WO2024071320A1 - 化合物の製造方法 - Google Patents

化合物の製造方法 Download PDF

Info

Publication number
WO2024071320A1
WO2024071320A1 PCT/JP2023/035472 JP2023035472W WO2024071320A1 WO 2024071320 A1 WO2024071320 A1 WO 2024071320A1 JP 2023035472 W JP2023035472 W JP 2023035472W WO 2024071320 A1 WO2024071320 A1 WO 2024071320A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
amino acid
ring
compound
Prior art date
Application number
PCT/JP2023/035472
Other languages
English (en)
French (fr)
Inventor
裕明 菅
佑樹 後藤
アレクサンダー ヴィノグラドフ
ユエー ジャン
ジュンシー チャン
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2024071320A1 publication Critical patent/WO2024071320A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents

Definitions

  • the present invention relates to a method for producing a compound, in particular a method for solid-phase synthesis of a compound containing an aromatic six-membered ring.
  • Thiopeptides are a group of complex peptidic natural products with a nitrogen-containing six-membered heterocycle (usually pyridine, Py). Thiopeptides also contain other non-proteinaceous structures, in particular cysteine/threonine/serine-derived azoles (thiazole, Thz; methyloxazole, MeOxz; and oxazole, Oxz), and dehydroamino acids (dhAA; e.g., dehydroalanine, Dha; and dehydrobutyrin, Dhb). Thiopeptides have attracted widespread attention as candidates for peptide drugs and have therefore become major synthetic and engineering targets during the past two decades (Non-Patent Documents 1-3).
  • Non-Patent Documents 4-14 Numerous approaches to the chemical synthesis of thiopeptides have been developed over the years, and even complex compounds with two ring structures (e.g., thiostrepton, siomycin, and nosiheptide) have been synthesized (Non-Patent Documents 4-14). However, all of the synthetic methods described in Non-Patent Documents 4-14 use liquid-phase synthesis to synthesize the characteristic cyclic peptide portion of thiopeptides/pyritides. So far, solid-phase peptide synthesis (SPPS) has only been used for the preparation of the tail region of variginolin and in some chemoenzymatic approaches (Non-Patent Documents 15-17).
  • SPPS solid-phase peptide synthesis
  • liquid-phase synthesis has been the main method used to synthesize compounds containing aromatic six-membered rings such as thiopeptides.
  • the units that make up the peptide sequence must be prepared individually for each specific synthetic target peptide, making it difficult to reuse the synthetic route used to synthesize a specific compound for other derivatives (i.e., synthesizing a wide variety of derivatives is extremely difficult).
  • liquid-phase synthesis requires complicated purification procedures to remove impurities that are produced as by-products, which requires a lot of time, effort, and cost.
  • An object of the present invention is to provide a method for easily producing a peptide containing an aromatic six-membered ring in the backbone.
  • Ring A is an aromatic six-membered ring
  • Z 1 , Z 2 , and Z 3 each independently represent an oxygen atom or a sulfur atom
  • R a , R b , and R c each independently represent a hydrogen atom or a hydrocarbon group
  • k1, k2, and k3 each independently represent an integer of 0 to 2
  • k4 is an integer between 0 and 2
  • n is an integer of 0 to 2
  • R 1 and R 2 are each independently a monovalent group
  • R3 is a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, forms a ring together with R4 or R5 , or forms a double bond together with R4
  • R 4 is a hydrogen atom or a hydrocarbon group, or forms a ring or a double bond together with R 3
  • R 5 is a hydrogen atom or a hydrocarbon group, or forms a ring or a double bond together with R 3
  • R 5 is
  • a compound represented by formula (2): Ring A, Z 1 , Z 2 , Z 3 , R a , R b , R c , k1, k2, k3, k4, n, R 1 , R 2 , R 3 , R 4 , and R 5 are as defined in formula (1) above;
  • (Xaa 1 ) m1 is a peptide residue composed of m1 amino acids and/or amino acid derivatives bound to a solid phase carrier when m1 is 2 or more, an amino acid residue or an amino acid derivative residue when m1 is 1, and a single bond when m1 is 0;
  • m1 is an integer of 0 or more,
  • the wavy line indicates that (Xaa 1 ) m1 is bound to the solid support when m1 is 1 or more, or that the carbonyl is bound to the solid support when m1 is 0.
  • a method for producing a compound represented by formula (I), comprising the steps of: deprotecting PG of the compound represented by formula (2), optionally subjecting the compound to one or more amino acid condensation reactions, and then cleaving the compound from the solid support and subjecting the compound to a cyclization reaction.
  • the compound represented by formula (1) is represented by the following formula (1-A): (In formula (1-A), Ring A, Z 1 , Z 2 , Z 3 , R a , R b , R c , k1, k2, k3, k4, n, R 1 , R 2 , R 3 , R 4 , R 5 , and PG are the same as defined in formula (1).
  • the compound obtained by the cyclization reaction has the following formula: -CR72 - Se- R8 (3) (In formula (3), Se represents selenium, R7 each independently represents a hydrogen atom or a hydrocarbon group, and R8 represents a hydrocarbon group which may have a substituent.) [0033] The method according to any one of [1] to [5], further comprising, after the cyclization reaction, oxidizing the group represented by formula (3) to form a double bond. [7] The method according to any one of [1] to [6], further comprising, after the cyclization reaction, eliminating R2 and reacting the resulting carboxy group with one or more compounds.
  • the present invention provides a method for easily producing peptides that contain an aromatic six-membered ring in the backbone.
  • TsCl 4-toluenesulfonyl chloride
  • UHP urea/hydrogen peroxide
  • TFAA trifluoroacetic anhydride
  • TEA triethylamine
  • TMSCN trimethylsilyl cyanide
  • DBU diazabicycloundecene
  • TFA trifluoroacetic acid
  • TIPS triisopropylsilane
  • Fmoc-OSu N-(9-fluorenylmethoxycarbonyloxy)succinimide
  • DCM dichloromethane
  • DMF N,N-dimethylformamide
  • THF tetrahydrofuran
  • HMPA hexamethylphosphoramide.
  • Peaks labeled with asterisks (*) correspond to product isomers originating from undefined stereochemistry at Sec14. After oxidative elimination from Sec14 to Dha14, both isomers are converted to a single product.
  • Dha dehydroalanine
  • htG ⁇ S,L homoGln (product of Cys alkylation with iodoacetamide)
  • Thz thiazole
  • [b] indicates the yield relative to the initial resin loading.
  • the eleven peptides synthesized in Example 2 are shown below. Functionalization of lactazoI-like thiopeptides in the tail region.
  • Binding affinity ( KD value) and inhibition ( IC50 ) of TNIK by the thiopeptides are shown. Half-life ( ⁇ 1/2) in human serum is also shown. These values were obtained by nonlinear regression of experimental data. [a]: Shaded S indicates Dha residue, C of TP3 and TP4 indicates ⁇ S ,L hGln (product of IAA alkylation of Cys), C of TP5 indicates Thz. [b]: Binding/inhibition was not measured. [c]: n.d. indicates not determined. [d]: For TP8, binding was measured in the presence of 1 mM ATP. [e]: For TP15, K i was measured to be 3 nM.
  • (b), (c) shows inhibition of TNIK autophosphorylation and downregulation of Wnt target genes by TP15 in HCT116 cells.
  • Subconfluent HCT116 cells were treated with the indicated compounds for 24 hours and cellular levels of TNIK, TNIK pSer764 (autophosphorylation product), c-Myc and Axin2 were analyzed by immunoblotting (b) and RT-qPCR (c).
  • NCB0846 is a small molecule TNIK inhibitor.
  • the six peptides synthesized in Example 5 are shown below.
  • the seven peptides synthesized in Example 5 are shown below.
  • the three peptides synthesized in Example 5 are shown below.
  • the assay was performed in HEK293T cells. IR15 has been shown to be taken up into the cytoplasm of HEK293T cells much more efficiently than the known cell-penetrating peptide, Tat.
  • An example of the peptide synthesized in Example 6 is shown below.
  • An example of the peptide synthesized in Example 6 is shown below.
  • the synthesis results of the compounds synthesized in Example 6 are shown below. The yields are based on the initial resin loading.
  • the compound names are shown by the notations shown in Figures 12 to 14.
  • the production method of the present embodiment is a production method of a compound represented by the following formula (I): An amino acid or amino acid derivative or peptide bound to a solid phase carrier and having a free amino group, or a solid phase carrier having a free amino group, and a compound represented by the following formula: and reacting a compound represented by the following formula:
  • the compound represented by formula (2) is obtained by deprotecting PG, and the compound is optionally subjected to one or more amino acid condensation reactions, and then separated from the solid phase support and subjected to a cyclization reaction.
  • Ring A is an aromatic six-membered ring
  • Z 1 , Z 2 , and Z 3 each independently represent an oxygen atom or a sulfur atom
  • R a , R b , and R c each independently represent a hydrogen atom or a hydrocarbon group
  • k1, k2, and k3 each independently represent an integer of 0 to 2
  • k4 is an integer between 0 and 2
  • n is an integer of 0 to 2
  • R 1 and R 2 are each independently a monovalent group
  • R3 is a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, forms a ring together with R4 or R5 , or forms a double bond together with R4
  • R 4 is a hydrogen atom or a hydrocarbon group, or forms a ring or a double bond together with R 3
  • R 5 is a hydrogen atom or a hydrocarbon group, or forms a ring together with R 3
  • (Xaa) m is
  • Ring A, Z 1 , Z 2 , Z 3 , R a , R b , R c , k1, k2, k3, k4, n, R 1 , R 2 , R 3 , R 4 , and R 5 are as defined in formula (I) above; PG is a protecting group.
  • Ring A, Z 1 , Z 2 , Z 3 , R a , R b , R c , k1, k2, k3, k4, n, R 1 , R 2 , R 3 , R 4 , and R 5 are as defined in formula (1) above;
  • (Xaa 1 ) m1 is a peptide residue composed of m1 amino acids and/or amino acid derivatives bound to a solid phase carrier when m1 is 2 or more, an amino acid residue or an amino acid derivative residue when m1 is 1, and a single bond when m1 is 0;
  • m1 is an integer of 0 or more,
  • the wavy line indicates that (Xaa 1 ) m1 , when m1 is 1 or more, or the carbonyl, when m1 is 0, is bound to the solid support.
  • the production method of this embodiment may further include deprotecting PG of the compound represented by formula (2) above before isolating the compound obtained by deprotecting PG of the compound represented by formula (2) above from the solid phase support, and binding one or more amino acids or amino acid derivatives to the deprotected compound by an amino acid condensation reaction.
  • the production method of this embodiment may further include deprotecting a protecting group of a side chain functional group of the amino acid and/or amino acid derivative constituting (Xaa) m of the compound obtained by the above cyclization reaction.
  • the compound obtained by the cyclization reaction has the following formula: -CR72 - Se- R8 (3) (In formula (3), Se represents selenium, R7 each independently represents a hydrogen atom or a hydrocarbon group, and R8 represents a hydrocarbon group which may have a substituent.) to form a double bond.
  • the production method of this embodiment may further include eliminating a moiety corresponding to R2 in formula (I) of the compound obtained by the cyclization reaction, and reacting the resulting carboxy group with one or more compounds.
  • the production method of this embodiment can easily incorporate the compound represented by formula (1) into a peptide chain using a solid phase support, and can easily produce a peptide containing an aromatic six-membered ring in the skeleton. Furthermore, after producing a peptide containing an aromatic six-membered ring in the skeleton, further reactions such as deprotection of the protecting group of the side chain functional group of the amino acid and/or amino acid derivative, formation of a double bond, and modification of R2 (i.e., the tail portion of a cyclic peptide) can be performed to obtain various peptide derivatives.
  • Each reaction carried out in the production method of this embodiment may be carried out step by step, or may be carried out in series in a system.
  • the production method of this embodiment may include a step or treatment that is usually carried out in a solid phase synthesis method, such as separation and washing of a solid phase support, between each reaction.
  • the production method of this embodiment produces a compound represented by the above formula (I).
  • the compound represented by the above formula (I) is a peptide containing an aromatic six-membered ring in the skeleton, and includes, for example, thiopeptides and pyritides, which are natural products with great potential as peptide drugs, and their artificial derivatives.
  • ring A is an aromatic six-membered ring, preferably a benzene ring or a nitrogen-containing aromatic six-membered ring, more preferably a benzene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, or a triazine ring, and even more preferably a benzene ring or a pyridine ring.
  • Z 1 , Z 2 , and Z 3 are each independently an oxygen atom or a sulfur atom.
  • Z 1 , Z 2 , and Z 3 may be different from each other or may be the same.
  • the plurality of Z 1 , Z 2 , or Z 3 may be different from each other or may be the same.
  • R a , R b , and R c are each independently a hydrogen atom or a hydrocarbon group, preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (both end values are included; the same applies throughout the specification), and more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • R a , R b , and R c may be different from each other or may be the same.
  • R a , R b , and R c may each independently be a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tosyl group, or may be a hydrogen atom, a methyl group, an isopropyl group, or a phenyl group, or may be a hydrogen atom or a methyl group.
  • k1, k2, and k3 are each independently an integer of 0 to 2, and may be an integer of 0 to 1. k1, k2, and k3 may be different from each other, or may be the same.
  • the sum of k1, k2, and k3 is 0 to 6, preferably 0 to 4, and more preferably 0 to 3.
  • the sum of k1, k2, and k3 may be 0 or more, 1 or more, or 2 or more, and may be 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less. Note that when k1, k2, or k3 is 0, it means that the azole moiety surrounded by the corresponding parentheses in the above formula (I) is a single bond.
  • k1 may be 0 or 1
  • k2 may be 0 or 1
  • k3 may be 0.
  • k4 is an integer of 0 or more and 2 or less, preferably 0 or 1, and more preferably 0. When k4 is 0, it means that the hydrocarbon portion enclosed in the corresponding parentheses in the above formula (I) is a single bond.
  • n is an integer of 0 to 2, preferably 0 or 1, and more preferably 0. When n is 0, it means that R1 is not bonded to ring A in the above formula (I).
  • R 1 is a monovalent group.
  • the monovalent group is not particularly limited, and examples thereof include a hydrocarbon group such as an alkyl group, a hydroxy group, an amino group, and a carboxy group.
  • R 1 is preferably selected from a hydrocarbon group, a hydroxy group, and an amino group.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the hydrocarbon group is preferably an alkyl group.
  • R 2 is a monovalent group.
  • the monovalent group is not particularly limited, but examples thereof include a hydrogen atom, -OH, -OR 2a , -NH 2 , -NHR 2b , and -NR 2b 2 , as well as other groups (protecting groups) that can be removed by a deprotection treatment.
  • R 2a is a hydrocarbon group, preferably a hydrocarbon group having 1 to 30 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • R 2a examples include a methyl group, an allyl group, a benzyl group, a benzyl group substituted with a hydrocarbon group having 1 to 10 carbon atoms, a tert-butyl group, a trityl group, and a trityl group substituted with a hydrocarbon group having 1 to 10 carbon atoms.
  • each R 2b is independently a hydrocarbon group, or two R 2b together form a ring.
  • R 2b is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 8 carbon atoms, such as a methyl group or a phenyl group.
  • the ring is not particularly limited, but may be, for example, an aliphatic ring having 3 to 15 (preferably 3 to 10, more preferably 4 to 8) atoms constituting the ring and optionally containing two or more heteroatoms in the ring.
  • Heteroatoms that may be contained in the ring are not particularly limited, but are, for example, nitrogen atoms and oxygen atoms.
  • Examples of the ring formed include a pyrrolidine ring, an imidazolidine ring, a pyrazolidine ring, an oxazolidine ring, an isoxazolidine ring, a piperidine ring, a piperazine ring, a morpholine ring, and a hexahydro-1,3,5-triazine ring.
  • R 2 may be a group in which R 2a in the above-mentioned —OR 2a is substituted with a substituent containing a hetero atom, such as a group in which R 2a in the above-mentioned —OR 2a is 4- ⁇ N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]-amino ⁇ benzyl group (Dmab group), a benzyl group having a substituent other than a hydrocarbon group, or a trityl group having a substituent other than a hydrocarbon group.
  • R 2 may be a functional group for evaluating the cell permeability of the compound represented by formula (I), such as a monovalent group containing a chloroalkyl moiety, a functional group containing a labeling substance, a functional group for improving the water solubility of the compound represented by formula (I), such as a monovalent group containing a polyethylene glycol (PEG) moiety, a functional group for improving the stability in blood of the compound represented by formula (I), such as a monovalent group containing a hydrocarbon chain (the number of carbon atoms may be, for example, 1 to 20, or 3 to 10.) moiety, an amino acid and an amino acid derivative, and a peptide chain.
  • a functional group for evaluating the cell permeability of the compound represented by formula (I) such as a monovalent group containing a chloroalkyl moiety, a functional group containing a labeling substance, a functional group for improving the water solubility of the compound represented by formula (I), such as a monovalent group
  • R 2 examples include -NHR 2c .
  • R 2c is a monovalent group, and may be, for example, a chloroalkyl group which may contain a linker, a group containing a labeling substance which may contain a linker, a polyethylene glycol group which may contain a linker, a hydrocarbon group which may contain a linker, an amino acid and an amino acid derivative, and a peptide chain.
  • the linker in R 2c is any group that links the nitrogen atom of -NHR 2c to a chloroalkyl group, a group containing a labeling substance, a polyethylene glycol group, or a hydrocarbon group.
  • the linker may be, for example, an alkylene group that may contain an ether bond or an amide bond in the main chain.
  • the alkylene group may have, for example, 1 to 20 carbon atoms.
  • the chloroalkyl group in R 2c may have 1 to 20 carbon atoms, or 2 to 15 carbon atoms.
  • the number of chlorine atoms may be 1 to 5, 1 to 3, or 1.
  • the chloroalkyl group that may contain a linker may be one described as a chloroalkane tag in L. Peraro et al., J. Am. Chem. Soc. 2018, 140, 36, 11360-11369.
  • Examples of the labeling substance in R 2c include enzymes such as peroxidase, alkaline phosphatase, ⁇ -galactosidase, glucose oxidase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, and invertase; fluorescent substances such as rhodamine derivatives, fluorescein derivatives, coumarin derivatives, dipyrromethenebolone derivatives, Cy dye derivatives, pyrene derivatives, phycobiliproteins, phycoerythrin, and phycocyanin; quenchers such as dabsyl group derivatives, Tide Quencher TMs , and black hole quencher derivatives; affinity tags such as biotin derivatives, Flag peptide, Myc peptide, and HA peptide; and luminescent substances such as isoluminol and lucigenin; and radioactive substances such as 3H , 14C , 32P , 35S , and 125I
  • the peptide in R 2c may consist of two or more amino acids or amino acid derivatives, and the number of amino acids or amino acid derivatives may be 2-50, 2-30, 2-20, or 2-10.
  • R2 can be converted to a desired monovalent group by the C-terminal modification reaction described below, and therefore R2 is not limited to the above groups.
  • amino acid includes not only naturally occurring amino acids but also artificial amino acid variants, etc.
  • amino acids include proteinogenic amino acids and non-proteinogenic amino acids (natural or non-natural non-proteinogenic amino acids, and chemically synthesized compounds having properties known in the art as characteristic of amino acids, etc.).
  • Proteinogenic amino acids are represented by three letter symbols well known in the art: Arg, His, Lys, Asp, Glu, Ser, Thr, Asn, Gln, Cys, Gly, Pro, Ala, Ile, Leu, Met, Phe, Trp, Tyr, and Val.
  • Proteinogenic amino acids are represented by one letter symbols well known in the art: R, H, K, D, E, S, T, N, Q, C, G, P, A, I, L, M, F, W, Y, and V. Proteinogenic amino acids are usually L-amino acids, but may have a structure as D-amino acids contained in non-proteinogenic amino acids. Non-proteinogenic amino acids include natural or unnatural amino acids other than proteinogenic amino acids.
  • non-proteinaceous amino acids include amino acids whose main chain structure differs from that of natural amino acids ( ⁇ , ⁇ -disubstituted amino acids ( ⁇ -methylalanine, cycloleucine, etc.), N-methyl amino acids, N-alkyl amino acids, D-amino acids, ⁇ -amino acids, ⁇ -amino acids, ⁇ -amino acids, long-chain amino acids, ⁇ -hydroxy acids, ⁇ -thio acids, and cyclic amino acids (cyclic ⁇ -amino acids, cyclic ⁇ -amino acids, and aromatic amino acids, etc.)); amino acids whose side chain structure differs from that of natural amino acids (selenocysteine, norleucine, spinacine, nitrophenylalanine, tetrahydroisoquinoline carboxylic acid, tetrahydroisoquinoline carboxylic acid having a substituent (e.g., a hydroxy group, a C1-C3 alkyl group
  • Examples of such combinations include amino acids whose main chain structure and side chain structure are different from those of natural types, N-methylated forms of the above amino acids in which the main chain amino group is methylated, and D-amino acids of the above amino acids.
  • Specific examples of other unnatural amino acids include the amino acids described in WO 2015/030014.
  • non-proteinogenic amino acids are shown as specific structures, but in cases where the stereochemistry of the asymmetric carbon is specified, compounds with the opposite stereochemistry may also be used.
  • a D-amino acid when a D-amino acid is described, it may also be an L-amino acid, and when an L-amino acid is described, it may also be a D-amino acid, or in either case, it may be a mixture of D-amino acids and L-amino acids in any ratio (including racemic mixtures). It may also be an N-methylated compound in which the main chain amino group is methylated.
  • ⁇ , ⁇ -disubstituted amino acids include the following:
  • N-methylamino acids include the following, in addition to N-methylated products in which the main chain amino group of a proteinous amino acid is methylated.
  • D-amino acids include the D-forms of proteinogenic amino acids as well as the following:
  • ⁇ -amino acids include the following in addition to those having an additional methylene in the main chain of a proteinogenic amino acid. Note that although ⁇ -amino acids are shown as amino acids having an additional methylene in the main chain, ⁇ -amino acids and ⁇ -amino acids are amino acids which further have one or two additional methylenes (amino acids having one, two, and three additional methylenes in the main chain of a natural amino acid can be understood as ⁇ -amino acids, ⁇ -amino acids, and ⁇ -amino acids, respectively).
  • the long-chain amino acid may be a ⁇ -amino acid or longer, and examples thereof include the following:
  • ⁇ -hydroxy acids and ⁇ -thio acids include the following:
  • cyclic amino acids include the following:
  • amino acids having a structure consisting of multiple rings include the following.
  • the azide group-containing amino acid, the alkyne group-containing amino acid, and the alkene group-containing amino acid are amino acids that can be used in further ring formation reactions after introduction, and examples thereof include the following.
  • amino acids whose side chain structures differ from those of natural amino acids include the following.
  • the non-proteinogenic amino acid is preferably selected from ⁇ , ⁇ -disubstituted amino acids, N-methyl amino acids, D-amino acids, ⁇ -amino acids, long-chain amino acids, ⁇ -hydroxy acids, ⁇ -thio acids, cyclic amino acids, selenocysteine, norleucine, spinacin, nitrophenylalanine, tetrahydroisoquinoline carboxylic acid, tetrahydroisoquinoline carboxylic acid having a substituent such as hydroxytetrahydroisoquinoline carboxylic acid, hydroxytryptophan, pentafluorophenylalanine, methoxyphenylalanine, ⁇ S,L homoglutamine, amino acids having a structure consisting of multiple rings, azide group-containing amino acids, alkyne group-containing amino acids, alkene group-containing amino acids, chloroacetamide group-containing amino acids, ⁇ -alkylated lysine, biotin group
  • ⁇ , ⁇ -disubstituted amino acids N-methyl amino acids, D-amino acids, ⁇ -amino acids, long-chain amino acids, ⁇ -hydroxy acids, ⁇ -thioacids, cyclic amino acids, amino acids having a structure consisting of multiple rings, azide group-containing amino acids, alkyne group-containing amino acids, and alkene group-containing amino acids, the above-mentioned examples are preferred.
  • amino acid derivative refers to a compound or partial structure derived from the amino acid defined above, and includes, for example, (i) an amino acid whose side chain functional group is protected by a protecting group, (ii) a thiazole ring or oxazole ring formed in a peptide by reacting the side chain of an amino acid with an amide group between an adjacent amino acid, and (iii) a compound represented by the following formula: -CR72 - Se- R8 (3) and (iv) an ⁇ , ⁇ -unsaturated amino acid.
  • Se represents selenium
  • R 7 each independently represents a hydrogen atom or a hydrocarbon group
  • R 8 represents a hydrocarbon group which may have a substituent.
  • R 7 each independently represents preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • both may be hydrocarbon groups having 1 to 10 carbon atoms, or one may be a hydrogen atom and the other may be a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms).
  • the hydrocarbon group of R 8 is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • the substituent in R 8 is not particularly limited, but examples thereof include a hydroxy group, a carboxy group, an amino group, and a carbamoyl group.
  • the amino acid and amino acid derivative may have a main chain amino group and/or a main chain carboxy group protected by a protecting group.
  • protecting groups include an acetyl group, an allyl group (All), an allyloxycarbonyl group (Alloc), a benzyl group (Bzl), a benzyloxycarbonyl group (Z), a t-butyloxycarbonyl group (Boc), a benzyloxymethyl group (Bom), an o-bromobenzyloxycarbonyl group, a t-butyl group (tBu), a t-butyldimethylsilyl group, a 2-chlorobenzyl group, a 2-chlorobenzyloxycarbonyl group, a 2,6-dichlorobenzyl group, and a cyclohexyl group.
  • cyclopentyl group 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl group (Dde), isopropyl group, 4-methoxy-2,3-6-trimethylbenzylsulfonyl group (Mtr), 2,3,5,7,8-pentamethylchroman-6-sulfonyl group (Pmc), pivalyl group, tetrahydropyran-2-yl group, tosyl group (Tos), 2,4,6-trimethoxybenzyl group, trimethylsilyl group, and trityl group (Trt).
  • a thiazole ring or oxazole ring formed by reaction of a side chain of an amino acid with an amide group between an adjacent amino acid means a structure represented by the following formula.
  • B 1 X is an oxygen atom or a sulfur atom
  • R 1 X2 is a hydrogen atom or a hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group of R 1 X2 is preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 5, even more preferably 1 to 3, and may be 1.
  • the hydrocarbon group is preferably an alkyl group.
  • R 1 X2 may be a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tosyl group, or may be a hydrogen atom, a methyl group, an isopropyl group, or a phenyl group, or may be a hydrogen atom or a methyl group.
  • the thiazole ring or oxazole ring may be present in the compound of this embodiment in the form of, for example, a thiazole ring and/or an oxazole ring being continuously bonded.
  • the peptide may have the following structure:
  • B 1 X is independently an oxygen atom or a sulfur atom
  • R 2 X2 is independently a hydrogen atom or a hydrocarbon group
  • R 3 X3 is a hydrogen atom or a hydrocarbon group, or forms a ring together with R 4 X1 or forms a double bond
