WO2024077527A1 - Nitride-based power converter and method for manufacturing thereof - Google Patents

Nitride-based power converter and method for manufacturing thereof Download PDF

Info

Publication number
WO2024077527A1
WO2024077527A1 PCT/CN2022/124949 CN2022124949W WO2024077527A1 WO 2024077527 A1 WO2024077527 A1 WO 2024077527A1 CN 2022124949 W CN2022124949 W CN 2022124949W WO 2024077527 A1 WO2024077527 A1 WO 2024077527A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
terminal
pcb
winding
primary
Prior art date
Application number
PCT/CN2022/124949
Other languages
French (fr)
Inventor
Yanbo Zou
Fada Du
Yulin Chen
Chao Tang
Original Assignee
Innoscience (Shenzhen) Semiconductor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innoscience (Shenzhen) Semiconductor Co., Ltd. filed Critical Innoscience (Shenzhen) Semiconductor Co., Ltd.
Priority to PCT/CN2022/124949 priority Critical patent/WO2024077527A1/en
Priority to CN202280004814.5A priority patent/CN115997336A/en
Publication of WO2024077527A1 publication Critical patent/WO2024077527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention generally relates to a nitride-based power converter, and more particularly generally to a nitride-based flyback power converter with a simplified flyback transformer and high voltage synchronous rectifier.
  • GaN gallium nitride
  • MOSFET metal oxide semiconductor field effect transistor
  • HEMT GaN high-electron-mobility transistor
  • power converter uses a flyback transformer for transferring power from a power supply to a load.
  • the transformer may have a primary winding, a secondary winding and an auxiliary winding formed on printed circuit boards (PCBs) .
  • Current flowing in the primary winding is conducted or blocked by a switch at primary side and current flowing in the second winding is rectified by a synchronous rectifier at secondary side.
  • Si MOSFET is used as the synchronous rectifier, considering the typical break-through voltage of Si MOSFET, which is in a range from 100V to 120V, low-side rectification (i.e., the Si MOSFET is connected between the secondary winding and the ground) is adopted and transformer with higher turn ratio (e.g., 14: 2) is used.
  • a nitride-based power converter comprises: an input port having a low-potential terminal and a high-potential terminal; an output port having a low-potential terminal and a high-potential terminal; a transformer having a primary winding electrically coupled to the input port and a secondary winding electrically coupled to the output port; a primary switch having a first conduction terminal electrically coupled to a first terminal of the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port; and a high- voltage synchronous rectifier having a first conduction terminal electrically coupled to a first terminal of the secondary winding and a second conduction terminal electrically coupled to a high-potential terminal of the output port.
  • a method for manufacturing a nitride-based power converter comprises: forming a transformer having a primary winding and a secondary winding in a four-layered printed circuit board (PCB) ; forming an input port having a low-potential terminal and a high-potential terminal on the PCB; forming an output port having a low-potential terminal and a high-potential terminal on the PCB; disposing a primary switch on the PCB, electrically connecting a first conduction terminal of the primary switch to a first terminal of the primary winding and electrically connecting a second conduction terminal of the primary switch to the low-potential terminal of the input port; and disposing a high-voltage synchronous rectifier on the PCB, electrically connecting a first conduction terminal of the synchronous rectifier to a first terminal of the secondary winding and electrically connecting a second conduction terminal of the synchronous rectifier to a high-potential terminal of the output port.
  • PCB printed circuit board
  • a high-voltage synchronous rectifier such as a 150V gallium nitride transistor
  • high-side rectification can be adopted and transformer with lower turns ratio can be used.
  • Shield winding can also be avoided to further simplify the transformer design, thus PCB with smaller number of layers, such as a four-layered PCB can be used to form the planar coils for manufacturing the transformer. Therefore, manufacturing cost and processing time can be reduced.
  • FIG. 1 shows a circuit diagram of a power converter according to a comparative embodiment of the present disclosure
  • FIG. 2 shows a cross-section view of planar windings in a printed circuit board (PCB) for forming a transformer in the power converter of FIG. 1;
  • PCB printed circuit board
  • FIG. 3 is a circuit diagram of a power converter 300 according to one embodiment of the present invention.
  • FIG. 4 shows a cross-section view of a PCB formed with planar coils of a transformer in the power converter of FIG. 3;
  • FIG. 5 shows an exploded view of the planar windings formed in the PCB of FIG. 4.
  • FIG. 6 shows a flowchart for a method for manufacturing a nitride-based power converter according to one embodiment of the present invention.
  • FIG. 7 shows a flowchart for a step of forming the transformer in a PCB according to one embodiment of the present invention
  • FIG. 8 shows a flowchart for a step of constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port according to one embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a power converter 100 according to a comparative embodiment of the present disclosure.
  • the converter 100 may include an input port 101 having a low-potential terminal and a high-potential terminal.
  • the converter 100 may include an output port 102 having a low-potential terminal and a high-potential terminal.
  • the converter 100 may include an auxiliary output 103.
  • the converter 100 further includes a transformer 110 having a primary winding NP, a secondary winding NS and an auxiliary winding NA.
  • the converter 100 may further include a primary switch Q1 having a first conduction terminal electrically coupled to the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port.
