WO2024071662A1 - 배터리 관리 장치 및 그것의 동작 방법 - Google Patents

배터리 관리 장치 및 그것의 동작 방법 Download PDF

Info

Publication number
WO2024071662A1
WO2024071662A1 PCT/KR2023/011775 KR2023011775W WO2024071662A1 WO 2024071662 A1 WO2024071662 A1 WO 2024071662A1 KR 2023011775 W KR2023011775 W KR 2023011775W WO 2024071662 A1 WO2024071662 A1 WO 2024071662A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
switches
abnormal
management device
Prior art date
Application number
PCT/KR2023/011775
Other languages
English (en)
French (fr)
Inventor
이성건
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024071662A1 publication Critical patent/WO2024071662A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • Embodiments disclosed herein relate to a battery management device and method of operating the same.
  • Secondary batteries are batteries that can be charged and discharged, and include both conventional Ni/Cd batteries, Ni/MH batteries, and recent lithium-ion batteries.
  • lithium-ion batteries have the advantage of having much higher energy density than conventional Ni/Cd batteries, Ni/MH batteries, etc.
  • lithium-ion batteries can be made small and lightweight, so they are used as a power source for mobile devices. Recently, their range of use has expanded to a power source for electric vehicles, and they are attracting attention as a next-generation energy storage medium.
  • One purpose of the embodiments disclosed in this document is to provide a battery management device and a method of operating the same that can control the discharge rate and/or heat generation of the battery using a plurality of resistors connected in parallel.
  • a battery management device includes a plurality of resistors each connected to a plurality of batteries, a plurality of first switches respectively connecting the plurality of resistors and output terminals of the plurality of batteries, and the plurality of resistors. Determine whether each of the plurality of second switches and the plurality of batteries connected in parallel is abnormal, and operate the plurality of first switches and the plurality of second switches based on whether each of the plurality of batteries is abnormal. It may include a controller that controls it.
  • the plurality of resistors may be respectively connected in series with the plurality of batteries, and the plurality of second switches may be connected in series with each other.
  • it further includes a communication unit that receives an abnormal signal of the plurality of batteries from a battery management device for each of the plurality of batteries, and the controller detects an abnormal signal among the plurality of batteries based on the abnormal signal.
  • a first battery and at least one second battery related to the first battery may be determined.
  • the controller obtains temperature information of the plurality of batteries from a plurality of temperature measurement sensors that measure the temperature of the plurality of batteries, and detects an abnormal temperature among the plurality of batteries based on the temperature information.
  • the first battery and the at least one second battery related to the first battery may be determined.
  • the controller when the controller detects an abnormal temperature or an abnormal signal of the first battery among the plurality of batteries, the controller detects the at least one second battery adjacent to the first battery based on the arrangement order of the plurality of batteries. You can judge the battery.
  • the controller calculates the capacities of the first battery and the at least one second battery, compares the capacity of the first battery and the capacity of the second battery to connect the plurality of first switches and the The operation of a plurality of second switches can be controlled.
  • the controller when the capacity of the first battery exceeds the capacity of the at least one second battery, the controller connects the first battery and a resistor connected to the first battery among the plurality of first switches.
  • the first switch may be turned on, and at least one second switch among the plurality of second switches may be turned on.
  • the controller when the capacity of the first battery is less than the capacity of the at least one second battery, the controller connects the second battery among the plurality of first switches and a resistor connected to the second battery.
  • the first switch can be turned on, and at least one second switch among the plurality of second switches can be turned on.
  • a method of operating a battery management device includes determining whether each of a plurality of batteries has an abnormality, and a plurality of resistors respectively connected to the plurality of batteries based on whether each of the plurality of batteries has an abnormality. and controlling the operation of a plurality of first switches respectively connecting battery current output terminals of the plurality of batteries and controlling the operation of a plurality of second switches connecting the plurality of resistors in parallel. there is.
  • the step of determining whether each of the plurality of batteries has an abnormality includes receiving an abnormality signal of the plurality of batteries from a battery management device of each of the plurality of batteries, and selecting one of the plurality of batteries based on the abnormality signal.
  • the first battery in which an abnormal signal is detected and at least one second battery related to the first battery may be determined.
  • the step of determining whether each of the plurality of batteries is abnormal includes obtaining temperature information of the plurality of batteries from a plurality of temperature measurement sensors that measure the temperature of the plurality of batteries, and based on the temperature information.
  • the first battery for which an abnormal temperature is detected and the at least one second battery related to the first battery may be determined.
  • the step of determining whether each of the plurality of batteries is abnormal may include detecting an abnormal temperature or an abnormal signal of the first battery among the plurality of batteries, based on the arrangement order of the plurality of batteries.
  • the at least one second battery adjacent to the first battery may be determined.
  • the step of determining whether each of the plurality of batteries is abnormal includes calculating the capacity of the first battery and the at least one second battery, and calculating the capacity of the first battery and the capacity of the second battery. By comparison, the operations of the plurality of first switches and the plurality of second switches can be controlled.
  • the capacity of the first battery exceeds the capacity of the at least one second battery
  • the step of turning on and controlling the operation of a plurality of second switches connecting the plurality of resistors in parallel may turn on at least one second switch among the plurality of second switches.
  • the capacity of the first battery is less than the capacity of the at least one second battery
  • the step of controlling the operation of a plurality of second switches connecting the plurality of resistors in parallel may turn on at least one second switch among the plurality of second switches.
  • the battery management device and its operating method according to an embodiment disclosed in this document can control the discharge rate and/or heat generation of the battery using a plurality of resistors connected in parallel.
  • the battery management device and its operating method according to an embodiment disclosed in this document can stably manage the lifespan of the battery.
  • FIG. 1 is a diagram conceptually showing a battery exchange station according to an embodiment disclosed in this document.
  • FIG. 2 is a diagram conceptually showing a battery exchange station according to another embodiment disclosed in this document.
  • FIG. 3 is a block diagram showing a battery management device according to an embodiment disclosed in this document.
  • Figure 4 is a circuit diagram for explaining the operation of a battery management device according to an embodiment disclosed in this document.
  • FIG. 5 is a flowchart showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • FIG. 6 is a flowchart showing a method of operating a battery management device according to another embodiment disclosed in this document.
  • Figure 7 is a block diagram showing the hardware configuration of a computing system that implements a method of operating a battery management device according to an embodiment disclosed in this document.
  • FIG. 1 is a diagram conceptually showing a battery exchange station according to an embodiment disclosed in this document.
  • a battery swapping station (BSS; Battery Swapping System, 1000) can provide overall management services for batteries, such as battery analysis, evaluation, charging, and exchange.
  • the focus is on battery swapping services.
  • the battery exchange service analyzes the status of a plurality of batteries (10, 20, 30, 40, 50) subject to service, and replaces the batteries (10, 20, 30, 40, 50) with other batteries (10) according to the analysis results. , 20, 30, 40, 50).
  • This exchange may be performed automatically by administrator and/or user settings.
  • the battery exchange station 1000 collects batteries 10, 20, 30, 40, and 50 returned by the user, and provides other pre-charged batteries 10, 20, 30, 40, and 50 to the user. By providing this, a battery exchange service can be provided to the user.
  • the batteries 10, 20, 30, 40, and 50 are mounted on a target device (e.g., an electric means of transportation such as an electric vehicle (EV), an electric scooter, or an electric bicycle) to supply power to drive the target device.
  • a target device e.g., an electric means of transportation such as an electric vehicle (EV), an electric scooter, or an electric bicycle
  • a device it may be implemented in the form of a battery pack.
  • a battery pack may include a battery that stores power and a battery management system (BMS) that controls the operation of the battery.
  • BMS battery management system
  • the battery may include at least one battery cell that stores power under the control of a battery management device.
  • a battery cell is the basic unit of a battery that can be used by charging and discharging electrical energy, including lithium-ion (Li-ion) batteries, lithium-ion polymer (Li-ion polymer) batteries, nickel cadmium (Ni-Cd) batteries, and nickel hydrogen ( It may be a Ni-MH) battery, but it is not limited thereto.
  • the battery management device can control charging and discharging of the battery, and according to one embodiment, collects data that is the basis for analyzing the state of the battery in response to an external request and transmits it to the outside.
  • the plurality of batteries 10, 20, 30, 40, and 50 will be described assuming that they are implemented in the form of a battery pack. Meanwhile, in FIG. 1, it is shown that there are five batteries (10, 20, 30, 40, and 50), but the battery is not limited thereto, and the battery may be composed of n batteries (n is a natural number of 2 or more).
  • the battery exchange station 1000 may be placed at a service station where a battery exchange service is provided, or may be placed in a space separate from the service station.
  • the battery exchange station 1000 performs status analysis on the plurality of connected batteries 10, 20, 30, 40, and 50, and replaces the batteries 10, 20, and 30 with other batteries 10 according to the results of the status analysis. , 20, 30) or can be exchanged or reused (i.e., not exchanged).
  • the battery exchange station 1000 may independently analyze the status of the plurality of batteries 10, 20, 30, 40, and 50 and/or determine whether the batteries 10, 20, and 30 need to be replaced.
  • at least some operations may be performed in conjunction with a server (eg, cloud server) connected to a network.
  • the battery exchange station 1000 transmits information that is the basis for determining whether the battery needs to be replaced to the cloud server, and the cloud server determines whether the battery needs to be replaced based on the received information and replaces the battery. Information on whether replacement is necessary can be transmitted to the battery exchange station 1000.
  • FIG. 2 is a diagram conceptually showing a battery exchange station according to another embodiment disclosed in this document.
  • the battery exchange station 1000 may include a battery slot unit 100, a battery management device 200, and a charger 300.
  • the battery slot unit 100 can accommodate a plurality of connected batteries 10, 20, 30, 40, and 50.
  • the battery slot unit 100 may include a plurality of battery slots that each accommodate a plurality of connected batteries.
  • the battery slot unit 100 may be connected to the battery management device 200.
  • a plurality of batteries 10, 20, 30, 40, and 50 accommodated in the battery slot unit 100 may be physically controlled based on a control signal from the battery management device 200.
  • the battery management device 200 may manage and/or control the status and/or operation of the plurality of batteries 10, 20, 30, 40, and 50.
  • the battery management device 200 may manage charging and/or discharging of a plurality of batteries 10, 20, 30, 40, and 50.
  • the battery management device 200 can monitor the voltage, current, temperature, etc. of each of the plurality of batteries 10, 20, 30, 40, and 50.
  • the battery management device 200 may calculate parameters representing the states of the plurality of batteries 10, 20, 30, 40, and 50 based on monitored measured values such as voltage, current, and temperature.
  • the battery management device 200 may manage the State of Charge (SOC) and/or State of Health (SOH) of a plurality of batteries 10, 20, 30, 40, and 50 used to provide services.
  • the battery management device 200 may receive state of charge (SOC) information for each of the plurality of batteries 10, 20, 30, 40, and 50 from the corresponding batteries 10, 20, and 30.
  • SOC state of charge
  • the SOC information represents the current SOC of the battery
  • SOC may mean the state of charge, that is, the remaining capacity ratio, of the battery included in the battery.
  • the battery management device of the battery in question can calculate the remaining capacity ratio by dividing the currently available capacity of the battery by the total capacity of the battery. As an example, the remaining capacity ratio can be calculated as a percentage.
