WO2024071234A1 - Curable composition, cured product, production method for cured product, semiconductor package, and production method for semiconductor package - Google Patents

Curable composition, cured product, production method for cured product, semiconductor package, and production method for semiconductor package Download PDF

Info

Publication number
WO2024071234A1
WO2024071234A1 PCT/JP2023/035236 JP2023035236W WO2024071234A1 WO 2024071234 A1 WO2024071234 A1 WO 2024071234A1 JP 2023035236 W JP2023035236 W JP 2023035236W WO 2024071234 A1 WO2024071234 A1 WO 2024071234A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
compound
cured product
composition according
Prior art date
Application number
PCT/JP2023/035236
Other languages
French (fr)
Japanese (ja)
Inventor
俊栄 青島
和人 嶋田
啓介 野越
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024071234A1 publication Critical patent/WO2024071234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a curable composition, a cured product, a method for producing the cured product, a semiconductor package, and a method for producing a semiconductor package.
  • curable compositions are being used in various fields.
  • semiconductors are encapsulated with an encapsulant to protect them from the outside.
  • the sealant a cured product obtained by curing a curable composition may be used.
  • a curable composition containing a resin such as an epoxy resin, a curing agent, a filler, and the like is applied to at least a part of a semiconductor, and then cured to seal the semiconductor.
  • the curable composition can be applied to a target object by a known coating method or the like, it can be said to have excellent adaptability in manufacturing, for example, high degree of freedom in designing the shape, size, application position, etc., of the applied curable composition. From the viewpoint of such excellent adaptability in manufacturing, industrial application development of the above-mentioned curable composition is expected to become more and more.
  • Patent Document 1 describes a resin composition for encapsulating semiconductor elements, which comprises the following essential components (a), (b), (c), and (d), characterized in that the fluorine atom-containing radically polymerizable monomer of component (c) is uniformly dispersed in the system in the presence of a dispersion stabilizer.
  • an epoxy resin having two or more epoxy groups in the molecule (b) an epoxy resin curing agent; (c) a radically polymerizable monomer containing a fluorine atom; and (d) a radical polymerization initiator.
  • Patent Document 2 describes a method for producing a polymerizable composition comprising: (a) 100 parts by mass of a linear fluoropolyether compound having at least two ester groups in one molecule, a divalent perfluoroalkyl ether structure in the main chain, and a number average molecular weight of 3,000 to 100,000;
  • the document describes a fluoropolyether-based composition comprising: (b) 0.1 to 50 parts by mass of a compound which contains at least one carboxylate in one molecule, has a perfluoroalkyl or alkylene structure having 4 or more carbon atoms in its main chain, or a monovalent or divalent perfluoroalkyl ether structure, and has a number average molecular weight of 200 to 30,000; and (c) 0.5 to 300 parts by mass of an inorganic filler.
  • the resulting cured product is required to have low water absorption in order to improve reliability and simplify the manufacturing process.
  • the present invention aims to provide a curable composition that provides a cured product with low water absorption, a cured product obtained by curing the curable composition, a method for producing a cured product using the curable composition, a semiconductor package that includes the cured product, and a method for producing a semiconductor package that includes the method for producing the cured product.
  • a curable composition comprising: ⁇ 2> The curable composition according to ⁇ 1>, in which the compound A contains, as the group B, at least one group selected from the group consisting of a hydroxy group, a mercapto group, an amino group, a carboxy group, and groups obtained by protecting these groups.
  • ⁇ 5> The curable composition according to ⁇ 1>, in which the compound A contains, as the group B, a group represented by the following formula (2):
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R4 and R5
  • ⁇ 8> The curable composition according to any one of ⁇ 1> to ⁇ 7>, further comprising at least one resin selected from the group consisting of an epoxy resin, a phenolic resin, and a maleimide resin.
  • ⁇ 9> The curable composition according to any one of ⁇ 1> to ⁇ 8>, wherein the compound A contains a group represented by the following formula (3): In formula (3), x represents an integer of 1 to 10.
  • x represents an integer of 1 to 10.
  • ⁇ 10> The curable composition according to any one of ⁇ 1> to ⁇ 9>, wherein the compound A has two or more of the groups B.
  • ⁇ 11> The curable composition according to any one of ⁇ 1> to ⁇ 10>, which is for forming a semiconductor encapsulant.
  • ⁇ 12> A cured product obtained by curing the curable composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> A method for producing a cured product, comprising a step of heating the curable composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 14> A semiconductor package comprising a semiconductor element and the cured product according to ⁇ 12>.
  • ⁇ 15> A step of applying the curable composition according to any one of ⁇ 1> to ⁇ 10> to the surface of a substrate having a semiconductor element; and A method for producing a semiconductor package, comprising the step of heating the curable composition.
  • the present invention provides a curable composition that provides a cured product with low water absorption, a cured product obtained by curing the curable composition, a method for producing a cured product using the curable composition, a semiconductor package that includes the cured product, and a method for producing a semiconductor package that includes the method for producing the cured product.
  • a numerical range expressed using the symbol "to” means a range that includes the numerical values before and after "to” as the lower limit and upper limit, respectively.
  • the term “step” includes not only an independent step, but also a step that cannot be clearly distinguished from another step, so long as the intended effect of the step can be achieved.
  • groups (atomic groups) when there is no indication of whether they are substituted or unsubstituted, the term encompasses both unsubstituted groups (atomic groups) and substituted groups (atomic groups).
  • an "alkyl group” encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams. Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, electron beams, and other actinic rays or radiation.
  • (meth)acrylate means both or either of “acrylate” and “methacrylate”
  • (meth)acrylic means both or either of “acrylic” and “methacrylic”
  • (meth)acryloyl means both or either of “acryloyl” and “methacryloyl”.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content refers to the total mass of all components of the composition excluding the solvent
  • the solid content concentration refers to the mass percentage of the other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC) unless otherwise specified, and are defined as polystyrene equivalent values.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, by using HLC-8220GPC (manufactured by Tosoh Corporation) and using guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) connected in series as columns.
  • these molecular weights are measured using THF (tetrahydrofuran) as the eluent.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • detection in GPC measurement is performed using a UV (ultraviolet) ray (wavelength 254 nm detector).
  • a third layer or element may be interposed between the reference layer and the other layer, and the reference layer does not need to be in contact with the other layer.
  • the direction in which the layers are stacked on the substrate is referred to as "upper", or, in the case of a resin composition layer, the direction from the substrate to the resin composition layer is referred to as “upper”, and the opposite direction is referred to as "lower”. Note that such a vertical direction is set for the convenience of this specification, and in an actual embodiment, the "upper” direction in this specification may be different from the vertical upward direction.
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component.
  • the content of each component in the composition means the total content of all compounds corresponding to that component.
  • the temperature is 23° C.
  • the pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH.
  • combinations of preferred aspects are more preferred aspects.
  • curable composition of the present invention contains compound A having group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and group B which is at least one group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond, and a filler.
  • the curable composition of the present invention a cured product having low water absorbency can be obtained.
  • the mechanism by which the above effects are obtained is unclear, but is speculated to be as follows.
  • the curable composition of the present invention contains a compound A having a specific structure of the group A and the group B. Therefore, the cured product obtained from the curable composition of the present invention also contains a structure having a fluorine atom. As a result, it is presumed that the obtained cured product is hydrophobized and has a reduced water absorption property.
  • the cured product obtained from the curable composition of the present invention is considered to have a high thermal decomposition temperature and excellent heat resistance due to the inclusion of a structure having fluorine atoms in the cured product as described above.
  • the curable composition of the present invention is also preferably used as an encapsulant for semiconductors that generate a large amount of heat, such as power semiconductors (semiconductors that can handle high voltages and large currents) in the fields of automotive and industrial use.
  • semiconductors that generate a large amount of heat
  • power semiconductors semiconductors that can handle high voltages and large currents
  • compound A has two or more groups B
  • a crosslinked structure is formed by compound A, which is believed to further reduce water absorption and provide excellent adhesion of the resulting cured product to a substrate.
  • the reactive group has a protected structure, such as a protected carboxy group, the composition is believed to have excellent storage stability.
  • Patent Documents 1 and 2 do not describe compositions containing compound A.
  • Compound A has group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and group B which is at least one type of group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond.
  • the group A is a hydrocarbon group in which at least one hydrogen atom has been replaced by a fluorine atom.
  • Compound A may have only one group corresponding to group A, or may have two or more groups corresponding to group A.
  • the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, but is preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group (preferably a saturated aliphatic hydrocarbon group) preferably has 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and even more preferably 4 to 10 carbon atoms.
  • the aromatic hydrocarbon group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the group A is preferably a monovalent to decavalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom, more preferably a divalent to hexavalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom, and even more preferably a divalent to tetravalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom. It is also preferable that the group A is a divalent hydrocarbon group.
  • the group A may be such that at least one hydrogen atom in the hydrocarbon group is substituted with a fluorine atom, but it is preferable that 50% or more of the hydrogen atoms are substituted with fluorine atoms, more preferably 70% or more of the hydrogen atoms are substituted with fluorine atoms, and even more preferably 90% or more of the hydrogen atoms are substituted with fluorine atoms.
  • Another preferred embodiment of the present invention is one in which the group A is a hydrocarbon group in which all of the hydrogen atoms have been substituted with fluorine atoms.
  • the group A is a group represented by the following formula (A-1).
  • R A1 each independently represents a hydrogen atom, a fluorine atom, or a substituent which does not correspond to any of group B or a fluorine atom
  • R A2 each independently represents a hydrogen atom, a fluorine atom, or a substituent which does not correspond to any of group B or a fluorine atom
  • x is an integer from 1 to 10
  • at least one of the x R A1s and the x R A2s is a fluorine atom
  • * represents a bonding site to another structure.
  • R A1 is preferably a fluorine atom.
  • R A1 is a substituent which does not correspond to either Group B or a fluorine atom
  • examples of R A1 include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkyloxycarbonyl group, and an arylcarbonyloxy group.
  • R A2 are the same as the preferred embodiments of R A1 described above.
  • x is preferably an integer from 2 to 8, and more preferably an integer from 4 to 6.
  • x R A1s and the x R A2s preferably 50% or more are fluorine atoms, more preferably 70% or more are fluorine atoms, and even more preferably 90% or more are fluorine atoms.
  • An embodiment in which all of the x R A1s and x R A2s are fluorine atoms is also one of the preferred embodiments of the present invention.
  • * represents a bonding site with another structure, and is preferably a bonding site with group B.
  • the group A is a group represented by the following formula (A-2).
  • Ar represents a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring ;
  • R represents a hydrogen atom, a fluorine atom, or a substituent that does not correspond to either group B or a fluorine atom;
  • n1 represents an integer of 1 or more and not more than the number of hydrogen atoms removed from Ar , at least one of the n1 R is a fluorine atom;
  • * represents a bonding site with another structure;
  • n2 represents an integer of 1 or more and not more than the number of hydrogen atoms removed from Ar, and the sum of n1 and n2 is the same as the number of hydrogen atoms removed from Ar.
  • Ar preferably has a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring having 6 to 20 carbon atoms, more preferably has a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring having 6 to 10 carbon atoms, and even more preferably has a structure in which all hydrogen atoms have been removed from a benzene ring.
  • Formula (A-2) indicates that all hydrogen atoms in the aromatic hydrocarbon ring are either replaced by R , are hydrogen atoms which are R , or are bonding sites to another structure represented by *.
  • R A3 preferred embodiments of R A3 are the same as the preferred embodiments of R A1 in formula (A-1) described above.
  • n1 R A3 preferably 50% or more are fluorine atoms, more preferably 70% or more are fluorine atoms, and even more preferably 90% or more are fluorine atoms.
  • An embodiment in which all of the n1 R A3 are fluorine atoms is also one of the preferred embodiments of the present invention.
  • * represents a bonding site with another structure, and is preferably a bonding site with group B.
  • n2 is preferably 1 to 5, more preferably 2 to 4, and even more preferably 2.
  • the sum of n1 and n2 is the same as the number of hydrogen atoms removed from Ar.
  • the number of hydrogen atoms removed from Ar is 6, and when n1 is 4, n2 is 2.
  • n1 is preferably 1 to 5, more preferably 2 to 4, and even more preferably 4.
  • Group B is at least one group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond.
  • compound A preferably has at least one group selected from the group consisting of a nucleophilic functional group and a group having an ethylenically unsaturated bond, and more preferably has a group having an ethylenically unsaturated bond.
  • the copolymer it is preferable for the copolymer to have at least one group selected from the group consisting of a nucleophilic functional group and an electrophilic functional group.
  • compound A has two or more groups B.
  • the number of groups B in compound A is preferably 2 to 10, more preferably 2 to 4, and even more preferably 2.
  • nucleophilic functional group refers to a group that reacts with an atom having low electron density to form a bond, and is preferably a group that undergoes a nucleophilic substitution reaction.
  • Compound A preferably contains, as a nucleophilic functional group, at least one group selected from the group consisting of a hydroxy group, a mercapto group, an amino group, a carboxy group, and groups obtained by protecting these groups, more preferably contains at least one group selected from the group consisting of a hydroxy group, a carboxy group, and groups obtained by protecting these groups, and even more preferably contains at least one group selected from the group consisting of groups obtained by protecting a carboxy group.
  • the protecting group in the above-mentioned protected group is not particularly limited, but is preferably a protecting group that does not leave at room temperature. From the viewpoint of storage stability, it is preferable that the protecting group is a group that is deprotected by heat of 120°C or higher, and more preferably a group that is deprotected by heat of 140°C or higher.
  • Compound A preferably contains a group represented by the following formula (1) as the group B.
  • the group represented by the following formula (1) is preferably a protected carboxy group.
  • the group represented by the following formula (1) is preferably a group that decomposes by heat to generate a carboxy group.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to other structures.
  • R 1 , R 2 and R 3 are each independently preferably a monovalent organic group, more preferably an alkyl group, even more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
  • * in formula (1) is the bonding site with the above-mentioned group A.
  • Compound A preferably contains a group represented by the following formula (2) as the group B.
  • the group represented by the following formula (2) is preferably a protected carboxy group.
  • the group represented by the following formula (2) is preferably a group that decomposes by heat to generate a carboxy group.
  • R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  • R 4 is preferably a monovalent organic group, more preferably an alkyl group, even more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
  • R 5 is preferably a monovalent organic group, more preferably an alkyl group, and even more preferably an alkyl group having 1 to 4 carbon atoms.
  • R4 and R5 may be bonded to form a ring structure.
  • * in formula (2) is the bonding site with the above-mentioned group A.
  • the number of nucleophilic functional groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of nucleophilic functional groups in compound A is 2 is also one of the preferred embodiments of the present invention.
  • the content of the nucleophilic functional group in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
  • the electrophilic functional group refers to a group that reacts with an atom having high electron density to form a bond, and is preferably a group that undergoes an electrophilic substitution reaction.
  • Compound A preferably contains, as the electrophilic functional group, at least one type of group selected from the group consisting of an epoxy group, an oxetanyl group, a maleimide group, and an oxazoline group, and more preferably contains at least one type of group selected from the group consisting of an epoxy group and a maleimide group.
  • the maleimide group also corresponds to a group having an ethylenically unsaturated bond, which will be described later.
  • the maleimide group may act, for example, as an electrophilic functional group or may act, for example, as a radically polymerizable group, depending on other components contained in the composition, curing conditions of a film formed from the composition, and the like.
  • the number of electrophilic functional groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of electrophilic functional groups in compound A is 2 is also one of the preferred embodiments of the present invention.
  • the content of the electrophilic functional group in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
  • the alkoxysilyl group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
  • the alkoxysilyl group is preferably a group represented by the following formula (S). *-Si(R 1 ) 3-n (OR 2 ) n formula (S)
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms
  • R 2 is an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • n is an integer of 1 to 3
  • * represents a bonding site to another structure.
  • R 1 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
  • R2 is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
  • n is preferably 2 or 3, and more preferably 3.
  • * is preferably a bonding site with group A.
  • the number of alkoxysilyl groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of alkoxysilyl groups in compound A is 2 is also one of the preferred embodiments of the present invention.
  • the content of alkoxysilyl groups in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
  • the group having an ethylenically unsaturated bond is preferably a radically polymerizable group, such as a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a maleimide group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), a (meth)acrylamide group, or a (meth)acryloyloxy group, of which a group having an aromatic ring directly bonded to a vinyl group, a (meth)acrylamide group, or a (meth)acryloyloxy group is preferred, and a (meth)acryloyloxy group is more preferred.
  • a radically polymerizable group such as a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a maleimide group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group
  • the number of groups having an ethylenically unsaturated bond in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4.
  • An embodiment in which the number of groups having an ethylenically unsaturated bond in compound A is 2 is also one of the preferred embodiments of the present invention.
  • the content of the group having an ethylenically unsaturated bond in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
  • compound A contains a group represented by the following formula (3).
  • x represents an integer of 1 to 10.
  • the group represented by formula (3) is a group containing the group A described above.
  • x is preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and even more preferably an integer of 4 to 8.
  • * is preferably a bonding site with an oxygen atom.
  • compound A is a compound represented by the following formula (4).
  • R 41 and R 42 each independently represent a hydrogen atom or a group represented by any one of the following formulae (R-1) to (R-3), and x represents an integer of 1 to 10.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site with the oxygen atom in formula (4).
  • R 4 and R 5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site with the oxygen atom in formula (4).
  • L R1 represents an (n+1)-valent linking group
  • R R1 represents a group corresponding to group B
  • n is an integer of 1 or more
  • * represents a bonding site with the oxygen atom in formula (4).
  • R 41 and R 42 are each preferably independently a hydrogen atom or a group represented by any one of formulas (R-1) and (R-2), and more preferably a group represented by formula (R-1) or (R-2).
  • the preferred embodiments of x are the same as those in the formula (3).
  • L R1 is preferably a hydrocarbon group, more preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group.
  • the number of carbon atoms in L R1 is preferably 1 to 20, more preferably 2 to 10, and even more preferably 2 to 8.
  • R 1 is preferably an electrophilic functional group or a group having an ethylenically unsaturated bond, and more preferably an epoxy group or a (meth)acryloyloxy group.
  • n is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and further preferably 1 or 2.
  • compound A is a compound consisting only of group A and group B.
  • the molecular weight of compound A is preferably 100 or more and less than 2000, more preferably 200 to 1000, and even more preferably 300 to 800.
  • the fluorine atom content in compound A is preferably 5 to 50 mmol/g, more preferably 10 to 40 mmol/g, and even more preferably 15 to 35 mmol/g.
  • the ClogP value of compound A is preferably 2 to 15.
  • the ClogP value of a compound is defined as follows.
  • the octanol-water partition coefficient (log P value) can generally be measured by the flask shaking method described in JIS Z7260-107 (2000).
  • the octanol-water partition coefficient (log P value) can also be estimated by a computational chemistry method or an empirical method instead of an actual measurement.
  • a calculation method it is known to use Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163 (1989)), Broto's fragmentation method (Eur. J. Med. Chem.-Chim.
  • Crippen's fragmentation method J. Chem. Inf. Comput. Sci., 27, 21 (1987)
  • the ClogP value is a value obtained by calculating the common logarithm logP of the partition coefficient P between 1-octanol and water.
  • Known methods and software can be used for calculating the ClogP value, but unless otherwise specified, the present invention uses the ClogP program incorporated in the PCModels system of Daylight Chemical Information Systems.
  • the compound A can be synthesized by the method described in the Examples below.
  • the compound may be synthesized by other methods, and the synthesis method is not particularly limited.
  • compound A examples include, but are not limited to, L-1 to L-10 used in the examples.
  • the content of compound A relative to the total solid content of the curable composition of the present invention is preferably 0.5 to 20 mass %.
  • the lower limit is more preferably 1.0 mass % or more, and even more preferably 2.0 mass % or more.
  • the upper limit is more preferably 15 mass % or less, and even more preferably 10 mass % or less.
  • Compound A may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
  • the curable composition of the present invention includes a filler.
  • inorganic particles are preferred.
  • inorganic particles include silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, glass fiber, talc, asbestos, smectite, bentonite, calcium carbonate, magnesium carbonate, montmorillonite, diatomaceous earth, magnesium oxide, titanium oxide, titanium nitride, magnesium hydroxide, aluminum hydroxide, glass beads, barium sulfate, gypsum, calcium silicate, sericite activated clay, boron nitride, hollow silica, silicon carbide, diamond, and silicon carbide surface-modified by plasma spraying ( ZrO2 , Al2O3 , other oxides).
  • the curable composition of the present invention preferably contains at least one selected from the group consisting of silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, and glass fiber, and more preferably contains at least one selected from the group consisting of silica, alumina, and titania.
  • the volume average particle size of the filler is not particularly limited, but is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less, from the viewpoint of forming a fine pattern, etc.
  • the lower limit of the volume average particle size is not particularly limited, but is preferably 0.1 ⁇ m or more.
  • the volume average particle size is not particularly limited, but can be measured, for example, by dynamic light scattering using a known Nanotrack particle size analyzer or the like.
  • the shape of the filler is not particularly limited, but it is preferable that the filler be approximately spherical.
  • the filler may also be hollow or solid.
  • the content of the filler in the curable composition of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on the total solid content of the curable composition.
  • the upper limit of the content is not particularly limited, but is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less.
  • the curable composition of the present invention may contain only one type of filler, or may contain two or more types. When two or more types are contained, the total amount thereof is preferably within the above-mentioned range.
  • the curable composition of the present invention preferably contains a resin.
  • the resin include epoxy resin and maleimide resin.
  • the resin contained in the curable composition of the present invention is preferably a thermosetting resin.
  • the epoxy resin is a compound having one or more, preferably two or more, epoxy groups in one molecule, and there are no limitations on its molecular weight and molecular structure.
  • the epoxy resin may be any one of a monomer, an oligomer, and a polymer.
  • the epoxy resin is preferably a naphthylene ether type epoxy resin.
  • Specific examples of epoxy resins include those represented by the following general formula (NE). As used herein, a bond that crosses an edge of a ring structure is meant to replace one of the hydrogen atoms in the ring structure.
  • R 1 each independently represents a hydrogen atom or a methyl group
  • Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group
  • m and n each independently represent an integer of 0 to 4, provided that either m or n is 1 or greater
  • m+n R 2s each independently represent a hydrogen atom, an aralkyl group, or an epoxy group-containing aromatic hydrocarbon group.
  • R 1 is preferably a hydrogen atom.
  • the hydrogen atom in the naphthylene group described in formula (NE) may be substituted with an alkyl group or an aralkyl group having 1 to 4 carbon atoms.
  • Ar 1 and Ar 2 each independently represent a phenylene group or a naphthylene group.
  • the hydrocarbon groups in Ar 1 and Ar 2 may each have an alkyl group having 1 to 4 carbon atoms or a phenylene group as a substituent.
  • Each of m and n is preferably an integer of 1 to 4.
  • the aralkyl group when R 2 is an aralkyl group, can be an aralkyl group represented by the following general formula (A). In addition, in the above formula (NE), when R 2 is an aralkyl group, the aralkyl group can be an aralkyl group represented by the following formula (A).
  • R3 and R4 each independently represent a hydrogen atom or a methyl group
  • Ar3 represents a phenylene group or a naphthylene group
  • n is an average value of 0.1 to 4
  • * represents a bonding site with Ar1 or Ar2 .
  • the hydrogen atom of the phenylene group or naphthylene group in Ar3 may be substituted with a substituent, such as an alkyl group.
  • the epoxy group-containing aromatic hydrocarbon group can be an epoxy group-containing aromatic hydrocarbon group represented by the following general formula (E).
  • R 5 each independently represents a hydrogen atom or a methyl group
  • Ar 4 represents a naphthylene group
  • n is an integer of 1 or 2
  • * represents a bonding site with Ar 1 or Ar 2 .
  • the hydrogen atom of the naphthylene group in Ar4 may be substituted with a substituent such as an alkyl group having 1 to 4 carbon atoms, an aralkyl group, or a phenylene group.
  • the content of the naphthylene ether type epoxy resin in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, based on the entire curable composition.
  • the content of the naphthylene ether type epoxy resin in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the entire curable composition.