  • the converter 100 may further include a synchronous rectifier Q2 having a first conduction terminal electrically coupled to the secondary windings and a second conduction terminal electrically coupled to a low-potential terminal of the output port. That is, the synchronous rectifier is used to perform low-side rectification.
  • the transformer 110 may further have shield winding (not shown) for shielding EMI noises caused by low-side rectification.
  • the converter 100 may further include an input coupling capacitor C1 coupled to the input port.
  • the converter 100 may further include an output coupling capacitor C2 coupled to the output port.
  • the converter 100 may further include a diode D1 having an anode electrically coupled to a first terminal of the auxiliary coil winding.
  • the converter 100 may further include a first auxiliary coupling capacitor C3 coupled to the auxiliary output port, and having a first end electrically coupled to a cathode of the first diode D1 and a second end electrically coupled to a second terminal of the auxiliary coil winding.
  • the converter 100 may further include a printed circuit board (PCB) 150 in which one or more planar coil windings are formed to act as the primary winding NP, secondary winding NS and auxiliary winding of the transformer 110, respectively.
  • the primary winding NP may comprise a first primary coil formed on a first primary winding layer 1501 of the PCB, and a second primary coil formed on a second primary winding layer 1502 of the PCB.
  • the secondary winding NS may comprise a first secondary coil formed on a first secondary winding layer 1503 of the PCB, and a second secondary coil formed on a second secondary winding layer 1504 of the PCB.
  • the auxiliary coil winding NA may comprise a first auxiliary coil formed on a first auxiliary winding layer 1505 of the PCB, and a second auxiliary coil formed on a second auxiliary winding layer 1506 of the PCB.
  • the shield winding NSH may comprise a first shield coil formed on the first auxiliary winding layer 1505 of the PCB, and a second shield coil formed on the second auxiliary winding layer 1506 of the PCB.
  • the PCB 150 has at least six layers for forming the transformer 110, which requires additional lamination processes to manufacture and results in increased costs and processing time.
  • FIG. 3 is a circuit diagram of a power converter 300 according to one embodiment of the present invention.
  • identical elements in FIG. 1 and FIG. 3 are given the same reference numerals.
  • the converter 300 may include an input port 301 having a low-potential terminal and a high-potential terminal.
  • the converter 300 may include an output port 302 having a low-potential terminal and a high-potential terminal.
  • the converter 300 may further include an auxiliary output 303.
  • the converter 300 may further include a transformer 310 having a primary winding NP electrically coupled to the input port, a secondary winding NS electrically coupled to the output port and an auxiliary winding NA electrically coupled to the auxiliary output.
  • the converter 300 may further include a primary switch Q1 having a first conduction terminal electrically coupled to the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port.
  • the converter 300 may further include a high-voltage synchronous rectifier Q2_hv having a first conduction terminal electrically coupled to the secondary windings and a second conduction terminal electrically coupled to the high-potential terminal of the output port. That is, the synchronous rectifier is used to perform high-side rectification. Therefore, it is not required to have shield winding for shielding EMI noises.
  • the high-voltage synchronous rectifier Q2_hv is a high-voltage GaN transistor having a voltage rating equal or greater than 150V.
  • the GaN transistor may be a GaN enhancement-mode high-electron-mobility field effect transistor.
  • the converter 300 may further include an input coupling capacitor C1 coupled to the input port.
  • the converter 300 may further include an output coupling capacitor C2 coupled to the output port.
  • the converter 300 may further include a diode D1 having an anode electrically coupled to a first terminal of the auxiliary coil winding.
  • the converter 300 may further include a first auxiliary coupling capacitor C3 coupled to the auxiliary output port, and having a first end electrically coupled to a cathode of the first diode D1 and a second end electrically coupled to a second terminal of the auxiliary coil winding.
  • the converter 300 may further include a buck-boost circuit 380 coupled to the auxiliary winding through the first auxiliary coupling capacitor C3.
  • the buck-boost circuit 380 may include an auxiliary switch Q3 having a first conduction terminal electrically coupled to the first terminal of the first auxiliary coupling capacitor C3.
  • the buck-boost circuit 380 may further include an inductor L1 having a first end electrically coupled to a second conduction terminal of the auxiliary switch Q3 and a second end electrically coupled to the second terminal of the auxiliary winding.
  • the buck-boost circuit 380 may further include a second diode D2 having a cathode electrically coupled to the second conduction terminal of the auxiliary switch Q3.
  • the buck-boost circuit 380 may further a second auxiliary coupling capacitor C4 having a first end electrically coupled to an anode of the second diode D2 and a second end electrically coupled to the second terminal of the auxiliary winding.
  • the converter 300 may further include a printed circuit board (PCB) 350 in which one or more planar coil windings are formed to act as the primary winding NP, secondary winding NS and auxiliary winding of the transformer 310, respectively.
  • the primary winding NP may comprise a first primary coil formed on a first primary winding layer 3501 of the PCB, and a second primary coil formed on a second primary winding layer 3502 of the PCB.
  • the secondary winding NS may comprise a first secondary coil formed on a first secondary winding layer 3503 of the PCB, and a second secondary coil formed on a second secondary winding layer 3504 of the PCB.
  • the first primary winding layer 3501 may be positioned adjacent to the second primary winding layer 3502.
  • the first and second primary winding layers 3501 and 3502 may be positioned between the first and second secondary winding layers 3503 and 3504.
