WO2024077528A1 - GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER - Google Patents

GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER Download PDF

Info

Publication number
WO2024077528A1
WO2024077528A1 PCT/CN2022/124952 CN2022124952W WO2024077528A1 WO 2024077528 A1 WO2024077528 A1 WO 2024077528A1 CN 2022124952 W CN2022124952 W CN 2022124952W WO 2024077528 A1 WO2024077528 A1 WO 2024077528A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
switched
planar coil
power supply
mode power
Prior art date
Application number
PCT/CN2022/124952
Other languages
French (fr)
Inventor
Yanbo Zou
Fada Du
Yulin Chen
Chao Tang
Original Assignee
Innoscience (Shenzhen) Semiconductor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innoscience (Shenzhen) Semiconductor Co., Ltd. filed Critical Innoscience (Shenzhen) Semiconductor Co., Ltd.
Priority to CN202280004821.5A priority Critical patent/CN116076011A/en
Priority to PCT/CN2022/124952 priority patent/WO2024077528A1/en
Publication of WO2024077528A1 publication Critical patent/WO2024077528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention generally relates to GaN-based switched mode power supplies. More specifically, the present invention relates to GaN-based switched mode power supplies with planar transformers exhibiting improved electrical and magnetic properties.
  • Switched mode power supplies are increasingly used in power converters from AC to DC and in electrical battery charging applications (mobile electronics, electric vehicles) .
  • Switched mode power supplies switch between full-on and full-off states with minimal time spent in transitions, which reduces energy wastage. Switching may take place at high frequencies up to several MHz; as a result, smaller transformers and other components (e.g., capacitors, inductors) may be used, permitting the overall footprint of power supplies and power converters to be reduced.
  • planar transformers Transformer coils are typically deposited on substrates using printed circuit techniques. The coils are configured to surround magnetic core for raising the level of magnetic flux.
  • gapped magnetic core is used to avoid saturation of inductance.
  • the air gap may cause leakage magnetic flux lines which pass through the transformer coils such that eddy current loss is generated and system efficiency is reduced.
  • a switched mode power supply includes a flyback converter with a GaN-based power semiconductor transistor and a planar transformer.
  • the planar transformer includes a magnetic core and primary and secondary planar coil windings.
  • the magnetic core has an upper core and a lower core being configured to accept the primary and the secondary planar coil windings.
  • the lower core has at least three projections including two peripheral projections and a central projection being surrounded by the primary and the secondary planar coil windings.
  • the central projection and the two peripheral projections have a same height such that there is no air gap between the central projection of the lower core and the upper core when the two peripheral projections contact the upper core.
  • the central projection being made of iron powder and the two peripheral projections being made of ferrite material.
  • FIG. 1 depicts a switched mode power supply with flyback converter according to an embodiment
  • FIG. 2 is a cross-sectional side view of a planar transformer that may be used in the power supply of FIG. 1;
  • FIG. 3 is a perspective view of the planar transformer of FIG. 2;
  • FIG. 4 depicts a switched mode power supply with an active clamp flyback converter according to an embodiment.
  • FIG. 1 is a switched mode power supply 10 according to an embodiment that includes a flyback converter configuration.
  • Power supply 10 includes a GaN-based power semiconductor transistor 110 that is the main switch of the circuit. Transistor 110 is switched on and off at extremely high frequency, up to the megahertz range. When the GaN-based switching transistor 110 is in the “on” state, it conducts current; consequently, the voltage drop across transistor 110 is at its minimal value. In the “off” state, no current flows through transistor 110. This switching creates a high-frequency AC intermediary. The AC is rectified to produce the desired DC output when the switched mode power supply is used as an AC to DC converter. Alternatively, a DC input may be used and an output DC may be stepped up or stepped down.
  • the switched mode power supply of FIG. 1 has a flyback converter configuration.
  • the flyback converter is a type of buck-boost converter that can produce an output voltage greater or less than the input voltage depending upon the duty cycle.
  • the flyback converter configuration includes a clamper circuit for shifting an input voltage supplied to the transformer,
  • the clamper circuit may include a clamp capacitor 137 having one end electrically connected to the input voltage supply; a resistor 138 connected in parallel to the clamp capacitor 137; and a clamp diode 135 having a cathode electrically connected to the other end of the clamp capacitor 137 and an anode electrically connected to the primary winding.