  • the epoxy resin may be an epoxy resin that does not have a naphthylene ether skeleton.
  • Such epoxy resins may be one or more selected from the group consisting of bisphenol-type epoxy resins such as biphenyl-type epoxy resins, bisphenol A-type epoxy resins, bisphenol F-type epoxy resins, and tetramethylbisphenol F-type epoxy resins; stilbene-type epoxy resins; novolac-type epoxy resins such as phenol novolac-type epoxy resins and cresol novolac-type epoxy resins; multifunctional epoxy resins such as triphenol methane-type epoxy resins and alkyl-modified triphenol methane-type epoxy resins; phenol aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a phenylene skeleton and phenol aralkyl-type epoxy resins having a biphenylene skeleton; triazine nucleus-containing epoxy resins such as triglycidyl isocyan
  • the total content of the epoxy resins in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, based on the total solid content of the curable composition.
  • the total content of the epoxy resins in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the total solid content of the curable composition.
  • the maleimide resin may be a compound having two or more maleimide groups.
  • the compound having two or more maleimide groups is preferably a compound represented by any one of the following formulas (M-1) to (M-3).
  • L M1 represents a divalent organic group having 30 or less carbon atoms.
  • R M1 each independently represents a monovalent organic group
  • L M2 each independently represents a single bond or a divalent organic group
  • n represents an integer of 1 to 10
  • the aromatic ring structure in the formula may have a substituent.
  • R 1 M2 each independently represents a monovalent organic group
  • n represents an integer of 1 to 10
  • the aromatic ring structure in the formula may have a substituent.
  • the above-mentioned hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms.
  • the above-mentioned hydrocarbon group includes a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof.
  • R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
  • L M1 preferably contains an aromatic group.
  • L M1 is preferably a group represented by the following formula (LM-1).
  • L M3 represents a single bond or a divalent linking group, more preferably a single bond, a hydrocarbon group, or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O- and -NR N -, and more preferably a hydrocarbon group.
  • L M3 is a divalent linking group, it preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 8 carbon atoms.
  • R 1 M1 is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • L M2 is more preferably a single bond, a hydrocarbon group, or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O- and -NR N -, and more preferably a single bond.
  • the hydrogen atom in the benzene ring shown in formula (M-2) may be substituted with an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • R 1 M2 is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the total content of the maleimide resins in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, relative to the total solid content of the curable composition.
  • the total content of the maleimide resins in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the total solid content of the curable composition.
  • the curable composition of the present invention preferably contains a curing agent.
  • the curing agent include a phenol resin curing agent, an amine-based curing agent, an acid anhydride-based curing agent, a mercaptan-based curing agent, etc.
  • the curing agent preferably includes a phenol resin curing agent in terms of a balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, etc. Also, a combination of multiple types of curing agents may be used.
  • phenolic resin curing agent examples include one or more selected from the group consisting of novolak resins obtained by condensing or co-condensing phenols such as phenol novolak resins and cresol novolak resins with formaldehyde or ketones under an acidic catalyst; phenol aralkyl resins having a phenylene skeleton synthesized from the above-mentioned phenols and dimethoxy-para-xylene or bis(methoxymethyl)biphenyl; phenol aralkyl resins such as phenol aralkyl resins having a biphenylene skeleton; phenol resins having a trisphenylmethane skeleton; and phenol-p-xylene glycol dimethyl ether polycondensates.
  • novolak resins obtained by condensing or co-condensing phenols such as phenol novolak resins and cresol novolak resins with formaldehyde or ketones under an acidic
  • the curing agent contains one or more phenol resins selected from the group consisting of phenol novolac type phenol curing agents, phenol aralkyl type curing agents, trisphenylmethane type curing agents, and Zylok type phenol aralkyl type curing agents, and more preferably contains a phenol novolac resin. It is also preferable that the curing agent contains one or more phenol resins selected from the group consisting of phenol aralkyl type curing agents, trisphenylmethane type curing agents, and Zylok type phenol aralkyl type curing agents.
  • Amine-based curing agents include, for example, one or more selected from the group consisting of aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA); aromatic polyamines such as diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenylsulfone (DDS); and polyamine compounds such as dicyandiamide (DICY) and organic acid dihydrazides.
  • aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA)
  • aromatic polyamines such as diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenylsulfone (DDS)
  • DDM diaminodiphenylmethane
  • MPDA
  • acid anhydride curing agents include one or more selected from the group consisting of alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), and maleic anhydride; and aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA), and phthalic anhydride.
  • alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), and maleic anhydride
  • aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA), and phthalic anhydride.
  • Examples of mercaptan-based hardeners include one or more compounds selected from the group consisting of trimethylolpropane tris(3-mercaptobutyrate) and trimethylolethane tris(3-mercaptobutyrate).
  • curing agents include isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; and organic acids such as carboxylic acid-containing polyester resins.
  • the content of the curing agent in the curable composition is preferably 1 mass % or more, more preferably 2 mass % or more, even more preferably 3 mass % or more, and still more preferably 5 mass % or more, based on the total solid content of the curable composition.
  • the content of the curing agent in the curable composition is preferably 20 mass % or less, and more preferably 10 mass % or less, based on the total solid content of the curable composition.
  • the curable composition of the present invention further contains at least one resin selected from the group consisting of epoxy resins, phenolic resins (phenolic resin-based curing agents), and maleimide resins.
  • the cured product of the present invention contains an epoxy resin and at least one resin selected from the group consisting of phenolic resins and maleimide resins.
  • the curable composition of the present invention preferably contains a curing accelerator.
  • a curing accelerator for example, one that accelerates the crosslinking reaction between the epoxy resin and the curing agent can be used.
  • the curing accelerator include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds, and nitrogen atom-containing compounds such as amidines and tertiary amines, exemplified by 1,8-diazabicyclo[5.4.0]undecene-7, benzyldimethylamine, and 2-methylimidazole, and quaternary salts of the above amidines and amines.
  • a phosphorus atom-containing compound from the viewpoint of improving curability.
  • compounds having latency such as tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. These compounds may be used alone or in combination of two or more.
  • organic phosphines examples include primary phosphines such as ethylphosphine and phenylphosphine, secondary phosphines such as dimethylphosphine and diphenylphosphine, and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • the curing accelerator may contain an adduct of a phosphonium compound and a silane compound from the viewpoint of improving the strength and toughness of the cured product in a well-balanced manner.
  • the content of the curing accelerator in the curable composition is preferably 0.1 mass % or more, and more preferably 0.2 mass % or more, based on the total solid content of the curable composition.
  • the content of the curing accelerator in the curable composition is preferably 2 mass % or less, more preferably 1.5 mass % or less, even more preferably 1 mass % or less, and still more preferably 0.4 mass % or less, based on the total solid content of the curable composition.
  • the curable composition of the present invention preferably contains a coupling agent.
  • the coupling agent can include one or more types selected from known coupling agents such as aminosilanes such as epoxysilane, mercaptosilane, phenylaminosilane, etc., various silane-based compounds such as alkylsilane, ureidosilane, vinylsilane, and methacrylsilane, titanium-based compounds, aluminum chelates, and aluminum/zirconium-based compounds.
  • the coupling agent is preferably a silane coupling agent, and more preferably a silane coupling agent having an alkylene group bonded to a Si atom.
  • the alkylene group preferably has 4 or more carbon atoms, more preferably 6 or more carbon atoms, and preferably 15 or less, more preferably 10 or less carbon atoms.
  • the silane coupling agent having an alkylene group bonded to a Si atom preferably has an epoxy group, a (meth)acrylic group or an amine group.
  • the coupling agent is N-phenyl-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 7-octenyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane or N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
  • the content of the coupling agent in the curable composition is preferably 0.05 mass % or more, more preferably 0.1 mass % or more, and even more preferably 0.15 mass % or more, based on the total solid content of the curable composition.
  • the content of the curing accelerator in the curable composition is preferably 2 mass % or less, more preferably 1 mass % or less, and even more preferably 0.5 mass % or less, based on the total solid content of the curable composition.
  • the coupling agent may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
  • the curable composition of the present invention may contain a solvent.
  • an embodiment in which the content of the solvent relative to the total mass of the curable composition is 1 mass % or less is also one of the preferred embodiments of the present invention.
  • the content of the solvent is preferably 0.5% by mass or less, and more preferably 0.1% by mass or less.
  • the solvent is not particularly limited, but examples thereof include ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methyl methoxybutanol, and ⁇ -terpineol.
  • ⁇ -terpineol hexylene glycol, benzyl alcohol, 2-phenylethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol, butylpropylene triglyceride, or glycerin; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), or diisobutyl ketone (2,6-dimethyl-4-heptanone); acetic acid Esters such as ethyl, butyl acetate, diethyl phthalate, dibutyl phthalate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl
  • the curable composition contains a solvent
  • one or more of these may be used in combination.
  • the content of the solvent is preferably from 10 to 90 mass %, and more preferably from 20 to 80 mass %, based on the total mass of the curable composition.
  • the curable composition may further include components other than the above-mentioned components.
  • the curable composition may further include one or more selected from the group consisting of a flame retardant, a release agent, an ion scavenger, a colorant, a stress reducing agent, and an antioxidant.
  • the amount of each of these components in the curable composition can be about 0.01 to 7 mass % based on the total solid content of the curable composition.
  • those used as components of semiconductor encapsulation materials can be included without any particular limitation.
  • Examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, etc. These may be used alone or in combination of two or more kinds.
  • Examples of the release agent include natural waxes such as carnauba wax, oxidized polyethylene wax, montanic acid ester wax, synthetic waxes such as a reaction product of a polycondensate of 1-alkene-1-maleic anhydride having 10 or more carbon atoms with stearyl alcohol, higher fatty acids such as zinc stearate and metal salts thereof, paraffins, etc. These may be used alone or in combination of two or more kinds.
  • An example of the ion scavenger is hydrotalcite.
  • Examples of the colorant include carbon black, red iron oxide, etc. These may be used alone or in combination of two or more kinds.
  • Examples of the low stress agent include silicone oil, silicone rubber, and carboxy-terminated butadiene acrylonitrile rubber. These may be used alone or in combination of two or more.
  • Examples of the antioxidant include hindered phenol compounds, hindered amine compounds, and thioether compounds. These may be used alone or in combination of two or more.
  • the curable composition is, for example, in the form of particles or sheets.
  • Specific examples of particulate curable compositions include those in the form of tablets or powders.
  • the curable composition can be molded, for example, by transfer molding.
  • the curable composition is in the form of powder or granules
  • the curable composition can be molded, for example, by compression molding or transfer molding.
  • the term "the curable composition is in the form of powder or granules" refers to the case where the curable composition is in the form of powder or granules.
  • the curable composition of the present invention is preferably used for forming a semiconductor encapsulant.
  • the method for producing the semiconductor encapsulant will be described later as a method for producing a semiconductor package.
  • the curable composition can be obtained, for example, by mixing the above-mentioned components by known means, melt-kneading them with a kneader such as a roll, a kneader or an extruder, cooling, and then pulverizing them. If necessary, the pulverization in the above method may be tableted to obtain a particulate curable composition. After the pulverization in the above method, a sheet-shaped curable composition may be obtained by, for example, vacuum lamination molding or compression molding. The obtained curable composition may also have an appropriate degree of dispersion, flowability, etc.
  • the viscosity ⁇ 1 of the curable composition measured at 110° C. and 0.2 rad/s is preferably 1 ⁇ 10 5 Pa ⁇ s to 1 ⁇ 10 8 Pa ⁇ s, more preferably 1 ⁇ 10 5 Pa ⁇ s to 1 ⁇ 10 7 Pa ⁇ s, and even more preferably 1 ⁇ 10 5 Pa ⁇ s to 1 ⁇ 10 6 Pa ⁇ s.
  • the viscosity ⁇ 1 can be measured, for example, by an Ares rheometer (ARES-2KSTD-FCO-STD, manufactured by Rheometric Scientific).
  • a rotational frequency of 500 rad/s is preferably 1 ⁇ 10 1 Pa ⁇ s to 1 ⁇ 10 7 Pa ⁇ s, more preferably 1 ⁇ 10 1 Pa ⁇ s to 1 ⁇ 10 6 Pa ⁇ s, and even more preferably 1 ⁇ 10 2 Pa ⁇ s to 1 ⁇ 10 6 Pa ⁇ s.
  • the viscosity ⁇ 2 can be measured, for example, with an Ares rheometer (for example, ARES-2KSTD-FCO-STD, manufactured by Rheometric Scientific).
  • a cured product of the curable composition By curing the curable composition of the present invention, a cured product of the curable composition can be obtained.
  • the cured product of the present invention is a cured product obtained by curing the curable composition of the present invention.
  • the curable composition is preferably cured by heating.
  • the heating temperature is preferably from 130 to 220°C, more preferably from 150 to 200°C, and even more preferably from 160 to 190°C.
  • the water absorption rate of the cured product of the present invention is preferably 0.5% or less, more preferably less than 0.4% by mass, and even more preferably less than 0.3% by mass.
  • the water absorption rate is calculated by the method described in the examples below.
  • the volume resistivity of the cured product of the present invention is preferably 1.0 ⁇ 10 11 ⁇ cm or more, more preferably 3.0 ⁇ 10 11 ⁇ cm or more, and even more preferably 5.0 ⁇ 10 11 ⁇ cm or more.
  • the upper limit of the volume resistivity is not particularly limited, but is preferably, for example, 1.0 ⁇ 10 18 ⁇ cm or less.
  • the coefficient of thermal expansion (CTE) of the cured product of the present invention at 25°C to 100°C is preferably 100 ppm/°C or less, more preferably 80 ppm/°C or less, and even more preferably 50 ppm/°C or less.
  • the lower limit of the thermal expansion coefficient is not particularly limited, and may be 0 ppm/° C. or more.
  • the thermal expansion coefficient can be measured using a known thermomechanical analyzer, thermal expansion measuring instrument, or similar instrument, such as a TMA450 (TA Instruments).
  • the glass transition temperature of the cured product of the present invention is preferably 180° C. or higher, more preferably 190° C. or higher, and even more preferably 200° C. or higher.
  • the upper limit of the thermal expansion coefficient is not particularly limited, and may be, for example, 300° C. or less.
  • the glass transition temperature can be measured using a known thermomechanical analyzer, a thermal expansion coefficient measuring device, or a similar device, such as DMA850 (TA Instruments).
  • the relative dielectric constant of the cured product of the present invention is preferably 3.0 or less, more preferably 2.9 or less, and even more preferably 2.8 or less.
  • the lower limit of the relative dielectric constant is not particularly limited, and may be, for example, 1.0 or more.
  • the dielectric constant can be measured using a known thermomechanical analyzer, a thermal expansion coefficient measuring device, or a similar device, such as DMA850 (TA Instruments).
  • the dielectric loss tangent of the cured product of the present invention is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.001 or less.
  • the lower limit of the relative dielectric constant is not particularly limited, and may be, for example, 0 or more.
  • the dielectric constant and dielectric tangent can be measured in accordance with JIS (Japanese Industrial Standards) R 1641:2007 "Method of measurement of micro dielectric properties of fine ceramic substrates.”
  • the cured product of the present invention is preferably used as an encapsulant in a semiconductor package, the details of which will be described later.
  • the method for producing a cured product of the present invention includes a step of heating the curable composition (heating step).
  • the curable composition is cured by the heating step to form a cured product.
  • the method for producing the cured product is not particularly limited, and can be performed using a known method or a method prepared by using a known method while taking into consideration the physical properties, etc. of the curable composition of the present invention.
  • the heating temperature (maximum heating temperature) in the heating step is preferably from 130 to 220°C, more preferably from 150 to 200°C, and even more preferably from 160 to 190°C.
  • the heating temperature can be appropriately set so as to cure the curable composition, taking into consideration the composition of the curable composition and the like.
  • the heating time (heating time at the maximum heating temperature) is preferably from 1 to 20 hours, more preferably from 2 to 10 hours, and even more preferably from 3 to 8 hours. However, the heating time can be appropriately set in consideration of the composition of the curable composition, so that the time is sufficient for the curable composition to harden.
  • the material may be cooled, and in this case, the cooling rate is preferably 1 to 5° C./min.
  • the heating means used in the heating step is not particularly limited, and means conventionally used in the transfer molding method, compression molding method, potting method, etc. described below (for example, heating means attached to the sealing device used in these methods) can be used.
  • the transfer molding method is a method in which, for example, a liquid curable composition stored inside a plunger or the like is poured into a cavity in which a substrate having a semiconductor element to be sealed is placed, and then heated to thermally cure the curable composition.
  • the compression molding method is a method in which, for example, a liquid curable composition is prepared in a mold, a substrate having a semiconductor element to be encapsulated is immersed in the curable composition, and the curable composition is then thermally cured.
  • the potting method is a method in which, for example, a liquid curable composition is applied by dripping or the like onto a substrate having a semiconductor element, and then the substrate is heated to thermally cure the curable composition. Heating may also be performed by referring to other methods known in the field of semiconductor encapsulation methods.
  • the method for producing a cured product of the present invention may further include a step of preparing a liquid curable composition.
  • the step of preparing the liquid curable composition preferably includes a step of preheating the curable composition (preheating step).
  • the curable composition melted and liquid by preheating can be used as the liquid curable composition in the above-mentioned transfer molding method, compression molding method, potting method, etc.
  • the heating temperature (maximum heating temperature) in the pre-heating step is preferably lower than the heating temperature in the above-mentioned heating step, and is preferably 100 to 150°C, more preferably 110 to 140°C, and even more preferably 120 to 130°C. However, this temperature may be determined in a range in which the curable composition does not harden, taking into consideration the physical properties of the molten curable composition, such as the viscosity.
  • the semiconductor package of the present invention includes a semiconductor element and the cured product of the present invention.
  • the semiconductor package of the present invention it is preferable that at least a portion of the semiconductor element is covered with the cured product of the present invention, and it is more preferable that the semiconductor element is encapsulated with the cured product of the present invention.
  • the semiconductor element is preferably disposed on a substrate.
  • a die attach material, an adhesive layer, a heat sink, etc. may be disposed between the substrate and the semiconductor package.
  • the types of semiconductor element and substrate are not particularly limited, and any known semiconductor element and substrate in the field of semiconductor packaging can be used without particular limitation.
  • the form of the semiconductor package is not particularly limited as long as it contains a semiconductor element and the cured product of the present invention.
  • semiconductor packages include QFP (Quad Flat Package), CSP (Chip Size Package), FC-CSP (Flip Chip-Chip Size Package), QFN (Quad Flat Non-leaded Package), BGA (Ball Grid Array), FC-BGA (Flip Chip BGA), eWLB (Embedded Wafer-Level BGA), FI-WLP (Fan-In wafer level package), and FO-WLP (Fan-Out wafer level package).
  • the method for producing a semiconductor package of the present invention includes a step of applying the curable composition of the present invention to a surface of a substrate having a semiconductor element (application step), and a step of heating the curable composition (heating step).
  • the application method in the application step is not particularly limited and may be selected depending on the form of the curable composition.
  • a sheet-like curable composition may be placed on a semiconductor element, a liquid curable composition may be poured as described in the transfer molding method above, a substrate having a semiconductor element may be immersed in a liquid curable composition as described in the compression molding method above, or a liquid curable composition may be dripped onto a substrate as described in the potting method above.
  • a method known in the art for producing a semiconductor encapsulation material may be used.
  • the types of semiconductor element and substrate are not particularly limited, and any known semiconductor element and substrate in the field of semiconductor packaging can be used without particular limitation.
  • the method for producing a semiconductor package of the present invention may further include the above-mentioned preparation steps, particularly the pre-curing step. Preferred aspects of these steps are as described above.
  • the uncured curable composition is disposed on the semiconductor element, and more preferably, the semiconductor element is covered with the uncured curable composition, by the unnecessary step.
  • a preferred embodiment of the heating step in the method for producing a semiconductor package of the present invention is the same as the preferred embodiment of the heating step in the method for producing a cured product of the present invention described above.
  • the cured product of the present invention is preferably placed on a semiconductor element, more preferably the semiconductor element is covered with the cured product of the present invention, and even more preferably the semiconductor element is encapsulated with the cured product of the present invention.
  • the method for producing a semiconductor package of the present invention may include the cured product of the present invention after the heating step and a semiconductor.
  • the method may include a step of using a substrate having a plurality of semiconductor elements as the substrate in the application step, and dicing the wafer-level semiconductor package obtained after the application step and the heating step into individual pieces.
  • the individualization step a known method can be used.
  • the method for manufacturing a semiconductor package of the present invention may further include steps known in the field of semiconductor package manufacturing. For example, these include a process for bonding a semiconductor element and a wiring element to a substrate, a process for forming an external terminal, a process for forming a rewiring layer that electrically connects the external terminal and the semiconductor element, and a screening process for detecting defects in the semiconductor element.
  • Examples and Comparative Examples> In each of the examples, the components shown in the following table were mixed to obtain a curable composition. In each of the comparative examples, the components shown in the following table were mixed to obtain a comparative composition.
  • a mixer was used as a mixing means for mixing each of the curable compositions and the comparative composition. Specifically, the filler and the silane compound were first mixed. Then, the components other than the filler and the silane compound were mixed in the mixer, and the mixture was roll-kneaded at 70 to 100°C to obtain each of the curable compositions.
  • the content (blended amount) of each component shown in the table is the amount (parts by mass) shown in the "parts by mass" column of each column in the table. In the table, "-" indicates that the composition does not contain the corresponding component.
  • A-1 75 ⁇ m cut silica (Micron Corporation)
  • A-2 ML-902SK: synthetic fused silica, median diameter 24 ⁇ m, (manufactured by Tokuyama Corporation)
  • A-3 Titanium oxide (TM-HPD, manufactured by Ako Kasei Co., Ltd.)
  • A-4 Titanium oxide/titanium nitride (Mitsubishi Materials Corporation, 13M-C)
  • A-5 Alumina particles (DAB-30FC, manufactured by Denka)
  • ⁇ Silane coupling agent ⁇ C-1 N-phenyl-3-aminopropyltrimethoxysilane, CF-4083 (manufactured by Dow Corning Toray Co., Ltd.)
  • C-2 3-glycidoxypropyltrimethoxysilane, manufactured by Chisso Corporation, organosilane (Sila Ace)
  • E-1 Phenol novolac (PN) type phenolic hardener, PR-HF-3 (manufactured by Sumitomo Bakelite Co., Ltd.)
  • E-2 Phenol aralkyl type curing agent, NC-3000 (manufactured by Nippon Kayaku Co., Ltd.)
  • E-3 Phenolic resin having a trisphenylmethane skeleton (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
  • E-4 Zylok type phenol aralkyl type phenol resin (Meiwa Chemical Industry Co., Ltd., MEH-7800-4S)
  • E-5 Phenol resin (manufactured by Nippon Kayaku Co., Ltd., KAYAHARD GPH-65)
  • E-6 Maleimide resin (manufactured by Nippon Kayaku Co., Ltd., MIR-3000-70MT)
  • H-1 Montan acid ester wax, WE-4, manufactured by Clariant Japan
  • H-2 Carnauba wax
  • TOWAX-132 manufactured by Toa Kasei H-3: Oxidized polyethylene wax, PED191m100, manufactured by Clariant Japan
  • K-1 Silicone oil (Dow Corning Toray Co., Ltd., FZ-3730)
  • L-1 to L-10 Compounds having the following structure, L-1 to L-10 are compounds corresponding to the above-mentioned compound A.
  • CL-1 A compound having the following structure. CL-1 is a compound that does not fall under the above-mentioned compound A.
  • THB temperature humidity bias
  • An IGBT (insulated gate bipolar transistor) element with a rated voltage of 1200V was die-bonded to a TO-247 frame using solder, and then wire-bonded with an Al wire. This was sealed with the prepared curable composition or comparative composition in each of the Examples and Comparative Examples to produce a package for THB evaluation.
  • the molding conditions for the composition were 175°C for 2 minutes, and the after-cure conditions were 175°C for 4 hours.
  • the evaluation samples of each example obtained by the above-mentioned method were treated in a THB tester at 85°C, 85%, and a voltage of 960V for 1500 hours.
  • the leakage current was measured before and after the treatment and evaluated according to the following criteria.
  • the evaluation results are shown in the "THB resistance" column in the table. It can be said that the smaller the leakage current failure rate after treatment, the better the THB resistance.
  • B The leakage current defect rate after treatment was more than 0% and 50% or less.
  • C The leakage current defect rate after treatment was more than 50% and not more than 100%.
  • Boiling water absorption rate (%) (mass after boiling treatment ⁇ mass before boiling treatment)/mass before boiling treatment ⁇ 100 -Evaluation criteria- A: The boiled water absorption rate was less than 0.3%. B: The boiled water absorption was 0.3% or more and 0.5% or less. C: The boiled water absorption rate was more than 0.5%.
  • the cured product formed from the curable composition of the present invention has low water absorbency.
  • the comparative composition according to Comparative Example 1 does not contain compound A. It is clear that such a comparative composition has high water absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a curable composition which contains a filler and a compound A having a group A that is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom and a group B that is at least one group which is selected from the group consisting of a nucleophilic functional group, an electrophilic functional group, an alkoxysilyl group, and a group having an ethylenically unsaturated bond and may be protected; a cured product obtained by curing said curable composition; a production method for a cured product; a semiconductor package comprising said cured product; and a production method for a semiconductor package, comprising said production method for a cured product.