  • first secondary winding layer 3503 may be positioned adjacent to the second secondary winding layer 3504.
  • the first and second secondary winding layers 3503 and 3504 may be positioned between the first and second primary winding layers 3501 and 3502.
  • the auxiliary coil winding NA may comprise a first auxiliary coil formed on the first primary winding layer 3501 of the PCB, and a second auxiliary coil formed on the second primary winding layer 3502 of the PCB.
  • the auxiliary coil winding NA may comprise a first auxiliary coil formed on the first secondary winding layer 3503 of the PCB, and a second auxiliary coil formed on the second secondary winding layer 3504 of the PCB.
  • the converter 300 may further include a magnetic core 370 being fixed to the PCB 350 and commonly shared by the transformer 310.
  • the magnetic core 370 may include an upper core 371 and a lower core 372.
  • the lower core 372 may have at least three projections including a central projection 3721 and two peripheral projections 3722.
  • the central projection may be configured to accept the primary, the secondary and the auxiliary coil windings of the transformer.
  • the primary, the secondary and the auxiliary coil windings of the transformer are configured to surround the central projection of the magnetic core 370.
  • the magnetic core 370 may be ferrite core.
  • the PCB 350 has only four layers for forming the transformer 310, which is easier to manufacture than the comparative embodiment of FIGS. 1 and 2.
  • FIG. 6 shows a flowchart for a method for manufacturing a nitride-based power converter according to one embodiment of the present invention.
  • the method may comprise the following steps:
  • S602 forming a transformer in a four-layered printed circuit board (PCB) ;
  • S608 disposing a primary switch on the PCB, electrically connecting a first conduction terminal of the primary switch to a first terminal of the primary winding and electrically connecting a second conduction terminal of the primary switch to the low-potential terminal of the input port;
  • S610 disposing a synchronous rectifier on the PCB, electrically connecting a first conduction terminal of the synchronous rectifier to a first terminal of the secondary winding and electrically connecting a second conduction terminal electrically a high-potential terminal of the output port.
  • step S602: forming the transformer in the four-layered PCB may comprise the following steps:
  • S702 constructing a primary winding by: forming a first primary coil on a first primary winding layer of the PCB; and forming a second primary coil on a second primary winding layer of the PCB and electrically connecting the second primary coil in series with the first primary coil;
  • S704 constructing a secondary winding by: forming a first secondary coil on a first secondary winding layer of the PCB; and forming a second secondary coil on a second secondary winding layer of the PCB and electrically connecting the second secondary coil in series with the first secondary coil.
  • S706 constructing an auxiliary winding by forming a first auxiliary coil on the first primary winding layer; and forming a second auxiliary coil on the second primary winding layer and electrically connecting the second auxiliary coil in series with the first auxiliary coil.
  • the method may further comprise:
  • S612 disposing an input coupling capacitor on the PCB and electrically coupling the input coupling capacitor to the input port.
  • S614 disposing an output coupling capacitor on the PCB and electrically coupling the output coupling capacitor to the output port.
  • S616 disposing a first diode on the PCB, electrically connecting an anode of the first diode to a first terminal of the auxiliary winding.
  • S618 disposing a first auxiliary coupling capacitor on the PCB, electrically connecting a first end of the first auxiliary coupling capacitor to a cathode of the first diode and electrically connecting a second end of the first auxiliary coupling capacitor to a second terminal of the auxiliary winding.
  • S622 constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port.
  • S624 fixing a pair of ferrite cores to a top surface and a bottom surface of the PCB respectively and commonly shared by the transformer.
  • step S622 constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port may comprise the following steps:
  • S802 disposing an auxiliary switch on the PCB, electrically connecting a first conduction terminal of the auxiliary switch to the first end of the first auxiliary coupling capacitor.
  • S804 disposing an inductor on the PCB, electrically connecting a first end of the inductor to a second conduction terminal of the auxiliary switch and electrically connecting a second end of the inductor L1 to the second terminal of the auxiliary winding.
  • S806 disposing a second diode on the PCB, electrically connecting a cathode of the second diode to the second conduction terminal of the auxiliary switch and the second end of the inductor.
  • S808 disposing a second auxiliary coupling capacitor on the PCB, electrically connecting a first end of the second auxiliary coupling capacitor to an anode of the second diode and electrically connecting a second end of the second auxiliary coupling capacitor to the second terminal of the auxiliary winding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A nitride-based power converter (300) comprises: an input port (301) having a low-potential terminal and a high-potential terminal; an output port (302) having a low-potential terminal and a high-potential terminal; a transformer (310) having a primary winding (NP) electrically coupled to the input port (301) and a secondary winding (NS) electrically coupled to the output port (302); a primary switch (Q1) having a first conduction terminal electrically coupled to a first terminal of the primary winding (NP) and a second conduction terminal electrically coupled to the low-potential terminal of the input port (301), and a high-voltage synchronous rectifier (Q2_hv) having a first conduction terminal electrically coupled to a first terminal of the secondary winding (NS) and a second conduction terminal electrically coupled to the high-potential terminal of the output port (302).

