WO2024071076A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2024071076A1
WO2024071076A1 PCT/JP2023/034828 JP2023034828W WO2024071076A1 WO 2024071076 A1 WO2024071076 A1 WO 2024071076A1 JP 2023034828 W JP2023034828 W JP 2023034828W WO 2024071076 A1 WO2024071076 A1 WO 2024071076A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
communication device
predetermined
control unit
dci
Prior art date
Application number
PCT/JP2023/034828
Other languages
French (fr)
Japanese (ja)
Inventor
樹 長野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024071076A1 publication Critical patent/WO2024071076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This disclosure relates to a communication device and a communication method for use in a mobile communication system.
  • 3GPP registered trademark; the same applies below
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • XR Extended Reality
  • the communication device may need to extend the time it is in an awake state when performing DRX operation based on a single discontinuous reception (DRX) setting.
  • traffic characteristics e.g., traffic cycles
  • Non-Patent Document 1 it is assumed that the communication device will perform DRX operation based on one DRX setting for one traffic flow. This will shorten the time that the communication device is in the active state, and it has been reported that this will result in power saving effects (see Non-Patent Document 1).
  • the communication device is a communication device that performs discontinuous reception (DRX) operation.
  • the communication device includes a control unit that controls the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device, and a receiving unit that receives control information for controlling the DRX operation from a network.
  • the receiving unit receives from the network a predetermined parameter that differs for each DRX setting set in the communication device.
  • the control unit identifies a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
  • the communication method is a communication method executed by a communication device that performs discontinuous reception (DRX) operation.
  • the communication method includes the steps of controlling the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device, receiving control information for controlling the DRX operation from a network, receiving from the network a predetermined parameter that differs for each DRX setting set in the communication device, and identifying a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a protocol stack according to the embodiment.
  • FIG. 3 is a diagram for explaining a timer related to DRX.
  • FIG. 4 is a diagram showing a configuration of a UE according to the embodiment.
  • FIG. 5 is a diagram showing a configuration of a base station according to the embodiment.
  • FIG. 6 is a sequence diagram for explaining a first operation example and a second operation example according to the embodiment.
  • FIG. 7 is a flowchart for explaining an example of the operation of UE 100 in a first operation example according to the embodiment.
  • one of the objectives of this disclosure is to provide a communication device and a communication method that enable appropriate control of DRX operation.
  • the mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • the mobile communication system 1 will be described using a 3GPP standard 5th Generation System (5G system), i.e., a mobile communication system based on NR (New Radio) as an example.
  • 5G system 3GPP standard 5th Generation System
  • NR New Radio
  • the mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10.
  • the network 10 includes a 5G radio access network, NG-RAN (Next Generation Radio Access Network) 20, and a 5G core network, 5GC (5G Core Network) 30.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • UE100 is a communication device that communicates via base station 200.
  • UE100 may be a device used by a user.
  • UE100 may be a user device defined in the technical specifications of 3GPP.
  • UE100 is a mobile device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • UE100 may be a vehicle (e.g., a car, a train, etc.) or a device provided therein.
  • UE100 may be a transport vehicle other than a vehicle (e.g., a ship, an airplane, etc.) or a device provided therein.
  • UE100 may be a sensor or a device provided therein.
  • UE100 may be called by other names such as a terminal, a terminal device, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit.
  • UE 100 is an example of a terminal, and terminals may include factory equipment, etc.
  • NG-RAN20 includes multiple base stations 200.
  • Each base station 200 manages at least one cell.
  • a cell constitutes the smallest unit of a communication area.
  • One cell belongs to one frequency (carrier frequency).
  • the term "cell" may refer to a wireless communication resource, and may also refer to a communication target of UE100.
  • Each base station 200 can perform wireless communication with UE100 located in its own cell.
  • the base station 200 communicates with UE100 using a protocol stack of the RAN. Details of the protocol stack will be described later.
  • the base station 200 is connected to other base stations 200 (which may be referred to as adjacent base stations) via an Xn interface.
  • the base station 200 communicates with adjacent base stations via an Xn interface.
  • the base station 200 provides NR user plane and control plane protocol terminations toward the UE100, and is connected to the 5GC30 via an NG interface.
  • gNodeB gNodeB
  • the 5GC30 includes a core network device 300.
  • the core network device 300 includes, for example, an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function).
  • the AMF manages the mobility of the UE 100.
  • the UPF provides functions specialized for U-plane processing.
  • the AMF and the UPF are connected to the base station 200 via an NG interface.
  • the protocol for the wireless section between UE100 and base station 200 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and an RRC layer.
  • PHY physical
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing using Hybrid ARQ (HARQ), random access procedures, etc.
  • Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 200 via a transport channel.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression, and encryption/decryption.
  • the SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
  • IP flows which are the units by which the core network performs QoS (Quality of Service) control
  • radio bearers which are the units by which the AS (Access Stratum) performs QoS control.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 200.
  • UE100 When there is an RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC connected state.
  • UE100 When there is no RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC idle state.
  • UE100 is in an RRC inactive state.
  • the NAS layer which is located above the RRC layer in UE100, performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the core network device 300.
  • UE100 has an application layer, etc. in addition to the radio interface protocol.
  • downlink transmission and uplink transmission are configured within a radio frame of 10 ms duration.
  • a radio frame is configured with 10 subframes.
  • one subframe may be 1 ms.
  • one subframe may be configured with one or more slots.
  • the number of symbols constituting one slot is 14 in a normal CP (Cyclic Prefix) and 12 in an extended CP.
  • the number of slots constituting one subframe changes according to the set subcarrier interval.
  • the number of slots per subframe is 1 (i.e., 14 symbols)
  • the number of slots per subframe is 2 (i.e., 28 symbols)
  • the number of slots per subframe is 4 (i.e., 56 symbols)
  • the number of slots per subframe is 8 (i.e., 112 symbols).
  • the number of slots per subframe is 4 (i.e., 48 symbols).
  • the number of slots constituting one subframe is determined based on the subcarrier interval set by the base station 200. Also, the number of symbols constituting one subframe is determined based on the subcarrier interval set by the base station 200. That is, the number of symbols constituting a 1 ms subframe is determined based on the subcarrier interval set by the base station 200, and the length of each symbol (length in the time direction) changes.
  • DRX discontinuous reception
  • Fig. 3A is a diagram for explaining a timer related to DRX in uplink transmission.
  • Fig. 3B is a diagram for explaining a timer related to DRX in downlink transmission.
  • UE100 does not constantly monitor the physical downlink control channel (PDCCH) of UE100 as an operation during DRX (hereinafter referred to as DRX operation), but monitors the PDCCH only at regular cycles (i.e., DRX cycles).
  • DRX operation DRX performed by UE100 in an RRC connected state is sometimes called C-DRX.
  • the UE 100 is set with a DRX cycle consisting of an on period and an off period.
  • the state of the UE 100 is an awake state in which the UE 100 monitors the PDCCH.
  • the UE 100 in the awake state is active to monitor the PDCCH.
  • the awake state may be referred to as, for example, an active state or a DRX activated state.
  • the on period may also be referred to as, for example, a DRX on period, on time, or active time as a period in which the PDCCH is monitored.
  • the state of the UE 100 is a sleep state in which the UE 100 does not need to monitor the PDCCH.
  • the UE 100 in the sleep state is inactive.
  • the sleep state may be referred to as, for example, a DRX sleep state, a sleep mode, a DRX mode, or a power saving mode.
  • the off period may also be referred to as, for example, a DRX off period, off time, or inactive time as a period in which the PDCCH is not monitored.
  • the long DRX cycle consists of an on period and an off period.
  • the short DRX cycle is an additional DRX cycle that is set together with the long DRX cycle.
  • the short DRX cycle is a DRX cycle that is shorter than the long DRX cycle.
  • DRX setting parameters such as drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, and drx-SlotOffset, are set individually for each cell group set in UE 100.
  • DRX Downlink Bandwidth Part
  • the operation in this embodiment may be an operation when DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one serving cell (for example, a downlink serving cell, also referred to as a downlink component carrier). Also, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP (Downlink Bandwidth Part) set in each of one or more serving cells.
  • DL BWP Downlink Bandwidth Part
  • the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP in each of one or more serving cells. That is, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more cell groups. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more serving cells. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more DL BWPs.
  • drx-onDurationTimer may indicate the duration at the beginning of a DRX cycle.
  • drx-onDurationTimer is a parameter that specifies the amount of time of the DRX on period of each DRX cycle.
  • drx-onDurationTimer is set to the timer value of the DRX on duration timer (drx-onDurationTimer) used to time the DRX on period.
  • UE 100 is in an active state (e.g., considered to be in an active time) while the DRX on duration timer (hereinafter sometimes referred to as ODT) is running (operating). If UE 100 does not receive a PDCCH by the expiration of ODT, it transitions to a sleep state until the start of the next on period.
  • ODT DRX on duration timer
  • the drx-InactivityTimer may indicate the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission.
  • the PDCCH indicating the uplink transmission may include a DCI format used for uplink scheduling (e.g., PUSCH scheduling).
  • the PDCCH indicating the downlink transmission may include a DCI format used for downlink scheduling (e.g., PDSCH scheduling).
  • the drx-InactivityTimer is a parameter that specifies the period during which the UE 100 should be active after successfully decoding a PDCCH indicating a new transmission.
  • the drx-InactivityTimer is set to the timer value of the DRX inactivity timer (drx-InactivityTimer) used to time the active time, for example.
  • the DRX inactivity timer (hereinafter sometimes referred to as IAT) is started or restarted when the UE 100 receives a PDCCH for a new transmission (e.g., UL, DL, or SL (sidelink)) during the on period. Therefore, the UE 100 remains in an awake state while the IAT is running.
  • the IAT may be a timer indicating the period during which the UE 100 should be in an awake state after successfully decoding a PDCCH indicating a new transmission.
  • the UE 100 monitors the PDCCH until the IAT expires. When the IAT expires, the UE 100 transitions to a sleep state (DRX mode).
  • the drx-HARQ-RTT-TimerUL may indicate the minimum duration before a UL HARQ retransmission grant is expected.
  • the grant may include a PDCCH indicating an uplink transmission.
  • the drx-HARQ-RTT-TimerUL is a parameter used in the retransmission process of uplink data.
  • the drx-HARQ-RTT-TimerUL is a parameter that specifies the period during which the UE 100 can expect an uplink retransmission.
  • the drx-HARQ-RTT-TimerUL is set to the timer value of a timer (drx-HARQ-RTT-TimerUL (timer)) used to time the period.
  • the UE 100 maintains a sleep state while the timer is running.
  • the timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT UL timer.
  • the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerUL timer) with the first symbol immediately after transmitting the PUSCH.
  • the UE 100 transitions to an active state in response to expiration of the timer.
  • drx-HARQ-RTT-TimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
  • the drx-HARQ-RTT-TimerDL may indicate the minimum duration before a DL assignment for HARQ retransmission.
  • the downlink assignment may include a PDCCH indicating downlink transmission.
  • the drx-HARQ-RTT-TimerDL is a parameter used in the retransmission process of downlink data.
  • the drx-HARQ-RTT-TimerDL is a parameter that specifies the period during which the UE 100 can expect a retransmission.
  • the drx-HARQ-RTT-TimerDL is set to the timer value of a timer (drx-HARQ-RTT-TimerDL (timer)) used to time the period.
  • the UE 100 maintains a sleep state while the timer is running.
  • the timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT DL timer.
  • the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerDL timer) with the first symbol after transmitting a negative acknowledgement (NACK) in the uplink.
  • NACK negative acknowledgement
  • the UE 100 transitions to an active state in response to expiration of the timer.
  • drx-HARQ-RTT-TimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
  • drx-RetransmissionTimerUL may indicate the maximum duration until a grant for UL retransmission is received.
  • the grant for uplink retransmission may include a PDCCH indicating uplink retransmission.
  • drx-RetransmissionTimerUL is a parameter used in the retransmission process of uplink data.
  • drx-RetransmissionTimerUL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a grant for uplink retransmission.
  • the drx-RetransmissionTimerUL is set to the timer value of a timer (drx-RetransmissionTimerUL timer) used to time the duration of a specified slot.
  • This timer may be referred to as a DRX retransmission timer or a DRX retransmission UL timer.
  • This timer may be associated with each HARQ process.
  • the UE 100 starts the DRX retransmission UL timer at the next symbol when the drx-HARQ-RTT-TimerUL timer expires.
  • the UE 100 is in an awake state while this timer is running.
  • the UE 100 stops the DRX retransmission UL timer as soon as it detects an uplink transmission for the corresponding HARQ process.
  • drx-RetransmissionTimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
  • drx-RetransmissionTimerDL may indicate the maximum duration until a DL retransmission is received.
  • downlink retransmission may include retransmission of downlink data (i.e., retransmission in PDSCH).
  • Downlink data is also referred to as DL-SCH data.
  • drx-RetransmissionTimerDL is a parameter used in the retransmission process of downlink data.
  • drx-RetransmissionTimerDL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a retransmission from base station 200.
  • the drx-RetransmissionTimerDL is set to the timer value of a timer (drx-RetransmissionTimerDL timer) used to time the duration of a specified slot.
  • This timer may be referred to as a DRX retransmission timer or a DRX retransmission DL timer.
  • This timer may be associated with each HARQ process.
  • FIG. 3B when the drx-HARQ-RTT-TimerDL timer expires, the UE 100 starts the DRX retransmission DL timer at the next symbol. The UE 100 is in an awake state while this timer is running.
  • the UE 100 stops the DRX retransmission DL timer as soon as it detects a downlink transmission for the corresponding HARQ process.
  • drx-RetransmissionTimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
  • UE100 may consider the time when drx-onDurationTimer or drx-InactivityTimer set for one cell group is operating to be the active time for the serving cell in that one cell group. Also, UE100 may consider the time when drx-RetransmissionTimerUL or drx-RetransmissionTimerDL is operating in any of the serving cells in the one cell group to be the active time for the serving cell in that one cell group. For example, UE100 may monitor the PDCCH when the one cell group is in the active time. That is, UE100 may monitor the PDCCH in the serving cell in the one cell group when the one cell group is in the active time.
  • the cell group in which the parameters for DRX setting i.e., DRX (DRX operation)
  • the base station 200 may transmit an RRC message including information indicating a DRX group including one or more serving cells.
  • the UE 100 may identify the DRX group based on the information indicating the DRX group.
  • the DRX group may be a group of one or more serving cells having (set) the same active time.
  • the active time for the serving cells in one DRX group may include the time during which any of the drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerUL, and drx-RetransmissionTimerDL set for the one DRX group is operating.
  • the drx-LongCycleStartOffset is a parameter for controlling the start position of the long DRX cycle.
  • drx-LongCycleStartOffset is used to determine the length of the long DRX cycle and the starting subframe number within the long DRX cycle.
  • drx-SlotOffset is a parameter that specifies the start of the on-period with respect to the start of the subframe.
  • UE100 when UE100 receives a DRX command MAC CE or a long DRX command MAC CE from the network (base station 200), it ends the current on-period (active time). Specifically, UE100 stops ODT and IAT.
  • UE100 When UE100 receives the DRX command MAC CE, it transitions to a normal DRX cycle. Specifically, when a short DRX cycle is set in UE100, it transitions to a short DRX cycle mode. When a short DRX cycle is not set in UE100, it transitions to a long DRX cycle mode. On the other hand, when UE100 receives a long DRX command MAC CE, it transitions to a long DRX cycle.
  • XR traffic (XR service)
  • XR service a work item has been launched to study power saving technology suited to the characteristics of XR services.
  • the characteristics of XR traffic include, for example, a non-integer period such as 60, 120 fps (16.67, 8.33 ms), jitter (variation in the arrival timing of traffic due to encoding and NW transmission delay), and multiple data streams (multiple flows, for example, I frames and P frames, video and voice/data, etc.) with different traffic characteristics and QoS requirements.
  • XR In an XR service, it is assumed that multiple traffic flows with different traffic characteristics (e.g., traffic cycles) will be provided to a communication device. Because the reception timing of each of the multiple traffic flows differs depending on the traffic cycle, the communication device may need to extend the time it is in an awake state when performing a discontinuous reception (DRX) operation based on a single DRX setting. Therefore, it is assumed that the communication device will perform a DRX operation based on one DRX setting for one traffic flow. This has been reported to shorten the awake state of the communication device and provide a power saving effect.
  • DRX discontinuous reception
  • the UE 100 includes a communication unit 110 and a control unit 120.
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving radio signals to and from the base station 200.
  • the communication unit 110 has at least one transmission unit 111 and at least one reception unit 112.
  • the transmission unit 111 and the reception unit 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space.
  • the antenna also receives radio waves in space and converts the radio waves into a signal.
  • the RF circuit performs analog processing of the signal transmitted and received via the antenna.
  • the RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the control unit 120 performs various controls in the UE 100.
  • the control unit 120 controls communication with the base station 200 via the communication unit 110.
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120.
  • the control unit 120 may include at least one processor capable of executing programs and a memory for storing the programs.
  • the processor may execute the programs to perform the operations of the control unit 120.
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack.
  • the memory stores the programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or a portion of the memory may be contained within the processor.
  • the control unit 120 controls the DRX operation based on each of the multiple DRX settings.
  • the receiving unit 112 receives control information from the network 10.
  • the receiving unit 112 receives a predetermined parameter from the network 10.
  • the control unit 120 identifies a target DRX setting from among the multiple DRX settings to be controlled based on the control information, based on the predetermined parameter. This allows the UE 100 to identify the target DRX setting based on the predetermined parameter, even if the UE 100 receives control information during overlapping periods of time in the activated state based on the multiple DRX settings. This allows the UE 100 to grasp the target of the control information and appropriately control the DRX operation.
  • the base station 200 includes a communication unit 210, a network communication unit 220, and a control unit 230.
  • the communication unit 210 receives a radio signal from the UE 100 and transmits a radio signal to the UE 100.
  • the communication unit 210 has at least one transmission unit 211 and at least one reception unit 212.
  • the transmission unit 211 and the reception unit 212 may be configured to include an RF circuit.
  • the RF circuit performs analog processing of the signal transmitted and received via the antenna.
  • the RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
  • the network communication unit 220 transmits and receives signals to the network.
  • the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations.
  • the network communication unit 220 also receives signals from a core network device 300 connected via an NG interface, and transmits signals to the core network device 300.
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls, for example, communication with the UE 100 via the communication unit 210.
  • the control unit 230 also controls, for example, communication with a node (e.g., an adjacent base station, a core network device 300) via the network communication unit 220.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230.
  • the control unit 230 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to perform the operations of the control unit 230.
  • the control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit.
  • the digital processing includes processing of the RAN protocol stack.
  • the memory stores the program executed by the processor, parameters related to the program, and data related to the program. All or a part of the memory may be included in the processor.
  • the transmitting unit 211 of the base station 200 may transmit to the UE 100 a radio resource control (RRC) message including multiple DRX settings to be applied to one cell group.
  • the receiving unit 112 of the UE 100 may receive from the base station 200 a radio resource control (RRC) message including multiple DRX settings.
  • the transmitting unit 211 of the base station 200 may transmit multiple DRX settings in step S101 described below.
  • UE100 may have multiple DRX settings for one cell group. Therefore, UE100 may apply multiple DRX settings to one cell group. UE100 performs DRX operation based on each of the multiple DRX settings applied to one cell group. Control unit 120 of UE100 applies the multiple DRX settings and controls DRX operation based on each of the multiple DRX settings.
  • Step S101: 6 the transmitting unit 211 of the base station 200 may transmit the predetermined parameter to the UE 100.
  • the receiving unit 112 of the UE 100 may receive the predetermined parameter from the base station 200.
  • the predetermined parameter may be included in, for example, a radio resource control (RRC) message.
  • RRC radio resource control
  • the specified parameters are parameters that differ for each DRX setting set in UE100.
  • the specified parameters may be, for example, parameters that are individually assigned to UE100.
  • the specified parameters may be UE-specific parameters. Therefore, the specified parameters are not cell-specific parameters that are commonly assigned to UE100 in a cell.
  • the specified parameters may be, for example, the following:
  • the predetermined parameter may be a predetermined radio network temporary identifier (RNTI) that is different for each DRX setting. Therefore, the predetermined RNTI may be set individually for each DRX setting. That is, a predetermined RNTI may be set for each of one or more DRX settings. For example, each of one or more DRX settings may correspond to each of one or more predetermined RNTIs.
  • the predetermined RNTI may be, for example, a cell-radio network temporary identifier (C-RNTI).
  • the C-RNTI is an identifier used for RRC connection and/or scheduling. For example, the C-RNTI may be used for dynamically scheduled unicast transmission.
