WO2024071205A1 - 酸化ケイ素膜の形成方法 - Google Patents

酸化ケイ素膜の形成方法 Download PDF

Info

Publication number
WO2024071205A1
WO2024071205A1 PCT/JP2023/035156 JP2023035156W WO2024071205A1 WO 2024071205 A1 WO2024071205 A1 WO 2024071205A1 JP 2023035156 W JP2023035156 W JP 2023035156W WO 2024071205 A1 WO2024071205 A1 WO 2024071205A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reactor
formula
silicon oxide
purging
Prior art date
Application number
PCT/JP2023/035156
Other languages
English (en)
French (fr)
Inventor
敬輔 永田
陽介 海老原
浩幸 本田
Original Assignee
エア・ウォーター株式会社
エア・ウォーター・パフォーマンスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社, エア・ウォーター・パフォーマンスケミカル株式会社 filed Critical エア・ウォーター株式会社
Publication of WO2024071205A1 publication Critical patent/WO2024071205A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a method for forming a silicon oxide film.
  • CVD Chemical vapor deposition
  • the purpose of this disclosure is to provide a method for forming a silicon oxide film by atomic layer deposition using a silicon compound with excellent heat resistance.
  • R1 is a methoxy group or an ethoxy group
  • R2 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group, or an ethoxy group
  • R3 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, a group represented by the following formula (2) or a group represented by the following formula (3)
  • R4 is a group represented by the following formula (2) or a group represented by the following formula (3).
  • R 5 to R 10 each independently represent a hydrogen atom, a methyl group, or an ethyl group.
  • R 1 to R 3 each represent a methoxy group;
  • the present disclosure provides a method for forming a silicon oxide film by atomic layer deposition using a silicon compound with excellent heat resistance.
  • FIG. 1 is a schematic flow chart of a method for forming a silicon oxide film according to the present embodiment.
  • FIG. 2 is a conceptual diagram showing an example of a film forming apparatus applicable to the method of forming a silicon oxide film in this embodiment.
  • FIG. 3 is a graph showing the relationship between the growth rate of a silicon oxide film and the supply amount of a silicon compound in Example 1 and Comparative Example 1 of this embodiment.
  • FIG. 4 is a graph showing the relationship between the growth rate of a silicon oxide film and the supply amount of a silicon compound in Example 2 of this embodiment.
  • the method for forming a silicon oxide film of this embodiment includes a preparation step of preparing a substrate in a reactor, a first introduction step of introducing at least one silicon compound represented by the following formula (1) into the reactor, a first purge step of purging the reactor with a purge gas, a second introduction step of introducing an oxygen source into the reactor, and a second purge step of purging the reactor with a purge gas.
  • the first introduction step to the second purge step are carried out at a temperature of 650° C. to 800° C. and a pressure of 7.6 Pa to 100 kPa.
  • R 1 is a methoxy group or an ethoxy group
  • R 2 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group or an ethoxy group
  • R 3 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, a group represented by the following formula (2) or a group represented by the following formula (3)
  • R 4 is a group represented by the following formula (2) or the above formula (3).
  • R 5 to R 10 each independently represent a hydrogen atom, a methyl group, or an ethyl group.
  • FIG. 1 is a schematic flow chart of the method for forming a silicon oxide film in this embodiment. Each step of the method for forming a silicon oxide film is described below.
  • thermal ALD is capable of forming high-quality films in high-temperature regions.
  • plasma ALD is capable of forming high-quality films in high-temperature regions.
  • the preparation step is a step of preparing a substrate in a reactor.
  • the substrate used in the present disclosure is not particularly limited as long as it is a substrate capable of growing the precursor silicon compound, but examples include ceramic substrates such as silicon substrates, silicon oxide substrates, and silicon nitride substrates. Of these, it is preferable to use silicon substrates or silicon oxide substrates from the viewpoint of forming a high-quality film.
  • the first introduction step is a step of introducing at least one silicon compound represented by the above formula (1) into a reactor. This step is a step of adsorbing the silicon compound, which is a precursor, onto the surface of a substrate.
  • the silicon compound may be introduced into the reactor by a carrier gas.
  • the carrier gas refers to an inert gas that promotes the supply of the silicon compound to the reactor.
  • the carrier gas and the silicon compound do not react with each other.
  • the carrier gas include hydrogen (H 2 ), helium (He), nitrogen (N 2 ), neon (Ne), and argon (Ar).
  • R1 is a methoxy group or an ethoxy group
  • R2 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group or an ethoxy group
  • R3 is a hydrogen atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, a group represented by the above formula (2) or a group represented by the above formula (3)
  • R4 is a group represented by the above formula (2) or a group represented by the above formula (3).
  • Such compounds can be useful precursors for forming silicon oxide films.
  • Examples of silicon compounds represented by formula (1) include those having a structure represented by formula (4) below.
  • R 11 is a methyl group or an ethyl group
  • R 12 is a methoxy group or an ethoxy group
  • R 13 is any one of the structures represented by the following formula (5)
  • R 14 is any one of the structures represented by the following formula (6). Note that R 11 in the following formulas (5) and (6) is the same group as above.