Description

NITRIDE-BASED POWER CONVERTER AND METHOD FOR MANUFACTURING THE SAME Field of the Invention:
The present invention generally relates to a nitride-based power converter, and more particularly generally to a nitride-based flyback power converter with a simplified flyback transformer and high voltage synchronous rectifier.
Background of the Invention:
Due to low power losses and fast switching transition, gallium nitride (GaN) -based devices have been widely used in a wide range of applications, from telecommunications, servers, motor drives and laptop adapters to on-board chargers for electric vehicles. In comparison with silicon (Si) metal oxide semiconductor field effect transistor (MOSFET) , GaN high-electron-mobility transistor (HEMT) has a much better figure of merit and more promising performance for high-power and high-frequency applications.
In general, power converter uses a flyback transformer for transferring power from a power supply to a load. The transformer may have a primary winding, a secondary winding and an auxiliary winding formed on printed circuit boards (PCBs) . Current flowing in the primary winding is conducted or blocked by a switch at primary side and current flowing in the second winding is rectified by a synchronous rectifier at secondary side. When Si MOSFET is used as the synchronous rectifier, considering the typical break-through voltage of Si MOSFET, which is in a range from 100V to 120V, low-side rectification (i.e., the Si MOSFET is connected between the secondary winding and the ground) is adopted and transformer with higher turn ratio (e.g., 14: 2) is used. However, such low-side rectification may have problem of high EMI noises generated by the Si MOSFET. One approach to shield the EMI noises is to implement shield winding in the flyback transformer. However, such approach requires PCBs with at least 6 layers and blind vias, which require additional lamination processes to manufacture and results in increased costs and processing time.
Summary of the Invention:
According to one aspect of the present invention, a nitride-based power converter is provided. The nitride-based power converter comprises: an input port having a low-potential terminal and a high-potential terminal; an output port having a low-potential terminal and a high-potential terminal; a transformer having a primary winding electrically coupled to the input port and a secondary winding electrically coupled to the output port; a primary switch having a first conduction terminal electrically coupled to a first terminal of the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port; and a high- voltage synchronous rectifier having a first conduction terminal electrically coupled to a first terminal of the secondary winding and a second conduction terminal electrically coupled to a high-potential terminal of the output port.
According to another aspect of the present invention, a method for manufacturing a nitride-based power converter is provided. The method comprises: forming a transformer having a primary winding and a secondary winding in a four-layered printed circuit board (PCB) ; forming an input port having a low-potential terminal and a high-potential terminal on the PCB; forming an output port having a low-potential terminal and a high-potential terminal on the PCB; disposing a primary switch on the PCB, electrically connecting a first conduction terminal of the primary switch to a first terminal of the primary winding and electrically connecting a second conduction terminal of the primary switch to the low-potential terminal of the input port; and disposing a high-voltage synchronous rectifier on the PCB, electrically connecting a first conduction terminal of the synchronous rectifier to a first terminal of the secondary winding and electrically connecting a second conduction terminal of the synchronous rectifier to a high-potential terminal of the output port.
As a high-voltage synchronous rectifier, such as a 150V gallium nitride transistor, is used, high-side rectification can be adopted and transformer with lower turns ratio can be used. Shield winding can also be avoided to further simplify the transformer design, thus PCB with smaller number of layers, such as a four-layered PCB can be used to form the planar coils for manufacturing the transformer. Therefore, manufacturing cost and processing time can be reduced.
Brief Description of the Drawings:
Aspects of the present disclosure may be readily understood from the following detailed description with reference to the accompanying figures. The illustrations may not necessarily be drawn to scale. That is, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. Common reference numerals may be used throughout the drawings and the detailed description to indicate the same or similar components.
FIG. 1 shows a circuit diagram of a power converter according to a comparative embodiment of the present disclosure;
FIG. 2 shows a cross-section view of planar windings in a printed circuit board (PCB) for forming a transformer in the power converter of FIG. 1;
FIG. 3 is a circuit diagram of a power converter 300 according to one embodiment of the present invention;
FIG. 4 shows a cross-section view of a PCB formed with planar coils of a transformer in the power converter of FIG. 3;
FIG. 5 shows an exploded view of the planar windings formed in the PCB of FIG. 4.
FIG. 6 shows a flowchart for a method for manufacturing a nitride-based power converter according to one embodiment of the present invention.
FIG. 7 shows a flowchart for a step of forming the transformer in a PCB according to one embodiment of the present invention;
FIG. 8 shows a flowchart for a step of constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port according to one embodiment of the present invention.
Detailed Description:
In the following description, preferred examples of the present disclosure will be set forth as embodiments which are to be regarded as illustrative rather than restrictive. Specific details may be omitted so as not to obscure the present disclosure; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