  • R 5 X1 is a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, forms a ring together with R 5 X3 or R 4 X4 or forms a double bond together with R 4 X3
  • R 5 X4 is a hydrogen atom or
  • the side chain of the amino acid derivative of R 5 X1 may be a monovalent group derived from the side chain of an amino acid.
  • the preferred aspects of R 5 X2 are the same as those described above, and the number of carbon atoms of the hydrocarbon groups of R 5 X3 and R 4 X4 is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, and may be 1.
  • the hydrocarbon group is preferably an alkyl group.
  • the ring and double bond formed by R X1 and R X3 or R X4 may be similar to the ring formed when R 3 forms a ring together with R 4 , the ring formed when R 3 forms a ring together with R 5 , and the group formed when R 3 forms a double bond together with R 4 , which will be described later.
  • j is preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, and even more preferably 1 or more and 2 or less.
  • Selenocysteine derivatives include, for example, compounds having the following structure:
  • R7 and R8 are the same as those in the above formula (3).
  • the compound having the above structure has a group represented by the above formula (3) as a side chain of an ⁇ -amino acid, and compounds corresponding to the ⁇ -amino acid or ⁇ -amino acid of the compound (i.e., those having a group represented by the above formula (3) as a side chain of a ⁇ -amino acid or ⁇ -amino acid) are also included in (iii) selenocysteine derivatives.
  • each R 7 is independently preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • both may be a hydrocarbon group having 1 to 10 carbon atoms, or one may be a hydrogen atom and the other may be a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms).
  • preferred amino acids or amino acid derivatives include, in addition to proteinogenic amino acids and the above-mentioned preferred non-proteinogenic amino acids, (i) amino acids whose side chain functional groups are protected by a protecting group, (ii) thiazole rings or oxazole rings formed in a peptide by reaction of the side chain of an amino acid with an amide group between an adjacent amino acid, (iii) amino acids represented by the following formula: -CR72 - Se- R8 (3) and (iv) ⁇ , ⁇ -unsaturated amino acids.
  • preferred amino acids or amino acid derivatives include, in addition to proteinogenic amino acids and the above-mentioned preferred non-proteinogenic amino acids, (i) amino acids whose side chain functional groups are protected by protecting groups, and (iii) amino acids represented by the following formula: -CR72 - Se- R8 (3)
  • Examples of the selenocysteine derivatives include those having a group represented by the following formula:
  • Preferred amino acids or amino acid derivatives of Xaa in the above formula (I) include, in addition to proteinogenic amino acids and the above-mentioned preferred non-proteinogenic amino acids, (i) amino acids whose side chain functional groups are protected by a protecting group, (ii) thiazole rings or oxazole rings formed in a peptide by reaction of the side chain of an amino acid with an amide group between an adjacent amino acid, and (iii) amino acids represented by the following formula: -CR72 - Se- R8 (3) and (iv) ⁇ , ⁇ -unsaturated amino acids.
  • amino acid or amino acid derivative when it represents a group, in the case of a monovalent group, it represents, for example, a monovalent group obtained by removing one hydrogen atom from the structure of the amino acid or amino acid derivative, and in the case of a divalent group, it represents, for example, a divalent group obtained by removing two hydrogen atoms from the structure of the amino acid or amino acid derivative.
  • the amino acid or amino acid derivative representing the group may be an amino acid or amino acid derivative having one bond, or may be an amino acid or amino acid derivative having two bonds.
  • the bond may be a structure in which one hydrogen atom is subtracted from the amino group of the N-terminal amino acid and the carboxy group of the C-terminal amino acid.
  • R3 is a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, forms a ring together with R4 or R5 , or forms a double bond together with R4 .
  • the side chain of the amino acid derivative may be a monovalent group derived from the side chain of an amino acid.
  • the ring formed is not particularly limited, and may be, for example, an aliphatic ring which may have a substituent, and the number of carbon atoms in the aliphatic ring may be 3 to 15, 3 to 10, or 4 to 8.
  • the substituent in the aliphatic ring may be, for example, a functional group contained in the side chain of an amino acid, and may be a hydrocarbon group (particularly an alkyl group or an aryl group), a hydroxy group, an amino group, a carboxy group, a thiol group, an imidazolyl group, a guanidino group, a carbamoyl group, or an indolyl group.
  • R 7 is independently a hydrogen atom or a hydrocarbon group, preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • the ring formed is not particularly limited, but may be a ring that does not contain a heteroatom other than the nitrogen atom to which R5 is bonded, such as a pyrrolidine ring, and the number of carbon atoms contained in the ring may be 3 to 10, 3 to 6, or 4 or 5.
  • R 4 is a hydrogen atom or a hydrocarbon group, or forms a ring together with R 3 , or forms a double bond.
  • the number of carbon atoms in the hydrocarbon group of R 4 is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, and may be 1.
  • the hydrocarbon group is preferably an alkyl group.
  • R 4 when R 4 does not form a ring together with R 3 , R 4 may be a hydrogen atom or a methyl group.
  • R5 is a hydrogen atom or a hydrocarbon group, or forms a ring together with R3 .
  • the number of carbon atoms in the hydrocarbon group of R5 is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, and may be 1.
  • the hydrocarbon group is preferably an alkyl group. It is preferable that R5 is a hydrogen atom or forms a ring together with R3 .
  • (Xaa) m is a peptide composed of m amino acids and/or amino acid derivatives, and the C-terminus is bonded to NR5 , and the N-terminus is bonded to the carbonyl bonded to ring A when k3 is 0, or to the carbonyl bonded to the azole ring when k3 is 1 or 2.
  • m is an integer of 2 or more, and may be, for example, 2 or more and 100 or less, and within the above range, may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 10 or more, 15 or more, or 20 or more, and may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 25 or less.
  • m may be in a range obtained by any combination of the above upper and lower limit values.
  • the m amino acids and/or amino acid derivatives may include m, m-1, m-2, m-3, m-4, m-5, m-6, m-7, m-8, m-9, m-10, m-11, or a range of proteinaceous amino acids with these upper or lower limits.
  • the m amino acids and/or amino acid derivatives may include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or a range of non-proteinaceous amino acids and/or amino acid derivatives with these upper or lower limits.
  • the total number of non-proteinaceous amino acids and amino acid derivatives may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or a range of these upper or lower limits.
  • the compound represented by the above formula (I) is preferably represented by the following formula (IA) or (IB), and more preferably represented by the following formula (IC).
  • the compounds represented by the following formulas (IA), (IB) and (IC) may be compounds produced using the compounds represented by the below-described formulas (1-A), (1-B) and (1-C), respectively.
  • the compound represented by the above formula (I) is preferably represented by the following formula (I').
  • the compound represented by the following formula (I') may be a compound produced using a compound represented by the below-mentioned formula (1').
  • the compounds represented by the above formulae (IA), (IB) and (IC) are preferably represented by the following formulae (IA'), (IB') and (IC'), respectively.
  • the compound represented by the above formula (I) is more preferably represented by the following formula (IC').
  • the compounds represented by the following formulae (IA'), (IB') and (IC') may be compounds produced using the compounds represented by the below-described formulae (1-A'), (1-B') and (1-C'), respectively.
  • the nitrogen atom when ring A is a pyridine ring, in the above formulae (IA) and (IA'), the nitrogen atom may be located at the following positions: In the above formulae (IB) and (IB'), the nitrogen atom may be located at the following positions: In the above formulae (IC) and (IC'), the nitrogen atom may be located at the following positions: In the above structure, the portion following the wavy line is omitted.
  • R 2 is a monovalent group.
  • the monovalent group is not particularly limited, but examples thereof include a hydrogen atom, -OH, -OR 2a , -NH 2 , -NHR 2b , and -NR 2b 2 , as well as other groups (protecting groups) that can be removed by deprotection treatment.
  • R 2 is preferably -OR 2a or other groups that can be removed by deprotection treatment.
  • the definitions and preferred embodiments of R 2a and R 2b are the same as those in formula (I) above.
  • R 2 may be a group in which R 2a in the above -OR 2a is substituted with a substituent containing a hetero atom, such as a group in which R 2a in the above -OR 2a is 4- ⁇ N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]-amino ⁇ benzyl group (Dmab group), a benzyl group having a substituent other than a hydrocarbon group, or a trityl group having a substituent other than a hydrocarbon group.
  • R3 is a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, forms a ring together with R4 or R5 , or forms a double bond together with R4 , but is preferably a hydrogen atom, a side chain of an amino acid or a side chain of an amino acid derivative, or forms a ring together with R4 or R5 .
  • the side chain of the amino acid derivative may be a monovalent group derived from the side chain of an amino acid.
  • the ring formed is not particularly limited, but may be the same as the ring in the above formula (I).
  • R 3 in the above formula (1) when R 3 forms a double bond together with R 4 , the group formed is not particularly limited, but may be the same as the group in the above formula (I). In the above formula (1), when R 3 forms a ring together with R 5 , the ring formed is not particularly limited, but may be the same as the ring in the above formula (I).
  • R3 in the above formula (1) is a side chain of an amino acid derivative, it may be a selenium-containing group such as a selenocysteine derivative side chain.
  • R3 is represented by the following formula: -CR72 - Se- R8 (3)
  • Se represents selenium
  • R 7 each independently represents a hydrogen atom or a hydrocarbon group
  • R 8 represents a hydrocarbon group which may have a substituent.
  • the hydrocarbon groups of R 7 and R 8 each independently are preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • both may be a hydrocarbon group having 1 to 10 carbon atoms, or one may be a hydrogen atom and the other may be a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms).
  • the substituent in R 8 is not particularly limited, but examples thereof include a hydroxy group, a carboxy group, an amino group, and a carbamoyl group.
  • R 4 is a hydrogen atom or a hydrocarbon group, or forms a ring together with R 3 or forms a double bond, but is preferably a hydrogen atom or a hydrocarbon group, or forms a ring together with R 3.
  • the number of carbon atoms in the hydrocarbon group of R 4 in the above formula (1) is preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3, and may be 1.
  • the hydrocarbon group is preferably an alkyl group. In the above formula (1), when R 4 does not form a ring together with R 3 , it may be a hydrogen atom or a methyl group.
  • PG is a protecting group.
  • the protecting group represented by PG include a 9-fluorenylmethylcarboxy group (Fmoc group), a t-butylcarbonyl group (Boc group), a benzyloxycarbonyl group (Cbz group), an allyloxycarbonyl group (Alloc group), and a (2-trimethylsilyl)-ethanesulfonyl group (SES group), and preferably an Fmoc group.
  • Ring A, Z1 , Z2 , Z3 , Ra , Rb , Rc , k1, k2, k3, k4, n, R1 , and R5 in the above formula (1) may be the same as ring A, Z1 , Z2, Z3 , k1 , k2, k3, k4, n, R1 , and R5 in the above formula (I), respectively.
  • R2 , R3 , and R4 in the above formula (1) may be the same as or different from R2 , R3 , and R4 in the above formula (I), respectively.
  • the compound represented by the above formula (1) is preferably represented by the following formula (1-A) or (1-B), and more preferably represented by the following formula (1-C).
  • the compound represented by the above formula (1) is preferably represented by the following formula (1').
  • the compounds represented by the above formulae (1-A), (1-B) and (1-C) are preferably represented by the following formulae (1-A'), (1-B') and (1-C'), respectively.
  • the compound represented by the above formula (1) is more preferably represented by the following formula (1-C').
  • the nitrogen atom when ring A is a pyridine ring, in the above formulas (1-A) and (1-A'), the nitrogen atom may be located at the following positions: In the above formulas (1-B) and (1-B'), the nitrogen atom may be located at the following positions: In the above formulae (1-C) and (1-C'), the nitrogen atom may be located at the following positions. In the above structure, the portion following the wavy line is omitted.
  • the solid phase support that can be used in the production method of this embodiment is not particularly limited as long as it is one that can be used in solid phase synthesis, and examples thereof include inorganic supports such as glass beads and silica gel; organic supports made of synthetic polymers such as cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked polyacrylamide, cross-linked polystyrene, and/or polysaccharides such as crystalline cellulose, cross-linked cellulose, cross-linked agarose, and cross-linked dextran; and composite supports such as organic-organic and organic-inorganic obtained by combining these.
  • inorganic supports such as glass beads and silica gel
  • organic supports made of synthetic polymers such as cross-linked polyvinyl alcohol, cross-linked polyacrylate, cross-linked polyacrylamide, cross-linked polystyrene, and/or polysaccharides such as crystalline cellulose, cross-linked cellulose, cross-linked agarose, and cross-linked dextran
  • composite supports such as organic-
  • the form of the solid phase carrier can be any of beads (which may be, for example, magnetic beads, paramagnetic beads, or non-magnetic beads), fibers, particles, membranes (including hollow fibers), gels, pins, plates, etc., and any form can be selected.
  • the amino acids, amino acid derivatives, and peptides may be immobilized on the solid support by a covalent bond method, a physical adsorption method, an ionic bond method, an intermolecular interaction method, or the like.
  • the solid phase support is a resin
  • examples of classification based on the functional group presented on the support surface include chloromethyl resin, hydroxymethyl resin, benzhydrylamine resin, aminomethyl resin, 4-benzyloxybenzyl alcohol resin (Wang resin), 4-methylbenzhydrylamine resin, PAM resin, 4-hydroxymethylmethylphenylacetamidomethyl resin, polyacrylamide resin, 4-(2',4'-dimethoxyphenyl-hydroxymethyl)phenoxy resin, 4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)phenoxy resin (Rink resin), and 2-chlorotrityl chloride resin.
  • the solid support can also be a support such as polystyrene resin, NovaPEG resin, ChemMatrix resin, PEG resin, TentaGel resin, and Spheritide resin.
  • a solid phase support to which an amino acid or amino acid derivative or peptide having a free amino group is bound, or a solid phase support having a free amino group is reacted with the compound represented by the above formula (1). Therefore, in the manufacturing method of this embodiment, the solid phase support may be reacted with the compound represented by the above formula (1) as it is, or one or more amino acids or amino acid derivatives may be bound to the solid phase support by solid phase synthesis, and then the amino acid or amino acid derivative or peptide having a free amino group bound to the solid phase support may be reacted with the compound represented by the above formula (1). Therefore, the manufacturing method of this embodiment may include reacting one or more amino acids or amino acid derivatives with the solid phase support.
  • Such a reaction may be carried out by a method used in a normal solid phase synthesis method.
  • Methods for coupling one or more amino acids or amino acid derivatives to solid supports and related information may be found in the following references: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organ Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803).
  • Medicinal Chemistry Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439).
  • the number m1 of amino acids or amino acid derivatives bound to a solid phase carrier by solid phase synthesis before reacting with the compound represented by the above formula (1) is not particularly limited, and may be, for example, 0 to 100, and within the above range, may be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 10 or more, 15 or more, or 20 or more, and may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 25 or less.
  • m1 may be in a range obtained by arbitrarily combining the above upper and lower limits. When m1 is 2 or more, a peptide chain consisting of m1 amino acids and/or amino acid derivatives is bound to the solid phase carrier, and the free amino group of the peptide chain reacts with the compound represented by the above formula (1).
  • the production method of this embodiment includes reacting the compound of formula (1) above with the solid phase support above to obtain a compound represented by formula (2) below.
  • ring A, Z1 , Z2 , Z3 , Ra , Rb , Rc , k1, k2, k3, k4, n, R1 , R2 , R3 , R4 , and R5 are defined as in the above formula (1), and preferred embodiments and the like are also the same as those in the above formula (1).
  • Ring A, Z1 , Z2 , Z3 , Ra , Rb , Rc , k1, k2, k3, k4, n, R1 , R2 , R3 , R4 , and R5 in the above formula (2) may be the same as ring A, Z1 , Z2 , Z3 , Ra , Rb , Rc , k1, k2, k3, k4, n, R1 , R2, R3 , R4 , and R5 in the above formula (1) , respectively.
  • (Xaa 1 ) m1 represents an amino acid or amino acid derivative or peptide bound to a solid phase support before reacting with the compound represented by the above formula (1), and when m1 is 2 or more, it represents a peptide residue composed of m1 amino acids and/or amino acid derivatives bound to a solid phase support, when m1 is 1, it represents an amino acid residue or amino acid derivative residue, and when m1 is 0, it represents a single bond.
  • m1 is an integer of 0 or more, and may be, for example, 0 or more and 100 or less, and within the above range, may be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 10 or more, 15 or more, or 20 or more, and may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 25 or less. m1 may be within a range obtained by arbitrarily combining the above upper and lower limits.
  • the wavy line indicates that (Xaa 1 ) m1 is bound to the solid support directly or via a linker when m1 is 1 or more, or that the carbonyl is bound to the solid support when m1 is 0.
  • the linker is not particularly limited as long as it is a linker that is commonly used for solid supports.
  • the compound represented by the above formula (2) is a compound represented by the above formula (1) in which zero or more amino acids and/or amino acid derivatives, and optionally a solid phase support, are bound to the carboxy group of the compound represented by the above formula (1) via a linker. Therefore, when the above formula (1) is represented by the above formula (1'), (1-A), (1-B), (1-C), (1-A'), (1-B'), or (1-C'), a compound having the corresponding configuration in the above formula (2) is obtained.
  • the reaction between the compound of formula (1) and the solid phase support is not particularly limited as long as it is a reaction used in conventional solid phase synthesis methods.
  • the method of reacting the compound of formula (1) with the solid support and related information reference may be made to the following literature: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803).
  • the production method of this embodiment may further include deprotecting PG of the compound represented by formula (2) above before isolating the compound obtained by deprotecting PG of the compound represented by formula (2) above from the solid phase support, and binding one or more amino acids or amino acid derivatives to the deprotected compound by an amino acid condensation reaction, thereby obtaining a compound represented by formula (4) below.
  • ring A, Z1 , Z2 , Z3 , Ra , Rb , Rc , k1, k2, k3, k4, n, R1 , R2 , R3, R4 , R5 , ( Xaa1 ) m1 , and m1 are defined as in the above formula (2), and preferred embodiments, etc. are also the same as those in the above formula (2).
  • Ring A, Z1 , Z2 , Z3 , Ra , Rb, Rc , k1, k2, k3, k4, n, R1 , R2 , R3, R4 , R5 , ( Xaa1 ) m1 , and m1 in the above formula (4) may be the same as ring A, Z1 , Z2 , Z3 , k1 , k2, k3, k4, n, R1 , R2 , R3 , R4 , R5 , ( Xaa1 ) m1 , and m1 in the above formula ( 2 ), respectively.
  • ( Xaa2 ) m2 represents an amino acid or amino acid derivative or peptide condensed with the compound represented by the above formula (2), and when m1 is 2 or more, it is a peptide residue composed of m1 amino acids and/or amino acid derivatives, and when m1 is 1, it is an amino acid residue or amino acid derivative residue.
  • the N-terminus of ( Xaa2 ) m2 may be a free amino group or an amino group protected by a protecting group. Examples of the protecting group include the same as PG in the above formula (2).
  • m2 is an integer of 1 or more, and may be, for example, 1 to 100, and within the above range, may be 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 10 or more, 15 or more, or 20 or more, and may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 25 or less.
  • m2 may be within a range obtained by arbitrarily combining the above upper and lower limits. However, in the compound represented by the above formula (2), when m1 is 0, m2 is 2 or more, and when m1 is 1, m2 is 1 or more.
  • the sum of m1 and m2 is 2 or more.
  • the sum of m1 and m2 may be, for example, 2 or more and 100 or less, and may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 10 or more, 15 or more, or 20 or more within the above range, and may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, or 25 or less.
  • m2 may be a range obtained by arbitrarily combining the above upper limit value and lower limit value.
  • m2 may be the difference between m and m1 (m-m1).
  • the compound represented by the above formula (4) is a compound represented by the above formula (2) in which one or more amino acids and/or amino acid derivatives are bonded in place of PG. Therefore, when the above formula (1) is represented by the above formula (1'), (1-A), (1-B), (1-C), (1-A'), (1-B'), or (1-C'), a compound having the corresponding configuration in the above formula (4) is obtained.
  • PG in the compound represented by formula (2) above may be deprotected by an appropriate treatment depending on the type of the protecting group PG.
  • deprotection may be performed by treatment with a base such as pyrrolidine, piperidine, or morpholine
  • PG is a t-butylcarbonyl group
  • deprotection may be performed by treatment with a strong acid such as trifluoroacetic acid (TFA) or hydrochloric acid.
  • TFA trifluoroacetic acid
  • the amino acid When binding an amino acid derivative in the above reaction, the amino acid may be bound to the solid support or the compound of formula (2) and then the bound amino acid may be converted into an amino acid derivative, but it is preferable to bind an amino acid derivative prepared in advance to the solid support or the compound of formula (2).
  • Examples of compounds for binding an amino acid derivative include the following compounds. However, compounds for binding an amino acid derivative are not limited to the following, and various compounds can be synthesized by appropriately referring to the following compounds and their synthesis methods and used in the production method according to this embodiment.
  • the manufacturing method of this embodiment includes, when the amino acid condensation reaction is carried out, deprotecting the compound represented by the above formula (4) if the N-terminus of (Xaa 2 ) m2 is protected by a protecting group as necessary, then isolating the compound from the solid phase support, and carrying out a cyclization reaction, and when the amino acid condensation reaction is not carried out, deprotecting PG of the compound represented by the above formula (2), then isolating the compound from the solid phase support, and carrying out a cyclization reaction.
  • the deprotection of the N-terminus of (Xaa 2 ) m2 in the compound represented by formula (4) and the deprotection of PG in the compound represented by formula (2) may be carried out by an appropriate treatment depending on the protecting group (PG).
  • the protecting group is a 9-fluorenylmethylcarboxy group (Fmoc group)
  • the deprotection may be carried out by treatment with a base such as pyrrolidine, piperidine, or morpholine
  • the protecting group is a t-butylcarbonyl group (Boc group)
  • the deprotection may be carried out by treatment with a strong acid such as trifluoroacetic acid (TFA) or hydrochloric acid.
  • TFA trifluoroacetic acid
  • the compound represented by formula (2) or (4) above can be separated from the solid phase support by a method appropriate for the solid phase support used.
  • a method appropriate for the solid phase support used for example, methods using trifluoroacetic acid (TFA), acetic acid, 2,2,2-trifluoroethanol, diisobutylaluminum hydride (DIBAL), sodium borohydride, sodium hydroxide, and amines can be used.
  • the cyclization reaction of the compound cleaved from the solid support is not particularly limited, but may be carried out under conditions that allow an amino acid condensation reaction to proceed, for example.
  • methods used in the cyclization reaction and related information please refer to the following literature: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Publications: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712);
  • the production method of this embodiment may further include deprotecting the protecting group of the side chain functional group of the amino acid and/or amino acid derivative constituting (Xaa) m of the compound obtained by the cyclization reaction. That is, the production method of this embodiment may include removing the protecting group of the side chain functional group of the amino acid and/or amino acid derivative constituting (Xaa) m of the compound represented by formula (I) obtained by the cyclization reaction to obtain the compound represented by formula (I) from which the protecting group has been removed.
  • a suitable reaction known in the art may be selected according to the protecting group of the side chain functional group of the amino acid or amino acid derivative.
  • the compound obtained by the cyclization reaction has the following formula: -CR72 - Se- R8 (3)
  • Se represents selenium
  • R7 each independently represents a hydrogen atom or a hydrocarbon group
  • R8 represents a hydrocarbon group which may have a substituent.
  • R 7 is preferably each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms.
  • both may be a hydrocarbon group having 1 to 10 carbon atoms, or one may be a hydrogen atom and the other may be a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (more preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aryl group having 6 to 8 carbon atoms).
  • the hydrocarbon group of R 8 is preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • the substituent in R 8 is not particularly limited, but examples thereof include a hydroxy group, a carboxy group, an amino group, and a carbamoyl group.
  • the group represented by formula (3) may be bonded to a carbon atom to which at least one hydrogen atom is bonded, in addition to R 3.
  • the compound represented by formula (I) obtained by the cyclization reaction may have a group represented by formula (3) as the side chain of the amino acid derivative in (Xaa) m , and when R 2 contains an amino acid derivative or a peptide chain, as the side chain of the amino acid derivative.