  • the silicon compound represented by the above formula (1) is preferably 3-methylpyrazolyltrimethoxysilane represented by the following formula (7) or 2-methylimidazolyltrimethoxysilane represented by the following formula (8).
  • This process may be carried out for a time and flow rate that allows the silicon compound to be adsorbed onto the surface of the substrate. This process may be carried out for a time of, for example, 0.1 seconds or more and 1000 seconds or less.
  • the silicon compound in this process may be introduced into the reactor at a flow rate of, for example, 1 sccm or more and 2000 sccm or less.
  • the flow rate unit "sccm (Standard Cubic Centimeter per Minute)" indicates "mL/min" under standard conditions (0°C, 101.3 kPa).
  • the first purge step is a step of purging the reactor with a purge gas after the first introduction step, and is a step of removing excess silicon compound that was not adsorbed on the substrate in the first introduction step.
  • an inert gas capable of removing the precursor silicon compound can be used as the purge gas.
  • the purge gas does not react with the silicon compound.
  • examples of such an inert purge gas include the same gas as the carrier gas described above.
  • This process may be carried out for a time and at a flow rate that allows excess silicon compounds to be removed. This process may be carried out for a time of, for example, 0.1 seconds or more and 1000 seconds or less.
  • the purge gas in this process may be introduced into the reactor at a flow rate of, for example, 10 sccm or more and 2000 sccm or less.
  • the second introduction step is a step of introducing an oxygen source into a reactor, and is a step of forming a silicon oxide film by reacting the oxygen source with the silicon compound, which is a precursor, adsorbed on the surface of the substrate.
  • the oxygen source is not particularly limited, but examples thereof include water, oxygen ( O2 ), peroxide, oxygen plasma, ozone ( O3 ), nitric oxide ( N2O ), nitrogen dioxide ( NO2 ), carbon monoxide (CO), carbon dioxide ( CO2 ), and combinations thereof.
  • This process may be carried out for a time and at a flow rate that allows the silicon compound and the oxygen source to react. This process may be carried out for a time of, for example, 0.1 seconds or more and 100 seconds or less.
  • the oxygen source in this process may be introduced into the reactor at a flow rate of, for example, 1 sccm or more and 2000 sccm or less.
  • the second purge step is a step of purging the reactor with a purge gas after the second introduction step, which is a step of removing the oxygen source that has not reacted with the silicon compound in the second introduction step.
  • the purge gas used in this process, the duration of this process, and the flow rate of the purge gas are the same as those in the first purge process described above, so details will be omitted.
  • the first introduction step, the first purge step, the second introduction step, and the second purge step are performed at a temperature of 650° C. to 800° C.
  • the first introduction step to the second purge step are preferably performed at a temperature of 650° C. to 750° C.
  • the first introduction step through the second purge step are carried out at a pressure of 7.6 Pa or more and 100 kPa or less.
  • a pressure of 7.6 Pa or more and 100 kPa or less a film with high adhesion and good coverage can be formed. It is preferable that the first introduction step through the second purge step be carried out at a pressure of 10 Pa or more and 1 kPa or less.
  • the first introduction step through the second purging step may be repeated. By repeatedly performing the first introduction step through the second purging step, a silicon oxide film of the desired thickness can be obtained.
  • the film forming apparatus 1 includes at least a reactor 11 for accommodating a substrate W as an object to be processed, a precursor gas supply line 14 for supplying a silicon compound as a precursor, a purge gas supply line 15 for supplying a purge gas, an oxygen source supply line 16 for supplying an oxygen source, and an exhaust line 17 for exhausting the atmosphere in the reactor 11.
  • the reactor 11 has an airtight structure that allows the inside of the reactor 11 to be isolated from the outside air.
  • the reactor 11 is configured in such a way that the substrate W can be accommodated in a horizontal position using a boat or the like.
  • the reactor 11 may be equipped with a heating mechanism (not shown) that can heat the substrate W accommodated therein to a predetermined temperature.
  • a heating mechanism there are no particular limitations on the heating mechanism, but a known mechanism such as a heater can be used.
  • the precursor supply unit 12 has the function of supplying precursors to the reactor 11. Liquid or solid precursors are stored in the precursor supply unit 12.
  • a carrier gas supply path 13 for introducing a carrier gas is connected to the precursor supply unit 12.
  • the flow rate of the carrier gas supplied from the carrier gas supply path 13 can be controlled by an MFC (Mass Flow Controller).
  • a precursor gas supply path 14 is provided between the precursor supply unit 12 and the reactor 11. This allows a precursor gas, which is a vaporized liquid or solid precursor stored in the precursor supply unit 12, to be supplied to the reactor 11.
  • a needle valve 19 and an on-off valve 20 are provided in the precursor gas supply path 14.
  • the needle valve 19 adjusts the flow rate of the gas flowing through the precursor gas supply path 14.
  • the on-off valve 20 controls the supply or stop of the gas flowing through the precursor gas supply path 14.
  • the purge gas supply line 15 has the function of supplying purge gas to the reactor 11.
  • the purge gas supply line 15 is connected to the reactor 11.
  • the flow rate of the supplied purge gas can be controlled by an MFC.