FIG. 1 is a circuit diagram of a power converter 100 according to a comparative embodiment of the present disclosure. Referring to FIG. 1, the converter 100 may include an input port 101 having a low-potential terminal and a high-potential terminal. The converter 100 may include an output port 102 having a low-potential terminal and a high-potential terminal. The converter 100 may include an auxiliary output 103. The converter 100 further includes a transformer 110 having a primary winding NP, a secondary winding NS and an auxiliary winding NA. The converter 100 may further include a primary switch Q1 having a first conduction terminal electrically coupled to the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port. The converter 100 may further include a synchronous rectifier Q2 having a first conduction terminal electrically coupled to the secondary windings and a second conduction terminal electrically coupled to a low-potential terminal of the output port. That is, the synchronous rectifier is used to perform low-side rectification. The transformer 110 may further have shield winding (not shown) for shielding EMI noises caused by low-side rectification.
The converter 100 may further include an input coupling capacitor C1 coupled to the input port. The converter 100 may further include an output coupling capacitor C2 coupled to the output port.
The converter 100 may further include a diode D1 having an anode electrically coupled to a first terminal of the auxiliary coil winding. The converter 100 may further include a first  auxiliary coupling capacitor C3 coupled to the auxiliary output port, and having a first end electrically coupled to a cathode of the first diode D1 and a second end electrically coupled to a second terminal of the auxiliary coil winding.
Referring to FIG. 2, the converter 100 may further include a printed circuit board (PCB) 150 in which one or more planar coil windings are formed to act as the primary winding NP, secondary winding NS and auxiliary winding of the transformer 110, respectively. The primary winding NP may comprise a first primary coil formed on a first primary winding layer 1501 of the PCB, and a second primary coil formed on a second primary winding layer 1502 of the PCB. The secondary winding NS may comprise a first secondary coil formed on a first secondary winding layer 1503 of the PCB, and a second secondary coil formed on a second secondary winding layer 1504 of the PCB. The auxiliary coil winding NA may comprise a first auxiliary coil formed on a first auxiliary winding layer 1505 of the PCB, and a second auxiliary coil formed on a second auxiliary winding layer 1506 of the PCB. The shield winding NSH may comprise a first shield coil formed on the first auxiliary winding layer 1505 of the PCB, and a second shield coil formed on the second auxiliary winding layer 1506 of the PCB. As shown, the PCB 150 has at least six layers for forming the transformer 110, which requires additional lamination processes to manufacture and results in increased costs and processing time.
FIG. 3 is a circuit diagram of a power converter 300 according to one embodiment of the present invention. For conciseness, identical elements in FIG. 1 and FIG. 3 are given the same reference numerals.
Referring to FIG. 3, the converter 300 may include an input port 301 having a low-potential terminal and a high-potential terminal. The converter 300 may include an output port 302 having a low-potential terminal and a high-potential terminal. The converter 300 may further include an auxiliary output 303. The converter 300 may further include a transformer 310 having a primary winding NP electrically coupled to the input port, a secondary winding NS electrically coupled to the output port and an auxiliary winding NA electrically coupled to the auxiliary output. The converter 300 may further include a primary switch Q1 having a first conduction terminal electrically coupled to the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port. The converter 300 may further include a high-voltage synchronous rectifier Q2_hv having a first conduction terminal electrically coupled to the secondary windings and a second conduction terminal electrically coupled to the high-potential terminal of the output port. That is, the synchronous rectifier is used to perform high-side rectification. Therefore, it is not required to have shield winding for shielding EMI noises.
Preferably, the high-voltage synchronous rectifier Q2_hv is a high-voltage GaN transistor having a voltage rating equal or greater than 150V. In some embodiments, the GaN transistor may be a GaN enhancement-mode high-electron-mobility field effect transistor.
The converter 300 may further include an input coupling capacitor C1 coupled to the input port. The converter 300 may further include an output coupling capacitor C2 coupled to the output port.
The converter 300 may further include a diode D1 having an anode electrically coupled to a first terminal of the auxiliary coil winding. The converter 300 may further include a first auxiliary coupling capacitor C3 coupled to the auxiliary output port, and having a first end electrically coupled to a cathode of the first diode D1 and a second end electrically coupled to a second terminal of the auxiliary coil winding.
The converter 300 may further include a buck-boost circuit 380 coupled to the auxiliary winding through the first auxiliary coupling capacitor C3. The buck-boost circuit 380 may include an auxiliary switch Q3 having a first conduction terminal electrically coupled to the first terminal of the first auxiliary coupling capacitor C3. The buck-boost circuit 380 may further include an inductor L1 having a first end electrically coupled to a second conduction terminal of the auxiliary switch Q3 and a second end electrically coupled to the second terminal of the auxiliary winding. The buck-boost circuit 380 may further include a second diode D2 having a cathode electrically coupled to the second conduction terminal of the auxiliary switch Q3. The buck-boost circuit 380 may further a second auxiliary coupling capacitor C4 having a first end electrically coupled to an anode of the second diode D2 and a second end electrically coupled to the second terminal of the auxiliary winding.
Referring to FIGS. 4 and 5, the converter 300 may further include a printed circuit board (PCB) 350 in which one or more planar coil windings are formed to act as the primary winding NP, secondary winding NS and auxiliary winding of the transformer 310, respectively. The primary winding NP may comprise a first primary coil formed on a first primary winding layer 3501 of the PCB, and a second primary coil formed on a second primary winding layer 3502 of the PCB. The secondary winding NS may comprise a first secondary coil formed on a first secondary winding layer 3503 of the PCB, and a second secondary coil formed on a second secondary winding layer 3504 of the PCB.