  • Examples of the method for oxidizing the group represented by the above formula (3) to form a double bond include a method using an organic peracid such as tert-butyl hydroperoxide (TBHP), sodium periodate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, metachloroperbenzoic acid (mCPBA), and peracetic acid, or a peroxide such as NaClO, KHSO 5 , and Oxone. More specifically, the methods described in Just-Baringo, X. et al., Angew. Chem. Int. Ed. 2013, 52, 7818-7821. and Just-Baringo, X. et al., J. Med. Chem. 2014, 57, 4185-4195, etc. may be used.
  • an organic peracid such as tert-butyl hydroperoxide (TBHP), sodium periodate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, metachloroper
  • the double bond formation reaction may be carried out immediately after the cyclization reaction described above, or after the deprotection reaction of the amino acid side chain functional group.
  • the production method of this embodiment may further include eliminating R2 from the compound represented by formula (I) obtained by the cyclization reaction, and reacting the resulting carboxy group with one or more compounds.
  • the R 2 to be eliminated is not particularly limited, but may be, for example, -OR 2a or other groups that can be eliminated by deprotection treatment, where the definition and preferred embodiments of R 2a are the same as those in formula (I) above.
  • the R 2 to be eliminated may be a group in which R 2a in the above -OR 2a is substituted with a substituent containing a heteroatom, such as a group in which R 2a in the above -OR 2a is 4- ⁇ N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]-amino ⁇ benzyl group (Dmab group), a benzyl group having a substituent other than a hydrocarbon group, or a trityl group having a substituent other than a hydrocarbon group.
  • the method for removing R2 is not particularly limited, but for example, when R2 is -OR2a , it may be a hydrolysis reaction of an ester, and particularly when R2 is -OMe, it may be hydrolysis using Me3SnOH .
  • Me3SnOH For details of the hydrolysis method using Me3SnOH , see K. C. Nicolaou, et al., Angew. Chem. Int. Ed., 2005, 44, 1378-1382.
  • the compound to be reacted with the carboxy group generated by the elimination of R2 is not particularly limited as long as it is a compound capable of reacting with a carboxy group.
  • a first compound capable of reacting with a carboxy group may be reacted, and then a second compound capable of reacting with a functional group possessed by the first compound may be further reacted.
  • Compounds to be reacted with the carboxy group generated by elimination of R2 may be, for example, amines, compounds containing a chloroalkyl moiety, compounds containing a labeling substance, compounds containing an ethylene glycol (PEG) moiety, compounds containing a hydrocarbon chain (the number of carbon atoms may be, for example, 1 to 20, or 3 to 10), amino acids and amino acid derivatives, and peptide chains.
  • R2 include NH2R2b , NHR2b2 , NH2R2c , and salts thereof.
  • the definition and preferred embodiments of R2b are the same as those in formula (I) above.
  • the definition and preferred embodiments of R 2c are the same as those in formula (I) above.
  • the manufacturing method of this embodiment includes the above-mentioned C-terminal modification reaction, and thus can add a labeling substance useful for detection and quantification to the compound represented by formula (I), add a chloroalkane tag that can evaluate cell membrane permeability, add a polyethylene glycol moiety that can improve water solubility, or add a hydrocarbon chain that can improve stability in blood.
  • the C-terminal modification reaction may be carried out immediately after the cyclization reaction, after the deprotection reaction of the amino acid side chain functional group, or after the double bond formation reaction.
  • the present invention also provides a compound represented by the above formula (1).
  • the compound represented by the above formula (1) is useful, for example, as a starting material for the manufacturing method of the present embodiment described above.
  • M. Christy et al., Org. Lett. 2020, 22, 2365-2370 may be appropriately referred to.
  • the compound represented by the above formula (1) can be produced, for example, by the following scheme, although it is not particularly limited.
  • ring A, Z1 , Z2, Z3 , k1, k2 , k3, k4, n, R1 , R2 , R3 , R4 , R5 , and PG are the same as those in the above formula (1).
  • the following schemes may be appropriately combined.
  • Step 1-1 is a step of reacting the starting material with tert-butanesulfinamide. This step may be carried out with Cs 2 CO 3 in dichloromethane (DCM).
  • X is a suitable leaving group such as I, Br, OTf (triflate group), and Cl.
  • Step 1-2 is a step of reacting the product of step 1-1 with R 3 -L (L is a suitable leaving group) corresponding to an amino acid side chain or an amino acid derivative side chain.
  • R 3 -L is bis(methylseleno)methane. This step may be carried out in tetrahydrofuran (THF) containing a reducing agent such as n BuLi at a low temperature of -50°C or lower.
  • Step 1-3 is a step of reacting the product of step 1-2 with hexamethylditin.
  • the hexamethylditin may be a hexaalkylditin. This step may be carried out in toluene containing a palladium catalyst such as Pd[PPh 3 ] 4 at a heating temperature of 50° C. or higher.
  • Step 2-1 is a step of protecting the carboxy group of the starting material with a protecting group.
  • the protecting group represented by PG 1 is not particularly limited as long as it is a group conventionally used as a protecting group for a carboxy group, and may be, for example, a tert-butyl group, a benzyl group, a methyl group, an alkyl group, etc.
  • This step may be a step of tosylation of the carboxy group with p-toluenesulfonyl chloride and a base such as pyridine, followed by reaction with PG 1 -OH.
  • Step 2-2 is a step for cyanating the product of step 2-1.
  • This step may include, for example, a first reaction with urea-hydrogen peroxide (UHP) and trifluoroacetic anhydride (TFAA) and a second reaction with trimethylsilyl cyanide under basic conditions such as triethylamine.
  • UHP urea-hydrogen peroxide
  • TFAA trifluoroacetic anhydride
  • Step 2-3 is a step of forming a thiazole or oxazole ring by reacting the product of step 2-2 with threonine, cysteine, or serine, or a derivative thereof.
  • This reaction may include a first reaction of reacting a nitrile with threonine, cysteine, or serine, or a derivative thereof, to form a thiazoline or oxazoline ring, and a second reaction of dehydrogenating the thiazoline or oxazoline ring to form a thiazole or oxazole ring.
  • Dehydrogenation of the thiazoline or oxazoline ring may be carried out, for example, using bromotrichloromethane and diazabicycloundecene (DBU).
  • DBU diazabicycloundecene
  • Step 2-4 is a step of coupling the product of step 2-3 with intermediate 1 obtained in scheme 1.
  • This step may be a Stille coupling using a palladium catalyst such as Pd[P t Bu 3 ] 2.
  • a palladium catalyst such as Pd[P t Bu 3 ] 2.
  • CsF and CuI may be added as additives.
  • the reaction temperature may be a heating condition of 50° C. or higher.
  • Step 2-5 is a step of converting the product of step 2-4 into the compound represented by the above formula (1), which may include a first reaction of removing the sulfinamide moiety with a strong acid such as trifluoroacetic acid (TFA) and hydrochloric acid and deprotecting the carboxyl-protecting group PG 1 , and a second reaction of protecting the amino group with a protecting group PG.
  • a strong acid such as trifluoroacetic acid (TFA) and hydrochloric acid
  • TFA trifluoroacetic acid
  • PG 1 hydrochloric acid
  • Scheme 3 Synthesis of a compound of formula (I) having a benzene ring using intermediate 1
  • the compound having a benzene ring represented by the above formula (I) can be synthesized using the intermediate 1 synthesized in Scheme 1 according to the following Schemes 3-1, 3-2, and 3-3.
  • Step 3-1-1 is a step of halogenating the starting material.
  • This step may use a halogenating agent such as N-bromosuccinimide.
  • Step 3-1-2 is a step of oxidizing the methyl group of the product of step 3-1-1 to convert it to a carboxy group, which may be a step of oxidation with an oxidizing agent such as NaOCl in the presence of Ni(bpy) Cl2 .
  • Step 3-1-3 is a step in which the product of step 3-1-2 is converted into the compound represented by formula (1) above by sequentially carrying out steps 2-1, 2-3 to 2-5.
  • Step 3-2-1 is a step in which the amino group of the starting material is converted to a halogen group.
  • a common reaction such as the Sandmeyer reaction can be used.
  • Step 3-2-2 is a step in which the free carboxy group of the product of step 3-1-1 is converted to a cyano group.
  • a method of reacting with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) followed by reaction with cyanuric chloride or phosphoryl chloride may be used.
  • Step 3-2-3 is a step in which the product of step 3-2-2 is converted into the compound represented by the above formula (1) by sequentially carrying out steps 2-3 to 2-5.
  • Step 3-3-1 is a step in which the amino group of the starting material is converted to a cyano group.
  • a common reaction such as the Sandmeyer reaction can be used.
  • Scheme 4 Synthesis of compound of formula (1)
  • the compound of formula (1) can be synthesized according to the following schemes 4-1 and 4-2, instead of scheme 1.
  • Other examples of such a reagent include an organozinc reagent ((R 4 ) 2 Zn) and an organoboron reagent (R 4 -B(OH) 2 ).
  • This step may be performed at a reaction temperature of -78°C to room temperature using a solvent such as THF, diethyl ether, or benzene.
  • a solvent such as THF, diethyl ether, or benzene.
  • Step 4-1-2 is a step in Scheme 2.
  • Step 4-1-2 may be a step in Scheme 3.
  • Step 4-2-1 is a step of preparing a Grignard reagent using a starting material.
  • a so-called turbo Grignard reagent such as i PrMgCl.LiCl may be used, or a method of reacting the starting material with Mg may be used.
  • Step 4-2-2 is a step of reacting the product of Step 4-2-1 with R 3 -CN, where R 3 is not particularly limited as long as it is a non-acidic group (for example, having a pKa of 30 or more).
  • R 3 is not particularly limited as long as it is a non-acidic group (for example, having a pKa of 30 or more).
  • R 3 is not particularly limited as long as it is a non-acidic group (for example, having a pKa of 30 or more).
  • R 3 is not particularly limited as long as it is a non-acidic group (for example, having a pKa of 30 or more).
  • R 3 is not particularly limited as long as it is a non-acidic group (for example, having a pKa of 30 or more).
  • an aldimine or ketimine having the following structure may be used in place of R 3 —CN: In this case, step 4-2-3 can be omitted.
  • a suitable reducing agent such as NaBH4 may be used.
  • Step 4-2-4 is a step for protecting the amino group of the product of step 4-2-3.
  • the protecting group various conventionally known protecting groups can be used, for example, a t-butylcarbonyl group (Boc group).
  • Step 4-2-5 is the same as or similar to steps 1-3 and 2-4. In step 4-2-5, each step in scheme 3 may be used.
  • Step 5-1-1 is a step of trimerizing the starting material.
  • Step 5-1-2 is a step in which the product of step 5-1-1 is reacted with a Grignard reagent such as that obtained in step 4-2-1.
  • Step 5-1-3 is a step for protecting the amino group of the product of step 5-1-2.
  • the protecting group various conventionally known protecting groups can be used, for example, a t-butylcarbonyl group (Boc group).
  • Step 5-1-4 is the same as or similar to steps 1-3 and 2-4. In step 5-1-4, each step in scheme 3 may be used.
  • Step 5-2-1 is a step of reacting the starting material with a Grignard reagent such as that obtained in step 4-2-1.
  • a Grignard reagent such as that obtained in step 4-2-1.
  • Step 5-2-2 is a step in which the sulfinamide portion of the product of step 5-2-1 is removed with a strong acid and the protecting group of the carboxyl group is deprotected to cause intramolecular cyclization.
  • Step 5-2-3 is a step in which the carbonyl group of the product of step 5-2-2 is reduced under appropriate reducing conditions.
  • Scheme 6 Synthesis of compounds of formula (I) having multiple azole rings
  • the compound represented by formula (I) having multiple azole rings can be synthesized as shown in the following schemes 6-1, 6-2, and 6-3.
  • Steps 6-1-1 and 6-1-4 can be performed in the same manner as step 2-3 above.
  • Step 6-1-2 can be performed in the same manner as step 2-1 above.
  • Step 6-1-3 steps the same as or similar to those in Scheme 2 may be used.
  • Step 6-2-1 can be performed in the same manner as step 2-3 above.
  • Step 6-2-2 may be the same as or similar to each step in Scheme 2.
  • Step 6-3-1 can be performed in the same manner as step 1-3 above.
  • Step 6-3-2 can be performed similarly to step 2-4 above.
  • Step 6-3-3 is a step of converting the methyl group of the product of Step 6-3-2 into a formyl group.
  • This step may be performed using a method using selenium oxide and acetic acid.
  • step 6-3-4 steps the same as or similar to those in Scheme 1 and Scheme 2 may be used.
  • the present invention can also provide a method for producing a library containing two or more compounds represented by the above formula (I). That is, in the above-mentioned method for producing a compound of the present embodiment, the compound represented by the above formula (1), amino acid, and amino acid derivative to be reacted are randomized to produce a library containing two or more compounds represented by the above formula (I).
  • a method capable of producing a peptide library by conventional solid-phase synthesis may be used, such as the pin method in which a plurality of pins whose tips have been aminated by chemical modification are used as solid-phase supports, and the split-and-mix method in which a plurality of beads are divided into a plurality of groups, each group is reacted with a different amino acid or amino acid derivative, and then the plurality of beads are mixed, divided again into a plurality of groups, and each group is reacted again with a different amino acid or amino acid derivative, which is repeated.
  • the method for producing the compound of this embodiment introduces an aromatic six-membered ring into a peptide by using the above formula (1), and therefore a method applied in a normal peptide solid-phase synthesis method can be adopted. Therefore, according to the compound production method of this embodiment, it is also possible to produce a one-bead-one-compound (OBOC) library in which different compounds are bound to each solid phase carrier.
  • OBOC one-bead-one-compound
  • the present invention can also provide a method for screening compounds represented by the above formula (I) for those that bind to or interact with a desired target.
  • a method for producing a compound of this embodiment many kinds of thiopeptides and pyritides, as well as their artificial derivatives, can be easily and efficiently biosynthesized. This makes it possible to easily produce and evaluate the functions of candidate compounds discovered by the library construction/exploration method described in WO 2020/067550. Furthermore, it is possible to freely synthesize derivatives of these drug candidate compounds.
  • 2020/067550 can be contacted with a desired target to identify candidate compounds that are likely to bind to or interact with the target, and the identified compounds can be mass-produced by the compound production method of this embodiment, and the identified compounds can be used to measure target binding ability, target inhibition ability, serum stability, etc., and compounds that bind to or interact with the target can be screened with high efficiency.
  • TNIK has been modified by the present invention to provide a compound that can act as a TNIK kinase inhibitor.
  • TNIK belongs to the Ste20 family of Ser/Thr protein kinases, and its kinase activity is known to be associated with tumorigenesis in Wnt-driven colorectal cancer and lung squamous cell carcinoma.
  • Several reports have confirmed the therapeutic effects of TNIK inhibitors, making selective TNIK inhibitors promising candidates for anticancer drugs.
  • the compound capable of acting as a TNIK kinase inhibitor has any of the structures shown in Figure 3.
  • IRAK4 is an intracellular Ser/Thr protein kinase involved in inflammatory signal transduction downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) family receptors.
  • TLRs Toll-like receptors
  • IL-1 interleukin-1 family receptors.
  • the compound capable of acting as an IRAK4 kinase inhibitor has any of the structures shown in Figure 8.
  • TLR10 is a unique member of the TLR family that has anti-inflammatory rather than pro-inflammatory functions.
  • the compound capable of acting as an artificial ligand for the TLR10 receptor has any of the structures shown in Figures 9 and 10.
  • the present invention also provides a pharmaceutical composition containing the compound produced by the compound production method of this embodiment.
  • the pharmaceutical composition of this embodiment comprises a compound having any of the structures depicted in Figures 3, 5, 8-10, and 12-14.
  • the pharmaceutical composition of this embodiment in one embodiment, comprises a compound having any of the structures depicted in Figures 3 and 12-13.
  • such pharmaceutical compositions may be used to treat diseases involving TNIK kinase, including Wnt-driven colon cancer and lung squamous cell carcinoma.
  • the present invention further comprises: a method of treatment comprising administering to a patient suffering from the above-mentioned diseases an effective amount of a compound having any of the structures depicted in Figures 3 and 12-13; A compound having any of the structures depicted in Figures 3 and 12-13 for use in the treatment or prevention of the above-mentioned diseases; Use of a compound having any of the structures depicted in Figures 3 and 12-13 for the manufacture of a pharmaceutical composition for use in the treatment or prevention of the above-mentioned diseases;
  • the present invention also provides an agent for treating or preventing the above-mentioned diseases, comprising a compound having any of the structures depicted in FIGS.
  • compositions of this embodiment comprise a compound having any of the structures depicted in Figure 8.
  • such pharmaceutical compositions may be used to treat diseases in which IRAK4 kinase is implicated, including Alzheimer's disease, arthritis, atherosclerosis, and MOG-induced encephalomyelitis.
  • the present invention further comprises: a method of treatment comprising administering to a patient suffering from the above-mentioned diseases an effective amount of a compound having any of the structures depicted in FIG.
  • the present invention also provides an agent for treating or preventing the above-mentioned diseases, comprising a compound having any of the structures depicted in FIG.
  • the pharmaceutical composition of this embodiment in one embodiment, comprises a compound having any of the structures depicted in Figures 9 and 10.
  • a pharmaceutical composition may be used to treat a disease in which the TLR10 receptor is involved.
  • the present invention further comprises: A method of treatment comprising administering to a patient suffering from the above-mentioned diseases an effective amount of a compound having any of the structures depicted in Figures 9 and 10; A compound having any of the structures depicted in Figures 9 and 10 for use in the treatment or prevention of the above-mentioned diseases; Use of a compound having any of the structures depicted in Figures 9 and 10 for the manufacture of a pharmaceutical composition for use in the treatment or prevention of the above-mentioned diseases;
  • the present invention also provides an agent for treating or preventing the above-mentioned diseases, comprising a compound having any of the structures depicted in Figures 9 and 10.
  • the administration form of the pharmaceutical composition of this embodiment is not particularly limited, and may be oral or parenteral.
  • parenteral administration include injections such as intramuscular injection, intravenous injection, and subcutaneous injection, transdermal administration, and transmucosal administration (intranasal, oral, ocular, pulmonary, vaginal, and rectal) administration.
  • the pharmaceutical composition may be prepared by using the active ingredient as it is, or by adding pharma- ceutically acceptable carriers, excipients, and/or additives, etc.
  • Dosage forms include, for example, liquids (e.g., injections), dispersions, suspensions, tablets, pills, powders, suppositories, powders, fine granules, granules, capsules, syrups, lozenges, inhalants, ointments, eye drops, nasal drops, ear drops, and poultices.
  • the formulation can be carried out in a conventional manner by appropriately using, for example, excipients, binders, disintegrants, lubricants, solubilizers, solubilizing agents, colorants, flavoring agents, stabilizers, emulsifiers, absorption enhancers, surfactants, pH adjusters, preservatives, antioxidants, and the like.
  • ingredients used in formulation include, but are not limited to, purified water, saline, phosphate buffer, dextrose, glycerol, ethanol and other pharma- ceutically acceptable organic solvents, animal and vegetable oils, lactose, mannitol, glucose, sorbitol, crystalline cellulose, hydroxypropyl cellulose, starch, corn starch, anhydrous silicic acid, magnesium aluminum silicate, collagen, polyvinyl alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, tragacanth, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, octyldodecyl myristate, iso
  • absorption enhancers examples include surfactants such as polyoxyethylene lauryl ethers, sodium lauryl sulfate, and saponin; bile salts such as glycocholic acid, deoxycholic acid, and taurocholic acid; chelating agents such as EDTA and salicylic acids; fatty acids such as caproic acid, capric acid, lauric acid, oleic acid, linoleic acid, and mixed micelles; enamine derivatives, N-acyl collagen peptides, N-acyl amino acids, cyclodextrins, chitosans, and nitric oxide donors.
  • surfactants such as polyoxyethylene lauryl ethers, sodium lauryl sulfate, and saponin
  • bile salts such as glycocholic acid, deoxycholic acid, and taurocholic acid
  • chelating agents such as EDTA and salicylic acids
  • fatty acids such as caproic acid, capric acid, lauric acid,
  • the pills or tablets may be coated with sugar, gastric or enteric substances.
  • the injection may contain distilled water for injection, physiological saline, propylene glycol, polyethylene glycol, vegetable oil, alcohols, etc. Furthermore, a wetting agent, an emulsifier, a dispersant, a stabilizer, a solubilizer, a solubilizing agent, a preservative, etc. may be added.
  • the pharmaceutical composition of this embodiment may be administered in combination with other medicines or treatments useful for the above diseases.
  • the dosage when the pharmaceutical composition of this embodiment is administered to a mammal e.g., human, monkey, etc.
  • a mammal e.g., human, monkey, etc.
  • the dosage when the pharmaceutical composition of this embodiment is administered to a mammal varies depending on the symptoms, the patient's age, sex, weight, sensitivity difference, administration method, administration interval, type of active ingredient, and type of formulation, and is not particularly limited, but may be, for example, 30 ⁇ g to 1000 mg, 100 ⁇ g to 500 mg, or 100 ⁇ g to 100 mg administered once or in several divided doses.
  • 1 ⁇ g/kg to 3000 ⁇ g/kg, or 3 ⁇ g/kg to 1000 ⁇ g/kg may be administered once or in several divided doses depending on the patient's weight.
  • Example 1 Synthesis of compound of formula (1)
  • Compounds of formula (1) were synthesized according to the scheme shown in FIG. 1(a).
  • the synthesis of compound "1" in FIG. 1(a) began with the preparation of 2-bromopyridine fragment 3.
  • the synthetic route began with esterification of 2-bromonicotinic acid and subsequent synthesis of 2-cyanopyridine 5, as shown in FIG. 1(a).
  • nitrile-cysteine condensation was carried out in aqueous buffer at pH 7, followed by dehydrogenation of the resulting thiazoline with bromotrichloromethane and diazabicycloundecene to afford the thiazole-containing fragment 3.
  • This five-step sequence was operationally simple and could be carried out on a large scale.
  • N-sulfinyl imine 8 can be readily prepared from commercially available 2-formyl-4-bromothiazole and (R)-(+)-tert-butylsulfinamide. Addition of 8 to bis(methylseleno)methane and methylseleno-methyllithium generated by selenium-lithium exchange from n-butyllithium gave a 2:1 mixture of diastereomeric products 9 in 40% mixed yield (FIG. 1(b), entry 1). Alkyl selenoacetals are known to perform selenium-lithium exchange more slowly and efficiently than the commonly used Ar-substituted analogues.
  • Example 2 Synthesis of compound of formula (I)
  • a compound represented by formula (I) was synthesized from the compound represented by formula (1) synthesized in Example 1.
  • Fmoc-SPPS was performed on 2-chlorotrityl chloride resin, and a mixture of acetic acid and trifluoroethanol in DCM was used to release the peptide from the solid support without deprotecting the side-chain functional groups ( Figure 2a).
  • Compound 1 could be efficiently coupled using only PyBOP as activator at 1.2 equivalents (vs. resin loading) during SPPS, while the others could be used to generate linear thiopeptide precursors using standard SPPS protocols.
  • PyBOP PyBOP
  • FDPP FDPP
  • TP15 could be macrocyclized between Ile10 and Ala11 under the above conditions ( Figure 2(b)).
  • oxidative elimination of Se-alkylselenocysteine derivatives was utilized.
  • the fully deprotected TP15-Sec(Me)14 was treated with 200 mM t-butyl hydroperoxide in a water/acetonitrile mixture at pH 8 to give TP15 ( Figure 2(b)).
  • the thiopeptide was purified to homogeneity by reversed-phase HPLC and characterized by NMR, UPLC, and MS.
  • Example 4 Activity evaluation of thiopeptide derivatives discovered by screening targeting TNIK
  • SPR Surface plasmon resonance
  • TP1, TP4, TP8, TP14, TP15 The compounds were incubated with human serum at 37°C and the amount of remaining analyte at various time points was quantified by LC/MS against an internal standard. TP4 and TP8 showed good stability with half-lives ( ⁇ 1/2 ) of 88 and 14 h, respectively ( Figure 6(b)).
  • TP1, 14 and 15 were incubated with increasing concentrations of glutathione (GSH) and the reaction results were analyzed by LC/MS.
  • TP14 and TP15 were stable (>95% remaining) in the presence of 10 mM GSH after 24 h, and therefore their short half-lives in serum were primarily due to proteolysis. Indeed, several degradation products of TP14 and TP15 were observed by LC/MS.
  • TKIK intracellular target proteins
  • CAA chloroalkane penetration assay
  • NCB0846 but not TP15, downregulated the global expression of TNIK at both protein and mRNA levels (measured by RT-qPCR; Fig. 7(b)), but only affected TNIK pSer764. Consistent with TNIK inhibition by NCB0846, RT-qPCR experiments also revealed that treatment of HCT116 cells with TP15 concentration-dependently suppressed the transcription of AXIN2 and MYC mRNA, two classical targets of the Wnt signaling pathway (Fig. 7c). c-Myc and Axin2 protein levels were also decreased after incubation with 20 ⁇ M TP15 for 24 h (Fig. 7b). These results suggest that the newly discovered thiopeptides are promising for targeting intracellular proteins.
  • Example 5 Activity evaluation of thiopeptide derivatives discovered by screening targeting IRAK4 or TLR10
  • the compounds shown in Figures 8 to 10 were further synthesized in the same manner as in Examples 1 and 2.
  • the synthetic route of TL12 shown in Figure 9 is shown in Figure 11(a).
  • Example 6 Synthesis of compound of formula (I) containing non-proteinogenic amino acid
  • Compounds of formula (I) containing non-proteinogenic amino acids were synthesized according to the synthesis methods described in Examples 1 and 2.
  • the structural formulae of the synthesized compounds are shown in Figures 12 to 14.
  • the synthesis results of the compounds in Figures 12 to 14 are shown in Figure 15.
  • the obtained precursors were macrocyclized under the same conditions as in Example 1. Furthermore, they were treated with an oxidizing agent in a water/acetonitrile mixture to convert the selenium-containing groups to carbon-carbon double bonds.
  • an oxidizing agent in a water/acetonitrile mixture
  • NaIO4 was used as the oxidizing agent
  • hydrogen peroxide was used as the oxidizing agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、骨格に芳香族六員環を含むペプチドを簡便に製造できる方法を提供する。本発明は、式(I)で表される化合物の製造方法であって、固相担体に結合し、かつ遊離のアミノ基を有する、アミノ酸若しくはアミノ酸誘導体又はペプチド、あるいは遊離のアミノ基を有する固相担体と、式(1)で表される化合物と、を反応させて、式(2)で表される化合物を得ることを含み、前記式(2)で表される化合物のPGを脱保護した化合物を、任意で1以上のアミノ酸縮合反応を行った後、前記固相担体から切り離して、環化反応を行う、式(I)で表される化合物の製造方法に関する。

