WO2023112961A1 - Communication device, base station, and communication method - Google Patents

Communication device, base station, and communication method Download PDF

Info

Publication number
WO2023112961A1
WO2023112961A1 PCT/JP2022/046041 JP2022046041W WO2023112961A1 WO 2023112961 A1 WO2023112961 A1 WO 2023112961A1 JP 2022046041 W JP2022046041 W JP 2022046041W WO 2023112961 A1 WO2023112961 A1 WO 2023112961A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
sssg
switching
timer
base station
Prior art date
Application number
PCT/JP2022/046041
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 星野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023112961A1 publication Critical patent/WO2023112961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
  • the physical downlink control channel (PDCCH) monitoring A process of switching the monitoring state of PDCCH (hereinafter referred to as switching process) is under consideration. For example, the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or the PDCCH monitoring is skipped through the switching process.
  • switching process the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or the PDCCH monitoring is skipped through the switching process.
  • DRX discontinuous reception
  • Such an operation of skipping PDCCH monitoring and an operation of switching PDCCH monitoring states may be referred to as PDCCH monitoring adaptation.
  • a method has been proposed in which a communication device performs switching processing in response to the occurrence of an opportunity to perform wireless communication with a base station. For example, the communication device switches the PDCCH monitoring state from a state of skipping PDCCH monitoring to a state of monitoring PDCCH, triggered by CG transmission, which is uplink transmission based on configured grants (CG) from the base station.
  • CG configured grants
  • a communication device is a communication device that performs wireless communication with a base station.
  • the communication device includes a transmitting unit that performs CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station, and a PDCCH monitoring related to monitoring of a physical downlink control channel (PDCCH) according to the CG transmission a control unit that performs CG-induced switching processing for switching states.
  • the control unit performs the CG-induced switching process in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by the CG transmission.
  • the HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
  • a base station is a base station that performs wireless communication with a communication device.
  • the base station includes a receiving unit that receives uplink data by CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station, from the communication device, and the uplink data transmitted by the CG transmission.
  • Switching the PDCCH monitoring state for monitoring the physical downlink control channel (PDCCH) upon expiration of the HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing
  • RTT hybrid automatic repeat request
  • the HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
  • a communication method is a communication method executed by a communication device that performs wireless communication with a base station.
  • the communication method includes a step of performing CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station; and a step of performing CG-induced switching processing for switching between.
  • the CG-induced switching processing is performed in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted in the CG transmission. conduct.
  • the HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing an overview of PDCCH skipping according to the embodiment.
  • FIG. 5 is a diagram showing an overview of search space set (SSSG) switching according to the embodiment.
  • FIG. 6 is a diagram illustrating DRX and power saving states according to an embodiment.
  • FIG. 7 is a diagram illustrating an example of SSSG switching according to the embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing an overview of
  • FIG. 8 is a diagram illustrating an example of timer-based SSSG switching according to an embodiment.
  • FIG. 9 is a diagram showing an overview of CG transmission according to the embodiment.
  • FIG. 10 is a diagram showing the configuration of a UE according to the embodiment.
  • FIG. 11 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of an operation sequence regarding CG-induced switching processing according to the embodiment.
  • FIG. 13 is a diagram (Part 1) illustrating an operation example related to CG-induced switching processing according to the embodiment;
  • FIG. 14 is a diagram (part 2) illustrating an operation example related to CG-induced switching processing according to the embodiment;
  • FIG. 15 is a diagram illustrating a specific example 1 of CG-induced switching processing according to the embodiment.
  • FIG. 16 is a diagram illustrating specific example 2 of the CG-induced switching process according to the embodiment.
  • the communication device switches the PDCCH monitoring state according to CG transmission
  • the communication device autonomously switches the PDCCH monitoring state when the communication device autonomously switches the PDCCH monitoring state, the actual PDCCH monitoring state in the communication device and the PDCCH monitoring state recognized by the base station are changed. can be inconsistent. Therefore, after the communication device switches the PDCCH monitoring state in response to CG transmission, there is a concern that the base station cannot properly perform radio communication with the communication device.
  • one object of the present disclosure is to provide a communication device, a base station, and a communication method that enable appropriate wireless communication even when the PDCCH monitoring state is switched according to CG transmission. do.
  • the mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 may be a user equipment defined by 3GPP technical specifications.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE).
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area.
  • One cell belongs to one frequency (carrier frequency) and is composed of one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Request: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between IP flows, which are the units in which the core network performs QoS control, and radio bearers, which are the units in which the AS (Access Stratum) performs QoS (Quality of Service) control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • the base station 200 configures the UE 100 with a search space corresponding to the candidate timing at which the PDCCH is provided.
  • UE 100 in the RRC connected state monitors PDCCH in the set search space, receives downlink control information (Downlink Control Information: DCI) carried by PDCCH, and assigns resources (scheduling) indicated by DCI.
  • DCI Downlink Control Information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the UE 100 may monitor a set of PDCCH candidates according to the corresponding search space.
  • the UE 100 is a control resource set (CORESET) in the downlink bandwidth part (DL BWP) in the serving cell in which PDCCH monitoring is set, and is a PDCCH candidate. set may be monitored.
  • monitoring may refer to decoding each of the PDCCH candidates according to the monitored DCI format.
  • the base station 200 transmits an RRC message including PDCCH settings (PDCCH settings) to the UE 100, and performs various PDCCH settings for the UE 100.
  • This RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message.
  • the search space settings include a search space period (also referred to as a PDCCH monitoring period), a search space offset (also referred to as a PDCCH monitoring offset), a search space duration (for example, the number of consecutive slots), and PDCCH monitoring. symbols for, aggregation level, search space type, DCI format, etc.
  • each search space (each set of search spaces) may be associated with one CORESET.
  • the search space setting may be set for each of one or more DL BWPs.
  • the search space type may include a UE-specific search space (USS) and/or a UE common search space (CSS).
  • DCI formats include scheduling DCI formats used for PDSCH or PUSCH scheduling and non-scheduling DCI formats not used for such scheduling.
  • DCI transmitted in a scheduling DCI format is called scheduling DCI
  • DCI transmitted in a non-scheduling DCI format is called non-scheduling DCI.
  • Scheduling DCI formats include a downlink DCI format used for PDSCH scheduling (eg, DCI format 1_0, DCI format 1_1, DCI format 1_2) and an uplink DCI format used for PUSCH scheduling (eg, DCI format 0_0, DCI format 0_1 and DCI format 0_2).
  • the scheduling DCI may be UE-specific DCI that is sent for each UE.
  • the scheduling DCI may be transmitted by applying an RNTI (Radio Network Temporary Identifier) assigned to each UE.
  • RNTI Radio Network Temporary Identifier
  • non-scheduling DCI formats include, for example, DCI format 2_0 and DCI format 2_6.
  • the non-scheduling DCI may be a DCI that can be transmitted to multiple UEs 100 at once.
  • non-scheduling DCI may be transmitted by applying a common RNTI to multiple UEs 100 .
  • step S2 the UE 100 starts monitoring PDCCH in the search space set by the base station 200.
  • DCI format 1_0, DCI format 0_0, DCI format 1_1, DCI format 0_1, DCI format 1_2, and DCI format 0_2 are configured in the UE 100, and the UE 100 monitors the PDCCH (DCI) based on the configuration.
  • base station 200 may configure UE 100 to monitor DCI format 1_0 and DCI format 0_0 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_1 and DCI format 0_1 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_2 and DCI format 0_2 in a certain search space. That is, for example, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 when CSS is configured for a certain search space. Also, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 2_0 when CSS is configured for a certain search space. In addition, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_1 and DCI format 0_1 when USS is configured for a certain search space.
  • base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_2 and DCI format 0_2 when USS is configured for a certain search space. can be set to
  • the UE 100 receives and detects DCI or PDCCH addressed to itself from the base station 200.
  • the UE 100 uses the C-RNTI (Cell-Radio Network Temporary Identifier (RNTI)) and MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI) assigned to the UE 100 from the base station 200, or the CS-RNTI ( Blind decoding of PDCCH is performed using Configured Scheduling-RNTI), and successfully decoded DCI is acquired as DCI addressed to its own UE.
  • the DCI transmitted from the base station 200 is added with CRC (Cyclic Redundancy Check) parity bits scrambled by C-RNTI and MCS-C-RNTI or CS-RNTI.
  • CRC Cyclic Redundancy Check
  • step S4 the UE 100 receives downlink data from the base station 200 on the scheduled PDSCH. If the DCI indicates PUSCH scheduling, the UE 100 transmits uplink data to the base station 200 on the scheduled PUSCH in step S5.
  • downlink data is also referred to as downlink shared channel (DL-SCH) data.
  • Uplink data is also referred to as uplink-shared channel (UL-SCH) data.
  • the downlink shared channel and the uplink shared channel are transport channels
  • PDSCH and PUSCH are physical channels. For example, downlink data (DL-SCH data) is mapped to PDSCH, and uplink data (UL-SCH data) is mapped to PUSCH.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on the search space setting set by the base station 200 .
  • a PDCCH monitoring state regarding PDCCH monitoring in UE 100 may be referred to as a PDCCH monitoring execution state for monitoring PDCCH.
  • the base station 200 transmits to the UE 100 a skip instruction DCI that instructs PDCCH skipping.
  • Skip instruction DCI is an example of switching instruction DCI.
  • a skip indication DCI may be a scheduling DCI or a non-scheduling DCI.
  • the UE 100 skips PDCCH monitoring for a predetermined period in response to receiving the skip instruction DCI from the base station 200 .
  • the predetermined period for skipping PDCCH monitoring may be set by higher layer signaling (RRC message).
  • the predetermined period may be determined by a timer value (that is, a setting value of a switching timer), or may be determined by the number of consecutive slots or the number of consecutive search spaces.
  • the predetermined period may be referred to as a skip period.
  • PDCCH skipping reduces the power consumption required for the UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • PDCCH skipping may mean skipping PDCCH monitoring, and PDCCH skipping may be referred to as PDCCH monitoring skipping. In this embodiment, such a PDCCH monitoring state in the UE 100 may be referred to as a PDCCH skipping state.
  • the base station 200 configures multiple search space sets, which are sets of settings related to search spaces, in the UE 100 through higher layer signaling (RRC messages).
  • a set of settings related to such a search space is called a Search Space Set (SSS) or a Search Space Set Group (SSSG), but in the following it will be mainly called SSSG.
  • One SSSG includes one or more search space settings and is identified by an SSSG index.
  • base station 200 has SSSG#0 (first search space set) in which search spaces are provided at a predetermined cycle, and SSSG#1 (second search space set) in which search spaces are provided at a cycle longer than the predetermined cycle. space set) shall be set in the UE 100.
  • the base station 200 sets two SSSGs, SSSG#0 and SSSG#1, to the UE 100.
  • Three or more SSSGs are set for each of one or more BWPs (for example, DL BWP). You may set to UE100.
  • setting a plurality of SSSGs (or three or more SSSGs) in the UE 100 may mean setting a plurality of SSSGs (or three or more SSSGs) for one BWP, or a plurality of may mean setting multiple SSSGs (or three or more SSSGs) for each BWP.
  • search spaces include UE-specific search spaces and/or UE-common search spaces as described above
  • a set of settings related to UE-specific search spaces may be referred to as a UE-specific search space set.
  • the set of configurations for UE-common search spaces may be referred to as a UE-common search space set.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on SSSG#0.
  • the base station 200 transmits to the UE 100 a switching instruction DCI that instructs SSSG switching.
  • the switching instruction DCI may be a scheduling DCI or a non-scheduling DCI. That is, the base station 200 uses DCI to instruct the UE 100 to switch from SSSG#0 to SSSG#1.
  • the UE 100 starts switching to SSSG#1 in response to receiving the switching instruction DCI.
  • UE 100 performs switching to SSSG#1 in a symbol after a switching delay time (Switch delay) from the last symbol of PDCCH in SSSG#0.
  • Switch delay may be set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • UE 100 monitors PDCCHs provided in a cycle longer than a predetermined cycle in search spaces.
  • Such search space set switching reduces the power consumption required for UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • switching from SSSG#1 to SSSG#0 may be instructed by the base station 200 using DCI in the same manner as switching from SSSG#0 to SSSG#1, or the UE 100 may switch from SSSG#1 using a timer. You may switch to SSSG#0.
  • the timer value of such a switching timer (Switching timer) is set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • the UE 100 starts monitoring the PDCCH in SSSG#1 in response to detection of the switching instruction DCI to SSSG#1, sets the value of the switching timer to the value set by the upper layer, and activates the switching timer.
  • UE 100 decrements the value of the switching timer, stops monitoring PDCCH in SSSG#1 when the switching timer expires, and starts monitoring PDCCH in SSSG#0 after a switch delay time.
  • indexes also called search space group IDs
  • base station 200 may configure a set (group) of search spaces for UE 100 by configuring an index associated with the one or more search space sets.
  • the name SSSG is merely an example, and any name may be used as long as it is a set (group) of search spaces to which one or more search space sets are associated.
  • one SSSG set in the UE 100 is set to have no search space, and switching to the one SSSG is indicated by DCI, thereby realizing the same operation as the PDCCH skipping described above.
  • a search space is set in one SSSG set in the UE 100, and no monitoring opportunity for the search space is set (or a parameter related to the monitoring opportunity is set to a predetermined value (e.g., "0" or "Null”). ), an operation similar to the PDCCH skipping described above may be realized.
  • UE 100 is configured with a total of three SSSGs: an SSSG with a normal search space period, an SSSG with no search space period, and an SSSG with a long search space period. Flexible power saving can be realized by setting such various SSSGs in the UE 100 and instructing switching of SSSGs by DCI.
  • the UE 100 discontinuously monitors the PDCCH using the DRX operation.
  • the DRX operation is controlled by the following DRX parameters.
  • - DRX cycle Defines the cycle in which the UE 100 wakes up.
  • On duration On-duration: This is the period during which the UE 100 waits to receive the PDCCH after waking up. If the UE 100 successfully decodes the PDCCH, the UE 100 remains awake and starts an inactivity-timer.
  • Inactivity timer Defines the time period during which the UE 100 waits after the last successful PDCCH decoding and sleeps again when the PDCCH decoding fails.
  • the ON duration may be started.
  • FIG. 6 corresponds to the operation with the set value of DRX-SlotOffset set to zero.
  • Retransmission timer defines the time interval during which retransmissions are expected.
  • the UE 100 configured with DRX does not need to monitor the PDCCH in the sleep state (that is, the reception off period), so the power consumption of the UE 100 can be reduced.
  • the UE 100 waits to receive the PDCCH and monitors the PDCCH in the search space during the active time.
  • the active time is any of the on duration timer (drx-onDurationTimer), the inactivity timer (drx-InactivityTimer), the downlink retransmission timer (drx-RetransmissionTimerDL), and the uplink retransmission timer (drx-RetransmissionTimerUL) is in operation. It's time.
  • PDCCH supervisory adaptation is a generic term for PDCCH skipping and SSSG switching. That is, in this embodiment, PDCCH monitoring adaptation may be replaced by PDCCH skipping and/or SSSG switching. In PDCCH monitoring adaptation, a process of switching the PDCCH monitoring state for PDCCH monitoring may be performed.
  • a plurality of SSSGs having different search space cycles (different PDCCH cycles) will be described, but it is possible to set the same search space cycle (different PDCCH cycles) for a plurality of SSSGs. is of course.
  • the base station 200 transmits one or more RRC messages to the UE100.
  • the one or more RRC messages may include a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 receives the RRC message.
  • the RRC message includes PDCCH monitoring adaptation settings (hereinafter referred to as PMA settings).
  • the PMA settings may be settings for performing PDCCH monitoring adaptation.
  • PMA setting includes information for setting SSSG, information for setting a switching timer for switching SSSG, information for setting a duration related to PDCCH monitoring, and setting cases related to PDCCH monitoring state switching. may include at least one of information for
  • the information for setting the case may be information for setting the case (also referred to as operation) of PDCCH monitoring adaptation. As described below, it may be specified to perform PDCCH skipping (ie PDCCH skipping only), for example for the case of PDCCH monitoring adaptation. It may also be specified to perform SSSG switching (ie SSSG switching only) as a case of PDCCH monitoring adaptation. It may also be specified to perform PDCCH skipping and SSSG switching as a case of PDCCH monitoring adaptation. That is, cases may be defined corresponding to operations performed as PDCCH monitoring adaptation.
  • Information for setting SSSG includes, for example, information for setting SSSG to which PDCCH skipping is applied, and information for setting SSSG to which SSSG switching is applied. At least one may be included.
  • the SSSG setting information may also include information for setting at least one of a default SSSG (eg, SSSG#0) and a non-default SSSG that is not the default SSSG. That is, SSSG configuration information may be configured for default SSSG and/or non-default SSSG.
  • the SSSG configuration information may include SSSG information configured for each downlink BWP, and may include SSSG information configured for each downlink serving cell. That is, the SSSG configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • the SSSG configuration information may further include a search space configuration associated with each SSSG index (which may be referred to as a group index) corresponding to each SSSG.
  • a search space setting includes one or more search space settings.
  • Each search space configuration includes at least one of search space period, search space offset, search space duration (e.g., number of consecutive slots), symbols for PDCCH monitoring, aggregation level, search space type, and DCI format. OK.
  • the switch timer information may include switch timer information for the default SSSG and may include switch timer information for the non-default SSSG. That is, switching timer information may be configured for default SSSG and/or non-default SSSG. Note that the switching timer may not be set for the default SSSG.
  • the switching timer information may include switching timer information configured for each downlink BWP, and may include switching timer information configured for each downlink serving cell. That is, the switching timer information may be configured for the downlink BWP and/or the downlink serving cell.
  • the switching timer information may include a timer set value of the switching timer.
  • Information for setting a period related to PDCCH monitoring may include information on a period set for each SSSG.
  • the monitoring period information may include period information for the default SSSG and may include period information for the non-default SSSG. That is, monitoring period information may be set for default SSSGs and/or non-default SSSGs.
  • the monitoring period information may include information on a period set for each downlink BWP, or may include information on a period set for each downlink serving cell. That is, the monitoring period information may be configured for the downlink BWP and/or the downlink serving cell.
  • the set period may be a skip period for skipping PDCCH monitoring.
  • a case related to PDCCH monitoring state switching specifically, information for setting a case of PDCCH monitoring adaptation (hereinafter referred to as case setting information as appropriate) includes case information set for each downlink BWP. Alternatively, it may include case information configured for each downlink serving cell. That is, the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • case setting information includes case information set for each downlink BWP.
  • the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • Table 1 shows an example of DCI notification contents in each case.
  • PDCCH skipping that is, execution of PDCCH skipping only
  • the configuration for case #2 configures two different durations of SSSG switching (ie performing SSSG switching only) as PDCCH monitoring adaptation.
  • the configuration for case #3 configures SSSG switching for three different durations (ie performing SSSG switching only) as a PDCCH monitoring adaptation.
  • two different periods of SSSG switching and PDCCH skipping are configured as PDCCH monitoring adaptations.
  • M (set to 1 or 2) indicates the number of periods set based on the monitoring period information. That is, M corresponds to period X. Period X may be referred to as a skip period.
  • the PDCCH monitoring adaptation applied by UE 100 (that is, SSSG switching and/or PDCCH skipping) information field in the switching instruction DCI (hereinafter, PDCCH monitoring adaptation notification field:) is set to It is associated with the operation (behavior) of the UE 100 shown.
  • Operations of the UE 100 may be defined as follows. • PDCCH skipping is not activated in Beh1. • For Beh1A, PDCCH skipping means stopping PDCCH monitoring for period X. • Beh2 stops monitoring the search space sets associated with SSSG#1 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#0.
  • Beh2A stops monitoring the search space sets associated with SSSG#0 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#1.
  • Beh2B stop monitoring the search space set associated with SSSG#0 and SSSG#1 (if configured) and monitor the search space set associated with SSSG#2.
  • the information indicating the correspondence relationship in Table 1 may be stored in advance in each of the UE 100 and the base station 200, or may be notified from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 When case #1 is configured in the UE 100, the UE 100 has one for PDCCH monitoring for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. Alternatively, multiple periods (including skip periods) may be set.
  • the UE 100 When case #2 or case #3 is configured in the UE 100, the UE 100 has one serving cell for each of one or more downlink BWPs (or each of one or more SSSGs).
  • One or more group indices may be configured.
  • the UE 100 When case #4 is configured in the UE 100, the UE 100 has PDCCH for each of one or more downlink BWPs (or each of one or more SSSGs) in a certain serving cell, in a certain serving cell. One or more periods (including skip periods) for monitoring may be set. Also, in the UE 100, one or more group indexes (SSSG indexes) are set for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. you can Note that the PDCCH monitoring adaptation notification field in DCI for PDCCH monitoring is defined as 2 bits.
  • the RRC message may include field settings indicating the presence or absence of the PDCCH monitoring adaptation notification field for each of one or more DCI formats.
  • the switching indication DCI is a DCI having a DCI format indicating that there is a PDCCH monitoring adaptation notification field by field setting.
  • the presence/absence of the PDCCH monitoring adaptation notification field may be configured commonly or independently for non-scheduling DCI and/or scheduling DCI.
  • the presence/absence of the PDCCH monitoring adaptation notification field (presence/absence) may be set commonly for DCI format 1_1 and DCI format 0_1, and commonly for DCI format 1_2 and DCI format 0_2.
  • the presence or absence (presence/absence) of the PDCCH monitoring adaptation notification field may be set commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the field setting indicating presence/absence of the PDCCH monitoring adaptation notification field may be replaced with the PMA setting. That is, the presence of the PDCCH monitoring adaptation notification field in one or more DCI formats may be indicated by configuring the PMA settings for the UE 100 . For example, UE 100 may identify that one or more DCI formats have a PDCCH monitoring adaptation notification field based on the PMA configuration being configured.
  • the RRC message may include a bit number setting that indicates the number of bits in the PDCCH supervisory adaptation notification field for each of one or more DCI formats.
  • the number of bits of the PDCCH monitoring adaptation notification field may be directly configured commonly or independently.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 0_1 and/or commonly for DCI format 1_2 and DCI format 0_2.
  • a PDCCH supervisory adaptation notification field of up to 2 bits is configured for DCI format 1_1 and/or DCI format 0_1, and/or a PDCCH supervisory adaptation notification field of 1 bit is configured for DCI format 1_2 and DCI format 0_2.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the number of bits setting indicating the number of bits of the PDCCH supervisory adaptation notification field may be replaced with the PMA setting.
  • the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats may be determined by configuring the PMA settings for the UE 100 .
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of SSSGs configured based on information for configuring SSSGs.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of periods set based on the monitoring period information.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats, depending on the case set based on the case setting information (for example, shown in Table 1. may determine the number of bits to be stored).
  • step S12 the UE 100 stores the information set by the base station 200.
  • the base station 200 transmits a switching instruction DCI having a PDCCH monitoring adaptation notification field to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI on the PDCCH.
  • the UE 100 may determine whether or not the DCI format of the detected DCI corresponds to the switching instruction DCI, based on field settings set by the base station 200 .
  • step S14 the UE 100 acquires the value set in the PDCCH monitoring adaptation notification field of the switching instruction DCI received in step S13.
  • UE 100 may specify the number of bits in the PDCCH monitoring adaptation notification field based on the bit number setting set by base station 200 and then acquire the value set in the PDCCH monitoring adaptation notification field.
  • the UE 100 is based on the number of SSSG indexes set in the UE 100 (i.e., the number of entries in the set SSSG index (list)), and the number of bits of the PDCCH monitoring adaptation notification field is specified.
  • the value set in the PDCCH supervisory adaptation notification field may be obtained.
  • UE 100 calculates and identifies the number of bits of the PDCCH monitoring adaptation notification field by an integer value rounded up after the decimal point of log2 (I). good too.
  • step S15 the UE 100 changes the PDCCH monitoring state to the state corresponding to the value set in the PDCCH monitoring adaptation notification field (hereinafter referred to as the PDCCH monitoring adaptation notification field value) in the received switching instruction DCI based on the set case. switch.
  • the PDCCH monitoring adaptation notification field value the PDCCH monitoring adaptation notification field value
  • An operation example of the UE 100 according to the number of bits of the PDCCH monitoring adaptation notification field in each case is shown below.
  • Case #1 PDCCH Supervisory Adaptation Notification field in DCI for PDCCH Monitoring is 1 bit If the PDCCH Supervisory Adaptation Notification field value is '0', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '1', PDCCH skipping is performed during the configured period (the period of the first value).
  • PDCCH supervisory adaptation notification field in DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '01', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (second value period). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (the period of the third value).
  • Case #2 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 1 bit If the PDCCH supervisory adaptation notification field value is '0', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '1', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • Case #3 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • PDCCH monitoring adaptation notification field value is '10'
  • start monitoring the PDCCH according to the search space set corresponding to group index #2 and start monitoring the PDCCH according to the search space set corresponding to the other group index value. Stop monitoring.