  • the C-RNTI may be used (applied) for scheduling the physical downlink shared channel (PDSCH) and/or the physical uplink shared channel (PUSCH).
  • the predetermined RNTI is a C-RNTI
  • the UE 100 may have previously acquired a C-RNTI (suitably referred to as a first C-RNTI) acquired in a random access procedure.
  • the UE 100 may acquire a C-RNTI (suitably referred to as a second C-RNTI) different from the first C-RNTI.
  • a plurality of C-RNTIs may be assigned to the UE 100.
  • a first value C-RNTI and a second value C-RNTI may be configured for the UE 100 as a plurality of C-RNTIs.
  • the predetermined RNTI may be a configured scheduling-radio network temporary identifier (CS-RNTI).
  • CS-RNTI scheduling-radio network temporary identifier
  • the CS-RNTI may be used for a scheduled unicast transmission to be configured.
  • the CS-RNTI is an identifier used for downlink semi-persistent scheduling (SPS) and uplink configured grants.
  • a plurality of CS-RNTIs may be assigned to the UE 100.
  • a first value of the CS-RNTI and a second value of the CS-RNTI may be configured for the UE 100 as a plurality of CS-RNTIs.
  • the specified parameter may be a search space set and/or a search space set group that differs for each DRX setting. Therefore, the specified parameter may be a search space set identifier (searchSpaceId), which is an identifier of a search space set. Also, the specified parameter may be a search space set group identifier (searchSpaceGroupId), which is an identifier of a search space set group. That is, a search space set identifier and/or a search space set group identifier may be set for each of one or more DRX settings. For example, each of one or more DRX settings may correspond to each of one or more search space set identifiers. Also, each of one or more DRX settings may correspond to each of one or more search space set group identifiers.
  • searchSpaceId search space set identifier
  • searchSpaceGroupId search space set group identifier
  • base station 200 may transmit an RRC message including information regarding the search space set and/or the search space set group.
  • UE 100 may determine the search space set and/or the search space set group based on the information regarding the search space set and/or the search space set group.
  • the information regarding the search space set and/or the search space set group may include one or more search space set identifiers and/or one or more search space set group identifiers.
  • the information regarding the search space set and/or the search space set group may include information indicating a periodicity and/or an offset value of the search space set and/or the search space set group.
  • the information regarding the search space set and/or the search space set group may include information indicating a type of search space set.
  • the type of search space set may include a common search space set (CSS) and/or a UE-specific search space set (USS).
  • the information on the search space set and/or the search space set group may include information indicating one or more DCI formats. That is, the information on the search space set and/or the search space set group may include information indicating one or more DCI formats monitored in the search space set and/or the search space set group.
  • the predetermined parameter may be a radio bearer identifier for identifying a radio bearer.
  • the radio bearer identifier may be, for example, an identifier (DRB Identity) for identifying a data radio bearer. That is, a radio bearer identifier may be set for each of one or more DRX settings. Also, each of one or more DRX settings may correspond to each of one or more radio bearer identifiers.
  • the predetermined parameter may be a logical channel identifier (LogicalChannelID: LCID) for identifying a logical channel. That is, a logical channel identifier may be set for each of one or more DRX settings.
  • each of one or more DRX settings may correspond to each of one or more logical channel identifiers.
  • the predetermined parameter may be a DRX identifier, which will be described later. That is, a DRX identifier may be set for each of one or more DRX settings. Also, one or more DRX settings may correspond to one or more DRX identifiers.
  • the predetermined parameter may be a DCI format indicating a type of DCI. That is, a DCI format (e.g., a monitored DCI format) may be set for each of one or more DRX settings. Also, one or more DRX settings may correspond to one or more DCI formats.
  • one or more DCI formats may include a DCI format used for scheduling the PDSCH and/or a DCI format used for scheduling the PUSCH.
  • the DCI format used for scheduling the PDSCH may include multiple DCI formats (e.g., DCI format 1_0, DCI format 1_1, and/or DCI format 1_2).
  • the DCI format used for scheduling the PUSCH may include multiple DCI formats (e.g., DCI format 0_0, DCI format 0_1, and/or DCI format 0_2).
  • the predetermined parameters may include at least one of the parameters described above.
  • the transmitter 211 of the base station 200 may also transmit information indicating (multiple) DRX settings (e.g., DRX-config) used to set parameters related to DRX to the UE 100.
  • the receiver 112 of the UE 100 may receive information indicating (multiple) DRX settings from the base station 200.
  • the DRX setting may be associated with a specific parameter. That is, a specific parameter may be set for each DRX setting.
  • the DRX setting may include a specific parameter associated with the DRX setting.
  • an identifier for identifying the DRX setting hereinafter, a DRX identifier
  • a DRX identifier may be associated with the specific parameter.
  • the transmitting unit 211 of the base station 200 may transmit correspondence information for identifying the correspondence between the specified parameters and the DRX settings to the UE 100.
  • the receiving unit 112 of the UE 100 may receive the correspondence information from the base station 200.
  • the correspondence information may be, for example, a list of the DRX settings and the specified parameters.
  • Step S102 The transmitter 211 of the base station 200 transmits control information for controlling the DRX operation to the UE 100.
  • the receiver 112 of the UE 100 receives the control information from the base station 200.
  • the controller 120 of the UE 100 may execute the process of step S103 below based on the control information.
  • the control information may be, for example, the following information.
  • control information may be downlink control information (DCI) transmitted on a physical downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the receiver 112 may receive, as the control information, the DCI transmitted in step S102, for example, by applying a predetermined parameter.
  • the control information may be a predetermined medium access control (MAC) control element (CE) transmitted on a physical downlink shared channel (PDSCH).
  • the predetermined MAC CE may be, for example, a DRX command MAC CE or a long DRX command MAC CE.
  • the predetermined MAC CE may also be another MAC CE for controlling DRX operation.
  • the DCI format (PDCCH) may be a DCI format (PDCCH) used for scheduling the PDSCH used to transmit the predetermined MAC CE.
  • the control unit 120 of the UE 100 may identify the DRX setting based on a predetermined RNTI applied to the DCI format (PDCCH) used for scheduling the PDSCH for the predetermined MAC CE.
  • the control unit 120 may also specify the DRX setting based on a search space set and/or a search space set group that receives (or may monitor) a DCI format (PDCCH) used for scheduling a PDSCH for a specific MAC CE.
  • the control unit 120 may also specify the DRX setting based on an identifier included in data transmitted on a PDSCH for a specific MAC CE.
  • the control unit 120 may also specify the DRX setting based on a DCI format (PDCCH) used for scheduling a PDSCH for a specific MAC CE.
  • the control information may be an uplink grant for a new transmission.
  • Step S103 The control unit 120 of the UE 100 may specify a DRX setting to be controlled based on control information from among a plurality of DRX settings based on a predetermined parameter (hereinafter, appropriately referred to as a target DRX setting).
  • a target DRX setting For example, the control unit 120 may specify a target DRX setting according to a DCI from among a plurality of DRX settings based on a predetermined parameter applied to the DCI.
  • the control unit 120 may specify a DRX setting from among a plurality of DRX settings based on a predetermined identifier included in data transmitted on a PDSCH scheduled using the DCI as the predetermined parameter.
  • the UE 100 may perform at least one of the following operations to specify the target DRX setting.
  • the control unit 120 may specify a target DRX setting corresponding to the DCI from among a plurality of DRX settings based on a predetermined RNTI applied to the DCI received by the receiving unit 112.
  • the DCI (which may be a PDCCH) may be accompanied by a CRC (Cyclic Redundancy Check) parity bit scrambled by a predetermined RNTI assigned (set) to the UE 100 as a predetermined parameter.
  • the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on the predetermined RNTI.
  • the control unit 120 may specify a DRX setting associated with the predetermined RNTI as the target DRX setting.
  • the control unit 120 may perform (blind) decoding during a time when multiple DRX activation states overlap, using a predetermined RNTI associated with the DRX setting that controls the activation state.
  • the control unit 120 may perform blind decoding during a time when multiple DRX activation states do not overlap (i.e., a time when a single DRX is activated), using a predetermined parameter associated with the DRX setting that controls the activation state.
  • the control unit 120 may decode DCI received while the IAT is operating, using a predetermined RNTI associated with the IAT.
  • the control unit 120 may also decode DCI received while the DRX retransmission timer (specifically, drx-RetransmissionTimerDL and/or drx-RetransmissionTimerUL) is operating, using a predetermined RNTI associated with the DRX retransmission timer.
  • the DRX retransmission timer specifically, drx-RetransmissionTimerDL and/or drx-RetransmissionTimerUL
  • the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a search space set or a search space set group in which DCI as control information is arranged. That is, the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a search space set or a search space set group that has received (or monitored) DCI (which may be a PDCCH).
  • the control unit 120 may specify a DRX setting associated with a search space set (specifically, a search space set identifier) that has received (or monitored) DCI (which may be a PDCCH) as the target DRX setting.
  • control unit 120 may specify a DRX setting associated with a search space set group (specifically, a search space set group identifier) including a search space set that has received (or monitored) DCI (which may be a PDCCH) as the target DRX setting.
  • a search space set group specifically, a search space set group identifier
  • DCI which may be a PDCCH
  • control unit 120 may monitor the PDCCH in the search space set (or search space set group) associated with the DRX setting that controls the activation state during a time when multiple DRX activation states overlap.
  • the control unit 120 may also monitor the PDCCH in the search space set (or search space set group) associated with the DRX setting that controls the activation state during a time when multiple DRX activation states do not overlap.
  • the control unit 120 may monitor the PDCCH in the search space set (or search space set group) associated with the IAT and/or DRX retransmission timer for DCI received while the IAT and/or DRX retransmission timer is running.
  • the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a predetermined identifier included in the data transmitted on the PDSCH and/or the PUSCH.
  • the data transmitted on the PDSCH i.e., downlink data
  • DL-SCH Downlink Shared Channel
  • UL-SCH Uplink Shared Channel
  • the predetermined identifier may be a radio bearer identifier.
  • the control unit 120 may specify, for example, a DRX setting associated with a DRB ID included in the data as the target DRX setting.
  • the predetermined identifier may be an LCID.
  • the control unit 120 may, for example, identify a DRX setting associated with an LCID included in a MAC subheader and/or a MAC CE as a target DRX setting.
  • the predetermined identifier may be a DRX ID.
  • the control unit 120 may identify a DRX setting associated with a DRX ID included in the data as a target DRX setting. That is, the control unit 120 may identify a target DRX setting from among a plurality of DRX settings based on a radio bearer identifier, an LCID, and/or a DRX ID.
  • the control unit 120 may identify the target DRX setting based on the received (or monitored) DCI format (or PDCCH).
  • the control unit 120 may identify the DRX setting associated with the DCI format (or the type of DCI format) as the target DRX setting.
  • the control unit 120 may identify the target DRX setting based on, for example, correspondence information indicating the correspondence between the DCI format (or the type of DCI format) and the DRX setting.
  • Step S104 The control unit 120 controls a target DRX setting among the multiple DRX settings based on the control information. For example, when the control information is a DCI indicating a new transmission, the control unit 120 may start or restart an IAT related to the target DRX setting.
  • the control unit 120 may determine whether to start or restart the IAT based on the identified DRX setting, for example, when the control information is an uplink grant for a new transmission (i.e., a DCI format used for scheduling the PUSCH). Therefore, the control unit 120 may determine whether to start or restart the IAT based on the identified DRX setting based on the uplink grant.
  • the control unit 120 may perform the following operations, for example, as shown in FIG. 7.
  • Whether or not to execute the operation may be associated with a predetermined parameter (e.g., C-RNTI and/or CS-RNTI). Therefore, whether or not to execute the operation may be set individually for each predetermined parameter. If the predetermined parameter is associated with executing the operation, the control unit 120 may execute the following operation. If the predetermined parameter is associated with not executing the operation (or the predetermined parameter is not associated with executing the operation), the control unit 120 may not execute the following operation.
  • a predetermined parameter e.g., C-RNTI and/or CS-RNTI
  • Step S111 The control unit 120 may determine whether or not the skip of the uplink transmission is set. Specifically, the control unit 120 may determine whether or not the uplink transmission using the uplink resource allocated in the UE 100 is set to be skipped for one cell group when there is no data available for the uplink transmission in the uplink resource.
  • the control unit 120 may receive, from the network 10, predetermined information (e.g., "skipUplinkTxDynamic") indicating whether or not to skip the uplink transmission for the uplink grant other than the set uplink grant when there is no data available for the uplink transmission in the uplink buffer.
  • the control unit 120 may determine whether or not the skip of the uplink transmission is set based on the predetermined information.
  • the control unit 120 may determine that the skip of the uplink transmission is set. For example, when the control unit 120 receives an RRC message in which skipUplinkTxDynamic does not indicate "ture” (i.e., setting), the control unit 120 may determine that the skip of uplink transmission is not set.
  • the skip of uplink transmission may include not generating a MAC PDU.
  • the case where there is no data available for uplink transmission may include the case where there is no aperiodic CSI (Channel State Information, also referred to as channel state information) for the transmission in the corresponding PUSCH.
  • the case where there is no data available for uplink transmission may include the case where the MAC PDU includes a MAC SDU with zero.
  • the case where there is no data available for uplink transmission may include a case where the MAC PDU includes only a periodic BSR (also referred to as a buffer status report) and there is no data available for any LCG (Logical Channel Group).
  • the case where there is no data available for uplink transmission may include a case where the MAC PDU includes only a padding BSR. For example, when a skip of uplink transmission is configured and there is no data available for uplink transmission, the control unit 120 may not generate a MAC PDU (e.g., a MAC PDU for a corresponding HARQ entity).
  • control unit 120 may execute the process of step S112. If the uplink transmission skip is not set, the control unit 120 may execute the process of step S113. The process of step S111 may be omitted.
  • Step S112 The control unit 120 may determine whether there is data available for uplink transmission. For example, when there is data available for uplink transmission in the uplink buffer, the control unit 120 may execute the process of step S113. For example, when there is no data available for uplink transmission in the uplink buffer, the control unit 120 may execute the process of step S114.
  • Step S113 The control unit 120 starts or re-starts the IAT.
  • the control unit 120 may perform normal DRX operation.
  • Step S114 The control unit 120 does not start or restart the IAT.
  • the control unit 120 may stop the IAT when the IAT is running. That is, the control unit 120 may not start or restart the IAT (or may stop the IAT) when the skip of the uplink transmission is set and there is no data available for the uplink transmission. That is, the control unit 120 may not start or restart the IAT set using the DRX setting specified based on a predetermined parameter (or may stop the IAT).
  • control unit 120 may specify the DRX setting based on a predetermined RNTI applied to a grant for the uplink transmission (for example, a DCI format used for scheduling the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT).
  • control unit 120 may specify the DRX setting based on the search space set and/or search space set group that has received (or may be monitored) a grant for uplink transmission, and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT).
  • control unit 120 may specify the DRX setting based on a predetermined identifier included in the data in the uplink transmission (i.e., a predetermined identifier included in the data transmitted on the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT). Furthermore, the control unit 120 may specify the DRX setting based on a grant for uplink transmission (e.g., a DCI format used for scheduling the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT).
  • a grant for uplink transmission e.g., a DCI format used for scheduling the PUSCH
  • IAT has been described as an example, other operations may be performed to control the DRX operation. In the above description, IAT may be replaced with ODT.
  • the control unit 120 controls the DRX operation based on each of the multiple DRX settings.
  • the receiving unit 112 receives control information from the network 10.
  • the receiving unit 112 receives a predetermined parameter from the network 10.
  • the control unit 120 identifies a target DRX setting from among the multiple DRX settings that is to be controlled based on the control information, based on the predetermined parameter. This allows the UE 100 to identify the target DRX setting based on the predetermined parameter, even if the UE 100 receives control information during overlapping periods of time in the activated state based on the multiple DRX settings. This allows the UE 100 to grasp the target of the control information and appropriately control the DRX operation.
  • control information may be DCI transmitted on the PDCCH.
  • the receiver 112 may receive the DCI transmitted by applying a predetermined parameter.
  • the controller 120 may identify a target DRX setting corresponding to the DCI from among a plurality of DRX settings based on the predetermined parameter applied to the DCI received by the receiver 112. This makes it easier for the controller 120 to identify the target DRX setting early on, since the predetermined parameter has been applied to the DCI in the UE 100.
  • the specified parameter may be a specified RNTI.
  • the control unit 120 may identify a target DRX setting from among multiple DRX settings based on the specified RNTI that successfully decoded the DCI. This allows the control unit 120 to identify the target DRX setting by decoding the DCI.
  • the specified parameter may be a search space set or a search space set group.
  • the control unit 120 may identify a DRX setting from among multiple DRX settings based on the search space set or search space set group in which the DCI is placed.
  • the specified parameter may be a specified identifier included in the data transmitted on the PDSCH scheduled using the DCI.
  • the control unit 120 may identify the DRX setting from among multiple DRX settings based on the specified identifier.
  • the predetermined parameter may be a radio bearer identifier or a logical channel identifier. These identifiers are already defined in the 3GPP technical specifications, so the impact on the specifications can be reduced.
  • the receiving unit 112 may also receive correspondence information from the network 10 for identifying the correspondence between the specified parameters and the DRX settings. This allows the control unit 120 to grasp the correspondence between the specified parameters and the DRX settings even if the specified parameters are not directly associated with the DRX settings.
  • the control information may also be an uplink grant for new transmission.
  • the control unit 120 may determine whether to start or restart the IAT based on the target DRX setting based on the uplink grant. Because the control unit 120 does not always start or restart the IAT, power saving can be achieved compared to the case where the IAT is always started or restarted. In addition, because the control unit 120 determines the target DRX setting, DRX operation can be flexibly controlled.
  • control unit 120 does not need to start or restart the DRX inactive timer when there is no data available for uplink transmission. This allows the control unit 120 to omit monitoring the PDCCH when there is no data available for uplink transmission, thereby enabling power saving.
  • control unit 120 does not need to start or resume the IAT when a cell group is configured to skip uplink transmission using uplink resources allocated to the UE 100 when there is no data available for uplink transmission in the uplink resources, and when there is no data available for uplink transmission. This allows the control unit 120 to skip uplink transmission based on the IAT when skipping uplink transmission is permitted (configured) by the network 10, and therefore can avoid skipping uplink transmission without permission from the network 10.
  • step 101 an operation similar to that of the first operation example may be performed.
  • Step S102 The transmitting unit 211 of the base station 200 transmits a predetermined MAC CE to the UE 100 as control information for controlling the DRX operation.
  • the receiving unit 112 of the UE 100 receives the control information from the base station 200.
  • the specified MAC CE is a MAC CE for stopping the ODT and/or IAT based on a DRX setting identified as a target DRX setting.
  • the specified MAC CE may be a DRX command MAC CE or a long DRX command MAC CE.
  • the specified MAC CE may be a MAC CE defined for stopping the ODT and/or IAT based on a DRX setting identified as a target DRX setting among multiple DRX settings configured in the UE 100.
  • the specified MAC CE may include a specified LCID (LCID for the downlink shared channel (DL-SCH)) for identifying the specified MAC CE.
  • DL-SCH downlink shared channel
  • the transmitting unit 211 of the base station 200 may transmit the DCI by applying a predetermined parameter.
  • the receiving unit 112 of the UE 100 may receive the DCI.
  • the transmitting unit 211 of the base station 200 may transmit a predetermined MAC CE on the PDSCH scheduled using the DCI.
  • the receiving unit 112 of the UE 100 may receive a predetermined MAC CE on the PDSCH scheduled using the DCI.
  • Step 103 The control unit 120 of the UE 100 may specify a target DRX setting from among a plurality of DRX settings based on a predetermined parameter.
  • the control unit 120 may perform any of the following operations.
  • the control unit 120 of the UE 100 may, for example, identify a target DRX setting corresponding to a DCI from among a plurality of DRX settings based on a specific parameter applied to the DCI, as in the first operation example. Specifically, the control unit 120 may identify, as the target DRX setting, a DRX setting corresponding to a specific parameter applied to the DCI, as a control target for a specific MAC CE transmitted on a PDSCH scheduled using the DCI.
  • the control unit 120 of the UE 100 may identify the target DRX setting based on a predetermined parameter included in a predetermined MAC CE.
  • the predetermined MAC CE may include, as a predetermined parameter, an identifier for identifying the DRX setting to be controlled by the predetermined MAC CE.
  • the predetermined parameter may be, for example, a predetermined RNTI.
  • the predetermined parameter may be one of the predetermined parameters described above.
  • the control unit 120 of the UE 100 may identify the DRX setting corresponding to the predetermined RNTI included in the predetermined MAC CE as the target DRX setting.