Description

化合物の製造方法
 本発明は、化合物の製造方法、特に芳香族六員環を含む化合物の固相合成方法に関する。
 チオペプチドは、窒素含有六員ヘテロ環(通常はピリジン、Py)を有する複雑なペプチド性天然産物のグループである。チオペプチドはまた、他の非タンパク質性の構造、特にシステイン/スレオニン/セリン由来アゾール(チアゾール、Thz;メチルオキサゾール、MeOxz;及びオキサゾール、Oxz)、並びにデヒドロアミノ酸(dhAA;例えば、デヒドロアラニン、Dha;及びデヒドロブチリン、Dhb)を含んでいる。チオペプチドは、ペプチド医薬品の候補として広く注目され、そのため、過去20年の間に主要な合成標的及びエンジニアリング標的となっている(非特許文献1-3)。
 チオペプチドの化学合成に対する数多くのアプローチは長年にわたって開発され、2つの環状構造を有する複雑な化合物(例えば、チオストレプトン、シオマイシン、及びノシヘプチド)でさえ合成されている(非特許文献4-14)。しかしながら非特許文献4-14に記載の合成方法はいずれも液相合成法でチオペプチド/ピリチドの特徴的な環状ペプチド部位を合成している。これまでのところ、固相ペプチド合成(solid-phase peptide synthesis;SPPS)は、バリンゴリンのテール領域の調製、及びいくつかの化学酵素的アプローチにおいてのみ用いられている(非特許文献15-17)。
 ところで、チオペプチドバイオエンジニアリングの一環として、Streptomyces lactacystinaeusの潜在性チオペプチドであるラクタゾールAの生合成がin vitroで再構築されており、設計された生物活性を有する擬天然チオペプチドのde novo発見のためにラクタゾール生合成を利用するmRNAディスプレイプラットフォームが確立されている(特許文献1、非特許文献18-21)。
国際公開第2020/067550号
Just-Baringo, X.; Albericio, F.; Alvarez, M. Thiopeptide antibiotics: retrospective and recent advances. Mar. Drugs. 2014, 12, 317-351. Nicolaou, K. How thiostrepton was made in the laboratory. Angew. Chem. Int. Ed. 2012, 51, 12414-12436. Vinogradov, A. A.; Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 2020, 27, 1032-1051. Nicolaou, K.; Safina, B. S.; Zak, M.; Estrada, A. A.; Lee, S. H. Total synthesis of thiostrepton, Part 1: construction of the dehydropiperidine/thiazoline‐containing macrocycle. Angew. Chem. Int. Ed. 2004, 43, 5087-5092. Nicolaou, K.; Zak, M.; Safina, B. S.; Lee, S. H.; Estrada, A. A. Total synthesis of thiostrepton, part 2: construction of the quinaldic acid macrocycle and final stages of the synthesis. Angew. Chem. Int. Ed. 2004, 43, 5092-5097. Nicolaou, K.; Zak, M.; Safina, B. S.; Estrada, A. A.; Lee, S. H.; Nevalainen, M. Total synthesis of thiostrepton. Assembly of key building blocks and completion of the synthesis. J. Am. Chem. Soc. 2005, 127, 11176-11183. Nicolaou, K.; Safina, B. S.; Zak, M.; Lee, S. H.; Nevalainen, M.; Bella, M.; Estrada, A. A.; Funke, C.; Zecri, F. J.; Bulat, S. Total synthesis of thiostrepton. Retrosynthetic analysis and construction of key building blocks. J. Am. Chem. Soc. 2005, 127, 11159-11175. Mori, T.; Higashibayashi, S.; Goto, T.; Kohno, M.; Satouchi, Y.; Shinko, K.; Suzuki, K.; Suzuki, S.; Tohmiya, H.; Hashimoto, K. Total synthesis of siomycin A: completion of the total synthesis. Chem.: Asian J. 2008, 3, 1013-1025. Wojtas, K. P.; Riedrich, M.; Lu, J. Y.; Winter, P.; Winkler, T.; Walter, S.; Arndt, H. D. Total synthesis of nosiheptide. Angew. Chem. Int. Ed. 2016, 55, 9772-9776. Lu, J. Y.; Riedrich, M.; Mikyna, M.; Arndt, H. D. Aza‐Wittig‐Supported Synthesis of the A Ring of Nosiheptide. Angew. Chem. Int. Ed. 2009, 48, 8137-8140. Moody, C.; Bagley, M. The first synthesis of promothiocin A. Chem. Commun. 1998, 2049-2050. Akasapu, S.; Hinds, A. B.; Powell, W. C.; Walczak, M. A. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo (VI) catalyst. Chem. Sci. 2019, 10, 1971-1975. Hwang, H.-J.; Son, Y.-J.; Kim, D.; Lee, J.; Shin, Y.-J.; Kwon, Y.; Ciufolini, M. A. Diversity-oriented routes to thiopeptide antibiotics: total synthesis and biological evaluation of micrococcin P2. Org. Biomol. Chem. 2022, 1893-1899. Christy, M. P.; Johnson, T.; McNerlin, C. D.; Woodard, J.; Nelson, A. T.; Lim, B.; Hamilton, T. L.; Freiberg, K. M.; Siegel, D. Total synthesis of micrococcin P1 through scalable thiazole forming reactions of cysteine derivatives and nitriles. Org. Lett. 2020, 22, 2365-2370. Just‐Baringo, X.; Bruno, P.; Ottesen, L. K.; Canedo, L. M.; Albericio, F.; Alvarez, M. Total synthesis and stereochemical assignment of baringolin. Angew. Chem. Int. Ed. 2013, 52, 7818-7821. Wever, W. J.; Bogart, J. W.; Baccile, J. A.; Chan, A. N.; Schroeder, F. C.; Bowers, A. A. Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4+2] cycloaddition. J. Am. Chem. Soc. 2015, 137, 3494-3497. Wever, W. J.; Bogart, J. W.; Bowers, A. A. Identification of pyridine synthase recognition sequences allows a modular solid-phase route to thiopeptide variants. J. Am. Chem. Soc. 2016, 138, 13461-13464. Vinogradov, A. A.; Shimomura, M.; Goto, Y.; Ozaki, T.; Asamizu, S.; Sugai, Y.; Suga, H.; Onaka, H. Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat. Commun. 2020, 11, 1-13. Vinogradov, A. A.; Shimomura, M.; Kano, N.; Goto, Y.; Onaka, H.; Suga, H. Promiscuous enzymes cooperate at the substrate level en route to lactazole A. J. Am. Chem. Soc. 2020, 142, 13886-13897. Vinogradov, A. A.; Nagai, E.; Chang, J. S.; Narumi, K.; Onaka, H.; Goto, Y.; Suga, H. Accurate Broadcasting of Substrate Fitness for Lactazole Biosynthetic Pathway from Reactivity-Profiling mRNA Display. J. Am. Chem. Soc. 2020, 142, 20329-20334. Vinogradov, A. A.; Nagano, M.; Goto, Y.; Suga, H. Site-Specific Nonenzymatic Peptide S/O-Glutamylation Reveals the Extent of Substrate Promiscuity in Glutamate Elimination Domains. J. Am. Chem. Soc. 2021, 143, 13358-13369.
 上述のとおり、これまで、チオペプチドのような芳香族六員環を含む化合物の合成方法は、液相合成法が主に用いられている。しかしながら、液相合成では、特定の合成標的ペプチドに応じて、ペプチド配列を構成するユニットを個別に都度調製する必要があるため、特定の化合物の合成に用いた合成経路を他の誘導体に流用することが困難である(つまり、多種多様な誘導体の合成が極めて困難である)。また、液相合成では副生してしまう不純物を除去するために煩雑な精製作業が必要となり、多くの時間・労力・コストを要求する。
 したがって、多種多様な誘導体の並行合成が可能であり、精製作業も簡便に実施できる固相合成を用いて、チオペプチドのような芳香族六員環を含む化合物を製造できる方法が求められている。
 本発明が解決しようとする課題は、骨格に芳香族六員環を含むペプチドを簡便に製造できる方法を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、所定の化合物を用いて固相合成を行うことにより、骨格に芳香族六員環を含むペプチドを簡便に製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]
 下記式(I)で表される化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000007
(式(I)中、
 環Aは、芳香族六員環であり、
 Z、Z、及びZは、それぞれ独立に酸素原子又は硫黄原子であり、
 R、R、及びRは、それぞれ独立に水素原子又は炭化水素基であり、
 k1、k2、及びk3は、それぞれ独立に0以上2以下の整数であり、
 k4は、0以上2以下の整数であり、
 nは、0以上2以下の整数であり、
 R及びRは、それぞれ独立に1価の基であり、
 Rは、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成するか、又はRと一緒に二重結合を形成し、
 Rは、水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成するか、又は二重結合を形成し、
 Rは、水素原子若しくは炭化水素基であるか、Rと一緒に環を形成し、
 (Xaa)は、m個のアミノ酸及び/又はアミノ酸誘導体により構成されるペプチドであり、
 mは2以上の整数である。)
 固相担体に結合し、かつ遊離のアミノ基を有する、アミノ酸若しくはアミノ酸誘導体又はペプチド、あるいは遊離のアミノ基を有する固相担体と、下記式:
Figure JPOXMLDOC01-appb-C000008
で表される化合物と、を反応させて、
(式(1)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、前記式(I)における定義と同義であり、
 PGは、保護基である。)
 下記式:
Figure JPOXMLDOC01-appb-C000009
で表される化合物
(式(2)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、前記式(1)における定義と同義であり、
 (Xaam1は、m1が2以上のときは固相担体に結合したm1個のアミノ酸及び/若しくはアミノ酸誘導体により構成されるペプチド残基であり、m1が1のときはアミノ酸残基若しくはアミノ酸誘導体残基であり、m1が0のときは単結合であり、
 m1は、0以上の整数であり、
 波線は、m1が1以上のときは(Xaam1が、又はm1が0のときはカルボニルが、前記固体担体に結合していることを示す。)
を得ることを含み、
 前記式(2)で表される化合物のPGを脱保護した化合物を、任意で1以上のアミノ酸縮合反応を行った後、前記固相担体から切り離して、環化反応を行う、式(I)で表される化合物の製造方法。
[2]
 前記式(1)で表される化合物が下記式(1-A)で表される、[1]に記載の方法。
(式(1-A)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
Figure JPOXMLDOC01-appb-C000010
[3]
 前記式(1)で表される化合物が下記式(1-B)で表される、[1]に記載の方法。
(式(1-B)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
Figure JPOXMLDOC01-appb-C000011
[4]
 前記式(1)で表される化合物が下記式(1-C)で表される、[1]に記載の方法。
(式(1-C)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
Figure JPOXMLDOC01-appb-C000012
[5]
 前記環化反応により得られた化合物の(Xaa)を構成するアミノ酸及び/又はアミノ酸誘導体の側鎖官能基が、保護基により保護されており、
 前記側鎖官能基の保護基を脱保護することをさらに含む、[1]~[4]のいずれか1つに記載の方法。
[6]
 前記環化反応により得られた化合物が下記式:
 -CR -Se-R (3)
(式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。)
で表される1価の基を有し、
 前記環化反応の後に、前記式(3)で表される基を酸化させて二重結合を形成することをさらに含む、[1]~[5]のいずれか1つに記載の方法。
[7]
 前記環化反応の後に、Rを脱離させ、それにより生じるカルボキシ基を1以上の化合物と反応させることをさらに含む、[1]~[6]のいずれか1つに記載の方法。
 本発明によれば、骨格に芳香族六員環を含むペプチドを簡便に製造できる方法を提供することができる。
化合物1(式(1)で表される化合物)の合成方法における、(a)全体的な合成スキーム、(b)イミン8へのセレノメチルリチウム付加の反応条件の最適化([a]は、(R,R)対(R,S)の異性体比を示す)、(c)2-ブロモピリジン3と4-スタンニルチアゾール4間の結合のための反応条件の最適化を示す。略語: TsCl:4-トルエンスルホニルクロリド; UHP:尿素/過酸化水素; TFAA:トリフルオロ酢酸無水物; TEA:トリエチルアミン; TMSCN:トリメチルシリルシアニド; DBU:ジアザビシクロウンデセン; TFA:トリフルオロ酢酸; TIPS:トリイソプロピルシラン; Fmoc-OSu:N-(9-フルオレニルメトキシカルボニルオキシ)スクシンイミド; DCM:ジクロロメタン; DMF:N,N-ジメチルホルムアミド; THF:テトラヒドロフラン; HMPA:ヘキサメチルホスホラミド。 ペプチド合成における、(a)TP15の全体的な合成スキーム、(b)LC/MSによる(a)に示す反応生成物の分析、(c)合成した11種の化合物の合成結果を示す。(a)において、略語: AcOH:酢酸、TFE:テトラフルオロエチレン、HATU:(1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3-トリアゾロ[4,5-b]ピリジニウム3-オキシド、HOAt:1-ヒドロキシ-7-アザベンゾトリアゾール、DIPEA:N,N-ジイソプロピルエチルアミンである。(b)において、表示されるのは、LCピークにわたって積分された全イオンクロマトグラム及びMS結果である。アスタリスク(*)で標識したピークは、Sec14での未定義の立体化学に由来する生成物異性体に対応する。Sec14からDha14への酸化的脱離後、両異性体は単一の生成物に変換される。(c)において、[a]では、Dha:デヒドロアラニン; htG:γS,LホモGln (ヨードアセトアミドによるCysアルキル化の生成物); Thz:チアゾールであり、[b]では開始時の樹脂ローディングに対する収率を示す。 実施例2で合成した11種のペプチドを示す。 テール部領域におけるラクタゾール様チオペプチドの官能化を示す。ctTP4の合成を例にしたC末端修飾の合成スキーム、及び各反応生成物のLC/MS分析を示している。全イオンクロマトグラム及びMS結果をLCピークにわたって積分したものを示す。†:メチルエステルの加水分解の過程で生成する副産物。略語: DCE:1,2-ジクロロエタン; EDCI:1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩。 実施例3で合成した6種のペプチドを示す。 合成された化合物の生化学的特徴を示す。(a)ラクタゾール様チオペプチドとしてのTP15の構造式。(b)チオペプチドによるTNIKへの結合親和性(K値)及び阻害(IC50)を示す。ヒト血清中の半減期(τ1/2)も示した。これらの値は実験データの非線形回帰によって得られた。[a]:影で強調されたSはDha残基、TP3及びTP4のCはγS,LhGln(CysのIAAアルキル化の生成物)、TP5のCはThzを示す。[b]:結合/阻害が測定されなかったことを示す。[c]:n.d.は決定されなかったことを示す。[d]:TP8については、1mMのATP存在下で結合を測定した。[e]:TP15については、Kを3nMと測定した。(c)TNIK阻害のTP15によるLineweaver-Burkプロットを示す。チオペプチドは、酵素の基質競合阻害剤として作用する。(d)67のヒトキナーゼのパネルに対するTP15のColor-coded kinase selectivity profilingの結果。化合物は標的酵素に対して良好な選択性を示す。 TP15がHCT116がん細胞株においてTNIKを阻害することを示す。(a)TP1,8,14,15のCAPAアッセイは、HEK293H細胞において実施された。4つのチオペプチドのうち3つは、よく知られた細胞浸透ペプチドTatに匹敵する濃度で細胞質内移行を示した。(b),(c)HCT116細胞におけるTP15によるTNIK自己リン酸化の阻害及びWnt標的遺伝子のダウンレギュレーションを示す。サブコンフルエントHCT116細胞を、24時間、示された化合物で処理し、TNIK、TNIK pSer764(自己リン酸化産物)、c‐Myc及びAxin2の細胞レベルを、免疫ブロット法(b)及びRT‐qPCR(c)によって分析した。NCB0846は小分子TNIK阻害剤である。 実施例5で合成した6種のペプチドを示す。 実施例5で合成した7種のペプチドを示す。 実施例5で合成した3種のペプチドを示す。 (a)TLR10のラクタゾール様結合剤であるTL12及びその逆合成、使用されたアミノ酸構築ブロックを示す。(b)合成したチオペプチドによるIRAK4への結合親和性(K値)及びその阻害(IC50)を示す。ヒト血清中の半減期(τ1/2)及びTHP-1細胞におけるNF-kBシグナル伝達経路の阻害(IC50)も示されている。これらの値は実験データの非線形回帰によって得られた。[1]:IR4の影で示されるCはhGln(CysのIAAアルキル化の生成物であるが、ホモグルタミンで置き換えられている)であり; IR15の影で示されるMはNle(MetはNleで置き換えられている)であり; IR15の影で示されるTはDhb残基を示す。[2]:n.d.は阻害が測定されなかったことを示す。(c)TLR10に対する結合親和性(K値)及びヒト血清中での半減期(τ1/2)である。[1]:TL1,TL8,TL16の影で示されるCはhGln(CysのIAAアルキル化の生成物であるが、ホモグルタミンで置き換えられている)であり; TL8,TL11,TL12,TL13,TL18の影で示されるMはNle(MetはNleで置き換えられている)であり; TL11及びTL12の8Sの影で示されるSはDha残基を示し; TL12の9Sの影で示されるSはオキサゾールを示す。[2]:「-」は決定されなかったことを示す。(d)IR1、IR15及びTP8のCAPAアッセイの結果を示す。アッセイはHEK293T細胞において実施された。IR15は、既知の細胞浸透ペプチドであるTatよりもはるかに効率的にHEK293T細胞の細胞質に取り込まれることが示されている。 実施例6で合成したペプチドの一例を示す。 実施例6で合成したペプチドの一例を示す。 実施例6で合成したペプチドの一例を示す。 実施例6で合成した化合物の合成結果を示す。収率は、開始時の樹脂ローディングに対する。化合物名は図12~14に記載の表記により示している。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[化合物の製造方法]
 本実施形態の製造方法は、下記式(I)で表される化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000013
 固相担体に結合し、かつ遊離のアミノ基を有する、アミノ酸若しくはアミノ酸誘導体又はペプチド、あるいは遊離のアミノ基を有する固相担体と、下記式:
Figure JPOXMLDOC01-appb-C000014
で表される化合物と、を反応させて、下記式:
Figure JPOXMLDOC01-appb-C000015
で表される化合物を得ることを含み、上記式(2)で表される化合物のPGを脱保護した化合物を、任意で1以上のアミノ酸縮合反応を行った後、上記固相担体から切り離して、環化反応を行う。
 ここで、上記式(I)中、
 環Aは、芳香族六員環であり、
 Z、Z、及びZは、それぞれ独立に酸素原子又は硫黄原子であり、
 R、R、及びRは、それぞれ独立に水素原子又は炭化水素基であり、
 k1、k2、及びk3は、それぞれ独立に0以上2以下の整数であり、
 k4は、0以上2以下の整数であり、
 nは、0以上2以下の整数であり、
 R及びRは、それぞれ独立に1価の基であり、
 Rは、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成するか、又はRと一緒に二重結合を形成し、
 Rは、水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成するか、又は二重結合を形成し、
 Rは、水素原子若しくは炭化水素基であるか、Rと一緒に環を形成し、
 (Xaa)は、m個のアミノ酸及び/又はアミノ酸誘導体により構成されるペプチドであり、
 mは2以上の整数である。
 また、上記式(1)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、上記式(I)における定義と同義であり、
 PGは、保護基である。
 また、上記式(2)中、
 環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、上記式(1)における定義と同義であり、
 (Xaam1は、m1が2以上のときは固相担体に結合したm1個のアミノ酸及び/若しくはアミノ酸誘導体により構成されるペプチド残基であり、m1が1のときはアミノ酸残基若しくはアミノ酸誘導体残基であり、m1が0のときは単結合であり、
 m1は、0以上の整数であり、
 波線は、m1が1以上のときは(Xaam1が、又はm1が0のときはカルボニルが、上記固体担体に結合していることを示す。
 本実施形態の製造方法は、上記式(2)で表される化合物のPGを脱保護した化合物を上記固相担体から切り離す前に、上記式(2)で表される化合物のPGを脱保護すること、及び当該脱保護した化合物に1以上のアミノ酸又はアミノ酸誘導体をアミノ酸縮合反応により結合させることをさらに含んでいてよい。
 本実施形態の製造方法は、上記環化反応により得られた化合物の(Xaa)を構成するアミノ酸及び/又はアミノ酸誘導体の側鎖官能基の保護基を脱保護することをさらに含んでいてよい。
 本実施形態の製造方法は、上記環化反応により得られた化合物が有する下記式:
 -CR -Se-R (3)
(式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。)
で表される1価の基を酸化させて二重結合を形成することをさらに含んでいてよい。
 本実施形態の製造方法は、上記環化反応により得られた化合物の上記式(I)におけるRに対応する部分を脱離させ、それにより生じるカルボキシ基を1以上の化合物と反応させることをさらに含んでいてよい。
 以上のように本実施形態の製造方法は、固相担体を用いて上記式(1)で表される化合物をペプチド鎖に容易に組み込むことができ、骨格に芳香族六員環を含むペプチドを簡便に製造できる。また、骨格に芳香族六員環を含むペプチドを製造した後、さらにアミノ酸及び/又はアミノ酸誘導体の側鎖官能基の保護基の脱保護、二重結合の形成、及びR(すなわち、環状ペプチドのテール部分)の修飾等の反応を行うことができ、種々のペプチド誘導体を得ることができる。
 本実施形態の製造方法において実施される各反応は、ステップバイステップで行われてもよいし、系内で一連に行われてもよい。また、本実施形態の製造方法は、各反応の間に、固相担体の分離、洗浄といった、固相合成法で通常行われる工程又は処理を含んでいてよい。
 (式(I)の化合物)
 本実施形態の製造方法は、上記式(I)で表される化合物を製造する。上記式(I)で表される化合物は、骨格に芳香族六員環を含むペプチドであり、例えばペプチド医薬品として大きなポテンシャルを有する天然物であるチオペプチド類・ピリチド類、及びこれらの人工誘導体を含む。
 上記式(I)中、環Aは、芳香族六員環であり、好ましくはベンゼン環又は窒素含有芳香族六員環であり、より好ましくはベンゼン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、又はトリアジン環であり、さらに好ましくはベンゼン環又はピリジン環である。
 上記式(I)中、Z、Z、及びZは、それぞれ独立に酸素原子又は硫黄原子である。Z、Z、及びZは、互いに異なっていてもよく、同じであってもよい。また、Z、Z、又はZが複数存在する場合、複数のZ、Z、又はZは互いに異なっていてもよく、同じであってもよい。
 上記式(I)中、R、R、及びRは、それぞれ独立に水素原子又は炭化水素基であり、好ましくは水素原子又は炭素数1~10(両端値を含む。本明細書中、同様である。)の炭化水素基であり、より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基である。R、R、及びRは、互いに異なっていてもよく、同じであってもよい。
 R、R、及びRは、それぞれ独立に水素原子、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、又はトシル基であってよく、水素原子、メチル基、イソプロピル基、又はフェニル基であってよく、水素原子又はメチル基であってよい。
 上記式(I)中、k1、k2、及びk3は、それぞれ独立に0以上2以下の整数であり、0以上1以下の整数であってもよい。k1、k2、及びk3は、互いに異なっていてもよく、同じであってもよい。k1、k2、及びk3の和は、0以上6以下であり、好ましくは0以上4以下であり、より好ましくは0以上3以下である。k1、k2、及びk3の和は、0以上、1以上、又は2以上であってよく、6以下、5以下、4以下、3以下、又は2以下であってよい。なお、k1、k2、又はk3が0である場合、上記式(I)中、対応する括弧で囲まれるアゾール部分が単結合であることを意味する。
 上記式(I)中、k1は0又は1であってよく、k2は0又は1であってよく、k3は0であってよい。
 上記式(I)中、k4は、0以上2以下の整数であり、好ましくは0又は1であり、より好ましくは0である。k4が0である場合、上記式(I)中、対応する括弧で囲まれる炭化水素部分が単結合であることを意味する。
 上記式(I)中、nは、0以上2以下の整数であり、好ましくは0又は1であり、より好ましくは0である。nが0である場合、上記式(I)中、環AにRが結合していないことを意味する。
 上記式(I)中、Rは、1価の基である。当該1価の基としては特に限定されないが、例えば、アルキル基のような炭化水素基、ヒドロキシ基、アミノ基、及びカルボキシ基が挙げられる。Rは、炭化水素基、ヒドロキシ基、及びアミノ基から選択されることが好ましい。ここで、炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。また、当該炭化水素基は、アルキル基であることが好ましい。
 上記式(I)中、Rは、1価の基である。当該1価の基としては特に限定されないが、例えば、水素原子、-OH、-OR2a、-NH、-NHR2b、及び-NR2b 、並びに脱保護処理により脱離させることができるその他の基(保護基)が挙げられる。
 ここでR2aは炭化水素基であり、好ましくは炭素数1~30の炭化水素基であり、より好ましくは炭素数1~3のアルキル基又は炭素数6~8のアリール基である。R2aとしては、例えばメチル基、アリル基、ベンジル基、炭素数1~10の炭化水素基に置換されたベンジル基、tert-ブチル基、トリチル基、又は炭素数1~10の炭化水素基に置換されたトリチル基が挙げられる。
 また、R2bはそれぞれ独立に、炭化水素基であるか、2つのR2bが一緒に環を形成している。R2bが環を形成していない場合、R2bは、好ましくは炭素数1~10の炭化水素基であり、より好ましくは炭素数1~3のアルキル基又は炭素数6~8のアリール基であり、例えばメチル基又はフェニル基である。2つのR2bが一緒に環を形成している場合、当該環は特に限定されないが、例えば環を構成する原子の数が3~15(好ましくは3~10、より好ましくは4~8)の、環の中に2つ以上のヘテロ原子を含んでいてもよい脂肪族環であってよい。当該環に含まれ得るヘテロ原子としては、特に限定されないが、例えば窒素原子及び酸素原子である。形成される環としては、例えばピロリジン環、イミダゾリジン環、ピラゾリジン環、オキサゾリジン環、イソキサゾリジン環、ピペリジン環、ピペラジン環、モルホリン環、及びヘキサヒドロ-1,3,5-トリアジン環が挙げられる。
 Rは、上記の-OR2aにおけるR2aが、4-{N-[1-(4,4-ジメチル-2,6-ジオキソシクロヘキシリデン)-3-メチルブチル]-アミノ}ベンジル基(Dmab基)、炭化水素基以外の置換基を有するベンジル基、又は炭化水素基以外の置換基を有するトリチル基である基のような、上記の-OR2aのR2aがヘテロ原子を含む置換基で置換された基であってもよい。