  • the definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '1' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '2' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (second value period).
  • timer-based SSSG switching according to this embodiment will be described with reference to FIG.
  • the UE 100 switches between SSSGs on a timer basis and three or more SSSGs can be configured in the UE 100 .
  • the base station 200 may set one of the SSSGs set in the UE 100 as a default SSSG in the UE 100.
  • the base station 200 may specify one of the SSSG indices set in the UE 100 as "defaultSSSG-Id".
  • the base station 200 may set the 'defaultSSSG-Id' using an RRC message. That is, the base station 200 may configure the default SSSG for the UE 100 using information included in the RRC message.
  • the default SSSG may be an SSSG determined according to a predetermined rule shared in advance by the base station 200 and the UE 100 among SSSGs set in the UE 100 .
  • the default SSSG may be the SSSG set in the UE 100 by the base station 200 as the default SSSG.
  • step S21 the UE 100 for which multiple SSSGs have been set by the base station 200 monitors the PDCCH using one of the multiple SSSGs.
  • step S22 the UE 100 receives a switching instruction DCI that instructs switching to another SSSG from the base station 200 on the PDCCH.
  • step S23 the UE 100 switches to the SSSG specified by the switching instruction DCI and activates the timer (switching timer) associated with the SSSG.
  • step S24 the UE 100 determines whether the switching timer has expired.
  • step S25 the UE 100 switches to the default SSSG among the multiple set SSSGs.
  • the base station 200 can grasp the SSSG to which the UE 100 is switched. Since the switching timer is a value set by the base station 200, the base station 200 manages the switching timer in the same manner as the UE 100, and can recognize that the switching timer has expired in the UE 100.
  • the UE 100 determines the default SSSG according to a predetermined rule. do. For example, if the RRC message does not contain information for setting the default SSSG, the UE 100 may determine the default SSSG according to a predetermined rule.
  • the predetermined rule is, for example, a rule defined by 3GPP technical specifications, and a rule shared in advance by the base station 200 and the UE 100 .
  • the predetermined rule is the SSSG corresponding to the SSSG index with the smallest value among the SSSG indexes set in the UE 100, or the SSSG corresponding to the SSSG index with the largest value. good. For example, if the rule is to set the SSSG corresponding to the SSSG index with the smallest value as the default SSSG, the UE 100 determines the SSSG with SSSG index #0 as the default SSSG. If the rule is to set the SSSG corresponding to the SSSG index with the largest value as the default SSSG, the UE 100 determines the SSSG of SSSG index #4 as the default SSSG.
  • the UE 100 may receive from the base station 200 correspondence information indicating the correspondence between the SSSG index set in the UE 100 and the value set in the SSSG information field in the switching instruction DCI.
  • the predetermined rule may be a rule for determining, as the default SSSG, the SSSG corresponding to the SSSG index indicated by a specific value (eg, "0") set in the SSSG information field in the switching instruction DCI.
  • the UE 100 determines, as the default SSSG, an SSSG having an SSSG index in which the value set in the SSSG information field in the switching instruction DCI is "0".
  • the predetermined rule may be a rule that determines the SSSG corresponding to the SSSG index (for example, index #0) having a predetermined value among the SSSG indices set in the UE 100 as the default SSSG.
  • the predetermined rule may be a rule for determining, among the SSSGs set in the UE 100, SSSGs other than SSSGs skipping PDCCH monitoring as default SSSGs. That is, UE 100 may assume that the SSSG index corresponding to PDCCH skipping is not set as the default SSSG.
  • the UE 100 may apply a specific SSSG when switching from a DRX reception off period to a reception on period (active time).
  • the predetermined rule may be a rule that determines that particular SSSG as the default SSSG. That is, the UE 100 may determine the first SSSG to monitor the PDCCH after the DRX reception off period has elapsed as the default SSSG.
  • the base station 200 may transmit an RRC message including information for setting the specific SSSG, and the UE 100 may determine the specific SSSG as the default SSSG.
  • the base station 200 transmits an RRC message including information for setting the default SSSG, and the UE 100 uses the default SSSG as the first SSSG to monitor the PDCCH after the DRX reception off period has passed. good too.
  • the UE 100 may receive a scheduling DCI indicating radio resources allocated to the UE 100 as a switching instruction DCI. After receiving the scheduling DCI as the switching instruction DCI, the UE 100 may start the switching timer at the timing of switching to one SSSG (specifically, the slot for performing SSSG switching).
  • the UE 100 may use a common value as the switching timer value applied to two or more of the three or more SSSGs set in the UE 100 .
  • the base station 200 may set a common value as the switching timer value applied to two or more SSSGs among the three or more SSSGs set in the UE 100 .
  • the UE 100 may use an individual value for each SSSG as the switching timer value applied to each SSSG set in the UE 100 .
  • the base station 200 may set an individual switching timer setting value in the UE 100 for each SSSG.
  • the UE 100 may activate the switching timer associated with the SSSG at the timing (slot) at which switching to the SSSG is started.
  • the timing (slot) at which switching to the SSSG is started.
  • resources used for PDCCH monitoring are not dedicated, and switching to the relevant SSSG can be started at any timing. Taking advantage of this advantage, it is possible to minimize the effect of the switching delay time without disturbing the PDCCH monitoring operation. Note that the UE 100 may monitor the PDDCH assuming the default SSSG after the switching timer expires.
  • CG transmission is uplink transmission based on configured grants (CG) from the base station 200 .
  • a CG transmission may be referred to as a CG-PUSCH transmission.
  • CG transmission may include transmission of MAC PDU (MAC Protocol Data Unit) on PUSCH.
  • CG transmission includes type 1 CG transmission and type 2 CG transmission.
  • uplink transmission is permitted by RRC signaling (RRC message).
  • RRC message For Type 1 CG transmission, the actual uplink grant may be set via RRC.
  • the UE 100 performs CG transmission using the set radio resource (hereinafter referred to as CG resource).
  • uplink transmission is permitted by RRC signaling (RRC message) and DCI.
  • RRC message RRC message
  • the actual uplink grants may be provided via PDCCH (destined for CS-RNTI).
  • UE 100 performs CG transmission using the set CG resource when CG transmission is activated (effective) by DCI after type 1 CG transmission is set by the RRC message. The UE 100 does not perform CG transmission when CG transmission is deactivated (disabled). Note that CG transmission can be deactivated by DCI.
  • step S31 the base station 200 transmits to the UE 100 an RRC message including CG settings for setting parameters used for CG transmission.
  • UE 100 receives an RRC message including CG settings from base station 200 .
  • UE 100 stores the information set by the RRC message.
  • CG configuration may be an information element used to configure uplink transmission without dynamic grant.
  • a CG configuration may include, for example, information identifying a CG resource.
  • step S32 when the base station 200 sets type 2 CG transmission to the UE 100 as CG transmission, it may transmit DCI for activating CG transmission.
  • UE 100 may receive DCI from base station 200 .
  • type 2 CG transmission is set as CG transmission, UE 100 activates type 2 CG transmission in response to reception of DCI for activating CG transmission.
  • the UE 100 detects a CG transmission trigger.
  • a CG transmission trigger may be the occurrence of a transmission opportunity due to CG resources.
  • the CG transmission trigger is generated when uplink data and/or a buffer status report (BSR) to be transmitted to the base station 200 is generated, and when the uplink data to be transmitted to the base station 200 is MAC of the UE 100 It may be either having arrived at the layer or instructing CG transmission from the MAC layer to the physical (PHY) layer in the UE 100 .
  • BSR buffer status report
  • CG transmission may be MAC PDU transmission. That is, for example, when there is no uplink data in the transmission buffer and CG transmission (transmission of MAC PDUs to the base station 200) is not executed (triggered), the PDCCH monitoring state need not be switched. That is, in this embodiment, uplink data may correspond to MAC PDUs. Uplink data (that is, MAC PDU) may correspond to user data.
  • step S34 the UE 100 performs CG transmission to the base station 200 on PUSCH in response to the CG transmission trigger, based on the CG settings set in step S31.
  • the base station 200 may transmit acknowledgment information (ACK or NACK) to the UE 100 according to the reception status of uplink data by CG transmission. Also, the base station 200 may instruct retransmission of CG transmission. For example, base station 200 may indicate retransmission of CG transmission using a DCI format (eg, DCI format 0_1 or 0_2) with CRC parity bits scrambled by CS-RNTI. For example, retransmission of CG transmission is indicated using a New Data Indicator (NDI) included in the DCI format (for example, by setting the value of the New Data Indicator (NDI) to 1). good too.
  • NDI New Data Indicator
  • the acknowledgment information may include a DCI format (which may be PDCCH). That is, the acknowledgment information may include the DCI format (PDCCH) used to indicate retransmission.
  • the DCI format (PDCCH) used to instruct retransmission is a retransmission grant (uplink Also called link HARQ retransmission grant).
  • the acknowledgment information may be ACK or NACK.
  • the UE 100 receives the acknowledgment information. Based on the acknowledgment information, the UE 100 performs CG transmission retransmission processing (eg, hybrid automatic repeat request (HARQ) processing for uplink data (or simply uplink)). For example, the UE 100 may perform retransmission of CG transmission based on reception of the DCI format used to instruct retransmission of CG transmission (that is, based on detection of the PDCCH in which the DCI format is transmitted). . That is, after executing CG transmission, UE 100 may attempt to receive a DCI format used to instruct retransmission of CG transmission. That is, UE 100 may monitor the PDCCH used to instruct retransmission of CG transmission after executing CG transmission.
  • CG transmission retransmission processing eg, hybrid automatic repeat request (HARQ) processing for uplink data (or simply uplink)
  • HARQ hybrid automatic repeat request
  • the UE 100 may perform retransmission of CG transmission based on reception of the DCI format used to instruct retrans
  • the UE 100 performs CG transmission, which is uplink transmission to the base station 200, in response to a predetermined transmission trigger.
  • CG transmission may occur in a power saving state (ie, a state of lengthening the PDCCH monitoring period or skipping PDCCH monitoring) by performing PDCCH monitoring adaptation.
  • a power saving state ie, a state of lengthening the PDCCH monitoring period or skipping PDCCH monitoring
  • wireless communication is performed between the UE 100 and the base station 200. Therefore, it is preferable to switch the PDCCH monitoring state from the power saving state with the transmission trigger of the CG transmission as an opportunity to exit the power saving state. .
  • the UE 100 switches the PDCCH monitoring state according to CG transmission
  • the UE 100 autonomously switches the PDCCH monitoring state when the UE 100 autonomously switches the PDCCH monitoring state, the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200 are changed. can be inconsistent. Therefore, there is a concern that the base station 200 cannot properly perform radio communication with the UE 100 after the UE 100 switches the PDCCH monitoring state. Therefore, in this embodiment, it is possible to switch the PDCCH monitoring state based on CG transmission under the control of the base station 200 .
  • the behavior of the MAC layer (in particular, DRX operation related to PDCCH monitoring adaptation) is not defined in the 3GPP technical specifications. Therefore, a discrepancy may occur between the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 . Therefore, there is a concern that the base station 200 cannot properly perform radio communication with the UE 100 after the UE 100 switches the PDCCH monitoring state.
  • the "PDCCH monitoring state" in this embodiment may include skipping PDCCH monitoring and/or performing PDCCH monitoring in the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from skipping PDCCH monitoring to monitoring PDCCH with the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from the operation of monitoring the PDCCH in the configured SSSG to the operation of skipping the monitoring of the PDCCH.
  • switching the PDCCH monitoring state includes switching the operation from the operation of monitoring the PDCCH in the set first SSSG to the operation of monitoring the PDCCH in the set second SSSG. good too.
  • switching the PDCCH monitoring state may include switching the SSSG used for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH skipping to the SSSG configured for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH monitoring to the SSSG configured for PDCCH skipping.
  • switching the PDCCH monitoring state may include switching the SSSG from the first SSSG set for PDCCH monitoring to the second SSSG set for PDCCH monitoring.
  • switching the PDCCH monitoring state may correspond to execution of PDCCH monitoring adaptation.
  • the SSSG used for PDCCH monitoring is also referred to as a PDCCH monitoring state for ease of explanation.
  • the set SSSG includes a default SSSG.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitting section 111 and the receiving section 112 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the UE 100 performs wireless communication with the base station 200.
  • the transmitting unit 111 performs CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station.
  • the control unit 120 performs CG-induced switching processing for switching the PDCCH monitoring state regarding monitoring of the physical downlink control channel (PDCCH) according to CG transmission or a CG transmission trigger.
  • the control unit 120 performs CG-induced switching processing in response to expiration of the HARQ-RTT timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission.
  • the HARQ-RTT timer is a timer that defines the minimum period until the UE 100 receives acknowledgment information corresponding to uplink data from the base station.
  • the HARQ-RTT timer may be defined as the minimum period before a DCI format (PDCCH) used to indicate retransmissions is expected. That is, the HARQ-RTT timer may be defined by the MAC entity as the minimum duration before an uplink HARQ retransmission grant is expected.
  • the HARQ-RTT timer may be defined (set) for each uplink HARQ process.
  • the control unit 120 may switch to the state of monitoring PDCCH by CG-based switching processing based on the expiration of the HARQ-RTT timer. .
  • UE 100 no longer skips PDCCH monitoring, and can receive PDCCH generated after CG transmission.
  • control section 120 has a skip period timer associated with the period of the PDCCH skipping state (that is, the period for skipping PDCCH monitoring), and when the skip period timer is in operation, the PDCCH skipping state is set. may be maintained.
  • the control unit 120 may stop the skip period timer based on the expiration of the HARQ-RTT timer. That is, the control unit 120 may stop the skip period timer and switch to the state of monitoring the PDCCH based on the expiration of the HARQ-RTT timer.
  • UE 100 no longer skips PDCCH monitoring, and can monitor PDCCH generated after CG transmission.
  • the control unit 120 may switch to the state of monitoring the PDCCH by CG-based switching processing upon expiration of the HARQ-RTT timer. As a result, UE 100 no longer skips PDCCH monitoring, and can monitor PDCCH generated after CG transmission.
  • control unit 120 may switch to a predetermined SSSG as the SSSG for monitoring the PDCCH in response to the expiration of the HARQ-RTT timer. This enables monitoring of PDCCHs occurring after CG transmission in a given SSSG.
  • control unit 120 may switch to the default SSSG as the predetermined SSSG upon expiration of the HARQ-RTT timer.
  • the base station 200 can understand that PDCCH monitoring is performed in the configured default SSSG.
  • control unit 120 may switch to the SSSG set by the base station 200 using the RRC message (for example, the PMA setting included in the RRC message) as the predetermined SSSG in response to the expiration of the HARQ-RTT timer.
  • the control unit 120 may switch to a predetermined SSSG set by the base station 200 upon expiration of the HARQ-RTT timer.
  • the base station 200 can understand that PDCCH monitoring will be performed in a predetermined SSSG set by the base station 200 when the default SSSG is not set.
  • the receiving unit 112 may receive switching control information for controlling CG-induced switching processing.
  • the control unit 120 controls the CG-induced switching process based on the switching control information.
  • the switching control information may be information regarding whether to enable CG-based switching processing.
  • the control unit 120 may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
  • the base station 200 explicitly indicates whether the CG-induced switching process is valid or invalid, and furthermore, a discrepancy occurs between the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200. can be reduced.
  • Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space.
  • the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the base station 200 performs wireless communication with the UE 100.
  • the receiving unit 212 receives from the UE 100 uplink data by CG transmission, which is uplink transmission based on the configuration grant (CG) from the base station 200 .
  • the transmission unit 211 transmits PDCCH related to monitoring of a physical downlink control channel (PDCCH) in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission.
  • RTT HARQ-Round Trip Time
  • Switching control information for controlling CG-induced switching processing for switching the monitoring state is transmitted to the UE 100 .
  • the HARQ-RTT timer is a timer that defines the minimum period until the UE 100 receives acknowledgment information corresponding to uplink data from the base station.
  • the base station 200 recognizes that the UE 100 performs CG-induced switching processing in response to the expiration of the HARQ-RTT timer, thereby switching the PDCCH monitoring state based on CG transmission under the control of the base station 200. Therefore, even when the PDCCH monitoring state is switched, radio communication can be appropriately performed. Further, since the acknowledgment information from the base station 200 does not arrive until the HARQ-RTT timer expires, the UE 100 can maintain the power saving state while the acknowledgment information does not arrive.
  • the UE 100 performs switching processing for switching the PDCCH monitoring state according to CG transmission among multiple types of uplink transmission.
  • step S101 the base station 200 (transmitting section 211) transmits an RRC message to the UE100.
  • the RRC message may be a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 (receiving unit 112) receives the RRC message.
  • the RRC message includes switching control information for controlling switching processing for switching the PDCCH monitoring state according to at least one of the multiple types of uplink transmission.
  • the switching control information is included in an information element commonly applicable to multiple types of uplink transmission.
  • the switching control information may be included as the information element, for example, in PDCCH configuration (PDCCH-Config) for setting UE-specific PDCCH parameters.
  • the switching control information may include common parameters (for example, common settings) commonly applied to switching processes corresponding to multiple types of uplink transmission. Therefore, the common parameters are, for example, CG-induced switching processing, SR-induced switching processing for switching the PDCCH monitoring state according to a scheduling request (SR), and RACH-induced switching for switching the PDCCH monitoring state according to RACH transmission (or PRACH transmission). It may be commonly applied to control processing. This allows the UE 100 (control unit 120) to execute various switching processes based on the common parameter, triggered by at least one of the multiple types of uplink transmission.
  • common parameters for example, common settings commonly applied to switching processes corresponding to multiple types of uplink transmission. Therefore, the common parameters are, for example, CG-induced switching processing, SR-induced switching processing for switching the PDCCH monitoring state according to a scheduling request (SR), and RACH-induced switching for switching the PDCCH monitoring state according to RACH transmission (or PRACH transmission). It may be commonly applied to control processing. This allows the UE 100 (control unit 120) to execute various
  • the switching control information may include individual parameters (for example, individual settings) individually applied to each of the switching processes corresponding to multiple types of uplink transmission. Therefore, the individual parameters are, for example, parameters applied only to control the CG-induced switching process, parameters applied only to control the SR-induced switching process, and parameters applied only to control the RACH-induced switching process. may include at least any of the parameters
  • Individual parameters may indicate settings that are not set by common parameters. Alternatively, individual parameters may indicate settings that are prioritized over common parameters. Also, the individual parameter may indicate whether or not to enable the switching process in at least one of the multiple types of uplink transmission. For example, the individual parameter may include 1-bit flag information indicating whether to enable or disable the CG-based switching process. By this means, the UE 100 (control unit 120) can execute various effective switching processes triggered by at least one of the plurality of types of uplink transmission based on the individual parameter. Note that the common parameter may include 1-bit flag information indicating whether to enable or disable each switching process.
  • the RRC message may include a CG setting (ConfiguredGrantConfig) for configuring CG transmission.
  • the CG settings may contain individual parameters that apply only to control the CG-triggered switching process.
  • the PDCCH configuration may include common parameters and individual parameters.
  • the CG configuration may contain individual parameters that are not included in the PDCCH configuration.
  • the PDCCH configuration may include only common parameters and the CG configuration may include dedicated parameters.
  • the UE 100 may determine that switching processing based on uplink transmission has been enabled.
  • the UE 100 may determine that the CG-induced switching process is enabled.
  • the switching control information may, for example, configure PDCCH monitoring adaptation (or execution of the PDCCH monitoring adaptation) based on uplink transmission.
  • the switching control information may also configure PDCCH supervisory adaptation (or execution of such PDCCH supervisory adaptation) when type 2 CG transmission is enabled (activated).
  • the switching control information may include PDCCH monitoring adaptation settings (PMA settings). Therefore, the switching control information may include at least one of SSSG configuration information, switching timer information, monitoring period information, and case configuration information.
  • the UE 100 (control unit 120) may determine that the CG-induced switching process has been activated when the RRC message includes the PMA setting.
  • the switching control information may be included only in the CG configuration without being included in the PDCCH configuration.
  • the switching control information may be information for controlling the CG-induced switching process.
  • the switching control information included in the CG configuration may not include information for controlling switching processing according to other uplink transmissions.
  • the switching control information may be information regarding whether to enable CG-based switching processing.
  • the UE 100 (control unit 120) may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
  • the UE 100 may control not to perform the CG-induced switching process when the RRC message does not include switching control information. For example, the UE 100 (control unit 120) is not set to enable the CG-induced switching process, and/or the PDCCH monitoring state (for example, SSSG) of the switching destination when performing the CG-induced switching process is set. If not, CG-induced switching processing is not performed even if CG transmission is performed. This can prevent the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 from being inconsistent.
  • the PDCCH monitoring state for example, SSSG
  • the RRC message may include information indicating the setting for switching the PDCCH monitoring state in step S104 (that is, the setting for switching the PDCCH monitoring state at a trigger different from the uplink transmission (or the trigger for the uplink transmission)).
  • the RRC message may contain DRX settings for setting up DRX.
  • the DRX settings may be included in a separate RRC message from the RRC message containing the CG settings. DRX is thereby configured in the UE 100 .
  • the UE 100 (control unit 120) performs DRX operation based on the DRX setting.
  • the DRX setting is the value of the uplink HARQ-Round Trip Time (RTT) timer (drx-HARQ-RTT-TimerUL) used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission (that is, timer value).
  • RTT uplink HARQ-Round Trip Time
  • HARQ hybrid automatic repeat request
  • the HARQ-RTT timer (drx-HARQ-RTT-TimerUL) is a timer defined as the minimum period until UE 100 receives acknowledgment information corresponding to uplink data from base station 200. good. Also, the HARQ-RTT timer may be specified as the minimum period until a UL HARQ retransmission grant is expected as acknowledgment information for each uplink HARQ process. For example, for the HARQ-RTT timer, the timer value may be indicated by the value of the number of BWP symbols in which the transport block is transmitted from the UE 100.
  • the switching control information may be information for controlling CG-induced switching processing in response to expiration of the HARQ-RTT timer, that is, information for controlling CG-induced switching processing triggered by expiration of the HARQ-RTT timer.
  • the switching control information may include, for example, information for controlling CG-induced switching processing in response to a CG transmission trigger.
  • the switching control information may be information common to CG-triggered switching processing caused by CG transmission, that is, according to CG transmission.
  • the base station 200 may transmit DCI for activating CG transmission when type 2 CG transmission is set to the UE 100 as CG transmission.
  • the UE 100 (receiving unit 112) may receive the DCI.
  • the UE 100 (control unit 230) may enable CG transmission in response to reception of DCI.
  • the UE 100 After receiving the setting for CG transmission, the UE 100 (receiving unit 112) may receive DCI for activating or deactivating CG transmission. When CG transmission is activated based on DCI, the UE 100 (control unit 120) may perform CG-induced switching processing based on switching control information. Thereby, the UE 100 can maintain the power saving state when CG transmission is not actually performed.
  • step S103 the base station 200 (transmitting section 211) transmits a switching instruction DCI that instructs PDCCH skipping or SSSG switching to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI.
  • step S104 the UE 100 (control unit 120) switches the PDCCH monitoring state in response to receiving the switching instruction DCI.
  • UE 100 control section 120
  • switching instruction DCI skip instruction DCI
  • SSSG switching is set, the UE 100 (control unit 120) may switch to the SSSG indicated by the switching instruction DCI in response to receiving the switching instruction DCI.
  • UE 100 enters a power saving state in which power consumption required for PDCCH monitoring is reduced.
  • the UE 100 (control unit 120) detects a CG transmission trigger.
  • step S106 the UE 100 (transmitting unit 111) transmits uplink data to the base station 200 on the PUCCH in response to the CG transmission trigger based on the CG settings set in step S101.
  • the base station 200 (receiving unit 212) receives uplink data by CG transmission.
  • step S107 the UE 100 (control unit 120) starts the HARQ-RTT timer.
  • UE 100 (control unit 120) receives MAC PDU by CG transmission based on uplink configuration grant, and sends LBT (Listen-before-talk) failure indication from low layer (that is, physical layer) to MAC layer HARQ-RTT timer may be started if not received in UE 100 (control unit 120) starts the HARQ-RTT timer for HARQ processing corresponding to the corresponding CG transmission (PUSCH transmission) at the first symbol after the end of the first transmission (within the bundle). good.
  • LBT Listen-before-talk
  • the HARQ-RTT timer expires.
  • step S109 the UE 100 (control unit 120) switches the PDCCH monitoring state according to CG transmission (CG-induced switching processing). Specifically, the UE 100 (control unit 120) performs CG switching processing in response to expiration of the uplink HARQ-RTT timer started in response to CG transmission. The UE 100 (control unit 120) can control CG switching processing based on the switching control information.
  • CG-induced switching processing is processing for switching the PDCCH monitoring state from the first monitoring state to the second monitoring state.
  • the first monitoring state corresponds to the power saving state described above.