  • Step S104 The control unit 120 may stop the ODT and/or IAT based on the target DRX setting based on a predetermined MAC CE.
  • control information may be a specified MAC CE transmitted on the PDSCH.
  • the control unit 120 may stop the ODT and/or IAT based on the target DRX setting based on the specified MAC CE.
  • the UE 100 may stop the ODT and/or IAT based on the target DRX setting even if multiple DRXs are configured.
  • the specific MAC CE may include a specific LCID for identifying the specific MAC CE for stopping the ODT and IAT. This allows the control unit 120 to understand that the specific MAC CE is for stopping the ODT and IAT.
  • the receiving unit 112 may receive DCI transmitted by applying the specified parameters, and may receive a specified MAC CE on a PDSCH scheduled using the DCI.
  • the control unit 120 may identify a target DRX setting corresponding to the DCI from among multiple DRX settings based on the specified parameters applied to the DCI received by the receiving unit. This allows the control unit 120 to quickly identify a target DRX setting based on the specified parameters applied to the DCI, even if the control information is signaling of a layer higher than the MAC layer.
  • the predetermined parameter may be data to be transmitted on the PDSCH scheduled using DCI, for example, data to be processed in a layer higher than the MAC layer.
  • the control unit 120 of the UE 100 may specify a target DRX setting associated with the predetermined parameter in a higher layer. In this case, the control unit 120 of the UE 100 may not control the DRX operation immediately after receiving the control information.
  • the UE 100 may control the DRX operation when specifying a target DRX setting among a plurality of DRX settings.
  • control unit 120 has been described as stopping the ODT and/or IAT based on the target DRX setting based on a specific MAC CE, but this is not limited to the case.
  • control unit 120 may stop the ODT and/or IAT based on not only the target DRX setting but also each of the multiple DRX settings set in the UE 100 based on a specific MAC CE.
  • the mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation).
  • the base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE.
  • the mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • the mobile communication system 1 may be a system that complies with the TS of either LTE or another generation system of the 3GPP standard (e.g., the 6th generation).
  • the base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE.
  • the mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
  • each of the above-described operation flows is not limited to being executed separately and independently, but can be executed by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 200.
  • the program may be recorded in a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory).
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
  • transmit may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired.
  • transmit may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired.
  • receiveive may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired.
  • receiver may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired.
  • “obtain/acquire” may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information.
  • the terms “based on” and “depending on/in response to” do not mean “based only on” or “only in response to,” unless expressly stated otherwise.
  • the term “based on” means both “based only on” and “based at least in part on.”
  • the term “in response to” means both “only in response to” and “at least in part on.”
  • “include” and “comprise” do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items.
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner.
  • articles are added by translation such as, for example, a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
  • a communication device (100) performing a discontinuous reception (DRX) operation, A control unit (120) that controls the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device; A receiving unit (112) that receives control information for controlling the DRX operation from a network, The receiving unit receives from the network (10) a predetermined parameter that differs for each DRX setting set in the communication device; The control unit specifies a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
  • DRX discontinuous reception
  • control information is downlink control information (DCI) transmitted on a physical downlink control channel (PDCCH).
  • DCI downlink control information
  • the receiving unit receives the DCI transmitted by applying the predetermined parameter,
  • the control unit identifies the DRX setting to be the control target according to the DCI received by the receiving unit from among the multiple DRX settings based on the predetermined parameter applied to the DCI.
  • the predetermined parameter is a predetermined Radio Network Temporary Identifier (RNTI);
  • RNTI Radio Network Temporary Identifier
  • the predetermined parameter is a search space set or a search space set group
  • the communication device according to any one of Supplementary Note 2 to 4, wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the search space set or search space set group in which the DCI is placed.
  • the predetermined parameter is a predetermined identifier included in data transmitted on a physical downlink shared channel (PDSCH) scheduled using the DCI,
  • PDSCH physical downlink shared channel
  • the communication device according to any one of Supplementary Note 2 to 5, wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the predetermined identifier.
  • the control information is a predetermined Medium Access Control (MAC) Control Element (CE) transmitted on a Physical Downlink Shared Channel (PDSCH);
  • MAC Medium Access Control
  • CE Control Element
  • PDSCH Physical Downlink Shared Channel
  • the predetermined MAC CE includes a predetermined logical channel identifier for identifying the predetermined MAC CE for stopping the DRX on-duration timer and/or the DRX inactivity timer.
  • the receiving unit is Receive downlink control information (DCI) transmitted by applying the predetermined parameters; receiving the predetermined MAC CE on a physical downlink shared channel (PDSCH) scheduled using the DCI;
  • the control unit identifies the DRX setting to be the control target according to the DCI received by the receiving unit from among the plurality of DRX settings based on the predetermined parameter applied to the DCI received by the receiving unit.
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • the control information is an uplink grant for a new transmission,
  • the communication device according to any one of Supplementary Note 1 to 12, wherein the control unit determines, based on the uplink grant, whether to start or restart a DRX inactivity timer based on the specified DRX configuration.
  • the control unit is configured not to start or restart the DRX inactivity timer when the one cell group is configured to skip uplink transmission using uplink resources allocated in the communication device when there is no data available for uplink transmission in the uplink resources.
  • a communication method executed in a communication device (100) performing a discontinuous reception (DRX) operation comprising: Controlling the DRX operation based on each of a plurality of DRX configurations applied to one cell group configured in the communication device; receiving control information from a network (10) for controlling said DRX operation; receiving from the network a predetermined parameter that differs for each DRX setting set in the communication device; identifying a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
  • DRX discontinuous reception

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device (100) that performs a discontinuous reception (DRX) operation is provided with: a control unit (120) that controls the DRX operation on the basis of each of a plurality of DRX configurations that are applied to a single cell group configured in the communication device; and a reception unit (112) that receives control information for controlling the DRX operation from a network. The reception unit receives from the network (10) a predetermined parameter that differs for each of the DRX configurations configured in the communication device. The control unit identifies, on the basis of the predetermined parameter, a DRX configuration to be controlled on the basis of the control information, from among the plurality of DRX configurations.

Description

通信装置及び通信方法Communication device and communication method 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2022年9月28日に出願された特許出願番号2022-155585号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority to patent application serial number 2022-155585, filed September 28, 2022, the entire contents of which are incorporated herein by reference.
 本開示は、移動通信システムで用いる通信装置及び通信方法に関する。 This disclosure relates to a communication device and a communication method for use in a mobile communication system.
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)では、XR(Extended Reality)サービスの特性に適合した省電力技術を検討するためのワークアイテムが立ち上がっている。 3GPP (registered trademark; the same applies below) (3rd Generation Partnership Project), a standardization project for mobile communications systems, has launched a work item to consider power saving technologies suited to the characteristics of XR (Extended Reality) services.
 XRサービスでは、異なるトラフィック特性(例えば、トラフィック周期)を持つ複数のトラフィックフローを通信装置へ提供することが想定されている。トラフィック周期の違いによって複数のトラフィックフローのそれぞれの受信タイミングが異なるため、通信装置は、単一の間欠受信(DRX)設定に基づくDRX動作を実行している場合、起動(Awake)状態である時間を長くしなければならないことがある。 In the XR service, it is assumed that multiple traffic flows with different traffic characteristics (e.g., traffic cycles) are provided to a communication device. Because the reception timing of each of the multiple traffic flows differs due to differences in the traffic cycles, the communication device may need to extend the time it is in an awake state when performing DRX operation based on a single discontinuous reception (DRX) setting.
 そこで、通信装置が1つのトラフィックフローに対して1つのDRX設定に基づくDRX動作を実行することが想定される。これによれば、通信装置の起動状態が短くなり、省電力効果を得られることが報告されている(非特許文献1参照)。 Therefore, it is assumed that the communication device will perform DRX operation based on one DRX setting for one traffic flow. This will shorten the time that the communication device is in the active state, and it has been reported that this will result in power saving effects (see Non-Patent Document 1).
 第1の態様に係る通信装置は、間欠受信(DRX)動作を行う通信装置である。当該通信装置は、前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御する制御部と、前記DRX動作を制御するための制御情報をネットワークから受信する受信部と、を備える。前記受信部は、前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワークから受信する。前記制御部は、前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定する。 The communication device according to the first aspect is a communication device that performs discontinuous reception (DRX) operation. The communication device includes a control unit that controls the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device, and a receiving unit that receives control information for controlling the DRX operation from a network. The receiving unit receives from the network a predetermined parameter that differs for each DRX setting set in the communication device. The control unit identifies a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
 第2の態様に係る通信方法は、間欠受信(DRX)動作を行う通信装置で実行される通信方法である。当該通信方法は、前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御するステップと、前記DRX動作を制御するための制御情報をネットワークから受信するステップと、前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワークから受信するステップと、前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定するステップと、を備える。 The communication method according to the second aspect is a communication method executed by a communication device that performs discontinuous reception (DRX) operation. The communication method includes the steps of controlling the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device, receiving control information for controlling the DRX operation from a network, receiving from the network a predetermined parameter that differs for each DRX setting set in the communication device, and identifying a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、DRXに関するタイマを説明するための図である。 図4は、実施形態に係るUEの構成を示す図である。 図5は、実施形態に係る基地局の構成を示す図である。 図6は、実施形態に係る第1動作例及び第2動作例を説明するためのシーケンス図である。 図7は、実施形態に係る第1動作例におけるUE100の動作の一例を説明するためのフローチャートである。
The objects, features, and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram illustrating an example of the configuration of a protocol stack according to the embodiment. FIG. 3 is a diagram for explaining a timer related to DRX. FIG. 4 is a diagram showing a configuration of a UE according to the embodiment. FIG. 5 is a diagram showing a configuration of a base station according to the embodiment. FIG. 6 is a sequence diagram for explaining a first operation example and a second operation example according to the embodiment. FIG. 7 is a flowchart for explaining an example of the operation of UE 100 in a first operation example according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 The mobile communication system according to the embodiment will be described with reference to the drawings. In the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 通信装置が複数のトラフィックフローを受信するために、通信装置に設定された1つのセルグループに対して複数のDRX設定が適用されるケースを想定する。このケースにおいて、あるDRX設定に基づく起動状態の時間と、別のDRX設定に基づく起動状態の時間とが重複することがあり得る。この重複時間中に、DRX設定に基づくDRX動作を制御するための制御情報を、通信装置が受信した場合に、制御情報に基づく制御対象がどちらのDRX設定であるか分からず、DRX動作を適切に制御できない懸念がある。 Consider a case in which multiple DRX settings are applied to one cell group configured in a communications device in order for the communications device to receive multiple traffic flows. In this case, it is possible that the time during which an active state based on one DRX setting is active may overlap with the time during which an active state based on another DRX setting is active. If the communications device receives control information for controlling DRX operation based on a DRX setting during this overlapping time, there is a concern that it will not be possible to appropriately control DRX operation because it will not know which DRX setting is the target of control based on the control information.
 そこで、本開示は、DRX動作を適切に制御可能とする通信装置及び通信方法を提供することを目的の一つとする。 Therefore, one of the objectives of this disclosure is to provide a communication device and a communication method that enable appropriate control of DRX operation.
 (システム構成)
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5Gシステム)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
(System configuration)
First, the configuration of a mobile communication system 1 according to the present embodiment will be described with reference to Fig. 1. The mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS). In the following, the mobile communication system 1 will be described using a 3GPP standard 5th Generation System (5G system), i.e., a mobile communication system based on NR (New Radio) as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10. The network 10 includes a 5G radio access network, NG-RAN (Next Generation Radio Access Network) 20, and a 5G core network, 5GC (5G Core Network) 30.
 UE100は、基地局200を介して通信する通信装置である。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、端末、端末装置、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。また、UE100は端末の一例であり、端末には工場機器等を含んでもよい。 UE100 is a communication device that communicates via base station 200. UE100 may be a device used by a user. UE100 may be a user device defined in the technical specifications of 3GPP. UE100 is a mobile device such as a mobile phone terminal such as a smartphone, a tablet terminal, a notebook PC, a communication module, or a communication card. UE100 may be a vehicle (e.g., a car, a train, etc.) or a device provided therein. UE100 may be a transport vehicle other than a vehicle (e.g., a ship, an airplane, etc.) or a device provided therein. UE100 may be a sensor or a device provided therein. Note that UE100 may be called by other names such as a terminal, a terminal device, a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, a remote terminal, a remote device, or a remote unit. Additionally, UE 100 is an example of a terminal, and terminals may include factory equipment, etc.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属する。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックの詳細については後述する。また、基地局200は、Xnインターフェイスを介して他の基地局200(隣接基地局と称されてもよい)に接続される。基地局200は、Xnインターフェイスを介して隣接基地局と通信する。また、基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN20 includes multiple base stations 200. Each base station 200 manages at least one cell. A cell constitutes the smallest unit of a communication area. One cell belongs to one frequency (carrier frequency). The term "cell" may refer to a wireless communication resource, and may also refer to a communication target of UE100. Each base station 200 can perform wireless communication with UE100 located in its own cell. The base station 200 communicates with UE100 using a protocol stack of the RAN. Details of the protocol stack will be described later. In addition, the base station 200 is connected to other base stations 200 (which may be referred to as adjacent base stations) via an Xn interface. The base station 200 communicates with adjacent base stations via an Xn interface. In addition, the base station 200 provides NR user plane and control plane protocol terminations toward the UE100, and is connected to the 5GC30 via an NG interface. Such an NR base station 200 may be referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、U-plane処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 5GC30 includes a core network device 300. The core network device 300 includes, for example, an AMF (Access and Mobility Management Function) and/or a UPF (User Plane Function). The AMF manages the mobility of the UE 100. The UPF provides functions specialized for U-plane processing. The AMF and the UPF are connected to the base station 200 via an NG interface.
 (プロトコルスタックの構成例)
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。
(Example of protocol stack configuration)
Next, an example of the configuration of a protocol stack according to this embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。 The protocol for the wireless section between UE100 and base station 200 includes a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and an RRC layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via a physical channel.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing using Hybrid ARQ (HARQ), random access procedures, etc. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of base station 200 via a transport channel. The MAC layer of base station 200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resources to be allocated to UE100.
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression, and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 The SDAP (Service Data Adaptation Protocol) layer may be provided as a layer above the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer maps IP flows, which are the units by which the core network performs QoS (Quality of Service) control, to radio bearers, which are the units by which the AS (Access Stratum) performs QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers. RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of base station 200. When there is an RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC connected state. When there is no RRC connection between the RRC of UE100 and the RRC of base station 200, UE100 is in an RRC idle state. When the RRC connection between the RRC of UE100 and the RRC of base station 200 is suspended, UE100 is in an RRC inactive state.
 UE100においてRRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer, which is located above the RRC layer in UE100, performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of the core network device 300.
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 In addition, UE100 has an application layer, etc. in addition to the radio interface protocol.
 (無線フレーム構成)
 5Gシステムにおいて、下り送信及び上り送信は、10msの持続時間の無線フレーム内で構成される。例えば、無線フレームは、10個のサブフレームにより構成される。例えば、1つのサブフレームは、1msであってもよい。また、1つのサブフレームは、1以上のスロットにより構成されてもよい。例えば、1つのスロットを構成するシンボルの数は、通常CP(Cyclic Prefix)で14個であり、拡張CPで12個である。また、1つのサブフレームを構成するスロットの数は、設定されたサブキャリア間隔に応じて変化する。例えば、通常CPに対して、サブキャリア間隔として15kHzが設定された場合、サブフレーム当たりのスロットの数は1(すなわち、14シンボル)であり、サブキャリア間隔として30kHzが設定された場合、サブフレーム当たりのスロットの数は2(すなわち、28シンボル)であり、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、56シンボル)であり、サブキャリア間隔として120kHzが設定された場合、サブフレーム当たりのスロットの数は8(すなわち、112シンボル)である。また、拡張CPに対して、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、48シンボル)である。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するスロットの数が決定される。また、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するシンボルの数が決定される。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1msのサブフレームを構成するシンボルの数が決定され、各シンボルの長さ(時間方向の長さ)が変化する。
(Radio Frame Structure)
In the 5G system, downlink transmission and uplink transmission are configured within a radio frame of 10 ms duration. For example, a radio frame is configured with 10 subframes. For example, one subframe may be 1 ms. Also, one subframe may be configured with one or more slots. For example, the number of symbols constituting one slot is 14 in a normal CP (Cyclic Prefix) and 12 in an extended CP. Also, the number of slots constituting one subframe changes according to the set subcarrier interval. For example, for a normal CP, when the subcarrier interval is set to 15 kHz, the number of slots per subframe is 1 (i.e., 14 symbols), when the subcarrier interval is set to 30 kHz, the number of slots per subframe is 2 (i.e., 28 symbols), when the subcarrier interval is set to 60 kHz, the number of slots per subframe is 4 (i.e., 56 symbols), and when the subcarrier interval is set to 120 kHz, the number of slots per subframe is 8 (i.e., 112 symbols). Furthermore, when the subcarrier interval is set to 60 kHz for the extended CP, the number of slots per subframe is 4 (i.e., 48 symbols). That is, the number of slots constituting one subframe is determined based on the subcarrier interval set by the base station 200. Also, the number of symbols constituting one subframe is determined based on the subcarrier interval set by the base station 200. That is, the number of symbols constituting a 1 ms subframe is determined based on the subcarrier interval set by the base station 200, and the length of each symbol (length in the time direction) changes.
 (DRX)
 図3を参照して、実施形態に係る移動通信システム1における間欠受信(DRX)について説明する。図3Aは、上りリンク送信におけるDRXに関するタイマを説明するための図である。図3Bは、下りリンク送信におけるDRXに関するタイマを説明するための図である。
(DRX)
With reference to Fig. 3, discontinuous reception (DRX) in the mobile communication system 1 according to the embodiment will be described. Fig. 3A is a diagram for explaining a timer related to DRX in uplink transmission. Fig. 3B is a diagram for explaining a timer related to DRX in downlink transmission.
 UE100の消費電力を削減するために、UE100は、DRX中の動作(以下、DRX動作と称する)として、UE100の物理下りリンク制御チャネル(PDCCH)を常に監視するのではなく、一定のサイクル(すなわち、DRXサイクル)毎でのみPDCCHを監視する。特に、RRCコネクティッド状態であるUE100が実行するDRXは、C-DRXと呼ばれることがある。 In order to reduce the power consumption of UE100, UE100 does not constantly monitor the physical downlink control channel (PDCCH) of UE100 as an operation during DRX (hereinafter referred to as DRX operation), but monitors the PDCCH only at regular cycles (i.e., DRX cycles). In particular, DRX performed by UE100 in an RRC connected state is sometimes called C-DRX.
 UE100には、オン期間とオフ期間とで構成されるDRXサイクルが設定される。オン期間では、UE100の状態が、UE100が、PDCCHを監視する起動(Awake)状態である。起動状態にあるUE100は、PDCCHを監視するためにアクティブである。起動状態は、例えば、アクティブ状態、又はDRX起動状態と称されてもよい。また、オン期間は、PDCCHを監視する期間として、例えば、DRXオン期間、オン時間、又はアクティブ時間と称されてもよい。オフ期間では、UE100の状態が、UE100がPDCCHを監視する必要がないスリープ状態である。スリープ状態にあるUE100は、インアクティブである。スリープ状態は、例えば、DRXスリープ状態、スリープモード、DRXモード、又は省電力モードと称されてもよい。オフ期間は、PDCCHを監視しない期間として、例えば、DRXオフ期間、オフ時間、又はインアクティブ時間と称されてもよい。 The UE 100 is set with a DRX cycle consisting of an on period and an off period. During the on period, the state of the UE 100 is an awake state in which the UE 100 monitors the PDCCH. The UE 100 in the awake state is active to monitor the PDCCH. The awake state may be referred to as, for example, an active state or a DRX activated state. The on period may also be referred to as, for example, a DRX on period, on time, or active time as a period in which the PDCCH is monitored. During the off period, the state of the UE 100 is a sleep state in which the UE 100 does not need to monitor the PDCCH. The UE 100 in the sleep state is inactive. The sleep state may be referred to as, for example, a DRX sleep state, a sleep mode, a DRX mode, or a power saving mode. The off period may also be referred to as, for example, a DRX off period, off time, or inactive time as a period in which the PDCCH is not monitored.
 DRXサイクルとして、ロングDRXサイクルとショートDRXサイクルとが規定されている。ロングDRXサイクルは、オン期間とオフ期間で構成されている。ショートDRXサイクルは、ロングDRXと共に設定される追加のDRXサイクルである。ショートDRXサイクルは、ロングDRXサイクルと比較して短いDRXサイクルである。 As DRX cycles, a long DRX cycle and a short DRX cycle are specified. The long DRX cycle consists of an on period and an off period. The short DRX cycle is an additional DRX cycle that is set together with the long DRX cycle. The short DRX cycle is a DRX cycle that is shorter than the long DRX cycle.