  • the battery management device 200 may obtain SOC information by directly calculating the remaining capacity ratio of the battery of the corresponding battery without receiving the SOC information from the battery management device of the corresponding battery.
  • the charger 300 may charge each of the plurality of batteries 10, 20, 30, 40, and 50 under the control of the battery management device 200.
  • the charger 300 receives power from an external commercial power source and converts it into a form of power that can be received by a plurality of batteries 10, 20, 30, 40, 50. 50), power can be supplied.
  • the charger 300 supplies power to the plurality of batteries (10, 20, 30, 40, 50) until the SOC of the plurality of batteries (10, 20, 30, 40, 50) becomes 100%. 50) can be buffered.
  • FIG. 3 is a block diagram showing a battery management device according to an embodiment disclosed in this document.
  • the battery management device 200 may include a plurality of resistors (R), a plurality of first switches 210, a plurality of second switches 220, a controller 230, and a communication unit 240. You can.
  • the battery management device 200 uses an ignition battery or a nearby battery to suppress the spread of heat to the adjacent battery or all batteries. In order to remove fuel, which is the energy source, the ignition battery or nearby battery can be discharged.
  • the battery management device 200 connects a plurality of resistors R to the outside of the plurality of batteries 10, 20, 30, 40, and 50, and applies a discharge current to each resistor to discharge the batteries.
  • the discharge rate of the battery is determined by the resistance value of a plurality of resistors (R), and the resistance value must be changed to adjust the discharge rate of the battery.
  • the battery management device 200 may connect a plurality of resistors R in parallel to distribute the discharge current to the plurality of resistors R connected in parallel, thereby adjusting the discharge current value and thus the discharge rate.
  • the plurality of resistors R may be connected in series with the plurality of batteries 10, 20, 30, 40, and 50, respectively. Additionally, the plurality of resistors R may be respectively connected to the plurality of first switches 210 in series. Specifically, as the plurality of resistors R turn on, the plurality of batteries 10, 20, 30, 40, which are connected in series with the first switch 210. By being connected in series with 50), the battery can be discharged.
  • the plurality of resistors R are connected in parallel with each other, and may be selectively connected in parallel with each other based on the turning on/off of the plurality of first switches 210 connected in series to each other. Specifically, one of the first switches 210 among the plurality of first switches 210 connected in series to the plurality of resistors R is selectively turned on, so that the on state of the plurality of resistors R connected in parallel is turned on. Only the resistors R connected to the plurality of first switches 210 may be connected in parallel with each other.
  • some resistors R among the plurality of resistors R may be selectively connected in parallel based on whether the plurality of first switches 210 are on or off. Accordingly, the resistance values of the plurality of resistors R may be changed, and thus the discharge rates of the plurality of batteries 10, 20, 30, 40, and 50 may be changed.
  • the plurality of first switches 210 may connect the plurality of resistors R and the output terminals of the plurality of batteries 10, 20, 30, 40, and 50, respectively.
  • the plurality of first switches 210 may be connected in series with the plurality of batteries 10, 20, 30, 40, and 50, respectively. Additionally, the plurality of first switches 210 may each be connected in series with a plurality of resistors (R).
  • Each of the plurality of first switches 210 may be turned on and off by receiving a control signal from the controller 230.
  • the plurality of second switches 220 may connect a plurality of resistors (R) in parallel.
  • the plurality of second switches 220 may be connected in series to each other.
  • Each of the plurality of second switches 220 may be turned on and off by receiving a control signal from the controller 230.
  • the communication unit 240 may communicate wired and/or wirelessly with a battery management system (BMS) of each of the plurality of batteries 10, 20, 30, 40, and 50.
  • BMS battery management system
  • the communication unit 240 may communicate with each battery management device of the plurality of batteries 10, 20, 30, 40, and 50 using a differential input communication protocol.
  • CAN Controller Area Network
  • the communication unit 240 communicates with each battery management device of the plurality of batteries 10, 20, 30, 40, and 50 using wireless communication protocols such as Wi-Fi (registered trademark) and Bluetooth (registered trademark). can do.
  • the communication unit 240 may periodically communicate with a battery management device for each of the plurality of batteries 10, 20, 30, 40, and 50.
  • the battery management device of one of the batteries 10, 20, 30, 40, and 50 does not transmit a communication signal after a certain period of time
  • the communication unit 240 sends a communication signal to the plurality of batteries 10, 20, 30, 40, 50)
  • a communication signal may be transmitted back to the battery management device of any one battery.
  • the communication unit 240 may receive a battery abnormality signal from a battery management device for one of the plurality of batteries 10, 20, 30, 40, and 50.
  • the controller 230 may determine whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal.
  • the controller 230 may cause the communication unit 240 to fail to receive a communication signal from the battery management device of any one of the plurality of batteries 10, 20, 30, 40, and 50 after a certain period. , if the communication unit 240 does not receive a communication signal even if the communication signal is repeatedly transmitted (Retry) to the battery management device of any one of the plurality of batteries 10, 20, 30, 40, and 50, the plurality of batteries 10, 20, 30, 40, and 50 Any one of (10, 20, 30, 40, 50) batteries can be judged to be an abnormal battery.
  • the controller 230 when the communication unit 240 receives a battery abnormal signal from a battery management device of one of the plurality of batteries 10, 20, 30, 40, and 50, the controller 230 Any one of the batteries 10, 20, 30, 40, and 50 may be determined to be a defective battery.
  • the controller 230 receives temperature information of a plurality of batteries 10, 20, 30, 40, and 50 from a plurality of temperature measurement sensors mounted on the battery slot unit 100, and measures temperature information based on the temperature information. Therefore, if the temperature of any one of the plurality of batteries (10, 20, 30, 40, 50) exceeds the critical temperature, one of the plurality of batteries (10, 20, 30, 40, 50) is abnormal. It can be judged as follows.
  • the controller 230 may determine that the first battery 10, in which an abnormal temperature or abnormal signal is detected, among the plurality of batteries 10, 20, 30, 40, and 50, is an abnormal battery.
  • the controller 230 may determine at least one second battery 20 related to the first battery 10 that is determined to be an abnormal battery.
  • the controller 230 determines at least one second battery 20 adjacent to the first battery 10 based on the arrangement order of the plurality of batteries 10, 20, 30, 40, and 50 previously stored. can do.
  • the controller 230 may control the operation of the plurality of first switches 210 and the plurality of second switches 220 based on whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal. .
  • Figure 4 is a circuit diagram for explaining the operation of a battery management device according to an embodiment disclosed in this document.
  • Figure 4 exemplarily shows a case where five batteries (10, 20, 30, 40, 50) to receive battery exchange service are connected to the battery exchange system 1000, but the scope of the present invention is limited thereto.
  • n (n is a natural number of 2 or more) batteries may be connected to the battery exchange system 1000 to receive a battery exchange service.
  • the battery slot unit 100 may include a plurality of battery slots 110, 120, 130, 140, and 150.
  • Each of the battery slots 110, 120, 130, 140, and 150 can accommodate one of the batteries 10, 20, 30, 40, and 50.
  • Each of the plurality of battery slots 110, 120, 130, 140, and 150 may include temperature measurement sensors T1, T2, T3, T4, and T5.
  • the plurality of temperature measurement sensors can measure the temperature of the plurality of batteries (10, 20, 30, 40, and 50).
  • the plurality of temperature measurement sensors T1, T2, T3, T4, and T5 may include a plurality of thermistors.
  • a thermistor refers to a resistor whose resistance changes sensitively according to changes in temperature, and the thermistor can measure temperature using the change in resistance according to the temperature of the ceramic material. When current is applied to a thermistor, a self-heating phenomenon may occur, causing the temperature of the thermistor itself to rise.
  • the controller 230 detects a plurality of batteries ( Temperature information of 10, 20, 30, 40, 50) can be obtained. For example, the controller 230 may determine that the first battery 10 with an abnormal temperature detected among the plurality of batteries 10, 20, 30, 40, and 50 is an abnormal battery.
  • the controller 230 allows the communication unit 240 to receive a communication signal from the battery management device of the first battery 10 among the plurality of batteries 10, 20, 30, 40, and 50 after a certain period. If the communication signal is not received and the communication unit 240 does not receive the communication signal even if it repeatedly transmits (Retry) the communication signal to the battery management device of the first battery 10, the first battery 10 may be determined to be an abnormal battery. there is.
  • the controller 230 allows the communication unit 240 to receive a battery abnormality signal from the battery management device of the first battery 10 among the plurality of batteries 10, 20, 30, 40, and 50.
  • the first battery 10 may be determined to be an abnormal battery.
  • the controller 230 may transmit a signal to stop charging of the plurality of batteries 10, 20, 30, 40, and 50 to the charger 300.
  • the controller 230 may calculate the capacities of the first battery 10 and the second battery 20.
  • the controller 230 may receive battery data through communication with the battery management device of the first battery 10 and the battery management device of the second battery 10.
  • the battery data may include, for example, battery voltage, voltage of battery cells constituting the battery, fault signal, battery internal temperature, etc.
  • the controller 230 may calculate the capacities of the first battery 10 and the second battery 10 based on the battery data of the first battery 10 and the second battery 10.
  • the controller 230 may control the operation of the plurality of first switches 210 and the plurality of second switches 220 by comparing the capacity of the first battery 10 and the capacity of the second battery 20.
  • the controller 230 controls the first battery 10 when the capacity of the first battery 10 exceeds the capacity of the second battery 20 or when the capacity is the same as the second battery 20. It can be discharged up to. For example, the controller 230 determines that the capacity of the first battery 10 is 8000 mA, the voltage of the first battery 10 is 60V, the capacity of the second battery 20 is 4000 mAh, and the voltage of the second battery 20 is 60V. In the case of 50V, the first battery 10 can be discharged until its capacity is the same as that of the second battery 20.
  • the controller 230 turns on the first switch 211 connecting the first battery 10 and the first resistor R1 connected to the first battery 10 among the plurality of first switches 210, and turns on the remaining switches 210.
  • the plurality of first switches 212, 213, 214, and 215 can be turned off.
  • the controller 230 may turn on at least one second switch among the plurality of second switches 220 to adjust the distribution ratio of the discharge current of the first battery 10 applied to the plurality of resistors R.
  • the controller 230 uses the first resistor (R1), the second resistor (R2), and the third resistor (R2) among the plurality of resistors (R). R3) and the fourth resistor (R4) are connected in parallel, so that the total resistance value of the first resistor (R1), second resistor (R2), third resistor (R3), and fourth resistor (R4) connected in parallel is 6. It can be controlled by ohm.
  • the controller 230 is configured to connect a first resistor (R1), a second resistor (R2), a third resistor (R3), and a fourth resistor (R4) in parallel among the plurality of second switches 220. 2 switches 221, 222, and 223 can be turned on, and the second switch 224, which can connect the fifth resistor R5 in parallel, can be turned off.
  • the controller 230 controls the second battery 20 until the capacity is the same as that of the first battery 10. It can be discharged. For example, the controller 230 determines that the capacity of the first battery 10 is 4000 mA, the voltage of the first battery 10 is 50V, the capacity of the second battery 20 is 8000 mAh, and the voltage of the second battery 20 is 50V. When the voltage is 60V, the second battery 20 can be discharged until its capacity is the same as that of the first battery 10.
  • the controller 230 turns on the first switch 212 connecting the second battery 20 and the second resistor R2 connected to the second battery 20 among the plurality of first switches 210, and turns on the remaining switches 210.
  • the plurality of first switches 211, 213, 214, and 215 can be turned off.
  • the controller 230 may turn on at least one second switch among the plurality of second switches 220 to adjust the distribution ratio of the discharge current of the second battery 20 applied to the plurality of resistors R.
  • the controller 230 uses the first resistor (R1), the second resistor (R2), and the third resistor (R2) among the plurality of resistors (R). R3) and the fourth resistor (R4) are connected in parallel, so that the total resistance value of the first resistor (R1), second resistor (R2), third resistor (R3), and fourth resistor (R4) connected in parallel is 6. It can be controlled by ohm.