  • the second monitoring state is a state in which the PDCCH is monitored more frequently than in the first monitoring state. This makes it easier to deal with wireless communication (data communication) that occurs after CG transmission. That is, the UE 100 (control unit 120) may perform the above-described PDCCH skipping and/or SSSG switching based on CG transmission (or CG transmission trigger). Also, the CG-induced switching process may correspond to PDCCH skipping and/or SSSG switching based on CG transmission (or CG transmission triggers).
  • the first monitoring state may be a state in which PDCCH is monitored in a first period
  • the second monitoring state may be a state in which PDCCH is monitored in a second period shorter than the first period. That is, in the second monitoring state, the search space period interval may be shorter than in the first monitoring state.
  • UE 100 control unit 120
  • SSSG switching is set, after the DCI instructs switching to SSSG having a long PDCCH monitoring cycle, in response to CG transmission, to SSSG having a short PDCCH monitoring cycle switch.
  • the first monitoring state may be a PDCCH skipping state in which PDCCH is not monitored (that is, PDCCH skipping)
  • the second monitoring state may be a state in which PDCCH is periodically monitored. Therefore, the CG switching process may be a process of switching the PDCCH monitoring state from the PDCCH skipping state to the PDCCH monitoring state (that is, the PDCCH monitoring execution state).
  • the UE 100 control unit 120
  • the UE 100 is set to PDCCH skipping, and after being instructed by the DCI to perform PDCCH skipping, switches to the state of monitoring the PDCCH according to CG transmission.
  • the UE 100 (control unit 120) may stop or cancel execution of PDCCH skipping as a process of switching to the PDCCH monitoring execution state.
  • the UE 100 may perform CG-induced switching processing only when performing CG transmission when the UE 100 itself is in the power saving state. That is, the UE 100 (control unit 120) does not need to perform CG-induced switching processing when performing CG transmission when the UE 100 itself is not in the power saving state.
  • the UE 100 (control unit 120) may perform CG-induced switching processing only when CG transmission is performed in a state in which PDCCH skipping and/or SSSG switching are set. That is, UE 100 (control unit 120) does not need to perform CG-induced switching processing when PDCCH skipping and/or SSSG switching are not set. In this way, when the UE 100 (the control unit 120) performs CG transmission and the PDCCH monitoring state is the PDCCH skipping state, the UE 100 may control the CG-induced switching process based on the switching control information.
  • the PDCCH monitoring state applies the SSSG whose search space cycle is equal to or greater than a predetermined value among a plurality of search space set groups (SSSG) having different search space cycles. If it is, the CG-induced switching process may be controlled based on the switching control information.
  • the switching control information may contain information indicating a predetermined value.
  • the UE 100 may perform the CG-induced switching process only when the switching control information indicates that the CG-induced switching process should be enabled.
  • the UE 100 controls the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled, the UE 100 switches to a predetermined PDCCH monitoring state in the CG-induced switching process.
  • the predefined PDCCH monitoring state may be the default SSSG described above.
  • the UE 100 may switch to the PDCCH monitoring state designated by the switching control information.
  • the switching control information includes an index indicating the SSSG after switching by the CG-induced switching process
  • the UE 100 switches to the SSSG indicated by the index.
  • the UE 100 shifts to a state of monitoring PDCCH by CG-based switching processing based on the expiration of the HARQ-RTT timer. You can switch.
  • the UE 100 (control unit 120) holds a skip period timer (that is, switching timer) associated with the period of the PDCCH skipping state.
  • a skipping duration timer may be referred to as a PDCCH skipping duration timer.
  • UE 100 maintains the PDCCH skipping state when the skip period timer is in operation. Then, based on the expiration of the HARQ-RTT timer, the skip period timer may be stopped, as shown in FIG. 13 (A1 of FIG. 13). UE 100 (control unit 120) may cancel the skip period timer based on the expiration of the HARQ-RTT timer.
  • control unit 120 may stop the skip period timer and switch to the state of monitoring the PDCCH based on the expiration of the HARQ-RTT timer.
  • UE 100 (control section 120) stops maintaining the PDCCH skipping state by stopping the skip period timer, and switches the PDCCH monitoring state from the PDCCH skipping state.
  • UE 100 (control unit 120), if the skip period timer is not set by RRC (RRC message or RRC signaling), or if the skip period timer is set by RRC However, if the skip period timer is not running, it may monitor the PDCCH on the serving cell of the DRX group during the active period.
  • RRC RRC message or RRC signaling
  • UE 100 (control unit 120) is in the PDCCH skipping state in the current search space set group (SSSG), according to the expiration of the HARQ-RTT timer, CG-induced
  • the switching process may switch to a PDCCH monitoring execution state that monitors the PDCCH.
  • UE 100 (control unit 120) switches to a predetermined SSSG that monitors PDCCH upon expiration of the HARQ-RTT timer.
  • the UE 100 may switch to the default SSSG as a predetermined SSSG upon expiration of the HARQ-RTT timer.
  • UE 100 (control unit 120) in response to the expiration of the HARQ-RTT timer, as a predetermined SSSG, by the base station 200 RRC message (eg, PMA setting included in the RRC message) to the SSSG set using You can switch.
  • the base station 200 for example, SSSG # 0
  • the predetermined SSSG set by the base station 200 may be an SSSG other than SSSG#0.
  • the UE 100 (control unit 120), if SSSG is not set by RRC (RRC message or RRC signaling), or SSSG is set by RRC, If there is no PDCCH skipping state (ie PDCCH monitoring is not skipped) in the current SSSG, it may monitor the PDCCH on the serving cell of the DRX group during active time.
  • RRC RRC message or RRC signaling
  • SSSG is set by RRC
  • step S110 the base station 200 (transmitting unit 211) transmits acknowledgment information to the UE 100 according to the reception status of uplink data by CG transmission.
  • UE 100 (receiving unit 112) can receive acknowledgment information from base station 200 by switching to the PDCCH monitoring execution state by CG-induced switching processing.
  • the UE 100 (receiving section 112) can monitor the PDCCH used to instruct retransmission of CG transmission by switching to the PDCCH monitoring execution state by the CG-induced switching process.
  • the CG-induced switching process is a process of switching the PDCCH monitoring state from the first monitoring state to the second monitoring state.
  • the first monitoring state corresponds to the power saving state described above.
  • the first monitoring state is a state in which PDCCH is monitored in a first period
  • the second monitoring state is a state in which PDCCH is monitored in a second period shorter than the first period. .
  • UE 100 receives a switching instruction DCI that instructs SSSG from base station 200 in downlink BWP in a serving cell.
  • the UE 100 (control unit 120) starts applying the instructed SSSG (that is, starts the first monitoring state) in response to receiving the switching instruction DCI.
  • the UE 100 (control unit 120) starts a first timer that determines the duration of the first monitoring state when starting the first monitoring state.
  • a period Z for example, is set as a timer value in the first timer.
  • the timer value (timer set value) of the first timer may be set from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 transmits uplink data to the base station 200 by CG transmission in the uplink BWP in the serving cell.
  • the UE 100 (control unit 120) performs CG-induced switching processing to switch to a predetermined SSSG in response to CG transmission and/or expiration of the HARQ-RTT timer (that is, starts the second monitoring state).
  • the predetermined SSSG may be an SSSG set by the base station 200 according to switching control information, a default SSSG (defaultSearchSpaceSet), or a first SSSG (firstSearchSpaceSet).
  • the UE 100 stops the first timer when performing the CG-induced switching process. Stopping the first timer prevents switching to the default SSSG due to expiration of the first timer.
  • the UE 100 (control unit 120) starts a second timer that determines the duration of the second monitoring state when performing the CG-induced switching process.
  • a period Y for example, is set as a timer value in the second timer.
  • the timer value (timer setting value) of the second timer may be set from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 (control unit 120) starts the second timer in which the timer value is set when performing the CG-induced switching process. This allows the base station 200 to control the duration of the second monitoring state.
  • the UE 100 may restart the second timer in response to CG transmission or a CG transmission trigger in the second monitoring state. Since data communication occurs due to CG transmission, the duration of the second monitoring state can be extended by restarting the second timer.
  • the UE 100 switches to a predetermined PDCCH monitoring state upon expiration of the second timer. That is, the UE 100 (control unit 120) terminates the second monitoring state when the period Y expires.
  • the predetermined PDCCH monitoring state to switch to upon expiration of the second timer may be the default SSSG (defaultSearchSpaceSet) or the first SSSG (firstSearchSpaceSet).
  • the first monitoring state is a state in which PDCCH is not monitored (that is, PDCCH skipping state), and the second monitoring state is a state in which PDCCH is periodically monitored.
  • UE 100 receives from base station 200 a switching instruction DCI that instructs PDCCH skipping in downlink BWP in a certain serving cell.
  • the UE 100 starts PDCCH skipping (that is, starts the first monitoring state) in response to receiving the switching instruction DCI.
  • the UE 100 starts a first timer that determines the duration of the first monitoring state when starting the first monitoring state.
  • a period X for example, is set as a timer value in the first timer.
  • the timer value (timer set value) of the first timer may be set from the base station 200 to the UE 100 by an RRC message. Note that the first timer corresponds to the skip period timer.
  • the UE 100 transmits uplink data to the base station 200 by CG transmission in the uplink BWP in the serving cell.
  • the UE 100 (control unit 120) performs CG-induced switching processing to switch to a predetermined SSSG in response to CG transmission and/or expiration of the HARQ-RTT timer (that is, starts the second monitoring state).
  • PDCCH skipping ends and PDCCH monitoring is started (restarted).
  • the predetermined SSSG may be an SSSG set by the base station 200 according to switching control information, a default SSSG (defaultSearchSpaceSet), or a first SSSG (firstSearchSpaceSet).
  • the UE 100 stops the first timer when performing the CG-induced switching process. Stopping the first timer prevents switching to the default SSSG due to expiration of the first timer.
  • the UE 100 (control unit 120) starts a second timer that determines the duration of the second monitoring state when performing the CG-induced switching process.
  • a period Y for example, is set as a timer value in the second timer.
  • the timer value (timer setting value) of the second timer may be set from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 (control unit 120) starts the second timer in which the timer value is set when performing the CG-induced switching process. This allows the base station 200 to control the duration of the second monitoring state.
  • the UE 100 may restart the second timer in response to CG transmission or a CG transmission trigger in the second monitoring state. Since data communication occurs due to CG transmission, the duration of the second monitoring state can be extended by restarting the second timer.
  • the UE 100 switches to a predetermined PDCCH monitoring state upon expiration of the second timer. That is, the UE 100 (control unit 120) terminates the second monitoring state when the period Y expires.
  • the predetermined PDCCH monitoring state to switch to upon expiration of the second timer may be the default SSSG (defaultSearchSpaceSet) or the first SSSG (firstSearchSpaceSet).
  • uplink transmission may be replaced with “voluntary uplink transmission.”
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • the HARQ-RTT timer is a timer that defines a minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).
  • the control unit (120) monitors the PDCCH by the CG-based switching process based on the expiration of the HARQ-RTT timer.
  • the communication device (100) according to appendix 1, wherein the communication device (100) switches to a state of
  • the control unit (120) a skip duration timer associated with the duration of the PDCCH skipping state; maintaining the PDCCH skipping state when the skip period timer is running; The communication device (100) according to appendix 2, wherein the control unit (120) stops the skip period timer based on expiration of the HARQ-RTT timer.
  • the control unit (120) switches to the default SSSG as the predetermined SSSG in response to expiration of the HARQ-RTT timer when a default SSSG is set. Communication according to appendix 5 A device (100).
  • the control unit (120) switches to the predetermined SSSG set by the base station (200) upon expiration of the HARQ-RTT timer when the default SSSG is not set.
  • Appendix 8 further comprising a receiving unit (112) for receiving switching control information for controlling the CG-induced switching process, 8.
  • the communication device (100) according to any one of appendices 1 to 7, wherein the control unit (120) controls the CG-induced switching process based on the switching control information.
  • the switching control information is information regarding whether to enable the CG-based switching process.
  • the HARQ-RTT timer is a timer that defines the minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).
  • RTT HARQ-Round Trip Time

Abstract

A communication device (100) that performs wireless communication with a base station (200) comprises: a transmission unit (111) that performs CG transmission which is uplink transmission based on a configuration grant (CG) from the base station (200); and a control unit (120) which, in accordance with the CG transmission, performs a CG-caused switching process for switching a physical downlink control channel (PDCCH) monitoring state concerning the monitoring of a PDCCH. The control unit (120) performs the CG-caused switching process in accordance with expiration of a hybrid automatic repeat request (HARQ)-roundtrip time (RTT) timer, which is used for a HARQ process for uplink data transmitted by the CG transmission. The HARQ-RTT timer is a timer that defines a minimum period before the communication device (100) receives delivery confirmation information corresponding to the uplink data from the base station (200).

Description

通信装置、基地局、及び通信方法Communication device, base station, and communication method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年12月17日に出願された特許出願番号2021-205581号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-205581, filed December 17, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる通信装置、基地局、及び通信方法に関する。 The present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、無線リソース制御(RRC)コネクティッド状態にある通信装置の消費電力を低減するパワーセービング技術を第5世代(5G)システムに導入することが検討されている。 In recent years, in the 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, power saving technology that reduces the power consumption of communication devices in the radio resource control (RRC) connected state has been introduced as the first technology. It is being considered for introduction into fifth generation (5G) systems.
 例えば、パワーセービング技術の一つとして、通信装置における物理下りリンク制御チャネル(Physical Downlink Control Channel:PDCCH)の監視に必要な消費電力を低減するために、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCHの監視状態を切り替える処理(以下、切り替え処理)を行うことが検討されている。例えば、通信装置は、切り替え処理によって、PDCCHの監視状態を、PDCCHの監視周期を長くする又はPDCCHの監視をスキップする状態に切り替える。特に、通信装置において、RRCコネクティッド状態の間欠受信(Discontinuous Reception:DRX)におけるアクティブ時間内において動的にPDCCH監視状態を切り替えることにより、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。このようなPDCCHの監視をスキップする動作及びPDCCHの監視状態を切り替える動作は、PDCCH監視アダプテーション(PDCCH monitoring adaptation)と称されることがある。 For example, as one of the power saving techniques, in order to reduce the power consumption required for monitoring the physical downlink control channel (PDCCH) in the communication device, the physical downlink control channel (PDCCH) monitoring A process of switching the monitoring state of PDCCH (hereinafter referred to as switching process) is under consideration. For example, the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or the PDCCH monitoring is skipped through the switching process. In particular, in a communication device, by dynamically switching the PDCCH monitoring state during the active time in discontinuous reception (DRX) in the RRC connected state, a greater power consumption reduction effect than the power consumption reduction by DRX can be achieved. Obtainable. Such an operation of skipping PDCCH monitoring and an operation of switching PDCCH monitoring states may be referred to as PDCCH monitoring adaptation.
 通信装置において、基地局との無線通信を行う契機が発生したことに応じて切り替え処理を行う方法が提案されている。例えば、通信装置は、基地局からの設定グラント(Configured Grants:CG)に基づく上りリンク送信であるCG送信を契機として、PDCCHの監視をスキップする状態からPDCCHを監視する状態へPDCCH監視状態を切り替える(非特許文献1)。 A method has been proposed in which a communication device performs switching processing in response to the occurrence of an opportunity to perform wireless communication with a base station. For example, the communication device switches the PDCCH monitoring state from a state of skipping PDCCH monitoring to a state of monitoring PDCCH, triggered by CG transmission, which is uplink transmission based on configured grants (CG) from the base station. (Non-Patent Document 1).
 第1の態様に係る通信装置は、基地局との無線通信を行う通信装置である。前記通信装置は、前記基地局からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行う送信部と、前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行う制御部と、を備える。前記制御部は、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行う。前記HARQ-RTTタイマは、前記通信装置が前記上りリンクデータに対応する送達確認情報を前記基地局から受信するまでの最小期間を規定するタイマである。 A communication device according to the first aspect is a communication device that performs wireless communication with a base station. The communication device includes a transmitting unit that performs CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station, and a PDCCH monitoring related to monitoring of a physical downlink control channel (PDCCH) according to the CG transmission a control unit that performs CG-induced switching processing for switching states. The control unit performs the CG-induced switching process in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by the CG transmission. The HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
 第2の態様に係る基地局は、通信装置との無線通信を行う基地局である。前記基地局は、前記基地局からの設定グラント(CG)に基づく上りリンク送信であるCG送信による上りリンクデータを前記通信装置から受信する受信部と、前記CG送信で送信した前記上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を制御するための切り替え制御情報を、前記通信装置へ送信する送信部と、を備える。前記HARQ-RTTタイマは、前記通信装置が前記上りリンクデータに対応する送達確認情報を前記基地局から受信するまでの最小期間を規定するタイマである。 A base station according to the second aspect is a base station that performs wireless communication with a communication device. The base station includes a receiving unit that receives uplink data by CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station, from the communication device, and the uplink data transmitted by the CG transmission. Switching the PDCCH monitoring state for monitoring the physical downlink control channel (PDCCH) upon expiration of the HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing Switching for controlling CG-induced switching processing and a transmitting unit configured to transmit control information to the communication device. The HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
 第3の態様に係る通信方法は、基地局との無線通信を行う通信装置で実行される通信方法である。前記通信方法は、前記基地局からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行うステップと、前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行うステップと、を備える。CG起因切り替え処理を行うステップでは、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行う。前記HARQ-RTTタイマは、前記通信装置が前記上りリンクデータに対応する送達確認情報を前記基地局から受信するまでの最小期間を規定するタイマである。 A communication method according to the third aspect is a communication method executed by a communication device that performs wireless communication with a base station. The communication method includes a step of performing CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station; and a step of performing CG-induced switching processing for switching between. In the step of performing CG-induced switching processing, the CG-induced switching processing is performed in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted in the CG transmission. conduct. The HARQ-RTT timer is a timer that defines the minimum period until the communication device receives acknowledgment information corresponding to the uplink data from the base station.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、実施形態に係る移動通信システムにおける無線通信動作の概要を示す図である。 図4は、実施形態に係るPDCCHスキッピングの概要を示す図である。 図5は、実施形態に係るサーチスペースセット(SSSG)切り替えの概要を示す図である。 図6は、実施形態に係るDRX及びパワーセービング状態を示す図である。 図7は、実施形態に係るSSSG切り替えの一例を示す図である。 図8は、実施形態に係るタイマベースのSSSG切り替えの一例を示す図である。 図9は、実施形態に係るCG送信の概要を示す図である。 図10は、実施形態に係るUEの構成を示す図である。 図11は、実施形態に係る基地局の構成を示す図である。 図12は、実施形態に係るCG起因切り替え処理に関する動作シーケンス例を示す図である。 図13は、実施形態に係るCG起因切り替え処理に関する動作例を示す図(その1)である。 図14は、実施形態に係るCG起因切り替え処理に関する動作例を示す図(その2)である。 図15は、実施形態に係るCG起因切り替え処理の具体例1を示す図である。 図16は、実施形態に係るCG起因切り替え処理の具体例2を示す図である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment; FIG. 3 is a diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment. FIG. 4 is a diagram showing an overview of PDCCH skipping according to the embodiment. FIG. 5 is a diagram showing an overview of search space set (SSSG) switching according to the embodiment. FIG. 6 is a diagram illustrating DRX and power saving states according to an embodiment. FIG. 7 is a diagram illustrating an example of SSSG switching according to the embodiment. FIG. 8 is a diagram illustrating an example of timer-based SSSG switching according to an embodiment. FIG. 9 is a diagram showing an overview of CG transmission according to the embodiment. FIG. 10 is a diagram showing the configuration of a UE according to the embodiment. FIG. 11 is a diagram showing the configuration of a base station according to the embodiment. FIG. 12 is a diagram illustrating an example of an operation sequence regarding CG-induced switching processing according to the embodiment. FIG. 13 is a diagram (Part 1) illustrating an operation example related to CG-induced switching processing according to the embodiment; FIG. 14 is a diagram (part 2) illustrating an operation example related to CG-induced switching processing according to the embodiment; FIG. 15 is a diagram illustrating a specific example 1 of CG-induced switching processing according to the embodiment. FIG. 16 is a diagram illustrating specific example 2 of the CG-induced switching process according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 通信装置が、CG送信に応じてPDCCH監視状態を切り替える方法において、通信装置が自律的にPDCCH監視状態を切り替えると、通信装置における実際のPDCCH監視状態と基地局が認識しているPDCCH監視状態とに不一致が生じ得る。そのため、通信装置がCG送信に応じてPDCCH監視状態を切り替えた後、基地局が通信装置との無線通信を適切に行うことができない懸念がある。 In the method in which the communication device switches the PDCCH monitoring state according to CG transmission, when the communication device autonomously switches the PDCCH monitoring state, the actual PDCCH monitoring state in the communication device and the PDCCH monitoring state recognized by the base station are changed. can be inconsistent. Therefore, after the communication device switches the PDCCH monitoring state in response to CG transmission, there is a concern that the base station cannot properly perform radio communication with the communication device.
 そこで、本開示は、CG送信に応じてPDCCH監視状態を切り替える場合であっても無線通信を適切に行うことを可能とする通信装置、基地局、及び通信方法を提供することを目的の一つとする。 Therefore, one object of the present disclosure is to provide a communication device, a base station, and a communication method that enable appropriate wireless communication even when the PDCCH monitoring state is switched according to CG transmission. do.
 (1)移動通信システム
 本実施形態に係る移動通信システムについて説明する。
(1) Mobile communication system A mobile communication system according to this embodiment will be described.
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。 First, the configuration of a mobile communication system 1 according to this embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS). In the following, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置(例えば、Aerial UE)であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. UE 100 may be a device used by a user. The UE 100 may be a user equipment defined by 3GPP technical specifications. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE). The UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE). The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. One cell belongs to one frequency (carrier frequency) and is composed of one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。 Next, a configuration example of a protocol stack according to this embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。 The protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 MACレイヤは、データの優先制御、ハイブリッドARQ(Hybrid Automatic Repeat Request:HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(Modulation and Coding Scheme:MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Request: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS(Quality of Service)制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between IP flows, which are the units in which the core network performs QoS control, and radio bearers, which are the units in which the AS (Access Stratum) performs QoS (Quality of Service) control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF). Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 次に、図3を参照して、本実施形態に係る移動通信システム1における無線通信動作の概要について説明する。 Next, with reference to FIG. 3, an overview of wireless communication operations in the mobile communication system 1 according to this embodiment will be described.
 基地局200は、PDCCHが設けられる候補タイミングに相当するサーチスペースをUE100に設定する。RRCコネクティッド状態にあるUE100は、設定されたサーチスペースにおいてPDCCHを監視(モニタ)し、PDCCHで運ばれる下りリンク制御情報(Downlink Control Information:DCI)を受信し、DCIが示すリソース割当(スケジューリング)に従って物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)の受信及び/又は物理上りリンク共有チャネル(Physical Uplink Shared Channel:PUSCH)の送信を行う。例えば、UE100は、対応するサーチスペースに従って、PDCCHの候補のセットを監視してもよい。すなわち、UE100は、対応するサーチスペースに従って、PDCCHの監視が設定されたサービングセルにおける下りリンク帯域幅部分(Downlink Bandwidth Part:DL BWP)での制御リソースセット(Control Resource Set:CORESET)で、PDCCHの候補のセットを監視してもよい。ここで、モニタとは、モニタされるDCIフォーマットに従って、PDCCHの候補のそれぞれをデコードすることを示していてもよい。 The base station 200 configures the UE 100 with a search space corresponding to the candidate timing at which the PDCCH is provided. UE 100 in the RRC connected state monitors PDCCH in the set search space, receives downlink control information (Downlink Control Information: DCI) carried by PDCCH, and assigns resources (scheduling) indicated by DCI. According to the physical downlink shared channel (PDSCH) reception and / or physical uplink shared channel (PUSCH) is transmitted. For example, the UE 100 may monitor a set of PDCCH candidates according to the corresponding search space. That is, according to the corresponding search space, the UE 100 is a control resource set (CORESET) in the downlink bandwidth part (DL BWP) in the serving cell in which PDCCH monitoring is set, and is a PDCCH candidate. set may be monitored. Here, monitoring may refer to decoding each of the PDCCH candidates according to the monitored DCI format.