 DRX設定用のパラメータとして、例えば、drx-onDurationTimer、drx-InactivityTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL、drx-LongCycleStartOffset、drx-SlotOffset等が、UE100に設定されるセルグループ毎にUE個別に設定される。 DRX setting parameters, such as drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, drx-LongCycleStartOffset, and drx-SlotOffset, are set individually for each cell group set in UE 100.
 以下、本実施形態においては、説明を容易とするために、1つのセルグループに対してDRX(DRX動作)が設定されることを記載する。すなわち、本実施形態における動作は、1つのセルグループに対して、DRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態における動作は、1つのサービングセル(例えば、下りリンクのサービングセル、下りリンクコンポーネントキャリアとも称する)に対して、DRX(DRX動作)が設定された場合の動作であってもよい。また、本実施形態における動作は、1つ又は複数のサービングセルのそれぞれにおいて設定されたDL BWP(Downlonk Bandwidth Part:下りリンク帯域幅部分)のそれぞれに対してDRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態における動作は、1つ又は複数のサービングセルのそれぞれにおけるDL BWPのそれぞれに対して、DRX(DRX動作)が設定された場合の動作であってもよい。すなわち、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のセルグループのそれぞれに対して設定されてもよい。また、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のサービングセルのそれぞれに対して設定されてもよい。また、本実施形態において、DRX設定用のパラメータ(すなわち、DRX(DRX動作))は、1つ又は複数のDL BWPのそれぞれに対して設定されてもよい。 Hereinafter, in this embodiment, for ease of explanation, it will be described that DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one cell group. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for one serving cell (for example, a downlink serving cell, also referred to as a downlink component carrier). Also, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP (Downlink Bandwidth Part) set in each of one or more serving cells. That is, the operation in this embodiment may be an operation when DRX (DRX operation) is set for each DL BWP in each of one or more serving cells. That is, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more cell groups. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more serving cells. Also, in this embodiment, the parameters for DRX setting (i.e., DRX (DRX operation)) may be set for each of one or more DL BWPs.
 drx-onDurationTimerは、DRXサイクルの開始の期間(the duration at the beginning of a DRX cycle)を示してもよい。例えば、drx-onDurationTimerは、各DRXサイクルのDRXオン期間の時間量を指定するパラメータである。従って、drx-onDurationTimerは、DRXオン期間を計時するために用いられるDRXオンデュレーションタイマ(drx-onDurationTimer)のタイマ値にセットされる。図3に示すように、UE100は、DRXオンデュレーションタイマ(以下、ODTと称することがある)が稼働(動作)している間、アクティブ状態である(例えば、アクティブ時間であるとみなす)。UE100は、ODTの満了までにPDCCHを受信しない場合、次のオン期間の開始まで、スリープ状態へ移行する。 drx-onDurationTimer may indicate the duration at the beginning of a DRX cycle. For example, drx-onDurationTimer is a parameter that specifies the amount of time of the DRX on period of each DRX cycle. Thus, drx-onDurationTimer is set to the timer value of the DRX on duration timer (drx-onDurationTimer) used to time the DRX on period. As shown in FIG. 3, UE 100 is in an active state (e.g., considered to be in an active time) while the DRX on duration timer (hereinafter sometimes referred to as ODT) is running (operating). If UE 100 does not receive a PDCCH by the expiration of ODT, it transitions to a sleep state until the start of the next on period.
 drx-InactivityTimerは、新規の上りリンク又は下りリンクの送信を示すPDCCHに対するPDCCH機会の後の期間(the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission)を示してもよい。ここで、上りリンクの送信を示すPDCCHは、上りリンクのスケジューリング(例えば、PUSCHのスケジューリング)に用いられるDCIフォーマットを含んでもよい。また、下りリンクの送信を示すPDCCHは、下りリンクのスケジューリング(例えば、PDSCHのスケジューリング)に用いられるDCIフォーマットを含んでもよい。例えば、drx-InactivityTimerは、新規送信(new transmission)を示すPDCCHのデコードに成功した後、UE100がアクティブであるべき期間を指定するパラメータである。従って、drx-InactivityTimerは、例えばアクティブ時間を計時するために用いられるDRXインアクティビティタイマ(drx-InactivityTimer)のタイマ値にセットされる。図3に示すように、DRXインアクティビティタイマ(以下、IATと称することがある)は、UE100がオン期間中に新規送信(例えば、UL、DL、又はSL(サイドリンク))用のPDCCHを受信すると、開始又は再開される。従って、UE100は、IATが稼働している間、起動状態を維持する。IATは、新規送信を示すPDCCHのデコードに成功した後にUE100が起動状態であるべき期間を示すタイマであってよい。UE100は、IATが満了するまでPDCCHを監視する。IATが満了すると、UE100は、スリープ状態(DRXモード)に移行する。 The drx-InactivityTimer may indicate the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission. Here, the PDCCH indicating the uplink transmission may include a DCI format used for uplink scheduling (e.g., PUSCH scheduling). Also, the PDCCH indicating the downlink transmission may include a DCI format used for downlink scheduling (e.g., PDSCH scheduling). For example, the drx-InactivityTimer is a parameter that specifies the period during which the UE 100 should be active after successfully decoding a PDCCH indicating a new transmission. Therefore, the drx-InactivityTimer is set to the timer value of the DRX inactivity timer (drx-InactivityTimer) used to time the active time, for example. As shown in FIG. 3, the DRX inactivity timer (hereinafter sometimes referred to as IAT) is started or restarted when the UE 100 receives a PDCCH for a new transmission (e.g., UL, DL, or SL (sidelink)) during the on period. Therefore, the UE 100 remains in an awake state while the IAT is running. The IAT may be a timer indicating the period during which the UE 100 should be in an awake state after successfully decoding a PDCCH indicating a new transmission. The UE 100 monitors the PDCCH until the IAT expires. When the IAT expires, the UE 100 transitions to a sleep state (DRX mode).
 drx-HARQ-RTT-TimerULは、上りリンクにおけるHARQの再送のためのグラントが期待される前の最小の期間(the minimum duration before a UL HARQ retransmission grant is expected)を示してもよい。ここで、グラントとは、上りリンクの送信を示すPDCCHを含んでもよい。例えば、drx-HARQ-RTT-TimerULは、上りリンクデータの再送処理で用いられるパラメータである。drx-HARQ-RTT-TimerULは、UE100が上りリンク再送を期待できる期間を規定するパラメータである。drx-HARQ-RTT-TimerULは、当該期間を計時するために用いられるタイマ(drx-HARQ-RTT-TimerUL(タイマ))のタイマ値にセットされる。UE100は、当該タイマが稼働中は、スリープ状態を維持する。当該タイマを、以下、HARQ・RTTタイマ又はHARQ・RTT・ULタイマと称することがある。図3Aに示すように、UE100は、PUSCHを送信した直後の最初のシンボルでHARQ・RTTタイマ(具体的には、drx-HARQ-RTT-TimerULタイマ)を開始する。UE100は、当該タイマの満了に応じて、アクティブ状態に移行する。また、drx-HARQ-RTT-TimerULは、上りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 The drx-HARQ-RTT-TimerUL may indicate the minimum duration before a UL HARQ retransmission grant is expected. Here, the grant may include a PDCCH indicating an uplink transmission. For example, the drx-HARQ-RTT-TimerUL is a parameter used in the retransmission process of uplink data. The drx-HARQ-RTT-TimerUL is a parameter that specifies the period during which the UE 100 can expect an uplink retransmission. The drx-HARQ-RTT-TimerUL is set to the timer value of a timer (drx-HARQ-RTT-TimerUL (timer)) used to time the period. The UE 100 maintains a sleep state while the timer is running. The timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT UL timer. As shown in FIG. 3A, the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerUL timer) with the first symbol immediately after transmitting the PUSCH. The UE 100 transitions to an active state in response to expiration of the timer. In addition, drx-HARQ-RTT-TimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
 drx-HARQ-RTT-TimerDLは、HARQの再送に対する下りリンクの割り当ての前の最小の期間(the minimum duration before a DL assignment for HARQ retransmission)を示してもよい。ここで、下りリンクの割り当てとは、下りリンクの送信を示すPDCCHを含んでもよい。例えば、drx-HARQ-RTT-TimerDLは、下りリンクデータの再送処理で用いられるパラメータである。drx-HARQ-RTT-TimerDLは、UE100が再送を期待できる期間を規定するパラメータである。drx-HARQ-RTT-TimerDLは、当該期間を計時するために用いられるタイマ(drx-HARQ-RTT-TimerDL(タイマ))のタイマ値にセットされる。UE100は、当該タイマが稼働中は、スリープ状態を維持する。当該タイマを、以下、HARQ・RTTタイマ又はHARQ・RTT・DLタイマと称することがある。図3Bに示すように、UE100は、新規下りリンク送信を受信した場合に、上りリンクで否定応答(NACK)の送信後に最初のシンボルでHARQ・RTTタイマ(具体的には、drx-HARQ-RTT-TimerDLタイマ)を開始する。UE100は、当該タイマの満了に応じて、アクティブ状態に移行する。また、drx-HARQ-RTT-TimerDLは、下りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 The drx-HARQ-RTT-TimerDL may indicate the minimum duration before a DL assignment for HARQ retransmission. Here, the downlink assignment may include a PDCCH indicating downlink transmission. For example, the drx-HARQ-RTT-TimerDL is a parameter used in the retransmission process of downlink data. The drx-HARQ-RTT-TimerDL is a parameter that specifies the period during which the UE 100 can expect a retransmission. The drx-HARQ-RTT-TimerDL is set to the timer value of a timer (drx-HARQ-RTT-TimerDL (timer)) used to time the period. The UE 100 maintains a sleep state while the timer is running. The timer may be hereinafter referred to as a HARQ RTT timer or a HARQ RTT DL timer. As shown in FIG. 3B, when the UE 100 receives a new downlink transmission, the UE 100 starts the HARQ RTT timer (specifically, the drx-HARQ-RTT-TimerDL timer) with the first symbol after transmitting a negative acknowledgement (NACK) in the uplink. The UE 100 transitions to an active state in response to expiration of the timer. In addition, drx-HARQ-RTT-TimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
 drx-RetransmissionTimerULは、上りリンクの再送信に対するグラントを受信するまでの最大の期間(the maximum duration until a grant for UL retransmission is received)を示してもよい。ここで、上りリンクの再送信に対するグラントとは、上りリンクの再送信を示すPDCCHを含んでもよい。例えば、drx-RetransmissionTimerULは、上りリンクデータの再送処理で用いられるパラメータである。drx-RetransmissionTimerULは、上りリンク再送の許可(グラント)をUEが期待できる場合にUEがPDCCHをモニタすべきスロットの最大数にセットされる。drx-RetransmissionTimerULは、指定されたスロットの期間を計時するために用いられるタイマ(drx-RetransmissionTimerULタイマ)のタイマ値にセットされる。当該タイマは、DRX再送タイマ又はDRX再送ULタイマと称することがある。当該タイマは、HARQプロセス毎に対応付けられてよい。図3Aに示すように、UE100は、drx-HARQ-RTT-TimerULタイマが満了すると、次のシンボルでDRX再送ULタイマを開始する。UE100は、当該タイマの稼働している間、起動状態となる。UE100は、対応するHARQプロセス用の上りリンク送信を検出するとすぐに、DRX再送ULタイマを停止する。また、drx-RetransmissionTimerULは、上りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 drx-RetransmissionTimerUL may indicate the maximum duration until a grant for UL retransmission is received. Here, the grant for uplink retransmission may include a PDCCH indicating uplink retransmission. For example, drx-RetransmissionTimerUL is a parameter used in the retransmission process of uplink data. drx-RetransmissionTimerUL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a grant for uplink retransmission. The drx-RetransmissionTimerUL is set to the timer value of a timer (drx-RetransmissionTimerUL timer) used to time the duration of a specified slot. This timer may be referred to as a DRX retransmission timer or a DRX retransmission UL timer. This timer may be associated with each HARQ process. As shown in FIG. 3A, the UE 100 starts the DRX retransmission UL timer at the next symbol when the drx-HARQ-RTT-TimerUL timer expires. The UE 100 is in an awake state while this timer is running. The UE 100 stops the DRX retransmission UL timer as soon as it detects an uplink transmission for the corresponding HARQ process. In addition, drx-RetransmissionTimerUL may be specified (set, controlled) for each uplink HARQ process (per UL HARQ process).
 drx-RetransmissionTimerDLは、下りリンクの再送を受信するまでの最大の期間(the maximum duration until a DL retransmission is received)を示してもよい。ここで、下りリンクの再送とは、下りリンクデータの再送(すなわち、PDSCHにおける再送)を含んでもよい。また、下りリンクデータは、DL-SCHのデータとも称される。例えば、drx-RetransmissionTimerDLは、下りリンクデータの再送処理で用いられるパラメータである。drx-RetransmissionTimerDLは、基地局200からの再送をUEが期待できる場合にUEがPDCCHをモニタすべきスロットの最大数にセットされる。drx-RetransmissionTimerDLは、指定されたスロットの期間を計時するために用いられるタイマ(drx-RetransmissionTimerDLタイマ)のタイマ値にセットされる。当該タイマは、DRX再送タイマ又はDRX再送DLタイマと称することがある。当該タイマは、HARQプロセス毎に対応付けられてよい。図3Bに示すように、UE100は、drx-HARQ-RTT-TimerDLタイマが満了すると、次のシンボルでDRX再送DLタイマを開始する。UE100は、当該タイマの稼働している間、起動状態となる。UE100は、対応するHARQプロセス用の下りリンク送信を検出するとすぐに、DRX再送DLタイマを停止する。また、drx-RetransmissionTimerDLは、下りリンクのHARQプロセス毎(per UL HARQ process)に規定(設定、制御)されてもよい。 drx-RetransmissionTimerDL may indicate the maximum duration until a DL retransmission is received. Here, downlink retransmission may include retransmission of downlink data (i.e., retransmission in PDSCH). Downlink data is also referred to as DL-SCH data. For example, drx-RetransmissionTimerDL is a parameter used in the retransmission process of downlink data. drx-RetransmissionTimerDL is set to the maximum number of slots that the UE should monitor the PDCCH when the UE can expect a retransmission from base station 200. The drx-RetransmissionTimerDL is set to the timer value of a timer (drx-RetransmissionTimerDL timer) used to time the duration of a specified slot. This timer may be referred to as a DRX retransmission timer or a DRX retransmission DL timer. This timer may be associated with each HARQ process. As shown in FIG. 3B, when the drx-HARQ-RTT-TimerDL timer expires, the UE 100 starts the DRX retransmission DL timer at the next symbol. The UE 100 is in an awake state while this timer is running. The UE 100 stops the DRX retransmission DL timer as soon as it detects a downlink transmission for the corresponding HARQ process. In addition, drx-RetransmissionTimerDL may be specified (set, controlled) for each downlink HARQ process (per UL HARQ process).
 例えば、UE100は、1つのセルグループに対して設定されたdrx-onDurationTimer又はdrx-InactivityTimerが動作している時間を、当該1つのセルグループにおけるサービングセルに対するアクティブ時間であるとみなしてもよい。また、UE100は、1つのセルグループにおけるサービングセルのいずれかにおいて、drx-RetransmissionTimerUL又はdrx-RetransmissionTimerDLが動作している時間を、当該1つのセルグループにおけるサービングセルに対するアクティブ時間であるとみなしてもよい。例えば、UE100は、当該1つのセルグループがアクティブ時間である場合に、PDCCHを監視してもよい。すなわち、UE100は、当該1つのセルグループがアクティブ時間である場合に、当該1つのセルグループにおけるサービングセルにおいてPDCCHを監視してもよい。ここで、DRX設定用のパラメータ(すなわち、DRX(DRX動作))が設定されるセルグループを、DRXグループとも称する。例えば、基地局200は、1つ又は複数のサービングセルを含むDRXグループを示す情報を含むRRCメッセージを送信してもよい。UE100は、DRXグループを示す情報に基づいて、DRXグループを特定してもよい。例えば、DRXグループは、1つ又は複数のサービングセルのグループであって、同じアクティブ時間を持つ(設定される)グループであってもよい。DRX(DRX動作)が設定された場合、1つのDRXグループにおけるサービングセルに対するアクティブ時間は、当該1つのDRXグループに対して設定されたdrx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerUL、及び、drx-RetransmissionTimerDLのいずれかが動作している時間を含んでもよい。 drx-LongCycleStartOffsetは、ロングDRXサイクルの開始位置を制御するためのパラメータである。drx-LongCycleStartOffsetは、ロングDRXサイクルの長さと、ロングDRXサイクル内の開始サブフレーム番号とを決定するために用いられる。drx-SlotOffsetは、サブフレームの開始に関してオン期間の開始を規定するパラメータである。 For example, UE100 may consider the time when drx-onDurationTimer or drx-InactivityTimer set for one cell group is operating to be the active time for the serving cell in that one cell group. Also, UE100 may consider the time when drx-RetransmissionTimerUL or drx-RetransmissionTimerDL is operating in any of the serving cells in the one cell group to be the active time for the serving cell in that one cell group. For example, UE100 may monitor the PDCCH when the one cell group is in the active time. That is, UE100 may monitor the PDCCH in the serving cell in the one cell group when the one cell group is in the active time. Here, the cell group in which the parameters for DRX setting (i.e., DRX (DRX operation)) are set is also referred to as the DRX group. For example, the base station 200 may transmit an RRC message including information indicating a DRX group including one or more serving cells. The UE 100 may identify the DRX group based on the information indicating the DRX group. For example, the DRX group may be a group of one or more serving cells having (set) the same active time. When DRX (DRX operation) is set, the active time for the serving cells in one DRX group may include the time during which any of the drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerUL, and drx-RetransmissionTimerDL set for the one DRX group is operating. The drx-LongCycleStartOffset is a parameter for controlling the start position of the long DRX cycle. drx-LongCycleStartOffset is used to determine the length of the long DRX cycle and the starting subframe number within the long DRX cycle. drx-SlotOffset is a parameter that specifies the start of the on-period with respect to the start of the subframe.
 また、UE100は、DRXコマンドMAC CE又はロングDRXコマンドMAC CEをネットワーク(基地局200)から受信した場合、現在のオン期間(アクティブ時間)を終了させる。具体的には、UE100は、ODT及びIATを停止する。 Also, when UE100 receives a DRX command MAC CE or a long DRX command MAC CE from the network (base station 200), it ends the current on-period (active time). Specifically, UE100 stops ODT and IAT.
 UE100は、DRXコマンドMAC CEを受信した場合、通常のDRXサイクルに移行する。具体的には、UE100には、ショートDRXサイクルが設定されている場合には、ショートDRXサイクルモードに移行する。UE100には、ショートDRXサイクルが設定されていない場合には、ロングDRXサイクルモードに移行する。一方で、UE100は、ロングDRXコマンドMAC CEを受信した場合、ロングDRXサイクルに移行する。 When UE100 receives the DRX command MAC CE, it transitions to a normal DRX cycle. Specifically, when a short DRX cycle is set in UE100, it transitions to a short DRX cycle mode. When a short DRX cycle is not set in UE100, it transitions to a long DRX cycle mode. On the other hand, when UE100 receives a long DRX command MAC CE, it transitions to a long DRX cycle.
 (想定シナリオ)
 実施形態に係る移動通信システム1における想定シナリオについて説明する。移動通信システムの標準化プロジェクトである3GPPでは、XRサービスの特性に適合した省電力技術を検討するためのワークアイテムが立ち上がっている。XRトラフィック(XRサービス)の特性には、例えば、60, 120fps(16.67, 8.33ms)等の非整数周期、エンコーディングやNW送信遅延によるトラフィックの到着タイミングのばらつきジッタ(Jitter)、異なるトラフィック特性やQoS要件を持つ複数のデータストリーム(複数のフロー(Multiple flow)、例えば、IフレームとPフレーム、ビデオと音声/データなど)がある。
(Assumed scenario)
An assumed scenario in the mobile communication system 1 according to the embodiment will be described. In the 3GPP, which is a standardization project for mobile communication systems, a work item has been launched to study power saving technology suited to the characteristics of XR services. The characteristics of XR traffic (XR service) include, for example, a non-integer period such as 60, 120 fps (16.67, 8.33 ms), jitter (variation in the arrival timing of traffic due to encoding and NW transmission delay), and multiple data streams (multiple flows, for example, I frames and P frames, video and voice/data, etc.) with different traffic characteristics and QoS requirements.