Description

硬化性組成物、硬化物、硬化物の製造方法、半導体パッケージ、及び、半導体パッケージの製造方法CURABLE COMPOSITION, CURED PRODUCT, PROCESS FOR PRODUCING CURED PRODUCT, SEMICONDUCTOR PACKAGE, AND PROCESS FOR PRODUCING SEMICONDUCTOR PACKAGE
 本発明は、硬化性組成物、硬化物、硬化物の製造方法、半導体パッケージ、及び、半導体パッケージの製造方法に関する。 The present invention relates to a curable composition, a cured product, a method for producing the cured product, a semiconductor package, and a method for producing a semiconductor package.
 現代では様々な分野において、硬化性組成物から製造された樹脂材料を活用することが行われている。
 例えば半導体の分野においては、半導体を封止材により封止して、外部から保護することが行われている。
 この封止剤として、硬化性組成物を硬化してなる硬化物が用いられる場合が有る。具体的には、例えば、エポキシ樹脂等の樹脂、硬化剤、フィラー等を含む硬化性組成物を半導体の少なくとも一部に適用した後に硬化させて封止する技術などが検討されている。
 硬化性組成物は、公知の塗布方法等により対象への適用が可能であるため、例えば、適用される硬化性組成物の適用時の形状、大きさ、適用位置等の設計の自由度が高いなど、製造上の適応性に優れるといえる。このような製造上の適応性に優れる観点から、上述の硬化性組成物の産業上の応用展開がますます期待されている。
Nowadays, resin materials produced from curable compositions are being used in various fields.
For example, in the field of semiconductors, semiconductors are encapsulated with an encapsulant to protect them from the outside.
As the sealant, a cured product obtained by curing a curable composition may be used. Specifically, for example, a technology has been considered in which a curable composition containing a resin such as an epoxy resin, a curing agent, a filler, and the like is applied to at least a part of a semiconductor, and then cured to seal the semiconductor.
Since the curable composition can be applied to a target object by a known coating method or the like, it can be said to have excellent adaptability in manufacturing, for example, high degree of freedom in designing the shape, size, application position, etc., of the applied curable composition. From the viewpoint of such excellent adaptability in manufacturing, industrial application development of the above-mentioned curable composition is expected to become more and more.
 例えば、特許文献1には、下記の(a)、(b)、(c)、および(d)を必須成分とする樹脂組成物であって、(c)成分のふっ素原子を含有するラジカル重合可能なモノマーが、分散安定化剤の存在下で系内に均一に分散していることを特徴とする半導体素子の封止用樹脂組成物が記載されている。
(a)分子中に2個以上のエポキシ基を有するエポキシ樹脂
(b)エポキシ樹脂硬化剤
(c)ふっ素原子を含有するラジカル重合可能なモノマー
(d)ラジカル重合開始剤
 特許文献2には、(a)1分子中に少なくとも2個のエステル基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量3,000~100,000である直鎖状フルオロポリエーテル化合物:100質量部、
(b)1分子中にカルボン酸塩を少なくとも1個含有し、かつ主鎖中に炭素数4以上のパーフルオロアルキルもしくはアルキレン構造又は1価もしくは2価のパーフルオロアルキルエーテル構造を有する数平均分子量200~30,000である化合物:0.1~50質量部、(c)無機充填剤:0.5~300質量部を含有してなることを特徴とするフルオロポリエーテル系組成物が記載されている。
For example, Patent Document 1 describes a resin composition for encapsulating semiconductor elements, which comprises the following essential components (a), (b), (c), and (d), characterized in that the fluorine atom-containing radically polymerizable monomer of component (c) is uniformly dispersed in the system in the presence of a dispersion stabilizer.
(a) an epoxy resin having two or more epoxy groups in the molecule; (b) an epoxy resin curing agent; (c) a radically polymerizable monomer containing a fluorine atom; and (d) a radical polymerization initiator. Patent Document 2 describes a method for producing a polymerizable composition comprising: (a) 100 parts by mass of a linear fluoropolyether compound having at least two ester groups in one molecule, a divalent perfluoroalkyl ether structure in the main chain, and a number average molecular weight of 3,000 to 100,000;
The document describes a fluoropolyether-based composition comprising: (b) 0.1 to 50 parts by mass of a compound which contains at least one carboxylate in one molecule, has a perfluoroalkyl or alkylene structure having 4 or more carbon atoms in its main chain, or a monovalent or divalent perfluoroalkyl ether structure, and has a number average molecular weight of 200 to 30,000; and (c) 0.5 to 300 parts by mass of an inorganic filler.
特開平7-097563号公報Japanese Patent Application Laid-Open No. 7-097563 特開2013-082766号公報JP 2013-082766 A
 硬化性組成物において、信頼性向上や製造プロセスの簡略化のため、得られる硬化物の吸水性が低いことが求められている。 In curable compositions, the resulting cured product is required to have low water absorption in order to improve reliability and simplify the manufacturing process.
 本発明は、得られる硬化物の吸水性が低い硬化性組成物、上記硬化性組成物を硬化してなる硬化物、上記硬化性組成物を用いた硬化物の製造方法、上記硬化物を含む半導体パッケージ、上記硬化物の製造方法を含む半導体パッケージの製造方法を提供することを目的とする。 The present invention aims to provide a curable composition that provides a cured product with low water absorption, a cured product obtained by curing the curable composition, a method for producing a cured product using the curable composition, a semiconductor package that includes the cured product, and a method for producing a semiconductor package that includes the method for producing the cured product.
 本発明の代表的な実施態様の例を以下に示す。
<1> 少なくとも1つの水素原子がフッ素原子により置換された炭化水素基である基A、並びに、保護されていてもよい求核性官能基、求電子性官能基、アルコキシシリル基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基である基Bを有する化合物Aと、
 フィラーとを含む
 硬化性組成物。
<2> 上記化合物Aが、上記基Bとして、ヒドロキシ基、メルカプト基、アミノ基、カルボキシ基、及び、これらの基が保護された基よりなる群から選ばれた少なくとも1種の基を含む
、<1>に記載の硬化性組成物。
<3> 上記化合物Aが、上記基Bとして、エポキシ基、オキセタニル基、マレイミド基、及び、オキサゾリル基よりなる群から選ばれた少なくとも1種の基を含む、<1>に記載の硬化性組成物。
<4> 上記化合物Aが、上記基Bとして、下記式(1)で表される基を含む、<1>に記載の硬化性組成物。
 
式(1)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
<5> 上記化合物Aが、上記基Bとして、下記式(2)で表される基を含む、<1>に記載の硬化性組成物。

式(2)中、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
<6> 上記化合物Aの分子量が100以上2000未満である、<1>~<5>のいずれか1つに記載の硬化性組成物。
<7> 上記フィラーがシリカ、アルミナ、酸化アルミニウム、窒化アルミニウム、チタニア、ジルコニア、及び、ガラス繊維からなる群より選ばれた少なくとも1種を含む、<1>~<6>のいずれか1つに記載の硬化性組成物。
<8> エポキシ樹脂、フェノール樹脂、及び、マレイミド樹脂よりなる群から選ばれた少なくとも1種の樹脂を更に含む、<1>~<7>のいずれか1つに記載の硬化性組成物。
<9> 上記化合物Aが下記式(3)で表される基を含む、<1>~<8>のいずれか1つ記載の硬化性組成物。

式(3)中、xは1~10の整数を示す。
<10> 上記化合物Aが、上記基Bを2以上有する、<1>~<9>のいずれか1つに記載の硬化性組成物。
<11> 半導体封止剤形成用である<1>~<10>いずれか1つに記載の硬化性組成物。
<12> <1>~<10>のいずれか1つに記載の硬化性組成物を硬化してなる硬化物。
<13> <1>~<10>のいずれか1つに記載の硬化性組成物を加熱する工程を含む
 硬化物の製造方法。
<14> 半導体素子、及び、<12>に記載の硬化物を含む、半導体パッケージ。
<15> 半導体素子を備える面を有する基材の半導体素子を備える面に<1>~<10>のいずれか1つに記載の硬化性組成物を付与する工程、及び、
 上記硬化性組成物を加熱する工程を含む
 半導体パッケージの製造方法。
Representative embodiments of the present invention are illustrated below.
<1> A compound A having a group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and a group B which is at least one group selected from the group consisting of an optionally protected nucleophilic functional group, an electrophilic functional group, an alkoxysilyl group, and a group having an ethylenically unsaturated bond;
A curable composition comprising:
<2> The curable composition according to <1>, in which the compound A contains, as the group B, at least one group selected from the group consisting of a hydroxy group, a mercapto group, an amino group, a carboxy group, and groups obtained by protecting these groups.
<3> The curable composition according to <1>, in which the compound A contains, as the group B, at least one group selected from the group consisting of an epoxy group, an oxetanyl group, a maleimide group, and an oxazolyl group.
<4> The curable composition according to <1>, in which the compound A contains, as the group B, a group represented by the following formula (1):

In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to other structures.
<5> The curable composition according to <1>, in which the compound A contains, as the group B, a group represented by the following formula (2):

In formula (2), R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
<6> The curable composition according to any one of <1> to <5>, wherein the compound A has a molecular weight of 100 or more and less than 2,000.
<7> The curable composition according to any one of <1> to <6>, wherein the filler includes at least one selected from the group consisting of silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, and glass fiber.
<8> The curable composition according to any one of <1> to <7>, further comprising at least one resin selected from the group consisting of an epoxy resin, a phenolic resin, and a maleimide resin.
<9> The curable composition according to any one of <1> to <8>, wherein the compound A contains a group represented by the following formula (3):

In formula (3), x represents an integer of 1 to 10.
<10> The curable composition according to any one of <1> to <9>, wherein the compound A has two or more of the groups B.
<11> The curable composition according to any one of <1> to <10>, which is for forming a semiconductor encapsulant.
<12> A cured product obtained by curing the curable composition according to any one of <1> to <10>.
<13> A method for producing a cured product, comprising a step of heating the curable composition according to any one of <1> to <10>.
<14> A semiconductor package comprising a semiconductor element and the cured product according to <12>.
<15> A step of applying the curable composition according to any one of <1> to <10> to the surface of a substrate having a semiconductor element; and
A method for producing a semiconductor package, comprising the step of heating the curable composition.
 本発明によれば、得られる硬化物の吸水性が低い硬化性組成物、上記硬化性組成物を硬化してなる硬化物、上記硬化性組成物を用いた硬化物の製造方法、上記硬化物を含む半導体パッケージ、上記硬化物の製造方法を含む半導体パッケージの製造方法が提供される。 The present invention provides a curable composition that provides a cured product with low water absorption, a cured product obtained by curing the curable composition, a method for producing a cured product using the curable composition, a semiconductor package that includes the cured product, and a method for producing a semiconductor package that includes the method for producing the cured product.
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた露光も含む。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。また本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC)法を用いて測定した値であり、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、及び、TSKgel Super HZ2000(以上、東ソー(株)製)を直列に連結して用いることによって求めることができる。それらの分子量は特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。ただし、溶解性が低い場合など、溶離液としてTHFが適していない場合にはNMP(N-メチル-2-ピロリドン)を用いることもできる。また、GPC測定における検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、樹脂組成物層がある場合には、基材から樹脂組成物層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、特段の記載がない限り、組成物は、組成物に含まれる各成分として、その成分に該当する2種以上の化合物を含んでもよい。また、特段の記載がない限り、組成物における各成分の含有量とは、その成分に該当する全ての化合物の合計含有量を意味する。
 本明細書において、特に述べない限り、温度は23℃、気圧は101,325Pa(1気圧)、相対湿度は50%RHである。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
The main embodiments of the present invention will be described below, however, the present invention is not limited to the embodiments explicitly described.
In this specification, a numerical range expressed using the symbol "to" means a range that includes the numerical values before and after "to" as the lower limit and upper limit, respectively.
In this specification, the term "step" includes not only an independent step, but also a step that cannot be clearly distinguished from another step, so long as the intended effect of the step can be achieved.
In the description of groups (atomic groups) in this specification, when there is no indication of whether they are substituted or unsubstituted, the term encompasses both unsubstituted groups (atomic groups) and substituted groups (atomic groups). For example, an "alkyl group" encompasses not only alkyl groups that have no substituents (unsubstituted alkyl groups) but also alkyl groups that have substituents (substituted alkyl groups).
In this specification, unless otherwise specified, the term "exposure" includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams. Examples of light used for exposure include the bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light), X-rays, electron beams, and other actinic rays or radiation.
In this specification, "(meth)acrylate" means both or either of "acrylate" and "methacrylate", "(meth)acrylic" means both or either of "acrylic" and "methacrylic", and "(meth)acryloyl" means both or either of "acryloyl" and "methacryloyl".
In this specification, in the structural formulae, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, the total solid content refers to the total mass of all components of the composition excluding the solvent, and in this specification, the solid content concentration refers to the mass percentage of the other components excluding the solvent with respect to the total mass of the composition.
In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured using gel permeation chromatography (GPC) unless otherwise specified, and are defined as polystyrene equivalent values. In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, by using HLC-8220GPC (manufactured by Tosoh Corporation) and using guard columns HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) connected in series as columns. Unless otherwise specified, these molecular weights are measured using THF (tetrahydrofuran) as the eluent. However, when THF is not suitable as the eluent, such as when the solubility is low, NMP (N-methyl-2-pyrrolidone) can also be used. In addition, unless otherwise specified, detection in GPC measurement is performed using a UV (ultraviolet) ray (wavelength 254 nm detector).
In this specification, when the positional relationship of each layer constituting the laminate is described as "upper" or "lower", it is sufficient that there is another layer above or below the reference layer among the multiple layers being noted. That is, a third layer or element may be interposed between the reference layer and the other layer, and the reference layer does not need to be in contact with the other layer. Unless otherwise specified, the direction in which the layers are stacked on the substrate is referred to as "upper", or, in the case of a resin composition layer, the direction from the substrate to the resin composition layer is referred to as "upper", and the opposite direction is referred to as "lower". Note that such a vertical direction is set for the convenience of this specification, and in an actual embodiment, the "upper" direction in this specification may be different from the vertical upward direction.
In this specification, unless otherwise specified, the composition may contain, as each component contained in the composition, two or more compounds corresponding to that component. Furthermore, unless otherwise specified, the content of each component in the composition means the total content of all compounds corresponding to that component.
In this specification, unless otherwise specified, the temperature is 23° C., the pressure is 101,325 Pa (1 atm), and the relative humidity is 50% RH.
As used herein, combinations of preferred aspects are more preferred aspects.
(硬化性組成物)
 本発明の硬化性組成物(以下、単に「硬化性組成物」ともいう。)は、少なくとも1つの水素原子がフッ素原子により置換された炭化水素基である基A、並びに、保護されていてもよい求核性官能基、求電子性官能基、アルコキシシリル基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基である基Bを有する化合物Aと、フィラーとを含む。
(Curable Composition)
The curable composition of the present invention (hereinafter, also simply referred to as "curable composition") contains compound A having group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and group B which is at least one group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond, and a filler.
 本発明の硬化性組成物によれば、吸水性が低い硬化物が得られる。
 上記効果が得られるメカニズムは不明であるが、下記のように推測される。
 本発明の硬化性組成物は、上記基A及び上記基Bという特定の構造を有する化合物Aを含む。そのため、本発明の硬化性組成物から得られる硬化物にも、フッ素原子を有する構造が含まれる。その結果、得られる硬化物は疎水化され、吸水性が低下すると推測される。
 また、本発明の硬化性組成物から得られる硬化物は、上記のように硬化物にフッ素原子を有する構造が含まれることにより、硬化物の熱分解温度が高くなり、耐熱性にも優れやすいと考えられる。そのため、本発明の硬化性組成物は、車載用、産業用等の分野におけるパワー半導体(高い電圧、大きな電流を扱うことができる半導体)等の大きな熱を発生する半導体の封止材として用いることも好ましいと考えられる。
 更に、化合物Aが基Bを2以上有する場合、化合物Aによる架橋構造が形成されるため、吸水性がさらに低下し、得られる硬化物の基材との密着性にも優れると考えられる。
 加えて、反応性基が例えば保護されたカルボキシ基等、保護された構造である場合、組成物の保存安定性にも優れると考えられる。
According to the curable composition of the present invention, a cured product having low water absorbency can be obtained.
The mechanism by which the above effects are obtained is unclear, but is speculated to be as follows.
The curable composition of the present invention contains a compound A having a specific structure of the group A and the group B. Therefore, the cured product obtained from the curable composition of the present invention also contains a structure having a fluorine atom. As a result, it is presumed that the obtained cured product is hydrophobized and has a reduced water absorption property.
In addition, the cured product obtained from the curable composition of the present invention is considered to have a high thermal decomposition temperature and excellent heat resistance due to the inclusion of a structure having fluorine atoms in the cured product as described above. Therefore, it is considered that the curable composition of the present invention is also preferably used as an encapsulant for semiconductors that generate a large amount of heat, such as power semiconductors (semiconductors that can handle high voltages and large currents) in the fields of automotive and industrial use.
Furthermore, when compound A has two or more groups B, a crosslinked structure is formed by compound A, which is believed to further reduce water absorption and provide excellent adhesion of the resulting cured product to a substrate.
In addition, when the reactive group has a protected structure, such as a protected carboxy group, the composition is believed to have excellent storage stability.
 ここで、特許文献1及び2には、化合物Aを含む組成物については記載されていない。 Here, Patent Documents 1 and 2 do not describe compositions containing compound A.
 以下、本発明の硬化性組成物に含まれる成分について詳細に説明する。 The components contained in the curable composition of the present invention are described in detail below.
<化合物A>
 化合物Aは、少なくとも1つの水素原子がフッ素原子により置換された炭化水素基である基A、並びに、保護されていてもよい求核性官能基、求電子性官能基、アルコキシシリル基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基である基Bを有する。
<Compound A>
Compound A has group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and group B which is at least one type of group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond.
〔基A〕
 基Aは、少なくとも1つの水素原子がフッ素原子により置換された炭化水素基である。
 化合物Aは、基Aに該当する基を1つのみ有してもよいし、2以上有してもよい。
 炭化水素基としては、脂肪族炭化水素基であってもよいし、芳香族炭化水素基であってもよいが、脂肪族炭化水素基であることが好ましく、飽和脂肪族炭化水素基であることがより好ましい。
 脂肪族炭化水素基(好ましくは飽和脂肪族炭化水素基)の炭素数は、1~30であることが好ましく、2~20であることがより好ましく、4~10であることが更に好ましい。
 上記芳香族炭化水素基の炭素数は、6~30であることが好ましく、6~20であることがより好ましく、6~10であることが更に好ましい。
[Group A]
The group A is a hydrocarbon group in which at least one hydrogen atom has been replaced by a fluorine atom.
Compound A may have only one group corresponding to group A, or may have two or more groups corresponding to group A.
The hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, but is preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group.
The aliphatic hydrocarbon group (preferably a saturated aliphatic hydrocarbon group) preferably has 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and even more preferably 4 to 10 carbon atoms.
The aromatic hydrocarbon group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 10 carbon atoms.
 基Aは、少なくとも1つの水素原子がフッ素原子により置換された1~10価の炭化水素基であることが好ましく、少なくとも1つの水素原子がフッ素原子により置換された2~6価の炭化水素基であることがより好ましく、少なくとも1つの水素原子がフッ素原子により置換された2~4価の炭化水素基であることが更に好ましい。また、基Aは2価の炭化水素基であることも好ましい。 The group A is preferably a monovalent to decavalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom, more preferably a divalent to hexavalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom, and even more preferably a divalent to tetravalent hydrocarbon group in which at least one hydrogen atom is replaced by a fluorine atom. It is also preferable that the group A is a divalent hydrocarbon group.
 また、基Aは、炭化水素基における水素原子の少なくとも1つがフッ素原子により置換されていればよいが、水素原子の50%以上がフッ素原子により置換されていることが好ましく、水素原子の70%以上がフッ素原子により置換されていることがより好ましく、水素原子の90%以上がフッ素原子により置換されていることが更に好ましい。
 また、基Aが、炭化水素基における水素原子の全てがフッ素原子に置換された基である態様も、本発明の好ましい態様の一つである。
In addition, the group A may be such that at least one hydrogen atom in the hydrocarbon group is substituted with a fluorine atom, but it is preferable that 50% or more of the hydrogen atoms are substituted with fluorine atoms, more preferably 70% or more of the hydrogen atoms are substituted with fluorine atoms, and even more preferably 90% or more of the hydrogen atoms are substituted with fluorine atoms.
Another preferred embodiment of the present invention is one in which the group A is a hydrocarbon group in which all of the hydrogen atoms have been substituted with fluorine atoms.
 基Aは下記式(A-1)で表される基であることも好ましい。