 図3に示すように、ステップS1において、基地局200は、PDCCHに関する設定(PDCCH設定)を含むRRCメッセージをUE100に送信し、PDCCHに関する各種設定をUE100に対して行う。このRRCメッセージは、UE固有のRRCメッセージであって、例えばRRC Reconfigurationメッセージであってもよい。ここで、PDCCHに関する設定のうちサーチスペース設定は、サーチスペース周期(PDCCH監視周期とも称する)、サーチスペースオフセット(PDCCH監視オフセットとも称する)、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット等を含む。ここで、サーチスペースのそれぞれ(サーチスペースの設定のそれぞれ)は、1つのCORESETに関連してもよい。また、サーチスペースの設定は、1以上のDL BWPのそれぞれに対して設定されてもよい。ここで、サーチスペースのタイプは、UE固有のサーチスペース(UE-specific Search Space:USS)及び/又はUE共通のサーチスペース(Common Search Space:CSS)を含んでもよい。 As shown in FIG. 3, in step S1, the base station 200 transmits an RRC message including PDCCH settings (PDCCH settings) to the UE 100, and performs various PDCCH settings for the UE 100. This RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message. Here, among the settings related to PDCCH, the search space settings include a search space period (also referred to as a PDCCH monitoring period), a search space offset (also referred to as a PDCCH monitoring offset), a search space duration (for example, the number of consecutive slots), and PDCCH monitoring. symbols for, aggregation level, search space type, DCI format, etc. Here, each search space (each set of search spaces) may be associated with one CORESET. Also, the search space setting may be set for each of one or more DL BWPs. Here, the search space type may include a UE-specific search space (USS) and/or a UE common search space (CSS).
 DCIフォーマットには、PDSCH又はPUSCHのスケジューリングに用いられるスケジューリングDCIフォーマットと、このようなスケジューリングに用いられない非スケジューリングDCIフォーマットとがある。スケジューリングDCIフォーマットで送信されるDCIをスケジューリングDCIと称し、非スケジューリングDCIフォーマットで送信されるDCIを非スケジューリングDCIと称する。 DCI formats include scheduling DCI formats used for PDSCH or PUSCH scheduling and non-scheduling DCI formats not used for such scheduling. DCI transmitted in a scheduling DCI format is called scheduling DCI, and DCI transmitted in a non-scheduling DCI format is called non-scheduling DCI.
 スケジューリングDCIフォーマットには、PDSCHのスケジューリングに用いられる下りリンクDCIフォーマット(例えば、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット1_2)と、PUSCHスケジューリングに用いられる上りリンクDCIフォーマット(例えば、DCIフォーマット0_0、DCIフォーマット0_1、DCIフォーマット0_2)とがある。スケジューリングDCIは、UE個別に送信されるUE固有のDCIであってもよい。例えば、スケジューリングDCIは、UE個別に割り当てられるRNTI(Radio Network Temporary Identifier)を適用して送信されてもよい。 Scheduling DCI formats include a downlink DCI format used for PDSCH scheduling (eg, DCI format 1_0, DCI format 1_1, DCI format 1_2) and an uplink DCI format used for PUSCH scheduling (eg, DCI format 0_0, DCI format 0_1 and DCI format 0_2). The scheduling DCI may be UE-specific DCI that is sent for each UE. For example, the scheduling DCI may be transmitted by applying an RNTI (Radio Network Temporary Identifier) assigned to each UE.
 一方、非スケジューリングDCIフォーマットには、例えば、DCIフォーマット2_0、DCIフォーマット2_6がある。非スケジューリングDCIは、複数のUE100に一斉に送信可能なDCIであってもよい。例えば、非スケジューリングDCIは、複数のUE100に共通のRNTIを適用して送信されてもよい。 On the other hand, non-scheduling DCI formats include, for example, DCI format 2_0 and DCI format 2_6. The non-scheduling DCI may be a DCI that can be transmitted to multiple UEs 100 at once. For example, non-scheduling DCI may be transmitted by applying a common RNTI to multiple UEs 100 .
 ステップS2において、UE100は、基地局200から設定されたサーチスペースにおけるPDCCHの監視を開始する。例えば、DCIフォーマット1_0、DCIフォーマット0_0、DCIフォーマット1_1、DCIフォーマット0_1、DCIフォーマット1_2、及びDCIフォーマット0_2のそれぞれがUE100に設定されており、UE100は設定に基づいてPDCCH(DCI)を監視する。例えば、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_0及びDCIフォーマット0_0を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_1及びDCIフォーマット0_1を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_2及びDCIフォーマット0_2を監視するように設定してもよい。すなわち、例えば、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット2_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_1及びDCIフォーマット0_1に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_2及びDCIフォーマット0_2に対するPDCCHの候補を監視するように設定してもよい。 In step S2, the UE 100 starts monitoring PDCCH in the search space set by the base station 200. For example, DCI format 1_0, DCI format 0_0, DCI format 1_1, DCI format 0_1, DCI format 1_2, and DCI format 0_2 are configured in the UE 100, and the UE 100 monitors the PDCCH (DCI) based on the configuration. For example, base station 200 may configure UE 100 to monitor DCI format 1_0 and DCI format 0_0 in a certain search space. Also, base station 200 may configure UE 100 to monitor DCI format 1_1 and DCI format 0_1 in a certain search space. Also, base station 200 may configure UE 100 to monitor DCI format 1_2 and DCI format 0_2 in a certain search space. That is, for example, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 when CSS is configured for a certain search space. Also, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 2_0 when CSS is configured for a certain search space. In addition, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_1 and DCI format 0_1 when USS is configured for a certain search space. can be set to Also, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_2 and DCI format 0_2 when USS is configured for a certain search space. can be set to
 ステップS3において、UE100は、自UE宛てのDCI又はPDCCHを基地局200から受信及び検出する。例えば、UE100は、基地局200からUE100に割り当てられたC-RNTI(Cell-Radio Network Temporary Identifier(RNTI))及びMCS-C-RNTI(Modulation and Coding Scheme-C-RNTI)、又はCS-RNTI(Configured Scheduling-RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。ここで、基地局200から送信されるDCIには、C-RNTI及びMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRC(Cyclic Redundancy Check)パリティビットが付加されている。 In step S3, the UE 100 receives and detects DCI or PDCCH addressed to itself from the base station 200. For example, the UE 100 uses the C-RNTI (Cell-Radio Network Temporary Identifier (RNTI)) and MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI) assigned to the UE 100 from the base station 200, or the CS-RNTI ( Blind decoding of PDCCH is performed using Configured Scheduling-RNTI), and successfully decoded DCI is acquired as DCI addressed to its own UE. Here, the DCI transmitted from the base station 200 is added with CRC (Cyclic Redundancy Check) parity bits scrambled by C-RNTI and MCS-C-RNTI or CS-RNTI.
 DCIがPDSCHのスケジューリングを示す場合、ステップS4において、UE100は、スケジューリングされたPDSCHで基地局200から下りリンクデータを受信する。DCIがPUSCHのスケジューリングを示す場合、ステップS5において、UE100は、スケジューリングされたPUSCHで基地局200に上りリンクデータを送信する。ここで、下りリンクデータは、下りリンク共用チャネル(Downlink-Shared Channel:DL-SCH)のデータとも称される。また、上りリンクデータは、上りリンク共有チャネル(Uplink-Shared Channel:UL-SCH)のデータとも称される。ここで、下りリンク共用チャネル及び上りリンク共有チャネルはトランスポートチャネルであり、PDSCH及びPUSCHは物理チャネルである。例えば、下りリンクデータ(DL-SCHのデータ)はPDSCHにマップされ、上りリンクデータ(UL-SCHのデータ)はPUSCHにマップされる。 When the DCI indicates PDSCH scheduling, in step S4, the UE 100 receives downlink data from the base station 200 on the scheduled PDSCH. If the DCI indicates PUSCH scheduling, the UE 100 transmits uplink data to the base station 200 on the scheduled PUSCH in step S5. Here, downlink data is also referred to as downlink shared channel (DL-SCH) data. Uplink data is also referred to as uplink-shared channel (UL-SCH) data. Here, the downlink shared channel and the uplink shared channel are transport channels, and PDSCH and PUSCH are physical channels. For example, downlink data (DL-SCH data) is mapped to PDSCH, and uplink data (UL-SCH data) is mapped to PUSCH.
 (2)パワーセービング技術の概要
 本実施形態に係るパワーセービング技術の概要について説明する。
(2) Overview of Power Saving Technology An overview of the power saving technology according to this embodiment will be described.
 まず、図4を参照して、本実施形態に係るPDCCHスキッピングの概要について説明する。以下において、UE100はRRCコネクティッド状態にあるものとする。 First, an overview of PDCCH skipping according to this embodiment will be described with reference to FIG. It is assumed below that the UE 100 is in the RRC connected state.
 第1に、UE100は、基地局200から設定されたサーチスペース設定に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。本実施形態において、このようなUE100におけるPDCCHの監視に関するPDCCH監視状態は、PDCCHを監視するPDCCH監視実行状態と称することがある。 First, the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on the search space setting set by the base station 200 . In the present embodiment, such a PDCCH monitoring state regarding PDCCH monitoring in UE 100 may be referred to as a PDCCH monitoring execution state for monitoring PDCCH.
 第2に、基地局200は、PDCCHスキッピングを指示するスキップ指示DCIをUE100に送信する。スキップ指示DCIは、切り替え指示DCIの一例である。スキップ指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。 Second, the base station 200 transmits to the UE 100 a skip instruction DCI that instructs PDCCH skipping. Skip instruction DCI is an example of switching instruction DCI. A skip indication DCI may be a scheduling DCI or a non-scheduling DCI.
 第3に、UE100は、基地局200からのスキップ指示DCIの受信に応じて、PDCCHの監視を所定期間にわたってスキップする。PDCCHの監視をスキップする所定期間は、上位レイヤシグナリング(RRCメッセージ)により設定されてもよい。所定期間は、タイマ値(すなわち、切り替えタイマの設定値)により定められてもよいし、連続するスロット数又は連続するサーチスペース数により定められてもよい。当該所定期間は、スキップ期間と称されてもよい。このようなPDCCHスキッピングにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。なお、PDCCHスキッピングはPDCCHの監視をスキップすることを意味してもよく、PDCCHスキッピングをPDCCH監視スキッピングと称しても良い。本実施形態において、このようなUE100におけるPDCCH監視状態は、PDCCHスキッピング状態と称することがある。 Third, the UE 100 skips PDCCH monitoring for a predetermined period in response to receiving the skip instruction DCI from the base station 200 . The predetermined period for skipping PDCCH monitoring may be set by higher layer signaling (RRC message). The predetermined period may be determined by a timer value (that is, a setting value of a switching timer), or may be determined by the number of consecutive slots or the number of consecutive search spaces. The predetermined period may be referred to as a skip period. Such PDCCH skipping reduces the power consumption required for the UE 100 to monitor the PDCCH, and can achieve dynamic power saving. Note that PDCCH skipping may mean skipping PDCCH monitoring, and PDCCH skipping may be referred to as PDCCH monitoring skipping. In this embodiment, such a PDCCH monitoring state in the UE 100 may be referred to as a PDCCH skipping state.
 次に、図5を参照して、本実施形態に係るサーチスペースセットグループ切り替え(SSSG switching)の概要について説明する。 Next, an overview of search space set group switching (SSSG switching) according to this embodiment will be described with reference to FIG.
 第1に、基地局200は、サーチスペースに関する設定のセットであるサーチスペースセットを上位レイヤシグナリング(RRCメッセージ)によってUE100に複数設定する。このようなサーチスペースに関する設定のセットはサーチスペースセット(Search Space Set:SSS)又はサーチスペースセットグループ(Search Space Set Group:SSSG)と称されるが、以下においては、主としてSSSGと称することとする。1つのSSSGは、1つ又は複数のサーチスペース設定を含み、SSSGのインデックスにより識別される。図5の例において、基地局200は、所定周期でサーチスペースが設けられるSSSG#0(第1サーチスペースセット)と、所定周期よりも長い周期でサーチスペースが設けられるSSSG#1(第2サーチスペースセット)とをUE100に設定するものとする。ここでは基地局200がSSSG#0及びSSSG#1の2つのSSSGをUE100に設定する一例を示しているが、1以上のBWP(例えば、DL BWP)のそれぞれに対して3つ以上のSSSGをUE100に設定してもよい。なお、UE100に複数のSSSG(若しくは3つ以上のSSSG)を設定するとは、1つのBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよいし、複数のBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよい。また、前述のとおりサーチスペースがUE固有のサーチスペース及び/又はUE共通のサーチスペースを含む点を勘案すると、UE固有のサーチスペースに関する設定のセットはUE固有のサーチスペースセットと称されてもよく、UE共通のサーチスペースに関する設定のセットはUE共通のサーチスペースセットと称されてもよい。 First, the base station 200 configures multiple search space sets, which are sets of settings related to search spaces, in the UE 100 through higher layer signaling (RRC messages). A set of settings related to such a search space is called a Search Space Set (SSS) or a Search Space Set Group (SSSG), but in the following it will be mainly called SSSG. . One SSSG includes one or more search space settings and is identified by an SSSG index. In the example of FIG. 5, base station 200 has SSSG#0 (first search space set) in which search spaces are provided at a predetermined cycle, and SSSG#1 (second search space set) in which search spaces are provided at a cycle longer than the predetermined cycle. space set) shall be set in the UE 100. Here, an example is shown in which the base station 200 sets two SSSGs, SSSG#0 and SSSG#1, to the UE 100. Three or more SSSGs are set for each of one or more BWPs (for example, DL BWP). You may set to UE100. Note that setting a plurality of SSSGs (or three or more SSSGs) in the UE 100 may mean setting a plurality of SSSGs (or three or more SSSGs) for one BWP, or a plurality of may mean setting multiple SSSGs (or three or more SSSGs) for each BWP. Also, considering that search spaces include UE-specific search spaces and/or UE-common search spaces as described above, a set of settings related to UE-specific search spaces may be referred to as a UE-specific search space set. , the set of configurations for UE-common search spaces may be referred to as a UE-common search space set.
 第2に、UE100は、SSSG#0に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。 Second, the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on SSSG#0.
 第3に、基地局200は、SSSG切り替えを指示する切り替え指示DCIをUE100に送信する。切り替え指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。すなわち、基地局200は、DCIを用いて、SSSG#0からSSSG#1への切り替えをUE100に指示する。 Third, the base station 200 transmits to the UE 100 a switching instruction DCI that instructs SSSG switching. The switching instruction DCI may be a scheduling DCI or a non-scheduling DCI. That is, the base station 200 uses DCI to instruct the UE 100 to switch from SSSG#0 to SSSG#1.
 第4に、UE100は、切り替え指示DCIの受信に応じてSSSG#1への切り替えを開始する。UE100は、SSSG#0におけるPDCCHの最後のシンボルから切り替え遅延時間(Switch delay)後のシンボルでSSSG#1への切り替えを実施する。このような切り替え遅延時間は、上位レイヤシグナリング(RRCメッセージ)により基地局200からUE100に設定されてもよい。 Fourth, the UE 100 starts switching to SSSG#1 in response to receiving the switching instruction DCI. UE 100 performs switching to SSSG#1 in a symbol after a switching delay time (Switch delay) from the last symbol of PDCCH in SSSG#0. Such a switching delay time may be set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
 第5に、UE100は、SSSG#1に基づいて、所定周期よりも長い周期で設けられたPDCCHをサーチスペースにおいて監視する。このようなサーチスペースセット切り替えにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。 Fifth, based on SSSG#1, UE 100 monitors PDCCHs provided in a cycle longer than a predetermined cycle in search spaces. Such search space set switching reduces the power consumption required for UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
 なお、SSSG#1からSSSG#0への切り替えは、SSSG#0からSSSG#1への切り替えと同様に基地局200がDCIにより指示してもよいし、タイマを用いてUE100がSSSG#1からSSSG#0へ切り替えてもよい。このような切り替えタイマ(Switching timer)のタイマ値は、上位レイヤシグナリング(RRCメッセージ)で基地局200からUE100に設定される。UE100は、SSSG#1への切り替え指示DCIの検出に応じてSSSG#1におけるPDCCHの監視を開始するとともに、切り替えタイマの値を上位レイヤによって設定された値にセットして切り替えタイマを起動する。UE100は、切り替えタイマの値をデクリメントし、切り替えタイマが満了した場合にはSSSG#1におけるPDCCHの監視を停止し、切り替え遅延時間(Switch delay)後にSSSG#0におけるPDCCHの監視を開始する。 Note that switching from SSSG#1 to SSSG#0 may be instructed by the base station 200 using DCI in the same manner as switching from SSSG#0 to SSSG#1, or the UE 100 may switch from SSSG#1 using a timer. You may switch to SSSG#0. The timer value of such a switching timer (Switching timer) is set from the base station 200 to the UE 100 by higher layer signaling (RRC message). The UE 100 starts monitoring the PDCCH in SSSG#1 in response to detection of the switching instruction DCI to SSSG#1, sets the value of the switching timer to the value set by the upper layer, and activates the switching timer. UE 100 decrements the value of the switching timer, stops monitoring PDCCH in SSSG#1 when the switching timer expires, and starts monitoring PDCCH in SSSG#0 after a switch delay time.
 なお、SSSG#0における“#0”及びSSSG#1における“#1”は、サーチスペースのセット(グループ)に対するインデックス(サーチスペースグループIDとも称される)を示している。すなわち、インデックスによって識別されるサーチスペースのセット(グループ)に、1以上のサーチスペースセットが関連付けられてもよい。例えば、基地局200は、当該1以上のサーチスペースセットに関連するインデックスを設定することによって、UE100に対してサーチスペースのセット(グループ)を設定してもよい。本実施形態において、SSSGという名称は単なる一例であり、1以上のサーチスペースセットが関連付けられるサーチスペースのセット(グループ)であれば、その名称は問わない。 "#0" in SSSG#0 and "#1" in SSSG#1 indicate indexes (also called search space group IDs) for sets (groups) of search spaces. That is, one or more search space sets may be associated with a set (group) of search spaces identified by an index. For example, base station 200 may configure a set (group) of search spaces for UE 100 by configuring an index associated with the one or more search space sets. In this embodiment, the name SSSG is merely an example, and any name may be used as long as it is a set (group) of search spaces to which one or more search space sets are associated.
 サーチスペースセット切り替えにおいて、UE100に設定する1つのSSSGにおいてサーチスペースを有しない設定とし、当該1つのSSSGへの切り替えをDCIで指示することにより、上述のPDCCHスキッピングと同様な動作を実現できる。また、UE100に設定する1つのSSSGにおいてサーチスペースを設定し、当該サーチスペースに対するモニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値(例えば、“0”又は“Null”)に設定する)ことにより、上述のPDCCHスキッピングと同様な動作を実現してもよい。以下、説明を容易とするために、上述のPDCCHスキッピングと同様な動作を実現するための設定として、1つのSSSGにおいてサーチスペースを有しないことについて記載するが、モニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値に設定する)ことに置き換えられてもよいことは勿論である。また、UE100に設定する他のSSSGにおいて、長いサーチスペース周期を有する設定とし、当該1つのSSSGへの切り替えをDCIで指示することもできる。このような動作を実現するためには、通常のサーチスペース周期を有するSSSGと、サーチスペースを有しないSSSGと、長いサーチスペース周期を有するSSSGとの合計3つのSSSGをUE100に設定する。このような様々なSSSGをUE100に設定し、SSSGの切り替えをDCIで指示することにより、柔軟なパワーセービングを実現できる。 In search space set switching, one SSSG set in the UE 100 is set to have no search space, and switching to the one SSSG is indicated by DCI, thereby realizing the same operation as the PDCCH skipping described above. Also, a search space is set in one SSSG set in the UE 100, and no monitoring opportunity for the search space is set (or a parameter related to the monitoring opportunity is set to a predetermined value (e.g., "0" or "Null"). ), an operation similar to the PDCCH skipping described above may be realized. Hereinafter, in order to facilitate the explanation, as a setting for realizing the same operation as the PDCCH skipping described above, it will be described that there is no search space in one SSSG, but no monitoring opportunity is set (or monitoring setting a parameter related to the opportunity to a predetermined value). Also, in other SSSGs set in the UE 100, it is possible to set them to have a long search space cycle, and to instruct switching to the one SSSG by DCI. In order to realize such an operation, UE 100 is configured with a total of three SSSGs: an SSSG with a normal search space period, an SSSG with no search space period, and an SSSG with a long search space period. Flexible power saving can be realized by setting such various SSSGs in the UE 100 and instructing switching of SSSGs by DCI.
 次に本実施形態に関し、図6を参照して、間欠受信(DRX)について説明するとともに、パワーセービング状態について説明する。 Next, regarding this embodiment, discontinuous reception (DRX) will be described, and the power saving state will be described with reference to FIG.
 UE100にDRXが設定される場合、UE100は、DRX動作を利用して不連続的にPDCCHを監視する。具体的には、次のDRXパラメータによりDRX動作が制御される。
 ・DRXサイクル:UE100がウェイクアップする周期を規定する。
 ・オン持続時間(on-duration):ウェイクアップ後に、PDCCHを受信するためにUE100が待機する区間である。UE100がPDCCHの復号に成功した場合、UE100は、ウェイクアップした状態を維持し、非アクティブタイマ(inactivity-timer)を開始する。
 ・非アクティブタイマ:最後のPDCCH復号の成功からUE100が待機する時間区間であって、PDCCH復号失敗時にUE100が再びスリープする区間を規定する。なお、これに加え非アクティブタイマが満了した後に所定の設定値DRXスロットオフセット(DRX-SlotOffset)を経過した後にオン持続時間を開始する動作としてもよい。図6はDRX-SlotOffsetの設定値をゼロとした動作に相当する。
 ・再送タイマ:再送が予想される間の時間区間を規定する。
When DRX is configured in the UE 100, the UE 100 discontinuously monitors the PDCCH using the DRX operation. Specifically, the DRX operation is controlled by the following DRX parameters.
- DRX cycle: Defines the cycle in which the UE 100 wakes up.
On duration (on-duration): This is the period during which the UE 100 waits to receive the PDCCH after waking up. If the UE 100 successfully decodes the PDCCH, the UE 100 remains awake and starts an inactivity-timer.
Inactivity timer: Defines the time period during which the UE 100 waits after the last successful PDCCH decoding and sleeps again when the PDCCH decoding fails. In addition to this, after the inactivity timer expires and a predetermined set value DRX-SlotOffset elapses, the ON duration may be started. FIG. 6 corresponds to the operation with the set value of DRX-SlotOffset set to zero.
• Retransmission timer: defines the time interval during which retransmissions are expected.
 このように、DRXが設定されたUE100は、スリープ状態(すなわち、受信オフ期間)においてPDCCHを監視する必要が無いため、UE100の消費電力を低減できる。一方、UE100は、アクティブ時間にある間は、PDCCHを受信するために待機し、PDCCHをサーチスペースにおいて監視する。アクティブ時間は、オン持続時間タイマ(drx-onDurationTimer)、非アクティブタイマ(drx-InactivityTimer)、下りリンク再送タイマ(drx-RetransmissionTimerDL)、上りリンク再送タイマ(drx-RetransmissionTimerUL)のいずれかが動作中である時間である。 In this way, the UE 100 configured with DRX does not need to monitor the PDCCH in the sleep state (that is, the reception off period), so the power consumption of the UE 100 can be reduced. On the other hand, the UE 100 waits to receive the PDCCH and monitors the PDCCH in the search space during the active time. The active time is any of the on duration timer (drx-onDurationTimer), the inactivity timer (drx-InactivityTimer), the downlink retransmission timer (drx-RetransmissionTimerDL), and the uplink retransmission timer (drx-RetransmissionTimerUL) is in operation. It's time.
 上述のPDCCHスキッピング又はサーチスペースセット切り替えをDRXのアクティブ時間内で実施することにより、アクティブ時間内において動的にパワーセービング状態に切り替えることが可能であり、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。 By performing the above-described PDCCH skipping or search space set switching within the active time of DRX, it is possible to dynamically switch to the power saving state during the active time, and the power consumption is greater than the low power consumption achieved by DRX. A reduction effect can be obtained.
 次に、図7を参照して、本実施形態に係るPDCCH監視アダプテーション(PDCCH monitoring adaptation)の一例について説明する。PDCCH監視アダプテーションは、PDCCHスキッピングとSSSG切り替えとの総称である。すなわち、本実施形態において、PDCCH監視アダプテーションは、PDCCHスキッピング及び/又はSSSG切り替えに置き換えられてもよい。PDCCH監視アダプテーションでは、PDCCHの監視に関するPDCCH監視状態を切り替える処理が実行されてよい。 Next, an example of PDCCH monitoring adaptation according to this embodiment will be described with reference to FIG. PDCCH supervisory adaptation is a generic term for PDCCH skipping and SSSG switching. That is, in this embodiment, PDCCH monitoring adaptation may be replaced by PDCCH skipping and/or SSSG switching. In PDCCH monitoring adaptation, a process of switching the PDCCH monitoring state for PDCCH monitoring may be performed.