  • the controller 230 is configured to connect a first resistor (R1), a second resistor (R2), a third resistor (R3), and a fourth resistor (R4) in parallel among the plurality of second switches 220. 2 switches 221, 222, and 223 can be turned on, and the second switch 224, which can connect the fifth resistor R5 in parallel, can be turned off.
  • the controller 230 may simultaneously discharge the first battery 10 and the second battery 20 when the capacity of the first battery 10 is the same as the capacity of the second battery 20. .
  • the controller 230 turns on the first switch 211 connecting the first battery 10 and the first resistor R1 connected to the first battery 10 among the plurality of first switches 210, and 2 Turn on the first switch 212 connecting the battery 20 and the second resistor R2 connected to the second battery 20, and turn off the remaining plurality of first switches 213, 214, and 215. You can do it.
  • the controller 230 turns on at least one second switch among the plurality of second switches 220 to cause the first battery 10 and the second battery 20 to be applied to the plurality of resistors R. The distribution ratio of the discharge current can be adjusted.
  • the battery management device can control the discharge rate and heat generation of the battery using a plurality of resistors connected in parallel.
  • the battery management device can operate the battery exchange station stably by preventing chain accidents from occurring in adjacent batteries by forcibly discharging the abnormal battery and adjacent batteries when a dangerous situation or abnormal symptom occurs in some batteries.
  • FIG. 5 is a flowchart showing a method of operating a battery management device according to an embodiment disclosed in this document.
  • the operating method of the battery management device includes determining whether each of the plurality of batteries is abnormal (S101), and determining whether each of the plurality of batteries is abnormal.
  • steps S101 to S103 will be described in detail with reference to FIGS. 1 to 4. Since the battery management device 200 may be substantially the same as the battery management device 200 described with reference to FIGS. 1 to 4, it will be briefly described below to avoid duplication of description.
  • step S101 the controller 230 may determine whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal.
  • step S101 the controller 230 fails to receive a communication signal from the battery management device of any one of the plurality of batteries 10, 20, 30, 40, and 50 after a certain period of time, If the communication unit 240 does not receive a communication signal even if it repeatedly transmits (Retry) a communication signal to the battery management device of any one of the plurality of batteries (10, 20, 30, 40, 50), the plurality of batteries (10, 20, 30, 40, 50) Any one of the batteries (10, 20, 30, 40, 50) can be judged to be a defective battery.
  • step S101 when the communication unit 240 receives a battery abnormal signal from the battery management device of any one of the plurality of batteries 10, 20, 30, 40, and 50, the controller 230 Any one of (10, 20, 30, 40, 50) batteries can be judged to be an abnormal battery.
  • step S101 the controller 230 receives temperature information of a plurality of batteries 10, 20, 30, 40, and 50 from a plurality of temperature measurement sensors mounted on the battery slot unit 100, and based on the temperature information If the temperature of any one of the plurality of batteries (10, 20, 30, 40, 50) exceeds the critical temperature, one of the plurality of batteries (10, 20, 30, 40, 50) is designated as an abnormal battery. You can judge.
  • step S101 the controller 230 may determine that the first battery 10 for which an abnormal temperature or abnormal signal is detected among the plurality of batteries 10, 20, 30, 40, and 50 is an abnormal battery. .
  • the controller 230 may determine at least one second battery 20 related to the first battery 10 that is determined to be an abnormal battery.
  • step S101 for example, the controller 230 connects at least one second battery adjacent to the first battery 10 based on the arrangement order of the plurality of batteries 10, 20, 30, 40, 50. 20) can be judged.
  • step S102 the controller 230 may control the operation of the plurality of first switches 210 based on whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal.
  • step S102 the controller 230 may control the operation of the plurality of first switches 210 by comparing the capacity of the first battery 10 and the capacity of the second battery 20.
  • step S103 the controller 230 may control the operation of the plurality of first switches 210 based on whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal.
  • step S103 the controller 230 turns on at least one second switch among the plurality of second switches 220 to change the distribution ratio of the discharge current of the first battery 10 applied to the plurality of resistors R. It can be adjusted.
  • step S103 for example, when the resistance value of each of the plurality of resistors (R) is 24 ohm, the controller 230 selects the first resistor (R1), the second resistor (R2) among the plurality of resistors (R), The third resistor (R3) and fourth resistor (R4) are connected in parallel, so that the total of the first resistor (R1), second resistor (R2), third resistor (R3), and fourth resistor (R4) connected in parallel with each other is The resistance value can be controlled to 6 ohm.
  • step S103 specifically, the controller 230 connects the first resistor (R1), the second resistor (R2), the third resistor (R3), and the fourth resistor (R4) among the plurality of second switches 220 in parallel.
  • Some of the second switches 221, 222, and 223 that can be connected in parallel can be turned on, and the second switch 224 that can connect the fifth resistor (R5) in parallel can be turned off.
  • FIG. 6 is a flowchart showing a method of operating a battery management device according to another embodiment disclosed in this document.
  • the operating method of the battery management device includes determining whether each of the plurality of batteries is abnormal (S201) and stopping charging of all the plurality of batteries (S202). , determining the capacities of the first battery and the second battery (S203), comparing the capacities of the first battery and the second battery (S204), discharging the first battery until the capacity is the same as the second battery. It may include a step (S205), a step of discharging the second battery until the capacity is the same as that of the first battery (S206), and a step of starting simultaneous discharge of the first battery and the second battery (S207).
  • steps S201 to S207 will be described in detail with reference to FIGS. 1 to 4. Since the battery management device 200 may be substantially the same as the battery management device 200 described with reference to FIGS. 1 to 4, it will be briefly described below to avoid duplication of description.
  • step S201 the controller 230 may determine whether each of the plurality of batteries 10, 20, 30, 40, and 50 is abnormal.
  • step S201 the controller 230 may determine that the first battery 10 for which an abnormal temperature or abnormal signal is detected among the plurality of batteries 10, 20, 30, 40, and 50 is an abnormal battery. .
  • the controller 230 may determine at least one second battery 20 related to the first battery 10 that is determined to be a defective battery.
  • step S201 for example, the controller 230 connects at least one second battery adjacent to the second battery 10 based on the arrangement order of the plurality of batteries 10, 20, 30, 40, and 50. 20) can be judged.
  • step S202 the controller 230 may stop charging the plurality of batteries 10, 20, 30, 40, and 50.
  • step S202 the controller 230 may transmit a signal to the charger 300 to stop charging the first battery 10 and the second battery 20 adjacent to the first battery 10, which are determined to be abnormal batteries.
  • the controller 230 may calculate the capacities of the first battery 10 and the second battery 20 that are determined to be abnormal batteries.
  • the controller 230 may receive battery data through communication with the battery management device of the first battery 10 and the battery management device of the second battery 10.
  • the battery data may include, for example, battery voltage, voltage of battery cells constituting the battery, fault signal, battery internal temperature, etc.
  • the controller 230 may calculate the capacities of the first battery 10 and the second battery 10 based on the battery data of the first battery 10 and the second battery 10.
  • step S204 the controller 230 may compare the capacity of the first battery 10 and the capacity of the second battery 10.
  • step S205 the controller 230 may control the operation of the plurality of first switches 210 by comparing the capacity of the first battery 10 and the capacity of the second battery 20.
  • step S205 if the capacity of the first battery 10 exceeds the capacity of the second battery 20, the controller 230 controls the first battery 10 until the capacity is the same as that of the second battery 20. It can be discharged.
  • the controller 230 determines that the capacity of the first battery 10 is 8000 mA, the voltage of the first battery 10 is 60V, the capacity of the second battery 20 is 4000 mAh, and the second battery ( When the voltage of 20) is 50V, the first battery 10 can be discharged until its capacity is the same as that of the second battery 20.
  • step S102 the controller 230 turns the first switch 211 connecting the first battery 10 and the first resistor R1 connected to the first battery 10 among the plurality of first switches 210. It can be turned on, and the remaining plurality of first switches 212, 213, 214, and 215 can be turned off.
  • step S206 if the capacity of the first battery 10 is less than the capacity of the second battery 20, the controller 230 discharges the second battery 20 until the capacity is the same as that of the first battery 10. You can do it.
  • step S102 for example, the controller 230 determines that the capacity of the first battery 10 is 4000 mA, the voltage of the first battery 10 is 50V, the capacity of the second battery 20 is 8000 mAh, and the second battery ( When the voltage of 20) is 60V, the second battery 20 can be discharged until its capacity is the same as that of the first battery 10.
  • the controller 230 turns the first switch 212 connecting the second battery 20 and the second resistor R2 connected to the second battery 20 among the plurality of first switches 210. It can be turned on, and the remaining plurality of first switches 211, 213, 214, and 215 can be turned off.
  • step S207 when the capacity of the first battery 10 is the same as the capacity of the second battery 20, the controller 230 may simultaneously discharge the first battery 10 and the second battery 20.
  • step S207 the controller 230 turns the first switch 211 connecting the first battery 10 and the first resistor R1 connected to the first battery 10 among the plurality of first switches 210.
  • the first switch 212 connecting the second battery 20 and the second resistor R2 connected to the second battery 20 is turned on, and the remaining plurality of first switches 213, 214, and 215 are turned on.
  • the controller 230 turns on at least one second switch among the plurality of second switches 220 to apply the first battery 10 and the second battery to the plurality of resistors R.
  • the distribution ratio of the discharge current in (20) can be adjusted.
  • Figure 7 is a block diagram showing the hardware configuration of a computing system that implements a method of operating a battery management device according to an embodiment disclosed in this document.
  • the computing system 2000 may include an MCU 2100, a memory 2200, an input/output I/F 2300, and a communication I/F 2400. there is.
  • the MCU 2100 executes various programs (for example, a battery capacity calculation program) stored in the memory 2200 and processes various data including the SOC and SOH of a plurality of battery cells through these programs, It may be a processor that performs the functions of the battery management device 200 described above with reference to FIG. 1 or a processor that executes the operating method of the battery management device described with reference to FIG. 4 .
  • programs for example, a battery capacity calculation program
  • It may be a processor that performs the functions of the battery management device 200 described above with reference to FIG. 1 or a processor that executes the operating method of the battery management device described with reference to FIG. 4 .
  • the memory 2200 can store various programs related to calculating the SOH of a battery cell and determining a cell performance target. Additionally, the memory 2200 can store various data such as SOC and SOH data for each battery cell.
  • the memory 2200 may be a volatile memory or a non-volatile memory.
  • the memory 2200 as a volatile memory may use RAM, DRAM, SRAM, etc.
  • the memory 2200 as a non-volatile memory may be ROM, PROM, EAROM, EPROM, EEPROM, flash memory, etc.
  • the examples of memories 220 listed above are merely examples and are not limited to these examples.
  • the input/output I/F 2300 is an interface that connects input devices such as a keyboard, mouse, and touch panel (not shown) and output devices such as a display (not shown) and the MCU 2100 to transmit and receive data. can be provided.
  • the communication I/F 2300 is a component that can transmit and receive various data with a server, and may be various devices that can support wired or wireless communication. For example, programs or various data for calculating the SOH of a battery cell or determining the target can be transmitted and received from a separately provided external server through the communication I/F 2300.
  • the operating method of the battery protection device may be recorded in the memory 2200 and executed by the MCU 2100.
  • T1, T2, T3, T4, T5 multiple temperature measurement sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 문서에 개시된 일 실시예에 따른 배터리 관리 장치는 복수의 배터리와 각각 연결되는 복수의 저항, 상기 복수의 저항과 상기 복수의 배터리의 출력단을 각각 연결하는 복수의 제1 스위치, 상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치 및 상기 복수의 배터리 각각의 이상 여부를 판단하고, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어하는 컨트롤러를 포함할 수 있다.