  • An on-off valve 21 is provided in the purge gas supply line 15. The on-off valve 21 controls the supply or stop of the purge gas flowing through the purge gas supply line 15.
  • the oxygen source supply line 16 has the function of supplying an oxygen source to the reactor 11.
  • the oxygen source supply line 16 is connected to the reactor 11.
  • the flow rate of the supplied oxygen source can be controlled by an MFC.
  • An on-off valve 22 is provided in the oxygen source supply line 16. The on-off valve 22 controls the supply or stop of the oxygen source flowing through the oxygen source supply line 16.
  • the exhaust path 17 has the function of exhausting the atmosphere inside the reactor 11.
  • the exhaust path 17 is connected to the reactor 11.
  • a pressure sensor (not shown) as a pressure detection unit that detects the pressure inside the reactor 11
  • an APC Automatic Pressure Control Valve
  • a vacuum pump (not shown) as a vacuum exhaust device
  • the opening and closing of the APC valve 18 is controlled by PID (Proportional-Integral-Differential Controller) control based on the measurement of the pressure sensor while the vacuum pump is operating. This allows the pressure inside the reactor 11 to be adjusted as desired.
  • PID Proportional-Integral-Differential Controller
  • the exhaust gas discharged from the exhaust passage 17 may contain toxic gases, flammable gases, etc. Therefore, by providing a water washing scrubber, sulfuric acid scrubber, caustic scrubber, dry detoxification device, etc. in the exhaust passage 17, the exhaust gas may be rendered harmless so that it can be released into the atmosphere.
  • GC Gas chromatograph
  • GC-MS gas chromatograph mass spectrometer
  • n-Butyllithium Kanto Chemical Co., Ltd.
  • 3-Methylpyrazole Tokyo Chemical Industry Co., Ltd.
  • TCI Tetrahydrofuran: Fujifilm Wako Pure Chemical Industries, Ltd.
  • 2-Methylimidazole TCI Corporation
  • Triethylamine TCI Corporation
  • Chlorotrimethoxysilane TCI Corporation
  • Example 1 Atomic layer deposition of a silicon oxide film was carried out using 3-methylpyrazolyltrimethoxysilane represented by formula (7) above.
  • a silicon substrate was placed in the reactor of the film forming apparatus.
  • 3-Methylpyrazolyltrimethoxysilane was introduced into the reactor with N2 gas as a carrier gas.
  • the reactor was purged with N2 gas as a purge gas.
  • O3 as an oxygen source was introduced into the reactor.
  • the reactor was purged with N2 gas as a purge gas.
  • Each step was performed 100 cycles under the conditions in Table 1 below, with the first introduction step time set to 1 second, 10 seconds, 23 seconds, and 44 seconds.
  • Example 2 Atomic layer deposition of a silicon oxide film was carried out using 2-methylimidazolyltrimethoxysilane represented by formula (8) above.
  • a silicon oxide film was formed using the same substrate, carrier gas, purge gas, and oxygen source as in Example 1, except that the above-mentioned DMATMS was used. Each process was performed for 100 cycles under the conditions in Table 3 below, with the first introduction step time set to 9 seconds, 15 seconds, 20 seconds, and 120 seconds.
  • MBDE minimum bond dissociation energy
  • MBDE indicates the minimum value among BDEs, which are the energy required to break a specific chemical bond, and corresponds to the BDE of the weakest bond in a molecule, and the higher the value of the energy, the better the heat resistance.
  • MBDE was calculated using Gaussian 16, a quantum chemical calculation program manufactured by Gaussian.
  • the bond dissociation energy between oxygen and the methyl group bonded to oxygen was MBDE
  • Comparative Example 1 the bond dissociation energy between nitrogen and the methyl group bonded to nitrogen was MBDE. The results are shown in Table 4.
  • the growth rates of silicon oxide films in Examples 1 and 2 and Comparative Example 1 were calculated.
  • the growth rate indicates the growth of silicon oxide film relative to the supply amount of silicon compound, and is an index of ALD. If the growth rate of silicon oxide film becomes saturated with an increase in the supply amount, it can be said that silicon oxide film is formed by ALD.
  • the growth rate was calculated from the amount of film deposited per cycle.
  • Figures 3 and 4. the graph of Example 1 was derived by plotting the growth rates when the first introduction step time was 1 second, 10 seconds, 23 seconds, and 44 seconds with cross marks
  • the graph of Comparative Example 1 was derived by plotting the growth rates when the first introduction step time was 9 seconds, 15 seconds, 20 seconds, and 120 seconds with square marks.
  • the graph of Example 2 was derived by plotting the growth rates when the first introduction step time was 25 seconds, 60 seconds, and 119 seconds with circles.
  • Example 1 As the supply amount of 3-methylpyrazolyltrimethoxysilane increased, the growth rate curve flattened out, i.e., reached a saturated state.
  • Example 2 it was confirmed that as the supply amount of 2-methylimidazolyltrimethoxysilane increased, the growth rate curve flattened out, i.e., reached a saturated state. From this, it can be said that in Examples 1 and 2, a silicon oxide film was formed by ALD.
  • Comparative Example 1 as the supply amount of DMATMS increased, the growth rate curve did not flatten out. This is thought to be due to the presence of film formation by CVD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基材を反応器内に準備する準備工程と、下記式(1)で表される少なくとも1種のケイ素化合物を前記反応器内に導入する第1導入工程と、前記反応器をパージガスでパージする第1パージ工程と、酸素源を前記反応器に導入する第2導入工程と、前記反応器を前記パージガスでパージする第2パージ工程と、を含み、前記第1導入工程から前記第2パージ工程は、650℃以上800℃以下の温度および7.6Pa以上100kPa以下の圧力で実施される、酸化ケイ素膜の形成方法。前記式(1)中、R1は、メトキシ基またはエトキシ基であり、R2は、水素原子、メチル基、エチル基、メトキシ基またはエトキシ基であり、R3は、水素原子、メチル基、エチル基、メトキシ基、エトキシ基、下記式(2)で表される基または下記式(3)で表される基であり、R4は、下記式(2)で表される基または式(3)で表される基である。前記式(2)および前記式(3)中、R5~R10は、それぞれ独立に、水素原子、メチル基またはエチル基である。