 ここでは、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGと、サーチスペースを有しないSSSGとを含む様々なSSSGの中から、1つ又は複数のSSSGをUE100に設定可能とし、SSSGの切り替え(すなわち、PDCCH監視状態の切り替え)をDCIで指示することによって柔軟なパワーセービングを実現することを想定する。ここで、本実施形態において、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGについて記載するが、複数のSSSGに対して同じ値のサーチスペース周期(異なるPDCCH周期)を設定可能であることは勿論である。 Here, a plurality of SSSGs having different search space cycles (different PDCCH cycles) and various SSSGs including SSSGs having no search space, one or more SSSGs can be set in the UE 100, and the SSSG's It is assumed that flexible power saving is realized by indicating switching (that is, switching of PDCCH monitoring state) with DCI. Here, in this embodiment, a plurality of SSSGs having different search space cycles (different PDCCH cycles) will be described, but it is possible to set the same search space cycle (different PDCCH cycles) for a plurality of SSSGs. is of course.
 図7に示すように、ステップS11において、基地局200は、1つ又は複数のRRCメッセージをUE100に送信する。1つ又は複数のRRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)を含んでもよい。UE100は、RRCメッセージを受信する。 As shown in FIG. 7, in step S11, the base station 200 transmits one or more RRC messages to the UE100. The one or more RRC messages may include a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE. UE 100 receives the RRC message.
 RRCメッセージは、PDCCH監視アダプテーションの設定(以下、PMA設定と称する)を含む。PMA設定は、PDCCH監視アダプテーションを実行するための設定であってよい。PMA設定は、SSSGを設定するための情報、SSSGを切り替える切り替えタイマを設定するための情報、PDCCHの監視に関する期間(duration)を設定するための情報、及び、PDCCH監視状態の切り替えに関するケースを設定するための情報の少なくともいずれかを含んでよい。 The RRC message includes PDCCH monitoring adaptation settings (hereinafter referred to as PMA settings). The PMA settings may be settings for performing PDCCH monitoring adaptation. PMA setting includes information for setting SSSG, information for setting a switching timer for switching SSSG, information for setting a duration related to PDCCH monitoring, and setting cases related to PDCCH monitoring state switching. may include at least one of information for
 なお、当該ケースを設定するための情報は、PDCCH監視アダプテーションのケース(動作とも称される)を設定するための情報であってよい。以下に記載するように、例えば、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、SSSG切り替え(すなわち、SSSG切り替えのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング且つSSSG切り替えを実行することが規定されてもよい。すなわち、PDCCH監視アダプテーションとして実行される動作に対応して、ケースが規定されてもよい。 Note that the information for setting the case may be information for setting the case (also referred to as operation) of PDCCH monitoring adaptation. As described below, it may be specified to perform PDCCH skipping (ie PDCCH skipping only), for example for the case of PDCCH monitoring adaptation. It may also be specified to perform SSSG switching (ie SSSG switching only) as a case of PDCCH monitoring adaptation. It may also be specified to perform PDCCH skipping and SSSG switching as a case of PDCCH monitoring adaptation. That is, cases may be defined corresponding to operations performed as PDCCH monitoring adaptation.
 SSSGを設定するための情報(以下、SSSG設定情報と適宜称する)は、例えば、PDCCHスキッピングが適用されるSSSGを設定するための情報、及びSSSG切り替えが適用されるSSSGを設定するための情報の少なくとも一方を含んでよい。また、SSSG設定情報は、デフォルトSSSG(例えば、SSSG#0)、及び、デフォルトSSSGではない非デフォルト(non-default)SSSGの少なくとも一方を設定するための情報を含んでよい。すなわち、SSSG設定情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。SSSG設定情報は、下りリンクBWP毎に設定されるSSSGの情報を含んでよいし、下りリンクサービングセル毎に設定されるSSSGの情報を含んでよい。すなわち、SSSG設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。 Information for setting SSSG (hereinafter referred to as SSSG setting information as appropriate) includes, for example, information for setting SSSG to which PDCCH skipping is applied, and information for setting SSSG to which SSSG switching is applied. At least one may be included. The SSSG setting information may also include information for setting at least one of a default SSSG (eg, SSSG#0) and a non-default SSSG that is not the default SSSG. That is, SSSG configuration information may be configured for default SSSG and/or non-default SSSG. The SSSG configuration information may include SSSG information configured for each downlink BWP, and may include SSSG information configured for each downlink serving cell. That is, the SSSG configuration information may be configured for the downlink BWP and/or the downlink serving cell.
 SSSG設定情報は、各SSSGに対応するSSSGインデックス(グループインデックスと称されてもよい)のそれぞれと対応付けられたサーチスペース設定をさらに含んでよい。サーチスペース設定は、1つ又は複数のサーチスペース設定を含む。各サーチスペース設定は、サーチスペース周期、サーチスペースオフセット、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット、の少なくともいずれかを含んでよい。 The SSSG configuration information may further include a search space configuration associated with each SSSG index (which may be referred to as a group index) corresponding to each SSSG. A search space setting includes one or more search space settings. Each search space configuration includes at least one of search space period, search space offset, search space duration (e.g., number of consecutive slots), symbols for PDCCH monitoring, aggregation level, search space type, and DCI format. OK.
 SSSGを切り替える切り替えタイマを設定するための情報(以下、切り替えタイマ情報と適宜称する)は、SSSG毎に設定される切り替えタイマの情報を含んでよい。切り替えタイマ情報は、デフォルトSSSG用の切り替えタイマの情報を含んでよいし、非デフォルトSSSG用の切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。なお、デフォルトSSSGに対して、切り替えタイマが設定されなくてもよい。また、切り替えタイマ情報は、下りリンクBWP毎に設定される切り替えタイマの情報を含んでよいし、下りリンクサービングセル毎に設定される切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。切り替えタイマ情報は、切り替えタイマのタイマ設定値を含んでよい。 Information for setting a switching timer for switching between SSSGs (hereinafter referred to as switching timer information as appropriate) may include information on switching timers set for each SSSG. The switch timer information may include switch timer information for the default SSSG and may include switch timer information for the non-default SSSG. That is, switching timer information may be configured for default SSSG and/or non-default SSSG. Note that the switching timer may not be set for the default SSSG. Also, the switching timer information may include switching timer information configured for each downlink BWP, and may include switching timer information configured for each downlink serving cell. That is, the switching timer information may be configured for the downlink BWP and/or the downlink serving cell. The switching timer information may include a timer set value of the switching timer.
 PDCCHの監視に関する期間を設定するための情報(以下、監視期間情報と適宜称する)は、SSSG毎に設定される期間の情報を含んでよい。監視期間情報は、デフォルトSSSG用の期間の情報を含んでよいし、非デフォルトSSSG用の期間の情報を含んでよい。すなわち、監視期間情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。監視期間情報は、下りリンクBWP毎に設定される期間の情報を含んでよいし、下りリンクサービングセル毎に設定される期間の情報を含んでよい。すなわち、監視期間情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。設定される期間は、PDCCHの監視をスキップするスキップ期間であってもよい。 Information for setting a period related to PDCCH monitoring (hereinafter referred to as monitoring period information as appropriate) may include information on a period set for each SSSG. The monitoring period information may include period information for the default SSSG and may include period information for the non-default SSSG. That is, monitoring period information may be set for default SSSGs and/or non-default SSSGs. The monitoring period information may include information on a period set for each downlink BWP, or may include information on a period set for each downlink serving cell. That is, the monitoring period information may be configured for the downlink BWP and/or the downlink serving cell. The set period may be a skip period for skipping PDCCH monitoring.
 PDCCH監視状態の切り替えに関するケース、具体的には、PDCCH監視アダプテーションのケースを設定するための情報(以下、ケース設定情報と適宜称する)は、下りリンクBWP毎に設定されるケースの情報を含んでよいし、下りリンクサービングセル毎に設定されるケースの情報を含んでよい。すなわち、ケース設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。ケースと、PDCCH監視アダプテーション(すなわち、PDCCH監視状態)の動作との対応関係の一例を表1に示す。また、表1に各ケースでのDCI通知内容の一例を示す。 A case related to PDCCH monitoring state switching, specifically, information for setting a case of PDCCH monitoring adaptation (hereinafter referred to as case setting information as appropriate) includes case information set for each downlink BWP. Alternatively, it may include case information configured for each downlink serving cell. That is, the case configuration information may be configured for the downlink BWP and/or the downlink serving cell. An example of the correspondence between cases and PDCCH monitoring adaptation (ie, PDCCH monitoring state) behavior is shown in Table 1. Table 1 shows an example of DCI notification contents in each case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ケース#1の設定によって、PDCCH監視アダプテーションとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみの実行)が設定される。ケース#2の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#3の設定によって、PDCCH監視アダプテーションとして、3つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#4の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替えとPDCCHスキッピング(すなわち、PDCCHスキッピング且つSSSG切り替えの実行)とが設定される。ケース#4において、M(1又は2に設定されている)は、監視期間情報に基づいて設定される期間の個数を示している。すなわち、Mは、期間Xに対応する。期間Xは、スキップ期間と称されてもよい。 By setting case #1, PDCCH skipping (that is, execution of PDCCH skipping only) is set as PDCCH monitoring adaptation. The configuration for case #2 configures two different durations of SSSG switching (ie performing SSSG switching only) as PDCCH monitoring adaptation. The configuration for case #3 configures SSSG switching for three different durations (ie performing SSSG switching only) as a PDCCH monitoring adaptation. With the configuration of case #4, two different periods of SSSG switching and PDCCH skipping (ie performing PDCCH skipping and SSSG switching) are configured as PDCCH monitoring adaptations. In case #4, M (set to 1 or 2) indicates the number of periods set based on the monitoring period information. That is, M corresponds to period X. Period X may be referred to as a skip period.
 また、各ケースは、UE100が適用するPDCCH監視アダプテーション(すなわち、SSSG切り替え及び/又はPDCCHスキッピング)を指示する切り替え指示DCI中の情報フィールド(以下、PDCCH監視アダプテーション通知フィールド:)にセットされる値が示すUE100の動作(振る舞い)と対応付けられている。UE100の動作は、以下のように定義されてよい。
 ・Beh1では、PDCCHスキッピングがアクティベート化されない。
 ・Beh1Aでは、PDCCHスキッピングが、期間Xの間PDCCH監視を停止することを意味する。
 ・Beh2では、(設定されている場合に)SSSG#1及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#0に対応付けられているサーチスペースセットを監視する。
 ・Beh2Aでは、(設定されている場合に)SSSG#0及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#1に対応付けられているサーチスペースセットを監視する。
 ・Beh2Bでは、(設定されている場合に)SSSG#0及びSSSG#1に対応付けられているサーチスペースセットの監視を停止し、SSSG#2に対応付けられているサーチスペースセットを監視する。
In each case, the PDCCH monitoring adaptation applied by UE 100 (that is, SSSG switching and/or PDCCH skipping) information field in the switching instruction DCI (hereinafter, PDCCH monitoring adaptation notification field:) is set to It is associated with the operation (behavior) of the UE 100 shown. Operations of the UE 100 may be defined as follows.
• PDCCH skipping is not activated in Beh1.
• For Beh1A, PDCCH skipping means stopping PDCCH monitoring for period X.
• Beh2 stops monitoring the search space sets associated with SSSG#1 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#0.
• Beh2A stops monitoring the search space sets associated with SSSG#0 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#1.
• In Beh2B, stop monitoring the search space set associated with SSSG#0 and SSSG#1 (if configured) and monitor the search space set associated with SSSG#2.
 なお、表1の対応関係を示す情報は、UE100及び基地局200のそれぞれで予め記憶されていてもよいし、RRCメッセージにより基地局200からUE100へ通知されてもよい。 The information indicating the correspondence relationship in Table 1 may be stored in advance in each of the UE 100 and the base station 200, or may be notified from the base station 200 to the UE 100 by an RRC message.
 ケース#1がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキップ期間を含む)が設定されてよい。 When case #1 is configured in the UE 100, the UE 100 has one for PDCCH monitoring for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. Alternatively, multiple periods (including skip periods) may be set.
 ケース#2又はケース#3がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。 When case #2 or case #3 is configured in the UE 100, the UE 100 has one serving cell for each of one or more downlink BWPs (or each of one or more SSSGs). One or more group indices (SSSG indices) may be configured.
 ケース#4がUE100に設定される場合、UE100には、あるサービングセルにおいて、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキップ期間を含む)が設定されてよい。また、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。なお、PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドは、2ビットとして規定される。 When case #4 is configured in the UE 100, the UE 100 has PDCCH for each of one or more downlink BWPs (or each of one or more SSSGs) in a certain serving cell, in a certain serving cell. One or more periods (including skip periods) for monitoring may be set. Also, in the UE 100, one or more group indexes (SSSG indexes) are set for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. you can Note that the PDCCH monitoring adaptation notification field in DCI for PDCCH monitoring is defined as 2 bits.
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定を含んでもよい。切り替え指示DCIは、フィールド設定によりPDCCH監視アダプテーション通知フィールドが有ることが示されたDCIフォーマットを有するDCIである。非スケジューリングDCI及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることが示されてもよい。例えば、UE100は、PMA設定が設定されたことに基づいて、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることを識別してもよい。 The RRC message may include field settings indicating the presence or absence of the PDCCH monitoring adaptation notification field for each of one or more DCI formats. The switching indication DCI is a DCI having a DCI format indicating that there is a PDCCH monitoring adaptation notification field by field setting. The presence/absence of the PDCCH monitoring adaptation notification field may be configured commonly or independently for non-scheduling DCI and/or scheduling DCI. The presence/absence of the PDCCH monitoring adaptation notification field (presence/absence) may be set commonly for DCI format 1_1 and DCI format 0_1, and commonly for DCI format 1_2 and DCI format 0_2. The presence or absence (presence/absence) of the PDCCH monitoring adaptation notification field may be set commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2. Here, the field setting indicating presence/absence of the PDCCH monitoring adaptation notification field may be replaced with the PMA setting. That is, the presence of the PDCCH monitoring adaptation notification field in one or more DCI formats may be indicated by configuring the PMA settings for the UE 100 . For example, UE 100 may identify that one or more DCI formats have a PDCCH monitoring adaptation notification field based on the PMA configuration being configured.
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定を含んでもよい。非スケジューリングDCI、及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドのビット数が直接設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。例えば、DCIフォーマット1_1及び/又はDCIフォーマット0_1に対して2ビットまでのPDCCH監視アダプテーション通知フィールドが設定され、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して1ビットのPDCCH監視アダプテーション通知フィールドが設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数が決定されてもよい。例えば、UE100は、SSSGを設定するための情報に基づいて設定されたSSSGの数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、監視期間情報に基づいて設定された期間の数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、ケース設定情報に基づいて設定されたケースに応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい(例えば、表1に示されるビット数を決定してもよい)。 The RRC message may include a bit number setting that indicates the number of bits in the PDCCH supervisory adaptation notification field for each of one or more DCI formats. For non-scheduling DCI and/or scheduling DCI, the number of bits of the PDCCH monitoring adaptation notification field may be directly configured commonly or independently. The number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 0_1 and/or commonly for DCI format 1_2 and DCI format 0_2. For example, a PDCCH supervisory adaptation notification field of up to 2 bits is configured for DCI format 1_1 and/or DCI format 0_1, and/or a PDCCH supervisory adaptation notification field of 1 bit is configured for DCI format 1_2 and DCI format 0_2. may be set. The number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2. Here, the number of bits setting indicating the number of bits of the PDCCH supervisory adaptation notification field may be replaced with the PMA setting. That is, the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats may be determined by configuring the PMA settings for the UE 100 . For example, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of SSSGs configured based on information for configuring SSSGs. Also, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of periods set based on the monitoring period information. Also, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats, depending on the case set based on the case setting information (for example, shown in Table 1. may determine the number of bits to be stored).
 ステップS12において、UE100は、基地局200から設定された情報を記憶する。 In step S12, the UE 100 stores the information set by the base station 200.
 ステップS13において、基地局200は、PDCCH監視アダプテーション通知フィールドを有する切り替え指示DCIをPDCCH上でUE100に送信する。UE100は、切り替え指示DCIをPDCCH上で受信する。UE100は、基地局200から設定されたフィールド設定に基づいて、検出したDCIのDCIフォーマットが切り替え指示DCIに該当するか否かを判定してもよい。 In step S13, the base station 200 transmits a switching instruction DCI having a PDCCH monitoring adaptation notification field to the UE 100 on the PDCCH. UE 100 receives the switching instruction DCI on the PDCCH. The UE 100 may determine whether or not the DCI format of the detected DCI corresponds to the switching instruction DCI, based on field settings set by the base station 200 .
 ステップS14において、UE100は、ステップS13で受信した切り替え指示DCIのPDCCH監視アダプテーション通知フィールドにセットされた値を取得する。UE100は、基地局200から設定されたビット数設定に基づいて、PDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。ここで、上述のとおり、例えば、UE100は、UE100に設定されたSSSGインデックスの数(すなわち、設定されたSSSGインデックス(リスト)のエントリ数)に基づいてPDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。例えば、UE100に設定されたSSSGインデックスの数を「I」とした場合、UE100は、PDCCH監視アダプテーション通知フィールドのビット数を、log2(I)の小数点以下を切り上げた整数値により算出及び特定してもよい。 In step S14, the UE 100 acquires the value set in the PDCCH monitoring adaptation notification field of the switching instruction DCI received in step S13. UE 100 may specify the number of bits in the PDCCH monitoring adaptation notification field based on the bit number setting set by base station 200 and then acquire the value set in the PDCCH monitoring adaptation notification field. Here, as described above, for example, the UE 100 is based on the number of SSSG indexes set in the UE 100 (i.e., the number of entries in the set SSSG index (list)), and the number of bits of the PDCCH monitoring adaptation notification field is specified. Additionally, the value set in the PDCCH supervisory adaptation notification field may be obtained. For example, when the number of SSSG indexes set in UE 100 is set to "I", UE 100 calculates and identifies the number of bits of the PDCCH monitoring adaptation notification field by an integer value rounded up after the decimal point of log2 (I). good too.
 ステップS15において、UE100は、設定されたケースに基づいて、受信した切り替え指示DCI中のPDCCH監視アダプテーション通知フィールドにセットされた値(以下、PDCCH監視アダプテーション通知フィールド値)に対応する状態へPDCCH監視状態を切り替える。以下に、各ケースにおけるPDCCH監視アダプテーション通知フィールドのビット数に応じたUE100の動作例を示す。 In step S15, the UE 100 changes the PDCCH monitoring state to the state corresponding to the value set in the PDCCH monitoring adaptation notification field (hereinafter referred to as the PDCCH monitoring adaptation notification field value) in the received switching instruction DCI based on the set case. switch. An operation example of the UE 100 according to the number of bits of the PDCCH monitoring adaptation notification field in each case is shown below.
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
Case #1: PDCCH Supervisory Adaptation Notification field in DCI for PDCCH Monitoring is 1 bit If the PDCCH Supervisory Adaptation Notification field value is '0', no PDCCH skipping is performed.
If the PDCCH monitoring adaptation notification field value is '1', PDCCH skipping is performed during the configured period (the period of the first value).
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第3の値の期間)においてPDCCHスキッピングを実行する。
Case #1: PDCCH supervisory adaptation notification field in DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', no PDCCH skipping is performed.
If the PDCCH monitoring adaptation notification field value is '01', PDCCH skipping is performed during the configured period (the period of the first value).
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (second value period).
If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (the period of the third value).
 ・ケース#2:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
Case #2: If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 1 bit If the PDCCH supervisory adaptation notification field value is '0', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '1', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
 ・ケース#3:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、グループインデックス#2に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
Case #3: If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', start monitoring the PDCCH according to the search space set corresponding to group index #2, and start monitoring the PDCCH according to the search space set corresponding to the other group index value. Stop monitoring.
The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
 ・ケース#4:PDCCH監視に対する期間の数として「1」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
Case #4: If the number of periods for PDCCH monitoring is set to '1' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value).
The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
 ・ケース#4:PDCCH監視に対する期間の数として「2」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
Case #4: If the number of periods for PDCCH monitoring is set to '2' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value).
If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (second value period).
 次に、図8を参照して、本実施形態に係るタイマベースのSSSG切り替えの一例について説明する。ここでは、UE100がタイマベースでSSSGの切り替えを行う場合で、UE100に3つ以上のSSSGが設定され得る場合を想定する。 Next, an example of timer-based SSSG switching according to this embodiment will be described with reference to FIG. Here, it is assumed that the UE 100 switches between SSSGs on a timer basis and three or more SSSGs can be configured in the UE 100 .
 基地局200は、UE100に設定するSSSGのうち1つをデフォルトSSSGとしてUE100に設定してもよい。例えば、基地局200は、UE100に設定するSSSGインデックスのうち1つを「defaultSSSG-Id」として指定してもよい。例えば、基地局200は、RRCメッセージを用いて「defaultSSSG-Id」を設定してもよい。すなわち、基地局200は、RRCメッセージに含まれる情報を用いて、UE100に対してデフォルトSSSGを設定してもよい。デフォルトSSSGは、UE100に設定されたSSSGのうち、基地局200及びUE100が予め共有している所定規則によって決定されるSSSGであってもよい。デフォルトSSSGは、基地局200によりデフォルトSSSGとしてUE100に設定されたSSSGであってもよい。 The base station 200 may set one of the SSSGs set in the UE 100 as a default SSSG in the UE 100. For example, the base station 200 may specify one of the SSSG indices set in the UE 100 as "defaultSSSG-Id". For example, the base station 200 may set the 'defaultSSSG-Id' using an RRC message. That is, the base station 200 may configure the default SSSG for the UE 100 using information included in the RRC message. The default SSSG may be an SSSG determined according to a predetermined rule shared in advance by the base station 200 and the UE 100 among SSSGs set in the UE 100 . The default SSSG may be the SSSG set in the UE 100 by the base station 200 as the default SSSG.
 図8に示すように、ステップS21において、基地局200により複数のSSSGが設定されたUE100は、当該複数のSSSGのうち1つのSSSGを用いてPDCCHを監視する。 As shown in FIG. 8, in step S21, the UE 100 for which multiple SSSGs have been set by the base station 200 monitors the PDCCH using one of the multiple SSSGs.
 ステップS22において、UE100は、他のSSSGへの切り替えを指示する切り替え指示DCIをPDCCH上で基地局200から受信する。 In step S22, the UE 100 receives a switching instruction DCI that instructs switching to another SSSG from the base station 200 on the PDCCH.
 ステップS23において、UE100は、切り替え指示DCIで指定されたSSSGへの切り替えを行うとともに、当該SSSGと対応付けられたタイマ(切り替えタイマ)を起動する。 In step S23, the UE 100 switches to the SSSG specified by the switching instruction DCI and activates the timer (switching timer) associated with the SSSG.
 ステップS24において、UE100は、切り替えタイマが満了したか否かを判定する。 In step S24, the UE 100 determines whether the switching timer has expired.
 切り替えタイマが満了した場合(ステップS24:YES)、ステップS25において、UE100は、設定された複数のSSSGのうちデフォルトSSSGに切り替える。ここで、基地局200から「defaultSSSG-Id」として指定されたSSSGに切り替えることにより、基地局200は、UE100の切り替え先のSSSGを把握できる。なお、切り替えタイマは基地局200が設定した値であるため、基地局200は、UE100と同様に切り替えタイマを管理し、UE100において切り替えタイマが満了したことを把握できる。 When the switching timer expires (step S24: YES), in step S25, the UE 100 switches to the default SSSG among the multiple set SSSGs. Here, by switching to the SSSG specified by the base station 200 as “defaultSSSG-Id”, the base station 200 can grasp the SSSG to which the UE 100 is switched. Since the switching timer is a value set by the base station 200, the base station 200 manages the switching timer in the same manner as the UE 100, and can recognize that the switching timer has expired in the UE 100.
 UE100は、デフォルトSSSGが基地局200により設定されていない場合、具体的には、「defaultSSSG-Id」としてデフォルトSSSGが基地局200から明示的に指定されていない場合、所定規則に従ってデフォルトSSSGを決定する。例えば、UE100は、RRCメッセージにデフォルトSSSGを設定するための情報が含まれていない場合には、所定規則に従ってデフォルトSSSGを決定してもよい。所定規則は、例えば3GPPの技術仕様で規定される規則であり、基地局200及びUE100が予め共有している規則である。 If the default SSSG is not set by the base station 200, specifically, if the default SSSG is not explicitly specified by the base station 200 as "defaultSSSG-Id", the UE 100 determines the default SSSG according to a predetermined rule. do. For example, if the RRC message does not contain information for setting the default SSSG, the UE 100 may determine the default SSSG according to a predetermined rule. The predetermined rule is, for example, a rule defined by 3GPP technical specifications, and a rule shared in advance by the base station 200 and the UE 100 .
 ここで、所定規則は、UE100に設定されたSSSGインデックスのうち、最も値が小さいSSSGインデックスに対応するSSSG、又は最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、最も値が小さいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#0のSSSGをデフォルトSSSGとして決定する。最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#4のSSSGをデフォルトSSSGとして決定する。 Here, the predetermined rule is the SSSG corresponding to the SSSG index with the smallest value among the SSSG indexes set in the UE 100, or the SSSG corresponding to the SSSG index with the largest value. good. For example, if the rule is to set the SSSG corresponding to the SSSG index with the smallest value as the default SSSG, the UE 100 determines the SSSG with SSSG index #0 as the default SSSG. If the rule is to set the SSSG corresponding to the SSSG index with the largest value as the default SSSG, the UE 100 determines the SSSG of SSSG index #4 as the default SSSG.