In some embodiments, the first primary winding layer 3501 may be positioned adjacent to the second primary winding layer 3502. The first and second primary winding  layers  3501 and 3502 may be positioned between the first and second secondary winding  layers  3503 and 3504.
Alternatively, the first secondary winding layer 3503 may be positioned adjacent to the second secondary winding layer 3504. The first and second secondary winding  layers  3503 and 3504 may be positioned between the first and second primary winding  layers  3501 and 3502. The
The auxiliary coil winding NA may comprise a first auxiliary coil formed on the first primary winding layer 3501 of the PCB, and a second auxiliary coil formed on the second primary winding layer 3502 of the PCB.
Alternatively, the auxiliary coil winding NA may comprise a first auxiliary coil formed on the first secondary winding layer 3503 of the PCB, and a second auxiliary coil formed on the second secondary winding layer 3504 of the PCB.
In some embodiments, the converter 300 may further include a magnetic core 370 being fixed to the PCB 350 and commonly shared by the transformer 310. For example, the magnetic core 370 may include an upper core 371 and a lower core 372. The lower core 372 may have at least three projections including a central projection 3721 and two peripheral projections 3722. The central projection may be configured to accept the primary, the secondary and the auxiliary coil windings of the transformer. In other words, the primary, the secondary and the auxiliary coil windings of the transformer are configured to surround the central projection of the magnetic core 370. In some embodiment, the magnetic core 370 may be ferrite core.
As shown, the PCB 350 has only four layers for forming the transformer 310, which is easier to manufacture than the comparative embodiment of FIGS. 1 and 2.
FIG. 6 shows a flowchart for a method for manufacturing a nitride-based power converter according to one embodiment of the present invention. Referring to FIG. 6, the method may comprise the following steps:
S602: forming a transformer in a four-layered printed circuit board (PCB) ;
S604: forming an input port having a low-potential terminal and a high-potential terminal on the PCB;
S606: forming an output port having a low-potential terminal and a high-potential terminal on the PCB;
S608: disposing a primary switch on the PCB, electrically connecting a first conduction terminal of the primary switch to a first terminal of the primary winding and electrically connecting a second conduction terminal of the primary switch to the low-potential terminal of the input port; and
S610: disposing a synchronous rectifier on the PCB, electrically connecting a first conduction terminal of the synchronous rectifier to a first terminal of the secondary winding and electrically connecting a second conduction terminal electrically a high-potential terminal of the output port.
Referring to FIG. 7, the step S602: forming the transformer in the four-layered PCB may comprise the following steps:
S702: constructing a primary winding by: forming a first primary coil on a first primary winding layer of the PCB; and forming a second primary coil on a second primary winding layer of the PCB and electrically connecting the second primary coil in series with the first primary coil;
S704: constructing a secondary winding by: forming a first secondary coil on a first secondary winding layer of the PCB; and forming a second secondary coil on a second secondary winding layer of the PCB and electrically connecting the second secondary coil in series with the first secondary coil.
S706: constructing an auxiliary winding by forming a first auxiliary coil on the first primary winding layer; and forming a second auxiliary coil on the second primary winding layer and electrically connecting the second auxiliary coil in series with the first auxiliary coil.
Referring back to FIG. 6, the method may further comprise:
S612: disposing an input coupling capacitor on the PCB and electrically coupling the input coupling capacitor to the input port.
S614: disposing an output coupling capacitor on the PCB and electrically coupling the output coupling capacitor to the output port.
S616: disposing a first diode on the PCB, electrically connecting an anode of the first diode to a first terminal of the auxiliary winding.
S618: disposing a first auxiliary coupling capacitor on the PCB, electrically connecting a first end of the first auxiliary coupling capacitor to a cathode of the first diode and electrically connecting a second end of the first auxiliary coupling capacitor to a second terminal of the auxiliary winding.
S620: forming an auxiliary output port on the PCB.
S622: constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port.
S624: fixing a pair of ferrite cores to a top surface and a bottom surface of the PCB respectively and commonly shared by the transformer.
Referring to FIG. 8, the step S622: constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port may comprise the following steps:
S802: disposing an auxiliary switch on the PCB, electrically connecting a first conduction terminal of the auxiliary switch to the first end of the first auxiliary coupling capacitor.
S804: disposing an inductor on the PCB, electrically connecting a first end of the inductor to a second conduction terminal of the auxiliary switch and electrically connecting a second end of the inductor L1 to the second terminal of the auxiliary winding.
S806: disposing a second diode on the PCB, electrically connecting a cathode of the second diode to the second conduction terminal of the auxiliary switch and the second end of the inductor.
S808: disposing a second auxiliary coupling capacitor on the PCB, electrically connecting a first end of the second auxiliary coupling capacitor to an anode of the second diode and electrically connecting a second end of the second auxiliary coupling capacitor to the second terminal of the auxiliary winding.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations. While the apparatuses disclosed herein have been described with reference to particular structures, shapes, materials, composition of matter and relationships…etc., these descriptions and illustrations are not limiting. Modifications may be made to adapt a particular situation to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto.