  • a primary coil 190 (as shown in FIG. 2) of transformer 100 is directly connected to an input voltage source 107.
  • the primary current and magnetic flux in the transformer increases.
  • An induced voltage in the secondary coil 192 will be negative.
  • Capacitor 120 supplies energy to the output load 130.
  • the GaN-based switching transistor is open/on, the primary current and magnetic flux drops. The secondary voltage is positive, and current flows from the transformer 100 and recharges capacitor 120.
  • Transformer 100 includes a magnetic core that includes an upper core 150 and a lower core 160.
  • the lower core includes three projections: two peripheral projections 170 and a central projection 180. the central projection and the two peripheral projections 170 have a same height such that there is no air gap between the central projection of the lower core 180 and the upper core when the two peripheral projections contact the upper core 172.
  • the central projection 180 is made of iron powder and the two peripheral projections 170 are made of ferrite material.
  • the planar coils 190 and 192 may be metal lines (e.g., copper, nickel) deposited on a substate such as a printed circuit board 196 (as shown FIG. 3) or polymer substrate using printed circuit techniques. However, any technique may be used to create the planar metal coils 190 and 192.
  • the primary coils 190 are surrounded on the upper and lower sides by secondary coils 192; other arrangements may also be used. Alternative arrangements include alternating primary and secondary coils, or a set of one or more primary coils positioned adjacent to a set of one or more secondary coils.
  • Each element 190 and 192 may be part of a set of side-by-side coils arranged in a planar spiral format, as seen more clearly in FIG. 3
  • FIG. 3 is a perspective view of the planar transformer of FIG. 2 with the primary coils 190 (not visible in FIG. 3) and secondary coils 192 disposed on substrates 196.
  • Each of the coils is disposed in a spiral configuration surrounding the central projection 180 such that plural metal lines are in a coplanar configuration in each of the primary and secondary coil layers. Note that, depending on the selected number of windings, more or fewer layers of primary and secondary coils may be used in FIG. 3. Other optional layers (not shown) may provide shielding or insulation or other electrical components.
  • FIG. 4 is a switched mode power supply 20 including an active clamped flyback converter configuration according to another embodiment of the present invention.
  • the power supply with active clamped flyback converter 20 differs from the power supply with a flyback converter 10 of FIG. 1 in that a switch 212 (that may be a GaN-based power semiconductor transistor) replaces the clamp diode 135.
  • a switch 212 that may be a GaN-based power semiconductor transistor
  • energy from the leakage inductance of transformer 200 is reused and supplied to load 230. This increases the efficiency of the switched mode power supply 210.
  • Capacitor 220 alternately stores energy from transformer 200 and supplies energy to output load 230 as in the embodiment of FIG. 1, above.
  • the peak voltage across the main switch 215 may be reduced; as a result, the on-resistance and conduction loss may be reduced. There is also a reduction in electromagnetic interference in the circuit of FIG. 4.
  • the switched mode power supplies of the present invention may be used in AC-DC converters, DC-DC converters, electronic device (e.g., mobile phone) battery chargers, and electronic vehicle battery chargers.
  • substantially coplanar may refer to two surfaces within a few micrometers ( ⁇ m) positioned along the same plane, for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m located along the same plane.
  • ⁇ m micrometers
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5%of the average of the values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A switched mode power supply is provided. The power supply includes a flyback converter with a GaN-based power semiconductor transistor and a planar transformer. The planar transformer includes a magnetic core and primary and secondary planar coil windings. The magnetic core has an upper core and a lower core being configured to accept the primary and the secondary planar coil windings. The lower core has at least three projections including two peripheral projections and a central projection being surrounded by the primary and the secondary planar coil windings. The central projection and the two peripheral projections have a same height such that there is no air gap between the central projection of the lower core and the upper core when the two peripheral projections contact the upper core. The central projection being made of iron powder and the two peripheral projections being made of ferrite material.