Description

배터리 관리 장치 및 그것의 동작 방법
관련출원과의 상호인용
본 출원은 2022년 9월 27일자로 출원된 대한민국 특허출원 제10-2022-0122898호에 기초한 우선권의 이익을 주장하며, 해당 특허출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
기술분야
본 문서에 개시된 실시예들은 배터리 관리 장치 및 그것의 동작 방법에 관한 것이다.
최근 이차 전지에 대한 연구 개발이 활발히 이루어지고 있다. 이차 전지는 충방전이 가능한 전지로서, 종래의 Ni/Cd 배터리, Ni/MH 배터리 등과 최근의 리튬 이온 배터리를 모두 포함하는 의미이다. 이차 전지 중 리튬 이온 배터리는 종래의 Ni/Cd 배터리, Ni/MH 배터리 등에 비하여 에너지 밀도가 훨씬 높다는 장점이 있다. 또한, 리튬 이온 배터리는 소형, 경량으로 제작할 수 있어서 이동 기기의 전원으로 사용되며, 최근에는 전기 자동차의 전원으로 사용 범위가 확장되어 차세대 에너지 저장 매체로 주목을 받고 있다.
이러한 리튬 이온 배터리의 사용성 및 휴대성을 더욱 높이기 위해 배터리 교환 서비스가 제공되고 있다. 그런데 배터리 교환 스테이션 내에 있는 복수의 배터리 중 일부 배터리에 발화가 진행되는 경우, 주변 배터리로 연쇄 발화가 발생하게 되어 배터리 교환 스테이션의 모든 배터리가 전소될 수 있는 위험이 있다.
배터리 교환 스테이션의 연쇄 발화를 방지하기 위해 발화 배터리의 방전 속도를 높이는 방법이 있으나, 배터리의 방전 속도는 배터리에 연결된 방전 저항의 저항값에 의해 결정 및 고정되어 방전 속도를 조절하기 위해선 방전 저항 자체를 변경해야 하는 번거로움이 있다.
본 문서에 개시된 실시예들의 일 목적은 서로 병렬 연결된 복수의 저항을 이용하여 배터리의 방전 속도 및/또는 발열을 제어할 수 있는 배터리 관리 장치 및 그것의 동작 방법을 제공하는 데 있다.
본 문서에 개시된 실시예들의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치는 복수의 배터리와 각각 연결되는 복수의 저항, 상기 복수의 저항과 상기 복수의 배터리의 출력단을 각각 연결하는 복수의 제1 스위치, 상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치 및 상기 복수의 배터리 각각의 이상 여부를 판단하고, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어하는 컨트롤러를 포함할 수 있다.
일 실시예에서, 상기 복수의 저항은 상기 복수의 배터리와 각각 직렬 연결 되고, 상기 복수의 제2 스위치는 서로 직렬 연결될 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 배터리 관리 장치로부터 상기 복수의 배터리의 이상 신호를 수신하는 통신부를 더 포함하고, 상기 컨트롤러는 상기 이상 신호에 기초하여 상기 복수의 배터리 중 이상 신호가 감지된 제1 배터리 및 상기 제1 배터리와 관련된 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 컨트롤러는 상기 복수의 배터리의 온도를 측정하는 복수의 온도 측정 센서로부터 상기 복수의 배터리의 온도 정보를 획득하고, 상기 온도 정보에 기초하여 상기 복수의 배터리 중 이상 온도가 감지된 상기 제1 배터리 및 상기 제1 배터리와 관련된 상기 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 컨트롤러는 상기 복수의 배터리 중 상기 제1 배터리의 이상 온도 또는 이상 신호를 감지한 경우, 상기 복수의 배터리의 배치 순서에 기초하여 상기 제1 배터리에 인접한 상기 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 컨트롤러는 상기 제1 배터리 및 상기 적어도 하나의 제2 배터리의 용량을 산출하고, 상기 제1 배터리의 용량 및 상기 제2 배터리의 용량을 비교하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어할 수 있다.
일 실시예에서, 상기 컨트롤러는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량을 초과하는 경우, 상기 복수의 제1 스위치 중 상기 제1 배터리 및 상기 제1 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고, 상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시킬 수 있다.
일 실시예에서, 상기 컨트롤러는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량의 미만인 경우, 상기 복수의 제1 스위치 중 상기 제2 배터리 및 상기 제2 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고, 상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시킬 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법은 복수의 배터리 각각의 이상 여부를 판단하는 단계, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계 및 상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계를 포함할 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는 상기 복수의 배터리 각각의 배터리 관리 장치로부터 상기 복수의 배터리의 이상 신호를 수신하고, 상기 이상 신호에 기초하여 상기 복수의 배터리 중 이상 신호가 감지된 제1 배터리 및 상기 제1 배터리와 관련된 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는 상기 복수의 배터리의 온도를 측정하는 복수의 온도 측정 센서로부터 상기 복수의 배터리의 온도 정보를 획득하고, 상기 온도 정보에 기초하여 상기 복수의 배터리 중 이상 온도가 감지된 상기 제1 배터리 및 상기 제1 배터리와 관련된 상기 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는 상기 복수의 배터리 중 상기 제1 배터리의 이상 온도 또는 이상 신호를 감지한 경우, 상기 복수의 배터리의 배치 순서에 기초하여 상기 제1 배터리에 인접한 상기 적어도 하나의 제2 배터리를 판단할 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는 상기 제1 배터리 및 상기 적어도 하나의 제2 배터리의 용량을 산출하고, 상기 제1 배터리의 용량 및 상기 제2 배터리의 용량을 비교하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어할 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량을 초과하는 경우, 상기 복수의 제1 스위치 중 상기 제1 배터리 및 상기 제1 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고, 상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계는 상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시킬 수 있다.
일 실시예에서, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량의 미만인 경우, 상기 복수의 제1 스위치 중 상기 제2 배터리 및 상기 제2 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고, 상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계는 상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시킬 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은 서로 병렬 연결된 복수의 저항을 이용하여 배터리의 방전 속도 및/또는 발열을 제어할 수 있다.
또한, 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치 및 그것의 동작 방법은 배터리의 수명을 안정적으로 관리할 수 있다.
도 1은 본 문서에 개시된 일 실시예에 따른 배터리 교환 스테이션을 개념적으로 보여주는 도면이다.
도 2는 본 문서에 개시된 다른 실시예에 따른 배터리 교환 스테이션을 개념적으로 보여주는 도면이다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치를 보여주는 블록도이다.
도 4는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작을 설명하기 위한 회로도이다.
도 5는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 6은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 7은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 구현하는 컴퓨팅 시스템의 하드웨어 구성을 나타내는 블록도이다.
이하, 본 문서에 개시된 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 문서에 개시된 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 문서에 개시된 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 문서에 개시된 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 문서에 개시된 일 실시예에 따른 배터리 교환 스테이션을 개념적으로 보여주는 도면이다.
도 1을 참조하면, 배터리 교환 스테이션(BSS; Battery Swapping System, 1000)은 배터리의 분석, 평가, 충전, 교환 등의 배터리에 대한 전반적인 관리 서비스를 제공할 수 있으며, 본 개시에서는 배터리 교환 서비스를 중심으로 배터리 교환 스테이션(1000)의 기능을 설명하기로 한다. 여기서 배터리 교환 서비스는 서비스 대상이 되는 복수의 배터리(10, 20, 30, 40, 50)의 상태를 분석하고, 분석 결과에 따라 배터리(10, 20, 30, 40, 50)를 다른 배터리(10, 20, 30, 40, 50)로 교환하는 서비스를 의미할 수 있다. 이러한 교환은 관리자 및/또는 사용자의 설정에 의해 자동적으로 수행될 수 있다. 예를 들어, 배터리 교환 스테이션(1000)은 사용자로부터 반납되는 배터리(10, 20, 30, 40, 50)를 회수하고, 기 충전된 다른 배터리(10, 20, 30, 40, 50)를 사용자에게 제공함으로써, 사용자에게 배터리 교환 서비스를 제공할 수 있다.
여기서 배터리(10, 20, 30, 40, 50)는 대상 장치(예를 들어, EV(electrical vehicle), 전동 스쿠터, 전동 자전거 등의 전동식 이동 수단)에 장착되어 대상 장치의 구동을 위한 전원을 공급하는 장치로서, 배터리 팩(Battery Pack)의 형태로 구현될 수 있다. 배터리 팩은 전력을 저장하는 배터리와 배터리의 동작을 제어하는 배터리 관리 장치(BMS, Battery Management System)를 포함할 수 있다. 배터리는 배터리 관리 장치의 제어에 따라 전력을 저장하는 적어도 하나의 배터리 셀을 포함할 수 있다. 배터리 셀은 전기 에너지를 충방전하여 사용할 수 있는 배터리의 기본 단위로, 리튬이온(Li-ion) 전지, 리튬이온 폴리머(Li-ion polymer) 전지, 니켈 카드뮴(Ni-Cd) 전지, 니켈 수소(Ni-MH) 전지 등일 수 있으며, 이에 한정되지 않는다. 배터리 관리 장치는 배터리의 충전 및 방전을 제어할 수 있고, 일 실시예에 따라 외부의 요청에 따라 배터리의 상태 분석의 기초가 되는 데이터를 수집하여 외부로 전달할 수 있다.