 また、上記式(I)中、Rは、クロロアルキル部分を含む1価の基のような式(I)で表される化合物の細胞透過性を評価するための官能基、標識物質を含む官能基、ポリエチレングリコール(PEG)部分を含む1価の基のような式(I)で表される化合物の水溶性を向上させる官能基、炭化水素鎖(炭素数は例えば1~20、又は3~10であってよい。)部分を含む1価の基のような式(I)で表される化合物の血中安定性を向上させる官能基、アミノ酸及びアミノ酸誘導体、並びにペプチド鎖であってもよい。そのようなRとしては、例えば-NHR2cが挙げられる。ここでR2cは1価の基であり、例えばリンカーを含んでいてもよいクロロアルキル基、リンカーを含んでいてもよい標識物質を含む基、リンカーを含んでいてもよいポリエチレングリコール基、リンカーを含んでいてもよい炭化水素基、アミノ酸及びアミノ酸誘導体、並びにペプチド鎖であってよい。ここで、R2c中のリンカーは-NHR2cの窒素原子とクロロアルキル基、標識物質を含む基、ポリエチレングリコール基、又は炭化水素基とを連結させる任意の基である。当該リンカーとしては、例えば主鎖にエーテル結合、アミド結合を含んでいてよいアルキレン基が挙げられる。当該アルキレン基の炭素数は例えば1以上20以下であってよい。
 R2c中のクロロアルキル基は、炭素数が1~20であってよく、2~15であってよい。また、塩素原子の数は1~5であってよく、1~3であってよく、1であってよい。リンカーを含んでいてもよいクロロアルキル基としては、L. Peraro et al., J. Am. Chem. Soc. 2018, 140, 36, 11360-11369においてクロロアルカンタグとして記載のものであってよい。
 R2c中の標識物質としては、例えばペルオキシダーゼ、アルカリホスファターゼ、β-ガラクトシダーゼ、グルコースオキシダーゼ、リンゴ酸デヒドロゲナーゼ、グルコース-6-リン酸デヒドロゲナーゼ、及びインベルターゼのような酵素;ローダミン誘導体、フルオレセイン誘導体、クマリン誘導体、ジピロメテンボロン誘導体、Cy色素誘導体、ピレン誘導体、フィコビリンタンパク質、フィコエリトリン、及びフィコシアニンのような蛍光物質;ダブシル基誘導体、Tide QuencherTM類、及びブラックホールクエンチャー誘導体のような消光団;ビオチン誘導体、Flagペプチド、Mycペプチド、及びHAペプチドのようなアフィニティータグ;並びに、イソルミノール、及びルシゲニンのような発光物質;H、14C、32P、35S、及び125Iのような放射性物質が挙げられる。
 R2c中のペプチドは、2以上のアミノ酸又はアミノ酸誘導体からなっていればよく、アミノ酸又はアミノ酸誘導体の個数は、2~50、2~30、2~20、又は2~10であってよい。
 上記式(I)中、Rは後述のC末端修飾反応により所望の1価の基とすることができるため、Rとしては、上記の基に限られない。
 本明細書中において、用語「アミノ酸」は、天然アミノ酸だけでなく、人工のアミノ酸変異体等を含むものとする。アミノ酸としては、例えば、タンパク質性アミノ酸、及び非タンパク質性アミノ酸(天然の又は非天然の非タンパク質性アミノ酸、及びアミノ酸の特徴として当業界で公知の特性を有する化学的に合成された化合物等)が挙げられる。
 タンパク質性アミノ酸(proteinogenic amino acids)は、当業界に周知の3文字表記により表すと、Arg、His、Lys、Asp、Glu、Ser、Thr、Asn、Gln、Cys、Gly、Pro、Ala、Ile、Leu、Met、Phe、Trp、Tyr、及びValである。また、タンパク質性アミノ酸を当業界に周知の1文字表記により表すと、R、H、K、D、E、S、T、N、Q、C、G、P、A、I、L、M、F、W、Y、及びVである。タンパク質性アミノ酸は、通常、L-アミノ酸であるが、非タンパク質性アミノ酸に含まれるD-アミノ酸としての構造を有していてもよい。
 非タンパク質性アミノ酸(non-proteinogenic amino acids)には、タンパク質性アミノ酸以外の天然又は非天然のアミノ酸が含まれる。
 非タンパク質性アミノ酸としては、例えば、主鎖の構造が天然型と異なるアミノ酸(α,α-二置換アミノ酸(α-メチルアラニン、シクロロイシン等)、N-メチルアミノ酸、N-アルキルアミノ酸、D-アミノ酸、β-アミノ酸、γ-アミノ酸、δ-アミノ酸、長鎖アミノ酸、α-ヒドロキシ酸、α-チオ酸、及び環状アミノ酸(環状α-アミノ酸、環状β-アミノ酸、及び芳香族アミノ酸等)等);側鎖の構造が天然型と異なるアミノ酸(セレノシステイン、ノルロイシン、スピナシン、ニトロフェニルアラニン、テトラヒドロイソキノリンカルボン酸、ヒドロキシテトラヒドロイソキノリンカルボン酸等の置換基(例えばヒドロキシ基、C1~C3のアルキル基、ハロゲン基等)を有するテトラヒドロイソキノリンカルボン酸、ヒドロキシトリプトファン、ペンタフルオロフェニルアラニン、メトキシフェニルアラニン、γS,Lホモグルタミン、ビシクロアミノ酸のような複数の環からなる構造を有するアミノ酸、アジド基含有アミノ酸、アルキン基含有アミノ酸、アルケン基含有アミノ酸、クロロアセトアミド基含有アミノ酸、光反応性基含有アミノ酸、蛍光性アミノ酸、ε-アルキル化リシン、ビオチン基含有アミノ酸、シトルリン、エステル基含有アミノ酸、側鎖に追加のメチレンを有するアミノ酸(「ホモ」アミノ酸;例えば、ホモフェニルアラニン、ホモグルタミン、及びホモヒスチジン等)、及び側鎖中のカルボン酸官能基がスルホン酸基で置換されているアミノ酸(システイン酸等)等);並びにこれらの組み合わせが挙げられる。これらの組み合わせとしては、主鎖の構造及び側鎖の構造が天然型と異なるアミノ酸や、上記したアミノ酸の主鎖アミノ基がメチル化されたN-メチル化体、及び上記したアミノ酸のDアミノ酸が挙げられる。その他の非天然アミノ酸の具体例としては、国際公開第2015/030014号に記載のアミノ酸が挙げられる。
 以下では、具体的な構造として、非タンパク質性アミノ酸を例示して示すが、不斉炭素の立体を規定して記載している場合において、逆の立体を有する化合物であってもよい。すなわち、D-アミノ酸として記載している場合には、L-アミノ酸であってもよく、L-アミノ酸として記載している場合には、D-アミノ酸であってもよく、あるいはいずれの場合においても、D-アミノ酸とL-アミノ酸の任意の割合の混合物(ラセミ体を含む)であってもよい。また、主鎖アミノ基がメチル化されたN-メチル化体であってもよい。
 α,α-二置換アミノ酸としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 N-メチルアミノ酸としては、タンパク質性アミノ酸の主鎖アミノ基がメチル化されたN-メチル化体に加え、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 D-アミノ酸としては、タンパク質性アミノ酸のD体に加え、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
 β-アミノ酸(N-メチル化されているものを含む)としては、タンパク質性アミノ酸の主鎖に追加のメチレンを有するものに加え、以下のものが挙げられる。なお、主鎖に、追加のメチレンを有するアミノ酸として、β-アミノ酸を示しているが、γ-アミノ酸、δ-アミノ酸は、さらに、追加のメチレンを1つあるいは2つ有するアミノ酸である(天然アミノ酸の主鎖に、追加のメチレンを1つ、2つ、及び3つ有するアミノ酸が、それぞれ、β-アミノ酸、γ-アミノ酸、及びδ-アミノ酸と理解できる。)。
Figure JPOXMLDOC01-appb-C000019
 長鎖アミノ酸としては、δ-アミノ酸以上の長鎖アミノ酸であってよく、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000020
 α-ヒドロキシ酸、及びα-チオ酸としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 環状アミノ酸(N-メチル化されているものを含む)としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000022
 複数の環からなる構造を有するアミノ酸としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000023
 アジド基含有アミノ酸、アルキン基含有アミノ酸、及びアルケン基含有アミノ酸は、導入後さらなる環形成反応に用いることができるアミノ酸であり、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000024
 その他の側鎖の構造が天然型と異なるアミノ酸としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 非タンパク質性アミノ酸は、好ましくは、α,α-二置換アミノ酸、N-メチルアミノ酸、D-アミノ酸、β-アミノ酸、長鎖アミノ酸、α-ヒドロキシ酸、α-チオ酸、環状アミノ酸、セレノシステイン、ノルロイシン、スピナシン、ニトロフェニルアラニン、テトラヒドロイソキノリンカルボン酸、ヒドロキシテトラヒドロイソキノリンカルボン酸等の置換基を有するテトラヒドロイソキノリンカルボン酸、ヒドロキシトリプトファン、ペンタフルオロフェニルアラニン、メトキシフェニルアラニン、γS,Lホモグルタミン、複数の環からなる構造を有するアミノ酸、アジド基含有アミノ酸、アルキン基含有アミノ酸、アルケン基含有アミノ酸、クロロアセトアミド基含有アミノ酸、ε-アルキル化リシン、ビオチン基含有アミノ酸、シトルリン、エステル基含有アミノ酸、ホモアミノ酸、システイン酸、以下の構造を有するアミノ酸、並びにこれらのアミノ酸のD体及び主鎖アミノ基がメチル化されたN-メチル化体から選択される。
Figure JPOXMLDOC01-appb-C000026
 α,α-二置換アミノ酸、N-メチルアミノ酸、D-アミノ酸、β-アミノ酸、長鎖アミノ酸、α-ヒドロキシ酸、α-チオ酸、環状アミノ酸、複数の環からなる構造を有するアミノ酸、アジド基含有アミノ酸、アルキン基含有アミノ酸、及びアルケン基含有アミノ酸としては、それぞれ上記で例示したものが好ましい。
 また、アミノ酸誘導体とは、上記で定義されるアミノ酸から誘導される化合物又は部分構造を意味し、例えば、(i)側鎖官能基が保護基により保護されているアミノ酸、(ii)ペプチドにおいて、アミノ酸の側鎖が隣接するアミノ酸との間のアミド基と反応して形成されるチアゾール環又はオキサゾール環、(iii)下記式:
 -CR -Se-R (3)
で表される基を有するセレノシステイン誘導体、及び(iv)α,β-不飽和アミノ酸を含む。ここで、上記式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。上記式(3)中、Rは、それぞれ独立に、好ましくは水素原子又は炭素数1~10の炭化水素基であり、より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基である。上記式(3)中、2つのRのうち、両方が炭素数1~10の炭化水素基であってもよいし、一方が水素原子であり、他方が水素原子又は炭素数1~10の炭化水素基(より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基)であってもよい。また、Rの炭化水素基は、好ましくは炭素数1~10の炭化水素基であり、より好ましくは炭素数1~3のアルキル基又は炭素数6~8のアリール基である。
 Rにおける置換基としては、特に限定されないが、ヒドロキシ基、カルボキシ基、アミノ基、及びカルバモイル基等が挙げられる。
 なお、アミノ酸及びアミノ酸誘導体は、主鎖アミノ基及び/又は主鎖カルボキシ基が保護基により保護されていてもよい。そのような保護基としては、アセチル基、アリル基(All)、アリルオキシカルボニル基(Alloc)、ベンジル基(Bzl)、ベンジルオキシカルボニル基(Z)、t-ブチルオキシカルボニル基(Boc)、ベンジルオキシメチル基(Bom)、o-ブロモベンジルオキシカルボニル基、t-ブチル基(tBu)、t-ブチルジメチルシリル基、2-クロロベンジル基、2-クロロベンジルオキシカルボニル基、2,6-ジクロロベンジル基、シクロヘキシル基、シクロペンチル基、1-(4,4-ジメチル-2,6-ジオキソシクロヘキサ-1-イリデン)エチル基(Dde)、イソプロピル基、4-メトキシ-2,3-6-トリメチルベンジルスルホニル基(Mtr)、2,3,5,7,8-ペンタメチルクロマン-6-スルホニル基(Pmc)、ピバリル基、テトラヒドロピラン-2-イル基、トシル基(Tos)、2,4,6-トリメトキシベンジル基、トリメチルシリル基、及びトリチル基(Trt)等が挙げられる。
 本明細書中、ペプチドにおいて、アミノ酸の側鎖が隣接するアミノ酸との間のアミド基と反応して形成されるチアゾール環又はオキサゾール環とは、下記式で示される構造を意味する。ここで、下記式中、Bは、酸素原子又は硫黄原子であり、RX2は、水素原子又は炭化水素基である。RX2の炭化水素基の炭素数は1~10が好ましく、1~8がより好ましく、1~5がさらに好ましく、1~3がさらにより好ましく、1であってよい。また、当該炭化水素基は、アルキル基であることが好ましい。RX2は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、又はトシル基であってよく、水素原子、メチル基、イソプロピル基、又はフェニル基であってよく、水素原子又はメチル基であってよい。
Figure JPOXMLDOC01-appb-C000027
 (ii)上記チアゾール環又はオキサゾール環は、例えばチアゾール環及び/又はオキサゾール環が連続して結合している形態で本実施形態の化合物中に存在していてもよい。例えばペプチドが(ii)上記チアゾール環又はオキサゾール環を含む場合、当該ペプチドは以下の構造を有し得る。
 ここで、下記式中、Bは、それぞれ独立に酸素原子又は硫黄原子であり、RX2は、それぞれ独立に水素原子又は炭化水素基であり、RX3は、水素原子若しくは炭化水素基であるか、又はRX1と一緒に環を形成するか、又は二重結合を形成し、RX1は、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、RX3若しくはRX4と一緒に環を形成するか、又はRX3と一緒に二重結合を形成し、RX4は水素原子若しくは炭化水素基であるか、又はRX1と一緒に環を形成し、jは1以上5以下の整数である。RX1のアミノ酸誘導体の側鎖は、アミノ酸の側鎖から誘導される1価の基であってよい。RX2の好ましい態様等は前記と同義であり、RX3及びRX4の炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1であってよい。また、当該炭化水素基は、アルキル基であることが好ましい。RX1とRX3又はRX4とにより形成される環及び二重結合は、後述の、RがRと一緒に環を形成する場合に形成される環、RがRと一緒に環を形成する場合に形成される環、及びRがRと一緒に二重結合を形成する場合に形成される基と同様であってよい。jは好ましくは1以上4以下であり、より好ましくは1以上3以下であり、さらに好ましくは1以上2以下である。
Figure JPOXMLDOC01-appb-C000028
 (iii)セレノシステイン誘導体は、例えば以下の構造を有する化合物を含む。ここで、下記式中、R及びRの定義及び好ましい態様等(より好ましい、さらに好ましい、さらにより好ましい態様等を含む。以下、同様である。)は上記式(3)におけるものと同じである。
Figure JPOXMLDOC01-appb-C000029
 また、上記の構造を有する化合物は、αアミノ酸の側鎖として上記式(3)で表される基を有するものであるが、当該化合物のβアミノ酸又はγアミノ酸に相当する化合物(すなわち、βアミノ酸又はγアミノ酸の側鎖として上記式(3)で表される基を有するもの)についても、(iii)セレノシステイン誘導体に含まれる。
 (iv)α,β-不飽和アミノ酸は、例えば以下の構造を有する化合物を含む。ここで、下記式中、Rは、それぞれ独立に、好ましくは水素原子又は炭素数1~10の炭化水素基であり、より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基である。下記式中、2つのRのうち、両方が炭素数1~10の炭化水素基であってもよいし、一方が水素原子であり、他方が水素原子又は炭素数1~10の炭化水素基(より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基)であってもよい。
Figure JPOXMLDOC01-appb-C000030
 上記式(I)におけるRにアミノ酸、アミノ酸誘導体、又はペプチド鎖が含まれる場合の好ましいアミノ酸又はアミノ酸誘導体としては、タンパク質性アミノ酸、及び上記した好ましい非タンパク質性アミノ酸に加えて、(i)側鎖官能基が保護基により保護されているアミノ酸、(ii)ペプチドにおいて、アミノ酸の側鎖が隣接するアミノ酸との間のアミド基と反応して形成されるチアゾール環又はオキサゾール環、(iii)下記式:
 -CR -Se-R (3)
で表される基を有するセレノシステイン誘導体、及び(iv)α,β-不飽和アミノ酸等が挙げられる。
 上記式(I)におけるRがアミノ酸又はアミノ酸誘導体の側鎖である場合の好ましいアミノ酸又はアミノ酸誘導体としては、タンパク質性アミノ酸、及び上記した好ましい非タンパク質性アミノ酸に加えて、(i)側鎖官能基が保護基により保護されているアミノ酸、及び、(iii)下記式:
 -CR -Se-R (3)
で表される基を有するセレノシステイン誘導体等が挙げられる。
 上記式(I)におけるXaaの好ましいアミノ酸又はアミノ酸誘導体としては、タンパク質性アミノ酸、及び上記した好ましい非タンパク質性アミノ酸に加えて、(i)側鎖官能基が保護基により保護されているアミノ酸、(ii)ペプチドにおいて、アミノ酸の側鎖が隣接するアミノ酸との間のアミド基と反応して形成されるチアゾール環又はオキサゾール環、(iii)下記式:
 -CR -Se-R (3)
で表される基を有するセレノシステイン誘導体、及び(iv)α,β-不飽和アミノ酸等が挙げられる。
 なお、基を示す場合のアミノ酸又はアミノ酸誘導体については、一価の基の場合、例えば、アミノ酸又はアミノ酸誘導体の構造から1個の水素原子を除いた一価の基を表し、二価の基の場合、例えば、アミノ酸又はアミノ酸誘導体の構造から2個の水素原子を除いた二価の基を表す。
 また、基を示す場合のアミノ酸又はアミノ酸誘導体は、1つの結合手を持つアミノ酸又はアミノ酸誘導体であってよく、2つの結合手を持つアミノ酸又はアミノ酸誘導体であってもよい。ペプチド鎖についても同様であり、ペプチド鎖のN末端のアミノ酸が結合手を有するか、及び/又はペプチド鎖のC末端のアミノ酸が結合手を有していてよい。この場合、N末端のアミノ酸のアミノ基、及びC末端のアミノ酸のカルボキシ基において水素原子を1つ減じた構造が結合手となってよい。
 上記式(I)中、Rは、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成するか、又はRと一緒に二重結合を形成する。アミノ酸誘導体の側鎖は、アミノ酸の側鎖から誘導される1価の基であってよい。
 上記式(I)中、RがRと一緒に環を形成する場合、形成される環は特に限定されないが、例えば置換基を有していてもよい脂肪族環であってよい、当該脂肪族環の炭素数は3~15であってよく、3~10であってよく、4~8であってよい。当該脂肪族環の有する置換基としては、例えばアミノ酸の側鎖に含まれる官能基であってよく、炭化水素基(特にアルキル基、アリール基)、ヒドロキシ基、アミノ基、カルボキシ基、チオール基、イミダゾリル基、グアニジノ基、カルバモイル基、及びインドリル基であってよい。
 上記式(I)中、RがRと一緒に二重結合を形成する場合、形成される基は特に限定されないが、例えば=CR で表される基であってよい。ここで、Rはそれぞれ独立に水素原子又は炭化水素基であり、好ましくは水素原子又は炭素数1~10の炭化水素基であり、より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基である。
 上記式(I)中、RがRと一緒に環を形成する場合、形成される環は特に限定されないが、例えばピロリジン環のようなRが結合している窒素原子以外はヘテロ原子を含まない環であってよく、当該環に含まれる炭素原子は3~10であってよく、3~6であってよく、4又は5であってよい。
 上記式(I)中、Rは、水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成するか、又は二重結合を形成する。Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1であってよい。また、当該炭化水素基は、アルキル基であることが好ましい。上記式(I)中、RがRと一緒に環を形成しない場合、Rは、水素原子又はメチル基であってよい。
 上記式(I)中、Rは、水素原子若しくは炭化水素基であるか、Rと一緒に環を形成する。Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1であってよい。また、当該炭化水素基は、アルキル基であることが好ましい。Rは、水素原子であるか、Rと一緒に環を形成することが好ましい。
 上記式(I)中、(Xaa)は、m個のアミノ酸及び/又はアミノ酸誘導体により構成されるペプチドであり、C末端がNRと結合し、N末端が、k3が0のときは環Aに結合しているカルボニル、k3が1又は2のときはアゾール環に結合しているカルボニルと結合している。
 上記式(I)中、mは2以上の整数であり、例えば2以上100以下であってよく、上記の範囲で、3以上、4以上、5以上、6以上、7以上、8以上、10以上、15以上、又は20以上であってよく、90以下、80以下、70以下、60以下、50以下、40以下、30以下、又は25以下であってよい。mは、上記の上限値及び下限値を任意に組み合わせて得られる範囲としてもよい。
 上記式(I)中、m個のアミノ酸及び/又はアミノ酸誘導体において、m個、m-1個、m-2個、m-3個、m-4個、m-5個、m-6個、m-7個、m-8個、m-9個、m-10個、m-11個、又はこれらを上限値又は下限値とする範囲のタンパク質性アミノ酸が含まれてよい。また、m個のアミノ酸及び/又はアミノ酸誘導体において、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、又はこれらを上限値又は下限値とする範囲の非タンパク質性アミノ酸及び/又はアミノ酸誘導体が含まれてよい。非タンパク質性アミノ酸及びアミノ酸誘導体の合計数は、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、又はこれらを上限値又は下限値とする範囲であってよい。
 上記式(I)で表される化合物は、下記式(I-A)又は(I-B)で表されることが好ましく、下記式(I-C)で表されることがより好ましい。なお、下記式(I-A)、(I-B)及び(I-C)で表される化合物は、後述の式(1-A)、(1-B)、及び(1-C)で表される化合物をそれぞれ用いて製造される化合物であってよい。
Figure JPOXMLDOC01-appb-C000031
 上記式(I)で表される化合物は、下記式(I’)で表されることが好ましい。なお、下記式(I’)で表される化合物は、後述の式(1’)で表される化合物を用いて製造される化合物であってよい。
Figure JPOXMLDOC01-appb-C000032
 上記式(I-A)、(I-B)及び(I-C)で表される化合物は、それぞれ下記式(I-A’)、(I-B’)及び(I-C’)で表されることが好ましい。上記式(I)で表される化合物は、下記式(I-C’)で表されることがより好ましい。なお、下記式(I-A’)、(I-B’)及び(I-C’)で表される化合物は、後述の式(1-A’)、(1-B’)、及び(1-C’)で表される化合物をそれぞれ用いて製造される化合物であってよい。
Figure JPOXMLDOC01-appb-C000033
 上記式(I’)、(I-A)、(I-B)、(I-C)、(I-A’)、(I-B’)、及び(I-C’)において、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、(Xaa)、及びmの定義及び好ましい態様等は上記式(I)におけるものと同様である。
 上記式(I-A)、(I-B)、(I-C)、(I-A’)、(I-B’)、及び(I-C’)において、環Aがピリジン環である場合、
 上記式(I-A)及び(I-A’)においては、以下の位置に窒素原子が位置していてよく、
Figure JPOXMLDOC01-appb-C000034
 上記式(I-B)及び(I-B’)においては、以下の位置に窒素原子が位置していてよく、
Figure JPOXMLDOC01-appb-C000035
 上記式(I-C)及び(I-C’)においては、以下の位置に窒素原子が位置していてよい。
Figure JPOXMLDOC01-appb-C000036
 なお、上記の構造において、波線部分以降は省略している。
 (式(1)の化合物)
 本実施形態の製造方法は、上記式(1)で表される化合物を用いる。上記式(1)中、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、上記式(I)における定義と同義であり、PGは、保護基である。また、上記式(1)中、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRの好ましい態様等も、以下の点を除き上記式(I)におけるものと同様である。
 上記式(1)中、Rは、1価の基である。当該1価の基としては特に限定されないが、例えば、水素原子、-OH、-OR2a、-NH、-NHR2b、及び-NR2b 、並びに脱保護処理により脱離させることができるその他の基(保護基)が挙げられる。Rは、好ましくは-OR2a、又は脱保護処理により脱離させることができるその他の基である。
 ここでR2a、及びR2bの定義及び好ましい態様等は上記式(I)におけるものと同様である。
 Rは、上記の-OR2aにおけるR2aが、4-{N-[1-(4,4-ジメチル-2,6-ジオキソシクロヘキシリデン)-3-メチルブチル]-アミノ}ベンジル基(Dmab基)、炭化水素基以外の置換基を有するベンジル基、又は炭化水素基以外の置換基を有するトリチル基である基のような、上記の-OR2aのR2aがヘテロ原子を含む置換基で置換された基であってもよい。
 上記式(1)中、Rは、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成するか、又はRと一緒に二重結合を形成するが、好ましくは水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成する。アミノ酸誘導体の側鎖は、アミノ酸の側鎖から誘導される1価の基であってよい。
 上記式(1)中、RがRと一緒に環を形成する場合、形成される環は特に限定されないが、上記式(I)における環と同様であってよい。
 上記式(1)中、RがRと一緒に二重結合を形成する場合、形成される基は特に限定されないが、上記式(I)における基と同様であってよい。
 上記式(1)中、RがRと一緒に環を形成する場合、形成される環は特に限定されないが、上記式(I)における環と同様であってよい。
 上記式(1)のRがアミノ酸誘導体の側鎖である場合、セレノシステイン誘導体側鎖のようなセレンを含む基であってよい。この場合、Rは下記式:
 -CR -Se-R (3)
で表される1価の基であってよい。ここで、上記式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。上記式(3)中、R及びRの炭化水素基は、それぞれ独立に、好ましくは炭素数1~10の炭化水素基であり、より好ましくは炭素数1~3のアルキル基又は炭素数6~8のアリール基である。上記式(3)中、2つのRのうち、両方が炭素数1~10の炭化水素基であってもよいし、一方が水素原子であり、他方が水素原子又は炭素数1~10の炭化水素基(より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基)であってもよい。
 Rにおける置換基としては、特に限定されないが、ヒドロキシ基、カルボキシ基、アミノ基、及びカルバモイル基等が挙げられる。
 上記式(1)中、Rは、水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成するか、又は二重結合を形成するが、好ましくは水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成する。上記式(1)のRの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1であってよい。また、当該炭化水素基は、アルキル基であることが好ましい。上記式(1)中、RがRと一緒に環を形成しない場合、水素原子又はメチル基であってよい。
 上記式(1)中、PGは保護基である。PGで表される保護基としては、例えば、9-フルオレニルメチルカルボキシ基(Fmoc基)、t-ブチルカルボニル基(Boc基)、ベンジルオキシカルボニル基(Cbz基)、アリルオキシカルボニル基(Alloc基)、及び(2-トリメチルシリル)-エタンスルホニル基(SES基)が挙げられ、好ましくはFmoc基である。また、PGで表わされる保護基の例、その選択、及び関連する情報については、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。
 上記式(1)中の環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、及びRは、上記式(I)中の環A、Z、Z、Z、k1、k2、k3、k4、n、R、及びRとそれぞれ同じであってよい。上記式(1)中のR、R、及びRは、上記式(I)中のR、R、及びRとそれぞれ同じであってよく、異なっていてもよい。
 上記式(1)で表される化合物は、下記式(1-A)又は(1-B)で表されることが好ましく、下記式(1-C)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000037
 上記式(1)で表される化合物は、下記式(1’)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000038
 上記式(1-A)、(1-B)及び(1-C)で表される化合物は、それぞれ下記式(1-A’)、(1-B’)及び(1-C’)で表されることが好ましい。上記式(1)で表される化合物は、下記式(1-C’)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000039
 上記式(1’)、(1-A)、(1-B)、(1-C)、(1-A’)、(1-B’)、及び(1-C’)において、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGの定義及び好ましい態様等は上記式(1)におけるものと同様である。
 上記式(1-A)、(1-B)、(1-C)、(1-A’)、(1-B’)、及び(1-C’)において、環Aがピリジン環である場合、
 上記式(1-A)及び(1-A’)においては、以下の位置に窒素原子が位置していてよく、
Figure JPOXMLDOC01-appb-C000040
 上記式(1-B)及び(1-B’)においては、以下の位置に窒素原子が位置していてよく、
Figure JPOXMLDOC01-appb-C000041
 上記式(1-C)及び(1-C’)においては、以下の位置に窒素原子が位置していてよい。
Figure JPOXMLDOC01-appb-C000042
 なお、上記の構造において、波線部分以降は省略している。
 (固相担体)
 本実施形態の製造方法で用い得る固相担体としては、固相合成法において用いられるものであれば特に限定されないが、例えばガラスビーズ、シリカゲル等の無機担体;架橋ポリビニルアルコール、架橋ポリアクリレート、架橋ポリアクリルアミド、架橋ポリスチレン等の合成高分子、及び/又は結晶性セルロース、架橋セルロース、架橋アガロース、架橋デキストラン等の多糖類からなる有機担体;並びにこれらの組み合わせによって得られる有機-有機、有機-無機等の複合担体等が挙げられる。
 固相担体の形態としては、ビーズ状(例えば、磁気ビーズであってもよいし、常磁性ビーズであってもよいし、非磁気ビーズであってもよい。)、線維状、粒子条、膜状(中空糸も含む。)、ゲル状、ピン状、プレート状等いずれも可能であり、任意の形態を選ぶことができる。
 また固相担体へのアミノ酸、アミノ酸誘導体、及びペプチドの固定化方法は、共有結合法、物理吸着法、イオン結合法、及び分子間相互作用法等により行ってよい。
 固相担体が樹脂(レジン)である場合、担体表面に提示された官能基による分類では、例えばクロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂(Wang樹脂)、4-メチルベンズヒドリルアミン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2’,4’-ジメトキシフェニル-ヒドロキシメチル)フェノキシ樹脂、4-(2’,4’-ジメトキシフェニル-Fmoc-アミノメチル)フェノキシ樹脂(Rink樹脂)、及び2-クロロトリチルクロリド樹脂等が挙げられる。