 上述のように、UE100は、UE100に設定するSSSGインデックスと、切り替え指示DCI中のSSSG情報フィールドにセットされる値との対応関係を示す対応関係情報を基地局200から受信してもよい。所定規則は、切り替え指示DCI中のSSSG情報フィールドにセットされる値として特定の値(例えば、「0」)で示されるSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、UE100は、切り替え指示DCI中のSSSG情報フィールドにセットされる値が「0」で示されるSSSGインデックスを有するSSSGをデフォルトSSSGとして決定する。 As described above, the UE 100 may receive from the base station 200 correspondence information indicating the correspondence between the SSSG index set in the UE 100 and the value set in the SSSG information field in the switching instruction DCI. The predetermined rule may be a rule for determining, as the default SSSG, the SSSG corresponding to the SSSG index indicated by a specific value (eg, "0") set in the SSSG information field in the switching instruction DCI. For example, the UE 100 determines, as the default SSSG, an SSSG having an SSSG index in which the value set in the SSSG information field in the switching instruction DCI is "0".
 所定規則は、UE100に設定されたSSSGインデックスのうち、予め定められた値を有するSSSGインデックス(例えば、インデックス#0)に対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。 The predetermined rule may be a rule that determines the SSSG corresponding to the SSSG index (for example, index #0) having a predetermined value among the SSSG indices set in the UE 100 as the default SSSG.
 所定規則は、UE100に設定されたSSSGのうち、PDCCHの監視をスキップするSSSG以外のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、デフォルトSSSGとして、PDCCHスキッピングに対応するSSSGインデックスは設定されないと想定してもよい。 The predetermined rule may be a rule for determining, among the SSSGs set in the UE 100, SSSGs other than SSSGs skipping PDCCH monitoring as default SSSGs. That is, UE 100 may assume that the SSSG index corresponding to PDCCH skipping is not set as the default SSSG.
 UE100にDRXが設定されている場合、UE100は、DRXの受信オフ期間から受信オン期間(アクティブ時間)に切り替わる際に特定のSSSGを適用してもよい。所定規則は、当該特定のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGをデフォルトSSSGとして決定してもよい。例えば、基地局200は、RRCメッセージに当該特定のSSSGを設定するための情報を含めて送信し、UE100は、当該特定のSSSGをデフォルトSSSGとして決定してもよい。また、基地局200は、RRCメッセージにデフォルトSSSGを設定するための情報を含めて送信し、UE100は、当該デフォルトSSSGを、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGとして用いてもよい。 When DRX is configured in the UE 100, the UE 100 may apply a specific SSSG when switching from a DRX reception off period to a reception on period (active time). The predetermined rule may be a rule that determines that particular SSSG as the default SSSG. That is, the UE 100 may determine the first SSSG to monitor the PDCCH after the DRX reception off period has elapsed as the default SSSG. For example, the base station 200 may transmit an RRC message including information for setting the specific SSSG, and the UE 100 may determine the specific SSSG as the default SSSG. In addition, the base station 200 transmits an RRC message including information for setting the default SSSG, and the UE 100 uses the default SSSG as the first SSSG to monitor the PDCCH after the DRX reception off period has passed. good too.
 UE100は、UE100に割り当てられた無線リソースを示すスケジューリングDCIを切り替え指示DCIとして受信してもよい。UE100は、切り替え指示DCIとしてスケジューリングDCIを受信した後、1つのSSSGへの切り替えを行うタイミング(具体的には、SSSG切り替えを実行するスロット)で切り替えタイマを起動してもよい。 The UE 100 may receive a scheduling DCI indicating radio resources allocated to the UE 100 as a switching instruction DCI. After receiving the scheduling DCI as the switching instruction DCI, the UE 100 may start the switching timer at the timing of switching to one SSSG (specifically, the slot for performing SSSG switching).
 UE100は、UE100に設定される3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を用いてもよい。基地局200は、UE100に設定する3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を設定してもよい。 The UE 100 may use a common value as the switching timer value applied to two or more of the three or more SSSGs set in the UE 100 . The base station 200 may set a common value as the switching timer value applied to two or more SSSGs among the three or more SSSGs set in the UE 100 .
 UE100は、UE100に設定されるSSSGのそれぞれに適用する切り替えタイマの値として、SSSGごとに個別の値を用いてもよい。基地局200は、SSSGごとに個別の切り替えタイマ設定値をUE100に設定してもよい。 The UE 100 may use an individual value for each SSSG as the switching timer value applied to each SSSG set in the UE 100 . The base station 200 may set an individual switching timer setting value in the UE 100 for each SSSG.
 UE100は、切り替え先のSSSGがPDCCHスキッピングに対応するSSSGである場合、当該SSSGへの切り替えを開始するタイミング(スロット)で、当該SSSGと対応付けられた切り替えタイマを起動してもよい。PDCCHスキッピング状態にある場合、すなわちPDCCHの監視をスキップする所定期間においては、PDCCH監視に用いるリソースが専有されておらず、任意のタイミングで切り替え当該SSSGへの切り替えを開始できる。この利点を活用し、PDCCH監視の動作を阻害することなく切り替え遅延時間の影響を最小化することが可能となる。なお、UE100は、当該切り替えタイマの満了後、デフォルトSSSGを想定してPDDCHを監視してもよい。 When the switching destination SSSG is an SSSG that supports PDCCH skipping, the UE 100 may activate the switching timer associated with the SSSG at the timing (slot) at which switching to the SSSG is started. When in the PDCCH skipping state, that is, during a predetermined period during which PDCCH monitoring is skipped, resources used for PDCCH monitoring are not dedicated, and switching to the relevant SSSG can be started at any timing. Taking advantage of this advantage, it is possible to minimize the effect of the switching delay time without disturbing the PDCCH monitoring operation. Note that the UE 100 may monitor the PDDCH assuming the default SSSG after the switching timer expires.
 (3)CG送信の概要
 本実施形態に係るCG送信の概要について説明する。
(3) Outline of CG Transmission An outline of CG transmission according to the present embodiment will be described.
 図9を参照して、本実施形態に係るCG送信の概要について説明する。UE100は、低遅延の通信を実現するため、上りリンクデータ送信を行うための直接のPDCCHによる動的な上りリンク許可(グラント)に基づく上りリンク送信に加えて、動的な上りリンク許可なしで上りリンク送信(すなわち、CG送信)を行う。CG送信は、基地局200からの設定グラント(Configured grants:CG)に基づく上りリンク送信である。CG送信は、CG-PUSCH送信と称されてもよい。なお、CG送信は、PUSCHにおけるMAC PDU(MAC Protocol Data Unit)の送信を含んでよい。 An overview of CG transmission according to the present embodiment will be described with reference to FIG. In order to achieve low-delay communication, the UE 100 performs uplink data transmission directly by PDCCH in addition to uplink transmission based on dynamic uplink grant (grant), without dynamic uplink grant Uplink transmission (that is, CG transmission) is performed. CG transmission is uplink transmission based on configured grants (CG) from the base station 200 . A CG transmission may be referred to as a CG-PUSCH transmission. CG transmission may include transmission of MAC PDU (MAC Protocol Data Unit) on PUSCH.
 CG送信は、タイプ1CG送信と、タイプ2CG送信とを含む。タイプ1CG送信では、RRCシグナリング(RRCメッセージ)によって上りリンク送信が許可される。タイプ1CG送信では、実際の上りリンク許可がRRCを介して設定されてよい。UE100は、RRCメッセージによってタイプ1CG送信が設定されている場合、設定された無線リソース(CGリソースと適宜称する)を用いてCG送信を行う。 CG transmission includes type 1 CG transmission and type 2 CG transmission. In type 1 CG transmission, uplink transmission is permitted by RRC signaling (RRC message). For Type 1 CG transmission, the actual uplink grant may be set via RRC. When the type 1 CG transmission is set by the RRC message, the UE 100 performs CG transmission using the set radio resource (hereinafter referred to as CG resource).
 一方で、タイプ2CG送信では、RRCシグナリング(RRCメッセージ)及びDCIによって上りリンク送信が許可される。タイプ2CG送信では、実際の上りリンク許可が、(CS-RNTIへ宛てた)PDCCHを介して提供されてよい。UE100は、RRCメッセージによってタイプ1CG送信が設定された後、DCIによってCG送信がアクティベート化されている(有効である)場合に、設定されたCGリソースを用いてCG送信を行う。UE100は、CG送信がディアクティベート化されている(無効である)場合、CG送信を行わない。なお、DCIによってCG送信をディアクティベート化できる。 On the other hand, in type 2 CG transmission, uplink transmission is permitted by RRC signaling (RRC message) and DCI. For Type 2 CG transmissions, the actual uplink grants may be provided via PDCCH (destined for CS-RNTI). UE 100 performs CG transmission using the set CG resource when CG transmission is activated (effective) by DCI after type 1 CG transmission is set by the RRC message. The UE 100 does not perform CG transmission when CG transmission is deactivated (disabled). Note that CG transmission can be deactivated by DCI.
 ステップS31において、基地局200は、CG送信に用いられるパラメータを設定するためのCG設定を含むRRCメッセージをUE100に送信する。UE100は、CG設定を含むRRCメッセージを基地局200から受信する。UE100は、RRCメッセージにより設定された情報を記憶する。 In step S31, the base station 200 transmits to the UE 100 an RRC message including CG settings for setting parameters used for CG transmission. UE 100 receives an RRC message including CG settings from base station 200 . UE 100 stores the information set by the RRC message.
 CG設定は、動的なグラントなしでの上りリンク送信を設定するために用いられる情報要素であってよい。CG設定は、例えば、CGリソースを特定する情報を含んでよい。 CG configuration may be an information element used to configure uplink transmission without dynamic grant. A CG configuration may include, for example, information identifying a CG resource.
 ステップS32において、基地局200は、CG送信としてタイプ2CG送信をUE100へ設定した場合、CG送信をアクティベート化するためのDCIを送信してよい。UE100は、DCIを基地局200から受信してよい。UE100は、CG送信としてタイプ2CG送信が設定されている場合、CG送信をアクティベート化するDCIの受信に応じて、タイプ2CG送信をアクティベートにする。 In step S32, when the base station 200 sets type 2 CG transmission to the UE 100 as CG transmission, it may transmit DCI for activating CG transmission. UE 100 may receive DCI from base station 200 . When type 2 CG transmission is set as CG transmission, UE 100 activates type 2 CG transmission in response to reception of DCI for activating CG transmission.
 ステップS33において、UE100は、CG送信トリガを検知する。CG送信トリガは、CGリソースによる送信機会の発生であってよい。また、CG送信トリガは、基地局200に送信するべき上りリンクデータ及び/又はバッファ状態報告(Buffer Status Report:BSR)が生成されたこと、基地局200に送信するべき上りリンクデータがUE100のMACレイヤに到着したこと、UE100においてMACレイヤから物理(PHY)レイヤにCG送信を指示したことのいずれかであってもよい。 In step S33, the UE 100 detects a CG transmission trigger. A CG transmission trigger may be the occurrence of a transmission opportunity due to CG resources. In addition, the CG transmission trigger is generated when uplink data and/or a buffer status report (BSR) to be transmitted to the base station 200 is generated, and when the uplink data to be transmitted to the base station 200 is MAC of the UE 100 It may be either having arrived at the layer or instructing CG transmission from the MAC layer to the physical (PHY) layer in the UE 100 .
 なお、UE100は、CG送信が設定されている場合であっても、送信バッファに上りリンクデータがない場合、CGリソースによる送信機会が発生していても、CG送信トリガが検知されないと判定してもよい。上述のとおり、本実施形態において、CG送信は、MAC PDUの送信であってもよい。すなわち、例えば、送信バッファに上りリンクデータがなく、CG送信(MAC PDUの基地局200への送信)が実行(トリガ)されない場合には、PDCCH監視状態の切り替えは行われなくてもよい。すなわち、本実施形態において、上りリンクデータは、MAC PDUに対応してもよい。上りリンクデータ(すなわち、MAC PDU)は、ユーザデータに対応してもよい。 Note that even if CG transmission is configured, if there is no uplink data in the transmission buffer, the UE 100 determines that the CG transmission trigger is not detected even if there is a transmission opportunity using the CG resource. good too. As described above, in this embodiment, CG transmission may be MAC PDU transmission. That is, for example, when there is no uplink data in the transmission buffer and CG transmission (transmission of MAC PDUs to the base station 200) is not executed (triggered), the PDCCH monitoring state need not be switched. That is, in this embodiment, uplink data may correspond to MAC PDUs. Uplink data (that is, MAC PDU) may correspond to user data.
 ステップS34において、UE100は、ステップS31で設定されたCG設定に基づいて、CG送信トリガに応じてPUSCH上で、基地局200に対するCG送信を行う。 In step S34, the UE 100 performs CG transmission to the base station 200 on PUSCH in response to the CG transmission trigger, based on the CG settings set in step S31.
 ステップS35において、基地局200は、CG送信による上りリンクデータの受信状況に応じて、送達確認情報(ACK又はNACK)をUE100へ送信してよい。また、基地局200は、CG送信の再送を指示してもよい。例えば、基地局200は、CS-RNTIによってスクランブルされたCRCパリティビットが付加されたDCIフォーマット(例えば、DCIフォーマット0_1又は0_2)を用いて、CG送信の再送を指示してもよい。例えば、CG送信の再送は、DCIフォーマットに含まれる新規データ指示子(New Data Indicator:NDI)を用いて(例えば、新規データ指示子(NDI)の値を1にセットすることによって)指示されてもよい。すなわち、基地局200は、CS-RNTIによってスクランブルされたCRCパリティビットが付加されたPDCCHを用いて、CG送信の再送を指示してもよい。本実施形態において、送達確認情報は、DCIフォーマット(PDCCHでもよい)を含んでもよい。すなわち、送達確認情報は、再送を指示するために用いられるDCIフォーマット(PDCCH)を含んでもよい。ここで、再送を指示するために用いられるDCIフォーマット(PDCCH)は、上りリンクデータ(単に、上りリンクでもよい)のハイブリッド自動再送要求(HARQ)の処理を指示するために用いられる再送グラント(上りリンクHARQ再送グラント)とも称される。また、送達確認情報は、ACK又はNACKであってもよい。 In step S35, the base station 200 may transmit acknowledgment information (ACK or NACK) to the UE 100 according to the reception status of uplink data by CG transmission. Also, the base station 200 may instruct retransmission of CG transmission. For example, base station 200 may indicate retransmission of CG transmission using a DCI format (eg, DCI format 0_1 or 0_2) with CRC parity bits scrambled by CS-RNTI. For example, retransmission of CG transmission is indicated using a New Data Indicator (NDI) included in the DCI format (for example, by setting the value of the New Data Indicator (NDI) to 1). good too. That is, base station 200 may instruct retransmission of CG transmission using PDCCH to which CRC parity bits scrambled by CS-RNTI are added. In this embodiment, the acknowledgment information may include a DCI format (which may be PDCCH). That is, the acknowledgment information may include the DCI format (PDCCH) used to indicate retransmission. Here, the DCI format (PDCCH) used to instruct retransmission is a retransmission grant (uplink Also called link HARQ retransmission grant). Also, the acknowledgment information may be ACK or NACK.
 UE100は、送達確認情報を受信する。UE100は、送達確認情報に基づいて、CG送信の再送処理(例えば、上りリンクデータ(単に、上りリンクでもよい)のハイブリッド自動再送要求(HARQ)処理)を実行する。例えば、UE100は、CG送信の再送を指示するために用いられるDCIフォーマットの受信に基づいて(すなわち、DCIフォーマットが送信されるPDCCHの検出に基づいて)、CG送信の再送を実行してもよい。すなわち、UE100は、CG送信を実行した後に、CG送信の再送を指示するために用いられるDCIフォーマットの受信を試みてもよい。すなわち、UE100は、CG送信を実行した後に、CG送信の再送を指示するために用いられるPDCCHの監視を実行してもよい。  UE 100 receives the acknowledgment information. Based on the acknowledgment information, the UE 100 performs CG transmission retransmission processing (eg, hybrid automatic repeat request (HARQ) processing for uplink data (or simply uplink)). For example, the UE 100 may perform retransmission of CG transmission based on reception of the DCI format used to instruct retransmission of CG transmission (that is, based on detection of the PDCCH in which the DCI format is transmitted). . That is, after executing CG transmission, UE 100 may attempt to receive a DCI format used to instruct retransmission of CG transmission. That is, UE 100 may monitor the PDCCH used to instruct retransmission of CG transmission after executing CG transmission.
 以上のように、UE100は、所定の送信トリガに応じて、基地局200への上りリンク送信であるCG送信を行う。このようなCG送信は、PDCCH監視アダプテーションの実行によって、パワーセービング状態(すなわち、PDCCHの監視周期を長くする又はPDCCHの監視をスキップする状態)において発生し得る。CG送信の後は、UE100と基地局200との間で無線通信が行われるため、CG送信の送信トリガを契機としてPDCCH監視状態をパワーセービング状態から切り替えて、パワーセービング状態から脱することが好ましい。 As described above, the UE 100 performs CG transmission, which is uplink transmission to the base station 200, in response to a predetermined transmission trigger. Such CG transmission may occur in a power saving state (ie, a state of lengthening the PDCCH monitoring period or skipping PDCCH monitoring) by performing PDCCH monitoring adaptation. After the CG transmission, wireless communication is performed between the UE 100 and the base station 200. Therefore, it is preferable to switch the PDCCH monitoring state from the power saving state with the transmission trigger of the CG transmission as an opportunity to exit the power saving state. .
 ここで、UE100がCG送信に応じてPDCCH監視状態を切り替える場合において、UE100が自律的にPDCCH監視状態を切り替えると、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じ得る。そのため、UE100がPDCCH監視状態を切り替えた後、基地局200がUE100との無線通信を適切に行うことができない懸念がある。よって、本実施形態では、CG送信に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことを可能とする。 Here, when the UE 100 switches the PDCCH monitoring state according to CG transmission, when the UE 100 autonomously switches the PDCCH monitoring state, the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200 are changed. can be inconsistent. Therefore, there is a concern that the base station 200 cannot properly perform radio communication with the UE 100 after the UE 100 switches the PDCCH monitoring state. Therefore, in this embodiment, it is possible to switch the PDCCH monitoring state based on CG transmission under the control of the base station 200 .
 また、UE100がCG送信に応じてPDCCH監視状態を切り替える場合において、MACレイヤの挙動(特に、PDCCH監視アダプテーションに関するDRX動作)が、3GPP技術仕様書において規定されていない。このため、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じ得る。そのため、UE100がPDCCH監視状態を切り替えた後、基地局200がUE100との無線通信を適切に行うことができない懸念がある。 Also, when the UE 100 switches the PDCCH monitoring state according to CG transmission, the behavior of the MAC layer (in particular, DRX operation related to PDCCH monitoring adaptation) is not defined in the 3GPP technical specifications. Therefore, a discrepancy may occur between the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 . Therefore, there is a concern that the base station 200 cannot properly perform radio communication with the UE 100 after the UE 100 switches the PDCCH monitoring state.
 ここで、本実施形態における「PDCCH監視状態」は、PDCCHの監視をスキップすること、及び/又は、設定されたSSSGでPDCCHの監視を実行することが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHの監視をスキップする動作から、設定されたSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定されたSSSGでPDCCHの監視をする動作から、PDCCHの監視をスキップする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定された第1のSSSGでPDCCHの監視をする動作から、設定された第2のSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。 Here, the "PDCCH monitoring state" in this embodiment may include skipping PDCCH monitoring and/or performing PDCCH monitoring in the configured SSSG. For example, switching the PDCCH monitoring state may include switching the operation from skipping PDCCH monitoring to monitoring PDCCH with the configured SSSG. Also, switching the PDCCH monitoring state may include switching the operation from the operation of monitoring the PDCCH in the configured SSSG to the operation of skipping the monitoring of the PDCCH. In addition, switching the PDCCH monitoring state includes switching the operation from the operation of monitoring the PDCCH in the set first SSSG to the operation of monitoring the PDCCH in the set second SSSG. good too.
 また、PDCCH監視状態の切り替えとは、PDCCHの監視に用いられるSSSGを切り替えることが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHスキッピング用に設定されたSSSGから、PDCCHの監視用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定されたSSSGから、PDCCHスキッピング用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定された第1のSSSGから、PDCCHの監視用に設定された第2のSSSGに、SSSGを切り替えることが含まれてもよい。 Also, switching the PDCCH monitoring state may include switching the SSSG used for PDCCH monitoring. For example, switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH skipping to the SSSG configured for PDCCH monitoring. Also, switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH monitoring to the SSSG configured for PDCCH skipping. Also, switching the PDCCH monitoring state may include switching the SSSG from the first SSSG set for PDCCH monitoring to the second SSSG set for PDCCH monitoring.
 すなわち、本実施形態において、PDCCH監視状態の切り替えとは、PDCCH監視アダプテーションの実行に対応してもよい。ここで、本実施形態において、説明を容易するために、PDCCHの監視に用いられるSSSGをPDCCH監視状態とも記載する。また、上述のとおり、設定されたSSSGには、デフォルトSSSG(Default SSSG)が含まれる。 That is, in the present embodiment, switching the PDCCH monitoring state may correspond to execution of PDCCH monitoring adaptation. Here, in the present embodiment, the SSSG used for PDCCH monitoring is also referred to as a PDCCH monitoring state for ease of explanation. Also, as described above, the set SSSG includes a default SSSG.
 (4)ユーザ装置の構成
 図10を参照して、本実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(4) Configuration of User Equipment A configuration of the UE 100 according to the present embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitting section 111 and the receiving section 112 may be configured including an antenna and an RF circuit. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
 本実施形態に係るUE100は、基地局200との無線通信を行う。送信部111は、基地局からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行う。制御部120は、CG送信又はCG送信トリガに応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行う。制御部120は、CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-RTTタイマの満了に応じて、CG起因切り替え処理を行う。HARQ-RTTタイマは、UE100が上りリンクデータに対応する送達確認情報を基地局から受信するまでの最小期間を規定するタイマである。例えば、HARQ-RTTタイマは、再送を指示するために用いられるDCIフォーマット(PDCCH)が期待される前の最小期間として規定されてもよい。すなわち、HARQ-RTTタイマは、MACエンティティによって、上りリンクHARQ再送グラントが期待される前の最小期間として規定されてもよい。ここで、HARQ-RTTタイマは、上りリンクのHARQプロセス毎に規定(設定)されてもよい。これにより、基地局200が、UE100がHARQ-RTTタイマの満了に応じてCG起因切り替え処理を行うことを把握することで、CG送信に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、PDCCH監視状態を切り替える場合であっても無線通信を適切に行うことが可能になる。また、HARQ-RTTタイマが満了するまで、基地局200からの送達確認情報が届かないため、UE100は、送達確認情報が届かない間、パワーセービング状態を維持することが可能となる。 The UE 100 according to this embodiment performs wireless communication with the base station 200. The transmitting unit 111 performs CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station. The control unit 120 performs CG-induced switching processing for switching the PDCCH monitoring state regarding monitoring of the physical downlink control channel (PDCCH) according to CG transmission or a CG transmission trigger. The control unit 120 performs CG-induced switching processing in response to expiration of the HARQ-RTT timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission. The HARQ-RTT timer is a timer that defines the minimum period until the UE 100 receives acknowledgment information corresponding to uplink data from the base station. For example, the HARQ-RTT timer may be defined as the minimum period before a DCI format (PDCCH) used to indicate retransmissions is expected. That is, the HARQ-RTT timer may be defined by the MAC entity as the minimum duration before an uplink HARQ retransmission grant is expected. Here, the HARQ-RTT timer may be defined (set) for each uplink HARQ process. As a result, the base station 200 recognizes that the UE 100 performs CG-induced switching processing in response to the expiration of the HARQ-RTT timer, thereby switching the PDCCH monitoring state based on CG transmission under the control of the base station 200. Therefore, even when the PDCCH monitoring state is switched, radio communication can be appropriately performed. Further, since the acknowledgment information from the base station 200 does not arrive until the HARQ-RTT timer expires, the UE 100 can maintain the power saving state while the acknowledgment information does not arrive.
 また、制御部120は、PDCCH監視状態がPDCCHの監視を行わないPDCCHスキッピング状態である場合、HARQ-RTTタイマが満了したことに基づいて、CG起因切り替え処理によってPDCCHを監視する状態へ切り替えてよい。これにより、UE100は、PDCCHの監視をスキップしなくなり、CG送信後に生じたPDCCHを受信可能となる。 Further, when the PDCCH monitoring state is a PDCCH skipping state in which PDCCH is not monitored, the control unit 120 may switch to the state of monitoring PDCCH by CG-based switching processing based on the expiration of the HARQ-RTT timer. . As a result, UE 100 no longer skips PDCCH monitoring, and can receive PDCCH generated after CG transmission.