Description

GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER Field of the Invention:
The present invention generally relates to GaN-based switched mode power supplies. More specifically, the present invention relates to GaN-based switched mode power supplies with planar transformers exhibiting improved electrical and magnetic properties.
Background of the Invention:
Switched mode power supplies are increasingly used in power converters from AC to DC and in electrical battery charging applications (mobile electronics, electric vehicles) . Switched mode power supplies switch between full-on and full-off states with minimal time spent in transitions, which reduces energy wastage. Switching may take place at high frequencies up to several MHz; as a result, smaller transformers and other components (e.g., capacitors, inductors) may be used, permitting the overall footprint of power supplies and power converters to be reduced.
One technique for reducing the size of the transformer in switched mode power supplies is through the use of a planar transformer. In planar transformers, transformer coils are typically deposited on substrates using printed circuit techniques. The coils are configured to surround magnetic core for raising the level of magnetic flux. For certain types of switched mode power supplies, gapped magnetic core is used to avoid saturation of inductance. However, the air gap may cause leakage magnetic flux lines which pass through the transformer coils such that eddy current loss is generated and system efficiency is reduced. Thus, there is a need in the art for improved GaN-based switched mode power supplies with improved planar transformers with improved magnetic and electrical characteristics.
Summary of the Invention:
In accordance with one aspect of the present disclosure, a switched mode power supply is provided. The power supply includes a flyback converter with a GaN-based power semiconductor transistor and a planar transformer. The planar transformer includes a magnetic core and primary and secondary planar coil windings. The magnetic core has an upper core and a lower core being configured to accept the primary and the secondary planar coil windings.  The lower core has at least three projections including two peripheral projections and a central projection being surrounded by the primary and the secondary planar coil windings. The central projection and the two peripheral projections have a same height such that there is no air gap between the central projection of the lower core and the upper core when the two peripheral projections contact the upper core. The central projection being made of iron powder and the two peripheral projections being made of ferrite material.
By making the central projection of the magnetic core with iron powder, no air gap between the upper and lower cores is required to avoid saturation of inductance. Therefore, leakage magnetic flux lines is avoided and system efficiency is improved.
Brief Description of the Drawings:
FIG. 1 depicts a switched mode power supply with flyback converter according to an embodiment;
FIG. 2 is a cross-sectional side view of a planar transformer that may be used in the power supply of FIG. 1;
FIG. 3 is a perspective view of the planar transformer of FIG. 2;
FIG. 4 depicts a switched mode power supply with an active clamp flyback converter according to an embodiment.
Detailed Description
In the following description, preferred examples of the present disclosure will be set forth as embodiments which are to be regarded as illustrative rather than restrictive. Specific details may be omitted so as not to obscure the present disclosure; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
Turning to the drawings in detail, FIG. 1 is a switched mode power supply 10 according to an embodiment that includes a flyback converter configuration. Power supply 10 includes a GaN-based power semiconductor transistor 110 that is the main switch of the circuit. Transistor 110 is switched on and off at extremely high frequency, up to the megahertz range. When the GaN-based switching transistor 110 is in the “on” state, it conducts current; consequently, the voltage drop across transistor 110 is at its minimal value. In the “off” state, no current flows through transistor 110. This switching creates a high-frequency AC intermediary. The AC is rectified to produce the desired DC output when the switched  mode power supply is used as an AC to DC converter. Alternatively, a DC input may be used and an output DC may be stepped up or stepped down.
The switched mode power supply of FIG. 1 has a flyback converter configuration. The flyback converter is a type of buck-boost converter that can produce an output voltage greater or less than the input voltage depending upon the duty cycle. The flyback converter configuration includes a clamper circuit for shifting an input voltage supplied to the transformer, The clamper circuit may include a clamp capacitor 137 having one end electrically connected to the input voltage supply; a resistor 138 connected in parallel to the clamp capacitor 137; and a clamp diode 135 having a cathode electrically connected to the other end of the clamp capacitor 137 and an anode electrically connected to the primary winding.
When the GaN-based switching transistor 110 is closed/off, a primary coil 190 (as shown in FIG. 2) of transformer 100 is directly connected to an input voltage source 107. The primary current and magnetic flux in the transformer increases. As a result, energy is stored in transformer 100. An induced voltage in the secondary coil 192 will be negative. Capacitor 120 supplies energy to the output load 130. When the GaN-based switching transistor is open/on, the primary current and magnetic flux drops. The secondary voltage is positive, and current flows from the transformer 100 and recharges capacitor 120.