이하에서 복수의 배터리(10, 20, 30, 40, 50)는 배터리 팩의 형태로 구현되는 것으로 가정하여 설명한다. 한편, 도 1에서는 복수의 배터리(10, 20, 30, 40, 50)가 5개인 것으로 도시되었지만, 이에 한정되는 것은 아니며, 배터리는 n(n은 2이상의 자연수)개의 배터리로 구성될 수 있다.
실시예에 따라, 배터리 교환 스테이션(1000)은 배터리 교환 서비스가 제공되는 서비스 스테이션에 배치되거나 서비스 스테이션과 별도의 공간에 배치될 수 있다.
배터리 교환 스테이션(1000)은 접속되는 복수의 배터리(10, 20, 30, 40, 50)에 대해 상태 분석을 진행하고, 상태 분석의 결과에 따라 배터리(10, 20, 30)를 다른 배터리(10, 20, 30)로 교환하거나 재사용(즉, 교환하지 않음)할 수 있다. 배터리 교환 스테이션(1000)은 복수의 배터리(10, 20, 30, 40, 50)에 대한 상태 분석 및/또는 배터리(10, 20, 30)의 교환 필요 여부에 대한 판단을 자체적으로 수행할 수도 있으나, 다른 실시예에 따라 적어도 일부의 동작은 네트워크(network)로 연결되는 서버(예컨대, 클라우드 서버)와 연계하여 수행될 수 있다. 일 예로, 배터리 교환 스테이션(1000)은 클라우드 서버로 배터리의 교환 필요 여부에 대한 판단의 기초가 되는 정보를 전송하고, 클라우드 서버가 수신된 정보를 기초로 배터리의 교환 필요 여부에 대해 판단하여 배터리의 교환 필요 여부에 대한 정보를 배터리 교환 스테이션(1000)으로 전송할 수 있다.
도 2는 본 문서에 개시된 다른 실시예에 따른 배터리 교환 스테이션을 개념적으로 보여주는 도면이다.
도 2를 참조하면, 배터리 교환 스테이션(1000)은 배터리 슬롯부(100), 배터리 관리 장치(200) 및 충전기(300)를 포함할 수 있다.
배터리 슬롯부(100)는 접속된 복수의 배터리(10, 20, 30, 40, 50)를 수용할 수 있다. 배터리 슬롯부(100)는 접속된 복수의 배터리 각각을 수용하는 복수의 배터리 슬롯을 포함할 수 있다. 배터리 슬롯부(100)는 배터리 관리 장치(200)와 연결될 수 있다. 배터리 슬롯부(100)에 수용된 복수의 배터리(10, 20, 30, 40, 50)는 배터리 관리 장치(200)의 제어 신호에 기초하여 물리적으로 제어될 수 있다,
배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50)의 상태 및/또는 동작을 관리 및/또는 제어할 수 있다. 배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50)의 충전 및/또는 방전을 관리할 수 있다.
또한, 배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 전압, 전류, 온도 등을 모니터링 할 수 있다. 배터리 관리 장치(200)는 모니터링 한 전압, 전류, 온도 등의 측정값에 기초하여 복수의 배터리(10, 20, 30, 40, 50)의 상태를 나타내는 파라미터를 산출할 수 있다.
배터리 관리 장치(200)는 서비스 제공에 이용되는 복수의 배터리(10, 20, 30, 40, 50)의 SOC(State of Charge) 및/또는 SOH(State of Health)를 관리할 수 있다. 배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50)각각의 SOC(state of charge) 정보를 해당 배터리(10, 20, 30)로부터 수신할 수 있다. 여기서, SOC 정보는 해당 배터리의 현재 SOC를 나타내며, SOC는 해당 배터리에 포함된 배터리의 충전 상태 즉 잔존 용량 비율을 의미할 수 있다. 해당 배터리의 배터리 관리 장치는 배터리의 현재 사용 가능한 용량을 배터리의 전체 용량으로 나누어 잔존 용량 비율을 산출할 수 있다. 일 예로, 잔존 용량 비율은 백분율로 산출될 수 있다. 다른 실시예에 따라, 배터리 관리 장치(200)는 해당 배터리의 배터리 관리 장치로부터 SOC 정보를 수신하지 않고 직접 해당 배터리의 배터리에 대한 잔존 용량 비율을 산출하여 SOC 정보를 획득할 수도 있다.
충전기(300)는 배터리 관리 장치(200)의 제어에 따라 복수의 배터리(10, 20, 30, 40, 50) 각각을 충전할 수 있다. 충전기(300)는 외부의 상용 전원으로부터 전원을 공급받아 복수의 배터리(10, 20, 30, 40, 50)가 수신할 수 있는 전원 형태로 변환하여 복수의 배터리(10, 20, 30, 40, 50)로 전원을 공급할 수 있다. 일 실시예에 따라, 충전기(300)는 복수의 배터리(10, 20, 30, 40, 50)의 SOC가 100%가 될 때까지 전원을 공급하여 복수의 배터리(10, 20, 30, 40, 50)를 완충시킬 수 있다.
이하에서는 배터리 관리 장치(200)의 구성 및 동작에 대하여 도 3을 참조하여 더욱 구체적으로 설명한다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치를 보여주는 블록도이다.
도 3을 참조하면, 배터리 관리 장치(200)는 복수의 저항(R), 복수의 제1 스위치(210), 복수의 제2 스위치(220), 컨트롤러(230) 및 통신부(240)를 포함할 수 있다.
배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리가 발화되었을 경우, 근접 배터리 또는 전체 배터리에 열이 확산되는 것을 진압하기 위하여 발화 배터리 또는 근접 배터리의 에너지원인 연료를 제거하기 위하여 발화 배터리 또는 근접 배터리를 방전시킬 수 있다. 배터리 관리 장치(200)는 복수의 배터리(10, 20, 30, 40, 50) 외부에 복수의 저항(R)을 각각 연결하고, 각 저항에 방전 전류를 인가하여 배터리를 방전시킬 수 있다.
여기서 배터리의 방전 속도는 복수의 저항(R)의 저항 값에 의해 결정되며 배터리의 방전 속도를 조절하기 위해서는 저항 값을 변경해야 한다. 따라서, 배터리 관리 장치(200)는 복수의 저항(R)을 병렬로 연결시켜 병렬로 연결된 복수의 저항(R)에 방전 전류를 분배하여, 방전 전류 값을 조절하여 방전 속도를 조절할 수 있다.
복수의 저항(R)은 복수의 배터리(10, 20, 30, 40, 50)와 각각 직렬 연결될 수 있다. 또한, 복수의 저항(R)은 복수의 제1 스위치(210)와 각각 직렬로 연결될 수 있다. 구체적으로 복수의 저항(R)은 복수의 제1 스위치(210)가 온(On) 상태가 됨에 따라, 제1 스위치(210)와 직렬로 연결되는 복수의 배터리(10, 20, 30, 40, 50)와 각각 직렬 연결됨으로써, 배터리를 방전시킬 수 있다.
또한, 복수의 저항(R)은 서로 병렬 연결되며, 각각에 직렬로 연결된 복수의 제1 스위치(210)가 온 오프(On/Off)되는 것에 기초하여 선택적으로 서로 병렬 연결될 수 있다. 구체적으로, 복수의 저항(R)에 각각 직렬로 연결된 복수의 제1 스위치(210) 중 어느 하나의 제1 스위치(210)가 선택적으로 온 됨으로써, 병렬 연결된 복수의 저항(R) 중 온 상태의 복수의 제1 스위치(210)에 연결된 저항(R)만이 서로 병렬 연결될 수 있다.
즉, 복수의 저항(R)은 복수의 제1 스위치(210)의 온 오프 여부에 기초하여, 복수의 저항(R) 중 일부 저항(R)이 선택적으로 병렬 연결될 수 있다. 따라서, 복수의 저항(R)의 저항값은 변경될 수 있고, 그로 인해 복수의 배터리(10, 20, 30, 40, 50)의 방전 속도는 변경될 수 있다.
복수의 제1 스위치(210)는 복수의 저항(R)과 복수의 배터리(10, 20, 30, 40, 50)의 출력단을 각각 연결할 수 있다. 복수의 제1 스위치(210)는 복수의 배터리(10, 20, 30, 40, 50)와 각각 직렬 연결 될 수 있다. 또한, 복수의 제1 스위치(210)는 복수의 저항(R)과 각각 직렬 연결 될 수 있다.
복수의 제1 스위치(210) 각각은 컨트롤러(230)로부터 제어 신호를 수신하여 각각 온 오프 될 수 있다.
복수의 제2 스위치(220)는 복수의 저항(R)을 병렬적으로 연결할 수 있다. 복수의 제2 스위치(220)는 서로 직렬 연결될 수 있다. 복수의 제2 스위치(220) 각각은 컨트롤러(230)로부터 제어 신호를 수신하여 각각 온 오프 될 수 있다.
통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 배터리 관리 장치(BMS)와 유선 및/또는 무선으로 통신을 수행할 수 있다. 예를 들어, 통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 배터리 관리 장치와 차동 입력 방식의 통신 프로토콜로 서로 통신을 수행할 수 있다. 여기서 차동 입력 방식의 통신 프로토콜로서는 CAN(Controller Area Network)을 예시로서 들 수 있다. 또한, 통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 배터리 관리 장치와 wi-fi(등록 상표), 블루투스(등록 상표) 등의 무선 통신 프로토콜로 서로 통신을 수행할 수 있다.
실시예에 따라, 통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 배터리 관리 장치로와 주기적으로 통신할 수 있다. 통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치가 일정 주기를 도과하여 통신 신호를 전송하지 않는 경우, 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치에 다시 통신 신호를 전송할 수 있다.
실시예에 따라, 통신부(240)는 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치로부터 배터리의 이상 신호를 수신할 수 있다.
컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부를 판단할 수 있다.
실시예에 따라, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치로부터 일정 주기를 도과하여 통신 신호를 수신하지 못하고, 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치에 통신 신호를 반복해서 전송(Retry)해도 통신 신호를 수신하지 못한 경우 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
실시예에 따라, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치로부터 배터리의 이상 신호를 수신한 경우, 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
실시예에 따라, 컨트롤러(230)는 배터리 슬롯부(100)에 장착된 복수의 온도 측정 센서로부터 복수의 배터리(10, 20, 30, 40, 50)의 온도 정보를 수신하고, 온도 정보에 기초하여 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 온도가 임계 온도 초과인 경우 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
예를 들어, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 중 이상 온도 또는 이상 신호가 감지된 제1 배터리(10)를 이상 배터리로 판단할 수 있다. 컨트롤러(230)는 이상 배터리로 판단된 제1 배터리(10)와 관련된 적어도 하나의 제2 배터리(20)를 판단할 수 있다. 예를 들어, 컨트롤러(230)는 기 저장된 복수의 배터리(10, 20, 30, 40, 50)의 배치 순서에 기초하여 제1 배터리(10)에 인접한 적어도 하나의 제2 배터리(20)를 판단할 수 있다.
컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부에 기초하여 복수의 제1 스위치(210) 및 복수의 제2 스위치(220)의 동작을 제어할 수 있다.
도 4는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작을 설명하기 위한 회로도이다.
이하에서는 도 4를 참조하여, 배터리 관리 장치의 동작을 구체적으로 설명한다.