Description

酸化ケイ素膜の形成方法
 本開示は、酸化ケイ素膜の形成方法に関する。
 近年、NAND型フラッシュメモリセルの3D化に伴い、高密着かつ被覆性のよい良質な絶縁膜を形成するため、高温(650℃以上)での酸化ケイ素の成膜が求められている。
 高温での酸化ケイ素膜の形成方法としては、化学気相成長法(Chemical Vapor Deposition:CVD)が主に適用されている。しかし、CVDは化学反応と熱分解とを利用した成膜方法であるため、高密着で被覆性のよい成膜には適していない。また、微細パターン部への成膜ができず、微細な部位には採用することができない。
 そこで、高温領域で良質な成膜が可能な原子層堆積法(Atomic Layer Deposition:ALD)を用いた酸化ケイ素膜の形成が検討されている(例えば、特許文献1~3)。
特開2018-14536号公報 特表2019-507750号公報 国際公開第2021/050368号
 本開示の目的は、耐熱性に優れたケイ素化合物を用いた、原子層堆積法による酸化ケイ素膜の形成方法を提供することである。
 〔1〕基材を反応器内に準備する準備工程と、
 下記式(1)で表される少なくとも1種のケイ素化合物を前記反応器内に導入する第1導入工程と、
 前記反応器をパージガスでパージする第1パージ工程と、
 酸素源を前記反応器に導入する第2導入工程と、
 前記反応器を前記パージガスでパージする第2パージ工程と、を含み、
 前記第1導入工程から前記第2パージ工程は、650℃以上800℃以下の温度および7.6Pa以上100kPa以下の圧力で実施される、酸化ケイ素膜の形成方法。
Figure JPOXMLDOC01-appb-C000004

 前記式(1)中、
 Rは、メトキシ基またはエトキシ基であり、
 Rは、水素原子、メチル基、エチル基、メトキシ基またはエトキシ基であり、
 Rは、水素原子、メチル基、エチル基、メトキシ基、エトキシ基、下記式(2)で表される基または下記式(3)で表される基であり、
 Rは、下記式(2)で表される基または下記式(3)で表される基である。
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