In order to increase the efficiency of the switched mode power supply 10, the transformer of FIG. 2 is provided. In the transformer of FIG. 2, the magnetic flux lines are shaped by the configuration of the magnetic core portions, as discussed in further detail below. The magnetic flux lines avoid the primary and second coils in order to reduce the loss in the primary and second coils when the magnetic flux lines pass through the coil (as seen in FIG. 3A) . Transformer 100 includes a magnetic core that includes an upper core 150 and a lower core 160. The lower core includes three projections: two peripheral projections 170 and a central projection 180. the central projection and the two peripheral projections 170 have a same height such that there is no air gap between the central projection of the lower core 180 and the upper core when the two peripheral projections contact the upper core 172.
In some embodiments, the central projection 180 is made of iron powder and the two peripheral projections 170 are made of ferrite material.
Surrounding the central projection 180 are primary planar coils 190 and secondary planar coils 192. The  planar coils  190 and 192 may be metal lines (e.g., copper, nickel) deposited on a substate such as a printed circuit board 196 (as shown FIG. 3) or polymer substrate using printed circuit techniques. However, any technique may be used to create the  planar metal coils  190 and 192. In the configuration shown in FIG. 2, the primary coils 190 are surrounded on the upper and lower sides by secondary coils 192; other arrangements may also be used. Alternative arrangements include alternating primary and secondary coils, or a set of one or more primary coils positioned adjacent to a set of one or more secondary coils. Each  element  190 and 192 may be part of a set of side-by-side coils arranged in a planar spiral format, as seen more clearly in FIG. 3
FIG. 3 is a perspective view of the planar transformer of FIG. 2 with the primary coils 190 (not visible in FIG. 3) and secondary coils 192 disposed on substrates 196. Each of the coils is disposed in a spiral configuration surrounding the central projection 180 such that plural metal lines are in a coplanar configuration in each of the primary and secondary coil layers. Note that, depending on the selected number of windings, more or fewer layers of primary and secondary coils may be used in FIG. 3. Other optional layers (not shown) may provide shielding or insulation or other electrical components.
FIG. 4 is a switched mode power supply 20 including an active clamped flyback converter configuration according to another embodiment of the present invention. The power supply with active clamped flyback converter 20 differs from the power supply with a flyback converter 10 of FIG. 1 in that a switch 212 (that may be a GaN-based power semiconductor transistor) replaces the clamp diode 135. In the active clamped flyback converter of FIG. 4, energy from the leakage inductance of transformer 200 is reused and supplied to load 230. This increases the efficiency of the switched mode power supply 210. Capacitor 220 alternately stores energy from transformer 200 and supplies energy to output load 230 as in the embodiment of FIG. 1, above.
In the power supply with active clamped flyback converter of FIG. 4, the peak voltage across the main switch 215 (GaN-based transistor) may be reduced; as a result, the on-resistance and conduction loss may be reduced. There is also a reduction in electromagnetic interference in the circuit of FIG. 4.
INDUSTRIAL APPLICABILITY:
The switched mode power supplies of the present invention may be used in AC-DC converters, DC-DC converters, electronic device (e.g., mobile phone) battery chargers, and electronic vehicle battery chargers.
While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations are not limiting. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the present disclosure as  defined by the appended claims. The illustrations may not necessarily be drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. There may be other embodiments of the present disclosure which are not specifically illustrated. The specification and the drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations.
As used herein, terms "approximately" , "basically" , "substantially" , and "about" are used for describing and explaining a small variation. When being used in combination with an event or circumstance, the term may refer to a case in which the event or circumstance occurs precisely, and a case in which the event or circumstance occurs approximately. As used herein with respect to a given value or range, the term "about" generally means in the range of ±10%, ±5%, ±1%, or ±0.5%of the given value or range. The range may be indicated herein as from one endpoint to another endpoint or between two endpoints. Unless otherwise specified, all the ranges disclosed in the present disclosure include endpoints. The term "substantially coplanar" may refer to two surfaces within a few micrometers (μm) positioned along the same plane, for example, within 10 μm, within 5 μm, within 1 μm, or within 0.5 μm located along the same plane. When reference is made to "substantially" the same numerical value or characteristic, the term may refer to a value within ±10%, ±5%, ±1%, or ±0.5%of the average of the values.