도 4에서는 배터리 교환 서비스를 받기 위한 5개의 복수의 배터리(10, 20, 30, 40, 50)가 배터리 교환 시스템(1000)에 접속되는 경우를 예시적으로 도시하고 있으나, 본 발명의 범위는 이에 한정되지 않고 배터리 교환 시스템(1000)에는 배터리 교환 서비스를 받기 위한 n(n은 2이상의 자연수)개의 배터리가 접속될 수 있다.
도 4를 참조하면, 배터리 슬롯부(100)는 복수의 배터리 슬롯(110, 120, 130, 140, 150)을 포함할 수 있다. 복수의 배터리 슬롯(110, 120, 130, 140, 150)은 각각 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 수용할 수 있다.
복수의 배터리 슬롯(110, 120, 130, 140, 150)은 각각 온도 측정 센서(T1, T2, T3, T4, T5)를 포함할 수 있다. 복수의 온도 측정 센서(T1, T2, T3, T4, T5)는 복수의 배터리(10, 20, 30, 40, 50)의 온도를 측정할 수 있다. 예를 들어, 복수의 온도 측정 센서(T1, T2, T3, T4, T5)는 복수의 써미스터(Thermistor)를 포함할 수 있다. 써미스터는 온도의 변화에 따라 저항이 민감하게 변하는 저항체를 의미하며, 써미스터는 세라믹 재료의 온도에 따른 저항 변화를 이용하여 온도를 측정할 수 있다. 써미스터는 전류를 인가하면 자기 발열(Self-Heating) 현상이 발생하여 써미스터 자체의 온도가 상승할 수 있다.
실시예에 따라, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50)의 온도를 측정하는 복수의 온도 측정 센서(T1, T2, T3, T4, T5)로부터 복수의 배터리(10, 20, 30, 40, 50)의 온도 정보를 획득할 수 있다. 예를 들어, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 중 이상 온도가 감지된 제1 배터리(10)를 이상 배터리로 판단할 수 있다.
또한, 예를 들어, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 제1 배터리(10)의 배터리 관리 장치로부터 일정 주기를 도과하여 통신 신호를 수신하지 못하고, 통신부(240)가 제1 배터리(10)의 배터리 관리 장치에 통신 신호를 반복해서 전송(Retry)해도 통신 신호를 수신하지 못한 경우 제1 배터리(10)를 이상 배터리로 판단할 수 있다.
또한, 예를 들어, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 제1 배터리(10)의 배터리의 배터리 관리 장치로부터 배터리의 이상 신호를 수신한 경우, 제1 배터리(10)를 이상 배터리로 판단할 수 있다.
컨트롤러(230)는 제1 배터리(10)를 이상 배터리로 판단한 경우, 충전기(300)에 복수의 배터리(10, 20, 30, 40, 50)의 충전 중지 신호를 전달할 수 있다.
컨트롤러(230)는 제1 배터리(10) 및 제2 배터리(20)의 용량을 산출할 수 있다. 컨트롤러(230)는 제1 배터리(10)의 배터리 관리 장치 및 제2 배터리(10)의 배터리 관리 장치와 통신을 통해 배터리 데이터를 수신할 수 있다. 여기서 배터리 데이터는 예를 들어, 배터리 전압, 배터리를 구성하는 배터리 셀의 전압, Fault 신호, 배터리 내부 온도 등을 포함할 수 있다. 컨트롤러(230)는 제1 배터리(10) 및 제2 배터리(10)의 배터리 데이터를 기초로 제1 배터리(10) 및 제2 배터리(10)의 용량을 산출할 수 있다.
컨트롤러(230)는 제1 배터리(10)의 용량 및 제2 배터리(20)의 용량을 비교하여 복수의 제1 스위치(210) 및 복수의 제2 스위치(220)의 동작을 제어할 수 있다.
실시예에 따라, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량을 초과하는 경우, 제1 배터리(10)를 제2 배터리(20)와 용량이 같을 때까지 방전시킬 수 있다. 예를 들어 컨트롤러(230)는 제1 배터리(10)의 용량이 8000mA이고 제1 배터리(10)의 전압이 60V이며, 제2 배터리(20)의 용량이 4000mAh이고 제2 배터리(20)의 전압이 50V 인 경우, 제1 배터리(10)를 제2 배터리(20)와 용량이 같을 때까지 방전시킬 수 있다. 컨트롤러(230)는 복수의 제1 스위치(210) 중 제1 배터리(10) 및 제1 배터리(10)와 연결된 제1 저항(R1)을 연결하는 제1 스위치(211)를 턴 온 시키고, 나머지 복수의 제1 스위치(212, 213, 214, 215)를 턴 오프 시킬 수 있다.
컨트롤러(230)는 복수의 제2 스위치(220) 중 적어도 어느 하나의 제2 스위치를 턴 온 시켜 복수의 저항(R)에 인가되는 제1 배터리(10)의 방전 전류의 분배비를 조절할 수 있다.
예를 들어, 컨트롤러(230)는 제1 배터리(10)의 방전 전류가 10A이고 제1 배터리(10)의 전압이 60V 인 경우, 복수의 저항(R) 값을 60V/10A = 6 ohm 으로 제어하기 위하여 복수의 제2 스위치(220) 중 일부를 턴 온 시키고, 일부를 턴 오프시킬 수 있다.
예를 들어, 컨트롤러(230)는 복수의 저항(R) 각각의 저항 값이 24 ohm인 경우, 복수의 저항(R) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결 시켜, 서로 병결 연결된 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)의 총 저항 값을 6 ohm 으로 제어할 수 있다. 구체적으로 컨트롤러(230)는 복수의 제2 스위치(220) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결할 수 있는 일부 제2 스위치(221, 222, 223)를 턴 온 시키고, 제 5 저항(R5)을 병렬 연결할 수 있는 제2 스위치(224)를 턴 오프 시킬 수 있다.
실시예에 따라, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량의 미만인 경우, 제2 배터리(20)를 제1 배터리(10)와 용량이 같을 때까지 방전시킬 수 있다. 예를 들어 컨트롤러(230)는 제1 배터리(10)의 용량이 4000mA이고 제1 배터리(10)의 전압이 50V이며, 제2 배터리(20)의 용량이 8000mAh이고 제2 배터리(20)의 전압이 60V 인 경우, 제2 배터리(20)를 제1 배터리(10)와 용량이 같을 때까지 방전시킬 수 있다. 컨트롤러(230)는 복수의 제1 스위치(210) 중 제2 배터리(20) 및 제2 배터리(20)와 연결된 제2 저항(R2)을 연결하는 제1 스위치(212)를 턴 온 시키고, 나머지 복수의 제1 스위치(211, 213, 214, 215)를 턴 오프 시킬 수 있다.
컨트롤러(230)는 복수의 제2 스위치(220) 중 적어도 어느 하나의 제2 스위치를 턴 온 시켜 복수의 저항(R)에 인가되는 제2 배터리(20)의 방전 전류의 분배비를 조절할 수 있다.
예를 들어, 컨트롤러(230)는 제2 배터리(20)의 방전 전류가 10A이고 제2 배터리(20)의 전압이 60V 인 경우, 복수의 저항(R) 값을 60V/10A = 6 ohm 으로 제어하기 위하여 복수의 제2 스위치(220) 중 일부를 턴 온 시키고, 일부를 턴 오프시킬 수 있다.
예를 들어, 컨트롤러(230)는 복수의 저항(R) 각각의 저항 값이 24 ohm인 경우, 복수의 저항(R) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결 시켜, 서로 병결 연결된 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)의 총 저항 값을 6 ohm 으로 제어할 수 있다. 구체적으로 컨트롤러(230)는 복수의 제2 스위치(220) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결할 수 있는 일부 제2 스위치(221, 222, 223)를 턴 온 시키고, 제 5 저항(R5)을 병렬 연결할 수 있는 제2 스위치(224)를 턴 오프 시킬 수 있다.
실시예에 따라, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량과 같은 경우, 제1 배터리(10) 및 제2 배터리(20)를 동시에 방전시킬 수 있다.
컨트롤러(230)는 복수의 제1 스위치(210) 중 제1 배터리(10) 및 제1 배터리(10)와 연결된 제1 저항(R1)을 연결하는 제1 스위치(211)를 턴 온 시키고, 제2 배터리(20) 및 제2 배터리(20)와 연결된 제2 저항(R2)을 연결하는 제1 스위치(212)를 턴 온 시키고, 나머지 복수의 제1 스위치(213, 214, 215)를 턴 오프 시킬 수 있다. 또한, 컨트롤러(230)는 복수의 제2 스위치(220) 중 적어도 어느 하나의 제2 스위치를 턴 온 시켜 복수의 저항(R)에 인가되는 제1 배터리(10) 및 제2 배터리(20)의 방전 전류의 분배비를 조절할 수 있다.
상술한 바와 같이, 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치는 서로 병렬 연결된 복수의 저항을 이용하여 배터리의 방전 속도 및 발열을 제어할 수 있다.
또한, 배터리 관리 장치는 일부 배터리에 위험 상황 및 이상 증상이 발생한 경우, 이상 배터리 및 인접 배터리를 강제 방전 시킴으로써 인접한 배터리에 연쇄 사고가 발생하는 것을 방지하여 배터리 교환 스테이션을 안정적으로 운영할 수 있다.
도 5는 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 5를 참조하면, 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법은 복수의 배터리 각각의 이상 여부를 판단하는 단계(S101), 복수의 배터리 각각의 이상 여부에 기초하여 복수의 배터리와 각각 연결되는 복수의 저항과 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계(S102) 및 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계(S103)를 포함할 수 있다.
이하에서 S101 단계 내지 S103 단계를 도 1 내지 도 4를 참조하여 구체적으로 설명된다. 배터리 관리 장치(200)는 도 1 내지 도 4를 참조하여 설명한 배터리 관리 장치(200)와 실질적으로 동일할 수 있으므로, 이하에서는 설명의 중복을 피하기 위하여 간략히 설명한다.
S101 단계에서, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부를 판단할 수 있다.
S101 단계에서, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치로부터 일정 주기를 도과하여 통신 신호를 수신하지 못하고, 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치에 통신 신호를 반복해서 전송(Retry)해도 통신 신호를 수신하지 못한 경우 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
S101 단계에서, 컨트롤러(230)는 통신부(240)가 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 배터리 관리 장치로부터 배터리의 이상 신호를 수신한 경우, 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
S101 단계에서, 컨트롤러(230)는 배터리 슬롯부(100)에 장착된 복수의 온도 측정 센서로부터 복수의 배터리(10, 20, 30, 40, 50)의 온도 정보를 수신하고, 온도 정보에 기초하여 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리의 온도가 임계 온도 초과인 경우 복수의 배터리(10, 20, 30, 40, 50) 중 어느 하나의 배터리를 이상 배터리로 판단할 수 있다.
S101 단계에서, 예를 들어, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 중 이상 온도 또는 이상 신호가 감지된 제1 배터리(10)를 이상 배터리로 판단할 수 있다. 컨트롤러(230)는 이상 배터리로 판단된 제1 배터리(10)와 관련된 적어도 하나의 제2 배터리(20)를 판단할 수 있다. S101 단계에서, 예를 들어, 컨트롤러(230)는 기 저장된 복수의 배터리(10, 20, 30, 40, 50)의 배치 순서에 기초하여 제1 배터리(10)에 인접한 적어도 하나의 제2 배터리(20)를 판단할 수 있다.