 XRサービスでは、異なるトラフィック特性(例えば、トラフィック周期)を持つ複数のトラフィックフローを通信装置へ提供することが想定されている。トラフィック周期の違いによって複数のトラフィックフローのそれぞれの受信タイミングが異なるため、通信装置は、単一の間欠受信(DRX)設定に基づくDRX動作を実行している場合、起動(Awake)状態である時間を長くしなければならないことがある。そこで、通信装置が1つのトラフィックフローに対して1つのDRX設定に基づくDRX動作を実行することが想定される。これによれば、通信装置の起動状態が短くなり、省電力効果を得られることが報告されている。 In an XR service, it is assumed that multiple traffic flows with different traffic characteristics (e.g., traffic cycles) will be provided to a communication device. Because the reception timing of each of the multiple traffic flows differs depending on the traffic cycle, the communication device may need to extend the time it is in an awake state when performing a discontinuous reception (DRX) operation based on a single DRX setting. Therefore, it is assumed that the communication device will perform a DRX operation based on one DRX setting for one traffic flow. This has been reported to shorten the awake state of the communication device and provide a power saving effect.
 通信装置が複数のトラフィックフローを受信するために、通信装置に設定された1つのセルグループに対して複数のDRX設定が適用されるケースを想定する。このケースにおいて、あるDRX設定に基づく起動状態の時間と、別のDRX設定に基づく起動状態の時間とが重複することがあり得る。この重複時間中に、DRX設定に基づくDRX動作を制御するための制御情報を、通信装置が受信した場合に、制御情報に基づく制御対象がどちらのDRX設定であるか分からず、DRX動作を適切に制御できない懸念がある。そこで、本開示は、DRX動作を適切に制御可能とするための動作の一例について説明する。 Consider a case in which multiple DRX settings are applied to one cell group configured in a communication device in order for the communication device to receive multiple traffic flows. In this case, it is possible that the time of an activated state based on one DRX setting overlaps with the time of an activated state based on another DRX setting. If the communication device receives control information for controlling DRX operation based on a DRX setting during this overlapping time, there is a concern that it will not be possible to appropriately control the DRX operation because it will not know which DRX setting is the target of control based on the control information. Therefore, this disclosure describes an example of an operation for enabling appropriate control of DRX operation.
 (UEの構成)
 図4を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(UE Configuration)
A configuration of the UE 100 according to the embodiment will be described with reference to Fig. 4. The UE 100 includes a communication unit 110 and a control unit 120.
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving radio signals to and from the base station 200. The communication unit 110 has at least one transmission unit 111 and at least one reception unit 112. The transmission unit 111 and the reception unit 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. The antenna also receives radio waves in space and converts the radio waves into a signal. The RF circuit performs analog processing of the signal transmitted and received via the antenna. The RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. The control unit 120 controls communication with the base station 200 via the communication unit 110. The operations of the UE 100 described above and below may be operations under the control of the control unit 120. The control unit 120 may include at least one processor capable of executing programs and a memory for storing the programs. The processor may execute the programs to perform the operations of the control unit 120. The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit. The digital processing includes processing of the RAN protocol stack. The memory stores the programs executed by the processor, parameters related to the programs, and data related to the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or a portion of the memory may be contained within the processor.
 このように構成されたUE100では、制御部120は、複数のDRX設定のそれぞれに基づいてDRX動作を制御する。受信部112は、制御情報をネットワーク10から受信する。受信部112は、所定パラメータをネットワーク10から受信する。制御部120は、所定パラメータに基づいて、複数のDRX設定の中から当該制御情報に基づく制御対象となる対象DRX設定を特定する。これにより、UE100は、複数のDRX設定に基づく起動状態の時間が重複している間に制御情報を受信したとしても、所定パラメータに基づいて対象DRX設定を特定できる。これにより、UE100は、制御情報の対象を把握でき、DRX動作を適切に制御できる。 In the UE 100 configured in this manner, the control unit 120 controls the DRX operation based on each of the multiple DRX settings. The receiving unit 112 receives control information from the network 10. The receiving unit 112 receives a predetermined parameter from the network 10. The control unit 120 identifies a target DRX setting from among the multiple DRX settings to be controlled based on the control information, based on the predetermined parameter. This allows the UE 100 to identify the target DRX setting based on the predetermined parameter, even if the UE 100 receives control information during overlapping periods of time in the activated state based on the multiple DRX settings. This allows the UE 100 to grasp the target of the control information and appropriately control the DRX operation.
 (基地局の構成)
 図5を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワーク通信部220と、制御部230とを有する。
(Base station configuration)
The configuration of the base station 200 according to the embodiment will be described with reference to Fig. 5. The base station 200 includes a communication unit 210, a network communication unit 220, and a control unit 230.
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 210, for example, receives a radio signal from the UE 100 and transmits a radio signal to the UE 100. The communication unit 210 has at least one transmission unit 211 and at least one reception unit 212. The transmission unit 211 and the reception unit 212 may be configured to include an RF circuit. The RF circuit performs analog processing of the signal transmitted and received via the antenna. The RF circuit may include a high-frequency filter, an amplifier, a modulator, a low-pass filter, etc.
 ネットワーク通信部220は、信号をネットワークと送受信する。ネットワーク通信部220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワーク通信部220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network communication unit 220 transmits and receives signals to the network. For example, the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. The network communication unit 220 also receives signals from a core network device 300 connected via an NG interface, and transmits signals to the core network device 300.
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワーク通信部220を介したノード(例えば、隣接基地局、コアネットワーク装置300との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls, for example, communication with the UE 100 via the communication unit 210. The control unit 230 also controls, for example, communication with a node (e.g., an adjacent base station, a core network device 300) via the network communication unit 220. The operations of the base station 200 described above and below may be operations under the control of the control unit 230. The control unit 230 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to perform the operations of the control unit 230. The control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received via the antenna and the RF circuit. The digital processing includes processing of the RAN protocol stack. The memory stores the program executed by the processor, parameters related to the program, and data related to the program. All or a part of the memory may be included in the processor.
 (第1動作例)
 図6及び図7を参照して、移動通信システム1の第1動作例について説明する。以下において、UE100とネットワーク10との通信(送信及び/又は受信)の一例として、UE100と基地局200との通信を例に挙げて説明する。
(First operation example)
6 and 7, a first operation example of the mobile communication system 1 will be described. In the following, as an example of communication (transmission and/or reception) between the UE 100 and the network 10, communication between the UE 100 and the base station 200 will be described as an example.
 基地局200の送信部211は、1つのセルグループに対して適用される複数のDRX設定を含む無線リソース制御(RRC)メッセージをUE100へ送信してよい。UE100の受信部112は、複数のDRX設定を含む無線リソース制御(RRC)メッセージを基地局200から受信してよい。なお、基地局200の送信部211は、複数のDRX設定を、後述のステップS101において送信してもよい。 The transmitting unit 211 of the base station 200 may transmit to the UE 100 a radio resource control (RRC) message including multiple DRX settings to be applied to one cell group. The receiving unit 112 of the UE 100 may receive from the base station 200 a radio resource control (RRC) message including multiple DRX settings. The transmitting unit 211 of the base station 200 may transmit multiple DRX settings in step S101 described below.
 UE100には、1つのセルグループに対して複数のDRXが設定されていてよい。従って、UE100は、1つのセルグループに対して複数のDRX設定を適用してもよい。UE100は、1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて、DRX動作を行う。UE100の制御部120は、複数のDRX設定を適用して、複数のDRX設定のそれぞれに基づくDRX動作を制御する。 UE100 may have multiple DRX settings for one cell group. Therefore, UE100 may apply multiple DRX settings to one cell group. UE100 performs DRX operation based on each of the multiple DRX settings applied to one cell group. Control unit 120 of UE100 applies the multiple DRX settings and controls DRX operation based on each of the multiple DRX settings.
 ステップS101:
 図6に示すように、基地局200の送信部211は、所定パラメータをUE100に送信してよい。UE100の受信部112は、所定パラメータを基地局200から受信してよい。所定パラメータは、例えば、無線リソース管理(RRC)メッセージに含まれていてよい。
Step S101:
6, the transmitting unit 211 of the base station 200 may transmit the predetermined parameter to the UE 100. The receiving unit 112 of the UE 100 may receive the predetermined parameter from the base station 200. The predetermined parameter may be included in, for example, a radio resource control (RRC) message.
 所定パラメータは、UE100に設定されたDRX設定毎に異なるパラメータである。所定パラメータは、例えば、UE100に個別に割り当てられるパラメータであってよい。所定パラメータは、UE固有(specific)パラメータであってよい。従って、所定パラメータは、セル内のUE100に共通に割り当てられるセル固有パラメータではない。所定パラメータは、例えば、以下のものであってよい。 The specified parameters are parameters that differ for each DRX setting set in UE100. The specified parameters may be, for example, parameters that are individually assigned to UE100. The specified parameters may be UE-specific parameters. Therefore, the specified parameters are not cell-specific parameters that are commonly assigned to UE100 in a cell. The specified parameters may be, for example, the following:
 第1に、所定パラメータは、DRX設定毎に異なる所定の無線ネットワーク一時識別子(RNTI)であってよい。従って、DRX設定毎に所定のRNTIが個別に設定されてよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、所定のRNTIが設定されてもよい。例えば、1つ又は複数のDRX設定のそれぞれと、1つ又は複数の所定のRNTIのそれぞれとが、対応してもよい。所定のRNTIは、例えば、セル-無線ネットワーク一時識別子(C-RNTI)であってもよい。C-RNTIは、RRC接続及び/又はスケジューリング用に用いられる識別子である。例えば、C-RNTIは、動的にスケジュールされたユニキャスト送信に対して用いられてもよい。すなわち、C-RNTIは、物理下りリンク共有チャネル(PDSCH)及び/又は物理上りリンク共有チャネル(PUSCH)のスケジューリングに用いられてもよい(適用されてもよい)。なお、所定のRNTIがC-RNTIである場合、UE100は、ランダムアクセス手順にて取得したC-RNTI(第1のC-RNTIと適宜称する)を予め取得していてもよい。UE100は、ステップS101において、第1のC-RNTIと異なるC-RNTI(第2のC-RNTIと適宜称する)を取得してよい。従って、UE100には、複数のC-RNTIが割り当てられてよい。例えば、複数のC-RNTIとして、第1の値のC-RNTI、及び、第2の値のC-RNTIが、UE100に対して設定されてもよい。所定のRNTIは、設定スケジューリング(Configured Scheduling)-無線ネットワーク一時識別子(CS-RNTI)であってもよい。例えば、CS-RNTIは、設定されるスケジュールされたユニキャスト送信に対して用いられてもよい。CS-RNTIは、下りリンクの半永久スケジューリング(SPS)及び上りリンクの設定グラント(configured grant)用に用いられる識別子である。UE100には、複数のCS-RNTIが割り当てられてよい。例えば、複数のCS-RNTIとして、第1の値のCS-RNTI、及び、第2の値のCS-RNTIが、UE100に対して設定されてもよい。 First, the predetermined parameter may be a predetermined radio network temporary identifier (RNTI) that is different for each DRX setting. Therefore, the predetermined RNTI may be set individually for each DRX setting. That is, a predetermined RNTI may be set for each of one or more DRX settings. For example, each of one or more DRX settings may correspond to each of one or more predetermined RNTIs. The predetermined RNTI may be, for example, a cell-radio network temporary identifier (C-RNTI). The C-RNTI is an identifier used for RRC connection and/or scheduling. For example, the C-RNTI may be used for dynamically scheduled unicast transmission. That is, the C-RNTI may be used (applied) for scheduling the physical downlink shared channel (PDSCH) and/or the physical uplink shared channel (PUSCH). In addition, when the predetermined RNTI is a C-RNTI, the UE 100 may have previously acquired a C-RNTI (suitably referred to as a first C-RNTI) acquired in a random access procedure. In step S101, the UE 100 may acquire a C-RNTI (suitably referred to as a second C-RNTI) different from the first C-RNTI. Thus, a plurality of C-RNTIs may be assigned to the UE 100. For example, a first value C-RNTI and a second value C-RNTI may be configured for the UE 100 as a plurality of C-RNTIs. The predetermined RNTI may be a configured scheduling-radio network temporary identifier (CS-RNTI). For example, the CS-RNTI may be used for a scheduled unicast transmission to be configured. The CS-RNTI is an identifier used for downlink semi-persistent scheduling (SPS) and uplink configured grants. A plurality of CS-RNTIs may be assigned to the UE 100. For example, a first value of the CS-RNTI and a second value of the CS-RNTI may be configured for the UE 100 as a plurality of CS-RNTIs.
 第2に、所定パラメータは、DRX設定毎に異なるサーチスペースセット及び/又はサーチスペースセットグループであってよい。従って、所定パラメータは、サーチスペースセットの識別子であるサーチスペースセット識別子(searchSpaceId)であってよい。また、所定パラメータは、サーチスペースセットグループの識別子であるサーチスペースセットグループ識別子(searchSpaceGroupId)であってよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、サーチスペースセット識別子及び/又はサーチスペースセットグループ識別子が設定されてもよい。例えば、1つ又は複数のDRX設定のそれぞれと、1つ又は複数のサーチスペースセット識別子のそれぞれとが、対応してもよい。また、1つ又は複数のDRX設定のそれぞれと、1つ又は複数のサーチスペースセットグループ識別子のそれぞれとが、対応してもよい。 Secondly, the specified parameter may be a search space set and/or a search space set group that differs for each DRX setting. Therefore, the specified parameter may be a search space set identifier (searchSpaceId), which is an identifier of a search space set. Also, the specified parameter may be a search space set group identifier (searchSpaceGroupId), which is an identifier of a search space set group. That is, a search space set identifier and/or a search space set group identifier may be set for each of one or more DRX settings. For example, each of one or more DRX settings may correspond to each of one or more search space set identifiers. Also, each of one or more DRX settings may correspond to each of one or more search space set group identifiers.
 例えば、基地局200は、サーチスペースセット及び/又はサーチスペースセットグループに関する情報を含むRRCメッセージを送信してもよい。UE100は、サーチスペースセット及び/又はサーチスペースセットグループに関する情報に基づいて、サーチスペースセット及び/又はサーチスペースセットグループを決定してもよい。例えば、サーチスペースセット及び/又はサーチスペースセットグループに関する情報は、1つ又は複数のサーチスペースセット識別子及び/又は1つ又は複数のサーチスペースセットグループ識別子を含んでもよい。また、サーチスペースセット及び/又はサーチスペースセットグループに関する情報は、サーチスペースセット及び/サーチスペースセットグループの周期及び/又はオフセット値を示す情報を含んでもよい。また、サーチスペースセット及び/又はサーチスペースセットグループに関する情報は、サーチスペースセットのタイプを示す情報を含んでもよい。ここで、サーチスペースセットのタイプは、共通サーチスペースセット(Common Search Space set:CSS)及び/又はUE固有サーチスペースセット(UE-Specific Search Space set:USS)を含んでもよい。また、サーチスペースセット及び/又はサーチスペースセットグループに関する情報は、1つ又は複数のDCIフォーマットを示す情報を含んでもよい。すなわち、サーチスペースセット及び/又はサーチスペースセットグループに関する情報は、サーチスペースセット及び/又はサーチスペースセットグループにおいてモニタされる1つ又は複数のDCIフォーマットを示す情報を含んでもよい。 For example, base station 200 may transmit an RRC message including information regarding the search space set and/or the search space set group. UE 100 may determine the search space set and/or the search space set group based on the information regarding the search space set and/or the search space set group. For example, the information regarding the search space set and/or the search space set group may include one or more search space set identifiers and/or one or more search space set group identifiers. Furthermore, the information regarding the search space set and/or the search space set group may include information indicating a periodicity and/or an offset value of the search space set and/or the search space set group. Furthermore, the information regarding the search space set and/or the search space set group may include information indicating a type of search space set. Here, the type of search space set may include a common search space set (CSS) and/or a UE-specific search space set (USS). Furthermore, the information on the search space set and/or the search space set group may include information indicating one or more DCI formats. That is, the information on the search space set and/or the search space set group may include information indicating one or more DCI formats monitored in the search space set and/or the search space set group.
 第3に、所定パラメータは、無線ベアラを識別するための無線ベアラ識別子であってよい。無線ベアラ識別子は、例えば、データ無線ベアラを識別するための識別子(DRB Identity)であってもよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、無線ベアラ識別子が設定されてもよい。また、1つ又は複数のDRX設定のそれぞれと、1つ又は複数の無線ベアラ識別子のそれぞれとが、対応してもよい。第4に、所定パラメータは、論理チャネルを識別するための論理チャネル識別子(LogicalChannelID:LCID)であってよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、論理チャネル識別子が設定されてもよい。また、1つ又は複数のDRX設定のそれぞれと、1つ又は複数の論理チャネル識別子のそれぞれとが、対応してもよい。第5に、所定パラメータは、後述するDRX識別子であってもよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、DRX識別子が設定されてもよい。また、1つ又は複数のDRX設定のそれぞれと、1つ又は複数のDRX識別子のそれぞれとが、対応してもよい。第6に、所定パラメータは、DCIのタイプを示すDCIフォーマットであってよい。すなわち、1つ又は複数のDRX設定のそれぞれに対して、DCIフォーマット(例えば、モニタされるDCIフォーマット)が設定されてもよい。また、1つ又は複数のDRX設定のそれぞれと、1つ又は複数のDCIフォーマットのそれぞれとが、対応してもよい。例えば、1つ又は複数のDCIフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマット、及び/又は、PUSCHのスケジューリングに用いられるDCIフォーマットを含んでもよい。また、PDSCHのスケジューリングに用いられるDCIフォーマットは、複数のDCIフォーマット(例えば、DCIフォーマット1_0、DCIフォーマット1_1、及び/又は、DCIフォーマット1_2)を含んでもよい。また、PUSCHのスケジューリングに用いられるDCIフォーマットは、複数のDCIフォーマット(例えば、DCIフォーマット0_0、DCIフォーマット0_1、及び/又は、DCIフォーマット0_2)を含んでもよい。また、第7に、所定のパラメータは、上述のパラメータの少なくとも1つを含んでいてもよい。 Thirdly, the predetermined parameter may be a radio bearer identifier for identifying a radio bearer. The radio bearer identifier may be, for example, an identifier (DRB Identity) for identifying a data radio bearer. That is, a radio bearer identifier may be set for each of one or more DRX settings. Also, each of one or more DRX settings may correspond to each of one or more radio bearer identifiers. Fourthly, the predetermined parameter may be a logical channel identifier (LogicalChannelID: LCID) for identifying a logical channel. That is, a logical channel identifier may be set for each of one or more DRX settings. Also, each of one or more DRX settings may correspond to each of one or more logical channel identifiers. Fifthly, the predetermined parameter may be a DRX identifier, which will be described later. That is, a DRX identifier may be set for each of one or more DRX settings. Also, one or more DRX settings may correspond to one or more DRX identifiers. Sixth, the predetermined parameter may be a DCI format indicating a type of DCI. That is, a DCI format (e.g., a monitored DCI format) may be set for each of one or more DRX settings. Also, one or more DRX settings may correspond to one or more DCI formats. For example, one or more DCI formats may include a DCI format used for scheduling the PDSCH and/or a DCI format used for scheduling the PUSCH. Also, the DCI format used for scheduling the PDSCH may include multiple DCI formats (e.g., DCI format 1_0, DCI format 1_1, and/or DCI format 1_2). Also, the DCI format used for scheduling the PUSCH may include multiple DCI formats (e.g., DCI format 0_0, DCI format 0_1, and/or DCI format 0_2). Seventh, the predetermined parameters may include at least one of the parameters described above.
 また、基地局200の送信部211は、DRXに関するパラメータを設定するために用いられる(複数の)DRX設定を示す情報(例えば、DRX-config)を、UE100へ送信してもよい。UE100の受信部112は、(複数の)DRX設定を示す情報を基地局200から受信してよい。 The transmitter 211 of the base station 200 may also transmit information indicating (multiple) DRX settings (e.g., DRX-config) used to set parameters related to DRX to the UE 100. The receiver 112 of the UE 100 may receive information indicating (multiple) DRX settings from the base station 200.
 上述の通り、DRX設定は、所定パラメータと対応付けられていてよい。すなわち、各DRX設定に対して、所定パラメータが設定されてもよい。DRX設定は、当該DRX設定に対応付けられた所定パラメータを含んでいてもよい。また、DRX設定を識別するための識別子(以下、DRX識別子)と所定パラメータとが対応付けられていてもよい。 As described above, the DRX setting may be associated with a specific parameter. That is, a specific parameter may be set for each DRX setting. The DRX setting may include a specific parameter associated with the DRX setting. In addition, an identifier for identifying the DRX setting (hereinafter, a DRX identifier) may be associated with the specific parameter.