 また、制御部120は、PDCCHスキッピング状態の期間(すなわち、PDCCHの監視をスキップする期間)と対応付けられたスキップ期間タイマを有し、スキップ期間タイマが動作中である場合に、PDCCHスキッピング状態を維持してよい。ここで、制御部120は、HARQ-RTTタイマの満了に基づいて、スキップ期間タイマを停止してよい。すなわち、制御部120は、HARQ-RTTタイマの満了に基づいて、スキップ期間タイマを停止し、PDCCHを監視する状態へ切り替えてよい。これにより、UE100は、PDCCHの監視をスキップしなくなり、CG送信後に生じたPDCCHの監視が可能となる。 In addition, control section 120 has a skip period timer associated with the period of the PDCCH skipping state (that is, the period for skipping PDCCH monitoring), and when the skip period timer is in operation, the PDCCH skipping state is set. may be maintained. Here, the control unit 120 may stop the skip period timer based on the expiration of the HARQ-RTT timer. That is, the control unit 120 may stop the skip period timer and switch to the state of monitoring the PDCCH based on the expiration of the HARQ-RTT timer. As a result, UE 100 no longer skips PDCCH monitoring, and can monitor PDCCH generated after CG transmission.
 また、制御部120は、現在のサーチスペースセットグループ(SSSG)においてPDCCHスキッピング状態である場合、HARQ-RTTタイマの満了に応じて、CG起因切り替え処理によってPDCCHを監視する状態へ切り替えてよい。これにより、UE100は、PDCCHの監視をスキップしなくなり、CG送信後に生じたPDCCHの監視が可能となる。 Also, when the current search space set group (SSSG) is in the PDCCH skipping state, the control unit 120 may switch to the state of monitoring the PDCCH by CG-based switching processing upon expiration of the HARQ-RTT timer. As a result, UE 100 no longer skips PDCCH monitoring, and can monitor PDCCH generated after CG transmission.
 また、制御部120は、HARQ-RTTタイマの満了に応じて、PDCCHを監視するSSSGとして所定のSSSGに切り替えてよい。これにより、所定のSSSGにおいて、CG送信後に生じたPDCCHの監視が可能となる。 Also, the control unit 120 may switch to a predetermined SSSG as the SSSG for monitoring the PDCCH in response to the expiration of the HARQ-RTT timer. This enables monitoring of PDCCHs occurring after CG transmission in a given SSSG.
 例えば、制御部120は、デフォルトに設定されたデフォルトSSSGが設定されている場合、HARQ-RTTタイマの満了に応じて、所定のSSSGとして、デフォルトSSSGに切り替えてよい。基地局200は、設定されたデフォルトSSSGにおいてPDCCHの監視が実行されることを把握できる。 For example, if a default SSSG is set, the control unit 120 may switch to the default SSSG as the predetermined SSSG upon expiration of the HARQ-RTT timer. The base station 200 can understand that PDCCH monitoring is performed in the configured default SSSG.
 また、制御部120は、HARQ-RTTタイマの満了に応じて、所定のSSSGとして、基地局200によってRRCメッセージ(例えば、RRCメッセージに含まれるPMA設定)を用いて設定されたSSSGに切り替えてよい。例えば、制御部120は、デフォルトに設定されたデフォルトSSSGが設定されていない場合、HARQ-RTTタイマの満了に応じて、基地局200により設定された所定のSSSGに切り替えてよい。基地局200は、デフォルトSSSGが設定されていない場合、基地局200により設定された所定のSSSGにおいてPDCCHの監視が実行されることを把握できる。 In addition, the control unit 120 may switch to the SSSG set by the base station 200 using the RRC message (for example, the PMA setting included in the RRC message) as the predetermined SSSG in response to the expiration of the HARQ-RTT timer. . For example, if the default SSSG is not set, the control unit 120 may switch to a predetermined SSSG set by the base station 200 upon expiration of the HARQ-RTT timer. The base station 200 can understand that PDCCH monitoring will be performed in a predetermined SSSG set by the base station 200 when the default SSSG is not set.
 また、受信部112は、CG起因切り替え処理を制御するための切り替え制御情報を受信してよい。制御部120は、切り替え制御情報に基づいて、CG起因切り替え処理を制御する。これにより、CG送信に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、PDCCH監視状態を切り替える場合であっても無線通信を適切に行うことが可能になる。 Also, the receiving unit 112 may receive switching control information for controlling CG-induced switching processing. The control unit 120 controls the CG-induced switching process based on the switching control information. As a result, switching of the PDCCH monitoring state based on CG transmission can be performed under the control of the base station 200, and even when the PDCCH monitoring state is switched, radio communication can be appropriately performed.
 また、切り替え制御情報は、CG起因切り替え処理を有効にするか否かに関する情報であってよい。制御部120は、CG起因切り替え処理を有効にすることを切り替え制御情報が示すことに基づいてCG起因切り替え処理を行ってよい。これにより、基地局200がCG起因切り替え処理の有効/無効を明示的に示すことで、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることをさらに低減可能となる。 Also, the switching control information may be information regarding whether to enable CG-based switching processing. The control unit 120 may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled. As a result, the base station 200 explicitly indicates whether the CG-induced switching process is valid or invalid, and furthermore, a discrepancy occurs between the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200. can be reduced.
 (5)基地局の構成
 図11を参照して、本実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
(5) Configuration of Base Station The configuration of the base station 200 according to this embodiment will be described with reference to FIG. Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an antenna and an RF circuit. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network interface 220 transmits and receives signals to and from the network. The network interface 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Also, the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 本実施形態に係る基地局200は、UE100との無線通信を行う。基地局200において、受信部212は、基地局200からの設定グラント(CG)に基づく上りリンク送信であるCG送信による上りリンクデータをUE100から受信する。送信部211は、CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を制御するための切り替え制御情報を、UE100へ送信する。HARQ-RTTタイマは、UE100が上りリンクデータに対応する送達確認情報を基地局から受信するまでの最小期間を規定するタイマである。これにより、基地局200が、UE100がHARQ-RTTタイマの満了に応じてCG起因切り替え処理を行うことを把握することで、CG送信に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、PDCCH監視状態を切り替える場合であっても無線通信を適切に行うことが可能になる。また、HARQ-RTTタイマが満了するまで、基地局200からの送達確認情報が届かないため、UE100は、送達確認情報が届かない間、パワーセービング状態を維持することが可能となる。 The base station 200 according to this embodiment performs wireless communication with the UE 100. In the base station 200 , the receiving unit 212 receives from the UE 100 uplink data by CG transmission, which is uplink transmission based on the configuration grant (CG) from the base station 200 . The transmission unit 211 transmits PDCCH related to monitoring of a physical downlink control channel (PDCCH) in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission. Switching control information for controlling CG-induced switching processing for switching the monitoring state is transmitted to the UE 100 . The HARQ-RTT timer is a timer that defines the minimum period until the UE 100 receives acknowledgment information corresponding to uplink data from the base station. As a result, the base station 200 recognizes that the UE 100 performs CG-induced switching processing in response to the expiration of the HARQ-RTT timer, thereby switching the PDCCH monitoring state based on CG transmission under the control of the base station 200. Therefore, even when the PDCCH monitoring state is switched, radio communication can be appropriately performed. Further, since the acknowledgment information from the base station 200 does not arrive until the HARQ-RTT timer expires, the UE 100 can maintain the power saving state while the acknowledgment information does not arrive.
 (6)CG起因切り替え処理
 上述の構成及び動作を前提として、本実施形態に係るCG起因切り替え処理について説明する。従って、UE100は、複数種別の上りリンク送信のうちCG送信に応じて、PDCCH監視状態を切り替える切り替え処理を行う。
(6) CG Caused Switching Processing Assuming the configuration and operation described above, the CG caused switching processing according to the present embodiment will be described. Therefore, the UE 100 performs switching processing for switching the PDCCH monitoring state according to CG transmission among multiple types of uplink transmission.
 (6.1)CG起因切り替え処理に関する動作シーケンス例
 図12を参照して、本実施形態に係るCG起因切り替え処理に関する動作シーケンス例について説明する。本動作シーケンス例において、UE100(制御部120)は、CG送信に応じてCG起因切り替え処理を行うことにより、CG送信後にPDCCH監視状態を切り替える。
(6.1) Operation Sequence Example Regarding CG-Induced Switching Processing An operation sequence example concerning the CG-induced switching processing according to the present embodiment will be described with reference to FIG. In this operation sequence example, the UE 100 (control unit 120) switches the PDCCH monitoring state after CG transmission by performing CG-induced switching processing according to CG transmission.
 ステップS101において、基地局200(送信部211)は、RRCメッセージをUE100に送信する。RRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)であってもよい。UE100(受信部112)は、RRCメッセージを受信する。 In step S101, the base station 200 (transmitting section 211) transmits an RRC message to the UE100. The RRC message may be a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE. UE 100 (receiving unit 112) receives the RRC message.
 RRCメッセージは、複数種別の上りリンク送信のうち少なくともいずれかの上りリンク送信に応じてPDCCH監視状態を切り替える切り替え処理を制御するための切り替え制御情報を含む。切り替え制御情報は、複数種別の上りリンク送信に共通に適用可能な情報要素に含まれている。切り替え制御情報は、当該情報要素として、例えば、UE固有のPDCCHパラメータを設定するためのPDCCH設定(PDCCH-Config)に含まれてよい。 The RRC message includes switching control information for controlling switching processing for switching the PDCCH monitoring state according to at least one of the multiple types of uplink transmission. The switching control information is included in an information element commonly applicable to multiple types of uplink transmission. The switching control information may be included as the information element, for example, in PDCCH configuration (PDCCH-Config) for setting UE-specific PDCCH parameters.
 切り替え制御情報は、複数種別の上りリンク送信に応じた切り替え処理に共通に適用される共通パラメータ(例えば、共通の設定)を含んでよい。従って、共通パラメータは、例えば、CG起因切り替え処理、スケジューリング要求(SR)に応じてPDCCH監視状態を切り替えるSR起因切り替え処理、及びRACH送信(又はPRACH送信)に応じてPDCCH監視状態を切り替えるRACH起因切り替え処理を制御するために共通に適用されてよい。これにより、UE100(制御部120)は、共通パラメータに基づいて、複数種別の上りリンク送信の少なくともいずれかを契機として、各種切り替え処理を実行できる。 The switching control information may include common parameters (for example, common settings) commonly applied to switching processes corresponding to multiple types of uplink transmission. Therefore, the common parameters are, for example, CG-induced switching processing, SR-induced switching processing for switching the PDCCH monitoring state according to a scheduling request (SR), and RACH-induced switching for switching the PDCCH monitoring state according to RACH transmission (or PRACH transmission). It may be commonly applied to control processing. This allows the UE 100 (control unit 120) to execute various switching processes based on the common parameter, triggered by at least one of the multiple types of uplink transmission.
 切り替え制御情報は、複数種別の上りリンク送信に応じた切り替え処理のそれぞれに個別に適用される個別パラメータ(例えば、個別の設定)を含んでよい。従って、個別パラメータは、例えば、CG起因切り替え処理を制御するためにのみ適用されるパラメータ、SR起因切り替え処理を制御するためにのみ適用されるパラメータ、及びRACH起因切り替え処理を制御するためにのみ適用されるパラメータの少なくともいずれかを含んでよい。 The switching control information may include individual parameters (for example, individual settings) individually applied to each of the switching processes corresponding to multiple types of uplink transmission. Therefore, the individual parameters are, for example, parameters applied only to control the CG-induced switching process, parameters applied only to control the SR-induced switching process, and parameters applied only to control the RACH-induced switching process. may include at least any of the parameters
 個別パラメータは、共通パラメータにより設定されない設定を示してよい。或いは、個別パラメータは、共通パラメータよりも優先される設定を示してよい。また、個別パラメータは、複数種別の上りリンク送信のうち少なくともいずれかの上りリンク送信において切り替え処理を有効にするか否かを示してよい。例えば、個別パラメータは、CG起因切り替え処理を有効(enable)にするか又は無効(disable)にするかを示す1ビットのフラグ情報を含んでもよい。これにより、UE100(制御部120)は、個別パラメータに基づいて、複数種別の上りリンク送信の少なくともいずれかを契機として、有効である各種切り替え処理を実行できる。なお、共通パラメータが、各切り替え処理を有効(enable)にするか又は無効(disable)にするかを示す1ビットのフラグ情報を含んでいてもよい。 Individual parameters may indicate settings that are not set by common parameters. Alternatively, individual parameters may indicate settings that are prioritized over common parameters. Also, the individual parameter may indicate whether or not to enable the switching process in at least one of the multiple types of uplink transmission. For example, the individual parameter may include 1-bit flag information indicating whether to enable or disable the CG-based switching process. By this means, the UE 100 (control unit 120) can execute various effective switching processes triggered by at least one of the plurality of types of uplink transmission based on the individual parameter. Note that the common parameter may include 1-bit flag information indicating whether to enable or disable each switching process.
 また、RRCメッセージは、CG送信を設定するためのCG設定(ConfiguredGrantConfig)を含んでよい。CG設定は、CG起因切り替え処理を制御するためにのみ適用される個別パラメータを含んでいてもよい。 Also, the RRC message may include a CG setting (ConfiguredGrantConfig) for configuring CG transmission. The CG settings may contain individual parameters that apply only to control the CG-triggered switching process.
 従って、PDCCH設定は、共通パラメータと個別パラメータとを含んでいてよい。CG設定は、PDCCH設定に含まれない個別パラメータを含んでいてもよい。また、PDCCH設定は、共通パラメータのみを含み、CG設定は個別パラメータを含んでいてもよい。 Therefore, the PDCCH configuration may include common parameters and individual parameters. The CG configuration may contain individual parameters that are not included in the PDCCH configuration. Also, the PDCCH configuration may include only common parameters and the CG configuration may include dedicated parameters.
 UE100(制御部120)は、切り替え制御情報を受信した場合、上りリンク送信に基づく切り替え処理が有効化されたと判定してもよい。UE100(制御部120)は、切り替え制御情報を受信した場合、CG起因切り替え処理が有効化されたと判定してもよい。 Upon receiving the switching control information, the UE 100 (control unit 120) may determine that switching processing based on uplink transmission has been enabled. When receiving the switching control information, the UE 100 (control unit 120) may determine that the CG-induced switching process is enabled.
 切り替え制御情報は、例えば、上りリンク送信に基づくPDCCH監視アダプテーション(又は当該PDCCH監視アダプテーションの実行)を設定するものであってよい。また、切り替え制御情報は、タイプ2CG送信が有効である(アクティベート化されている)ときのPDCCH監視アダプテーション(又は当該PDCCH監視アダプテーションの実行)を設定するものであってよい。 The switching control information may, for example, configure PDCCH monitoring adaptation (or execution of the PDCCH monitoring adaptation) based on uplink transmission. The switching control information may also configure PDCCH supervisory adaptation (or execution of such PDCCH supervisory adaptation) when type 2 CG transmission is enabled (activated).
 また、切り替え制御情報は、PDCCH監視アダプテーションの設定(PMA設定)を含んでよい。従って、切り替え制御情報は、SSSG設定情報、切り替えタイマ情報、監視期間情報、及び、ケース設定情報の少なくともいずれかの情報を含んでよい。UE100(制御部120)は、RRCメッセージがPMA設定を含む場合に、CG起因切り替え処理が有効化されたと判定してもよい。 Also, the switching control information may include PDCCH monitoring adaptation settings (PMA settings). Therefore, the switching control information may include at least one of SSSG configuration information, switching timer information, monitoring period information, and case configuration information. The UE 100 (control unit 120) may determine that the CG-induced switching process has been activated when the RRC message includes the PMA setting.
 また、切り替え制御情報は、PDCCH設定に含まれずに、CG設定のみに含まれてもよい。この場合、切り替え制御情報は、CG起因切り替え処理を制御するための情報であってよい。CG設定に含まれる切り替え制御情報は、他の上りリンク送信に応じた切り替え処理を制御するための情報を含まなくてよい。 Also, the switching control information may be included only in the CG configuration without being included in the PDCCH configuration. In this case, the switching control information may be information for controlling the CG-induced switching process. The switching control information included in the CG configuration may not include information for controlling switching processing according to other uplink transmissions.
 また、切り替え制御情報は、CG起因切り替え処理を有効にするか否かに関する情報であってよい。UE100(制御部120)は、CG起因切り替え処理を有効にすることを切り替え制御情報が示すことに基づいてCG起因切り替え処理を行ってよい。 Also, the switching control information may be information regarding whether to enable CG-based switching processing. The UE 100 (control unit 120) may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
 また、UE100(制御部120)は、RRCメッセージが切り替え制御情報を含まない場合、CG起因切り替え処理を行わないように制御してもよい。例えば、UE100(制御部120)は、CG起因切り替え処理を有効にすることが設定されていない、及び/又は、CG起因切り替え処理を行うときの切り替え先のPDCCH監視状態(例えばSSSG)が設定されていない場合、CG送信を行ってもCG起因切り替え処理を行わない。これにより、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることを防止できる。 Also, the UE 100 (control unit 120) may control not to perform the CG-induced switching process when the RRC message does not include switching control information. For example, the UE 100 (control unit 120) is not set to enable the CG-induced switching process, and/or the PDCCH monitoring state (for example, SSSG) of the switching destination when performing the CG-induced switching process is set. If not, CG-induced switching processing is not performed even if CG transmission is performed. This can prevent the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 from being inconsistent.
 なお、RRCメッセージは、ステップS104におけるPDCCH監視状態を切り替える設定(すなわち、上りリンク送信(又は当該上りリンク送信のトリガ)と異なる契機でPDCCH監視状態を切り替える設定)を示す情報を含んでいてよい。 Note that the RRC message may include information indicating the setting for switching the PDCCH monitoring state in step S104 (that is, the setting for switching the PDCCH monitoring state at a trigger different from the uplink transmission (or the trigger for the uplink transmission)).
 RRCメッセージは、DRXを設定するためのDRX設定を含んでいてよい。DRX設定は、CG設定を含むRRCメッセージとは別のRRCメッセージに含まれていてもよい。これにより、UE100には、DRXが設定される。UE100(制御部120)は、DRX設定に基づいて、DRX動作を行う。 The RRC message may contain DRX settings for setting up DRX. The DRX settings may be included in a separate RRC message from the RRC message containing the CG settings. DRX is thereby configured in the UE 100 . The UE 100 (control unit 120) performs DRX operation based on the DRX setting.
 DRX設定は、CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いる上りリンク用のHARQ-ラウンドトリップタイム(RTT)タイマ(drx-HARQ-RTT-TimerUL)の値(すなわち、タイマ値)を含んでよい。 The DRX setting is the value of the uplink HARQ-Round Trip Time (RTT) timer (drx-HARQ-RTT-TimerUL) used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by CG transmission (that is, timer value).
 上述のとおり、HARQ-RTTタイマ(drx-HARQ-RTT-TimerUL)は、UE100が上りリンクデータに対応する送達確認情報を基地局200から受信するまでの最小期間として規定されるタイマであってもよい。また、HARQ-RTTタイマは、上りリンク用のHARQ処理毎に、送達確認情報としてULHARQ再送グラントを期待するまでの最小期間として規定されてもよい。例えば、HARQ-RTTタイマは、UE100からトランスポートブロックが送信されたBWPのシンボル数の値によりタイマ値が示されてもよい。 As described above, the HARQ-RTT timer (drx-HARQ-RTT-TimerUL) is a timer defined as the minimum period until UE 100 receives acknowledgment information corresponding to uplink data from base station 200. good. Also, the HARQ-RTT timer may be specified as the minimum period until a UL HARQ retransmission grant is expected as acknowledgment information for each uplink HARQ process. For example, for the HARQ-RTT timer, the timer value may be indicated by the value of the number of BWP symbols in which the transport block is transmitted from the UE 100.
 なお、切り替え制御情報は、HARQ-RTTタイマの満了に応じたCG起因切り替え処理、すなわち、HARQ-RTTタイマの満了をトリガとするCG起因切り替え処理を制御するための情報であってもよい。切り替え制御情報は、当該情報に加えて、例えば、CG送信トリガに応じたCG起因切り替え処理を制御するための情報を含んでいてもよい。切り替え制御情報は、CG送信に応じた、すなわち、CG送信を起因とするCG起因切り替え処理に共通の情報であってもよい。 Note that the switching control information may be information for controlling CG-induced switching processing in response to expiration of the HARQ-RTT timer, that is, information for controlling CG-induced switching processing triggered by expiration of the HARQ-RTT timer. In addition to this information, the switching control information may include, for example, information for controlling CG-induced switching processing in response to a CG transmission trigger. The switching control information may be information common to CG-triggered switching processing caused by CG transmission, that is, according to CG transmission.
 ステップS102において、基地局200(送信部211)は、CG送信としてタイプ2CG送信をUE100へ設定した場合、CG送信をアクティベート化するためのDCIを送信してよい。UE100(受信部112)は、DCIを受信してよい。UE100(制御部230)は、DCIの受信に応じて、CG送信を有効化してよい。 In step S102, the base station 200 (transmitting unit 211) may transmit DCI for activating CG transmission when type 2 CG transmission is set to the UE 100 as CG transmission. The UE 100 (receiving unit 112) may receive the DCI. The UE 100 (control unit 230) may enable CG transmission in response to reception of DCI.
 UE100(受信部112)は、CG送信の設定を受信した後、CG送信をアクティブ化する又は非アクティブ化するDCIを受信してよい。UE100(制御部120)は、DCIに基づいてCG送信がアクティブ化されている場合、切り替え制御情報に基づいてCG起因切り替え処理を行ってよい。これにより、UE100は、CG送信を実際に行っていない場合には、パワーセービング状態を維持することができる。 After receiving the setting for CG transmission, the UE 100 (receiving unit 112) may receive DCI for activating or deactivating CG transmission. When CG transmission is activated based on DCI, the UE 100 (control unit 120) may perform CG-induced switching processing based on switching control information. Thereby, the UE 100 can maintain the power saving state when CG transmission is not actually performed.
 ステップS103において、基地局200(送信部211)は、PDCCHスキッピング又はSSSG切り替えを指示する切り替え指示DCIをPDCCH上でUE100に送信する。UE100(受信部112)は、切り替え指示DCIを受信する。 In step S103, the base station 200 (transmitting section 211) transmits a switching instruction DCI that instructs PDCCH skipping or SSSG switching to the UE 100 on the PDCCH. UE 100 (receiving unit 112) receives the switching instruction DCI.
 ステップS104において、UE100(制御部120)は、切り替え指示DCIの受信に応じて、PDCCH監視状態を切り替える。PDCCHスキッピングが設定されている場合、UE100(制御部120)は、切り替え指示DCI(スキップ指示DCI)の受信に応じて、PDCCHの監視を所定期間にわたってスキップしてもよい。SSSG切り替えが設定されている場合、UE100(制御部120)は、切り替え指示DCIの受信に応じて、当該切り替え指示DCIで指示されたSSSGに切り替えてもよい。その結果、UE100は、PDCCHの監視に必要な消費電力が低減されたパワーセービング状態になる。 In step S104, the UE 100 (control unit 120) switches the PDCCH monitoring state in response to receiving the switching instruction DCI. When PDCCH skipping is configured, UE 100 (control section 120) may skip monitoring of PDCCH over a predetermined period in response to reception of switching instruction DCI (skip instruction DCI). When SSSG switching is set, the UE 100 (control unit 120) may switch to the SSSG indicated by the switching instruction DCI in response to receiving the switching instruction DCI. As a result, UE 100 enters a power saving state in which power consumption required for PDCCH monitoring is reduced.
 ステップS105において、UE100(制御部120)は、CG送信トリガを検知する。 At step S105, the UE 100 (control unit 120) detects a CG transmission trigger.
 ステップS106において、UE100(送信部111)は、ステップS101で設定されたCG設定に基づいて、CG送信トリガに応じてPUCCH上で上りリンクデータを基地局200に送信する。基地局200(受信部212)は、CG送信による上りリンクデータを受信する。 In step S106, the UE 100 (transmitting unit 111) transmits uplink data to the base station 200 on the PUCCH in response to the CG transmission trigger based on the CG settings set in step S101. The base station 200 (receiving unit 212) receives uplink data by CG transmission.