 また、固相担体は、ポリスチレンレジン、NovaPEGレジン、ChemMatrixレジン、PEGレジン、TentaGelレジン、及びSpheriTideレジンのような担体であってもよい。
 本実施形態の製造方法では、遊離のアミノ基を有するアミノ酸若しくはアミノ酸誘導体又はペプチドが結合している固相担体、又は遊離のアミノ基を有する固相担体を、上記式(1)で表される化合物と反応させる。したがって、本実施形態の製造方法において、固相担体をそのまま上記式(1)で表される化合物と反応させてもよいし、一度固相合成法により1以上のアミノ酸又はアミノ酸誘導体を固相担体に結合させてから、固相担体に結合した、遊離のアミノ基を有するアミノ酸若しくはアミノ酸誘導体又はペプチドと上記式(1)で表される化合物とを反応させてもよい。したがって、本実施形態の製造方法は、固相担体に1以上のアミノ酸又はアミノ酸誘導体を反応させることを含んでいてよい。かかる反応は、通常の固相合成法で用いられる方法により実施すればよい。固相担体へ1つ以上のアミノ酸又はアミノ酸誘導体を結合させる方法、及び関連する情報は、以下の文献を参照してよい:Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074);Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7);Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803);Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827);Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712);Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249);Peptide Synthesis Methods and Protocols (ISBN 9781071602270);Peptide Synthesis and Applications (ISBN 9781627035439)。
 上記式(1)で表される化合物と反応させる前に固相合成法により固相担体に結合させるアミノ酸又はアミノ酸誘導体の個数m1は、特に限定されず、例えば0以上100以下であってよく、上記の範囲で、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、10以上、15以上、又は20以上であってよく、90以下、80以下、70以下、60以下、50以下、40以下、30以下、又は25以下であってよい。m1は、上記の上限値及び下限値を任意に組み合わせて得られる範囲としてもよい。m1が2以上の場合、固相担体には、m1個のアミノ酸及び/又はアミノ酸誘導体からなるペプチド鎖が結合され、当該ペプチド鎖の遊離のアミノ基と上記式(1)で表される化合物とが反応する。
 (式(1)の化合物と固相担体との反応)
 本実施形態の製造方法は、上記式(1)の化合物と、上記の固相担体とを反応させ、下記式(2)で表される化合物を得ることを含む。
Figure JPOXMLDOC01-appb-C000043
 上記式(2)中、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、上記式(1)における定義と同義であり、好ましい態様等も上記式(1)におけるものと同様である。
 上記式(2)中の環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、上記式(1)中の環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRとそれぞれ同じであってよい。
 上記式(2)中、(Xaam1は、上記式(1)で表される化合物と反応する前に固相担体に結合したアミノ酸若しくはアミノ酸誘導体又はペプチドを表し、m1が2以上のときは固相担体に結合したm1個のアミノ酸及び/若しくはアミノ酸誘導体により構成されるペプチド残基であり、m1が1のときはアミノ酸残基若しくはアミノ酸誘導体残基であり、m1が0のときは単結合である。
 上記式(2)中、m1は0以上の整数であり、例えば0以上100以下であってよく、上記の範囲で、1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、10以上、15以上、又は20以上であってよく、90以下、80以下、70以下、60以下、50以下、40以下、30以下、又は25以下であってよい。m1は、上記の上限値及び下限値を任意に組み合わせて得られる範囲としてもよい。
 なお、上記式(2)中、波線は、m1が1以上のときは(Xaam1が、又はm1が0のときはカルボニルが、固体担体に直接又はリンカーを介して結合していることを示す。当該リンカーとしては、固相担体に通常用いられているリンカーであれば特に限定されない。
 上記式(2)で表される化合物は、上記式(1)で表される化合物のカルボキシ基に0個以上のアミノ酸及び/又はアミノ酸誘導体、並びに任意選択的にリンカーを介して固相担体が結合したものである。したがって、上記式(1)が上記式(1’)、(1-A)、(1-B)、(1-C)、(1-A’)、(1-B’)、又は(1-C’)で表される場合、上記式(2)においてそれぞれ対応した立体配置を有する化合物が得られる。
 上記式(1)の化合物と、上記の固相担体との反応は、通常の固相合成法で用いられる反応であれば特に限定されない。上記式(1)の化合物と、上記の固相担体との反応方法、及び関連する情報は、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。
 (式(2)の化合物のアミノ酸縮合反応)
 本実施形態の製造方法は、上記式(2)で表される化合物のPGを脱保護した化合物を上記固相担体から切り離す前に、上記式(2)で表される化合物のPGを脱保護すること、及び当該脱保護した化合物に1以上のアミノ酸又はアミノ酸誘導体をアミノ酸縮合反応により結合させることにより、下記式(4)で表される化合物を得ることをさらに含んでいてよい。
Figure JPOXMLDOC01-appb-C000044
 上記式(4)中、環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、(Xaam1、及びm1は、上記式(2)における定義と同義であり、好ましい態様等も上記式(2)におけるものと同様である。
 上記式(4)中の環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、(Xaam1、及びm1は、上記式(2)中の環A、Z、Z、Z、k1、k2、k3、k4、n、R、R、R、R、R、(Xaam1、及びm1とそれぞれ同じであってよい。
 上記式(4)中、(Xaam2は、上記式(2)で表される化合物と縮合されたアミノ酸若しくはアミノ酸誘導体又はペプチドを表し、m1が2以上のときはm1個のアミノ酸及び/若しくはアミノ酸誘導体により構成されるペプチド残基であり、m1が1のときはアミノ酸残基若しくはアミノ酸誘導体残基である。なお、(Xaam2のN末端は遊離のアミノ基であってよく、保護基に保護されたアミノ基であってもよい。当該保護基としては、上記式(2)におけるPGと同様のものが挙げられる。
 上記式(4)中、m2は1以上の整数であり、例えば1以上100以下であってよく、上記の範囲で、2以上、3以上、4以上、5以上、6以上、7以上、8以上、10以上、15以上、又は20以上であってよく、90以下、80以下、70以下、60以下、50以下、40以下、30以下、又は25以下であってよい。m2は、上記の上限値及び下限値を任意に組み合わせて得られる範囲としてもよい。
 ただし、上記式(2)で表される化合物において、m1が0である場合は、m2は2以上であり、m1が1である場合は、m2は1以上である。すなわち、上記式(4)において、m1とm2との和は、2以上である。m1とm2との和は、例えば2以上100以下であってよく、上記の範囲で、3以上、4以上、5以上、6以上、7以上、8以上、10以上、15以上、又は20以上であってよく、90以下、80以下、70以下、60以下、50以下、40以下、30以下、又は25以下であってよい。m2は、上記の上限値及び下限値を任意に組み合わせて得られる範囲としてもよい。m2はmとm1との差(m-m1)であってよい。
 上記式(4)で表される化合物は、上記式(2)で表される化合物のPGに代えて1個以上のアミノ酸及び/又はアミノ酸誘導体が結合したものである。したがって、上記式(1)が上記式(1’)、(1-A)、(1-B)、(1-C)、(1-A’)、(1-B’)、又は(1-C’)で表される場合、上記式(4)においてそれぞれ対応した立体配置を有する化合物が得られる。
 上記式(2)で表される化合物のPGの脱保護は、保護基であるPGの種類に応じて適当な処理により実施すればよい。例えば、PGが9-フルオレニルメチルカルボキシ基(Fmoc基)である場合はピロリジン、ピペリジン、及びモルホリンのような塩基による処理、t-ブチルカルボニル基(Boc基)である場合はトリフルオロ酢酸(TFA)及び塩酸のような強酸による処理により、脱保護をしてよい。脱保護をする方法、及び関連する情報は、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。
 上記式(2)で表される化合物のPGを脱保護した後に1以上のアミノ酸又はアミノ酸誘導体を反応させる方法としては、固相合成法において通常用いられる方法を用いてよい。固相合成によるアミノ酸縮合反応に用いる方法、及び関連する情報は、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。
 以上の反応においてアミノ酸誘導体を結合させる場合、固体担体や式(2)の化合物にアミノ酸を結合させてから、結合させたアミノ酸をアミノ酸誘導体に変換してもよいが、固体担体や式(2)の化合物に事前に準備したアミノ酸誘導体を結合させることが好ましい。アミノ酸誘導体を結合させるための化合物として、例えば以下の化合物が挙げられる。ただし、アミノ酸誘導体を結合させるための化合物は、以下に限られず、以下の化合物及びその合成方法を適宜参照して、様々な化合物を合成し、本実施形態に係る製造方法に用いることができる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 上記化合物の合成経路の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 (環化反応)
 本実施形態の製造方法は、上記のアミノ酸縮合反応を実施した場合は、上記式(4)で表される化合物を、(Xaam2のN末端が保護基により保護されている場合は必要に応じて脱保護した後、固相担体から切り離して、環化反応を行うことを含み、上記のアミノ酸縮合反応を実施しなかった場合は、上記式(2)で表される化合物のPGを脱保護した後、固相担体から切り離して、環化反応を行うことを含む。これにより、上記式(4)においては、(Xaam1のカルボキシ基と(Xaam2のアミノ基が縮合反応し、上記式(2)においては、(Xaam1のカルボキシ基と-NHRとが縮合反応し、m個のアミノ酸及び/又はアミノ酸誘導体からなるペプチド、並びに芳香族六員環を主骨格に含む環状ペプチドである上記式(1)の化合物が得られる。
 上記式(4)で表される化合物の(Xaam2のN末端の脱保護、及び上記式(2)で表される化合物のPGの脱保護は、保護基(PG)に応じて適当な処理により実施すればよい。例えば、保護基が9-フルオレニルメチルカルボキシ基(Fmoc基)である場合はピロリジン、ピペリジン、及びモルホリンのような塩基による処理、t-ブチルカルボニル基(Boc基)である場合はトリフルオロ酢酸(TFA)及び塩酸のような強酸による処理により、脱保護をしてよい。
 上記式(2)又は(4)で表される化合物を固相担体から切り離す方法は、用いる固相担体に応じて適当な方法を用いればよい。例えば、トリフルオロ酢酸(TFA)、酢酸、2,2,2-トリフルオロエタノール、水素化ジイソブチルアルミニウム(DIBAL)、水素化ホウ素ナトリウム、水酸化ナトリウム、及びアミン等を用いる方法が挙げられる。
 固相担体から切り離した化合物の環化反応は、特に限定されないが、例えばアミノ酸縮合反応が進行する条件で行えばよい。環化反応に用いる方法、及び関連する情報は、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。また、以下の表に記載の文献も参照することができる。
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 (アミノ酸側鎖官能基の脱保護反応)
 本実施形態の製造方法は、上記環化反応により得られた化合物の(Xaa)を構成するアミノ酸及び/又はアミノ酸誘導体の側鎖官能基の保護基を脱保護することをさらに含んでいてよい。すなわち、本実施形態の製造方法は、上記環化反応により得られた上記式(I)で表される化合物の(Xaa)を構成するアミノ酸及び/又はアミノ酸誘導体の側鎖官能基の保護基を脱離させ、当該保護基が除去された上記式(I)で表される化合物を得ることを含んでいてよい。かかる脱保護反応は、アミノ酸又はアミノ酸誘導体の側鎖官能基の保護基に応じて従来公知の適当な反応を選択すればよい。脱保護をする方法、及び関連する情報は、以下の文献を参照してよい: Greene's Protective Groups in Organic Synthesis (ISBN 9781118905074); Protecting Groups in Peptide Synthesis (DOI 10.1007/978-1-0716-0227-0_7); Amino Acids, Peptides and Proteins in Organic Chemistry: Building Blocks, Catalysis and Coupling Chemistry, Volume 3 (ISBN 9783527631803); Amino Acids, Peptides and Proteins in Organic Chemistry: Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis, Volume 4 (ISBN:9783527631827); Solid-Phase Synthesis A Practical Guide (ISBN 9780367398712); Fmoc Solid Phase Peptide Synthesis: A Practical Approach (ISBN 9780199637249); Peptide Synthesis Methods and Protocols (ISBN 9781071602270); Peptide Synthesis and Applications (ISBN 9781627035439)。
 (二重結合形成反応)
 本実施形態の製造方法は、上記環化反応により得られた化合物が有する下記式:
 -CR -Se-R (3)
で表される1価の基を酸化させて二重結合を形成することをさらに含んでいてよい。ここで、上記式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。
 上記式(3)中、Rは、それぞれ独立に、好ましくは水素原子又は炭素数1~10の炭化水素基であり、より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基である。上記式(3)中、2つのRのうち、両方が炭素数1~10の炭化水素基であってもよいし、一方が水素原子であり、他方が水素原子又は炭素数1~10の炭化水素基(より好ましくは水素原子、炭素数1~3のアルキル基又は炭素数6~8のアリール基)であってもよい。
 上記式(3)中、Rの炭化水素基は、好ましくは炭素数1~10の炭化水素基であり、より好ましくは炭素数1~3のアルキル基又は炭素数6~8のアリール基である。
 Rにおける置換基としては、特に限定されないが、ヒドロキシ基、カルボキシ基、アミノ基、及びカルバモイル基等が挙げられる。
 本実施形態の製造方法は、上記のような二重結合形成反応を含むことにより、=CR で表される基を形成することができる。したがって、例えば上記環化反応により得られた上記式(I)で表される化合物のRが、セレノシステイン誘導体側鎖のような上記式(3)で表される基であり、Rが水素原子である場合、R及びRが一緒に二重結合を形成し、=CR で表される基を含む上記式(I)で表される化合物を得ることができる。
 上記式(3)で表される基は、上記式(I)で表される化合物において、R以外にも、少なくとも1つの水素原子が結合した炭素原子に結合していてよい。例えば、上記環化反応により得られた上記式(I)で表される化合物は、(Xaa)におけるアミノ酸誘導体の側鎖、及びRがアミノ酸誘導体、又はペプチド鎖を含む場合は、そのアミノ酸誘導体の側鎖として、上記式(3)で表される基を有していてよい。したがって、例えば(Xaa)におけるアミノ酸誘導体の側鎖に上記式(3)で表される基を有する上記式(I)で表される化合物について二重結合形成反応を行うことで、(Xaa)におけるアミノ酸誘導体として、=CR で表される基を含む上記式(I)で表される化合物を得ることができる。
 上記式(3)で表される基を酸化させて二重結合を形成する方法としては、tert-ブチルヒドロペルオキシド(TBHP)、過ヨウ素酸ナトリウム、過酸化水素、過酸化ベンゾイル、過酸化ラウロイル、メタクロロ過安息香酸(mCPBA)、及び過酢酸等の有機過酸、又はNaClO、KHSO、及びOxone等の過酸化物を用いる方法が挙げられる。より具体的には、Just‐Baringo, X. et al., Angew. Chem. Int. Ed. 2013, 52, 7818-7821.及びJust‐Baringo, X. et al., J. Med. Chem. 2014, 57, 4185-4195等に記載の方法を用いてよい。
 かかる二重結合形成反応は、上記の環化反応の直後に実施してもよいし、アミノ酸側鎖官能基の脱保護反応を実施した後に実施してもよい。
 (C末端修飾反応)
 本実施形態の製造方法は、上記環化反応により得られた上記式(I)で表される化合物のRを脱離させ、それにより生じるカルボキシ基を1以上の化合物と反応させることをさらに含んでいてよい。
 脱離するRとしては、特に限定されないが、例えば-OR2a、又は脱保護処理により脱離させることができるその他の基が挙げられる。ここでR2aの定義及び好ましい態様等は上記式(I)におけるものと同様である。
 脱離するRは、上記の-OR2aにおけるR2aが、4-{N-[1-(4,4-ジメチル-2,6-ジオキソシクロヘキシリデン)-3-メチルブチル]-アミノ}ベンジル基(Dmab基)、炭化水素基以外の置換基を有するベンジル基、又は炭化水素基以外の置換基を有するトリチル基である基のような、上記の-OR2aのR2aがヘテロ原子を含む置換基で置換された基であってもよい。
 Rを脱離させる方法としては、特に限定されないが、例えばRが-OR2aである場合、エステルの加水分解反応であってよく、特にRが-OMeである場合、MeSnOHを用いた加水分解を用いてよい。MeSnOHを用いた加水分解の方法の詳細は、K. C. Nicolaou, et al., Angew. Chem. Int. Ed., 2005, 44, 1378-1382.を参照することができる。
 Rの脱離により生じるカルボキシ基と反応させる化合物としては、カルボキシ基と反応し得る化合物であれば特に限定されない。また、カルボキシ基と反応し得る第1の化合物を反応させ、第1の化合物が有する官能基と反応し得る第2の化合物をさらに反応させてもよい。
 Rの脱離により生じるカルボキシ基と反応させる化合物としては、例えばアミン類、クロロアルキル部分を含む化合物、標識物質を含む化合物、エチレングリコール(PEG)部分を含む化合物、炭化水素鎖(炭素数は例えば1~20、又は3~10であってよい。)部分を含む化合物、アミノ酸及びアミノ酸誘導体、並びにペプチド鎖であってよい。そのようなRとしては、例えばNH2b、及びNHR2b 、NH2c及びその塩が挙げられる。ここでR2bの定義及び好ましい態様等は上記式(I)におけるものと同様である。
 R2cの定義及び好ましい態様等は上記式(I)におけるものと同様である。
 本実施形態の製造方法は、上記のようなC末端修飾反応を含むことにより、上記式(I)で表される化合物に対して、検出や定量に有用な標識物質を付与したり、細胞膜透過性を評価することができるクロロアルカンタグを付与したり、水溶性を向上させることができるポリエチレングリコール部分を付与したり、血中安定性を向上させることができる炭化水素鎖を付与したりすることができる。
 かかるC末端修飾反応は、上記の環化反応の直後に実施してもよいし、アミノ酸側鎖官能基の脱保護反応を実施した後に実施してもよいし、上記の二重結合形成反応を実施した後に実施してもよい。
[式(1)の化合物及びその製造方法]
 本発明は、上記式(1)で表される化合物をも提供する。上記式(1)で表される化合物は、例えば上述の本実施形態の製造方法の出発物質として有用である。また、以下の各ステップにおいては、M. Christy et al., Org. Lett. 2020, 22, 2365-2370を適宜参照してもよい。
 上記式(1)で表される化合物は、特に限定されないが、例えば以下のスキームにより製造することができる。なお、以下の合成スキームにおける環A、Z、Z、Z、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、上記式(1)における定義と同様である。また、以下の各スキームを適宜組み合わせてもよい。
 (スキーム1:式(1)の化合物(中間体1)の合成)
 式(1)の化合物である中間体1は、以下のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000053
 ステップ1-1は、出発物質に、tert-ブタンスルフィンアミドを反応させるステップである。このステップは、CsCOを含むジクロロメタン(DCM)で行ってよい。Xは、I、Br、OTf(トリフラート基)、及びClのような適当な脱離基である。
 ステップ1-2は、ステップ1-1の生成物に、アミノ酸側鎖又はアミノ酸誘導体側鎖に対応するR-L(Lは適当な脱離基である。)を反応させるステップである。R-Lとしては例えばビス(メチルセレノ)メタンが挙げられる。このステップは、BuLiのような還元剤を含むテトラヒドロフラン(THF)で、-50℃以下の低温で行ってよい。
 ステップ1-3は、ステップ1-2の生成物と、ヘキサメチル二スズを反応させるステップである。ヘキサメチル二スズは、ヘキサアルキルニスズであってよい。このステップは、Pd[PPhのようなパラジウム触媒を含むトルエンで、50℃以上の加熱条件で行ってよい。
 (スキーム2:中間体1を用いたピリジン環を有する式(I)の化合物の合成)
 ピリジン環を有する上記式(I)で表される化合物は、スキーム1で合成した中間体1を用いて以下のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000054
 ステップ2-1は、出発物質のカルボキシ基を保護基で保護するステップである。PGで表される保護基は、カルボキシ基の保護基として従来用いられている基であれば特に限定されないが、例えばtert-ブチル基、ベンジル基、メチル基、及びアルキル基等であってよい。このステップは、塩化パラトルエンスルホニルと、ピリジンのような塩基とによるカルボキシ基のトシル化の後に、PG-OHと反応させるステップであってよい。
 ステップ2-2は、ステップ2-1の生成物をシアノ化するステップである。このステップは、例えば、尿素-過酸化水素(UHP)及びトリフルオロ酢酸無水物(TFAA)による第1反応と、トリエチルアミンのような塩基性条件下におけるトリメチルシリルシアニドによる第2反応と、を含んでいてよい。
 ステップ2-3は、ステップ2-2の生成物をスレオニン、システイン、若しくはセリン、又はその誘導体と反応させることにより、チアゾール環又はオキサゾール環を形成するステップである。この反応は、ニトリルとスレオニン、システイン、若しくはセリン、又はその誘導体とを反応させてチアゾリン環又はオキサゾリン環を形成する第1の反応と、チアゾリン環又はオキサゾリン環を脱水素化することでチアゾール環又はオキサゾール環を形成する第2の反応と、を含んでいてよい。チアゾリン環又はオキサゾリン環の脱水素化は、例えばブロモトリクロロメタン及びジアザビシクロウンデセン(DBU)を用いて行ってよい。
 以上ステップ2-1~2-3の反応条件等は、Christy, M. P. et al., Org. Lett. 2020, 22, 2365-2370.を参照することができる。
 ステップ2-4は、ステップ2-3の生成物をスキーム1で得られた中間体1とカップリングさせるステップである。このステップは、Pd[PBuのようなパラジウム触媒を用いたStilleカップリングであってよい。Stilleカップリングにおいて、CsF及びCuIを添加剤として加えてもよい。反応温度は、50℃以上の加熱条件であってよい。
 ステップ2-5は、ステップ2-4の生成物を上記式(1)で表される化合物に変換するステップである。このステップは、トリフルオロ酢酸(TFA)及び塩酸のような強酸でスルフィンアミド部分を除去し、またカルボキシ基の保護基であるPGを脱保護する第1の反応と、アミノ基を保護基PGにより保護する第2の反応と、を含んでいてよい。
 (スキーム3:中間体1を用いたベンゼン環を有する式(I)の化合物の合成)
 ベンゼン環を有する上記式(I)で表される化合物は、スキーム1で合成した中間体1を用いて以下のスキーム3-1、スキーム3-2、及びスキーム3-3のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000055
 ステップ3-1-1は、出発物質をハロゲン化するステップである。例えばIoannis N. Houpis et al., Synlett 2007, 14, 2179-2184を参照することができる。このステップは、N-bromosuccinimideのようなハロゲン化剤を用いてよい。
 ステップ3-1-2は、ステップ3-1-1の生成物のメチル基を酸化してカルボキシ基に変換するステップである。このステップは、Ni(bpy)Clの存在下、NaOClのような酸化剤による酸化を行うステップであってよい。
 ステップ3-1-3は、ステップ3-1-2の生成物に、ステップ2-1、及びステップ2-3~ステップ2-5を順に行うことで、上記式(1)で表される化合物に変換するステップである。
 ステップ3-2-1は、出発物質のアミノ基をハロゲン基に変換するステップである。このステップでは、ザンドマイヤー反応のような一般的な反応を用いればよい。
 ステップ3-2-2は、ステップ3-1-1の生成物の遊離のカルボキシ基をシアノ基に変換するステップである。このステップでは、2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate(HBTU)との反応の後、シアヌル酸クロリドや塩化ホスホリルと反応させる方法を用いて良い。
 ステップ3-2-3は、ステップ3-2-2の生成物に、ステップ2-3~ステップ2-5を順に行うことで、上記式(1)で表される化合物に変換するステップである。
 ステップ3-3-1は、出発物質のアミノ基をシアノ基に変換するステップである。このステップでは、ザンドマイヤー反応のような一般的な反応を用いればよい。
 (スキーム4:式(1)の化合物の合成)
 式(1)の化合物は、スキーム1に代えて、以下のスキーム4-1、及びスキーム4-2のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000056
 ステップ4-1-1は、出発物質のC=N結合の炭素に炭化水素基であるRを結合させるステップである。このステップでは、有機リチウム試薬、グリニャール試薬、及び有機セリウム試薬のようなC=N結合の炭素にC-C結合を生成できる従来公知の試薬を用いればよい。そのような試薬として、その他、有機亜鉛試薬((RZn)、及び有機ホウ素試薬(R-B(OH))を用いてもよい。このステップは、-78℃から室温の反応温度で、THF、ジエチルエーテル、及びベンゼンのような溶媒を用いて実施してもよい。
 このステップでは、MaryAnn T. Robak et al., Chem. Rev., 2010, 110, 6, 3600-3740を参照することができる。
 ステップ4-1-2は、スキーム2の各ステップである。ステップ4-1-2は、スキーム3の各ステップとしてもよい。
 ステップ4-2-1は、出発物質を用いてグリニャール試薬を調製するステップである。このステップでは、PrMgCl・LiClのようないわゆるターボグリニャール試薬を用いてよく、出発物質とMgとを反応させる方法を用いてもよい。
 ステップ4-2-2は、ステップ4-2-1の生成物と、R-CNとを反応させるステップである。ここで、Rは非酸性(例えばpKaが30以上)の基であれば特に限定されない。
 このステップでは、Oscar Delgado et al., Org. Chem., 2006, 71, 12, 4599-4608を参照することができる。
 また、ステップ4-2-2は、R-CNに代えて、以下の構造を有するアルジミン又はケチミンを用いてよい。この場合ステップ4-2-3を省略することができる。
Figure JPOXMLDOC01-appb-C000057
 ステップ4-2-3は、ステップ4-2-2の生成物のC=N結合を還元するステップである。このステップでは、NaBH等の適当な還元剤を用いればよい。
 ステップ4-2-4は、ステップ4-2-3の生成物のアミノ基を保護するステップである。保護基としては、従来公知の種々の保護基を用いることができるが、例えばt-ブチルカルボニル基(Boc基)であってよい。
 ステップ4-2-5は、ステップ1-3、及びステップ2-4と同じ又は類似するステップである。ステップ4-2-5において、スキーム3の各ステップを用いてもよい。
 (スキーム5:式(1)の化合物(中間体3:RとRが環を形成する中間体)の合成)
 式(1)において、RとRが環を形成する中間体3は、以下のスキーム5-1、及び5-2のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000058
 ステップ5-1-1は、出発物質を3量体化させるステップである。
 このステップでは、Chem. Eur. J., 2016, 22, 3009-3018を参照することができる。
 ステップ5-1-2は、ステップ5-1-1の生成物にステップ4-2-1で得られるようなグリニャール試薬を反応させるステップである。
 ステップ5-1-3は、ステップ5-1-2の生成物のアミノ基を保護するステップである。保護基としては、従来公知の種々の保護基を用いることができるが、例えばt-ブチルカルボニル基(Boc基)であってよい。
 ステップ5-1-4は、ステップ1-3、及びステップ2-4と同じ又は類似するステップである。ステップ5-1-4において、スキーム3の各ステップを用いてもよい。
 ステップ5-2-1は、出発物質にステップ4-2-1で得られるようなグリニャール試薬を反応させるステップである。
 かかる出発物質は、J. Org. Chem., 2017, 13, 2428-2441に記載の方法により合成することができる。
 ステップ5-2-2は、ステップ5-2-1の生成物のスルフィンアミド部分を強酸で除去し、カルボキシ基の保護基を脱保護することで、分子内環化させるステップである。
 ステップ5-2-3は、ステップ5-2-2の生成物のカルボニル基を適当な還元条件化で還元するステップである。
 (スキーム6:複数のアゾール環を有する式(I)の化合物の合成)
 複数のアゾール環を有する式(I)で表される化合物は、以下のスキーム6-1、6-2、及び6-3のようにして合成することができる。
Figure JPOXMLDOC01-appb-C000059
 ステップ6-1-1、及びステップ6-1-4は、上記のステップ2-3と同様に実施することができる。
 ステップ6-1-2は、上記のステップ2-1と同様に実施することができる。
 ステップ6-1-3では、スキーム2の各ステップと同じ又は類似するステップを用いればよい。
 ステップ6-2-1は、上記のステップ2-3と同様に実施することができる。
 ステップ6-2-2は、スキーム2の各ステップと同じ又は類似するステップを用いればよい。
 ステップ6-3-1は、上記のステップ1-3と同様に実施することができる。
 ステップ6-3-2は、上記のステップ2-4と同様に実施することができる。
 ステップ6-3-3は、ステップ6-3-2の生成物のメチル基をホルミル基に変換するステップである。このステップは、酸化セレン及び酢酸を用いる方法を用いてよい。
 このステップでは、J. Am. Chem. Soc., 2011, 133, 15, 5900-5904を参照することができる。
 ステップ6-3-4では、スキーム1及びスキーム2の各ステップと同じ又は類似するステップを用いればよい。
[式(I)の化合物を含むライブラリーの製造方法]