 前記式(2)および前記式(3)中、
 R~R10は、それぞれ独立に、水素原子、メチル基またはエチル基である。
 〔2〕前記式(1)中、
 前記R~Rは、メトキシ基であり、
 前記Rは、前記式(3)で表される基である、〔1〕に記載の酸化ケイ素膜の形成方法。
 〔3〕前記第1導入工程から前記第2パージ工程は、繰り返し実施される、〔1〕または〔2〕に記載の酸化ケイ素膜の形成方法。
 本開示によれば、耐熱性に優れたケイ素化合物を用いた、原子層堆積法による酸化ケイ素膜の形成方法を提供することができる。
図1は、本実施形態における酸化ケイ素膜の形成方法の概略フローチャートである。 図2は、本実施の形態における酸化ケイ素膜の形成方法に適用可能な成膜装置の一例を示す概念図である。 図3は、本実施形態における実施例1および比較例1のケイ素化合物の供給量に対する、酸化ケイ素膜の成長速度の関係を示すグラフである。 図4は、本実施形態における実施例2のケイ素化合物の供給量に対する、酸化ケイ素膜の成長速度の関係を示すグラフである。
 以下、本開示の実施形態が説明される。ただし以下の説明は請求の範囲を限定するものではない。
 <酸化ケイ素膜の形成方法>
 本実施形態の酸化ケイ素膜の形成方法は、基材を反応器内に準備する準備工程と、下記式(1)で表される少なくとも1種のケイ素化合物を反応器内に導入する第1導入工程と、反応器をパージガスでパージする第1パージ工程と、酸素源を反応器に導入する第2導入工程と、反応器をパージガスでパージする第2パージ工程と、を含む。第1導入工程から第2パージ工程は、650℃以上800℃以下の温度および7.6Pa以上100kPa以下の圧力で実施される。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Rは、メトキシ基またはエトキシ基であり、Rは、水素原子、メチル基、エチル基、メトキシ基またはエトキシ基であり、Rは、水素原子、メチル基、エチル基、メトキシ基、エトキシ基、下記式(2)で表される基または下記式(3)で表される基であり、Rは、下記式(2)で表される基または上記式(3)で表される基である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(2)および式(3)中、R~R10は、それぞれ独立に、水素原子、メチル基またはエチル基である。
 図1は、本実施形態における酸化ケイ素膜の形成方法の概略フローチャートである。以下、酸化ケイ素膜の形成方法の各工程について説明する。
 なお、ALDには、サーマルALDおよびプラズマALDの2種類がある。本開示では、高温領域で良質な成膜が可能なサーマルALDを用いる。
 (準備工程)
 準備工程とは、基材を反応器内に準備する工程である。
 本開示で用いられる基材としては、前駆体であるケイ素化合物を成長させることができる基材であれば特に制限はないが、例えば、ケイ素基材、酸化ケイ素基材、窒化ケイ素基材等のセラミック基材が挙げられる。これらのうち、良質な成膜の観点から、ケイ素基材または酸化ケイ素基材を用いることが好ましい。
 (第1導入工程)
 第1導入工程とは、上記式(1)で表される少なくとも1種のケイ素化合物を反応器内に導入する工程である。本工程は、前駆体であるケイ素化合物を基材の表面に吸着させる工程である。
 ケイ素化合物は、キャリアガスにより反応器内に導入されてもよい。ここで、キャリアガスとは、ケイ素化合物の反応器への供給を促進する不活性ガスのことをいう。キャリアガスとケイ素化合物とは、反応しない。キャリアガスとしては、例えば、水素(H)、ヘリウム(He)、窒素(N)、ネオン(Ne)、アルゴン(Ar)等が挙げられる。
 上記式(1)中、Rは、メトキシ基またはエトキシ基であり、Rは、水素原子、メチル基、エチル基、メトキシ基またはエトキシ基であり、Rは、水素原子、メチル基、エチル基、メトキシ基、エトキシ基、上記式(2)で表される基または上記式(3)で表される基であり、Rは、上記式(2)で表される基または上記式(3)で表される基である。
 このような化合物は、酸化ケイ素膜の形成において有用な前駆体となり得る。式(1)で表されるケイ素化合物としては、例えば、下記式(4)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(4)中、R11は、メチル基またはエチル基であり、R12は、メトキシ基またはエトキシ基であり、R13は、下記式(5)で表される構造のいずれか1つであり、R14は、下記式(6)で表される構造のいずれか1つである。なお、下記式(5)および式(6)中のR11も、上記と同じ基である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(1)で表されるケイ素化合物としては、耐熱性の観点から、下記式(7)で表される3-メチルピラゾリルトリメトキシシラン、下記式(8)で表される2-メチルイミダゾリルトリメトキシシランが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本工程は、ケイ素化合物を基材の表面に吸着させることができる時間および流量で実施すればよい。本工程は、例えば、0.1秒以上1000秒以下の時間で実施されてもよい。本工程におけるケイ素化合物は、例えば、1sccm以上2000sccm以下の流量で反応器に導入されてもよい。なお、流量の単位「sccm(Standard Cubic Centimeter per Minute)」は、標準状態(0℃、101.3kPa)における「mL/min」を示している。
 (第1パージ工程)
 第1パージ工程とは、第1導入工程後の反応器をパージガスでパージする工程である。本工程は、第1導入工程で基材に吸着しなかった余分なケイ素化合物を除去する工程である。
 パージガスとしては、前駆体であるケイ素化合物を除去することができる不活性ガスを用いることができる。パージガスとケイ素化合物とは、反応しない。このような不活性ガスであるパージガスとしては、上述のキャリアガスと同じガスが挙げられる。
 本工程は、余分なケイ素化合物を除去することができる時間および流量で実施すればよい。本工程は、例えば、0.1秒以上1000秒以下の時間で実施されてもよい。本工程におけるパージガスは、例えば、10sccm以上2000sccm以下の流量で反応器に導入されてもよい。
 (第2導入工程)
