法
CN109884263B (zh) 一种溶解氧传感器试验装置及其试验方法
CN115078274A (zh) 用于待测铀酸溶液中铀、酸浓度的实时分析方法及装置
US20230071753A1 (en) Device and testing apparatus for liquid and vapor wire exposure testing
WO2024077532A1 (zh) 铅铋反应堆氧传感器在线检测装置及方法
CN111707867B (zh) 一种交流电流测量方法、装置、电子设备及存储介质
JP2008008750A (ja) 原子炉冷却水の腐食環境定量方法およびその装置
CN210894193U (zh) 一种发电厂水汽系统在线pH表的准确性检验系统
McKee et al. Calibration stability of oxygen meters for LMFBR sodium systems
CN110873817A (zh) 一种临界电流测量系统的准确性与稳定性保障方法
CN209821181U (zh) 一种溶解氧传感器试验装置
JPH06288853A (ja) プロセス計装ラック
Tinnemeyer Multiple model impedance spectroscopy techniques for testing electrochemical systems
CN112068067A (zh) 流水线计量检定装置的表位隔离变压器带载误差检测系统
CN218567180U (zh) 用于铅铋快堆的腐蚀在线检测装置
CN211927202U (zh) 一种sf6电气设备中气体泄漏在线检测装置
CN212275958U (zh) 流水线计量检定装置的表位隔离变压器带载误差检测系统
CN109269974A (zh) 一种锅炉用在线电化学腐蚀速率的测试方法
CN113899477B (zh) 一种测试温度校验治具及方法
CN117074824B (zh) 一种变压器保护系统的检验系统及方法
CN108534918A (zh) 一种传感器自动隔离检测系统
JPH0850090A (ja) き裂発生モニタリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961723

Country of ref document: EP

Kind code of ref document: A1