S102 단계에서, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부에 기초하여 복수의 제1 스위치(210)의 동작을 제어할 수 있다.
S102 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량 및 제2 배터리(20)의 용량을 비교하여 복수의 제1 스위치(210)의 동작을 제어할 수 있다.
S103 단계에서, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부에 기초하여 복수의 제1 스위치(210)의 동작을 제어할 수 있다.
S103 단계에서, 컨트롤러(230)는 복수의 제2 스위치(220) 중 적어도 어느 하나의 제2 스위치를 턴 온 시켜 복수의 저항(R)에 인가되는 제1 배터리(10)의 방전 전류의 분배비를 조절할 수 있다.
S103 단계에서, 예를 들어, 컨트롤러(230)는 제1 배터리(10)의 방전 전류가 10A이고 제1 배터리(10)의 전압이 60V 인 경우, 복수의 저항(R) 값을 60V/10A = 6 ohm 으로 제어하기 위하여 복수의 제2 스위치(220) 중 일부를 턴 온 시키고, 일부를 턴 오프시킬 수 있다.
S103 단계에서, 예를 들어, 컨트롤러(230)는 복수의 저항(R) 각각의 저항 값이 24 ohm인 경우, 복수의 저항(R) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결 시켜, 서로 병결 연결된 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)의 총 저항 값을 6 ohm 으로 제어할 수 있다. S103 단계에서, 구체적으로 컨트롤러(230)는 복수의 제2 스위치(220) 중 제1 저항(R1), 제2 저항(R2), 제3 저항(R3) 및 제4 저항(R4)을 병렬 연결할 수 있는 일부 제2 스위치(221, 222, 223)를 턴 온 시키고, 제 5 저항(R5)을 병렬 연결할 수 있는 제2 스위치(224)를 턴 오프 시킬 수 있다.
도 6은 본 문서에 개시된 다른 실시예에 따른 배터리 관리 장치의 동작 방법을 보여주는 흐름도이다.
도 6을 참조하면, 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법은 복수의 배터리 각각의 이상 여부를 판단하는 단계(S201), 복수의 배터리 모두의 충전을 중지하는 단계(S202), 제1 배터리 및 제2 배터리의 용량을 판단하는 단계(S203), 제1 배터리 및 제2 배터리의 용량을 비교하는 단계(S204), 제1 배터리를 제2 배터리와 용량이 같을 때까지 방전하는 단계(S205), 제2 배터리를 제1 배터리와 용량이 같을 때까지 방전하는 단계(S206) 및 제1 배터리와 제2 배터리의 동시 방전을 시작하는 단계(S207)를 포함할 수 있다,
이하에서 S201 단계 내지 S207 단계를 도 1 내지 도 4를 참조하여 구체적으로 설명된다. 배터리 관리 장치(200)는 도 1 내지 도 4를 참조하여 설명한 배터리 관리 장치(200)와 실질적으로 동일할 수 있으므로, 이하에서는 설명의 중복을 피하기 위하여 간략히 설명한다.
S201 단계에서, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 각각의 이상 여부를 판단할 수 있다.
S201 단계에서, 예를 들어, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50) 중 이상 온도 또는 이상 신호가 감지된 제1 배터리(10)를 이상 배터리로 판단할 수 있다. S201 단계에서, 컨트롤러(230)는 이상 배터리로 판단된 제1 배터리(10)와 관련된 적어도 하나의 제2 배터리(20)를 판단할 수 있다. S201 단계에서, 예를 들어, 컨트롤러(230)는 기 저장된 복수의 배터리(10, 20, 30, 40, 50)의 배치 순서에 기초하여 제2 배터리(10)에 인접한 적어도 하나의 제2 배터리(20)를 판단할 수 있다.
S202 단계에서, 컨트롤러(230)는 복수의 배터리(10, 20, 30, 40, 50)의 충전을 중지할 수 있다. S202 단계에서, 컨트롤러(230)는 충전기(300)에 이상 배터리로 판단된 제1 배터리(10) 및 제1 배터리(10)와 인접한 제2 배터리(20)의 충전 중지 신호를 전달할 수 있다.
S203 단계에서, 컨트롤러(230)는 이상 배터리로 판단된 제1 배터리(10) 및 제2 배터리(20)의 용량을 산출할 수 있다. S203 단계에서, 컨트롤러(230)는 제1 배터리(10)의 배터리 관리 장치 및 제2 배터리(10)의 배터리 관리 장치와 통신을 통해 배터리 데이터를 수신할 수 있다. 여기서 배터리 데이터는 예를 들어, 배터리 전압, 배터리를 구성하는 배터리 셀의 전압, Fault 신호, 배터리 내부 온도 등을 포함할 수 있다. S203 단계에서, 컨트롤러(230)는 제1 배터리(10) 및 제2 배터리(10)의 배터리 데이터를 기초로 제1 배터리(10) 및 제2 배터리(10)의 용량을 산출할 수 있다.
S204 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량 및 및 제2 배터리(10)의 용량을 비교할 수 있다.
S205 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량 및 제2 배터리(20)의 용량을 비교하여 복수의 제1 스위치(210)의 동작을 제어할 수 있다.
S205 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량을 초과하는 경우, 제1 배터리(10)를 제2 배터리(20)와 용량이 같을 때까지 방전시킬 수 있다. S205 단계에서, 예를 들어 컨트롤러(230)는 제1 배터리(10)의 용량이 8000mA이고 제1 배터리(10)의 전압이 60V이며, 제2 배터리(20)의 용량이 4000mAh이고 제2 배터리(20)의 전압이 50V 인 경우, 제1 배터리(10)를 제2 배터리(20)와 용량이 같을 때까지 방전시킬 수 있다. S102 단계에서, 컨트롤러(230)는 복수의 제1 스위치(210) 중 제1 배터리(10) 및 제1 배터리(10)와 연결된 제1 저항(R1)을 연결하는 제1 스위치(211)를 턴 온 시키고, 나머지 복수의 제1 스위치(212, 213, 214, 215)를 턴 오프 시킬 수 있다.
S206 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량의 미만인 경우, 제2 배터리(20)를 제1 배터리(10)와 용량이 같을 때까지 방전시킬 수 있다. S102 단계에서, 예를 들어 컨트롤러(230)는 제1 배터리(10)의 용량이 4000mA이고 제1 배터리(10)의 전압이 50V이며, 제2 배터리(20)의 용량이 8000mAh이고 제2 배터리(20)의 전압이 60V 인 경우, 제2 배터리(20)를 제1 배터리(10)와 용량이 같을 때까지 방전시킬 수 있다. S102 단계에서, 컨트롤러(230)는 복수의 제1 스위치(210) 중 제2 배터리(20) 및 제2 배터리(20)와 연결된 제2 저항(R2)을 연결하는 제1 스위치(212)를 턴 온 시키고, 나머지 복수의 제1 스위치(211, 213, 214, 215)를 턴 오프 시킬 수 있다.
S207 단계에서, 컨트롤러(230)는 제1 배터리(10)의 용량이 제2 배터리(20)의 용량과 같은 경우, 제1 배터리(10) 및 제2 배터리(20)를 동시에 방전시킬 수 있다.
S207 단계에서, 컨트롤러(230)는 복수의 제1 스위치(210) 중 제1 배터리(10) 및 제1 배터리(10)와 연결된 제1 저항(R1)을 연결하는 제1 스위치(211)를 턴 온 시키고, 제2 배터리(20) 및 제2 배터리(20)와 연결된 제2 저항(R2)을 연결하는 제1 스위치(212)를 턴 온 시키고, 나머지 복수의 제1 스위치(213, 214, 215)를 턴 오프 시킬 수 있다. S207 단계에서, 또한, 컨트롤러(230)는 복수의 제2 스위치(220) 중 적어도 어느 하나의 제2 스위치를 턴 온 시켜 복수의 저항(R)에 인가되는 제1 배터리(10) 및 제2 배터리(20)의 방전 전류의 분배비를 조절할 수 있다.
도 7은 본 문서에 개시된 일 실시예에 따른 배터리 관리 장치의 동작 방법을 구현하는 컴퓨팅 시스템의 하드웨어 구성을 나타내는 블록도이다.
도 7을 참조하면, 본 문서에 개시된 일 실시 예에 따른 컴퓨팅 시스템(2000)은 MCU(2100), 메모리(2200), 입출력 I/F(2300) 및 통신 I/F(2400)를 포함할 수 있다.
MCU(2100)는 메모리(2200)에 저장되어 있는 각종 프로그램(예를 들면, 배터리 용량 산출 프로그램)을 실행시키고, 이러한 프로그램들을 통해 복수의 배터리 셀의 SOC, SOH 등을 포함한 각종 데이터를 처리하며, 전술한 도 1을 참조하여 설명한 배터리 관리 장치(200)의 기능들을 수행하도록 하는 프로세서 또는 도 4를 참조하여 설명한 배터리 관리 장치의 동작 방법을 실행하는 프로세서일 수 있다.
메모리(2200)는 배터리 셀의 SOH 산출과 셀 수행 대상 판정에 관한 각종 프로그램을 저장할 수 있다. 또한, 메모리(2200)는 배터리 셀 각각의 SOC, SOH 데이터 등 각종 데이터를 저장할 수 있다.
이러한 메모리(2200)는 필요에 따라서 복수 개 마련될 수도 있을 것이다. 메모리(2200)는 휘발성 메모리일 수도 있으며 비휘발성 메모리일 수 있다. 휘발성 메모리로서의 메모리(2200)는 RAM, DRAM, SRAM 등이 사용될 수 있다. 비휘발성 메모리로서의 메모리(2200)는 ROM, PROM, EAROM, EPROM, EEPROM, 플래시 메모리 등이 사용될 수 있다. 상기 열거한 메모리(220)들의 예를 단지 예시일 뿐이며 이들 예로 한정되는 것은 아니다.
입출력 I/F(2300)는, 키보드, 마우스, 터치 패널 등의 입력 장치(미도시)와 디스플레이(미도시) 등의 출력 장치와 MCU(2100) 사이를 연결하여 데이터를 송수신할 수 있도록 하는 인터페이스를 제공할 수 있다.
통신 I/F(2300)는 서버와 각종 데이터를 송수신할 수 있는 구성으로서, 유선 또는 무선 통신을 지원할 수 있는 각종 장치일 수 있다. 예를 들면, 통신 I/F(2300)를 통해 별도로 마련된 외부 서버로부터 배터리 셀의 SOH 산출이나 대상의 판정을 위한 프로그램이나 각종 데이터 등을 송수신할 수 있다.
이와 같이, 본 문서에 개시된 일 실시 예에 따른 배터리 보호 장치의 동작 방법은 메모리(2200)에 기록되고, MCU(2100)에 의해 실행될 수 있다.
이상의 설명은 본 문서에 개시된 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 문서에 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 문서에 개시된 실시예들은 본 문서에 개시된 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 문서에 개시된 기술 사상의 범위가 한정되는 것은 아니다. 본 문서에 개시된 기술 사상의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 문서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
10, 20, 30, 40, 50: 복수의 배터리
1000: 배터리 교환 스테이션
100: 배터리 슬롯부
110, 120, 130, 140: 복수의 배터리 슬롯
T1, T2, T3, T4, T5: 복수의 온도 측정 센서
200: 배터리 관리 장치
R1: 제1 저항
R2: 제2 저항
R3: 제3 저항
R4: 제4 저항
R5: 제5 저항
211, 212, 213, 214, 215: 복수의 제1 스위치
221, 222, 223, 224: 복수의 제2 스위치
230: 컨트롤러
240: 통신부
300: 충전기
2000: 컴퓨팅 시스템
2100: MCU
2200: 메모리
2300: 입출력 I/F
2400: 통신 I/F