 第2導入工程とは、酸素源を反応器に導入する工程である。本工程は、基板の表面に吸着した前駆体であるケイ素化合物と酸素源とを反応させることにより、酸化ケイ素膜を形成させる工程である。
 酸素源としては、特に制限はないが、例えば、水、酸素(O)、過酸化物、酸素プラズマ、オゾン(O)、一酸化窒素(NO)、二酸化窒素(NO)、一酸化炭素(CO)、二酸化炭素(CO)およびこれらの組み合わせ等が挙げられる。
 本工程は、ケイ素化合物と酸素源とが反応することができる時間および流量で実施すればよい。本工程は、例えば、0.1秒以上100秒以下の時間で実施されてもよい。本工程における酸素源は、例えば、1sccm以上2000sccm以下の流量で反応器に導入されてもよい。
 (第2パージ工程)
 第2パージ工程とは、第2導入工程後の反応器をパージガスでパージする工程である。本工程は、第2導入工程でケイ素化合物と反応しなかった酸素源を除去する工程である。
 本工程で用いられるパージガス、本工程の実施時間およびパージガスの流量は、上述の第1パージ工程と同一であるため、詳細は省略する。
 (第1導入工程から第2パージ工程)
 第1導入工程、第1パージ工程、第2導入工程および第2パージ工程は、650℃以上800℃以下の温度で実施される。第1導入工程から第2パージ工程が650℃以上800℃以下の温度で実施される場合、高密着で被覆性のよい成膜が可能となる。第1導入工程から第2パージ工程は、650℃以上750℃以下の温度で実施されることが好ましい。
 第1導入工程から第2パージ工程は、7.6Pa以上100kPa以下の圧力で実施される。第1導入工程から第2パージ工程が7.6Pa以上100kPa以下の圧力で実施される場合、高密着で被覆性のよい成膜が可能となる。第1導入工程から第2パージ工程は、10Pa以上1kPa以下の圧力で実施されることが好ましい。
 第1導入工程から第2パージ工程は、繰り返し実施されてもよい。第1導入工程から第2パージ工程が繰り返し実施されることにより、所望の厚さの酸化ケイ素膜を得ることができる。
 <成膜装置>
 図2を参照して、本実施の形態における酸化ケイ素膜の形成方法に適用可能な成膜装置の一例について説明する。成膜装置1は、被処理対象物としての基材Wを収容する反応器11と、前駆体であるケイ素化合物を供給する前駆体ガス供給路14と、パージガスを供給するパージガス供給路15と、酸素源を供給する酸素源供給路16と、反応器11内の雰囲気を排出するための排出路17と、を少なくとも備える。
 反応器11は、その内部が外気との遮断を可能にする密閉構造を有している。また、反応器11は、基材Wをボート等によって水平姿勢の状態で収容可能な態様で構成されている。反応器11は、内部に収容する基材Wを所定温度に加熱することが可能な加熱機構(図示せず)を備えてもよい。加熱機構としては、特に制限はないが、例えば、ヒーター等の公知のものを採用することができる。
 前駆体供給部12は、前駆体を反応器11に供給する機能を有する。前駆体供給部12には、液体状または固体状の前駆体が貯蔵されている。また、前駆体供給部12には、キャリアガスを導入するためのキャリアガス供給路13が接続されている。キャリアガス供給路13から供給されるキャリアガスは、MFC(Mass Flow Controller)による流量制御が可能となっている。
 前駆体供給部12と反応器11との間には、前駆体ガス供給路14が設けられている。これにより、前駆体供給部12内に貯蔵されている液体状または固体状の前駆体が気化した前駆体ガスを、反応器11に供給する。また、前駆体ガス供給路14には、ニードル弁19および開閉弁20が設けられている。ニードル弁19は、前駆体ガス供給路14を流れるガスの流量を調節する。開閉弁20は、前駆体ガス供給路14を流れるガスの供給または停止を制御する。
 パージガス供給路15は、パージガスを反応器11に供給する機能を有する。パージガス供給路15は、反応器11に接続されている。供給されるパージガスは、MFCによる流量制御が可能となっている。パージガス供給路15には、開閉弁21が設けられている。開閉弁21は、パージガス供給路15を流れるパージガスの供給または停止を制御する。
 酸素源供給路16は、酸素源を反応器11に供給する機能を有する。酸素源供給路16は、反応器11に接続されている。供給される酸素源は、MFCによる流量制御が可能となっている。酸素源供給路16には、開閉弁22が設けられている。開閉弁22は、酸素源供給路16を流れる酸素源の供給または停止を制御する。
 排出路17は、反応器11内の雰囲気を排気する機能を有する。排出路17は、反応器11に接続されている。排出路17には、反応器11内の圧力を検出する圧力検出部としての圧力センサー(図示せず)、反応器11内の圧力を制御する圧力制御部としてのAPC(Automatic Pressure Control Valve:自動圧力制御)バルブ18、および、真空排気装置としての真空ポンプ(図示せず)が接続されている。APCバルブ18の開閉制御は、真空ポンプを作動させた状態で圧力センサーの計測に基づいてPID(Proportional-Integral-Differential Controller)制御により行われる。これにより、反応器11内の圧力を任意に調整している。
 なお、排出路17から排出される排出ガスには、有毒ガスや可燃性ガス等が含まれる可能性がある。そのため、排出路17に水洗スクラバー、硫酸スクラバー、苛性スクラバー、乾式除害装置等を設けることにより、排出ガスを無害化して大気放出が可能な態様にしてもよい。
 以下、実施例が説明される。ただし以下の例は、請求の範囲を限定するものではない。
 本実施例では、以下に示される装置を用いた。なお、ガスクロマトグラフは「GC」と、ガスクロマトグラフ質量分析装置は「GC-MS」と、それぞれ略記される。また、本実施例では、図2に示す構成を有する成膜装置を用いた。
 GC   :株式会社島津製作所製、GC-2025AF
 GC-MS:株式会社島津製作所製、MSQP2020NX
 本実施例では、以下に示される試薬等を用いた。
 n-ブチルリチウム   :関東化学株式会社製
 3-メチルピラゾール  :東京化成工業(TCI)株式会社製
 テトラヒドロフラン   :富士フィルム和光純薬株式会社製
 2-メチルイミダゾール :TCI株式会社製
 トリエチルアミン    :TCI株式会社製
 クロロトリメトキシシラン:TCI株式会社製
 <実施例1>