 本発明は、2種以上の上記式(I)で表される化合物を含むライブラリーを製造する方法をも提供し得る。すなわち、上述の本実施形態の化合物の製造方法において、反応させる上記式(1)で表される化合物、アミノ酸、及びアミノ酸誘導体をランダム化することで、2種以上の上記式(I)で表される化合物を含むライブラリーを製造することができる。
 ライブラリーの製造には、例えば先端部を化学修飾によりアミノ化した複数のピンを固相担体として用いるピン法、並びに複数のビーズを複数の集合に分けて各集合で異なるアミノ酸又はアミノ酸誘導体を反応させ、その後当該複数のビーズを混合し、再度複数の集合に分けて再度各集合で異なるアミノ酸又はアミノ酸誘導体を反応させることを繰り返すsplit-and-mix法等、従来公知の固相合成によりペプチドライブラリーを製造できる方法を用いてよい。本実施形態の化合物の製造方法は、上記式(1)を用いることで芳香族六員環をペプチドに導入するため、通常のペプチド固相合成法において適用される手法を採用することができる。
 したがって、本実施形態の化合物の製造方法によれば、各固相担体にそれぞれ異なる化合物が結合した、one-bead-one-compound(OBOC)ライブラリーを製造することもできる。
[スクリーニング方法]
 本発明は、上記式(I)で表される化合物の中から、所望の標的に結合又は相互作用する化合物をスクリーニングする方法をも提供し得る。
 本実施形態の化合物の製造方法によれば、多種類のチオペプチド類及びピリチド類、並びにこれらの人工誘導体を、簡便かつ効率良く生合成可能である。これにより、国際公開第2020/067550号に記載のライブラリー構築/探索法で発見した候補化合物の生産と機能評価を容易に実施することができる。さらに、これらの薬剤候補化合物の誘導体を自在に合成することが可能である。
 例えば、国際公開第2020/067550号により構築された化合物ライブラリーと所望の標的とを接触させて、当該標的に対して結合又は相互作用する可能性が高い化合物候補を特定し、特定された化合物を本実施形態の化合物の製造方法により大量に製造することにより、当該特定された化合物を用いて、標的結合能、標的阻害能、及び血清安定性等を測定することができ、当該標的に結合又は相互作用する化合物を高効率でスクリーニングすることができる。
[TNIKキナーゼ阻害剤として作用し得る化合物]
 本発明は、TNIKキナーゼ阻害剤として作用し得る化合物をも提供し得る。TNIKはSer/ThrプロテインキナーゼのSte20ファミリーに属し、そのキナーゼ活性が、Wnt駆動性大腸がん、及び肺扁平上皮がんにおいて腫瘍形成と関連していることが知られている。いくつかの報告でTNIK阻害剤の治療効果が確認されていることから、選択的TNIK阻害剤は抗がん剤候補として有望である。
 本実施形態における、TNIKキナーゼ阻害剤として作用し得る化合物は図3に記載のいずれかの構造を有する。
[IRAK4キナーゼ阻害剤として作用し得る化合物]
 本発明は、IRAK4キナーゼ阻害剤として作用し得る化合物をも提供し得る。IRAK4は、Toll様受容体(TLR)、及びインターロイキン-1(IL-1)ファミリーの受容体の下流の炎症シグナル伝達に関与する細胞内Ser/Thrプロテインキナーゼである。いくつかの研究から、IRAK4キナーゼ不活性マウスは、アルツハイマー病、関節炎、アテローム性動脈硬化症、及びMOG誘発性脳脊髄炎に抵抗性であることが示されている。IRAK4は慢性炎症性疾患に対する有望な薬物標的として認識されている。
 本実施形態における、IRAK4キナーゼ阻害剤として作用し得る化合物は図8に記載のいずれかの構造を有する。
[TLR10受容体人工リガンドとして作用し得る化合物]
 本発明は、TLR10受容体人工リガンドとして作用し得る化合物をも提供し得る。TLR10は、炎症誘発性機能よりもむしろ抗炎症機能を有するTLRファミリーのユニークなメンバーである。
 本実施形態における、TLR10受容体人工リガンドとして作用し得る化合物は図9及び10に記載のいずれかの構造を有する。
[医薬組成物等]
 本発明は、本実施形態の化合物の製造方法により製造される化合物を含む医薬組成物をも提供する。
 本実施形態の医薬組成物は、図3、5、8~10、及び12~14に記載のいずれかの構造を有する化合物を含む。
 本実施形態の医薬組成物は、一実施形態において、図3及び12~13に記載のいずれかの構造を有する化合物を含む。この実施形態において、かかる医薬組成物は、Wnt駆動性大腸がん、及び肺扁平上皮がんを含む、TNIKキナーゼが関与する疾患の治療に用いられてよい。
 よって、本発明はさらに:
 上記した疾患を有する患者に、有効量の図3及び12~13に記載のいずれかの構造を有する化合物を投与することを含む、治療方法;
 上記した疾患の治療又は予防において用いるための図3及び12~13に記載のいずれかの構造を有する化合物;
 上記した疾患の治療又は予防に用いられる医薬組成物の製造のための、図3及び12~13に記載のいずれかの構造を有する化合物の使用;
 図3及び12~13に記載のいずれかの構造を有する化合物を含む、上記した疾患の治療又は予防剤をも提供する。
 本実施形態の医薬組成物は、一実施形態において、図8に記載のいずれかの構造を有する化合物を含む。この実施形態において、かかる医薬組成物は、アルツハイマー病、関節炎、アテローム性動脈硬化症、及びMOG誘発性脳脊髄炎を含む、IRAK4キナーゼが関与する疾患の治療に用いられてよい。
 よって、本発明はさらに:
 上記した疾患を有する患者に、有効量の図8に記載のいずれかの構造を有する化合物を投与することを含む、治療方法;
 上記した疾患の治療又は予防において用いるための図8に記載のいずれかの構造を有する化合物;
 上記した疾患の治療又は予防に用いられる医薬組成物の製造のための、図8に記載のいずれかの構造を有する化合物の使用;
 図8に記載のいずれかの構造を有する化合物を含む、上記した疾患の治療又は予防剤をも提供する。
 本実施形態の医薬組成物は、一実施形態において、図9及び10に記載のいずれかの構造を有する化合物を含む。この実施形態において、かかる医薬組成物は、TLR10受容体が関与する疾患の治療に用いられてよい。
 よって、本発明はさらに:
 上記した疾患を有する患者に、有効量の図9及び10に記載のいずれかの構造を有する化合物を投与することを含む、治療方法;
 上記した疾患の治療又は予防において用いるための図9及び10に記載のいずれかの構造を有する化合物;
 上記した疾患の治療又は予防に用いられる医薬組成物の製造のための、図9及び10に記載のいずれかの構造を有する化合物の使用;
 図9及び10に記載のいずれかの構造を有する化合物を含む、上記した疾患の治療又は予防剤をも提供する。
 本実施形態の医薬組成物の投与形態は特に限定されず、経口的投与でも非経口的投与でもよい。非経口投与としては、例えば、筋肉内注射、静脈内注射、皮下注射等の注射投与、経皮投与、経粘膜投与(経鼻、経口腔、経眼、経肺、経膣、経直腸)投与等が挙げられる。
 医薬組成物は、有効成分をそのまま用いてもよいし、薬学的に許容できる担体、賦形剤、及び/又は添加剤等を加えて製剤化してもよい。剤形としては、例えば、液剤(例えば注射剤)、分散剤、懸濁剤、錠剤、丸剤、粉末剤、坐剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、トローチ剤、吸入剤、軟膏剤、点眼剤、点鼻剤、点耳剤、及びパップ剤等が挙げられる。
 製剤化は、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、溶解剤、溶解補助剤、着色剤、矯味矯臭剤、安定化剤、乳化剤、吸収促進剤、界面活性剤、pH調整剤、防腐剤、及び抗酸化剤等を適宜使用し、常法により行うことができる。
 製剤化に用いられる成分の例としては、精製水、食塩水、リン酸緩衝液、デキストロース、グリセロール、エタノールのような薬学的に許容される有機溶剤、動植物油、乳糖、マンニトール、ブドウ糖、ソルビトール、結晶セルロース、ヒドロキシプロピルセルロース、デンプン、コーンスターチ、無水ケイ酸、ケイ酸アルミニウムマグネシウム、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、トラガント、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ミリスチン酸オクチルドデシル、ミリスチン酸イソプロピル、高級アルコール、ステアリルアルコール、ステアリン酸、及びヒト血清アルブミン等が挙げられるがこれらに限定されない。
 吸収を改善する吸収促進剤として、ポリオキシエチレンラウリルエーテル類、ラウリル硫酸ナトリウム、サポニン等の界面活性剤;グリココール酸、デオキシコール酸、タウロコール酸等の胆汁酸塩;EDTA、サリチル酸類等のキレート剤;カプロン酸、カプリン酸、ラウリン酸、オレイン酸、リノール酸、混合ミセル等の脂肪酸類;エナミン誘導体、N-アシルコラーゲンペプチド、N-アシルアミノ酸、シクロデキストリン類、キトサン類、一酸化窒素供与体等を用いてもよい。
 丸剤又は錠剤は、糖衣、胃溶性、腸溶性物質で被覆してもよい。
 注射剤は、注射用蒸留水、生理食塩水、プロピレングリコール、ポリエチレングリコール、植物油、及びアルコール類等を含んでいてもよい。さらに、湿潤剤、乳化剤、分散剤、安定化剤、溶解剤、溶解補助剤、及び防腐剤等を加えてもよい。
 本実施形態の医薬組成物は、上記疾患に有用な他の医薬や治療法と併用投与してもよい。
 本実施形態の医薬組成物を哺乳類(例えば、ヒト、サル等)、特にヒトに投与する場合の投与量は、症状、患者の年齢、性別、体重、感受性差、投与方法、投与間隔、有効成分の種類、及び製剤の種類によって異なり、特に限定されないが、例えば、30μg~1000mg、100μg~500mg、100μg~100mgを1回又は数回に分けて投与することができる。注射投与の場合、患者の体重により、1μg/kg~3000μg/kg、3μg/kg~1000μg/kgを1回又は数回に分けて投与してもよい。
 本明細書で述べた上記の態様において、本明細書に記載する態様、及び本明細書に好ましい態様等として記載する態様を含む全ての態様を、任意に組み合わせた態様とすることができる。
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
[実施例1:式(1)の化合物の合成]
 式(1)で表される化合物を図1(a)に示すスキームで合成した。図1(a)において「1」で表される化合物の合成は、2-ブロモピリジンフラグメント3の調製から開始した。当該合成経路は、図1(a)に示すように、2-ブロモニコチン酸のエステル化と、それに続く2-シアノピリジン5の合成から始まった。次に、pH 7の水性緩衝液中でニトリル-システイン縮合を行い、次いで得られたチアゾリンをブロモトリクロロメタン及びジアザビシクロウンデセンで脱水素して、チアゾール含有フラグメント3を得た。この5段階シーケンスは、操作的に簡単であり、大規模に実行することができた。
 以上の合成において、Christy, M. P.; Johnson, T.; McNerlin, C. D.; Woodard, J.; Nelson, A. T.; Lim, B.; Hamilton, T. L.; Freiberg, K. M.; Siegel, D. Total synthesis of micrococcin P1 through scalable thiazole forming reactions of cysteine derivatives and nitriles. Org. Lett. 2020, 22, 2365-2370.を参照した。
 次に、第2のStille断片であるセレノスタナン4を合成した。N-スルフィニルイミン8は、市販の2-ホルミル-4-ブロモチアゾール及び(R)-(+)-tert-ブチルスルフィンアミドから容易に製造することができる。ビス(メチルセレノ)メタン、及びn-ブチルリチウムからセレン-リチウム交換により生成したメチルセレノ-メチルリチウムへの8の付加は、ジアステレオマー生成物9の2:1混合物を40%混合収率で与えた(図1(b)、項目1)。アルキルセレノアセタールは、一般的に使用されているAr置換類似体よりもゆっくりかつ効率的にセレン-リチウム交換を行うことが知られている。したがって、リチウム化時間を延長し、付加反応を駆動する試薬の量を増やし、最適条件下での反応収率を67%に改善した(図1(b)、項目2~4)。HMPAや三フッ化ホウ素のような既知の添加剤を反応混合物に添加することによって、このプロセスの立体選択性を改善するさらなる試みは逆効果であった(図1(b)、項目5~6)。後の段階でセレノ酸化脱離によりC1’-C2’二重結合を生成するものの、C1’炭素での未定義の立体化学の不都合は大きくないと考え、下流の合成のために立体異性体9の混合物を利用することを選択した。第2のStilleフラグメント4の調製は、最終的に、化合物9をヘキサメチルジチンでPd触媒スタンニル化することにより完了し、これは良好な収率で進行した。
 以上の合成において、Christy, M. P.; Johnson, T.; McNerlin, C. D.; Woodard, J.; Nelson, A. T.; Lim, B.; Hamilton, T. L.; Freiberg, K. M.; Siegel, D. Total synthesis of micrococcin P1 through scalable thiazole forming reactions of cysteine derivatives and nitriles. Org. Lett. 2020, 22, 2365-2370.; Gross, S.; Nguyen, F.; Bierschenk, M.; Sohmen, D.; Menzel, T.; Antes, I.; Wilson, D. N.; Bach, T. Amythiamicin D and related thiopeptides as inhibitors of the bacterial elongation factor EF‐Tu: modification of the amino acid at carbon atom C2 of ring C dramatically influences activity. ChemMedChem 2013, 8, 1954-1962.; Ammer, C.; Bach, T. Total syntheses of the thiopeptides amythiamicin C and D. Eur. J. Chem. 2010, 16, 14083-14093.; Delgado, O.; Heckmann, G.; Muller, H. M.; Bach, T. Synthesis and configurational assignment of the amino alcohol in the eastern fragment of the GE2270 antibiotics by regio-and stereoselective addition of 2-metalated 4-bromothiazoles to α-chiral electrophiles. J. Org. Chem. 2006, 71, 4599-4608.を参照した。
 次に、化合物3と化合物4の間のStilleカップリングの効率を評価した。ヨウ化銅(I)とフッ化セシウムを添加剤として用いた標準条件下では、三複素環式生成物10の収率は中程度であり(図1(c)、項目1~3)、これは生成物の分解によるものと考えられた。さらなる実験により、カップリングはかなり速く進行し、化合物10は80℃で1時間反応させた後、87%の収率で単離できたことが明らかになった(図1(c)、項目4)。最後に、適切に保護された化合物1(式(1)で表される化合物)を得るために、カップリング生成物をトリフルオロ酢酸及び塩酸の混合物で処理して、tert-ブチルエステルを脱保護し、スルフィンアミド助剤を除去した。次に、遊離した第一級アミンをFmoc-スクシンイミドと反応させて、ペプチド固相合成法(SPPS)に直接用いるための化合物1を得た。全体として、化合物1の合成経路は11反応(longest linear sequence:8段階)を含み、2-ブロモニコチン酸から21%の全体収率で進行し、マルチグラムスケールで実施できた。
[実施例2:式(I)の化合物の合成]
 次に、実施例1で合成した式(1)で表される化合物から、式(I)で表される化合物を合成した。マクロ環状化に適したC末端カルボキシラートとして側鎖保護直鎖ペプチドを調製するために、2-クロロトリチルクロリド樹脂上でFmoc-SPPSを実施し、側鎖官能基を脱保護せずに固相担体からペプチドを遊離させるためにDCM中の酢酸とトリフルオロエタノールの混合物を用いた(図2a)。(Chow, H. Y.; Po, K. H. L.; Jin, K.; Qiao, G.; Sun, Z.; Ma, W.; Ye, X.; Zhou, N.; Chen, S.; Li, X. Establishing the Structure-Activity Relationship of Daptomycin. ACS Med. Chem. Lett. 2020, 11, 1442-1449.)
 化合物1は、SPPS中に1.2当量(対樹脂ローディング)で、PyBOPのみを活性化剤として用いて効率的にカップリングすることができ、その他は、SPPSの標準的なプロトコルを用いて直鎖チオペプチド前駆体を作製することができた。マクロ環状化条件を最適化するために、いくつかの一般的に使用される試薬及びペプチド骨格に沿った種々のマクロ環状化結合をスクリーニングした。DPPAとFDPPは望ましい生成物をほとんど与えず(Christy, M. P.; Johnson, T.; McNerlin, C. D.; Woodard, J.; Nelson, A. T.; Lim, B.; Hamilton, T. L.; Freiberg, K. M.; Siegel, D. Total synthesis of micrococcin P1 through scalable thiazole forming reactions of cysteine derivatives and nitriles. Org. Lett. 2020, 22, 2365-2370. ;Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. Total synthesis of the thiopeptide antibiotic amythiamicin D. J. Am. Chem. Soc. 2005, 127, 15644-15651. ;Nicolaou, K. e. C.; Dethe, D. H.; Leung, G. Y.; Zou, B.; Chen, D. Y. K. Total synthesis of thiopeptide antibiotics GE2270A, GE2270T, and GE2270C1. Chem.: Asian J. 2008, 3, 413-429.)、PyBOP、PyAOP、HBTUは中等度の有効性を示し、HATU、HOAt、OxymaPure、DIPEAの塩基としての組み合わせは一貫して優れていた(Jin, K.; Sam, I. H.; Po, K. H. L.; Lin, D. a.; Ghazvini Zadeh, E. H.; Chen, S.; Yuan, Y.; Li, X. Total synthesis of teixobactin. Nat. Commun. 2016, 7, 1-6.)。
 TP15については、Ile10とAla11の間で、上記条件下でマクロ環状化することができた(図2(b))。得られたTP15-Sec(Me)14をTP15に変換するために、Se-アルキルセレノシステイン誘導体の酸化的脱離を利用した。この目的のために、pH 8の水/アセトニトリル混合物中で200mMのt-ブチルヒドロペルオキシドで完全に脱保護されたTP15-Sec(Me)14を処理し、TP15を得た(図2(b))。最後に、チオペプチドを逆相HPLCで均一に精製し、NMR、UPLC、及びMSで評価した。
 以上の合成プロトコルを用いて、全部で11種類の標的チオペプチドを合成した(図2(c))。これらはすべて、さらなる生化学的評価に十分な量で得られた。元の樹脂ローディングに基づいて計算した全体の合成収率は5~27%の間で変動し、ほとんどの場合、マクロ環状化、脱保護、及び酸化工程はペプチド中間体の精製なしで実施できた。4つの配列(TP6、7、11、及び12)はMet残基を含み、2つのペプチド(TP3、及び4)はhtGアミノ酸(γS,LホモGln、すなわちヨードアセトアミドによるCysアルキル化の生成物)を有する。両者はスルフィド部分を含み、したがって酸化に敏感である。これらの場合、スルホキシド生成を緩和するために酸化条件を制御する必要があることを見出した。BuOOHの濃度を50mMに低下させ、反応の進行をモニターすることにより、過酸化を最小限に抑えながらSec残基を選択的に酸化的に除去することができた。全11種類のペプチドの構造を図3に示す。
[実施例3:式(I)の化合物のC末端修飾反応]
 最後に、合成したチオペプチドの官能化戦略を確立した(図4)。生物物理学的及び生物学的アッセイは、しばしばタグ付き又は標識化合物(共焦点顕微鏡法のための蛍光体標識、生体結合のためのアジドハンドル等)を必要とする。修飾を受けやすいマクロ環状化合物中のアミノ酸は事前に知られていないので、チオペプチドテール領域の修飾を行った。テール部分のメチルエステルの水酸化トリメチルスズによる選択的加水分解が、種々の官能化チオペプチドへの迅速なアクセスを可能にすることを見出した(Nicolaou, K.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. 2005, 117, 1402-1406.)。例えば、完全に保護されたマクロ環状ペプチドOMeTP4-Sec(Me)13をMeSnOHの存在下で12時間加熱すると、テール部でカルボキシラートが選択的に遊離した。ペプチドの早期に脱セレニゼーションしたものが唯一評価できた副産物であった(図4)。得られたカルボン酸OHTP4-Sec(Me)13は、クロロアルカンタグ又はローダミン6G-アミンのような種々のアミンにカップリングすることができ、合成の残りは確立された技術に従った。これらのプロトコルに従って、生物学的アッセイに使用するために、6種類の官能化チオペプチド(ctTP1、ctTP4、ctTP8、ctTP14、ctTP15;及びRhoTP4)を合成した。これら6種のペプチドを図5に示す。
[実施例4:TNIKを標的としたスクリーニングで発見したチオペプチド誘導体の活性評価]
 実施例2で合成したチオペプチドのTNIKへの結合親和性を評価するために、表面プラズモン共鳴(SPR)を用いた。図3に示す11種類の化合物のうち9種類は、1桁又は2桁ナノモーラーの解離定数(K;図6(b))を示し、標的タンパク質に強く結合することがわかった。最も強力な化合物TP15は1.2nMのKを有した。TP15はADP-Gloベースのキナーゼ阻害アッセイで最も強力な阻害剤であり、IC50値は0.014μMであった(図6(b))。計10種のチオペプチドはTNIKを阻害し、ほとんどが一桁μM範囲のIC50であったが、TP1(IC50=0.13μM)とTP8(IC50=0.6μM)はサブμM阻害剤として突出していた。SPRの結果によれば、化合物(TP1、8、14、15;残りは試験されていない)はまた、ATPの飽和濃度(1mM;Kより15倍高い)の存在下でTNIKに結合し、これはチオペプチドがATP結合部位以外の界面を標的とすることを示唆している。このデータと一致して、TP15によるTNIK阻害の速度論的解析は、この化合物が3nMの阻害定数(K)を有する酵素の基質競合阻害剤として作用することを示した(図6(c))。
 次に、多様なヒトキナーゼのパネルを用いてキナーゼ選択性プロファイリング実験を実施した。TP1及びTP15は標的酵素に対して良好な選択性を示した。1μMの濃度では、TP15は選択性スコア[S(0.1)]が0.03であり、選択性を示した(図6(d))(Bosc, N.; Meyer, C.; Bonnet, P. The Use of Novel Selectivity Metrics in Kinase Research. BMC Bioinformatics 2017, 18, 17.)。TP15はTNIKに加えて、MST1、及びLOK(他の2つのSte20ファミリーキナーゼ)も阻害した。TP1はさらに選択的であった[S(0.1)=0.01]。まとめると、これらのデータは、図3に示す化合物が標的キナーゼの強力で選択的な阻害剤となり得ることを示した。
 次に、最も活性の高い5つのチオペプチド(TP1,TP4,TP8,TP14,TP15)の代謝安定性を調べた。化合物をヒト血清と共に37℃でインキュベートし、種々の時点における残留被検体の量を、内標準物質に対してLC/MSにより定量した。TP4とTP8は良好な安定性を示し、半減期(τ1/2)はそれぞれ88時間と14時間であった(図6(b))。次に、化合物の半減期がDha残基の反応性に影響されるかどうかを調べた。Dha残基は種々の血清チオールと共役する可能性がある。この目的のために、グルタチオン(GSH)の濃度を増加させながらTP1、14及び15をインキュベートし、LC/MSにより反応結果を分析した。これにより、TP1中のDha11及びDha12は、GSHと反応するが、すべてのペプチド(Dha13/14)に存在する2-(1-アミノビニル)-チアゾール部分は反応しないことを見出した。TP14及びTP15は、24時間後に10mMのGSHの存在下で安定(>95%残留)であり、したがって、血清中でのそれらの短い半減期は、主としてタンパク質分解によるものであった。実際、LC/MSによってTP14とTP15のいくつかの分解産物が観察された。
 次に得られた化合物がヒト細胞モデルにおいて細胞内標的タンパク質(TNIKは細胞質及び細胞核に局在する)にもアクセスできるかどうかを確認した。まず、図5に示す6種類のクロロアルカン標識チオペプチド誘導体のうち4種類(TP1-ct、TP8-ct、TP14-ct、TP15-ct)について、細胞質への取り込みの程度を測定するためにクロロアルカン浸透試験(CAPA)を実施した(Peraro, L.; Deprey, K. L.; Moser, M. K.; Zou, Z.; Ball, H. L.; Levine, B.; Kritzer, J. A. Cell Penetration Profiling Using the Chloroalkane Penetration Assay. J. Am. Chem. Soc. 2018, 140, 11360-11369.)。試験した4種類の化合物のうち3種類(TP1-ct、TP14-ct、TP15-ct)が、1桁のμM濃度でHEK293H細胞内に取り込まれることを見出した。これはよく知られた細胞浸透ペプチドであるTatに匹敵する(図7a)。
 これらの結果に基づいて、最も活性なチオペプチドTP15のTNIKの細胞阻害を調べた。免疫ブロット法により評価したところ、HCT116結腸癌細胞を20μMのTP15で24時間処理すると、TNIK自己リン酸化の産物であるTNIK pSer764のレベルが低下し、これは小分子阻害剤であるNCB0846と同様であった(図7(b))(Shitashige, M.; Satow, R.; Jigami, T.; Aoki, K.; Honda, K.; Shibata, T.; Ono, M.; Hirohashi, S.; Yamada, T. Traf2- and Nck-Interacting Kinase Is Essential for Wnt Signaling and Colorectal Cancer Growth. Cancer Res. 2010, 70, 5024-5033. ;Masuda, M.; Uno, Y.; Ohbayashi, N.; Ohata, H.; Mimata, A.; Kukimoto-Niino, M.; Moriyama, H.; Kashimoto, S.; Inoue, T.; Goto, N.; Okamoto, K.; Shirouzu, M.; Sawa, M.; Yamada, T. TNIK Inhibition Abrogates Colorectal Cancer Stemness. Nat. Commun. 2016, 7, 12586.)。
 同時に、NCB0846はタンパク質及びmRNAレベル(RT-qPCRにより測定;図7(b))の両方でTNIKの全体的な発現をダウンレギュレートしたが、TP15ではそのようなことが生じず、TNIK pSer764のみに影響を及ぼした。NCB0846によるTNIK阻害と一致して、RT-qPCR実験では、HCT116細胞をTP15で処理すると、Wntシグナル伝達経路の2つの古典的な標的であるAXIN2及びMYC mRNAの転写が濃度依存的に抑制されることも明らかになった(図7c)。c-Myc及びAxin2のタンパク質レベルも、20μMのTP15と24時間インキュベートした後に低下した(図7b)。これらの結果は、新規に発見されたチオペプチドは、細胞内タンパク質を標的とするのに有望であることを示唆する。
 Tatに匹敵する濃度のTP1、14及び15の効率的な細胞質内移行は、新たに発見されたラクタゾール様チオペプチドが細胞内タンパク質を標的とするために使用され得ることを示唆している。現在のところ、チオペプチド(天然物及び合成した化合物の両方)の細胞侵入の正確なメカニズムは不明である。おそらく、複素環式コアによって構造に与えられた構造剛性と疎水性が、この過程に関与していると考えられる。
[実施例5:IRAK4又はTLR10を標的としたスクリーニングで発見したチオペプチド誘導体の活性評価]
 実施例1及び2と同様にして、更に図8~10に示す化合物を合成した。例として、図9に示すTL12の合成経路を図11(a)に示す。
 次に、表面プラズモン共鳴(SPR)を利用して、合成したチオペプチド(図8のIR1-ct、及びIR15-ctを除く14種)のそれぞれの標的IRAK4及びTLR10への結合親和性を調べた。合成化合物14種中10種がそれぞれの標的に有意な結合を示し、IR1がIRAK4に対して最も強い結合親和性(K=1.3nM)を示し、TL7がTLR10に対して最も強い結合親和性(K=306nM)を示すことを見出した(図11(b)-(c))。次に、ADP-Gloベースのキナーゼ阻害アッセイを用いて、IR1-ct、及びIR15-ctを除くIRAK4に対する4種のチオペプチドのIC50値を評価した。IRAK4に対するIC50値では、4種類のうち3種類が1桁のμM領域でIRAK4を阻害した。
 また、14種類の候補チオペプチドすべての代謝安定性を検討した。化合物をヒト血清と共に37℃でインキュベートし、種々の時点における残留チオペプチドの量を、内標準物質に対してLC/MSにより定量した。TLR10に対するチオペプチドは、概して半減期が38.2時間にも及び、安定であった。IRAK4標的化チオペプチドの短い半減期は、大部分が、挿入配列中に存在した複数のアルギニンのタンパク質分解によるものであった。
 最後に、細胞質と細胞核に局在する細胞内標的タンパク質であるIRAK4に対するチオペプチドの細胞活性を調べた。合成したチオペプチドが細胞内標的にアクセスできることを確認するために、図8に示す2つのクロロアルカン標識チオペプチド(IR1‐ct及びIR15‐ct)を用いて、血清存在下での濃度に関する細胞質浸透の程度をプロファイリングするためのクロロアルカン浸透アッセイ(CAPA)を実施した。IR15がHEK293T細胞にTatよりも2倍効率的に取り込まれることを見出した(図11(d))。さらに、両化合物は、THP1-XBlue安定細胞株において、NFkBレポーター遺伝子活性の有意な阻害を示した(それぞれ7.8及び7.0μM、図11(b))。これらの結果は、得られたチオペプチドは、天然チオペプチドと同様に、細胞内タンパク質の標的化に有望であることを示唆する。
[実施例6:非タンパク質性アミノ酸を含む式(I)の化合物の合成]
 実施例1~2に記載の合成方法に準じて、非タンパク質性アミノ酸を含む式(I)の化合物を合成した。合成した化合物の構造式を図12~14に示す。図12~14の化合物の合成結果を図15に示す。
 図12~14に記載の化合物は、いずれも実施例1で合成した式(1)で表される化合物を出発物質として用いて合成した。具体的には、実施例1と同様にして、まず2-クロロトリチルクロリド樹脂上でFmoc-SPPSを実施し、次いでDCM中の酢酸とトリフルオロエタノールの混合物を用いて、側鎖官能基を脱保護せずに固相担体からペプチドを遊離させて、以下の前駆体を合成した。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 実施例1と同じ条件で、得られた前駆体をマクロ環状化させた。さらに、セレン含有基を炭素-炭素二重結合に変換するため、水/アセトニトリル混合物中の酸化剤で処理した。wTP3、及びwTP12については、酸化剤としてNaIOを用い、その他の化合物については、酸化剤として過酸化水素を用いた。
 