Claims (25)

  1. A nitride-based power converter comprising:
    an input port having a low-potential terminal and a high-potential terminal;
    an output port having a low-potential terminal and a high-potential terminal;
    a transformer having a primary winding electrically coupled to the input port and a secondary winding electrically coupled to the output port;
    a primary switch having a first conduction terminal electrically coupled to a first terminal of the primary winding and a second conduction terminal electrically coupled to the low-potential terminal of the input port; and
    a high-voltage synchronous rectifier having a first conduction terminal electrically coupled to a first terminal of the secondary winding and a second conduction terminal electrically coupled to a high-potential terminal of the output port.
  2. The nitride-based power converter according to claim 1, wherein the high-voltage synchronous rectifier is a high-voltage GaN transistor.
  3. The nitride-based power converter according to claim 2, wherein the high-voltage GaN transistor has a voltage rating equal or greater than 150V.
  4. The nitride-based power converter according to claim 3, wherein the high-voltage GaN transistor is a GaN field effect transistor.
  5. The nitride-based power converter according to claim 4, wherein the GaN field effect transistor is a GaN high-electron-mobility field effect transistor.
  6. The nitride-based power converter according to claim 5, wherein the GaN high-electron-mobility field effect transistor is a GaN enhancement-mode high-electron-mobility field effect transistor.
  7. The nitride-based power converter according to any one of claims 1 to 6, further comprising an input coupling capacitor coupled to the input port.
  8. The nitride-based power converter according to any one of claims 1 to 6, further comprising an output coupling capacitor coupled to the output port.
  9. The nitride-based power converter according to any one of claims 1 to 6, further comprising an auxiliary output port; and wherein the transformer further has an auxiliary winding electrically coupled to the auxiliary output port.
  10. The nitride-based power converter according to claim 9, further comprising:
    a first diode having an anode electrically coupled to a first terminal of the auxiliary winding; and
    a first auxiliary coupling capacitor having a first end electrically coupled to a cathode of the first diode and a second end electrically coupled to a second terminal of the auxiliary winding;
  11. The nitride-based power converter according to claim 10, further comprising a buck-boost circuit coupled between the auxiliary winding and the auxiliary output port.
  12. The nitride-based power converter according to claim 11, wherein the buck-boost circuit includes:
    an auxiliary switch having a first conduction terminal electrically coupled to the first terminal of the first auxiliary coupling capacitor;
    an inductor having a first end electrically coupled to a second conduction terminal of the auxiliary switch and a second end electrically coupled to the second terminal of the auxiliary winding;
    a second diode having a cathode electrically coupled to the second conduction terminal of the auxiliary switch; and
    a second auxiliary coupling capacitor having a first end electrically coupled to an anode of the second diode and a second end electrically coupled to the second terminal of the auxiliary winding.
  13. The nitride-based power converter according to any one of claims 1 to 12, further comprising a four-layered printed circuit board (PCB) comprising a first primary winding layer, a second primary winding layer, and a first secondary winding layer and a second secondary winding layer and wherein:
    the primary winding comprises:
    a first primary coil formed on the first primary winding layer; and
    a second primary coil formed on the second primary winding layer and electrically connected in series with the first primary coil; and
    the secondary winding comprises:
    a first secondary coil formed on the first secondary winding layer; and
    a second secondary coil formed on the second secondary winding layer and electrically connected in series with the first secondary coil.
  14. The nitride-based power converter according to claim 13, wherein the auxiliary winding comprises:
    a first auxiliary coil formed on the first primary winding layer; and
    a second auxiliary coil formed on the second primary winding layer and electrically connected in series with the first auxiliary coil.
  15. The nitride-based power converter according to any one of claims 1 to 14, further comprises a pair of ferrite cores being fixed to a top surface and a bottom surface of the PCB respectively and commonly shared by the transformer.
  16. A method for manufacturing a nitride-based power converter, comprising:
    forming a transformer having a primary winding and a secondary winding in a four-layered printed circuit board (PCB) ;
    forming an input port having a low-potential terminal and a high-potential terminal on the PCB;
    forming an output port having a low-potential terminal and a high-potential terminal on the PCB;
    disposing a primary switch on the PCB, electrically connecting a first conduction terminal of the primary switch to a first terminal of the primary winding and electrically connecting a second conduction terminal of the primary switch to the low-potential terminal of the input port; and
    disposing a high-voltage synchronous rectifier on the PCB, electrically connecting a first conduction terminal of the synchronous rectifier to a first terminal of the secondary winding and electrically connecting a second conduction terminal of the synchronous rectifier to a high-potential terminal of the output port.
  17. The method according to claim 16, wherein forming the transformer in the four-layered printed circuit board (PCB) comprises:
    constructing a primary winding by:
    forming a first primary coil on a first primary winding layer of the PCB; and
    forming a second primary coil on a second primary winding layer of the PCB and electrically connecting the second primary coil in series with the first primary coil;
    constructing a secondary winding by:
    forming a first secondary coil on a first secondary winding layer of the PCB; and
    forming a second secondary coil on a second secondary winding layer of the PCB and electrically connecting the second secondary coil in series with the first secondary coil;
  18. The method according to claim 17, further comprising disposing an input coupling capacitor on the PCB and electrically coupling the input coupling capacitor to the input port; and
  19. The method according to claims 17 or 18, further comprising disposing an output coupling capacitor on the PCB and electrically coupling the output coupling capacitor to the output port.
  20. The method according to any one of claims 17 to 19, wherein forming the transformer further comprises constructing an auxiliary winding by:
    forming a first auxiliary coil on the first primary winding layer; and
    forming a second auxiliary coil on the second primary winding layer and electrically connecting the second auxiliary coil in series with the first auxiliary coil.
  21. The method according to claim 20, further comprising:
    disposing a first diode on the PCB, electrically connecting an anode of the first diode to a first terminal of the auxiliary winding; and
    disposing a first auxiliary coupling capacitor on the PCB, electrically connecting a first end of the first auxiliary coupling capacitor to a cathode of the first diode and electrically connecting a second end of the first auxiliary coupling capacitor to a second terminal of the auxiliary winding.
  22. The method according to claim 21, further comprising
    forming an auxiliary output port on the PCB; and
    constructing a buck-boost circuit and coupling the buck-boost circuit between the auxiliary winding and the auxiliary output port.
  23. The method according to claim 22, wherein construction of the buck-boost circuit comprises:
    disposing an auxiliary switch on the PCB, electrically connecting a first conduction terminal of the auxiliary switch to the first end of the first auxiliary coupling capacitor;
    disposing an inductor on the PCB, electrically connecting a first end of the inductor to a second conduction terminal of the auxiliary switch and electrically connecting a second end of the inductor to the second terminal of the auxiliary winding;
    disposing a second diode on the PCB, electrically connecting a cathode of the second diode to the second conduction terminal of the auxiliary switch and the second end of the inductor; and
    disposing a second auxiliary coupling capacitor on the PCB, electrically connecting a first end of the second auxiliary coupling capacitor to an anode of the second diode and electrically connecting a second end of the second auxiliary coupling capacitor to the second terminal of the auxiliary winding.
  24. The method according to any one of claims 17 to 23, further comprising fixing a pair of ferrite cores to a top surface and a bottom surface of the PCB respectively and commonly shared by the transformer.
  25. The method according to any one of claims 16 to 23, wherein the high-voltage synchronous rectifier is a high-voltage GaN transistor having a voltage rating equal or greater than 150V.
PCT/CN2022/124949 2022-10-12 2022-10-12 Nitride-based power converter and method for manufacturing thereof WO2024077527A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/124949 WO2024077527A1 (en) 2022-10-12 2022-10-12 Nitride-based power converter and method for manufacturing thereof
CN202280004814.5A CN115997336A (en) 2022-10-12 2022-10-12 Nitride-based power converter and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124949 WO2024077527A1 (en) 2022-10-12 2022-10-12 Nitride-based power converter and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2024077527A1 true WO2024077527A1 (en) 2024-04-18