 式(A-1)中、RA1はそれぞれ独立に、水素原子、フッ素原子、又は、基B及びフッ素原子のいずれにも該当しない置換基を表し、RA2はそれぞれ独立に、水素原子、フッ素原子、又は、基B及びフッ素原子のいずれにも該当しない置換基を表し、xは1~10の整数であり、x個のRA1及びx個のRA2の少なくとも1つはフッ素原子であり、*は他の構造との結合部位を表す。
It is also preferable that the group A is a group represented by the following formula (A-1).

In formula (A-1), R A1 each independently represents a hydrogen atom, a fluorine atom, or a substituent which does not correspond to any of group B or a fluorine atom, R A2 each independently represents a hydrogen atom, a fluorine atom, or a substituent which does not correspond to any of group B or a fluorine atom, x is an integer from 1 to 10, at least one of the x R A1s and the x R A2s is a fluorine atom, and * represents a bonding site to another structure.
 式(A-1)中、RA1はフッ素原子であることが好ましい。
 RA1が基B及びフッ素原子のいずれにも該当しない置換基である場合、RA1としては、アルキル基、アリール基、アルコキシ基、アリーロキシ基、アルキルオキシカルボニル基、アリールカルボニルオキシ基等が挙げられる。
In formula (A-1), R A1 is preferably a fluorine atom.
When R A1 is a substituent which does not correspond to either Group B or a fluorine atom, examples of R A1 include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkyloxycarbonyl group, and an arylcarbonyloxy group.
 式(A-1)中、RA2の好ましい態様は、上述のRA1の好ましい態様と同様である。 In formula (A-1), preferred embodiments of R A2 are the same as the preferred embodiments of R A1 described above.
 式(A-1)中、xは2~8の整数であることが好ましく、4~6の整数であることがより好ましい。 In formula (A-1), x is preferably an integer from 2 to 8, and more preferably an integer from 4 to 6.
 式(A-1)中、x個のRA1及びx個のRA2のうち、50%以上がフッ素原子であることが好ましく、70%以上がフッ素原子であることがより好ましく、90%以上がフッ素原子であることが更に好ましい。また、x個のRA1及びx個のRA2の全てがフッ素原子である態様も、本発明の好ましい態様の一つである。 In formula (A-1), of the x R A1s and the x R A2s , preferably 50% or more are fluorine atoms, more preferably 70% or more are fluorine atoms, and even more preferably 90% or more are fluorine atoms. An embodiment in which all of the x R A1s and x R A2s are fluorine atoms is also one of the preferred embodiments of the present invention.
 式(A-1)中、*は他の構造との結合部位を表し、基Bとの結合部位であることが好ましい。 In formula (A-1), * represents a bonding site with another structure, and is preferably a bonding site with group B.
 基Aは下記式(A-2)で表される基であることも好ましい。

 式(A-2)中、Arは芳香族炭化水素環から全ての水素原子を除いた構造を表し、RA3は水素原子、フッ素原子、又は、基B及びフッ素原子のいずれにも該当しない置換基を表し、n1は1以上、かつ、Arから除いた水素原子数以下の整数を表し、n1個のRA3のうち少なくとも1つはフッ素原子であり、*は他の構造との結合部位を表し、n2は1以上、かつ、Arから除いた水素原子数以下の整数を表し、n1とn2の合計はArから除かれた水素原子数と同一である。
It is also preferable that the group A is a group represented by the following formula (A-2).

In formula (A-2), Ar represents a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring ; R represents a hydrogen atom, a fluorine atom, or a substituent that does not correspond to either group B or a fluorine atom; n1 represents an integer of 1 or more and not more than the number of hydrogen atoms removed from Ar , at least one of the n1 R is a fluorine atom; * represents a bonding site with another structure; n2 represents an integer of 1 or more and not more than the number of hydrogen atoms removed from Ar, and the sum of n1 and n2 is the same as the number of hydrogen atoms removed from Ar.
 式(A-2)中、Arは炭素数6~20の芳香族炭化水素環から全ての水素原子を除いた構造であることが好ましく、炭素数6~10の芳香族炭化水素環から全ての水素原子を除いた構造であることがより好ましく、ベンゼン環から全ての水素原子を除いた構造であることが更に好ましい。
 式(A-2)は、芳香族炭化水素環の全ての水素原子が、RA3により置換されているか、RA3である水素原子であるか、又は、*で表される他の構造との結合部位のいずれかであることを示している。
In formula (A-2), Ar preferably has a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring having 6 to 20 carbon atoms, more preferably has a structure in which all hydrogen atoms have been removed from an aromatic hydrocarbon ring having 6 to 10 carbon atoms, and even more preferably has a structure in which all hydrogen atoms have been removed from a benzene ring.
Formula (A-2) indicates that all hydrogen atoms in the aromatic hydrocarbon ring are either replaced by R , are hydrogen atoms which are R , or are bonding sites to another structure represented by *.
 式(A-2)中、RA3の好ましい態様は、上述の式(A-1)におけるRA1の好ましい態様と同様である。
 式(A-2)中、n1個のRA3のうち、50%以上がフッ素原子であることが好ましく、70%以上がフッ素原子であることがより好ましく、90%以上がフッ素原子であることが更に好ましい。また、n1個のRA3の全てがフッ素原子である態様も、本発明の好ましい態様の一つである。
In formula (A-2), preferred embodiments of R A3 are the same as the preferred embodiments of R A1 in formula (A-1) described above.
In formula (A-2), of the n1 R A3 , preferably 50% or more are fluorine atoms, more preferably 70% or more are fluorine atoms, and even more preferably 90% or more are fluorine atoms. An embodiment in which all of the n1 R A3 are fluorine atoms is also one of the preferred embodiments of the present invention.
 式(A-2)中、*は他の構造との結合部位を表し、基Bとの結合部位であることが好ましい。 In formula (A-2), * represents a bonding site with another structure, and is preferably a bonding site with group B.
 式(A-2)中、n2は1~5であることが好ましく、2~4であることがより好ましく、2であることが更に好ましい。
 式(A-2)中、n1とn2の合計はArから除かれた水素原子数と同一である。
 例えば、Arがベンゼン環から全ての水素原子を除いた構造である場合、Arから除かれた水素原子数は6であり、n1が4である場合n2は2である。
 例えば、Arがベンゼン環から全ての水素原子を除いた構造である場合、n1は1~5であることが好ましく、2~4であることがより好ましく、4であることが更に好ましい。
In formula (A-2), n2 is preferably 1 to 5, more preferably 2 to 4, and even more preferably 2.
In formula (A-2), the sum of n1 and n2 is the same as the number of hydrogen atoms removed from Ar.
For example, when Ar has a structure in which all hydrogen atoms have been removed from a benzene ring, the number of hydrogen atoms removed from Ar is 6, and when n1 is 4, n2 is 2.
For example, when Ar has a structure in which all hydrogen atoms have been removed from a benzene ring, n1 is preferably 1 to 5, more preferably 2 to 4, and even more preferably 4.
〔基B〕
 基Bは、保護されていてもよい求核性官能基、求電子性官能基、アルコキシシリル基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基である。
 これらの中でも、化合物Aは、硬化物の低誘電率化の観点からは、求核性官能基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基を有することが好ましく、エチレン性不飽和結合を有する基を有することがより好ましい。
 また、得られる硬化物の引張弾性率の増大の観点からは、求核性官能基、及び、求電子性官能基よりなる群から選ばれた少なくとも1種の基を有することが好ましい。
[Group B]
Group B is at least one group selected from the group consisting of optionally protected nucleophilic functional groups, electrophilic functional groups, alkoxysilyl groups, and groups having an ethylenically unsaturated bond.
Among these, from the viewpoint of reducing the dielectric constant of the cured product, compound A preferably has at least one group selected from the group consisting of a nucleophilic functional group and a group having an ethylenically unsaturated bond, and more preferably has a group having an ethylenically unsaturated bond.
From the viewpoint of increasing the tensile modulus of elasticity of the resulting cured product, it is preferable for the copolymer to have at least one group selected from the group consisting of a nucleophilic functional group and an electrophilic functional group.
 化合物Aは基Bを2以上有することも好ましい。化合物Aにおける基Bの数は、2~10であることが好ましく、2~4であることがより好ましく、2であることが更に好ましい。 It is also preferred that compound A has two or more groups B. The number of groups B in compound A is preferably 2 to 10, more preferably 2 to 4, and even more preferably 2.
-求核性官能基-
 求核性官能基とは、電子密度が低い原子と反応して結合を形成する基をいい、求核置換反応を行う基が好ましい。
 化合物Aは、求核性官能基として、ヒドロキシ基、メルカプト基、アミノ基、及び、カルボキシ基、及び、これらの基が保護された基よりなる群から選ばれた少なくとも1種の基を含むことが好ましく、ヒドロキシ基、カルボキシ基、及び、これらの基が保護された基よりなる群から選ばれた少なくとも1種の基を含むことがより好ましく、カルボキシ基が保護された基よりなる群から選ばれた少なくとも1種の基を含むことが更に好ましい。
-Nucleophilic functional group-
The nucleophilic functional group refers to a group that reacts with an atom having low electron density to form a bond, and is preferably a group that undergoes a nucleophilic substitution reaction.
Compound A preferably contains, as a nucleophilic functional group, at least one group selected from the group consisting of a hydroxy group, a mercapto group, an amino group, a carboxy group, and groups obtained by protecting these groups, more preferably contains at least one group selected from the group consisting of a hydroxy group, a carboxy group, and groups obtained by protecting these groups, and even more preferably contains at least one group selected from the group consisting of groups obtained by protecting a carboxy group.
 上記保護された基における保護基としては特に限定されないが、室温において脱離しない保護基であることが好ましい。また、保存安定性の観点からは、120℃以上の熱で脱保護される基であることが好ましく、140℃以上の熱で脱保護される基であることがより好ましい。 The protecting group in the above-mentioned protected group is not particularly limited, but is preferably a protecting group that does not leave at room temperature. From the viewpoint of storage stability, it is preferable that the protecting group is a group that is deprotected by heat of 120°C or higher, and more preferably a group that is deprotected by heat of 140°C or higher.
 化合物Aは、上記基Bとして、下記式(1)で表される基を含むことが好ましい。下記式(1)で表される基は、保護されたカルボキシ基であることが好ましい。下記式(1)で表される基は、熱により分解してカルボキシ基を生じる基であることが好ましい。

式(1)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
Compound A preferably contains a group represented by the following formula (1) as the group B. The group represented by the following formula (1) is preferably a protected carboxy group. The group represented by the following formula (1) is preferably a group that decomposes by heat to generate a carboxy group.

In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to other structures.
 式(1)中、R、R及びRはそれぞれ独立に、1価の有機基であることが好ましく、アルキル基であることがより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基であることが更に好ましい。
 式(1)中、*が上述の基Aとの結合部位であることも、本発明の好ましい態様の1つである。
In formula (1), R 1 , R 2 and R 3 are each independently preferably a monovalent organic group, more preferably an alkyl group, even more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
In one preferred embodiment of the present invention, * in formula (1) is the bonding site with the above-mentioned group A.
 化合物Aは、上記基Bとして、下記式(2)で表される基を含むことが好ましい。下記式(2)で表される基は、保護されたカルボキシ基であることが好ましい。下記式(2)で表される基は、熱により分解してカルボキシ基を生じる基であることが好ましい。

式(2)中、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
Compound A preferably contains a group represented by the following formula (2) as the group B. The group represented by the following formula (2) is preferably a protected carboxy group. The group represented by the following formula (2) is preferably a group that decomposes by heat to generate a carboxy group.

In formula (2), R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
 式(2)中、Rは1価の有機基であることが好ましく、アルキル基であることがより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基であることが更に好ましい。
 式(2)中、Rは1価の有機基であることが好ましく、アルキル基であることがより好ましく、炭素数1~4のアルキル基であることが更に好ましい。
 また、R及びRは結合して環構造を形成してもよい。
 式(2)中、*が上述の基Aとの結合部位であることも、本発明の好ましい態様の1つである。
In formula (2), R 4 is preferably a monovalent organic group, more preferably an alkyl group, even more preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
In formula (2), R 5 is preferably a monovalent organic group, more preferably an alkyl group, and even more preferably an alkyl group having 1 to 4 carbon atoms.
In addition, R4 and R5 may be bonded to form a ring structure.
In one preferred embodiment of the present invention, * in formula (2) is the bonding site with the above-mentioned group A.
 化合物Aにおける求核性官能基の数は、特に限定されないが、1~10であることが好ましく、2~6であることがより好ましく、2~4であることが更に好ましい。また、化合物Aにおける求核性官能基の数が2である態様も、本発明の好ましい態様の1つである。
 化合物Aにおける求核性官能基の含有量は、特に限定されないが、0.001~3000mmol/gであることが好ましく、0.01~2000mmol/gであることがより好ましく、0.1~1000mmol/gであることが更に好ましい。
The number of nucleophilic functional groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of nucleophilic functional groups in compound A is 2 is also one of the preferred embodiments of the present invention.
The content of the nucleophilic functional group in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
-求電子性官能基-
 求電子性官能基とは、電子密度が高い原子と反応して結合を形成する基をいい、求電子置換反応を行う基が好ましい。
 化合物Aは、求電子性官能基として、エポキシ基、オキセタニル基、マレイミド基、及び、オキサゾリン基よりなる群から選ばれた少なくとも1種の基を含むことが好ましく、エポキシ基及びマレイミド基よりなる群から選ばれた少なくとも1種の基を含むことがより好ましい。
 また、マレイミド基は後述するエチレン性不飽和結合を有する基にも該当する基である。マレイミド基は組成物に含まれる他の成分、組成物から形成される膜等の硬化条件等によって、例えば求電子性官能基として働く場合もあれば、例えばラジカル重合性基として働く場合もある。
-Electrophilic functional group-
The electrophilic functional group refers to a group that reacts with an atom having high electron density to form a bond, and is preferably a group that undergoes an electrophilic substitution reaction.
Compound A preferably contains, as the electrophilic functional group, at least one type of group selected from the group consisting of an epoxy group, an oxetanyl group, a maleimide group, and an oxazoline group, and more preferably contains at least one type of group selected from the group consisting of an epoxy group and a maleimide group.
The maleimide group also corresponds to a group having an ethylenically unsaturated bond, which will be described later. The maleimide group may act, for example, as an electrophilic functional group or may act, for example, as a radically polymerizable group, depending on other components contained in the composition, curing conditions of a film formed from the composition, and the like.
 化合物Aにおける求電子性官能基の数は、特に限定されないが、1~10であることが好ましく、2~6であることがより好ましく、2~4であることが更に好ましい。また、化合物Aにおける求電子性官能基の数が2である態様も、本発明の好ましい態様の1つである。
 化合物Aにおける求電子性官能基の含有量は、特に限定されないが、0.001~3000mmol/gであることが好ましく、0.01~2000mmol/gであることがより好ましく、0.1~1000mmol/gであることが更に好ましい。
The number of electrophilic functional groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of electrophilic functional groups in compound A is 2 is also one of the preferred embodiments of the present invention.
The content of the electrophilic functional group in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
-アルコキシシリル基-
 アルコキシシリル基としては、トリアルコキシシリル基、又は、ジアルコキシシリル基が好ましく、トリアルコキシシリル基がより好ましい。
 アルコキシシリル基としては、下記の式(S)で表される基が好ましい。
 *-Si(R3-n(ORn   式(S)
 式(S)中、Rは炭素数1~20の炭化水素基であり、Rは炭素数1~4のアルキル基又はフェニル基であり、nは1~3の整数であり、*は他の構造との結合部位を表す。
 式(S)中、Rはアルキル基であることが好ましく、炭素数1~4のアルキル基であることがより好ましく、メチル基であることが更に好ましい。
 式(S)中、Rは炭素数1~4のアルキル基であることが好ましく、メチル基がより好ましい。
 式(S)中、nは2又は3であることが好ましく、3であることがより好ましい。
 式(S)中、*は基Aとの結合部位であることが好ましい。
-Alkoxysilyl group-
The alkoxysilyl group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
The alkoxysilyl group is preferably a group represented by the following formula (S).
*-Si(R 1 ) 3-n (OR 2 ) n formula (S)
In formula (S), R 1 is a hydrocarbon group having 1 to 20 carbon atoms, R 2 is an alkyl group having 1 to 4 carbon atoms or a phenyl group, n is an integer of 1 to 3, and * represents a bonding site to another structure.
In formula (S), R 1 is preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
In formula (S), R2 is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group.
In formula (S), n is preferably 2 or 3, and more preferably 3.
In formula (S), * is preferably a bonding site with group A.
 化合物Aにおけるアルコキシシリル基の数は、特に限定されないが、1~10であることが好ましく、2~6であることがより好ましく、2~4であることが更に好ましい。また、化合物Aにおけるアルコキシシリル基の数が2である態様も、本発明の好ましい態様の1つである。
 化合物Aにおけるアルコキシシリル基の含有量は、特に限定されないが、0.001~3000mmol/gであることが好ましく、0.01~2000mmol/gであることがより好ましく、0.1~1000mmol/gであることが更に好ましい。
The number of alkoxysilyl groups in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of alkoxysilyl groups in compound A is 2 is also one of the preferred embodiments of the present invention.
The content of alkoxysilyl groups in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
-エチレン性不飽和結合を有する基-
 エチレン性不飽和結合を有する基としては、ラジカル重合性基が好ましく、ビニル基、アリル基、イソアリル基、2-メチルアリル基、マレイミド基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基等が挙げられ、ビニル基と直接結合した芳香環を有する基、(メタ)アクリルアミド基、又は、(メタ)アクリロイルオキシ基が好ましく、(メタ)アクリロイルオキシ基が更に好ましい。
--Group having an ethylenically unsaturated bond--
The group having an ethylenically unsaturated bond is preferably a radically polymerizable group, such as a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a maleimide group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), a (meth)acrylamide group, or a (meth)acryloyloxy group, of which a group having an aromatic ring directly bonded to a vinyl group, a (meth)acrylamide group, or a (meth)acryloyloxy group is preferred, and a (meth)acryloyloxy group is more preferred.
 化合物Aにおけるエチレン性不飽和結合を有する基の数は、特に限定されないが、1~10であることが好ましく、2~6であることがより好ましく、2~4であることが更に好ましい。また、化合物Aにおけるエチレン性不飽和結合を有する基の数が2である態様も、本発明の好ましい態様の1つである。
 化合物Aにおけるエチレン性不飽和結合を有する基の含有量は、特に限定されないが、0.001~3000mmol/gであることが好ましく、0.01~2000mmol/gであることがより好ましく、0.1~1000mmol/gであることが更に好ましい。
The number of groups having an ethylenically unsaturated bond in compound A is not particularly limited, but is preferably 1 to 10, more preferably 2 to 6, and even more preferably 2 to 4. An embodiment in which the number of groups having an ethylenically unsaturated bond in compound A is 2 is also one of the preferred embodiments of the present invention.
The content of the group having an ethylenically unsaturated bond in compound A is not particularly limited, but is preferably 0.001 to 3000 mmol/g, more preferably 0.01 to 2000 mmol/g, and even more preferably 0.1 to 1000 mmol/g.
 化合物Aは、下記式(3)で表される基を含むことも好ましい。

式(3)中、xは1~10の整数を示す。
It is also preferable that compound A contains a group represented by the following formula (3).