 酸化ケイ素膜の原子層堆積を、上記式(7)で表される3-メチルピラゾリルトリメトキシシランを用いて行った。
 (調製)
 真空状態で乾燥させた13.32gの3-メチルピラゾールと、100mLのテトラヒドロフランとを、N雰囲気下で1Lのフラスコに加えた。その後、100mLのn-ブチルリチウム(1.6mol/L)溶液を加え、1時間撹拌した。撹拌後、29.13gのクロロトリメトキシシランと200mLの上述のn-ブチルリチウム溶液をさらに加え、12時間撹拌した。撹拌後の混合物をフィルターでろ過し、液体生成物を回収した。該液体生成物の溶媒を真空下で除去した。その後、得られた液体を減圧蒸留によりグローブボックス内で精製した。上述のGC-MSを用いた分析により、生成物が3-メチルピラゾリルトリメトキシシランであることが確認された。また、上述のGCを用いた分析により、純度が96.5%であることが確認された。
 (形成)
 上記成膜装置の反応器内に基材であるケイ素基材を設置した。3-メチルピラゾリルトリメトキシシランをキャリアガスであるNガスで反応器内に導入した。パージガスであるNガスで反応器をパージした。酸素源であるOを反応器内に導入した。パージガスであるNガスで反応器をパージした。各工程は、第1導入工程の時間を1秒、10秒、23秒および44秒とし、以下の表1の条件でそれぞれ100サイクル行った。
Figure JPOXMLDOC01-appb-T000015
 <実施例2>
 酸化ケイ素膜の原子層堆積を、上記式(8)で表される2-メチルイミダゾリルトリメトキシシランを用いて行った。
 (調製)
 真空状態で乾燥させた34.3gの2-メチルイミダゾールと、1000mLのテトラヒドロフランと、脱水処理をした52.9gのトリエチルアミンとを、N雰囲気下で2Lのフラスコに加え、氷浴で0.5時間冷却した。冷却後、76.0gのクロロトリメトキシシランと、512mLのテトラヒドロフランとの混合液を滴下し、12時間撹拌した。撹拌後の混合物をグローブボックス内でろ過し、液体生成物を回収した。該液体生成物の溶媒を真空下で除去した。その後、得られた液体を減圧蒸留によりグローブボックス内で精製した。上述のGC-MSを用いた分析により、生成物が2-メチルイミダゾリルトリメトキシシランであることが確認された。また、上述のGCを用いた分析により、純度が99.2%であることが確認された。
 (形成)
 上述の2-メチルイミダゾリルトリメトキシシランを用いた点を除いては、実施例1と同じ基材、キャリアガス、パージガスおよび酸素源を用いて酸化ケイ素膜の形成を行った。各工程は、第1導入工程の時間を25秒、60秒および119秒とし、以下の表2の条件でそれぞれ100サイクル行った。
Figure JPOXMLDOC01-appb-T000016
 <比較例1>
 酸化ケイ素膜の原子層堆積を、ジメチルアミノトリメチルシラン(DMATMS)を用いて行った。DMATMSは、TCI株式会社製のものを用いた。
 上述のDMATMSを用いた点を除いては、実施例1と同じ基材、キャリアガス、パージガスおよび酸素源を用いて酸化ケイ素膜の形成を行った。各工程は、第1導入工程の時間を9秒、15秒、20秒および120秒とし、以下の表3の条件でそれぞれ100サイクル行った。
Figure JPOXMLDOC01-appb-T000017
 <評価>
 (最小結合解離エネルギー)
 実施例1および比較例1で用いた各ケイ素化合物の最小結合解離エネルギー(MBDE)を算出した。ここで、MBDEとは、特定の化学結合を切断する時に必要なエネルギーであるBDEの中で最小の値を示すものであり、ある分子中の最も弱い結合のBDEに対応し、該エネルギーの値が高い程耐熱性に優れることを意味する。MBDEは、Gaussian社製の量子化学計算プログラムであるGaussian16により求めた。実施例1においては、酸素と、酸素と結合しているメチル基との結合解離エネルギーがMBDEであり、比較例1においては、窒素と、窒素と結合しているメチル基との結合解離エネルギーがMBDEであった。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000018
 (成長速度)
 実施例1~2および比較例1の酸化ケイ素膜の成長速度を算出した。ここで、成長速度とは、ケイ素化合物の供給量に対する、酸化ケイ素膜の成長を示したものであり、ALDの指標となるものである。供給量の増大に伴い、酸化ケイ素膜の成長速度が飽和状態になれば、ALDにより酸化ケイ素膜が形成されているといえる。成長速度は、1サイクル当たりの着膜量により算出された。その結果を図3および4に示す。図3中、実施例1のグラフは、第1導入工程の時間を1秒、10秒、23秒および44秒とした場合の成長速度をバツ印でプロットすることにより導かれたものであり、比較例1のグラフは、第1導入工程の時間を9秒、15秒、20秒および120秒とした場合の成長速度を四角印でプロットすることにより導かれたものである。図4中、実施例2のグラフは、第1導入工程の時間を25秒、60秒および119秒とした場合の成長速度を丸印でプロットすることにより導かれたものである。
 <結果>
 表3より、実施例1のケイ素化合物である3-メチルピラゾリルトリメトキシシランは、比較例1のケイ素化合物であるDMATMSよりもMBDEが高いことが確認された。これより、実施例1の3-メチルピラゾリルトリメトキシシランの耐熱性は優れているといえる。
 また、図3および4の結果より、実施例1では、3-メチルピラゾリルトリメトキシシランの供給量の増大に伴い、成長速度の曲線が平坦に、すなわち、飽和状態になっていることが確認された。同様に、実施例2においても、2-メチルイミダゾリルトリメトキシシラン供給量の増大に伴い、成長速度の曲線が平坦に、すなわち、飽和状態になっていることが確認された。これより、実施例1~2においては、ALDにより酸化ケイ素膜が形成されているといえる。一方、比較例1は、DMATMSの供給量の増大に伴い、成長速度の曲線が平坦になっていない。これは、CVDによる成膜が混在していると考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 成膜装置、11 反応器、12 前駆体供給部、13 キャリアガス供給路、14 前駆体ガス供給路、15 パージガス供給路、16 酸素源供給路、17 排出路、18 APCバルブ、19 ニードル弁、20,21,22 開閉弁。