Claims (7)

  1.  下記式(I)で表される化合物の製造方法であって、
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、
     環Aは、芳香族六員環であり、
     Z、Z、及びZは、それぞれ独立に酸素原子又は硫黄原子であり、
     R、R、及びRは、それぞれ独立に水素原子又は炭化水素基であり、
     k1、k2、及びk3は、それぞれ独立に0以上2以下の整数であり、
     k4は、0以上2以下の整数であり、
     nは、0以上2以下の整数であり、
     R及びRは、それぞれ独立に1価の基であり、
     Rは、水素原子、アミノ酸の側鎖若しくはアミノ酸誘導体の側鎖であるか、R若しくはRと一緒に環を形成するか、又はRと一緒に二重結合を形成し、
     Rは、水素原子若しくは炭化水素基であるか、又はRと一緒に環を形成するか、又は二重結合を形成し、
     Rは、水素原子若しくは炭化水素基であるか、Rと一緒に環を形成し、
     (Xaa)は、m個のアミノ酸及び/又はアミノ酸誘導体により構成されるペプチドであり、
     mは2以上の整数である。)
     固相担体に結合し、かつ遊離のアミノ基を有する、アミノ酸若しくはアミノ酸誘導体又はペプチド、あるいは遊離のアミノ基を有する固相担体と、下記式:
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物と、を反応させて、
    (式(1)中、
     環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、前記式(I)における定義と同義であり、
     PGは、保護基である。)
     下記式:
    Figure JPOXMLDOC01-appb-C000003
    で表される化合物
    (式(2)中、
     環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、及びRは、前記式(1)における定義と同義であり、
     (Xaam1は、m1が2以上のときは固相担体に結合したm1個のアミノ酸及び/若しくはアミノ酸誘導体により構成されるペプチド残基であり、m1が1のときはアミノ酸残基若しくはアミノ酸誘導体残基であり、m1が0のときは単結合であり、
     m1は、0以上の整数であり、
     波線は、m1が1以上のときは(Xaam1が、又はm1が0のときはカルボニルが、前記固体担体に結合していることを示す。)
    を得ることを含み、
     前記式(2)で表される化合物のPGを脱保護した化合物を、任意で1以上のアミノ酸縮合反応を行った後、前記固相担体から切り離して、環化反応を行う、式(I)で表される化合物の製造方法。
  2.  前記式(1)で表される化合物が下記式(1-A)で表される、請求項1に記載の方法。
    (式(1-A)中、
     環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
    Figure JPOXMLDOC01-appb-C000004
  3.  前記式(1)で表される化合物が下記式(1-B)で表される、請求項1に記載の方法。
    (式(1-B)中、
     環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
    Figure JPOXMLDOC01-appb-C000005
  4.  前記式(1)で表される化合物が下記式(1-C)で表される、請求項1に記載の方法。
    (式(1-C)中、
     環A、Z、Z、Z、R、R、R、k1、k2、k3、k4、n、R、R、R、R、R、及びPGは、前記式(1)における定義と同義である。)
    Figure JPOXMLDOC01-appb-C000006
  5.  前記環化反応により得られた化合物の(Xaa)を構成するアミノ酸及び/又はアミノ酸誘導体の側鎖官能基が、保護基により保護されており、
     前記側鎖官能基の保護基を脱保護することをさらに含む、請求項1~4のいずれか1項に記載の方法。
  6.  前記環化反応により得られた化合物が下記式:
     -CR -Se-R (3)
    (式(3)中、Seはセレンを示し、Rは、それぞれ独立に水素原子又は炭化水素基を示し、Rは置換基を有していてもよい炭化水素基を示す。)
    で表される1価の基を有し、
     前記環化反応の後に、前記式(3)で表される基を酸化させて二重結合を形成することをさらに含む、請求項1~4のいずれか1項に記載の方法。
  7.  前記環化反応の後に、Rを脱離させ、それにより生じるカルボキシ基を1以上の化合物と反応させることをさらに含む、請求項1~4のいずれか1項に記載の方法。
     
     
PCT/JP2023/035472 2022-09-28 2023-09-28 化合物の製造方法 WO2024071320A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154483 2022-09-28
JP2022154483 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071320A1 true WO2024071320A1 (ja) 2024-04-04

Family

ID=90478088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035472 WO2024071320A1 (ja) 2022-09-28 2023-09-28 化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2024071320A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067550A1 (ja) * 2018-09-28 2020-04-02 国立大学法人東京大学 化合物ライブラリー及び化合物ライブラリーの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067550A1 (ja) * 2018-09-28 2020-04-02 国立大学法人東京大学 化合物ライブラリー及び化合物ライブラリーの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ACOSTA GERARDO A.; ROYO MIRIAM; DE LA TORRE BEATRIZ G.; ALBERICIO FERNANDO: "Facile solid-phase synthesis of head-side chain cyclothiodepsipeptides through a cyclative cleavage from MeDbz-resin", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 58, no. 28, 14 June 2017 (2017-06-14), Amsterdam , NL , pages 2788 - 2791, XP085081569, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2017.06.008 *
ALEXANDER A. VINOGRADOV: "Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming", CELL CHEMICAL BIOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 27, no. 8, 1 August 2020 (2020-08-01), AMSTERDAM, NL , pages 1032 - 1051, XP093155949, ISSN: 2451-9456, DOI: 10.1016/j.chembiol.2020.07.003 *
HEE-JONG HWANG: "Diversity-oriented routes to thiopeptide antibiotics: total synthesis and biological evaluation of micrococcin P2", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 20, no. 9, 2 March 2022 (2022-03-02), pages 1893 - 1899, XP093155952, ISSN: 1477-0520, DOI: 10.1039/D1OB02145A *
K. PHILIP WOJTAS; MATTHIAS RIEDRICH; JIN‐YONG LU; PHILIPP WINTER; THOMAS WINKLER; SOPHIA WALTER; HANS‐DIETER ARNDT: "Total Synthesis of Nosiheptide", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 55, no. 33, 27 June 2016 (2016-06-27), Hoboken, USA, pages 9772 - 9776, XP072090331, ISSN: 1433-7851, DOI: 10.1002/anie.201603140 *
TOMONORI MORI; SHUHEI HIGASHIBAYASHI; TAIJI GOTO; MITSUNORI KOHNO; YUKIKO SATOUCHI; KAZUYUKI SHINKO; KENGO SUZUKI; SHUNYA SUZUKI; : "Total Synthesis of Siomycin A: Completion of the Total Synthesis", CHEMISTRY - AN ASIAN JOURNAL, WILEY-VCH, HOBOKEN, USA, vol. 3, no. 6, 7 May 2008 (2008-05-07), Hoboken, USA, pages 1013 - 1025, XP072416746, ISSN: 1861-4728, DOI: 10.1002/asia.200800033 *
WALTER J. WEVER: "Identification of Pyridine Synthase Recognition Sequences Allows a Modular Solid-Phase Route to Thiopeptide Variants", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 138, no. 41, 19 October 2016 (2016-10-19), pages 13461 - 13464, XP093155953, ISSN: 0002-7863, DOI: 10.1021/jacs.6b05389 *

Similar Documents

Publication Publication Date Title
JP6942147B2 (ja) Mt1−mmpに対して特異的な二環式ペプチド−毒素コンジュゲート
Castro et al. CuAAC: An efficient click chemistry reaction on solid phase
JP7387440B2 (ja) Mt1-mmpに結合するためのペプチドリガンド
JP6882978B2 (ja) Mt1−mmpに特異的な二環性ペプチドリガンド
JP2021506936A (ja) EphA2に特異的な二環ペプチドリガンド
JP2019218358A (ja) 構造化ポリペプチドの特異性のモジュレーション
Li et al. Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling
US9180209B2 (en) Non-peptidic quenched fluorescent imaging probes
Fukuzumi et al. Chemoselective cyclization of unprotected linear peptides by α-ketoacid–hydroxylamine amide-ligation
US20220098260A1 (en) BH4 Stabilized Peptides And Uses Thereof
Hoffmanns et al. Use of the Sonogashira coupling reaction for the “two-step” labeling of phenylalanine peptide side chains with organometallic compounds
JP2021528430A (ja) Psmaに結合するためのペプチドリガンド
JP2021501201A (ja) ステープルペプチドの細胞内送達のためのポリペプチド接合体
CN112585157A (zh) 用于结合整联蛋白αvβ3的肽配体
Appiah Kubi et al. Designing cell-permeable macrocyclic peptides
WO2011075678A1 (en) Specific inhibitors and active site probes for legumain
Chen et al. Site-selective azide incorporation into endogenous RNase A via a “chemistry” approach
WO2024071320A1 (ja) 化合物の製造方法
Dietrich et al. Synthesis of cyclopeptidic analogues of triostin A with quinoxalines or nucleobases as chromophores
EP2575849A2 (en) An expeditious synthesis of ubiquitinated peptide conjugates
US20060154325A1 (en) Synthesis of epoxide based inhibitors of cysteine proteases
EP3313858B1 (en) Methods for the site-selective coupling of a first agent to a second agent
CN111909240A (zh) 一种pd-1/pd-l1多肽类抑制剂及其医药用途
CA2371222C (fr) Support solide fonctionnalise pour la synthese d'alpha-oxoaldehydes
WO2024029242A1 (ja) 新規lrp1結合ペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872541

Country of ref document: EP

Kind code of ref document: A1