In formula (3), x represents an integer of 1 to 10.
 式(3)で表される基は、上述の基Aを含む基である。
 式(3)中、xは2~10の整数であることが好ましく、2~8の整数であることがより好ましく、4~8の整数であることが更に好ましい。
 式(3)中、*は酸素原子との結合部位であることが好ましい。
The group represented by formula (3) is a group containing the group A described above.
In formula (3), x is preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and even more preferably an integer of 4 to 8.
In formula (3), * is preferably a bonding site with an oxygen atom.
 化合物Aは、下記式(4)で表される化合物であることも好ましい。

 式(4)中、R41及びR42はそれぞれ独立に、水素原子又は下記式(R-1)~(R-3)のいずれかで表される基を表し、xは1~10の整数を示す。

 式(R-1)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は式(4)中の酸素原子との結合部位を表す。
 式(R-2)中、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は式(4)中の酸素原子との結合部位を表す。
 式(R-3)中、LR1はn+1価の連結基を表し、RR1は基Bに該当する基を表し、nは1以上の整数であり、*は式(4)中の酸素原子との結合部位を表す。
It is also preferable that compound A is a compound represented by the following formula (4).

In formula (4), R 41 and R 42 each independently represent a hydrogen atom or a group represented by any one of the following formulae (R-1) to (R-3), and x represents an integer of 1 to 10.

In formula (R-1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site with the oxygen atom in formula (4).
In formula (R-2), R 4 and R 5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site with the oxygen atom in formula (4).
In formula (R-3), L R1 represents an (n+1)-valent linking group, R R1 represents a group corresponding to group B, n is an integer of 1 or more, and * represents a bonding site with the oxygen atom in formula (4).
 式(4)中、R41及びR42はそれぞれ独立に、水素原子又は式(R-1)及び(R-2)のいずれかで表される基であることが好ましく、式(R-1)又は(R-2)で表される基であることが好ましい。
 式(4)中、xの好ましい態様は、式(3)の好ましい態様と同様である。
In formula (4), R 41 and R 42 are each preferably independently a hydrogen atom or a group represented by any one of formulas (R-1) and (R-2), and more preferably a group represented by formula (R-1) or (R-2).
In the formula (4), the preferred embodiments of x are the same as those in the formula (3).
 式(R-1)中、R、R及びRの好ましい態様は、上述の式(1)におけるR、R及びRの好ましい態様と同様である。
 式(R-2)中、R及びRの好ましい態様は、上述の式(1)におけるR、R及びRの好ましい態様と同様である。
 式(R-3)中、LR1は炭化水素基であることが好ましく、脂肪族炭化水素基であることがより好ましく、脂肪族飽和炭化水素基であることがより好ましい。LR1の炭素数は、1~20であることが好ましく、2~10であることが好ましく、2~8であることが更に好ましい。
 式(R-3)中、RR1は求電子性官能基、又は、エチレン性不飽和結合を有する基であることが好ましく、エポキシ基又は(メタ)アクリロイルオキシ基であることがより好ましい。
 式(R-3)中、nは1~10の整数であることが好ましく、1~4の整数であることがより好ましく、1又は2であることが更に好ましい。
In formula (R-1), preferred embodiments of R 1 , R 2 and R 3 are the same as the preferred embodiments of R 1 , R 2 and R 3 in formula (1) above.
In formula (R-2), preferred embodiments of R 4 and R 5 are the same as the preferred embodiments of R 1 , R 2 and R 3 in formula (1) above.
In formula (R-3), L R1 is preferably a hydrocarbon group, more preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group. The number of carbon atoms in L R1 is preferably 1 to 20, more preferably 2 to 10, and even more preferably 2 to 8.
In formula (R-3), R 1 is preferably an electrophilic functional group or a group having an ethylenically unsaturated bond, and more preferably an epoxy group or a (meth)acryloyloxy group.
In formula (R-3), n is preferably an integer of 1 to 10, more preferably an integer of 1 to 4, and further preferably 1 or 2.
 また、化合物Aは、基A及び基Bのみからなる化合物であることも好ましい。 It is also preferable that compound A is a compound consisting only of group A and group B.
 化合物Aの分子量は、100以上2000未満であることが好ましく、200~1000であることがより好ましく、300~800であることが更に好ましい。 The molecular weight of compound A is preferably 100 or more and less than 2000, more preferably 200 to 1000, and even more preferably 300 to 800.
 化合物Aにおけるフッ素原子の含有量は、5~50mmol/gであることが好ましく、10~40mmol/gであることがより好ましく、15~35mmol/gであることが更に好ましい。 The fluorine atom content in compound A is preferably 5 to 50 mmol/g, more preferably 10 to 40 mmol/g, and even more preferably 15 to 35 mmol/g.
 化合物AのClogP値は、2~15であることが好ましい。 The ClogP value of compound A is preferably 2 to 15.
 本明細書において化合物のClogP値は下記の定義による。
 オクタノール-水分配係数(logP値)の測定は、一般にJIS日本工業規格Z7260-107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール-水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989))、Broto’s fragmentation法(Eur.J.Med.Chem.-Chim.Theor.,19,71(1984))などを用いることが知られている。本発明では、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))を用いる。
 ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値の計算に用いる方法やソフトウェアについては公知の物を用いることができるが、特に断らない限り、本発明ではDaylight Chemical Information Systems社のシステム:PCModelsに組み込まれたClogPプログラムを用いることとする。
In the present specification, the ClogP value of a compound is defined as follows.
The octanol-water partition coefficient (log P value) can generally be measured by the flask shaking method described in JIS Z7260-107 (2000). The octanol-water partition coefficient (log P value) can also be estimated by a computational chemistry method or an empirical method instead of an actual measurement. As a calculation method, it is known to use Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163 (1989)), Broto's fragmentation method (Eur. J. Med. Chem.-Chim. Theor., 19, 71 (1984)), etc. In the present invention, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) is used.
The ClogP value is a value obtained by calculating the common logarithm logP of the partition coefficient P between 1-octanol and water. Known methods and software can be used for calculating the ClogP value, but unless otherwise specified, the present invention uses the ClogP program incorporated in the PCModels system of Daylight Chemical Information Systems.
 化合物Aの合成方法としては、後述の実施例に記載の方法が挙げられる。
 また、構造が同一であれば、他の方法により合成してもよく、合成方法は特に限定されない。
The compound A can be synthesized by the method described in the Examples below.
In addition, as long as the structure is the same, the compound may be synthesized by other methods, and the synthesis method is not particularly limited.
〔具体例〕
 化合物Aの具体例としては、特に限定されないが、実施例で使用されたL-1~L-10が挙げられる。
〔Concrete example〕
Specific examples of compound A include, but are not limited to, L-1 to L-10 used in the examples.
〔含有量〕
 本発明の硬化性組成物の全固形分に対する、化合物Aの含有量は、0.5~20質量%であることが好ましい。下限は1.0質量%以上がより好ましく、2.0質量%以上が更に好ましい。上限は、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 化合物Aは1種を単独で用いてもよいが、2種以上を併用してもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
〔Content〕
The content of compound A relative to the total solid content of the curable composition of the present invention is preferably 0.5 to 20 mass %. The lower limit is more preferably 1.0 mass % or more, and even more preferably 2.0 mass % or more. The upper limit is more preferably 15 mass % or less, and even more preferably 10 mass % or less.
Compound A may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
<フィラー>
 本発明の硬化性組成物はフィラーを含む。
 フィラーとしては、無機粒子が好ましい。
 無機粒子としては、シリカ、アルミナ、酸化アルミニウム、窒化アルミニウム、チタニア、ジルコニア、ガラス繊維、タルク、石綿、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、モンモリロナイト、珪藻土、酸化マグネシウム、酸化チタン、窒化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化ホウ素、中空シリカ、炭化ケイ素、ダイヤモンド、プラズマ溶射で表面改質(ZrO、Al、その他の酸化物)した炭化ケイ素等が挙げられる。
 これらの中でも、本発明の硬化性組成物は、シリカ、アルミナ、酸化アルミニウム、窒化アルミニウム、チタニア、ジルコニア、及び、ガラス繊維からなる群より選ばれた少なくとも1種を含むことが好ましく、シリカ、アルミナ、及び、チタニアからなる群より選ばれた少なくとも1種を含むことがより好ましい。
<Filler>
The curable composition of the present invention includes a filler.
As the filler, inorganic particles are preferred.
Examples of inorganic particles include silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, glass fiber, talc, asbestos, smectite, bentonite, calcium carbonate, magnesium carbonate, montmorillonite, diatomaceous earth, magnesium oxide, titanium oxide, titanium nitride, magnesium hydroxide, aluminum hydroxide, glass beads, barium sulfate, gypsum, calcium silicate, sericite activated clay, boron nitride, hollow silica, silicon carbide, diamond, and silicon carbide surface-modified by plasma spraying ( ZrO2 , Al2O3 , other oxides).
Among these, the curable composition of the present invention preferably contains at least one selected from the group consisting of silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, and glass fiber, and more preferably contains at least one selected from the group consisting of silica, alumina, and titania.
 フィラーの体積平均粒径は、特に限定されないが、微細パターンを形成する等の観点からは、200μm以下が好ましく、100μm以下がより好ましく、50μm以下が更に好ましい。上記体積平均粒径の下限は、特に限定されないが、0.1μm以上であることが好ましい。
 上記体積平均粒径は、特に限定されないが、例えば、公知のナノトラック粒度分析計等を用いて、動的光散乱により測定することができる。
The volume average particle size of the filler is not particularly limited, but is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 50 μm or less, from the viewpoint of forming a fine pattern, etc. The lower limit of the volume average particle size is not particularly limited, but is preferably 0.1 μm or more.
The volume average particle size is not particularly limited, but can be measured, for example, by dynamic light scattering using a known Nanotrack particle size analyzer or the like.
 フィラーの形状は、特に限定されないが、略球状であることが好ましい。また、フィラーは、中空状であっても中実状であってもよい。 The shape of the filler is not particularly limited, but it is preferable that the filler be approximately spherical. The filler may also be hollow or solid.
 本発明の硬化性組成物におけるフィラーの含有量は、硬化性組成物の全固形分に対し、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。
 上記含有量の上限は特に限定されないが、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることが更に好ましい。
 本発明の硬化性組成物は、フィラーを1種のみ含んでもよいし、2種以上含んでもよい。2種以上含む場合、それらの合計量が上述の範囲内となることが好ましい。
The content of the filler in the curable composition of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on the total solid content of the curable composition.
The upper limit of the content is not particularly limited, but is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less.
The curable composition of the present invention may contain only one type of filler, or may contain two or more types. When two or more types are contained, the total amount thereof is preferably within the above-mentioned range.
<樹脂>
 本発明の硬化性組成物は、樹脂を含むことが好ましい。
 樹脂としては、エポキシ樹脂、マレイミド樹脂等が挙げられる。
 本発明の硬化性組成物に含まれる樹脂は、熱硬化性樹脂であることが好ましい。
<Resin>
The curable composition of the present invention preferably contains a resin.
Examples of the resin include epoxy resin and maleimide resin.
The resin contained in the curable composition of the present invention is preferably a thermosetting resin.
〔エポキシ樹脂〕
 エポキシ樹脂は、1分子内にエポキシ基を1個以上、好ましくは2個以上有する化合物であり、その分子量、分子構造は限定されない。
 エポキシ樹脂は、モノマー、オリゴマー、ポリマーのいずれであってもよい。
 エポキシ樹脂は、ナフチレンエーテル型エポキシ樹脂であることが好ましい。
 エポキシ樹脂の具体例として、下記一般式(NE)で表されるものが挙げられる。
 本明細書において、環構造の辺と交差する結合は、その環構造における水素原子のうちいずれか1つを置換することを意味している。

 上記式(NE)中、Rは、それぞれ独立に、水素原子またはメチル基を示し、ArおよびArは、それぞれ独立に、芳香族炭化水素基基を示し、m及びnは、それぞれ独立に、0~4の整数であり、ただし、mとnのいずれか一方は1以上であり、m+n個のRはそれぞれ独立に、水素原子、アラルキル基またはエポキシ基含有芳香族炭化水素基を示す。
〔Epoxy resin〕
The epoxy resin is a compound having one or more, preferably two or more, epoxy groups in one molecule, and there are no limitations on its molecular weight and molecular structure.
The epoxy resin may be any one of a monomer, an oligomer, and a polymer.
The epoxy resin is preferably a naphthylene ether type epoxy resin.
Specific examples of epoxy resins include those represented by the following general formula (NE).
As used herein, a bond that crosses an edge of a ring structure is meant to replace one of the hydrogen atoms in the ring structure.

In the above formula (NE), R 1 each independently represents a hydrogen atom or a methyl group, Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon group, m and n each independently represent an integer of 0 to 4, provided that either m or n is 1 or greater, and m+n R 2s each independently represent a hydrogen atom, an aralkyl group, or an epoxy group-containing aromatic hydrocarbon group.
 式(NE)中、Rは水素原子が好ましい。
 式(NE)中に記載されたナフチレン基における水素原子は、炭素数1~4のアルキル基またはアラルキル基により置換されていてもよい。
 Ar及びArは、それぞれ独立に、フェニレン基又はナフチレン基が好ましい。
 Ar及びArにおける炭化水素基は、それぞれ炭素数1~4のアルキル基またはフェニレン基を置換基として有してもよい。
 m及びnは、いずれも1~4の整数であることが好ましい。
In formula (NE), R 1 is preferably a hydrogen atom.
The hydrogen atom in the naphthylene group described in formula (NE) may be substituted with an alkyl group or an aralkyl group having 1 to 4 carbon atoms.
It is preferable that Ar 1 and Ar 2 each independently represent a phenylene group or a naphthylene group.
The hydrocarbon groups in Ar 1 and Ar 2 may each have an alkyl group having 1 to 4 carbon atoms or a phenylene group as a substituent.
Each of m and n is preferably an integer of 1 to 4.
 上記式(NE)中、Rがアラルキル基である場合、アラルキル基は、下記一般式(A)で表されるアラルキル基とすることができる。
 また、上記式(NE)中、Rがアラルキル基である場合、アラルキル基は、下記式(A)で表されるアラルキル基とすることができる。
In the above formula (NE), when R 2 is an aralkyl group, the aralkyl group can be an aralkyl group represented by the following general formula (A).
In addition, in the above formula (NE), when R 2 is an aralkyl group, the aralkyl group can be an aralkyl group represented by the following formula (A).
 上記式(A)中、R及びRはそれぞれ独立に、水素原子またはメチル基を示し、Arはフェニレン基又はナフチレン基を表し、nは平均値であり、0.1~4であり、*はAr又はArとの結合部位を表す。
 Arにおけるフェニレン基又はナフチレン基の水素原子は置換基により置換されていてもよい。置換基としては、アルキル基等が挙げられる。
In the above formula (A), R3 and R4 each independently represent a hydrogen atom or a methyl group, Ar3 represents a phenylene group or a naphthylene group, n is an average value of 0.1 to 4, and * represents a bonding site with Ar1 or Ar2 .
The hydrogen atom of the phenylene group or naphthylene group in Ar3 may be substituted with a substituent, such as an alkyl group.
 上記式(NE)中、Rがエポキシ基含有芳香族炭化水素基である場合、エポキシ基含有芳香族炭化水素基は、下記一般式(E)で表されるエポキシ基含有芳香族炭化水素基とすることができる。

 上記式(E)中、Rはそれぞれ独立に、水素原子又はメチル基を示し、Arは、ナフチレン基を表し、nは1又は2の整数であり、*はAr又はArとの結合部位を表す。
 Arにおけるナフチレン基の水素原子は置換基により置換されていてもよい。置換基としては、炭素原子数1~4のアルキル基、アラルキル基もしくはフェニレン基等が挙げられる。
In the above formula (NE), when R2 is an epoxy group-containing aromatic hydrocarbon group, the epoxy group-containing aromatic hydrocarbon group can be an epoxy group-containing aromatic hydrocarbon group represented by the following general formula (E).

In the above formula (E), R 5 each independently represents a hydrogen atom or a methyl group, Ar 4 represents a naphthylene group, n is an integer of 1 or 2, and * represents a bonding site with Ar 1 or Ar 2 .
The hydrogen atom of the naphthylene group in Ar4 may be substituted with a substituent such as an alkyl group having 1 to 4 carbon atoms, an aralkyl group, or a phenylene group.
 硬化性組成物中のナフチレンエーテル型エポキシ樹脂の含有量は、封止材料と金属との密着性向上の観点から、硬化性組成物全体に対して、好ましくは3質量%以上であり、より好ましくは5質量%以上、さらに好ましくは7質量%以上である。
 また、線膨張による内部応力の低減の観点から、硬化性組成物中のナフチレンエーテル型エポキシ樹脂の含有量は、硬化性組成物全体に対して、好ましくは30質量%以下であり、より好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下である。
From the viewpoint of improving the adhesion between the sealing material and metal, the content of the naphthylene ether type epoxy resin in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, based on the entire curable composition.
From the viewpoint of reducing internal stress due to linear expansion, the content of the naphthylene ether type epoxy resin in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the entire curable composition.
 また、エポキシ樹脂として、ナフチレンエーテル骨格を有さないエポキシ樹脂が挙げられる。かかるエポキシ樹脂は、たとえば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂からなる群から選択される1種または2種以上である。 Also, the epoxy resin may be an epoxy resin that does not have a naphthylene ether skeleton. Such epoxy resins may be one or more selected from the group consisting of bisphenol-type epoxy resins such as biphenyl-type epoxy resins, bisphenol A-type epoxy resins, bisphenol F-type epoxy resins, and tetramethylbisphenol F-type epoxy resins; stilbene-type epoxy resins; novolac-type epoxy resins such as phenol novolac-type epoxy resins and cresol novolac-type epoxy resins; multifunctional epoxy resins such as triphenol methane-type epoxy resins and alkyl-modified triphenol methane-type epoxy resins; phenol aralkyl-type epoxy resins such as phenol aralkyl-type epoxy resins having a phenylene skeleton and phenol aralkyl-type epoxy resins having a biphenylene skeleton; triazine nucleus-containing epoxy resins such as triglycidyl isocyanurate and monoallyl diglycidyl isocyanurate; and bridged cyclic hydrocarbon compound-modified phenol-type epoxy resins such as dicyclopentadiene-modified phenol-type epoxy resins.
 硬化性組成物中のエポキシ樹脂の総含有量は、硬化性組成物の流動性を向上して成形性を向上させる観点から、硬化性組成物の全固形分に対して、好ましくは3質量%以上であり、より好ましくは5質量%以上、さらに好ましくは7質量%以上である。
 また、硬化物の耐湿信頼性や耐リフロー性、耐温度サイクル性を向上させる観点から、硬化性組成物中のエポキシ樹脂の総含有量は、硬化性組成物の全固形分に対して、好ましくは30質量%以下であり、より好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下である。
From the viewpoint of improving the fluidity and thus the moldability of the curable composition, the total content of the epoxy resins in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, based on the total solid content of the curable composition.
From the viewpoint of improving the moisture resistance reliability, reflow resistance, and temperature cycle resistance of the cured product, the total content of the epoxy resins in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the total solid content of the curable composition.
〔マレイミド樹脂〕
 マレイミド樹脂としては、マレイミド基を2以上有する化合物が挙げられる。
 マレイミド基を2以上有する化合物は、下記式(M-1)~式(M-3)のいずれかで表される化合物が好ましい。

 式(M-1)中、LM1は炭素数30以下の2価の有機基を表す。
 式(M-2)中、RM1はそれぞれ独立に、1価の有機基を表し、LM2はそれぞれ独立に、単結合又は2価の有機基を表し、nは1~10の整数を表し、式中の芳香環構造は置換基を有してもよい。
 式(M-3)中、RM2はそれぞれ独立に、1価の有機基を表し、nは1~10の整数を表し、式中の芳香環構造は置換基を有してもよい。
[Maleimide resin]
The maleimide resin may be a compound having two or more maleimide groups.
The compound having two or more maleimide groups is preferably a compound represented by any one of the following formulas (M-1) to (M-3).

In formula (M-1), L M1 represents a divalent organic group having 30 or less carbon atoms.
In formula (M-2), R M1 each independently represents a monovalent organic group, L M2 each independently represents a single bond or a divalent organic group, n represents an integer of 1 to 10, and the aromatic ring structure in the formula may have a substituent.
In formula (M-3), R 1 M2 each independently represents a monovalent organic group, n represents an integer of 1 to 10, and the aromatic ring structure in the formula may have a substituent.
 式(M-1)中、LM1は炭化水素基、又は、炭化水素基と、-O-、-C(=O)-、-S-、-S(=O)-、及び、-NR-からなる群より選ばれた少なくとも1種の基とが結合した基が好ましい。
 上記炭化水素基としては、炭素数20以下の炭化水素基が好ましく、18以下の炭化水素基がより好ましく、16以下の炭化水素基が更に好ましい。上記炭化水素基としては、飽和脂肪族炭化水素基、芳香族炭化水素基、又は、これらの結合により表される基などが挙げられる。Rは水素原子又は1価の有機基を表し、水素原子又は炭化水素基であることが好ましく、水素原子又はアルキル基であることがより好ましく、水素原子又はメチル基であることが更に好ましい。
In formula (M-1), L M1 is preferably a hydrocarbon group or a group in which a hydrocarbon group is bonded to at least one group selected from the group consisting of -O-, -C(=O)-, -S-, -S(=O) 2 -, and -NR N -.
The above-mentioned hydrocarbon group is preferably a hydrocarbon group having 20 or less carbon atoms, more preferably a hydrocarbon group having 18 or less carbon atoms, and even more preferably a hydrocarbon group having 16 or less carbon atoms. The above-mentioned hydrocarbon group includes a saturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a group represented by a combination thereof. R N represents a hydrogen atom or a monovalent organic group, and is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group, and even more preferably a hydrogen atom or a methyl group.
 式(M-1)中、LM1は芳香族基を含むことが好ましい。
 例えば、LM1は下記式(LM-1)で表される基であることが好ましい。

 式(LM-1)中、LM3は単結合又は2価の連結基を表し、単結合、炭化水素基、又は、炭化水素基と-O-、及び、-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることがより好ましく、炭化水素基であることがより好ましい。
 LM3が2価の連結基である場合の炭素数は、1~20が好ましく、1~10がより好ましく、1~8が更に好ましい。
In formula (M-1), L M1 preferably contains an aromatic group.
For example, L M1 is preferably a group represented by the following formula (LM-1).