Claims (15)

  1. 복수의 배터리와 각각 연결되는 복수의 저항;
    상기 복수의 저항과 상기 복수의 배터리의 출력단을 각각 연결하는 복수의 제1 스위치;
    상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치; 및
    상기 복수의 배터리 각각의 이상 여부를 판단하고, 상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어하는 컨트롤러를 포함하는 배터리 관리 장치.
  2. 제1 항에 있어서,
    상기 복수의 저항은 상기 복수의 배터리와 각각 직렬 연결 되고,
    상기 복수의 제2 스위치는 서로 직렬 연결되는 것을 특징으로 하는 배터리 관리 장치.
  3. 제2 항에 있어서,
    상기 복수의 배터리 각각의 배터리 관리 장치로부터 상기 복수의 배터리의 이상 신호를 수신하는 통신부를 더 포함하고,
    상기 컨트롤러는 상기 이상 신호에 기초하여 상기 복수의 배터리 중 이상 신호가 감지된 제1 배터리 및 상기 제1 배터리와 관련된 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치.
  4. 제3 항에 있어서,
    상기 컨트롤러는 상기 복수의 배터리의 온도를 측정하는 복수의 온도 측정 센서로부터 상기 복수의 배터리의 온도 정보를 획득하고, 상기 온도 정보에 기초하여 상기 복수의 배터리 중 이상 온도가 감지된 상기 제1 배터리 및 상기 제1 배터리와 관련된 상기 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치.
  5. 제4 항에 있어서,
    상기 컨트롤러는 상기 복수의 배터리 중 상기 제1 배터리의 이상 온도 또는 이상 신호를 감지한 경우, 상기 복수의 배터리의 배치 순서에 기초하여 상기 제1 배터리에 인접한 상기 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치.
  6. 제4 항에 있어서,
    상기 컨트롤러는 상기 제1 배터리 및 상기 적어도 하나의 제2 배터리의 용량을 산출하고, 상기 제1 배터리의 용량 및 상기 제2 배터리의 용량을 비교하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어하는 것을 특징으로 하는 배터리 관리 장치.
  7. 제6 항에 있어서,
    상기 컨트롤러는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량을 초과하는 경우, 상기 복수의 제1 스위치 중 상기 제1 배터리 및 상기 제1 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고,
    상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시키는 것을 특징으로 하는 배터리 관리 장치.
  8. 제6 항에 있어서,
    상기 컨트롤러는 상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량의 미만인 경우, 상기 복수의 제1 스위치 중 상기 제2 배터리 및 상기 제2 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고,
    상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시키는 것을 특징으로 하는 배터리 관리 장치.
  9. 복수의 배터리 각각의 이상 여부를 판단하는 단계;
    상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계; 및
    상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계를 포함하는 배터리 관리 장치의 동작 방법.
  10. 제9 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는
    상기 복수의 배터리 각각의 배터리 관리 장치로부터 상기 복수의 배터리의 이상 신호를 수신하고,
    상기 이상 신호에 기초하여 상기 복수의 배터리 중 이상 신호가 감지된 제1 배터리 및 상기 제1 배터리와 관련된 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
  11. 제10 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는
    상기 복수의 배터리의 온도를 측정하는 복수의 온도 측정 센서로부터 상기 복수의 배터리의 온도 정보를 획득하고,
    상기 온도 정보에 기초하여 상기 복수의 배터리 중 이상 온도가 감지된 상기 제1 배터리 및 상기 제1 배터리와 관련된 상기 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
  12. 제11 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는
    상기 복수의 배터리 중 상기 제1 배터리의 이상 온도 또는 이상 신호를 감지한 경우, 상기 복수의 배터리의 배치 순서에 기초하여 상기 제1 배터리에 인접한 상기 적어도 하나의 제2 배터리를 판단하는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
  13. 제12 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부를 판단하는 단계는
    상기 제1 배터리 및 상기 적어도 하나의 제2 배터리의 용량을 산출하고, 상기 제1 배터리의 용량 및 상기 제2 배터리의 용량을 비교하여 상기 복수의 제1 스위치 및 상기 복수의 제2 스위치의 동작을 제어하는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
  14. 제13 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계는
    상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량을 초과하는 경우, 상기 복수의 제1 스위치 중 상기 제1 배터리 및 상기 제1 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고,
    상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계는
    상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시키는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
  15. 제13 항에 있어서,
    상기 복수의 배터리 각각의 이상 여부에 기초하여 상기 복수의 배터리와 각각 연결되는 복수의 저항과 상기 복수의 배터리의 배터리 전류 출력단을 각각 연결하는 복수의 제1 스위치의 동작을 제어하는 단계는
    상기 제1 배터리의 용량이 상기 적어도 하나의 제2 배터리의 용량의 미만인 경우, 상기 복수의 제1 스위치 중 상기 제2 배터리 및 상기 제2 배터리와 연결된 저항을 연결하는 제1 스위치를 턴 온 시키고,
    상기 복수의 저항을 병렬적으로 연결하는 복수의 제2 스위치의 동작을 제어하는 단계는
    상기 복수의 제2 스위치 중 적어도 어느 하나의 제2 스위치를 턴 온 시키는 것을 특징으로 하는 배터리 관리 장치의 동작 방법.
PCT/KR2023/011775 2022-09-27 2023-08-09 배터리 관리 장치 및 그것의 동작 방법 WO2024071662A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0122898 2022-09-27
KR1020220122898A KR20240043605A (ko) 2022-09-27 2022-09-27 배터리 관리 장치 및 그것의 동작 방법

Publications (1)

Publication Number Publication Date
WO2024071662A1 true WO2024071662A1 (ko) 2024-04-04

Family

ID=90478342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011775 WO2024071662A1 (ko) 2022-09-27 2023-08-09 배터리 관리 장치 및 그것의 동작 방법

Country Status (2)

Country Link
KR (1) KR20240043605A (ko)
WO (1) WO2024071662A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010698A (ko) * 2006-07-27 2008-01-31 주식회사 엘지화학 배터리 장치의 가열방법 및 장치
KR20100089768A (ko) * 2009-02-04 2010-08-12 삼성에스디아이 주식회사 배터리 팩의 밸런싱 방법, 배터리 셀 밸런싱 시스템 및 배터리 팩
KR20120059247A (ko) * 2010-11-30 2012-06-08 현대자동차주식회사 배터리 팩의 셀 밸런싱 제어장치 및 방법
KR101610925B1 (ko) * 2014-12-12 2016-04-08 현대오트론 주식회사 배터리 방전 장치 및 방법
KR20190000142A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 셀 밸런싱 회로와 이를 이용한 배터리 셀 밸런싱 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080010698A (ko) * 2006-07-27 2008-01-31 주식회사 엘지화학 배터리 장치의 가열방법 및 장치
KR20100089768A (ko) * 2009-02-04 2010-08-12 삼성에스디아이 주식회사 배터리 팩의 밸런싱 방법, 배터리 셀 밸런싱 시스템 및 배터리 팩
KR20120059247A (ko) * 2010-11-30 2012-06-08 현대자동차주식회사 배터리 팩의 셀 밸런싱 제어장치 및 방법
KR101610925B1 (ko) * 2014-12-12 2016-04-08 현대오트론 주식회사 배터리 방전 장치 및 방법
KR20190000142A (ko) * 2017-06-22 2019-01-02 주식회사 엘지화학 배터리 셀 밸런싱 회로와 이를 이용한 배터리 셀 밸런싱 장치 및 방법

Also Published As

Publication number Publication date
KR20240043605A (ko) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2017034275A1 (ko) 이차 전지의 충전 조건 조정 장치 및 방법
WO2018194249A1 (ko) 과충전 방지 장치 및 방법
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2018225921A1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
WO2018128257A1 (ko) 전압 검출 집적회로 및 이를 포함하는 배터리 관리 시스템
WO2019017596A1 (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2017188633A1 (ko) 배터리 팩 및 배터리 팩의 충전 방법
WO2015012587A1 (ko) 배터리 과충전 방지 장치
WO2021002658A1 (ko) 배터리 관리 시스템 및 관리 방법
WO2018194225A1 (ko) 배터리 모니터링 및 보호 시스템
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2021107323A1 (ko) 배터리 셀 이상 퇴화 진단 장치 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2017090980A1 (ko) 고전압 이차전지의 퓨즈 진단 장치
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2024071662A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2018030636A1 (ko) 배터리 팩
WO2020153625A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2022075628A1 (ko) 배터리 퇴화도 산출 방법 및 배터리 퇴화도 산출 장치
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2021125475A1 (ko) 급속 충전용 전류 패턴 업데이트 장치, 방법 및 이를 수행하는 저장매체에 저장된 컴퓨터 프로그램
WO2021066393A1 (ko) 병렬 연결 셀의 연결 고장 검출 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872785

Country of ref document: EP

Kind code of ref document: A1