 また、基地局200の送信部211は、所定パラメータとDRX設定との対応関係を特定するための対応情報をUE100へ送信してよい。UE100の受信部112は、対応情報を基地局200から受信してよい。対応情報は、例えば、DRX設定と所定パラメータとのリストであってもよい。 Furthermore, the transmitting unit 211 of the base station 200 may transmit correspondence information for identifying the correspondence between the specified parameters and the DRX settings to the UE 100. The receiving unit 112 of the UE 100 may receive the correspondence information from the base station 200. The correspondence information may be, for example, a list of the DRX settings and the specified parameters.
 ステップS102:
 基地局200の送信部211は、DRX動作を制御するための制御情報をUE100へ送信する。UE100の受信部112は、制御情報を基地局200から受信する。UE100の制御部120は、制御情報に基づいて、以下のステップS103の処理を実行してよい。制御情報は、例えば、以下の情報であってよい。
Step S102:
The transmitter 211 of the base station 200 transmits control information for controlling the DRX operation to the UE 100. The receiver 112 of the UE 100 receives the control information from the base station 200. The controller 120 of the UE 100 may execute the process of step S103 below based on the control information. The control information may be, for example, the following information.
 第1に、制御情報は、物理下りリンク制御チャネル(PDCCH)上で伝送される下りリンク制御情報(DCI)であってよい。受信部112は、ステップS102において例えば所定パラメータを適用して送信されたDCIを制御情報として受信してよい。 First, the control information may be downlink control information (DCI) transmitted on a physical downlink control channel (PDCCH). The receiver 112 may receive, as the control information, the DCI transmitted in step S102, for example, by applying a predetermined parameter.
 第2に、制御情報は、物理下りリンク共有チャネル(PDSCH)上で伝送される所定の媒体アクセス制御(MAC) 制御要素(CE)であってよい。所定のMAC CEは、例えば、DRXコマンドMAC CE、ロングDRXコマンドMAC CEである。所定のMAC CEは、DRX動作を制御するための他のMAC CEであってもよい。ここで、以下の動作を、所定のMAC CEに適用する場合、DCIフォーマット(PDCCH)を、所定のMAC CEの伝送に用いられるPDSCHのスケジューリングに用いられるDCIフォーマット(PDCCH)としてもよい。例えば、UE100の制御部120は、所定のMAC CEのためのPDSCHのスケジューリングに用いられるDCIフォーマット(PDCCH)に適用される所定のRNTIに基づいて、DRX設定を特定してもよい。また、制御部120は、所定のMAC CEのためのPDSCHのスケジューリングに用いられるDCIフォーマット(PDCCH)を受信(モニタでもよい)したサーチスペースセット及び/又はサーチスペースセットグループに基づいて、DRX設定を特定してもよい。また、制御部120は、所定のMAC CEのためのPDSCHで伝送されるデータに含まれる識別子に基づいて、DRX設定を特定してもよい。また、制御部120は、所定のMAC CEのためのPDSCHのスケジューリングに用いられるDCIフォーマット(PDCCH)に基づいて、DRX設定を特定してもよい。第3に、制御情報は、新規送信のための上りリンクグラントであってよい。 Secondly, the control information may be a predetermined medium access control (MAC) control element (CE) transmitted on a physical downlink shared channel (PDSCH). The predetermined MAC CE may be, for example, a DRX command MAC CE or a long DRX command MAC CE. The predetermined MAC CE may also be another MAC CE for controlling DRX operation. Here, when the following operation is applied to a predetermined MAC CE, the DCI format (PDCCH) may be a DCI format (PDCCH) used for scheduling the PDSCH used to transmit the predetermined MAC CE. For example, the control unit 120 of the UE 100 may identify the DRX setting based on a predetermined RNTI applied to the DCI format (PDCCH) used for scheduling the PDSCH for the predetermined MAC CE. The control unit 120 may also specify the DRX setting based on a search space set and/or a search space set group that receives (or may monitor) a DCI format (PDCCH) used for scheduling a PDSCH for a specific MAC CE. The control unit 120 may also specify the DRX setting based on an identifier included in data transmitted on a PDSCH for a specific MAC CE. The control unit 120 may also specify the DRX setting based on a DCI format (PDCCH) used for scheduling a PDSCH for a specific MAC CE. Thirdly, the control information may be an uplink grant for a new transmission.
 ステップS103:
 UE100の制御部120は、所定パラメータに基づいて、複数のDRX設定の中から制御情報に基づく制御対象となるDRX設定(以下、対象DRX設定と適宜称する)を特定してよい。制御部120は、例えば、DCIに適用されている所定パラメータに基づいて、複数のDRX設定の中から、当該DCIに応じた対象DRX設定を特定してよい。制御部120は、所定パラメータとして、DCIを用いてスケジューリングされたPDSCH上で伝送されるデータに含まれる所定の識別子に基づいて、複数のDRX設定の中からDRX設定を特定してもよい。UE100は、対象DRX設定を特定するために、少なくとも以下のいずれかの動作を実行してよい。
Step S103:
The control unit 120 of the UE 100 may specify a DRX setting to be controlled based on control information from among a plurality of DRX settings based on a predetermined parameter (hereinafter, appropriately referred to as a target DRX setting). For example, the control unit 120 may specify a target DRX setting according to a DCI from among a plurality of DRX settings based on a predetermined parameter applied to the DCI. The control unit 120 may specify a DRX setting from among a plurality of DRX settings based on a predetermined identifier included in data transmitted on a PDSCH scheduled using the DCI as the predetermined parameter. The UE 100 may perform at least one of the following operations to specify the target DRX setting.
 (a)所定パラメータが所定のRNTIである場合
 制御部120は、受信部112が受信したDCIに適用されている所定のRNTIに基づいて、複数のDRX設定の中から、当該DCIに応じた対象DRX設定を特定してよい。DCI(PDCCHでもよい)は、所定パラメータとしてUE100に割り当てた(設定した)所定のRNTIによりスクランブルされたCRC(Cyclic Redundancy Check)パリティビットを伴ってよい。制御部120は、例えば、DCIのデコードに成功した場合、所定のRNTIに基づいて、複数のDRX設定の中から対象DRX設定を特定する。具体的には、制御部120は、DCIのデコードに成功した場合、所定のRNTIに対応付けられたDRX設定を対象DRX設定として特定してよい。
(a) When the predetermined parameter is a predetermined RNTI, the control unit 120 may specify a target DRX setting corresponding to the DCI from among a plurality of DRX settings based on a predetermined RNTI applied to the DCI received by the receiving unit 112. The DCI (which may be a PDCCH) may be accompanied by a CRC (Cyclic Redundancy Check) parity bit scrambled by a predetermined RNTI assigned (set) to the UE 100 as a predetermined parameter. For example, when the control unit 120 successfully decodes the DCI, the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on the predetermined RNTI. Specifically, when the control unit 120 successfully decodes the DCI, the control unit 120 may specify a DRX setting associated with the predetermined RNTI as the target DRX setting.
 制御部120は、複数のDRXの起動状態が重複した時間において、当該起動状態を制御するDRX設定に対応付けられた所定のRNTIを用いて、(ブラインド)デコードを行ってよい。制御部120は、複数のDRXの起動状態が重複していない時間(すなわち、単独のDRXによる起動状態の時間)においても、当該起動状態を制御するDRX設定に対応付けられた所定パラメータを用いて、ブラインドデコードを行ってよい。制御部120は、IATが稼働中に受信したDCIを、当該IATに対応付けられた所定のRNTIを用いてデコードしてもよい。また、制御部120は、DRX再送タイマ(具体的には、drx-RetransmissionTimerDL及び/又はdrx-RetransmissionTimerUL)が稼働中に受信したDCIを、当該DRX再送タイマに対応付けられた所定のRNTIを用いてデコードしてもよい。 The control unit 120 may perform (blind) decoding during a time when multiple DRX activation states overlap, using a predetermined RNTI associated with the DRX setting that controls the activation state. The control unit 120 may perform blind decoding during a time when multiple DRX activation states do not overlap (i.e., a time when a single DRX is activated), using a predetermined parameter associated with the DRX setting that controls the activation state. The control unit 120 may decode DCI received while the IAT is operating, using a predetermined RNTI associated with the IAT. The control unit 120 may also decode DCI received while the DRX retransmission timer (specifically, drx-RetransmissionTimerDL and/or drx-RetransmissionTimerUL) is operating, using a predetermined RNTI associated with the DRX retransmission timer.
 (b)所定パラメータがサーチスペースセット又はサーチスペースセットグループである場合
 制御部120は、制御情報としてのDCIが配置されているサーチスペースセット又はサーチスペースセットグループに基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。すなわち、制御部120は、DCI(PDCCHでもよい)を受信(モニタでもよい)したサーチスペースセット又はサーチスペースセットグループに基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。制御部120は、DCI(PDCCHでもよい)を受信(モニタでもよい)したサーチスペースセット(具体的には、サーチスペースセット識別子)に対応付けられているDRX設定を対象DRX設定として特定してよい。また、制御部120は、DCI(PDCCHでもよい)を受信(モニタでもよい)したサーチスペースセットを含むサーチスペースセットグループ(具体的には、サーチスペースセットグループ識別子)に対応付けられているDRX設定を対象DRX設定として特定してもよい。
(b) When the predetermined parameter is a search space set or a search space set group, the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a search space set or a search space set group in which DCI as control information is arranged. That is, the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a search space set or a search space set group that has received (or monitored) DCI (which may be a PDCCH). The control unit 120 may specify a DRX setting associated with a search space set (specifically, a search space set identifier) that has received (or monitored) DCI (which may be a PDCCH) as the target DRX setting. In addition, the control unit 120 may specify a DRX setting associated with a search space set group (specifically, a search space set group identifier) including a search space set that has received (or monitored) DCI (which may be a PDCCH) as the target DRX setting.
 制御部120は、上述と同様に、複数のDRXの起動状態が重複した時間において、当該起動状態を制御するDRX設定に対応付けられたサーチスペースセット(又はサーチスペースセットグループ)においてPDCCHを監視してもよい。制御部120は、複数のDRXの起動状態が重複していない時間においても、当該起動状態を制御するDRX設定に対応付けられたサーチスペースセット(又はサーチスペースセットグループ)においてPDCCHを監視してもよい。制御部120は、IAT及び/又はDRX再送タイマが稼働中に受信したDCIを、当該IAT及び/又はDRX再送タイマに対応付けられたサーチスペースセット(又はサーチスペースセットグループ)においてPDCCHを監視してもよい。 As described above, the control unit 120 may monitor the PDCCH in the search space set (or search space set group) associated with the DRX setting that controls the activation state during a time when multiple DRX activation states overlap. The control unit 120 may also monitor the PDCCH in the search space set (or search space set group) associated with the DRX setting that controls the activation state during a time when multiple DRX activation states do not overlap. The control unit 120 may monitor the PDCCH in the search space set (or search space set group) associated with the IAT and/or DRX retransmission timer for DCI received while the IAT and/or DRX retransmission timer is running.
 (c)所定パラメータがPDSCH上及び/又はPUSCH上で伝送されるデータに含まれる所定の識別子である場合
 制御部120は、PDSCH上及び/又はPUSCH上で伝送されるデータに含まれる所定の識別子に基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。ここで、PDSCH上で伝送されるデータ(すなわち、下りリンクデータ)は、DL-SCH(Downlink Shared Channel)のデータとも称される。また、PUSCH上で伝送されるデータ(すなわち、上りリンクデータ)は、UL-SCH(Uplink Shared Channel)のデータとも称される。所定の識別子は、無線ベアラ識別子であってよい。制御部120は、例えば、データに含まれるDRB IDに対応付けられているDRX設定を対象DRX設定として特定してよい。また、所定の識別子は、LCIDであってよい。制御部120は、例えば、MAC subheader及び/又は、MAC CEに含まれるLCIDに対応付けられているDRX設定を対象DRX設定として特定してよい。また、所定の識別子は、DRX IDであってよい。制御部120は、データに含まれるDRX IDに対応付けられているDRX設定を対象DRX設定として特定してよい。すなわち、制御部120は、無線ベアラ識別子、LCID、及び/又は、DRX IDに基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。
(c) In the case where the predetermined parameter is a predetermined identifier included in the data transmitted on the PDSCH and/or the PUSCH, the control unit 120 may specify a target DRX setting from among a plurality of DRX settings based on a predetermined identifier included in the data transmitted on the PDSCH and/or the PUSCH. Here, the data transmitted on the PDSCH (i.e., downlink data) is also referred to as DL-SCH (Downlink Shared Channel) data. Also, the data transmitted on the PUSCH (i.e., uplink data) is also referred to as UL-SCH (Uplink Shared Channel) data. The predetermined identifier may be a radio bearer identifier. The control unit 120 may specify, for example, a DRX setting associated with a DRB ID included in the data as the target DRX setting. Also, the predetermined identifier may be an LCID. The control unit 120 may, for example, identify a DRX setting associated with an LCID included in a MAC subheader and/or a MAC CE as a target DRX setting. The predetermined identifier may be a DRX ID. The control unit 120 may identify a DRX setting associated with a DRX ID included in the data as a target DRX setting. That is, the control unit 120 may identify a target DRX setting from among a plurality of DRX settings based on a radio bearer identifier, an LCID, and/or a DRX ID.
 (d)所定パラメータがDCIフォーマットである場合
 制御部120は、受信(モニタでもよい)したDCIフォーマット(PDCCHでもよい)に基づいて、対象DRX設定として特定してよい。制御部120は、DCIフォーマット(DCIフォーマットのタイプでもよい)に対応付けられたDRX設定を対象DRX設定として特定してよい。制御部120は、例えば、DCIフォーマット(DCIフォーマットのタイプでもよい)とDRX設定との対応関係を示す対応情報に基づいて、対象DRX設定を特定してよい。
(d) When the predetermined parameter is a DCI format, the control unit 120 may identify the target DRX setting based on the received (or monitored) DCI format (or PDCCH). The control unit 120 may identify the DRX setting associated with the DCI format (or the type of DCI format) as the target DRX setting. The control unit 120 may identify the target DRX setting based on, for example, correspondence information indicating the correspondence between the DCI format (or the type of DCI format) and the DRX setting.
 ステップS104:
 制御部120は、制御情報に基づいて、複数のDRX設定のうち対象DRX設定を制御する。制御部120は、例えば、制御情報が新規送信を示すDCIである場合、対象DRX設定に関連するIATを開始又は再開始してもよい。
Step S104:
The control unit 120 controls a target DRX setting among the multiple DRX settings based on the control information. For example, when the control information is a DCI indicating a new transmission, the control unit 120 may start or restart an IAT related to the target DRX setting.
 制御部120は、例えば、制御情報が新規送信のための上りリンクグラント(すなわち、PUSCHのスケジューリングに用いられるDCIフォーマット)である場合、特定されたDRX設定に基づくIATを開始又は再開始するか否かを判定してよい。従って、制御部120は、上りリンクグラントに基づいて、特定されたDRX設定に基づくIATを開始又は再開始するか否かを判定してよい。制御部120は、例えば、図7に示すような以下の動作を実行してよい。 The control unit 120 may determine whether to start or restart the IAT based on the identified DRX setting, for example, when the control information is an uplink grant for a new transmission (i.e., a DCI format used for scheduling the PUSCH). Therefore, the control unit 120 may determine whether to start or restart the IAT based on the identified DRX setting based on the uplink grant. The control unit 120 may perform the following operations, for example, as shown in FIG. 7.
 なお、当該動作を実行するか否かについて、所定パラメータ(例えば、C-RNTI及び/又はCS-RNTI)に関連付けられていてもよい。従って、当該動作の実行可否について、各所定パラメータに対して個別に設定されていてもよい。制御部120は、所定パラメータが当該動作を実行することに関連付けられている場合、以下の動作を実行してもよい。制御部120は、所定パラメータが当該動作を実行しないことに関連付けられている(又は所定パラメータが当該動作を実行することに関連付けられていない)場合、以下の動作を実行しなくてもよい。 Whether or not to execute the operation may be associated with a predetermined parameter (e.g., C-RNTI and/or CS-RNTI). Therefore, whether or not to execute the operation may be set individually for each predetermined parameter. If the predetermined parameter is associated with executing the operation, the control unit 120 may execute the following operation. If the predetermined parameter is associated with not executing the operation (or the predetermined parameter is not associated with executing the operation), the control unit 120 may not execute the following operation.
 ステップS111:
 制御部120は、上りリンク送信のスキップが設定されているか否かを判定してよい。具体的には、制御部120は、UE100において割り当てられた上りリンクリソースにおいて、上りリンク送信に利用可能なデータがない場合に当該上りリンクリソースを用いた上りリンク送信をスキップするように1つのセルグループに対して設定されているか否かを判定してよい。制御部120は、上りリンクバッファに上りリンク送信に利用可能なデータがない場合に、設定された上りリンクグラント以外の上りリンクグラントについての上りリンク送信をスキップするか否かを示す所定情報(例えば、「skipUplinkTxDynamic」)をネットワーク10から受信していてもよい。制御部120は、当該所定情報に基づいて、上りリンク送信のスキップが設定されているか否かを判定してよい。制御部120は、例えば、「skipUplinkTxDynamic」が「ture」(すなわち上りリンク送信のスキップの設定)を示すRRCメッセージを受信した場合に、上りリンク送信のスキップが設定されていると判定してよい。制御部120は、例えば、skipUplinkTxDynamicが「ture」(すなわち設定)を示さないRRCメッセージを受信した場合に、上りリンク送信のスキップが設定されていないと判定してよい。ここで、上りリンク送信のスキップとは、MAC PDUを生成しないことを含んでもよい。また、上りリンク送信に利用可能なデータがない場合とは、対応するPUSCHにおける送信に対してアピリオディックCSI(Channel State Information、チャネル状態情報とも称される)がない場合を含んでもよい。また、上りリンク送信に利用可能なデータがない場合とは、MAC PDUがゼロのMAC SDUを含む場合を含んでもよい。また、上りリンク送信に利用可能なデータがない場合とは、MAC PDUがピリオディックBSR(Buffer Status Report:バッファステータス報告とも称される)のみを含み、且つ、いずれのLCG(Logical Channel Group:論理チャネルグループ)に対する利用可能なデータがない場合を含んでもよい。また、上りリンク送信に利用可能なデータがない場合とは、MAC PDUがパディングBSRのみを含む場合が含まれてもよい。例えば、制御部120は、上りリンク送信のスキップが設定されており、且つ、上りリンク送信に利用可能なデータがない場合において、MAC PDU(例えば、対応するHARQエンティティに対するMAC PDU)を生成しなくてもよい。
Step S111:
The control unit 120 may determine whether or not the skip of the uplink transmission is set. Specifically, the control unit 120 may determine whether or not the uplink transmission using the uplink resource allocated in the UE 100 is set to be skipped for one cell group when there is no data available for the uplink transmission in the uplink resource. The control unit 120 may receive, from the network 10, predetermined information (e.g., "skipUplinkTxDynamic") indicating whether or not to skip the uplink transmission for the uplink grant other than the set uplink grant when there is no data available for the uplink transmission in the uplink buffer. The control unit 120 may determine whether or not the skip of the uplink transmission is set based on the predetermined information. For example, when the control unit 120 receives an RRC message indicating that "skipUplinkTxDynamic" is "ture" (i.e., the setting of the skip of the uplink transmission), the control unit 120 may determine that the skip of the uplink transmission is set. For example, when the control unit 120 receives an RRC message in which skipUplinkTxDynamic does not indicate "ture" (i.e., setting), the control unit 120 may determine that the skip of uplink transmission is not set. Here, the skip of uplink transmission may include not generating a MAC PDU. In addition, the case where there is no data available for uplink transmission may include the case where there is no aperiodic CSI (Channel State Information, also referred to as channel state information) for the transmission in the corresponding PUSCH. In addition, the case where there is no data available for uplink transmission may include the case where the MAC PDU includes a MAC SDU with zero. In addition, the case where there is no data available for uplink transmission may include a case where the MAC PDU includes only a periodic BSR (also referred to as a buffer status report) and there is no data available for any LCG (Logical Channel Group). In addition, the case where there is no data available for uplink transmission may include a case where the MAC PDU includes only a padding BSR. For example, when a skip of uplink transmission is configured and there is no data available for uplink transmission, the control unit 120 may not generate a MAC PDU (e.g., a MAC PDU for a corresponding HARQ entity).