In formula (LM-1), L M3 represents a single bond or a divalent linking group, more preferably a single bond, a hydrocarbon group, or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O- and -NR N -, and more preferably a hydrocarbon group.
When L M3 is a divalent linking group, it preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 8 carbon atoms.
 式(M-1)で表される化合物の具体例としては、以下の化合物が挙げられるが、本発明はこれに限定されるものではない。
Specific examples of the compound represented by formula (M-1) include the following compounds, but the present invention is not limited thereto.
 式(M-2)中、RM1は水素原子又は炭素数1~4の炭化水素基であることが好ましく、水素原子又は炭素数1~4のアルキル基であることがより好ましい。
 式(M-2)中、LM2は単結合、炭化水素基、又は、炭化水素基と-O-、及び、-NR-からなる群より選ばれた少なくとも1種の基との結合により表される基であることがより好ましく、単結合であることがより好ましい。
 式(M-2)に記載されたベンゼン環における水素原子は、炭素数1~5のアルキル基又はフェニル基により置換されていてもよい。
In formula (M-2), R 1 M1 is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In formula (M-2), L M2 is more preferably a single bond, a hydrocarbon group, or a group represented by a bond between a hydrocarbon group and at least one group selected from the group consisting of -O- and -NR N -, and more preferably a single bond.
The hydrogen atom in the benzene ring shown in formula (M-2) may be substituted with an alkyl group having 1 to 5 carbon atoms or a phenyl group.
 式(M-3)中、RM2は水素原子又は炭素数1~4の炭化水素基であることが好ましく、水素原子又は炭素数1~4のアルキル基であることがより好ましい。 In formula (M-3), R 1 M2 is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 硬化性組成物中のマレイミド樹脂の総含有量は、硬化性組成物の流動性を向上して成形性を向上させる観点から、硬化性組成物の全固形分に対して、好ましくは3質量%以上であり、より好ましくは5質量%以上、さらに好ましくは7質量%以上である。
 また、硬化物の耐湿信頼性や耐リフロー性、耐温度サイクル性を向上させる観点から、硬化性組成物中のマレイミド樹脂の総含有量は、硬化性組成物の全固形分に対して、好ましくは30質量%以下であり、より好ましくは25質量%以下、さらに好ましくは20質量%以下、さらにより好ましくは15質量%以下である。
From the viewpoint of improving the fluidity and thus the moldability of the curable composition, the total content of the maleimide resins in the curable composition is preferably 3 mass % or more, more preferably 5 mass % or more, and even more preferably 7 mass % or more, relative to the total solid content of the curable composition.
From the viewpoint of improving the moisture resistance reliability, reflow resistance, and temperature cycle resistance of the cured product, the total content of the maleimide resins in the curable composition is preferably 30 mass % or less, more preferably 25 mass % or less, even more preferably 20 mass % or less, and still more preferably 15 mass % or less, based on the total solid content of the curable composition.
<硬化剤>
 本発明の硬化性組成物は、硬化剤を含むことが好ましい。
 硬化剤としては、フェノール樹脂硬化剤、アミン系硬化剤、酸無水物系硬化剤、メルカプタン系硬化剤等が挙げられる。これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点から、硬化剤は、好ましくはフェノール樹脂硬化剤を含む。また、複数の系統の硬化剤を組み合わせてもよい。
<Curing Agent>
The curable composition of the present invention preferably contains a curing agent.
Examples of the curing agent include a phenol resin curing agent, an amine-based curing agent, an acid anhydride-based curing agent, a mercaptan-based curing agent, etc. Among these, the curing agent preferably includes a phenol resin curing agent in terms of a balance of flame resistance, moisture resistance, electrical properties, curability, storage stability, etc. Also, a combination of multiple types of curing agents may be used.
 フェノール樹脂硬化剤としては、たとえば、フェノールノボラック樹脂、クレゾールノボラック樹脂をはじめとするフェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のフェノール類とホルムアルデヒドやケトン類とを酸性触媒下で縮合または共縮合させて得られるノボラック樹脂、上述のフェノール類とジメトキシパラキシレンまたはビス(メトキシメチル)ビフェニルから合成されるフェニレン骨格を有するフェノールアラルキル樹脂、ビフェニレン骨格を有するフェノールアラルキル樹脂などのフェノールアラルキル樹脂、トリスフェニルメタン骨格を有するフェノール樹脂、フェノール・p-キシレングリコールジメチルエーテル重縮合物からなる群から選択される1種または2種以上が挙げられる。
 硬化性向上の観点から、硬化剤は、フェノールノボラック型フェノール硬化剤、フェノールアラルキル型硬化剤、トリスフェニルメタン型硬化剤およびザイロック型フェノールアラルキル型硬化剤からなる群から選択される1または2以上のフェノール樹脂を含み、より好ましくはフェノールノボラック樹脂を含む。また、硬化剤が、フェノールアラルキル型硬化剤、トリスフェニルメタン型硬化剤およびザイロック型フェノールアラルキル型硬化剤からなる群から選択される1または2以上のフェノール樹脂を含むことも好ましい。
Examples of the phenolic resin curing agent include one or more selected from the group consisting of novolak resins obtained by condensing or co-condensing phenols such as phenol novolak resins and cresol novolak resins with formaldehyde or ketones under an acidic catalyst; phenol aralkyl resins having a phenylene skeleton synthesized from the above-mentioned phenols and dimethoxy-para-xylene or bis(methoxymethyl)biphenyl; phenol aralkyl resins such as phenol aralkyl resins having a biphenylene skeleton; phenol resins having a trisphenylmethane skeleton; and phenol-p-xylene glycol dimethyl ether polycondensates.
From the viewpoint of improving the curing property, the curing agent contains one or more phenol resins selected from the group consisting of phenol novolac type phenol curing agents, phenol aralkyl type curing agents, trisphenylmethane type curing agents, and Zylok type phenol aralkyl type curing agents, and more preferably contains a phenol novolac resin. It is also preferable that the curing agent contains one or more phenol resins selected from the group consisting of phenol aralkyl type curing agents, trisphenylmethane type curing agents, and Zylok type phenol aralkyl type curing agents.
 アミン系硬化剤としては、たとえば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシリレンジアミン(MXDA)などの脂肪族ポリアミン;ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミン;ジシアンジアミド(DICY)や有機酸ジヒドラジドなどのポリアミン化合物からなる群から選択される1種または2種以上が挙げられる。 Amine-based curing agents include, for example, one or more selected from the group consisting of aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA); aromatic polyamines such as diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenylsulfone (DDS); and polyamine compounds such as dicyandiamide (DICY) and organic acid dihydrazides.
 酸無水物系硬化剤としては、たとえば、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)や無水マレイン酸などの脂環族酸無水物;無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)、無水フタル酸などの芳香族酸無水物からなる群から選択される1種または2種以上が挙げられる。 Examples of acid anhydride curing agents include one or more selected from the group consisting of alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), and maleic anhydride; and aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA), and phthalic anhydride.
 メルカプタン系硬化剤としては、たとえば、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)からなる群から選択される1以上の化合物が挙げられる。 Examples of mercaptan-based hardeners include one or more compounds selected from the group consisting of trimethylolpropane tris(3-mercaptobutyrate) and trimethylolethane tris(3-mercaptobutyrate).
 また、その他の硬化剤としては、イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。 Other curing agents include isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; and organic acids such as carboxylic acid-containing polyester resins.
 硬化性組成物中の硬化剤の含有量は、硬化性組成物の成形性および信頼性を向上させる観点から、硬化性組成物の全固形分に対して好ましくは1質量%以上であり、より好ましくは2質量%以上、さらに好ましくは3質量%以上、さらにより好ましくは5質量%以上である。
 同様の観点から、硬化性組成物中の硬化剤の含有量は、硬化性組成物の全固形分に対して好ましくは20質量%以下であり、より好ましくは10質量%以下である。
From the viewpoint of improving the moldability and reliability of the curable composition, the content of the curing agent in the curable composition is preferably 1 mass % or more, more preferably 2 mass % or more, even more preferably 3 mass % or more, and still more preferably 5 mass % or more, based on the total solid content of the curable composition.
From the same viewpoint, the content of the curing agent in the curable composition is preferably 20 mass % or less, and more preferably 10 mass % or less, based on the total solid content of the curable composition.
 ここで、本発明の硬化性組成物は、エポキシ樹脂、フェノール樹脂(フェノール樹脂系硬化剤)、及び、マレイミド樹脂よりなる群から選ばれた少なくとも1種の樹脂を更に含むことがより好ましい。
 また、本発明の硬化物が、エポキシ樹脂と、フェノール樹脂及びマレイミド樹脂よりなる群から選ばれた少なくとも1種の樹脂とを含むことも、好ましい態様の一つである。
Here, it is more preferable that the curable composition of the present invention further contains at least one resin selected from the group consisting of epoxy resins, phenolic resins (phenolic resin-based curing agents), and maleimide resins.
In another preferred embodiment, the cured product of the present invention contains an epoxy resin and at least one resin selected from the group consisting of phenolic resins and maleimide resins.
<硬化促進剤>
 本発明の硬化性組成物は、硬化促進剤を含むことが好ましい。
 硬化促進剤として、たとえばエポキシ樹脂と硬化剤との架橋反応を促進させるものを用いることができる。硬化促進剤の具体例として、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等が例示されるアミジンや3級アミン、上記アミジンやアミンの4級塩等の窒素原子含有化合物から選択される1種類または2種類以上を含むことができる。
 これらの中でも、硬化性を向上させる観点からはリン原子含有化合物を含むことがより好ましい。
 また、成形性と硬化性のバランスを向上させる観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましい。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 また、有機ホスフィンとしては、たとえばエチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 硬化促進剤は、硬化物の強度および靭性をバランス良く向上させる観点から、ホスホニウム化合物とシラン化合物との付加物を含んでもよい。
<Curing accelerator>
The curable composition of the present invention preferably contains a curing accelerator.
As the curing accelerator, for example, one that accelerates the crosslinking reaction between the epoxy resin and the curing agent can be used. Specific examples of the curing accelerator include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds, and nitrogen atom-containing compounds such as amidines and tertiary amines, exemplified by 1,8-diazabicyclo[5.4.0]undecene-7, benzyldimethylamine, and 2-methylimidazole, and quaternary salts of the above amidines and amines.
Among these, it is more preferable to contain a phosphorus atom-containing compound from the viewpoint of improving curability.
From the viewpoint of improving the balance between moldability and curability, it is more preferable to include compounds having latency, such as tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. These compounds may be used alone or in combination of two or more.
Examples of the organic phosphines include primary phosphines such as ethylphosphine and phenylphosphine, secondary phosphines such as dimethylphosphine and diphenylphosphine, and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
The curing accelerator may contain an adduct of a phosphonium compound and a silane compound from the viewpoint of improving the strength and toughness of the cured product in a well-balanced manner.
 硬化性組成物中の硬化促進剤の含有量は、硬化性組成物の硬化性を向上させる観点から、硬化性組成物の全固形分に対して、好ましくは0.1質量%以上であり、より好ましくは0.2質量%以上である。
 また、硬化物の製造安定性を高める観点から、硬化性組成物中の硬化促進剤の含有量は、硬化性組成物の全固形分に対して、好ましくは2質量%以下であり、より好ましくは1.5質量%以下、さらに好ましくは1質量%以下であり、さらにより好ましくは0.4質量%以下である。
From the viewpoint of improving the curability of the curable composition, the content of the curing accelerator in the curable composition is preferably 0.1 mass % or more, and more preferably 0.2 mass % or more, based on the total solid content of the curable composition.
From the viewpoint of improving the production stability of the cured product, the content of the curing accelerator in the curable composition is preferably 2 mass % or less, more preferably 1.5 mass % or less, even more preferably 1 mass % or less, and still more preferably 0.4 mass % or less, based on the total solid content of the curable composition.
<カップリング剤>
 本発明の硬化性組成物は、カップリング剤を含むことが好ましい。
 カップリング剤は、たとえば、エポキシシラン、メルカプトシラン、フェニルアミノシラン等のアミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、メタクリルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤から選択される1種類または2種類以上を含むことができる。
 硬化物の強度および靭性をバランス良く向上させる観点から、カップリング剤は、好ましくはシランカップリング剤であり、Si原子に結合するアルキレン基を有するシランカップリング剤であることがより好ましい。
 同様の観点から、上記アルキレン基の炭素数は、好ましくは4以上であり、より好ましくは6以上であり、また、好ましくは15以下であり、より好ましくは10以下である。
 同様の観点から、Si原子に結合するアルキレン基を有するシランカップリング剤は、好ましくはエポキシ基、(メタ)アクリル基またはアミン基を有する。
 カップリング剤は、N-フェニル-3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、7-オクテニルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシラン、8-メタクリロキシオクチルトリメトキシシラン又はN-2-(アミノエチル)-8-アミノオクチルトリメトキシシランが更に好ましい。
<Coupling Agent>
The curable composition of the present invention preferably contains a coupling agent.
The coupling agent can include one or more types selected from known coupling agents such as aminosilanes such as epoxysilane, mercaptosilane, phenylaminosilane, etc., various silane-based compounds such as alkylsilane, ureidosilane, vinylsilane, and methacrylsilane, titanium-based compounds, aluminum chelates, and aluminum/zirconium-based compounds.
From the viewpoint of improving the strength and toughness of the cured product in a well-balanced manner, the coupling agent is preferably a silane coupling agent, and more preferably a silane coupling agent having an alkylene group bonded to a Si atom.
From the same viewpoint, the alkylene group preferably has 4 or more carbon atoms, more preferably 6 or more carbon atoms, and preferably 15 or less, more preferably 10 or less carbon atoms.
From a similar viewpoint, the silane coupling agent having an alkylene group bonded to a Si atom preferably has an epoxy group, a (meth)acrylic group or an amine group.
More preferably, the coupling agent is N-phenyl-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 7-octenyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane or N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
 硬化性組成物中のカップリング剤の含有量は、硬化性組成物の硬化性を向上させる観点から、硬化性組成物の全固形分に対して、好ましくは0.05質量%以上であり、より好ましくは0.1質量%以上、さらに好ましくは0.15質量%以上である。
 また、硬化物の製造安定性を高める観点から、硬化性組成物中の硬化促進剤の含有量は、硬化性組成物の全固形分に対して、好ましくは2質量%以下であり、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。
 カップリング剤は1種を単独で用いてもよいが、2種以上を併用してもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
From the viewpoint of improving the curability of the curable composition, the content of the coupling agent in the curable composition is preferably 0.05 mass % or more, more preferably 0.1 mass % or more, and even more preferably 0.15 mass % or more, based on the total solid content of the curable composition.
From the viewpoint of improving the production stability of the cured product, the content of the curing accelerator in the curable composition is preferably 2 mass % or less, more preferably 1 mass % or less, and even more preferably 0.5 mass % or less, based on the total solid content of the curable composition.
The coupling agent may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably within the above range.
<溶剤>
 本発明の硬化性組成物は、溶剤を含んでもよい。
 また、硬化性組成物の全質量に対する溶剤の含有量が1質量%以下である態様も、本発明の好ましい態様の1つである。
 上記溶剤の含有量は、0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。
<Solvent>
The curable composition of the present invention may contain a solvent.
In addition, an embodiment in which the content of the solvent relative to the total mass of the curable composition is 1 mass % or less is also one of the preferred embodiments of the present invention.
The content of the solvent is preferably 0.5% by mass or less, and more preferably 0.1% by mass or less.
 溶剤としては、特に限定されないが、たとえばエチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコール、ブチルプロピレントリグリコールもしくはグリセリン等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)もしくはジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジルもしくはリン酸トリペンチル等のエステル類;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタンもしくは1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類、トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素類;アセトニトリルもしくはプロピオニトリル等のニトリル類;アセトアミドもしくはN,N-ジメチルホルムアミド等のアミド類;低分子量の揮発性シリコーンオイル、または揮発性有機変成シリコーンオイル等のシリコーンオイル類が挙げられる。
 硬化性組成物が溶剤を含む場合、これらの1種又は2種以上を併用してもよい。
 硬化性組成物が溶剤を含む場合の溶剤の含有量は、硬化性組成物の全質量に対して10~90質量%であることが好ましく、20~80質量%であることがより好ましい。
The solvent is not particularly limited, but examples thereof include ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methyl methoxybutanol, and α-terpineol. , β-terpineol, hexylene glycol, benzyl alcohol, 2-phenylethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol, butylpropylene triglyceride, or glycerin; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), or diisobutyl ketone (2,6-dimethyl-4-heptanone); acetic acid Esters such as ethyl, butyl acetate, diethyl phthalate, dibutyl phthalate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl cellosolve acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, 1,2-diacetoxyethane, tributyl phosphate, tricresyl phosphate, or tripentyl phosphate; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl Examples of the silicone oil include ethers such as ether, 1,2-bis(2-diethoxy)ethane, and 1,2-bis(2-methoxyethoxy)ethane; ester ethers such as 2-(2-butoxyethoxy)ethane acetate; ether alcohols such as 2-(2-methoxyethoxy)ethanol, hydrocarbons such as toluene, xylene, n-paraffin, isoparaffin, dodecylbenzene, turpentine oil, kerosene, and light oil; nitriles such as acetonitrile and propionitrile; amides such as acetamide and N,N-dimethylformamide; and silicone oils such as low molecular weight volatile silicone oil and volatile organic modified silicone oil.
When the curable composition contains a solvent, one or more of these may be used in combination.
When the curable composition contains a solvent, the content of the solvent is preferably from 10 to 90 mass %, and more preferably from 20 to 80 mass %, based on the total mass of the curable composition.
<その他の成分>
 また、硬化性組成物は、上述した成分以外の成分を含んでもよい。たとえば、硬化性組成物が、難燃剤、離型剤、イオン捕捉剤、着色剤、低応力剤および酸化防止剤からなる群から選択される1種または2種以上をさらに含んでもよい。
 硬化性組成物中のこれら各成分の量は、硬化性組成物の全固形分に対して、それぞれ、0.01~7質量%程度の量とすることができる。
 また、更に他の成分として、半導体封止材料の成分として用いられるものを、特に限定なく含むことができる。
<Other ingredients>
The curable composition may further include components other than the above-mentioned components. For example, the curable composition may further include one or more selected from the group consisting of a flame retardant, a release agent, an ion scavenger, a colorant, a stress reducing agent, and an antioxidant.
The amount of each of these components in the curable composition can be about 0.01 to 7 mass % based on the total solid content of the curable composition.
Furthermore, as other components, those used as components of semiconductor encapsulation materials can be included without any particular limitation.
 難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等が挙げられる。これらは1種単独で使用してもよいし、2種類以上を併用してもよい。
 離型剤としては、たとえばカルナバワックス等の天然ワックス、酸化ポリエチレンワックス、モンタン酸エステルワックス、炭素数10以上の1-アルケン・1マレイン酸無水物の重縮合物とステアリルアルコールとの反応生成物等の合成ワックス、ステアリン酸亜鉛等の高級脂肪酸およびその金属塩類、パラフィン類等が挙げられる。これらは1種単独で使用してもよいし、2種類以上を併用してもよい。
 イオン捕捉剤としては、ハイドロタルサイトが挙げられる。
 着色剤としては、カーボンブラック及びベンガラ等が挙げられる。これらは1種単独で使用してもよいし、2種類以上を併用してもよい。
 低応力剤としては、シリコーンオイル、シリコーンゴムおよびカルボキシ基末端ブタジエンアクリロニトリルゴムが挙げられる。これらは1種単独で使用してもよいし、2種類以上を併用してもよい。
 酸化防止剤は、ヒンダードフェノール系化合物、ヒンダードアミン系化合物およびチオエーテル系化合物等が挙げられる。これらは1種単独で使用してもよいし、2種類以上を併用してもよい。
Examples of the flame retardant include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate, phosphazene, etc. These may be used alone or in combination of two or more kinds.
Examples of the release agent include natural waxes such as carnauba wax, oxidized polyethylene wax, montanic acid ester wax, synthetic waxes such as a reaction product of a polycondensate of 1-alkene-1-maleic anhydride having 10 or more carbon atoms with stearyl alcohol, higher fatty acids such as zinc stearate and metal salts thereof, paraffins, etc. These may be used alone or in combination of two or more kinds.
An example of the ion scavenger is hydrotalcite.
Examples of the colorant include carbon black, red iron oxide, etc. These may be used alone or in combination of two or more kinds.
Examples of the low stress agent include silicone oil, silicone rubber, and carboxy-terminated butadiene acrylonitrile rubber. These may be used alone or in combination of two or more.
Examples of the antioxidant include hindered phenol compounds, hindered amine compounds, and thioether compounds. These may be used alone or in combination of two or more.
 次に、硬化性組成物の形状について説明する。
 硬化性組成物は、たとえば粒子状またはシート状である。
 粒子状の硬化性組成物として、具体的には、タブレット状または粉粒体のものが挙げられる。このうち、硬化性組成物がタブレット状である場合、たとえば、トランスファー成形法を用いて硬化性組成物を成形することができる。
 また、硬化性組成物が粉粒体である場合には、たとえば、圧縮成形法またはトランスファー成形法を用いて硬化性組成物を成形することができる。ここで、硬化性組成物が粉粒体であるとは、粉末状または顆粒状のいずれかである場合を指す。
Next, the shape of the curable composition will be described.
The curable composition is, for example, in the form of particles or sheets.
Specific examples of particulate curable compositions include those in the form of tablets or powders. When the curable composition is in the form of tablets, the curable composition can be molded, for example, by transfer molding.
When the curable composition is in the form of powder or granules, the curable composition can be molded, for example, by compression molding or transfer molding. Here, the term "the curable composition is in the form of powder or granules" refers to the case where the curable composition is in the form of powder or granules.
 本発明の硬化性組成物は、半導体封止剤形成用であることが好ましい。半導体封止材の製造方法については、半導体パッケージの製造方法として後述する。 The curable composition of the present invention is preferably used for forming a semiconductor encapsulant. The method for producing the semiconductor encapsulant will be described later as a method for producing a semiconductor package.
 次に、硬化性組成物の製造方法を説明する。
 本実施形態において、硬化性組成物は、たとえば、上述した各成分を、公知の手段で混合し、さらにロール、ニーダーまたは押出機等の混練機で溶融混練し、冷却した後に粉砕する方法により得ることができる。また、必要に応じて、上記方法における粉砕後にタブレット状に打錠成型して粒子状の硬化性組成物を得てもよい。また、上記方法における粉砕後にたとえば真空ラミネート成形または圧縮成形によりシート状の硬化性組成物を得てもよい。また得られた硬化性組成物について、適宜分散度や流動性等を調整してもよい。
Next, a method for producing the curable composition will be described.
In this embodiment, the curable composition can be obtained, for example, by mixing the above-mentioned components by known means, melt-kneading them with a kneader such as a roll, a kneader or an extruder, cooling, and then pulverizing them. If necessary, the pulverization in the above method may be tableted to obtain a particulate curable composition. After the pulverization in the above method, a sheet-shaped curable composition may be obtained by, for example, vacuum lamination molding or compression molding. The obtained curable composition may also have an appropriate degree of dispersion, flowability, etc.
 硬化性組成物の110℃、0.2rad/sで測定した粘度η1は、1×10Pa・s~1×10Pa・sであることが好ましく、1×10Pa・s~1×10Pa・sであることがより好ましく、1×10Pa・s~1×10Pa・sであることが更に好ましい。なお、粘度η1の測定は、例えば、アレス型レオメーター(Reometric Scientific社製、ARES-2KSTD-FCO-STD)により行うことができる。硬化性組成物の110℃、回転周波数500rad/sで測定した粘度η2は、1×10Pa・s~1×10Pa・sであることが好ましく、1×10Pa・s~1×10Pa・sであることがより好ましく、1×10Pa・s~1×10Pa・sであることが更に好ましい。なお、粘度η2の測定は、例えば、アレス型レオメーター(例えば、Reometric Scientific社製、ARES-2KSTD-FCO-STD)により行うことができる。 The viscosity η1 of the curable composition measured at 110° C. and 0.2 rad/s is preferably 1×10 5 Pa·s to 1×10 8 Pa·s, more preferably 1×10 5 Pa·s to 1×10 7 Pa·s, and even more preferably 1×10 5 Pa·s to 1×10 6 Pa·s. The viscosity η1 can be measured, for example, by an Ares rheometer (ARES-2KSTD-FCO-STD, manufactured by Rheometric Scientific). The viscosity η2 of the curable composition measured at 110° C. and a rotational frequency of 500 rad/s is preferably 1×10 1 Pa·s to 1×10 7 Pa·s, more preferably 1×10 1 Pa·s to 1×10 6 Pa·s, and even more preferably 1×10 2 Pa·s to 1×10 6 Pa·s. The viscosity η2 can be measured, for example, with an Ares rheometer (for example, ARES-2KSTD-FCO-STD, manufactured by Rheometric Scientific).
(硬化物)
 本発明の硬化性組成物を硬化することにより、硬化性組成物の硬化物を得ることができる。
 本発明の硬化物は、本発明の硬化性組成物を硬化してなる硬化物である。
 硬化性組成物の硬化は加熱によるものであることが好ましい。
 加熱温度としては、130~220℃が好ましく、150~200℃がより好ましく、160~190℃が更に好ましい。
(Cured product)
By curing the curable composition of the present invention, a cured product of the curable composition can be obtained.
The cured product of the present invention is a cured product obtained by curing the curable composition of the present invention.
The curable composition is preferably cured by heating.
The heating temperature is preferably from 130 to 220°C, more preferably from 150 to 200°C, and even more preferably from 160 to 190°C.
 本発明の硬化物の吸水率は、0.5%以下であることが好ましく、0.4質量%未満であることがより好ましく、0.3質量%未満であることが更に好ましい。吸水率は、後述する実施例に記載の方法により算出される。 The water absorption rate of the cured product of the present invention is preferably 0.5% or less, more preferably less than 0.4% by mass, and even more preferably less than 0.3% by mass. The water absorption rate is calculated by the method described in the examples below.
 本発明の硬化物の体積抵抗率は、1.0×1011Ω・cm以上であることが好ましく、3.0×1011Ω・cm以上であることがより好ましく、5.0×1011Ω・cm以上であることが更に好ましい。
 上記体積抵抗率の上限は、特に限定されないが、例えば1.0×1018Ω・cm以下であることが好ましい。
The volume resistivity of the cured product of the present invention is preferably 1.0×10 11 Ω·cm or more, more preferably 3.0×10 11 Ω·cm or more, and even more preferably 5.0×10 11 Ω·cm or more.
The upper limit of the volume resistivity is not particularly limited, but is preferably, for example, 1.0×10 18 Ω·cm or less.
 本発明の硬化物の25℃~100℃における熱膨張係数(CTE)は、100ppm/℃以下であることが好ましく、80ppm/℃以下であることがより好ましく、50ppm/℃以下であることが更に好ましい。
 上記熱膨張係数の下限は、特に限定されず、0ppm/℃以上であればよい。
 熱膨張係数は、公知の熱機械分析装置、熱膨張率測定装置又はこれに類する装置を用いて測定することができる。このような装置としては、TMA450(TA Instruments)が挙げられる。
The coefficient of thermal expansion (CTE) of the cured product of the present invention at 25°C to 100°C is preferably 100 ppm/°C or less, more preferably 80 ppm/°C or less, and even more preferably 50 ppm/°C or less.
The lower limit of the thermal expansion coefficient is not particularly limited, and may be 0 ppm/° C. or more.
The thermal expansion coefficient can be measured using a known thermomechanical analyzer, thermal expansion measuring instrument, or similar instrument, such as a TMA450 (TA Instruments).
 本発明の硬化物のガラス転移温度は、180℃以上であることが好ましく、190℃以上であることがより好ましく、200℃以上であることが更に好ましい。
 上記熱膨張係数の上限は、特に限定されず、例えば300℃以下であればよい。
 上記ガラス転移温度は、公知の熱機械分析装置、熱膨張率測定装置又はこれに類する装置を用いて測定することができる。このような装置としては、例えば、DMA850(TA Instruments)が挙げられる。
The glass transition temperature of the cured product of the present invention is preferably 180° C. or higher, more preferably 190° C. or higher, and even more preferably 200° C. or higher.
The upper limit of the thermal expansion coefficient is not particularly limited, and may be, for example, 300° C. or less.
The glass transition temperature can be measured using a known thermomechanical analyzer, a thermal expansion coefficient measuring device, or a similar device, such as DMA850 (TA Instruments).
 本発明の硬化物の比誘電率は、3.0以下であることが好ましく、2.9以下であることがより好ましく、2.8以下であることが更に好ましい。
 上記比誘電率の下限は、特に限定されず、例えば1.0以上であればよい。
 上記比誘電率は、公知の熱機械分析装置、熱膨張率測定装置又はこれに類する装置を用いて測定することができる。このような装置としては、例えば、DMA850(TA Instruments)が挙げられる。
 本発明の硬化物の誘電正接は、0.01以下であることが好ましく、0.005以下であることがより好ましく、0.001以下であることが更に好ましい。
 上記比誘電率の下限は、特に限定されず、例えば0以上であればよい。
 比誘電率及び誘電正接は、JIS(Japanese Industrial Standards)R 1641:2007「ファインセラミックス基板のマイクロは誘電特性の測定方法」に従い測定することができる。
The relative dielectric constant of the cured product of the present invention is preferably 3.0 or less, more preferably 2.9 or less, and even more preferably 2.8 or less.
The lower limit of the relative dielectric constant is not particularly limited, and may be, for example, 1.0 or more.
The dielectric constant can be measured using a known thermomechanical analyzer, a thermal expansion coefficient measuring device, or a similar device, such as DMA850 (TA Instruments).
The dielectric loss tangent of the cured product of the present invention is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.001 or less.
The lower limit of the relative dielectric constant is not particularly limited, and may be, for example, 0 or more.
The dielectric constant and dielectric tangent can be measured in accordance with JIS (Japanese Industrial Standards) R 1641:2007 "Method of measurement of micro dielectric properties of fine ceramic substrates."
<用途>
 本発明の硬化物は、半導体パッケージにおける封止材として用いられることが好ましい。半導体パッケージの詳細については後述する。
<Applications>
The cured product of the present invention is preferably used as an encapsulant in a semiconductor package, the details of which will be described later.
(硬化物の製造方法)
 本発明の硬化物の製造方法は、硬化性組成物を加熱する工程(加熱工程)を含む。
 加熱工程により、硬化性組成物は硬化して硬化物となる。
 硬化物の製造方法は特に限定されず、公知の方法を用いるか、又は、公知の方法を本発明の硬化性組成物の物性等を考慮して調製した方法を用いて行うことができる。
(Method for producing the cured product)
The method for producing a cured product of the present invention includes a step of heating the curable composition (heating step).
The curable composition is cured by the heating step to form a cured product.
The method for producing the cured product is not particularly limited, and can be performed using a known method or a method prepared by using a known method while taking into consideration the physical properties, etc. of the curable composition of the present invention.
 加熱工程における加熱温度(最高加熱温度)としては、130~220℃が好ましく、150~200℃がより好ましく、160~190℃が更に好ましい。
 ただし、加熱温度については、硬化性組成物の組成等を考慮して、硬化性組成物が硬化する温度を適宜設定することができる。
The heating temperature (maximum heating temperature) in the heating step is preferably from 130 to 220°C, more preferably from 150 to 200°C, and even more preferably from 160 to 190°C.
However, the heating temperature can be appropriately set so as to cure the curable composition, taking into consideration the composition of the curable composition and the like.
 加熱時間(最高加熱温度での加熱時間)は、1~20時間が好ましく、2~10時間がより好ましく、3~8時間が更に好ましい。
 ただし、加熱時間については、硬化性組成物の組成等を考慮して、硬化性組成物が硬化する時間を適宜設定することができる。
 加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
The heating time (heating time at the maximum heating temperature) is preferably from 1 to 20 hours, more preferably from 2 to 10 hours, and even more preferably from 3 to 8 hours.
However, the heating time can be appropriately set in consideration of the composition of the curable composition, so that the time is sufficient for the curable composition to harden.
After heating, the material may be cooled, and in this case, the cooling rate is preferably 1 to 5° C./min.
 加熱工程における加熱手段としては、特に限定されず、後述するトランスファーモールド方式、コンプレッションモールド方式、ポッティング方式等において従来用いられる手段(例えば、これらの方式において用いられる封止装置に付属の加熱手段)を使用することができる。 The heating means used in the heating step is not particularly limited, and means conventionally used in the transfer molding method, compression molding method, potting method, etc. described below (for example, heating means attached to the sealing device used in these methods) can be used.
 その他、加熱工程の詳細は、半導体パッケージにおける封止材形成において従来用いられる方法を参考に決定することができる。例えば、トランスファーモールド方式、コンプレッションモールド方式、ポッティング方式等により行うことができる。
 トランスファーモールド方式とは、例えば、プランジャ等の内部に貯留された液状の硬化性組成物を、封止したい半導体素子を有する基板が設置されたキャビティ内に流し込んだ後に加熱して、硬化性組成物を熱硬化させるという方式である。
 コンプレッションモールド方式とは、例えば、金型内に液状の硬化性組成物を準備し、硬化性組成物に封止したい半導体素子を有する基板を浸してから硬化性組成物を熱硬化させるという方式である。
 ポッティング方式とは、例えば、半導体素子を有する基材に液状の硬化性組成物を滴下等により付与した後に加熱して、硬化性組成物を熱硬化する方法である。
 また、半導体封止方法の分野において公知の他の方法を参考に加熱を行ってもよい。
Other details of the heating step can be determined by referring to a method conventionally used in forming an encapsulant in a semiconductor package, such as a transfer molding method, a compression molding method, or a potting method.
The transfer molding method is a method in which, for example, a liquid curable composition stored inside a plunger or the like is poured into a cavity in which a substrate having a semiconductor element to be sealed is placed, and then heated to thermally cure the curable composition.
The compression molding method is a method in which, for example, a liquid curable composition is prepared in a mold, a substrate having a semiconductor element to be encapsulated is immersed in the curable composition, and the curable composition is then thermally cured.
The potting method is a method in which, for example, a liquid curable composition is applied by dripping or the like onto a substrate having a semiconductor element, and then the substrate is heated to thermally cure the curable composition.
Heating may also be performed by referring to other methods known in the field of semiconductor encapsulation methods.
<準備工程>
 本発明の硬化物の製造方法は、液状の硬化性組成物を準備する工程を更に含んでもよい。
 液状の硬化性組成物を準備する工程においては、硬化性組成物を前加熱する工程(前加熱工程)を含むことが好ましい。前加熱により溶融して液状となった硬化性組成物を、上述のトランスファーモールド方式、コンプレッションモールド方式、ポッティング方式などにおける液状の硬化性組成物として用いることができる。
 前加熱工程における加熱温度(最高加熱温度)としては、上述の加熱工程における加熱温度よりも低い温度であることが好ましく、100~150℃が好ましく、110~140℃がより好ましく、120~130℃が更に好ましい。
 ただし、この温度は硬化性組成物が硬化しない範囲で、溶融した硬化性組成物における粘度等の物性を考慮して決定すればよい。
<Preparation process>
The method for producing a cured product of the present invention may further include a step of preparing a liquid curable composition.
The step of preparing the liquid curable composition preferably includes a step of preheating the curable composition (preheating step). The curable composition melted and liquid by preheating can be used as the liquid curable composition in the above-mentioned transfer molding method, compression molding method, potting method, etc.
The heating temperature (maximum heating temperature) in the pre-heating step is preferably lower than the heating temperature in the above-mentioned heating step, and is preferably 100 to 150°C, more preferably 110 to 140°C, and even more preferably 120 to 130°C.
However, this temperature may be determined in a range in which the curable composition does not harden, taking into consideration the physical properties of the molten curable composition, such as the viscosity.
(半導体パッケージ)
 本発明の半導体パッケージは、半導体素子、及び、本発明の硬化物を含む。
 本発明の半導体パッケージは、上記半導体素子の少なくとも一部が本発明の硬化物により被覆されていることが好ましく、上記半導体素子が本発明の硬化物により封止されていることがより好ましい。
 また、本発明の半導体パッケージにおける半導体素子は基材の上に配置されていることが好ましい。基材と半導体パッケージとの間には、ダイアタッチ材、接着剤層、ヒートシンク等が配置されていてもよい。
 半導体素子及び基材の種類は特に限定されず、半導体パッケージの分野で公知のものを特に限定なく使用することができる。
(Semiconductor Package)
The semiconductor package of the present invention includes a semiconductor element and the cured product of the present invention.
In the semiconductor package of the present invention, it is preferable that at least a portion of the semiconductor element is covered with the cured product of the present invention, and it is more preferable that the semiconductor element is encapsulated with the cured product of the present invention.
In the semiconductor package of the present invention, the semiconductor element is preferably disposed on a substrate. A die attach material, an adhesive layer, a heat sink, etc. may be disposed between the substrate and the semiconductor package.
The types of semiconductor element and substrate are not particularly limited, and any known semiconductor element and substrate in the field of semiconductor packaging can be used without particular limitation.
 半導体パッケージの形態としては、半導体素子、及び、本発明の硬化物を含む限りにおいて特に限定されない。
 半導体パッケージの具体例として、QFP(Quad Flat Package)、CSP(Chip Size Package)、FC-CSP(Flip Chip-Chip Size Package)、QFN(Quad Flat Non-leaded Package)、BGA(Ball Grid Array)、FC-BGA(Flip Chip BGA)、eWLB(Embedded Wafer-Level BGA)、FI-WLP(Fan-In wafer level package)、FO-WLP(Fan-Out wafer level package)などが挙げられる。
The form of the semiconductor package is not particularly limited as long as it contains a semiconductor element and the cured product of the present invention.
Examples of semiconductor packages include QFP (Quad Flat Package), CSP (Chip Size Package), FC-CSP (Flip Chip-Chip Size Package), QFN (Quad Flat Non-leaded Package), BGA (Ball Grid Array), FC-BGA (Flip Chip BGA), eWLB (Embedded Wafer-Level BGA), FI-WLP (Fan-In wafer level package), and FO-WLP (Fan-Out wafer level package).
(半導体パッケージの製造方法)
 本発明の半導体パッケージの製造方法は、半導体素子を備える面を有する基材の半導体素子を備える面に本発明の硬化性組成物を付与する工程(付与工程)、及び、上記硬化性組成物を加熱する工程(加熱工程)を含む。
(Method of manufacturing semiconductor package)
The method for producing a semiconductor package of the present invention includes a step of applying the curable composition of the present invention to a surface of a substrate having a semiconductor element (application step), and a step of heating the curable composition (heating step).
<付与工程>
 付与工程における付与方法は、特に限定されず、硬化性組成物の形態に応じて選択すればよい。
 例えば、シート状の硬化性組成物を半導体素子上に配置する、上述のトランスファーモールド方式に記載したように、液状の硬化性組成物を流し込む、上述のコンプレッションモールド方式に記載したように、液状の硬化性組成物に半導体素子を有する基材を浸す、上述のポッティング方式に記載したように、液状の硬化性組成物を基材に滴下する、等が挙げられる。
 その他、半導体封止材の製造において公知の方法を用いてもよい。
 半導体素子及び基材の種類は特に限定されず、半導体パッケージの分野で公知のものを特に限定なく使用することができる。
 また、上述の液状の硬化性組成物を得るために、本発明の半導体パッケージの製造方法は、上述の準備工程、特に前硬化工程を更に含んでもよい。これらの工程の好ましい態様は上述の通りである。
 不要工程により、未硬化の硬化性組成物が半導体素子上に配置されることが好ましく、未硬化の硬化性組成物により半導体素子が被覆されることがより好ましい。
<Application step>
The application method in the application step is not particularly limited and may be selected depending on the form of the curable composition.
For example, a sheet-like curable composition may be placed on a semiconductor element, a liquid curable composition may be poured as described in the transfer molding method above, a substrate having a semiconductor element may be immersed in a liquid curable composition as described in the compression molding method above, or a liquid curable composition may be dripped onto a substrate as described in the potting method above.
Besides, a method known in the art for producing a semiconductor encapsulation material may be used.
The types of semiconductor element and substrate are not particularly limited, and any known semiconductor element and substrate in the field of semiconductor packaging can be used without particular limitation.
In order to obtain the liquid curable composition, the method for producing a semiconductor package of the present invention may further include the above-mentioned preparation steps, particularly the pre-curing step. Preferred aspects of these steps are as described above.
Preferably, the uncured curable composition is disposed on the semiconductor element, and more preferably, the semiconductor element is covered with the uncured curable composition, by the unnecessary step.
<加熱工程>
 本発明の半導体パッケージの製造方法における加熱工程の好ましい態様は、上述の本発明の硬化物の製造方法における加熱工程の好ましい態様と同様である。
 加熱工程により、本発明の硬化物が半導体素子上に配置されることが好ましく、本発明の硬化物により半導体素子が被覆されることがより好ましく、本発明の硬化物により半導体素子が封止されることが更に好ましい。
<Heating process>
A preferred embodiment of the heating step in the method for producing a semiconductor package of the present invention is the same as the preferred embodiment of the heating step in the method for producing a cured product of the present invention described above.
By the heating step, the cured product of the present invention is preferably placed on a semiconductor element, more preferably the semiconductor element is covered with the cured product of the present invention, and even more preferably the semiconductor element is encapsulated with the cured product of the present invention.
<個片化工程>
 本発明の半導体パッケージの製造方法は、加熱工程後の本発明の硬化物、及び、半導体を有してもよい。
 例えば、付与工程における上記基材として半導体素子を複数個有する基材を用いて、付与工程及び加熱工程後に得られたウエハレベルの半導体パッケージをダイシングして、個片化する工程を含んでもよい。
 個片化工程としては、公知の方法を用いることができる。
<Singulation process>
The method for producing a semiconductor package of the present invention may include the cured product of the present invention after the heating step and a semiconductor.
For example, the method may include a step of using a substrate having a plurality of semiconductor elements as the substrate in the application step, and dicing the wafer-level semiconductor package obtained after the application step and the heating step into individual pieces.
As the individualization step, a known method can be used.
<その他の工程>
 本発明の半導体パッケージの製造方法は、半導体パッケージ製造の分野で公知の工程を更に含んでもよい。
 例えば、基材に半導体素子及び配線用素子を接合する工程、外部端子を形成する工程、外部端子と半導体素子を電気的に接続する再配線層を形成する工程、半導体素子の欠陥を検出するスクリーニング工程等が挙げられる。
<Other processes>
The method for manufacturing a semiconductor package of the present invention may further include steps known in the field of semiconductor package manufacturing.
For example, these include a process for bonding a semiconductor element and a wiring element to a substrate, a process for forming an external terminal, a process for forming a rewiring layer that electrically connects the external terminal and the semiconductor element, and a screening process for detecting defects in the semiconductor element.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。 The present invention will be explained in more detail below with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. "Parts" and "%" are based on mass unless otherwise specified.
<実施例及び比較例>
 各実施例において、それぞれ、下記表に記載の成分を混合し、各硬化性組成物を得た。また、比較例において、下記表に記載の成分を混合し、比較用組成物を得た。
 各硬化性組成物及び比較用組成物の混合における混合手段としてはミキサーを用いた。具体的には、まず充填剤とシラン化合物とを混合した。その後に、充填剤とシラン化合物以外の成分をミキサーで混合し、70~100℃でロール混練して、各硬化性組成物を得た。
 具体的には、表に記載の各成分の含有量(配合量)は、表の各欄の「質量部」の欄に記載の量(質量部)とした。
 また、表中、「-」の記載は該当する成分を組成物が含有していないことを示している。
<Examples and Comparative Examples>
In each of the examples, the components shown in the following table were mixed to obtain a curable composition. In each of the comparative examples, the components shown in the following table were mixed to obtain a comparative composition.
A mixer was used as a mixing means for mixing each of the curable compositions and the comparative composition. Specifically, the filler and the silane compound were first mixed. Then, the components other than the filler and the silane compound were mixed in the mixer, and the mixture was roll-kneaded at 70 to 100°C to obtain each of the curable compositions.
Specifically, the content (blended amount) of each component shown in the table is the amount (parts by mass) shown in the "parts by mass" column of each column in the table.
In the table, "-" indicates that the composition does not contain the corresponding component.
   