Family

ID=85990622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124949 WO2024077527A1 (en) 2022-10-12 2022-10-12 Nitride-based power converter and method for manufacturing thereof

Country Status (2)

Country Link
CN (1) CN115997336A (en)
WO (1) WO2024077527A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188400A1 (en) * 2012-01-20 2013-07-25 The Ohio State University Enhanced flyback converter
CN105896987A (en) * 2015-03-24 2016-08-24 上海英联电子系统有限公司 Flyback converter bootstrap type synchronous rectification drive circuit
US20220021312A1 (en) * 2020-07-15 2022-01-20 Tdk Corporation Switching power supply unit and electric power supply system
WO2022034223A1 (en) * 2020-08-14 2022-02-17 Eggtronic Engineering SpA Improved performance of flyback and ac/dc power converter system
US20220254885A1 (en) * 2021-02-10 2022-08-11 Innoscience (Suzhou) Technology Co., Ltd. MULTI-FUNCTIONAL PCB FOR ASSEMBLING GaN-BASED POWER CONVERTER AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188400A1 (en) * 2012-01-20 2013-07-25 The Ohio State University Enhanced flyback converter
CN105896987A (en) * 2015-03-24 2016-08-24 上海英联电子系统有限公司 Flyback converter bootstrap type synchronous rectification drive circuit
US20220021312A1 (en) * 2020-07-15 2022-01-20 Tdk Corporation Switching power supply unit and electric power supply system
WO2022034223A1 (en) * 2020-08-14 2022-02-17 Eggtronic Engineering SpA Improved performance of flyback and ac/dc power converter system
US20220254885A1 (en) * 2021-02-10 2022-08-11 Innoscience (Suzhou) Technology Co., Ltd. MULTI-FUNCTIONAL PCB FOR ASSEMBLING GaN-BASED POWER CONVERTER AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
CN115997336A (en) 2023-04-21

Similar Documents

Publication Publication Date Title
US10325714B2 (en) Integrated magnetic component and switched mode power converter
US9812989B1 (en) Isolated power transfer device
US7123123B2 (en) High-frequency power transformer
EP1760867B1 (en) Switching power supply unit
US10825598B2 (en) Planar magnetic element
US11424071B2 (en) Power conversion device
WO2015016146A1 (en) Gate-power-supply device and semiconductor circuit breaker using same
WO2020129376A1 (en) Power conversion device, multilayer substrate constituting same, and vehicle equipped with power conversion device
US20220230797A1 (en) Stacked matrix transformer
JP4757683B2 (en) Power supply
WO2024077527A1 (en) Nitride-based power converter and method for manufacturing thereof
WO2024077528A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
WO2023141976A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
US11916490B2 (en) Multi-functional PCB for assembling GaN-based power converter
US11916005B2 (en) Multi-functional PCB for assembling GaN-based power converter and method for manufacturing the same
US11923778B2 (en) High efficiency and high density GaN-based power converter and method for manufacturing the same
US10917088B1 (en) Power conversion device
WO2024103396A1 (en) Power converter and method for manufacturing the same
US10404178B2 (en) Insulation type step-up converter
WO2016005537A2 (en) Inductor structure for multi-phase power conversion
JP6455368B2 (en) Active clamp forward type DC-DC converter circuit
US20230246553A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
US20240313667A1 (en) Integrated rectifier module
CN118659673A (en) Integrated rectifier module
US20220238271A1 (en) Transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961719

Country of ref document: EP

Kind code of ref document: A1