 制御部120は、上りリンク送信のスキップが設定されている場合、ステップS112の処理を実行してよい。制御部120は、上りリンク送信のスキップが設定されていない場合、ステップS113の処理を実行してよい。ステップS111の処理は、省略されてもよい。 If the uplink transmission skip is set, the control unit 120 may execute the process of step S112. If the uplink transmission skip is not set, the control unit 120 may execute the process of step S113. The process of step S111 may be omitted.
 ステップS112:
 制御部120は、上りリンク送信に利用可能なデータがあるか否かを判定してよい。制御部120は、例えば、上りリンクバッファに上りリンク送信に利用可能なデータがある場合、ステップS113の処理を実行してよい。制御部120は、例えば、上りリンクバッファに上りリンク送信に利用可能なデータがない場合、ステップS114の処理を実行してよい。
Step S112:
The control unit 120 may determine whether there is data available for uplink transmission. For example, when there is data available for uplink transmission in the uplink buffer, the control unit 120 may execute the process of step S113. For example, when there is no data available for uplink transmission in the uplink buffer, the control unit 120 may execute the process of step S114.
 ステップS113:
 制御部120は、IATを開始又は再開始する。制御部120は、通常のDRX動作を実行してよい。
Step S113:
The control unit 120 starts or re-starts the IAT. The control unit 120 may perform normal DRX operation.
 ステップS114:
 制御部120は、IATを開始又は再開始しない。制御部120は、IATが稼働している場合、IATを停止してもよい。すなわち、制御部120は、上りリンク送信のスキップが設定されており、且つ、上りリンク送信に利用可能なデータがない場合において、IATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。すなわち、制御部120は、所定のパラメータに基づいて特定されたDRX設定を用いて設定されたIATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。例えば、制御部120は、上りリンク送信に対するグラント(例えば、PUSCHのスケジューリングに用いられるDCIフォーマット)に対して適用された所定のRNTIに基づいてDRX設定を特定し、特定されたDRX設定を用いて設定されたIATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。また、制御部120は、上りリンク送信に対するグラントを受信(モニタでもよい)したサーチスペースセット及び/又はサーチスペースセットグループに基づいてDRX設定を特定し、特定されたDRX設定を用いて設定されたIATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。また、制御部120は、上りリンク送信におけるデータに含まれる所定の識別子(すなわち、PUSCH上で伝送されるデータに含まれる所定の識別子)に基づいてDRX設定を特定し、特定されたDRX設定を用いて設定されたIATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。また、制御部120は、上りリンク送信に対するグラント(例えば、PUSCHのスケジューリングに用いられるDCIフォーマット)に基づいてDRX設定を特定し、特定されたDRX設定を用いて設定されたIATを開始又は再開始しなくてもよい(又は、IATを停止してもよい)。
Step S114:
The control unit 120 does not start or restart the IAT. The control unit 120 may stop the IAT when the IAT is running. That is, the control unit 120 may not start or restart the IAT (or may stop the IAT) when the skip of the uplink transmission is set and there is no data available for the uplink transmission. That is, the control unit 120 may not start or restart the IAT set using the DRX setting specified based on a predetermined parameter (or may stop the IAT). For example, the control unit 120 may specify the DRX setting based on a predetermined RNTI applied to a grant for the uplink transmission (for example, a DCI format used for scheduling the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT). Furthermore, the control unit 120 may specify the DRX setting based on the search space set and/or search space set group that has received (or may be monitored) a grant for uplink transmission, and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT). Furthermore, the control unit 120 may specify the DRX setting based on a predetermined identifier included in the data in the uplink transmission (i.e., a predetermined identifier included in the data transmitted on the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT). Furthermore, the control unit 120 may specify the DRX setting based on a grant for uplink transmission (e.g., a DCI format used for scheduling the PUSCH), and may not start or restart the IAT set using the specified DRX setting (or may stop the IAT).
 なお、IATを例に挙げて説明したが、DRX動作を制御する動作として他の動作が実行されてもよい。上述において、IATが、ODTに置き換えられてもよい。 Note that although IAT has been described as an example, other operations may be performed to control the DRX operation. In the above description, IAT may be replaced with ODT.
 以上によれば、制御部120は、複数のDRX設定のそれぞれに基づいてDRX動作を制御する。受信部112は、制御情報をネットワーク10から受信する。受信部112は、所定パラメータをネットワーク10から受信する。制御部120は、所定パラメータに基づいて、複数のDRX設定の中から当該制御情報に基づく制御対象となる対象DRX設定を特定する。これにより、UE100は、複数のDRX設定に基づく起動状態の時間が重複している間に制御情報を受信したとしても、所定パラメータに基づいて対象DRX設定を特定できる。これにより、UE100は、制御情報の対象を把握でき、DRX動作を適切に制御できる。 As described above, the control unit 120 controls the DRX operation based on each of the multiple DRX settings. The receiving unit 112 receives control information from the network 10. The receiving unit 112 receives a predetermined parameter from the network 10. The control unit 120 identifies a target DRX setting from among the multiple DRX settings that is to be controlled based on the control information, based on the predetermined parameter. This allows the UE 100 to identify the target DRX setting based on the predetermined parameter, even if the UE 100 receives control information during overlapping periods of time in the activated state based on the multiple DRX settings. This allows the UE 100 to grasp the target of the control information and appropriately control the DRX operation.
 また、制御情報は、PDCCH上で伝送されるDCIであってよい。受信部112は、所定パラメータを適用して送信されたDCIを受信してよい。制御部120は、受信部112が受信したDCIに適用されている所定パラメータに基づいて、複数のDRX設定の中から、当該DCIに応じた対象DRX設定を特定してよい。これにより、UE100は、所定パラメータがDCIに適用されているため、制御部120は、対象DRX設定を早期に特定し易くなる。 Furthermore, the control information may be DCI transmitted on the PDCCH. The receiver 112 may receive the DCI transmitted by applying a predetermined parameter. The controller 120 may identify a target DRX setting corresponding to the DCI from among a plurality of DRX settings based on the predetermined parameter applied to the DCI received by the receiver 112. This makes it easier for the controller 120 to identify the target DRX setting early on, since the predetermined parameter has been applied to the DCI in the UE 100.
 また、所定パラメータは、所定のRNTIであってよい。制御部120は、DCIのデコードに成功した所定のRNTIに基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。これにより、制御部120は、DCIをデコードすることで、対象DRX設定を特定可能となる。 The specified parameter may be a specified RNTI. The control unit 120 may identify a target DRX setting from among multiple DRX settings based on the specified RNTI that successfully decoded the DCI. This allows the control unit 120 to identify the target DRX setting by decoding the DCI.
 また、所定パラメータは、サーチスペースセット又はサーチスペースセットグループであってよい。制御部120は、DCIが配置されているサーチスペースセット又はサーチスペースセットグループに基づいて、複数のDRX設定の中からDRX設定を特定してよい。 The specified parameter may be a search space set or a search space set group. The control unit 120 may identify a DRX setting from among multiple DRX settings based on the search space set or search space set group in which the DCI is placed.
 また、所定パラメータは、DCIを用いてスケジューリングされたPDSCH上で伝送されるデータに含まれる所定の識別子であってよい。制御部120は、所定の識別子に基づいて、複数のDRX設定の中からDRX設定を特定してよい。 The specified parameter may be a specified identifier included in the data transmitted on the PDSCH scheduled using the DCI. The control unit 120 may identify the DRX setting from among multiple DRX settings based on the specified identifier.
 また、所定パラメータは、無線ベアラ識別子又は論理チャネル識別子であってよい。これらの識別子は、3GPPの技術仕様書で既に規定されているため、仕様書へのインパクトを小さくできる。 The predetermined parameter may be a radio bearer identifier or a logical channel identifier. These identifiers are already defined in the 3GPP technical specifications, so the impact on the specifications can be reduced.
 また、受信部112は、所定パラメータとDRX設定との対応関係を特定するための対応情報をネットワーク10から受信してよい。これにより、制御部120は、所定パラメータとDRX設定との直接対応付けられていなくても、所定パラメータとDRX設定との対応関係を把握できる。 The receiving unit 112 may also receive correspondence information from the network 10 for identifying the correspondence between the specified parameters and the DRX settings. This allows the control unit 120 to grasp the correspondence between the specified parameters and the DRX settings even if the specified parameters are not directly associated with the DRX settings.
 また、制御情報は、新規送信のための上りリンクグラントであってよい。制御部120は、上りリンクグラントに基づいて、対象DRX設定に基づくIATを開始又は再開始するか否かを判定してよい。制御部120が、IATを常に開始又は再開始をしないため、IATを常に開始又は再開始する場合と比べて、省電力化を図ることができる。加えて、制御部120が、対象DRX設定について判定するため、DRX動作を柔軟に制御することができる。 The control information may also be an uplink grant for new transmission. The control unit 120 may determine whether to start or restart the IAT based on the target DRX setting based on the uplink grant. Because the control unit 120 does not always start or restart the IAT, power saving can be achieved compared to the case where the IAT is always started or restarted. In addition, because the control unit 120 determines the target DRX setting, DRX operation can be flexibly controlled.
 また、制御部120は、上りリンク送信に利用可能なデータがない場合に、DRXインアクティブタイマを開始又は再開しなくてよい。これにより、制御部120が、上りリンク送信に利用可能なデータがない場合に、PDCCHの監視を省略でき、省電力化を図ることができる。 In addition, the control unit 120 does not need to start or restart the DRX inactive timer when there is no data available for uplink transmission. This allows the control unit 120 to omit monitoring the PDCCH when there is no data available for uplink transmission, thereby enabling power saving.
 また、制御部120は、UE100において割り当てられた上りリンクリソースにおいて、上りリンク送信に利用可能なデータがない場合に当該上りリンクリソースを用いた上りリンク送信をスキップするように1つのセルグループに対して設定されている場合、及び、上りリンク送信に利用可能なデータがない場合に、IATを開始又は再開しなくてよい。これにより、制御部120は、上りリンク送信のスキップがネットワーク10から許可(設定)されている場合にIATに基づく上りリンク送信をスキップできるため、ネットワーク10の許可なく、上りリンク送信をスキップすることを避けることができる。 Furthermore, the control unit 120 does not need to start or resume the IAT when a cell group is configured to skip uplink transmission using uplink resources allocated to the UE 100 when there is no data available for uplink transmission in the uplink resources, and when there is no data available for uplink transmission. This allows the control unit 120 to skip uplink transmission based on the IAT when skipping uplink transmission is permitted (configured) by the network 10, and therefore can avoid skipping uplink transmission without permission from the network 10.
 (第2動作例)
 図6を参照して、移動通信システム1の第2動作例について説明する。第2動作例では、制御情報が所定のMAC CEであるケースについて説明する。なお、上述と同様の動作の説明については、適宜省略する。
(Second operation example)
A second operation example of the mobile communication system 1 will be described with reference to Fig. 6. In the second operation example, a case where the control information is a predetermined MAC CE will be described. Note that the description of the same operation as above will be omitted as appropriate.
 ステップ101では、第1動作例と同様の動作が実行されてよい。 In step 101, an operation similar to that of the first operation example may be performed.
 ステップS102:
 基地局200の送信部211は、DRX動作を制御するための制御情報として、所定のMAC CEをUE100へ送信する。UE100の受信部112は、制御情報を基地局200から受信する。
Step S102:
The transmitting unit 211 of the base station 200 transmits a predetermined MAC CE to the UE 100 as control information for controlling the DRX operation. The receiving unit 112 of the UE 100 receives the control information from the base station 200.
 所定のMAC CEは、対象DRX設定として特定されたDRX設定に基づくODT及び/又はIATを停止するためのMAC CEである。所定のMAC CEは、DRXコマンドMAC CEであってもよく、ロングDRXコマンドMAC CEであってもよい。所定のMAC CEは、UE100に設定された複数のDRX設定のうち対象DRX設定として特定されたDRX設定に基づくODT及び/又はIATを停止するために規定されたMAC CEであってもよい。所定のMAC CEは、所定MAC CEを識別するための所定のLCID(下りリンク共有チャネル(DL-SCH)に対するLCID)を含んでいてよい。 The specified MAC CE is a MAC CE for stopping the ODT and/or IAT based on a DRX setting identified as a target DRX setting. The specified MAC CE may be a DRX command MAC CE or a long DRX command MAC CE. The specified MAC CE may be a MAC CE defined for stopping the ODT and/or IAT based on a DRX setting identified as a target DRX setting among multiple DRX settings configured in the UE 100. The specified MAC CE may include a specified LCID (LCID for the downlink shared channel (DL-SCH)) for identifying the specified MAC CE.
 また、基地局200の送信部211は、所定パラメータを適用してDCIを送信してよい。UE100の受信部112は、DCIを受信してよい。基地局200の送信部211は、DCIを用いてスケジューリングされたPDSCH上で所定のMAC CEを送信してよい。UE100の受信部112は、DCIを用いてスケジューリングされたPDSCH上で所定のMAC CEを受信してよい。 Furthermore, the transmitting unit 211 of the base station 200 may transmit the DCI by applying a predetermined parameter. The receiving unit 112 of the UE 100 may receive the DCI. The transmitting unit 211 of the base station 200 may transmit a predetermined MAC CE on the PDSCH scheduled using the DCI. The receiving unit 112 of the UE 100 may receive a predetermined MAC CE on the PDSCH scheduled using the DCI.
 ステップ103:
 UE100の制御部120は、所定パラメータに基づいて、複数のDRX設定の中から対象DRX設定を特定してよい。制御部120は、以下のいずれかの動作を実行してよい。
Step 103:
The control unit 120 of the UE 100 may specify a target DRX setting from among a plurality of DRX settings based on a predetermined parameter. The control unit 120 may perform any of the following operations.
 第1に、UE100の制御部120は、第1動作例と同様に、例えば、DCIに適用されている所定パラメータに基づいて、複数のDRX設定の中から、当該DCIに応じた対象DRX設定を特定してよい。具体的には、制御部120は、DCIを用いてスケジューリングされたPDSCH上で伝送された所定のMAC CEの制御対象を、当該DCIに適用されている所定パラメータに対応するDRX設定を対象DRX設定として特定してよい。 First, the control unit 120 of the UE 100 may, for example, identify a target DRX setting corresponding to a DCI from among a plurality of DRX settings based on a specific parameter applied to the DCI, as in the first operation example. Specifically, the control unit 120 may identify, as the target DRX setting, a DRX setting corresponding to a specific parameter applied to the DCI, as a control target for a specific MAC CE transmitted on a PDSCH scheduled using the DCI.
 第2に、UE100の制御部120は、所定のMAC CEに含まれる所定パラメータに基づいて、対象DRX設定を特定してもよい。例えば、所定のMAC CEは、所定パラメータとして、当該所定のMAC CEの制御対象となるDRX設定を識別するための識別子を含んでよい。所定パラメータは、例えば、所定のRNTIであってよい。所定パラメータは、上述の所定パラメータとして説明したものであってもよい。UE100の制御部120は、所定のMAC CEに含まれる所定のRNTIに対応するDRX設定を対象DRX設定として特定してよい。 Secondly, the control unit 120 of the UE 100 may identify the target DRX setting based on a predetermined parameter included in a predetermined MAC CE. For example, the predetermined MAC CE may include, as a predetermined parameter, an identifier for identifying the DRX setting to be controlled by the predetermined MAC CE. The predetermined parameter may be, for example, a predetermined RNTI. The predetermined parameter may be one of the predetermined parameters described above. The control unit 120 of the UE 100 may identify the DRX setting corresponding to the predetermined RNTI included in the predetermined MAC CE as the target DRX setting.
 ステップS104:
 制御部120は、所定のMAC CEに基づいて、対象DRX設定に基づくODT及び/又はIATを停止してよい。
Step S104:
The control unit 120 may stop the ODT and/or IAT based on the target DRX setting based on a predetermined MAC CE.
 以上のように、制御情報は、PDSCH上で伝送される所定のMAC CEであってよい。制御部120は、所定のMAC CEに基づいて、対象DRX設定に基づくODT及び/又はIATを停止してよい。これにより、UE100は、複数のDRXが設定されていたとしても、対象DRX設定に基づくODT及び/又はIATを停止してよい。 As described above, the control information may be a specified MAC CE transmitted on the PDSCH. The control unit 120 may stop the ODT and/or IAT based on the target DRX setting based on the specified MAC CE. As a result, the UE 100 may stop the ODT and/or IAT based on the target DRX setting even if multiple DRXs are configured.
 また、所定のMAC CEは、ODT及びIATを停止するための所定のMAC CEを識別するための所定のLCIDを含んでよい。これにより、制御部120は、所定のMAC CEがODT及びIATを停止するためのものであることが把握できる。 Furthermore, the specific MAC CE may include a specific LCID for identifying the specific MAC CE for stopping the ODT and IAT. This allows the control unit 120 to understand that the specific MAC CE is for stopping the ODT and IAT.
 受信部112は、所定パラメータを適用して送信されたDCIを受信してよく、DCIを用いてスケジューリングされたPDSCH上で所定のMAC CEを受信してよい。制御部120は、受信部が受信したDCIに適用されている所定パラメータに基づいて、複数のDRX設定の中から、当該DCIに応じた対象DRX設定を特定してよい。これにより、制御部120は、制御情報がMACレイヤよりも上位レイヤのシグナリングであったとしても、DCIに適用されている所定パラメータに基づいて、対象DRX設定を早期に特定することができる。 The receiving unit 112 may receive DCI transmitted by applying the specified parameters, and may receive a specified MAC CE on a PDSCH scheduled using the DCI. The control unit 120 may identify a target DRX setting corresponding to the DCI from among multiple DRX settings based on the specified parameters applied to the DCI received by the receiving unit. This allows the control unit 120 to quickly identify a target DRX setting based on the specified parameters applied to the DCI, even if the control information is signaling of a layer higher than the MAC layer.
 (その他の実施形態)
 上述の実施形態において、所定パラメータは、DCIを用いてスケジューリングされたPDSCH上で伝送されるデータとして、例えばMACレイヤよりも上位レイヤにて処理されるデータであってもよい。UE100の制御部120は、上位レイヤにて所定パラメータに対応付けられた対象DRX設定を特定してもよい。この場合、UE100の制御部120は、制御情報を受信した後直ちにDRX動作を制御しなくてもよい。UE100は、複数のDRX設定のうち対象DRX設定を特定した場合に、DRX動作を制御してもよい。
Other Embodiments
In the above embodiment, the predetermined parameter may be data to be transmitted on the PDSCH scheduled using DCI, for example, data to be processed in a layer higher than the MAC layer. The control unit 120 of the UE 100 may specify a target DRX setting associated with the predetermined parameter in a higher layer. In this case, the control unit 120 of the UE 100 may not control the DRX operation immediately after receiving the control information. The UE 100 may control the DRX operation when specifying a target DRX setting among a plurality of DRX settings.
 上述の実施形態では、第2動作例において、制御部120は、所定のMAC CEに基づいて、対象DRX設定に基づくODT及び/又はIATを停止するケースについて説明したが、これに限られない。制御部120は、例えば、所定のMAC CEに基づいて、対象DRX設定だけでなく、UE100に設定された複数のDRX設定のそれぞれに基づくODT及び/又はIATを停止してもよい。 In the above embodiment, in the second operation example, the control unit 120 has been described as stopping the ODT and/or IAT based on the target DRX setting based on a specific MAC CE, but this is not limited to the case. For example, the control unit 120 may stop the ODT and/or IAT based on not only the target DRX setting but also each of the multiple DRX settings set in the UE 100 based on a specific MAC CE.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above embodiment, a mobile communication system based on NR has been described as an example of the mobile communication system 1. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a system that complies with the TS of either LTE (Long Term Evolution) or another generation system of the 3GPP standard (e.g., the sixth generation). The base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE. The mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。 In the above embodiment, a mobile communication system based on NR has been described as an example of the mobile communication system 1. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a system that complies with the TS of either LTE or another generation system of the 3GPP standard (e.g., the 6th generation). The base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination toward the UE 100 in LTE. The mobile communication system 1 may be a system that complies with the TS of a standard other than the 3GPP standard.