 表に記載した各成分の詳細は下記の通りである。 Details of each ingredient listed in the table are as follows:
〔無機充填材1、無機充填材2(フィラー)〕
・A-1:75μmカットシリカ(マイクロン社製)
・A-2:ML-902SK:合成溶融シリカ、メジアン径24μm、(株式会社トクヤマ製)
・A-3:酸化チタン(赤穂化成株式会社製、TM-HPD)
・A-4:酸化チタン/窒化チタン(三菱マテリアル社製、13M-C)
・A-5:アルミナ粒子(デンカ社製、DAB-30FC)
[Inorganic filler 1, inorganic filler 2 (filler)]
A-1: 75 μm cut silica (Micron Corporation)
A-2: ML-902SK: synthetic fused silica, median diameter 24 μm, (manufactured by Tokuyama Corporation)
A-3: Titanium oxide (TM-HPD, manufactured by Ako Kasei Co., Ltd.)
A-4: Titanium oxide/titanium nitride (Mitsubishi Materials Corporation, 13M-C)
A-5: Alumina particles (DAB-30FC, manufactured by Denka)
〔着色剤〕
・B-1:カーボンブラック(東海カーボン社製)
[Coloring Agent]
B-1: Carbon black (manufactured by Tokai Carbon Co., Ltd.)
〔シランカップリング剤〕
・C-1:N-フェニル-3-アミノプロピルトリメトキシシラン、CF-4083(東レ・ダウコーニング社製)
・C-2:3-グリシドキシプロピルトリメトキシシラン、チッソ社製、オルガノシラン(サイラエース)
〔Silane coupling agent〕
C-1: N-phenyl-3-aminopropyltrimethoxysilane, CF-4083 (manufactured by Dow Corning Toray Co., Ltd.)
C-2: 3-glycidoxypropyltrimethoxysilane, manufactured by Chisso Corporation, organosilane (Sila Ace)
〔エポキシ樹脂〕
・D-1:オルソクレゾールノボラック(OCN)型エポキシ樹脂、CNE195LL、長春人造樹脂社製
・D-2:ナフチレンエーテル型エポキシ樹脂、HP-6000L(DIC社製)
・D-3:フェノールノボラック型エポキシ樹脂、HP-4710(DIC社製)
〔Epoxy resin〕
D-1: Orthocresol novolac (OCN) type epoxy resin, CNE195LL, manufactured by Changchun Plastics Co., Ltd. D-2: Naphthylene ether type epoxy resin, HP-6000L (manufactured by DIC Corporation)
D-3: Phenol novolac type epoxy resin, HP-4710 (manufactured by DIC Corporation)
〔硬化剤〕
・E-1:フェノールノボラック(PN)型フェノール硬化剤、PR-HF-3(住友ベークライト社製)
・E-2:フェノールアラルキル型硬化剤、NC-3000(日本化薬社製)
・E-3:トリスフェニルメタン骨格を有するフェノール樹脂(明和化成社製、MEH-7500)
・E-4:ザイロック型フェノールアラルキル型フェノール樹脂(明和化成社製、MEH-7800-4S)
・E-5:フェノール樹脂(日本化薬社製、KAYAHARD GPH-65)
・E-6:マレイミド樹脂(日本化薬社製、MIR-3000-70MT)
[Hardening agent]
E-1: Phenol novolac (PN) type phenolic hardener, PR-HF-3 (manufactured by Sumitomo Bakelite Co., Ltd.)
E-2: Phenol aralkyl type curing agent, NC-3000 (manufactured by Nippon Kayaku Co., Ltd.)
E-3: Phenolic resin having a trisphenylmethane skeleton (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
E-4: Zylok type phenol aralkyl type phenol resin (Meiwa Chemical Industry Co., Ltd., MEH-7800-4S)
E-5: Phenol resin (manufactured by Nippon Kayaku Co., Ltd., KAYAHARD GPH-65)
E-6: Maleimide resin (manufactured by Nippon Kayaku Co., Ltd., MIR-3000-70MT)
〔硬化促進剤〕
・F-1:テトラフェニルホスホニウム 2,3-ジヒドロキシナフタレート
[Curing Accelerator]
F-1: Tetraphenylphosphonium 2,3-dihydroxynaphthalate
〔難燃剤〕
・G-1:水酸化アルミニウム(住友化学社製、商品名CL303)
〔Flame retardants〕
G-1: Aluminum hydroxide (manufactured by Sumitomo Chemical Co., Ltd., product name CL303)
〔離型剤〕
・H-1:モンタン酸エステルワックス、WE-4、クラリアントジャパン社製
・H-2:カルナバワックス、TOWAX-132、東亜化成社製
・H-3:酸化ポリエチレンワックス、PED191m100、クラリアントジャパン社製
〔Release agent〕
H-1: Montan acid ester wax, WE-4, manufactured by Clariant Japan H-2: Carnauba wax, TOWAX-132, manufactured by Toa Kasei H-3: Oxidized polyethylene wax, PED191m100, manufactured by Clariant Japan
〔イオン捕捉剤〕
・J-1:ハイドロタルサイト(DHT-4H、協和化学工業社製)
[Ion Scavenger]
J-1: Hydrotalcite (DHT-4H, manufactured by Kyowa Chemical Industry Co., Ltd.)
〔低応力剤〕
・K-1:シリコーンオイル(東レ・ダウコーニング社製、FZ-3730)
[Low stress agent]
K-1: Silicone oil (Dow Corning Toray Co., Ltd., FZ-3730)
〔化合物A〕
・L-1~L-10:下記構造の化合物、L-1~L-10は上述の化合物Aに該当する化合物である。
・CL-1:下記構造の化合物、CL-1は上述の化合物Aには該当しない化合物である。
 