Claims (3)

  1.  基材を反応器内に準備する準備工程と、
     下記式(1)で表される少なくとも1種のケイ素化合物を前記反応器内に導入する第1導入工程と、
     前記反応器をパージガスでパージする第1パージ工程と、
     酸素源を前記反応器に導入する第2導入工程と、
     前記反応器を前記パージガスでパージする第2パージ工程と、を含み、
     前記第1導入工程から前記第2パージ工程は、650℃以上800℃以下の温度および7.6Pa以上100kPa以下の圧力で実施される、酸化ケイ素膜の形成方法。
    Figure JPOXMLDOC01-appb-C000001

     前記式(1)中、
     Rは、メトキシ基またはエトキシ基であり、
     Rは、水素原子、メチル基、エチル基、メトキシ基またはエトキシ基であり、
     Rは、水素原子、メチル基、エチル基、メトキシ基、エトキシ基、下記式(2)で表される基または下記式(3)で表される基であり、
     Rは、下記式(2)で表される基または下記式(3)で表される基である。
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

     前記式(2)および前記式(3)中、
     R~R10は、それぞれ独立に、水素原子、メチル基またはエチル基である。
  2.  前記式(1)中、
     前記R~Rは、メトキシ基であり、
     前記Rは、前記式(3)で表される基である、請求項1に記載の酸化ケイ素膜の形成方法。
  3.  前記第1導入工程から前記第2パージ工程は、繰り返し実施される、請求項1または請求項2に記載の酸化ケイ素膜の形成方法。
PCT/JP2023/035156 2022-09-28 2023-09-27 酸化ケイ素膜の形成方法 WO2024071205A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022154751 2022-09-28
JP2022-154751 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071205A1 true WO2024071205A1 (ja) 2024-04-04

Family

ID=90477889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035156 WO2024071205A1 (ja) 2022-09-28 2023-09-27 酸化ケイ素膜の形成方法

Country Status (1)

Country Link
WO (1) WO2024071205A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286628A1 (en) * 2005-10-27 2008-11-20 Wacker Chemie Ag Particles Comprising Zwitterionic Structural Elements
JP2022504248A (ja) * 2018-10-04 2022-01-13 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 高品質酸化ケイ素薄膜の高温原子層堆積のための組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286628A1 (en) * 2005-10-27 2008-11-20 Wacker Chemie Ag Particles Comprising Zwitterionic Structural Elements
JP2022504248A (ja) * 2018-10-04 2022-01-13 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー 高品質酸化ケイ素薄膜の高温原子層堆積のための組成物

Similar Documents

Publication Publication Date Title
JP7072511B2 (ja) 有機金属化合物
US9831083B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
TWI565822B (zh) 沉積氮化矽膜的方法
TWI655309B (zh) 來自金屬脒鹽前驅物與鋁前驅物的金屬鋁合金膜
JP4140768B2 (ja) 半導体原料
JP5011148B2 (ja) 半導体装置の製造方法、クリーニング方法及び基板処理装置
JP6055879B1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2017005016A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US10804100B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR20170097677A (ko) 지르코늄-함유 막의 증기 증착을 위한 지르코늄-함유 막 형성 조성물
JP2018137356A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6681398B2 (ja) ジルコニウム含有膜を蒸着するためのジルコニウム含有膜形成組成物
KR20160124025A (ko) V 족-함유 필름 형성 조성물 및 니오븀-함유 필름의 증착
WO2018088078A1 (ja) 化合物、薄膜形成用原料、原子層堆積法用の薄膜形成用原料及び薄膜の製造方法
JP2017210632A (ja) 薄膜形成用原料及び薄膜の製造方法
WO2024071205A1 (ja) 酸化ケイ素膜の形成方法
JP2006096675A (ja) 新規なアミノジシランおよび炭窒化珪素膜の形成方法
KR20210055101A (ko) 실리콘-함유 필름의 고온 원자 층 증착
WO2018042871A1 (ja) ジアザジエニル化合物、薄膜形成用原料及び薄膜の製造方法
JP4107923B2 (ja) イットリウム含有複合酸化物薄膜の製造方法
WO2023112970A1 (ja) 成膜方法
TWI822465B (zh) 使用有機金屬化合物製備薄膜的方法及由其製備的薄膜
TWI557256B (zh) 來自金屬pcai前驅物與鋁前驅物的金屬鋁合金膜
EP4047636A1 (en) Dry etching method, method for producing semiconductor device, and etching device
US20060198958A1 (en) Methods for producing silicon nitride films by vapor-phase growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872427

Country of ref document: EP

Kind code of ref document: A1