Claims (24)

  1. A switched-mode power supply comprising:
    a flyback converter including:
    a GaN-based power semiconductor transistor;
    a planar transformer including a magnetic core and primary and secondary planar coil windings;
    wherein:
    the magnetic core includes an upper core and a lower core being configured to accept the primary and the secondary planar coil windings;
    the lower core having at least three projections including two peripheral projections and a central projection being surrounded by the primary and the secondary planar coil windings;
    the central projection and the two peripheral projections have a same height such that there is no air gap between the central projection of the lower core and the upper core when the two peripheral projections contact the upper core;
    the central projection being made of iron powder and the two peripheral projections being made of ferrite material.
  2. The switched-mode power supply of claim 1, wherein the primary and secondary planar coil windings are disposed on one or more planar substrates.
  3. The switched-mode power supply of claim 2, wherein the one or more planar substrates include one or more printed circuit boards.
  4. The switched-mode power supply of claim 1, wherein the primary planar coil windings are surrounded in upper and lower sides by secondary coil windings.
  5. The switched-mode power supply of claim 1, wherein the flyback converter further includes a clamper circuit for shifting an input voltage supplied to the transformer.
  6. The switched-mode power supply of claim 1, wherein the flyback converter further includes an output capacitor for storing power from the transformer in an off-state.
  7. The switched-mode power supply of claim 1, wherein the flyback converter further includes a primary switch electrically coupled to the primary planar coil winding and being switched to allow or block a current flowing through the primary planar coil winding.
  8. The switched-mode power supply of claim 1, wherein the flyback converter further includes a synchronous rectifier electrically coupled to the secondary planar coil winding and being switched to allow or block a current flowing through the secondary planar coil winding.
  9. An electronic device charger including the switched-mode power supply of claim 1.
  10. The electronic device charger of claim 9, wherein the primary and secondary planar coil windings are disposed on one or more planar substrates.
  11. The electronic device charger of claim 10, wherein the one or more planar substrates include one or more printed circuit boards.
  12. The electronic device charger of claim 9, wherein the primary planar coil windings are surrounded in upper and lower sides by secondary coil windings.
  13. The electronic device charger of claim 9, wherein the flyback converter further includes a clamper circuit for shifting an input voltage supplied to the transformer.
  14. The electronic device charger of claim 9, wherein the flyback converter further includes an output capacitor for storing power from the transformer in an off-state.
  15. The electronic device charger of claim 9, wherein the flyback converter further includes a primary switch electrically coupled to the primary planar coil winding and being switched to allow or block a current flowing through the primary planar coil winding.
  16. The electronic device charger of claim 9, wherein the flyback converter further includes a synchronous rectifier electrically coupled to the secondary planar coil winding and being switched to allow or block a current flowing through the secondary planar coil winding.
  17. An AC-to-DC converter including the switched-mode power supply of claim 1.
  18. The AC-to-DC converter of claim 17, wherein the primary and secondary planar coil windings are disposed on one or more planar substrates.
  19. The AC-to-DC converter of claim 18, wherein the one or more planar substrates include one or more printed circuit boards.
  20. The AC-to-DC converter of claim 17, wherein the primary planar coil windings are surrounded in upper and lower sides by secondary coil windings.
  21. The AC-to-DC converter of claim 17, wherein the flyback converter further includes a clamper circuit for shifting an input voltage supplied to the transformer.
  22. The AC-to-DC converter of claim 17, wherein the flyback converter further includes an output capacitor for storing power from the transformer in an off-state.
  23. The AC-to-DC converter of claim 17, wherein the flyback converter further includes a primary switch electrically coupled to the primary planar coil winding and being switched to allow or block a current flowing through the primary planar coil winding.
  24. The switched-mode power supply of claim 1, wherein the flyback converter further includes a synchronous rectifier electrically coupled to the secondary planar coil winding and being switched to allow or block a current flowing through the secondary planar coil winding.
PCT/CN2022/124952 2022-10-12 2022-10-12 GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER WO2024077528A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004821.5A CN116076011A (en) 2022-10-12 2022-10-12 GaN-based switch mode power supply with planar transformer
PCT/CN2022/124952 WO2024077528A1 (en) 2022-10-12 2022-10-12 GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124952 WO2024077528A1 (en) 2022-10-12 2022-10-12 GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER

Publications (1)

Publication Number Publication Date
WO2024077528A1 true WO2024077528A1 (en) 2024-04-18

Family

ID=86175374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124952 WO2024077528A1 (en) 2022-10-12 2022-10-12 GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER

Country Status (2)

Country Link
CN (1) CN116076011A (en)
WO (1) WO2024077528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369363A3 (en) * 2022-11-14 2024-07-10 Delta Electronics Inc. Planar transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980077B1 (en) * 2004-08-19 2005-12-27 Coldwatt, Inc. Composite magnetic core for switch-mode power converters
TWI678871B (en) * 2018-08-07 2019-12-01 台達電子工業股份有限公司 Power converter
CN115004530A (en) * 2022-01-28 2022-09-02 英诺赛科(苏州)半导体有限公司 GaN-based switch mode power supply with planar transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980077B1 (en) * 2004-08-19 2005-12-27 Coldwatt, Inc. Composite magnetic core for switch-mode power converters
TWI678871B (en) * 2018-08-07 2019-12-01 台達電子工業股份有限公司 Power converter
CN115004530A (en) * 2022-01-28 2022-09-02 英诺赛科(苏州)半导体有限公司 GaN-based switch mode power supply with planar transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369363A3 (en) * 2022-11-14 2024-07-10 Delta Electronics Inc. Planar transformer

Also Published As

Publication number Publication date
CN116076011A (en) 2023-05-05

Similar Documents

Publication Publication Date Title
CN106898483B (en) Method and apparatus for isolation barrier with integrated magnetic material for high power modules
EP2517215B1 (en) Multi-turn inductors
US8040103B2 (en) Battery charging apparatus with planar inductive charging platform
US7460002B2 (en) Terminal system for planar magnetics assembly
US7123123B2 (en) High-frequency power transformer
US11749433B2 (en) Transformers having integrated magnetic structures for power converters
WO2024077528A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
US11581818B2 (en) DC voltage conversion circuit and power supply device
US20240203634A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
US20170040097A1 (en) Switching converter circuit with an integrated transformer
US20230246553A1 (en) GaN-BASED SWITCHED-MODE POWER SUPPLY WITH PLANAR TRANSFORMER
US9490057B2 (en) Integrated magnetic module
US20210082609A1 (en) Common-mode/differential-mode throttle for an electrically driveable motor vehicle
JP2007109735A (en) Coil, transformer and switching power supply
CN114373613A (en) Planar transformer, power conversion circuit and adapter
US10939543B2 (en) Unified conductor to lower the resistance between a planar transformer and one or more inductors
WO2024077527A1 (en) Nitride-based power converter and method for manufacturing thereof
KR20200069586A (en) Transformer and dc-dc converter including the same
US12125631B2 (en) Shielded electrical transformer
KR20130124851A (en) Transformer with pfc
EP4235712A1 (en) Magnetic element and image output device comprising same
US20210366647A1 (en) Shielded electrical transformer
CN116888695A (en) Transformer integrated with inductor
Mehrotra Integrated Power Chip Converter for Solid State Lighting
JP2008099478A (en) Switching power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961720

Country of ref document: EP

Kind code of ref document: A1