 上述の実施形態の動作におけるステップは、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。さらに、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The steps in the operations of the above-described embodiments do not necessarily have to be executed in chronological order according to the order depicted in the flow diagram or sequence diagram. For example, the steps in the operations may be executed in an order different from that depicted in the flow diagram or sequence diagram, or may be executed in parallel. Some of the steps in the operations may be deleted, and additional steps may be added to the process. Furthermore, each of the above-described operation flows is not limited to being executed separately and independently, but can be executed by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program may be provided that causes a computer to execute each process performed by the UE 100 or the base station 200. The program may be recorded in a computer-readable medium. Using the computer-readable medium, it is possible to install the program in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transient recording medium. The non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disk Read Only Memory). In addition, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chip set, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。従って、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiment, "transmit" may mean performing processing of at least one layer in a protocol stack used for transmission, or may mean physically transmitting a signal wirelessly or wired. Alternatively, "transmit" may mean a combination of performing processing of at least one layer and physically transmitting a signal wirelessly or wired. Similarly, "receive" may mean performing processing of at least one layer in a protocol stack used for reception, or may mean physically receiving a signal wirelessly or wired. Alternatively, "receive" may mean a combination of performing processing of at least one layer and physically receiving a signal wirelessly or wired. Similarly, "obtain/acquire" may mean obtaining information from stored information, obtaining information from information received from other nodes, or obtaining the information by generating the information. Similarly, the terms "based on" and "depending on/in response to" do not mean "based only on" or "only in response to," unless expressly stated otherwise. The term "based on" means both "based only on" and "based at least in part on." Similarly, the term "in response to" means both "only in response to" and "at least in part on." Similarly, "include" and "comprise" do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items. Similarly, in this disclosure, "or" does not mean an exclusive or, but does mean an or. Furthermore, any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some manner. In this disclosure, where articles are added by translation, such as, for example, a, an, and the in English, these articles are intended to include the plural unless the context clearly indicates otherwise.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and spirit of the present disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Additional Note)
The following additional features relate to the above-described embodiment.
 (付記1)
 間欠受信(DRX)動作を行う通信装置(100)であって、
 前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御する制御部(120)と、
 前記DRX動作を制御するための制御情報をネットワークから受信する受信部(112)と、を備え、
 前記受信部は、前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワーク(10)から受信し、
 前記制御部は、前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定する
 通信装置。
(Appendix 1)
A communication device (100) performing a discontinuous reception (DRX) operation,
A control unit (120) that controls the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device;
A receiving unit (112) that receives control information for controlling the DRX operation from a network,
The receiving unit receives from the network (10) a predetermined parameter that differs for each DRX setting set in the communication device;
The control unit specifies a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
 (付記2)
 前記制御情報は、物理下りリンク制御チャネル(PDCCH)上で伝送される下りリンク制御情報(DCI)である
 付記1に記載の通信装置。
(Appendix 2)
The communication device according to claim 1, wherein the control information is downlink control information (DCI) transmitted on a physical downlink control channel (PDCCH).
 (付記3)
 前記受信部は、前記所定パラメータを適用して送信された前記DCIを受信し、
 前記制御部は、前記受信部が受信した前記DCIに適用されている前記所定パラメータに基づいて、前記複数のDRX設定の中から、当該DCIに応じた前記制御対象となる前記DRX設定を特定する
 付記2に記載の通信装置。
(Appendix 3)
The receiving unit receives the DCI transmitted by applying the predetermined parameter,
The control unit identifies the DRX setting to be the control target according to the DCI received by the receiving unit from among the multiple DRX settings based on the predetermined parameter applied to the DCI.
 (付記4)
 前記所定パラメータは、所定の無線ネットワーク一時識別子(RNTI)であり、
 前記制御部は、前記DCIのデコードに成功した前記所定のRNTIに基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
 付記2又は3に記載の通信装置。
(Appendix 4)
the predetermined parameter is a predetermined Radio Network Temporary Identifier (RNTI);
The communication device according to claim 2 or 3, wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the predetermined RNTI that has successfully decoded the DCI.
 (付記5)
 前記所定パラメータは、サーチスペースセット又はサーチスペースセットグループであり、
 前記制御部は、前記DCIが配置されている前記サーチスペースセット又はサーチスペースセットグループに基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
 付記2から4のいずれか1項に記載の通信装置。
(Appendix 5)
The predetermined parameter is a search space set or a search space set group,
The communication device according to any one of Supplementary Note 2 to 4, wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the search space set or search space set group in which the DCI is placed.
 (付記6)
 前記所定パラメータは、前記DCIを用いてスケジューリングされた物理下りリンク共有チャネル(PDSCH)上で伝送されるデータに含まれる所定の識別子であり、
 前記制御部は、前記所定の識別子に基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
 付記2から5のいずれか1項に記載の通信装置。
(Appendix 6)
The predetermined parameter is a predetermined identifier included in data transmitted on a physical downlink shared channel (PDSCH) scheduled using the DCI,
The communication device according to any one of Supplementary Note 2 to 5, wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the predetermined identifier.
 (付記7)
 前記所定パラメータは、無線ベアラ識別子又は論理チャネル識別子である
 付記6に記載の通信装置。
(Appendix 7)
The communication device according to claim 6, wherein the predetermined parameter is a radio bearer identifier or a logical channel identifier.
 (付記8)
 前記制御情報は、物理下りリンク共有チャネル(PDSCH)上で伝送される所定の媒体アクセス制御(MAC) 制御要素(CE)であり、
 前記制御部は、前記所定のMAC CEに基づいて、前記特定されたDRX設定に基づくDRXオンデュレーションタイマ及び/又はDRXインアクティビティタイマを停止する
 付記1から7のいずれか1項に記載の通信装置。
(Appendix 8)
the control information is a predetermined Medium Access Control (MAC) Control Element (CE) transmitted on a Physical Downlink Shared Channel (PDSCH);
The communication device according to any one of Supplementary Note 1 to 7, wherein the control unit stops a DRX on duration timer and/or a DRX inactivity timer based on the specified DRX setting based on the predetermined MAC CE.
 (付記9)
 前記所定のMAC CEは、前記DRXオンデュレーションタイマ及び/又は前記DRXインアクティビティタイマを停止するための所定のMAC CEを識別するための所定の論理チャネル識別子を含む
 付記8に記載の通信装置。
(Appendix 9)
The communications device according to claim 8, wherein the predetermined MAC CE includes a predetermined logical channel identifier for identifying the predetermined MAC CE for stopping the DRX on-duration timer and/or the DRX inactivity timer.
 (付記10)
 前記受信部は、
  前記所定パラメータを適用して送信された下りリンク制御情報(DCI)を受信し、
  前記DCIを用いてスケジューリングされた物理下りリンク共有チャネル(PDSCH)上で前記所定のMAC CEを受信し、
 前記制御部は、前記受信部が受信した前記DCIに適用されている前記所定パラメータに基づいて、前記複数のDRX設定の中から、当該DCIに応じた前記制御対象となる前記DRX設定を特定する
 付記8又は9に記載の通信装置。
(Appendix 10)
The receiving unit is
Receive downlink control information (DCI) transmitted by applying the predetermined parameters;
receiving the predetermined MAC CE on a physical downlink shared channel (PDSCH) scheduled using the DCI;
The control unit identifies the DRX setting to be the control target according to the DCI received by the receiving unit from among the plurality of DRX settings based on the predetermined parameter applied to the DCI received by the receiving unit.
 (付記11)
 前記所定のMAC CEは、前記所定パラメータとして、前記所定のMAC CEの前記制御対象となる前記DRX設定を識別するための識別子を含む
 付記8から10のいずれか1項に記載の通信装置。
(Appendix 11)
The communication device according to any one of Supplementary Note 8 to 10, wherein the predetermined MAC CE includes, as the predetermined parameter, an identifier for identifying the DRX setting to be controlled by the predetermined MAC CE.
 (付記12)
 前記受信部は、前記所定パラメータと前記DRX設定との対応関係を特定するための対応情報を前記ネットワークから受信する
 付記1から11のいずれか1項に記載の通信装置。
(Appendix 12)
The communication device according to any one of Supplementary Note 1 to 11, wherein the receiving unit receives correspondence information from the network for identifying a correspondence relationship between the predetermined parameter and the DRX setting.
 (付記13)
 前記制御情報は、新規送信のための上りリンクグラントであり、
 前記制御部は、前記上りリンクグラントに基づいて、前記特定されたDRX設定に基づくDRXインアクティビティタイマを開始又は再開始するか否かを判定する
 付記1から12のいずれか1項に記載の通信装置。
(Appendix 13)
The control information is an uplink grant for a new transmission,
The communication device according to any one of Supplementary Note 1 to 12, wherein the control unit determines, based on the uplink grant, whether to start or restart a DRX inactivity timer based on the specified DRX configuration.
 (付記14)
 前記制御部は、上りリンク送信に利用可能なデータがない場合に、前記DRXインアクティブタイマを開始又は再開しない
 付記13に記載の通信装置。
(Appendix 14)
14. The communications device of claim 13, wherein the controller is configured to not start or restart the DRX inactivity timer when no data is available for uplink transmission.
 (付記15)
 前記制御部は、通信装置において割り当てられた上りリンクリソースにおいて、上りリンク送信に利用可能なデータがない場合に当該上りリンクリソースを用いた上りリンク送信をスキップするように前記1つのセルグループに対して設定されている場合に、前記DRXインアクティブタイマを開始又は再開しない
 付記14に記載の通信装置。
(Appendix 15)
The control unit is configured not to start or restart the DRX inactivity timer when the one cell group is configured to skip uplink transmission using uplink resources allocated in the communication device when there is no data available for uplink transmission in the uplink resources.
 (付記16)
 間欠受信(DRX)動作を行う通信装置(100)で実行される通信方法であって、
 前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御するステップと、
 前記DRX動作を制御するための制御情報をネットワーク(10)から受信するステップと、
 前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワークから受信するステップと、
 前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定するステップと、を備える
 通信方法。
(Appendix 16)
A communication method executed in a communication device (100) performing a discontinuous reception (DRX) operation, comprising:
Controlling the DRX operation based on each of a plurality of DRX configurations applied to one cell group configured in the communication device;
receiving control information from a network (10) for controlling said DRX operation;
receiving from the network a predetermined parameter that differs for each DRX setting set in the communication device;
identifying a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.

Claims (16)

  1.  間欠受信(DRX)動作を行う通信装置(100)であって、
     前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御する制御部(120)と、
     前記DRX動作を制御するための制御情報をネットワークから受信する受信部(112)と、を備え、
     前記受信部は、前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワーク(10)から受信し、
     前記制御部は、前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定する
     通信装置。
    A communication device (100) that performs discontinuous reception (DRX) operation,
    A control unit (120) that controls the DRX operation based on each of a plurality of DRX settings applied to one cell group set in the communication device;
    A receiving unit (112) that receives control information for controlling the DRX operation from a network,
    The receiving unit receives, from the network (10), a predetermined parameter that differs for each DRX setting set in the communication device;
    The control unit identifies a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
  2.  前記制御情報は、物理下りリンク制御チャネル(PDCCH)上で伝送される下りリンク制御情報(DCI)である
     請求項1に記載の通信装置。
    The communication device according to claim 1 , wherein the control information is downlink control information (DCI) transmitted on a physical downlink control channel (PDCCH).
  3.  前記受信部は、前記所定パラメータを適用して送信された前記DCIを受信し、
     前記制御部は、前記受信部が受信した前記DCIに適用されている前記所定パラメータに基づいて、前記複数のDRX設定の中から、当該DCIに応じた前記制御対象となる前記DRX設定を特定する
     請求項2に記載の通信装置。
    The receiving unit receives the DCI transmitted by applying the predetermined parameter,
    The communication device according to claim 2 , wherein the control unit identifies, from among the plurality of DRX settings, the DRX setting to be the control target according to the DCI received by the receiving unit, based on the predetermined parameter applied to the DCI.
  4.  前記所定パラメータは、所定の無線ネットワーク一時識別子(RNTI)であり、
     前記制御部は、前記DCIのデコードに成功した前記所定のRNTIに基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
     請求項2又は3に記載の通信装置。
    the predetermined parameter is a predetermined Radio Network Temporary Identifier (RNTI);
    The communication device according to claim 2 , wherein the control unit is configured to identify the DRX setting from among the plurality of DRX settings based on the predetermined RNTI that has successfully decoded the DCI.
  5.  前記所定パラメータは、サーチスペースセット又はサーチスペースセットグループであり、
     前記制御部は、前記DCIが配置されている前記サーチスペースセット又はサーチスペースセットグループに基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
     請求項2又は3に記載の通信装置。
    The predetermined parameter is a search space set or a search space set group,
    The communication device according to claim 2 , wherein the control unit is configured to identify the DRX configuration from among the plurality of DRX configurations based on the search space set or search space set group in which the DCI is arranged.
  6.  前記所定パラメータは、前記DCIを用いてスケジューリングされた物理下りリンク共有チャネル(PDSCH)上で伝送されるデータに含まれる所定の識別子であり、
     前記制御部は、前記所定の識別子に基づいて、前記複数のDRX設定の中から前記DRX設定を特定する
     請求項2に記載の通信装置。
    The predetermined parameter is a predetermined identifier included in data transmitted on a physical downlink shared channel (PDSCH) scheduled using the DCI,
    The communication device according to claim 2 , wherein the control unit identifies the DRX setting from among the plurality of DRX settings based on the predetermined identifier.
  7.  前記所定パラメータは、無線ベアラ識別子又は論理チャネル識別子である
     請求項6に記載の通信装置。
    The communication device according to claim 6 , wherein the predetermined parameter is a radio bearer identifier or a logical channel identifier.
  8.  前記制御情報は、物理下りリンク共有チャネル(PDSCH)上で伝送される所定の媒体アクセス制御(MAC) 制御要素(CE)であり、
     前記制御部は、前記所定のMAC CEに基づいて、前記特定されたDRX設定に基づくDRXオンデュレーションタイマ及び/又はDRXインアクティビティタイマを停止する
     請求項1に記載の通信装置。
    the control information is a predetermined Medium Access Control (MAC) Control Element (CE) transmitted on a Physical Downlink Shared Channel (PDSCH);
    The communication device according to claim 1 , wherein the control unit stops a DRX on-duration timer and/or a DRX inactivity timer based on the specified DRX setting based on the predetermined MAC CE.
  9.  前記所定のMAC CEは、前記DRXオンデュレーションタイマ及び/又は前記DRXインアクティビティタイマを停止するための所定のMAC CEを識別するための所定の論理チャネル識別子を含む
     請求項8に記載の通信装置。
    The communication device according to claim 8 , wherein the predetermined MAC CE includes a predetermined logical channel identifier for identifying the predetermined MAC CE for stopping the DRX on-duration timer and/or the DRX inactivity timer.
  10.  前記受信部は、
      前記所定パラメータを適用して送信された下りリンク制御情報(DCI)を受信し、
      前記DCIを用いてスケジューリングされた物理下りリンク共有チャネル(PDSCH)上で前記所定のMAC CEを受信し、
     前記制御部は、前記受信部が受信した前記DCIに適用されている前記所定パラメータに基づいて、前記複数のDRX設定の中から、当該DCIに応じた前記制御対象となる前記DRX設定を特定する
     請求項8又は9に記載の通信装置。
    The receiving unit is
    Receive downlink control information (DCI) transmitted by applying the predetermined parameters;
    receiving the predetermined MAC CE on a physical downlink shared channel (PDSCH) scheduled using the DCI;
    The communication device according to claim 8 or 9, wherein the control unit identifies, from among the plurality of DRX settings, the DRX setting to be the control target according to the DCI received by the receiving unit, based on the predetermined parameter applied to the DCI.
  11.  前記所定のMAC CEは、前記所定パラメータとして、前記所定のMAC CEの前記制御対象となる前記DRX設定を識別するための識別子を含む
     請求項8又は9に記載の通信装置。
    The communication device according to claim 8 or 9, wherein the predetermined MAC CE includes, as the predetermined parameter, an identifier for identifying the DRX setting to be controlled by the predetermined MAC CE.
  12.  前記受信部は、前記所定パラメータと前記DRX設定との対応関係を特定するための対応情報を前記ネットワークから受信する
     請求項1又は2に記載の通信装置。
    The communication device according to claim 1 , wherein the receiving unit receives correspondence information for identifying a correspondence relationship between the predetermined parameter and the DRX setting from the network.
  13.  前記制御情報は、新規送信のための上りリンクグラントであり、
     前記制御部は、前記上りリンクグラントに基づいて、前記特定されたDRX設定に基づくDRXインアクティビティタイマを開始又は再開始するか否かを判定する
     請求項1に記載の通信装置。
    The control information is an uplink grant for a new transmission,
    The communication device according to claim 1 , wherein the control unit determines, based on the uplink grant, whether to start or restart a DRX inactivity timer based on the specified DRX setting.
  14.  前記制御部は、上りリンク送信に利用可能なデータがない場合に、前記DRXインアクティブタイマを開始又は再開しない
     請求項13に記載の通信装置。
    The communication device of claim 13 , wherein the controller is configured to not start or restart the DRX inactivity timer if no data is available for uplink transmission.
  15.  前記制御部は、通信装置において割り当てられた上りリンクリソースにおいて、上りリンク送信に利用可能なデータがない場合に当該上りリンクリソースを用いた上りリンク送信をスキップするように前記1つのセルグループに対して設定されている場合に、前記DRXインアクティブタイマを開始又は再開しない
     請求項14に記載の通信装置。
    The communication device according to claim 14, wherein the control unit does not start or restart the DRX inactivity timer when the one cell group is configured to skip uplink transmission using an uplink resource allocated in the communication device when there is no data available for uplink transmission in the uplink resource.
  16.  間欠受信(DRX)動作を行う通信装置(100)で実行される通信方法であって、
     前記通信装置に設定された1つのセルグループに対して適用された複数のDRX設定のそれぞれに基づいて前記DRX動作を制御するステップと、
     前記DRX動作を制御するための制御情報をネットワーク(10)から受信するステップと、
     前記通信装置に設定されたDRX設定毎に異なる所定パラメータを前記ネットワークから受信するステップと、
     前記所定パラメータに基づいて、前記複数のDRX設定の中から前記制御情報に基づく制御対象となるDRX設定を特定するステップと、を備える
     通信方法。
    A communication method executed in a communication device (100) performing a discontinuous reception (DRX) operation, comprising:
    Controlling the DRX operation based on each of a plurality of DRX configurations applied to one cell group configured in the communication device;
    receiving control information from a network (10) for controlling said DRX operation;
    receiving from the network a predetermined parameter that differs for each DRX setting set in the communication device;
    identifying a DRX setting to be controlled based on the control information from among the plurality of DRX settings based on the predetermined parameter.
PCT/JP2023/034828 2022-09-28 2023-09-26 Communication device and communication method WO2024071076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155585 2022-09-28
JP2022-155585 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024071076A1 true WO2024071076A1 (en) 2024-04-04

Family

ID=90477998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034828 WO2024071076A1 (en) 2022-09-28 2023-09-26 Communication device and communication method

Country Status (1)

Country Link
WO (1) WO2024071076A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "XR specific power saving techniques", 3GPP TSG RAN WG1 #110 R1-2207351, 12 August 2022 (2022-08-12), XP052275286 *
LENOVO: "XR-specific power saving techniques", 3GPP TSG RAN WG1 #110 R1-2206518, 12 August 2022 (2022-08-12), XP052274450 *
SAMSUNG: "Discussion on power saving scheme for XR", 3GPP TSG-RAN WG2 MEETING #119 R2-2207846, 10 August 2022 (2022-08-10), XP052261163 *

Similar Documents

Publication Publication Date Title
CN110050495B (en) Terminal device, communication method, and integrated circuit
JP2012530405A (en) Method and system for discontinuous reception operation for long term evolution advance carrier aggregation
US20090303927A1 (en) Method and System for Controlling Discontinuous Reception/Transmission
US10973080B2 (en) Radio terminal, processor, and base station
JP2022536767A (en) Transmitting/receiving device and scheduling device
CN114128183A (en) Transceiver device and scheduling device
TWI816503B (en) Methods and user equipment for wireless communications
WO2024071076A1 (en) Communication device and communication method
WO2024071078A1 (en) Communication device, base station, and communication method
WO2023127636A1 (en) Communication device and communication method
WO2023112959A1 (en) Communication device, base station, and communication method
WO2022260106A1 (en) Communication device, base station, and communication method
WO2023112961A1 (en) Communication device, base station, and communication method
WO2022260105A1 (en) Communication device, base station, and communication method
WO2022260103A1 (en) Communication device, base station, and communication method
JP7457876B2 (en) Communication device, base station, and communication method
WO2023127634A1 (en) Communication device, base station, and communication method
WO2023112960A1 (en) Communication device, base station, and communication method
US20240080170A1 (en) Communication apparatus, base station, and communication method
US20240073924A1 (en) Communication apparatus, base station, and method
US20240237056A9 (en) Communication apparatus, base station, and communication method
WO2022234835A1 (en) User equipment, base station, and communication control method
WO2022234838A1 (en) Communication device, base station, and method
WO2023048183A1 (en) User equipment, base station, and communication method
WO2023120434A1 (en) Base station and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872299

Country of ref document: EP

Kind code of ref document: A1