[Compound A]
L-1 to L-10: Compounds having the following structure, L-1 to L-10 are compounds corresponding to the above-mentioned compound A.
CL-1: A compound having the following structure. CL-1 is a compound that does not fall under the above-mentioned compound A.
<評価>
〔THB(temperature humidity bias)試験:THB耐性の評価〕
 定格電圧1200VのIGBT(絶縁ゲートバイポーラトランジスタ)素子を、パッケージ仕様:TO-247のフレームに半田を用いてダイボンディングし、そしてAlワイヤでワイヤボンディングした。これを、各実施例及び比較例において、それぞれ、調製した硬化性組成物又は比較用組成物で封止し、THB評価用のパッケージを作製した。なお、組成物の成形条件は175℃で2分、アフターキュア条件は175℃で4時間とした。
上述の方法で得られた各例の評価試料を、THB試験装置にて85℃、85%、960Vの電圧下、1500時間処理した。処理前後のリーク電流を測定し、以下の基準で評価した。試験数は10であり(n=10)、10回の試験において、上記処理後にリーク電流が発生した割合を算出し、処理後のリーク電流不良率(%)とした。評価結果は表の「THB耐性」の欄に記載した。処理後のリーク電流不良率が小さいほど、THB耐性に優れるといえる。
-評価基準-
A:処理後のリーク電流不良率が0%であった。
B:処理後のリーク電流不良率が0%超、50%以下であった。
C:処理後のリーク電流不良率が50%超、100%以下であった。
<Evaluation>
[THB (temperature humidity bias) test: Evaluation of THB resistance]
An IGBT (insulated gate bipolar transistor) element with a rated voltage of 1200V was die-bonded to a TO-247 frame using solder, and then wire-bonded with an Al wire. This was sealed with the prepared curable composition or comparative composition in each of the Examples and Comparative Examples to produce a package for THB evaluation. The molding conditions for the composition were 175°C for 2 minutes, and the after-cure conditions were 175°C for 4 hours.
The evaluation samples of each example obtained by the above-mentioned method were treated in a THB tester at 85°C, 85%, and a voltage of 960V for 1500 hours. The leakage current was measured before and after the treatment and evaluated according to the following criteria. The number of tests was 10 (n=10), and the percentage of leakage current occurring after the above treatment in the 10 tests was calculated, and this was taken as the leakage current failure rate after treatment (%). The evaluation results are shown in the "THB resistance" column in the table. It can be said that the smaller the leakage current failure rate after treatment, the better the THB resistance.
-Evaluation criteria-
A: The leakage current defect rate after treatment was 0%.
B: The leakage current defect rate after treatment was more than 0% and 50% or less.
C: The leakage current defect rate after treatment was more than 50% and not more than 100%.
〔吸水性の評価〕
 各実施例及び比較例で得られた硬化性組成物又は比較用組成物について、それぞれ、低圧トランスファー成形機(コータキ精機社製「KTS-15」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間120秒で直径50mm、厚さ3mmの円盤状試験片を成形した。次いで、得られた試験片を175℃、4時間で後硬化した後、この試験片の煮沸処理前の質量と24時間純水中で煮沸処理後の質量を測定した。この測定結果に基づいて煮沸処理前後における質量変化を下記式により算出した結果から、試験片の煮沸吸水率を百分率[質量%]で得た。評価結果は表の「吸水性」の欄に記載した。煮沸吸水率が小さいほど、吸水性が低いといえる。
 煮沸吸水率(%)=(煮沸処理後の質量-煮沸処理前の質量)/煮沸処理前の質量×100
-評価基準-
A:煮沸吸水率が0.3%未満であった。
B:煮沸吸水率が0.3%以上、0.5%以下であった。
C:煮沸吸水率が0.5%超であった。
[Evaluation of water absorbency]
For each of the curable compositions or comparative compositions obtained in each Example and Comparative Example, a disk-shaped test piece having a diameter of 50 mm and a thickness of 3 mm was molded using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Next, the obtained test piece was post-cured at 175 ° C. for 4 hours, and then the mass of the test piece before the boiling treatment and the mass after the boiling treatment in pure water for 24 hours were measured. Based on the measurement results, the mass change before and after the boiling treatment was calculated using the following formula, and the boiling water absorption of the test piece was obtained as a percentage [mass %]. The evaluation results are shown in the "water absorption" column of the table. It can be said that the smaller the boiling water absorption, the lower the water absorption.
Boiling water absorption rate (%)=(mass after boiling treatment−mass before boiling treatment)/mass before boiling treatment×100
-Evaluation criteria-
A: The boiled water absorption rate was less than 0.3%.
B: The boiled water absorption was 0.3% or more and 0.5% or less.
C: The boiled water absorption rate was more than 0.5%.
〔保存安定性の評価〕
 各実施例又は比較例で得られた硬化性組成物又は比較用組成物について、JIS Z 8803:2011に準じ、110℃の粘度を測定した。すなわち、25℃の測定温度で、E型粘度計を用いて、試料をセットして2分後の粘度(初期粘度)を測定した。さらに、各硬化性組成物又は比較用組成物を25℃で12時間保持した後の粘度(保存後粘度)も同様に測定し、変化率を下記式により算出して、下記評価基準により保存安定性を評価した。
 変化率(%)=|保存後粘度-初期粘度|/初期粘度×100
-評価基準-
A:変化率が10%未満であった。
B:変化率が10%以上、20%以下であった。
C:変化率が20%超であった。
[Evaluation of storage stability]
The viscosity of the curable composition or comparative composition obtained in each Example or Comparative Example was measured at 110° C. in accordance with JIS Z 8803:2011. That is, the viscosity (initial viscosity) was measured 2 minutes after setting the sample using an E-type viscometer at a measurement temperature of 25° C. Furthermore, the viscosity (post-storage viscosity) of each curable composition or comparative composition after being kept at 25° C. for 12 hours was also measured in the same manner, and the rate of change was calculated by the following formula to evaluate the storage stability according to the following evaluation criteria.
Change rate (%) = | viscosity after storage - initial viscosity | / initial viscosity x 100
-Evaluation criteria-
A: The rate of change was less than 10%.
B: The rate of change was 10% or more and 20% or less.
C: The rate of change was more than 20%.
 以上の結果から、本発明の硬化性組成物から形成される硬化物は、吸水性が低いことが分かる。
 比較例1に係る比較用組成物は、化合物Aを含有しない。このような比較用組成物については、吸水性が大きいことが分かる。
From the above results, it is apparent that the cured product formed from the curable composition of the present invention has low water absorbency.
The comparative composition according to Comparative Example 1 does not contain compound A. It is clear that such a comparative composition has high water absorption.

Claims (15)

  1.  少なくとも1つの水素原子がフッ素原子により置換された炭化水素基である基A、並びに、保護されていてもよい求核性官能基、求電子性官能基、アルコキシシリル基、及び、エチレン性不飽和結合を有する基よりなる群から選ばれた少なくとも1種の基である基Bを有する化合物Aと、
     フィラーとを含む
     硬化性組成物。
    A compound A having a group A which is a hydrocarbon group in which at least one hydrogen atom is substituted with a fluorine atom, and a group B which is at least one group selected from the group consisting of an optionally protected nucleophilic functional group, an electrophilic functional group, an alkoxysilyl group, and a group having an ethylenically unsaturated bond;
    A curable composition comprising:
  2.  前記化合物Aが、前記基Bとして、ヒドロキシ基、メルカプト基、アミノ基、カルボキシ基、及び、これらの基が保護された基よりなる群から選ばれた少なくとも1種の基を含む
    、請求項1に記載の硬化性組成物。
    The curable composition according to claim 1, wherein the compound A contains, as the group B, at least one group selected from the group consisting of a hydroxy group, a mercapto group, an amino group, a carboxy group, and groups obtained by protecting these groups.
  3.  前記化合物Aが、前記基Bとして、エポキシ基、オキセタニル基、マレイミド基、及び、オキサゾリル基よりなる群から選ばれた少なくとも1種の基を含む、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the compound A contains, as the group B, at least one group selected from the group consisting of an epoxy group, an oxetanyl group, a maleimide group, and an oxazolyl group.
  4.  前記化合物Aが、前記基Bとして、下記式(1)で表される基を含む、請求項1に記載の硬化性組成物。
     
    式(1)中、R、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
    The curable composition according to claim 1 , wherein the compound A contains, as the group B, a group represented by the following formula (1):

    In formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to other structures.
  5.  前記化合物Aが、前記基Bとして、下記式(2)で表される基を含む、請求項1に記載の硬化性組成物。

    式(2)中、R及びRはそれぞれ独立に、水素原子又は1価の有機基を表し、*は他の構造との結合部位を表す。
    The curable composition according to claim 1 , wherein the compound A contains, as the group B, a group represented by the following formula (2):

    In formula (2), R4 and R5 each independently represent a hydrogen atom or a monovalent organic group, and * represents a bonding site to another structure.
  6.  前記化合物Aの分子量が100以上2000未満である、請求項1~5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the molecular weight of compound A is 100 or more and less than 2000.
  7.  前記フィラーがシリカ、アルミナ、酸化アルミニウム、窒化アルミニウム、チタニア、ジルコニア、及び、ガラス繊維からなる群より選ばれた少なくとも1種を含む、請求項1~5のいずれか1項に記載の硬化性組成物。 The hardenable composition according to any one of claims 1 to 5, wherein the filler comprises at least one selected from the group consisting of silica, alumina, aluminum oxide, aluminum nitride, titania, zirconia, and glass fiber.
  8.  エポキシ樹脂、フェノール樹脂、及び、マレイミド樹脂よりなる群から選ばれた少なくとも1種の樹脂を更に含む、請求項1~5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, further comprising at least one resin selected from the group consisting of epoxy resins, phenolic resins, and maleimide resins.
  9.  前記化合物Aが下記式(3)で表される基を含む、請求項1~5のいずれか1項記載の硬化性組成物。

    式(3)中、xは1~10の整数を示す。
    The curable composition according to any one of claims 1 to 5, wherein the compound A contains a group represented by the following formula (3):

    In formula (3), x represents an integer of 1 to 10.
  10.  前記化合物Aが、前記基Bを2以上有する、請求項1~5のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the compound A has two or more of the groups B.
  11.  半導体封止剤形成用である請求項1~5いずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, which is used to form a semiconductor encapsulant.
  12.  請求項1~5のいずれか1項に記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 5.
  13.  請求項1~5のいずれか1項に記載の硬化性組成物を加熱する工程を含む
     硬化物の製造方法。
    A method for producing a cured product, comprising a step of heating the curable composition according to any one of claims 1 to 5.
  14.  半導体素子、及び、請求項12に記載の硬化物を含む、半導体パッケージ。 A semiconductor package comprising a semiconductor element and the cured product according to claim 12.
  15.  半導体素子を備える面を有する基材の半導体素子を備える面に請求項1~5のいずれか1項に記載の硬化性組成物を付与する工程、及び、
     前記硬化性組成物を加熱する工程を含む
     半導体パッケージの製造方法。
    A step of applying the curable composition according to any one of claims 1 to 5 to the surface of a substrate having a semiconductor element; and
    A method for producing a semiconductor package, comprising the step of heating the curable composition.
PCT/JP2023/035236 2022-09-29 2023-09-27 Curable composition, cured product, production method for cured product, semiconductor package, and production method for semiconductor package WO2024071234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156686 2022-09-29
JP2022156686 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071234A1 true WO2024071234A1 (en) 2024-04-04

Family

ID=90477936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035236 WO2024071234A1 (en) 2022-09-29 2023-09-27 Curable composition, cured product, production method for cured product, semiconductor package, and production method for semiconductor package

Country Status (1)

Country Link
WO (1) WO2024071234A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187752A (en) * 1986-02-14 1987-08-17 Hitachi Ltd Heat-resistant resin composition and resin-sealed semiconductor device
JPH01108221A (en) * 1987-10-21 1989-04-25 Hitachi Ltd Epoxy resin composition and material for sealing semiconductor device and material for laminate
JPH01249827A (en) * 1988-03-31 1989-10-05 Toshiba Corp Epoxy resin molding material for sealing semiconductor
JPH04206759A (en) * 1990-11-30 1992-07-28 Mitsui Petrochem Ind Ltd Semiconductor device and its packaging material
JPH0570562A (en) * 1991-09-10 1993-03-23 Toshiba Chem Corp Resin composition for sealing and sealed semiconductor device
JPH05331355A (en) * 1992-06-02 1993-12-14 Toshiba Chem Corp Conductive paste
JPH0797563A (en) * 1993-09-28 1995-04-11 Sumitomo Chem Co Ltd Resin composition for sealing semiconductor element and resin-sealed semiconductor device
JP2002060464A (en) * 2000-06-08 2002-02-26 Nec Corp Electronic part device
JP2015044903A (en) * 2013-08-27 2015-03-12 日立化成株式会社 Thermosetting resin composition for light reflection, optical semiconductor element mounting board and method for manufacturing the same, and optical semiconductor device
JP2017115006A (en) * 2015-12-24 2017-06-29 株式会社ダイセル Curable epoxy resin composition
JP2018111750A (en) * 2017-01-10 2018-07-19 信越化学工業株式会社 Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187752A (en) * 1986-02-14 1987-08-17 Hitachi Ltd Heat-resistant resin composition and resin-sealed semiconductor device
JPH01108221A (en) * 1987-10-21 1989-04-25 Hitachi Ltd Epoxy resin composition and material for sealing semiconductor device and material for laminate
JPH01249827A (en) * 1988-03-31 1989-10-05 Toshiba Corp Epoxy resin molding material for sealing semiconductor
JPH04206759A (en) * 1990-11-30 1992-07-28 Mitsui Petrochem Ind Ltd Semiconductor device and its packaging material
JPH0570562A (en) * 1991-09-10 1993-03-23 Toshiba Chem Corp Resin composition for sealing and sealed semiconductor device
JPH05331355A (en) * 1992-06-02 1993-12-14 Toshiba Chem Corp Conductive paste
JPH0797563A (en) * 1993-09-28 1995-04-11 Sumitomo Chem Co Ltd Resin composition for sealing semiconductor element and resin-sealed semiconductor device
JP2002060464A (en) * 2000-06-08 2002-02-26 Nec Corp Electronic part device
JP2015044903A (en) * 2013-08-27 2015-03-12 日立化成株式会社 Thermosetting resin composition for light reflection, optical semiconductor element mounting board and method for manufacturing the same, and optical semiconductor device
JP2017115006A (en) * 2015-12-24 2017-06-29 株式会社ダイセル Curable epoxy resin composition
JP2018111750A (en) * 2017-01-10 2018-07-19 信越化学工業株式会社 Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same

Similar Documents

Publication Publication Date Title
KR101194498B1 (en) Flame Retardant and an Epoxy Resin Composition comprising the Same for Encapsulating Semiconductor Device
JP6435707B2 (en) Resin composition for mold underfill and electronic component device
JP7302598B2 (en) Curable resin composition and electronic component device
JP2017031402A (en) Thermosetting epoxy resin composition
JP6435708B2 (en) Resin composition for mold underfill and electronic component device
JP2017125150A (en) Resin composition
JP2016020464A (en) Resin composition for sealing, and semiconductor device
TW201704434A (en) Resin composition for encapsulation, method for manufacturing electronic component and electronic component
JP2018172545A (en) Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2020107767A (en) Sealing resin composition, hollow package and method for manufacturing the same
WO2020137610A1 (en) Hollow package and method for manufacturing same
JP7484081B2 (en) Curable resin composition and electronic component device
TWI824463B (en) Thermosetting resin composition and electronic component
JP6322966B2 (en) Resin composition for sealing and electronic component device
WO2020080369A1 (en) Additive for curable resin compositions, curable resin composition and electronic component device
JP7155502B2 (en) SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND ENCLOSURE RESIN COMPOSITION
JP2020045380A (en) Curable resin composition and electronic part device
JP2020063404A (en) Epoxy resin composition and electronic component device
WO2024071234A1 (en) Curable composition, cured product, production method for cured product, semiconductor package, and production method for semiconductor package
JP6705487B2 (en) Resin composition for mold underfill and electronic component device
WO2020255749A1 (en) Composition for sealing, semiconductor device, and method for producing semiconductor device
JP7427990B2 (en) Resin composition and structure
JP2013142136A (en) Flame-retardant liquid epoxy resin composition for encapsulating semiconductor and semiconductor device
JP6708242B2 (en) Resin composition for mold underfill and electronic component device
JP6489263B2 (en) Resin composition for sealing and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872456

Country of ref document: EP

Kind code of ref document: A1