 ステップS107において、UE100(制御部120)は、HARQ-RTTタイマを始動する。UE100(制御部120)は、上りリンク用の設定グラントに基づくCG送信でMAC PDUが送信されて、かつ低レイヤ(すなわち、物理レイヤ)からLBT(Listen-before-talk)失敗インジケーションをMACレイヤで受け取らない場合に、HARQ-RTTタイマを始動してよい。UE100(制御部120)は、対応するCG送信(PUSCH送信)の最初の送信の終了後(バンドル内)の第1シンボルで、当該送信に対応するHARQ処理用のHARQ-RTTタイマを始動してよい。 In step S107, the UE 100 (control unit 120) starts the HARQ-RTT timer. UE 100 (control unit 120) receives MAC PDU by CG transmission based on uplink configuration grant, and sends LBT (Listen-before-talk) failure indication from low layer (that is, physical layer) to MAC layer HARQ-RTT timer may be started if not received in UE 100 (control unit 120) starts the HARQ-RTT timer for HARQ processing corresponding to the corresponding CG transmission (PUSCH transmission) at the first symbol after the end of the first transmission (within the bundle). good.
 ステップS108において、HARQ-RTTタイマが満了する。 At step S108, the HARQ-RTT timer expires.
 ステップS109において、UE100(制御部120)は、CG送信に応じて、PDCCH監視状態を切り替える(CG起因切り替え処理)。具体的には、UE100(制御部120)は、CG送信に応じて始動した上りリンク用のHARQ-RTTタイマの満了に応じて、CG切り替え処理を行う。UE100(制御部120)は、切り替え制御情報に基づいて、CG切り替え処理を制御できる。 In step S109, the UE 100 (control unit 120) switches the PDCCH monitoring state according to CG transmission (CG-induced switching processing). Specifically, the UE 100 (control unit 120) performs CG switching processing in response to expiration of the uplink HARQ-RTT timer started in response to CG transmission. The UE 100 (control unit 120) can control CG switching processing based on the switching control information.
 CG起因切り替え処理は、PDCCH監視状態を第1監視状態から第2監視状態へ切り替える処理である。第1監視状態は、上述のパワーセービング状態に相当する。第2監視状態は、第1監視状態に比べてPDCCHを頻繁に監視する状態である。これにより、CG送信後に生じる無線通信(データ通信)に対応しやすくなる。すなわち、UE100(制御部120)は、CG送信(又はCG送信トリガ)に基づいて、上述のPDCCHスキッピング及び/又はSSSG切り替えを実行してもよい。また、CG起因切り替え処理は、CG送信(又はCG送信トリガ)に基づくPDCCHスキッピング及び/又はSSSG切り替えに関する処理に対応してもよい。 CG-induced switching processing is processing for switching the PDCCH monitoring state from the first monitoring state to the second monitoring state. The first monitoring state corresponds to the power saving state described above. The second monitoring state is a state in which the PDCCH is monitored more frequently than in the first monitoring state. This makes it easier to deal with wireless communication (data communication) that occurs after CG transmission. That is, the UE 100 (control unit 120) may perform the above-described PDCCH skipping and/or SSSG switching based on CG transmission (or CG transmission trigger). Also, the CG-induced switching process may correspond to PDCCH skipping and/or SSSG switching based on CG transmission (or CG transmission triggers).
 例えば、第1監視状態は、第1周期でPDCCHの監視を行う状態であって、第2監視状態は、第1周期よりも短い第2周期でPDCCHの監視を行う状態であってもよい。すなわち、第2監視状態は、第1監視状態に比べてサーチスペース周期間隔が短い状態であってよい。例えば、UE100(制御部120)は、SSSG切り替えが設定されており、長いPDCCH監視周期を有するSSSGへの切り替えがDCIにより指示された後、CG送信に応じて、短いPDCCH監視周期を有するSSSGに切り替える。 For example, the first monitoring state may be a state in which PDCCH is monitored in a first period, and the second monitoring state may be a state in which PDCCH is monitored in a second period shorter than the first period. That is, in the second monitoring state, the search space period interval may be shorter than in the first monitoring state. For example, UE 100 (control unit 120), SSSG switching is set, after the DCI instructs switching to SSSG having a long PDCCH monitoring cycle, in response to CG transmission, to SSSG having a short PDCCH monitoring cycle switch.
 また、第1監視状態は、PDCCHの監視を行わないPDCCHスキッピング状態(すなわち、PDCCHスキッピング)であって、第2監視状態は、周期的にPDCCHの監視を行う状態であってもよい。従って、CG切り替え処理は、PDCCH監視状態をPDCCHスキッピング状態からPDCCHを監視する状態(すなわち、PDCCH監視実行状態)へ切り替える処理であってよい。例えば、UE100(制御部120)は、PDCCHスキッピングが設定されており、PDCCHスキッピングを行うようDCIにより指示された後、CG送信に応じて、PDCCHを監視する状態に切り替える。なお、UE100(制御部120)は、PDCCH監視実行状態へ切り替える処理として、PDCCHスキッピングの実行を停止又はキャンセルしてもよい。 Also, the first monitoring state may be a PDCCH skipping state in which PDCCH is not monitored (that is, PDCCH skipping), and the second monitoring state may be a state in which PDCCH is periodically monitored. Therefore, the CG switching process may be a process of switching the PDCCH monitoring state from the PDCCH skipping state to the PDCCH monitoring state (that is, the PDCCH monitoring execution state). For example, the UE 100 (control unit 120) is set to PDCCH skipping, and after being instructed by the DCI to perform PDCCH skipping, switches to the state of monitoring the PDCCH according to CG transmission. Note that the UE 100 (control unit 120) may stop or cancel execution of PDCCH skipping as a process of switching to the PDCCH monitoring execution state.
 UE100(制御部120)は、自身がパワーセービング状態にあるときにCG送信を行う場合に限り、CG起因切り替え処理を行ってもよい。すなわち、UE100(制御部120)は、自身がパワーセービング状態にないときにCG送信を行う場合には、CG起因切り替え処理を行わなくてもよい。或いは、UE100(制御部120)は、PDCCHスキッピング及び/又はSSSG切り替えが設定された状態においてCG送信を行う場合に限り、CG起因切り替え処理を行ってもよい。すなわち、UE100(制御部120)は、PDCCHスキッピング及び/又はSSSG切り替えが設定されていない場合には、CG起因切り替え処理を行わなくてもよい。このように、UE100(制御部120)は、CG送信を行う際に、PDCCH監視状態がPDCCHスキッピング状態である場合、切り替え制御情報に基づいてCG起因切り替え処理を制御してよい。 The UE 100 (control unit 120) may perform CG-induced switching processing only when performing CG transmission when the UE 100 itself is in the power saving state. That is, the UE 100 (control unit 120) does not need to perform CG-induced switching processing when performing CG transmission when the UE 100 itself is not in the power saving state. Alternatively, the UE 100 (control unit 120) may perform CG-induced switching processing only when CG transmission is performed in a state in which PDCCH skipping and/or SSSG switching are set. That is, UE 100 (control unit 120) does not need to perform CG-induced switching processing when PDCCH skipping and/or SSSG switching are not set. In this way, when the UE 100 (the control unit 120) performs CG transmission and the PDCCH monitoring state is the PDCCH skipping state, the UE 100 may control the CG-induced switching process based on the switching control information.
 UE100(制御部120)は、CG送信を行う際に、PDCCH監視状態が、異なるサーチスペース周期を有する複数のサーチスペースセットグループ(SSSG)のうち、サーチスペース周期が所定値以上であるSSSGが適用されている状態である場合、切り替え制御情報に基づいてCG起因切り替え処理を制御してよい。切り替え制御情報は、所定値を示す情報を含んでいてよい。 When the UE 100 (control unit 120) performs CG transmission, the PDCCH monitoring state applies the SSSG whose search space cycle is equal to or greater than a predetermined value among a plurality of search space set groups (SSSG) having different search space cycles. If it is, the CG-induced switching process may be controlled based on the switching control information. The switching control information may contain information indicating a predetermined value.
 UE100(制御部120)は、CG起因切り替え処理を有効にすることを切り替え制御情報が示す場合に限り、CG起因切り替え処理を行ってもよい。UE100(制御部120)は、CG起因切り替え処理を有効にすることを切り替え制御情報が示すことに基づいてCG起因切り替え処理を行う場合、CG起因切り替え処理において、予め定められたPDCCH監視状態に切り替えてもよい。予め定められたPDCCH監視状態は、上述のデフォルトSSSGであってもよい。 The UE 100 (control unit 120) may perform the CG-induced switching process only when the switching control information indicates that the CG-induced switching process should be enabled. When the UE 100 (control unit 120) performs the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled, the UE 100 switches to a predetermined PDCCH monitoring state in the CG-induced switching process. may The predefined PDCCH monitoring state may be the default SSSG described above.
 UE100(制御部120)は、CG起因切り替え処理による切り替え先のPDCCH監視状態(例えばSSSG)が切り替え制御情報により指定されている場合、切り替え制御情報により指定されたPDCCH監視状態に切り替えてもよい。例えば、CG起因切り替え処理による切り替え後のSSSGを示すインデックスを切り替え制御情報が含む場合、UE100(制御部120)は、当該インデックスが示すSSSGに切り替える。 When the PDCCH monitoring state (for example, SSSG) to be switched to by the CG-induced switching process is designated by the switching control information, the UE 100 (control unit 120) may switch to the PDCCH monitoring state designated by the switching control information. For example, when the switching control information includes an index indicating the SSSG after switching by the CG-induced switching process, the UE 100 (control unit 120) switches to the SSSG indicated by the index.
 また、UE100(制御部120)は、PDCCH監視状態がPDCCHの監視を行わないPDCCHスキッピング状態である場合、HARQ-RTTタイマが満了したことに基づいて、CG起因切り替え処理によってPDCCHを監視する状態へ切り替えてよい。 Further, when the PDCCH monitoring state is a PDCCH skipping state in which PDCCH is not monitored, the UE 100 (control unit 120) shifts to a state of monitoring PDCCH by CG-based switching processing based on the expiration of the HARQ-RTT timer. You can switch.
 具体的には、UE100(制御部120)は、PDCCHスキッピング状態の期間と対応付けられたスキップ期間タイマ(すなわち、切り替えタイマ)を保持している。スキップ期間タイマは、PDCCH skipping duration timerと称されてもよい。UE100(制御部120)は、スキップ期間タイマが動作中である場合に、PDCCHスキッピング状態を維持する。次に、図13(のA1)に示すように、HARQ-RTTタイマの満了に基づいて、スキップ期間タイマを停止してよい。UE100(制御部120)は、HARQ-RTTタイマの満了に基づいて、スキップ期間タイマをキャンセルしてもよい。すなわち、制御部120は、HARQ-RTTタイマの満了に基づいて、スキップ期間タイマを停止し、PDCCHを監視する状態へ切り替えてよい。これにより、UE100(制御部120)は、スキップ期間タイマの停止によって、PDCCHスキッピング状態が維持されなくなり、PDCCH監視状態をPDCCHスキッピング状態から切り替える。 Specifically, the UE 100 (control unit 120) holds a skip period timer (that is, switching timer) associated with the period of the PDCCH skipping state. A skipping duration timer may be referred to as a PDCCH skipping duration timer. UE 100 (control unit 120) maintains the PDCCH skipping state when the skip period timer is in operation. Then, based on the expiration of the HARQ-RTT timer, the skip period timer may be stopped, as shown in FIG. 13 (A1 of FIG. 13). UE 100 (control unit 120) may cancel the skip period timer based on the expiration of the HARQ-RTT timer. That is, the control unit 120 may stop the skip period timer and switch to the state of monitoring the PDCCH based on the expiration of the HARQ-RTT timer. As a result, UE 100 (control section 120) stops maintaining the PDCCH skipping state by stopping the skip period timer, and switches the PDCCH monitoring state from the PDCCH skipping state.
 なお、図13(のB1)に示すように、UE100(制御部120)は、RRC(RRCメッセージ又はRRCシグナリング)によってスキップ期間タイマが設定されていない場合、又は、RRCによってスキップ期間タイマが設定されているが、スキップ期間タイマが動作中でない場合、アクティブ時間中のDRXグループのサービングセル上のPDCCHを監視してよい。 In addition, as shown in FIG. 13 (B1), UE 100 (control unit 120), if the skip period timer is not set by RRC (RRC message or RRC signaling), or if the skip period timer is set by RRC However, if the skip period timer is not running, it may monitor the PDCCH on the serving cell of the DRX group during the active period.
 また、図14(のA2)に示すように、UE100(制御部120)は、現在のサーチスペースセットグループ(SSSG)においてPDCCHスキッピング状態である場合、HARQ-RTTタイマの満了に応じて、CG起因切り替え処理によってPDCCHを監視するPDCCH監視実行状態へ切り替えてよい。具体的には、UE100(制御部120)は、HARQ-RTTタイマの満了に応じて、PDCCHを監視する所定のSSSGに切り替える。 Further, as shown in FIG. 14 (A2), UE 100 (control unit 120) is in the PDCCH skipping state in the current search space set group (SSSG), according to the expiration of the HARQ-RTT timer, CG-induced The switching process may switch to a PDCCH monitoring execution state that monitors the PDCCH. Specifically, UE 100 (control unit 120) switches to a predetermined SSSG that monitors PDCCH upon expiration of the HARQ-RTT timer.
 UE100(制御部120)は、例えば、デフォルトに設定されたデフォルトSSSGが設定されている場合、HARQ-RTTタイマの満了に応じて、所定のSSSGとして、デフォルトSSSGに切り替えてよい。また、UE100(制御部120)は、HARQ-RTTタイマの満了に応じて、所定のSSSGとして、基地局200によってRRCメッセージ(例えば、RRCメッセージに含まれるPMA設定)を用いて設定されたSSSGに切り替えてよい。例えば、UE100(制御部120)は、デフォルトに設定されたデフォルトSSSGが設定されていない場合、HARQ-RTTタイマの満了に応じて、基地局200により設定された所定のSSSG(例えば、SSSG#0)に切り替えてよい。ここで、基地局200によって設定される所定のSSSGは、SSSG#0以外のSSSGであってもよい。 For example, if a default SSSG is set, the UE 100 (control unit 120) may switch to the default SSSG as a predetermined SSSG upon expiration of the HARQ-RTT timer. In addition, UE 100 (control unit 120), in response to the expiration of the HARQ-RTT timer, as a predetermined SSSG, by the base station 200 RRC message (eg, PMA setting included in the RRC message) to the SSSG set using You can switch. For example, UE 100 (control unit 120), if the default SSSG is not set, according to the expiration of the HARQ-RTT timer, predetermined SSSG set by the base station 200 (for example, SSSG # 0 ). Here, the predetermined SSSG set by the base station 200 may be an SSSG other than SSSG#0.
 なお、図14(のB2)に示すように、UE100(制御部120)は、RRC(RRCメッセージ又はRRCシグナリング)によってSSSGが設定されていない場合、又は、RRCによってSSSGが設定されているが、現在のSSSGにおいてPDCCHスキッピング状態でない(すなわち、PDCCHの監視がスキップされていない)場合、アクティブ時間中のDRXグループのサービングセル上のPDCCHを監視してよい。 In addition, as shown in FIG. 14 (B2), the UE 100 (control unit 120), if SSSG is not set by RRC (RRC message or RRC signaling), or SSSG is set by RRC, If there is no PDCCH skipping state (ie PDCCH monitoring is not skipped) in the current SSSG, it may monitor the PDCCH on the serving cell of the DRX group during active time.
 ステップS110において、基地局200(送信部211)は、CG送信による上りリンクデータの受信状況に応じて、送達確認情報をUE100へ送信する。UE100(受信部112)は、CG起因切り替え処理によってPDCCH監視実行状態へ切り替えることによって、基地局200からの送達確認情報を受信できる。例えば、UE100(受信部112)は、CG起因切り替え処理によってPDCCH監視実行状態へ切り替えることによって、CG送信の再送を指示するために用いられるPDCCHの監視を実行することができる。 In step S110, the base station 200 (transmitting unit 211) transmits acknowledgment information to the UE 100 according to the reception status of uplink data by CG transmission. UE 100 (receiving unit 112) can receive acknowledgment information from base station 200 by switching to the PDCCH monitoring execution state by CG-induced switching processing. For example, the UE 100 (receiving section 112) can monitor the PDCCH used to instruct retransmission of CG transmission by switching to the PDCCH monitoring execution state by the CG-induced switching process.
 (6.2)CG起因切り替え処理の具体例
 図15を参照して、本実施形態に係るCG起因切り替え処理の具体例1について説明する。上述のように、CG起因切り替え処理は、PDCCH監視状態を第1監視状態から第2監視状態へ切り替える処理である。第1監視状態は、上述のパワーセービング状態に相当する。本具体例1では、第1監視状態は、第1周期でPDCCHの監視を行う状態であって、第2監視状態は、第1周期よりも短い第2周期でPDCCHの監視を行う状態である。
(6.2) Specific Example of CG-Induced Switching Processing A specific example 1 of the CG-induced switching processing according to the present embodiment will be described with reference to FIG. As described above, the CG-induced switching process is a process of switching the PDCCH monitoring state from the first monitoring state to the second monitoring state. The first monitoring state corresponds to the power saving state described above. In this specific example 1, the first monitoring state is a state in which PDCCH is monitored in a first period, and the second monitoring state is a state in which PDCCH is monitored in a second period shorter than the first period. .
 時刻t11において、UE100(受信部112)は、あるサービングセルにおける下りリンクBWPにおいて、SSSGを指示する切り替え指示DCIを基地局200から受信する。 At time t11, UE 100 (receiving section 112) receives a switching instruction DCI that instructs SSSG from base station 200 in downlink BWP in a serving cell.
 時刻t12において、UE100(制御部120)は、切り替え指示DCIの受信に応じて、指示されたSSSGの適用を開始する(すなわち、第1監視状態を開始する)。UE100(制御部120)は、第1監視状態の開始時に、第1監視状態の持続時間を定める第1タイマを始動する。第1タイマには、例えば期間Zがタイマ値としてセットされる。第1タイマのタイマ値(タイマ設定値)は、RRCメッセージにより基地局200からUE100に設定されてもよい。 At time t12, the UE 100 (control unit 120) starts applying the instructed SSSG (that is, starts the first monitoring state) in response to receiving the switching instruction DCI. The UE 100 (control unit 120) starts a first timer that determines the duration of the first monitoring state when starting the first monitoring state. A period Z, for example, is set as a timer value in the first timer. The timer value (timer set value) of the first timer may be set from the base station 200 to the UE 100 by an RRC message.
 時刻t13において、UE100(送信部111)は、当該サービングセルにおける上りリンクBWPにおいて、CG送信により上りリンクデータを基地局200に送信する。UE100(制御部120)は、CG送信、及び/又は、HARQ-RTTタイマの満了に応じて、所定のSSSGに切り替えるCG起因切り替え処理を行う(すなわち、第2監視状態を開始する)。所定のSSSGは、基地局200が切り替え制御情報により設定したSSSG、デフォルトSSSG(defaultSearchSpaceSet)、又は最初のSSSG(firstSearchSpaceSet)であってもよい。 At time t13, the UE 100 (transmitting section 111) transmits uplink data to the base station 200 by CG transmission in the uplink BWP in the serving cell. The UE 100 (control unit 120) performs CG-induced switching processing to switch to a predetermined SSSG in response to CG transmission and/or expiration of the HARQ-RTT timer (that is, starts the second monitoring state). The predetermined SSSG may be an SSSG set by the base station 200 according to switching control information, a default SSSG (defaultSearchSpaceSet), or a first SSSG (firstSearchSpaceSet).
 UE100(制御部120)は、CG起因切り替え処理を行う際に、第1タイマを停止する。第1タイマを停止することにより、第1タイマの満了によるデフォルトSSSGへの切り替えを防止できる。 The UE 100 (control unit 120) stops the first timer when performing the CG-induced switching process. Stopping the first timer prevents switching to the default SSSG due to expiration of the first timer.
 UE100(制御部120)は、CG起因切り替え処理を行う際に、第2監視状態の持続時間を定める第2タイマを始動する。第2タイマには、例えば期間Yがタイマ値としてセットされる。第2タイマのタイマ値(タイマ設定値)は、RRCメッセージにより基地局200からUE100に設定されてもよい。UE100(制御部120)は、CG起因切り替え処理を行う際に、当該タイマ値をセットした第2タイマを始動する。これにより、基地局200が第2監視状態の持続時間を制御できる。 The UE 100 (control unit 120) starts a second timer that determines the duration of the second monitoring state when performing the CG-induced switching process. A period Y, for example, is set as a timer value in the second timer. The timer value (timer setting value) of the second timer may be set from the base station 200 to the UE 100 by an RRC message. The UE 100 (control unit 120) starts the second timer in which the timer value is set when performing the CG-induced switching process. This allows the base station 200 to control the duration of the second monitoring state.
 UE100(制御部120)は、第2監視状態において、CG送信又はCG送信トリガに応じて第2タイマを再始動してもよい。CG送信によりデータ通信が発生するため、第2タイマを再始動することにより第2監視状態の持続時間を延長できる。 The UE 100 (control unit 120) may restart the second timer in response to CG transmission or a CG transmission trigger in the second monitoring state. Since data communication occurs due to CG transmission, the duration of the second monitoring state can be extended by restarting the second timer.
 UE100(制御部120)は、第2タイマの満了に応じて、予め定められたPDCCH監視状態に切り替える。すなわち、UE100(制御部120)は、期間Yが満了すると、第2監視状態を終了する。第2タイマの満了時に切り替え先となる予め定められたPDCCH監視状態は、デフォルトSSSG(defaultSearchSpaceSet)又は最初のSSSG(firstSearchSpaceSet)であってもよい。 The UE 100 (control unit 120) switches to a predetermined PDCCH monitoring state upon expiration of the second timer. That is, the UE 100 (control unit 120) terminates the second monitoring state when the period Y expires. The predetermined PDCCH monitoring state to switch to upon expiration of the second timer may be the default SSSG (defaultSearchSpaceSet) or the first SSSG (firstSearchSpaceSet).
 図16を参照して、本実施形態に係るCG起因切り替え処理の具体例2について説明する。本具体例2では、第1監視状態は、PDCCHの監視を行わない状態(すなわち、PDCCHスキッピング状態)であって、第2監視状態は、周期的にPDCCHの監視を行う状態である。 A specific example 2 of the CG-induced switching process according to the present embodiment will be described with reference to FIG. In this specific example 2, the first monitoring state is a state in which PDCCH is not monitored (that is, PDCCH skipping state), and the second monitoring state is a state in which PDCCH is periodically monitored.
 時刻t21において、UE100(受信部112)は、あるサービングセルにおける下りリンクBWPにおいて、PDCCHスキッピングを指示する切り替え指示DCIを基地局200から受信する。 At time t21, UE 100 (receiving section 112) receives from base station 200 a switching instruction DCI that instructs PDCCH skipping in downlink BWP in a certain serving cell.
 時刻t22において、UE100(制御部120)は、切り替え指示DCIの受信に応じて、PDCCHスキッピングを開始する(すなわち、第1監視状態を開始する)。UE100(制御部120)は、第1監視状態の開始時に、第1監視状態の持続時間を定める第1タイマを始動する。第1タイマには、例えば期間Xがタイマ値としてセットされる。第1タイマのタイマ値(タイマ設定値)は、RRCメッセージにより基地局200からUE100に設定されてもよい。なお、第1タイマは、スキップ期間タイマに対応する。 At time t22, the UE 100 (control unit 120) starts PDCCH skipping (that is, starts the first monitoring state) in response to receiving the switching instruction DCI. The UE 100 (control unit 120) starts a first timer that determines the duration of the first monitoring state when starting the first monitoring state. A period X, for example, is set as a timer value in the first timer. The timer value (timer set value) of the first timer may be set from the base station 200 to the UE 100 by an RRC message. Note that the first timer corresponds to the skip period timer.
 時刻t23において、UE100(送信部111)は、当該サービングセルにおける上りリンクBWPにおいて、CG送信により上りリンクデータを基地局200に送信する。UE100(制御部120)は、CG送信、及び/又は、HARQ-RTTタイマの満了に応じて、所定のSSSGに切り替えるCG起因切り替え処理を行う(すなわち、第2監視状態を開始する)。その結果、PDCCHスキッピングが終了し、PDCCHの監視が開始(再開)される。所定のSSSGは、基地局200が切り替え制御情報により設定したSSSG、デフォルトSSSG(defaultSearchSpaceSet)、又は最初のSSSG(firstSearchSpaceSet)であってもよい。 At time t23, the UE 100 (transmitting section 111) transmits uplink data to the base station 200 by CG transmission in the uplink BWP in the serving cell. The UE 100 (control unit 120) performs CG-induced switching processing to switch to a predetermined SSSG in response to CG transmission and/or expiration of the HARQ-RTT timer (that is, starts the second monitoring state). As a result, PDCCH skipping ends and PDCCH monitoring is started (restarted). The predetermined SSSG may be an SSSG set by the base station 200 according to switching control information, a default SSSG (defaultSearchSpaceSet), or a first SSSG (firstSearchSpaceSet).
 UE100(制御部120)は、CG起因切り替え処理を行う際に、第1タイマを停止する。第1タイマを停止することにより、第1タイマの満了によるデフォルトSSSGへの切り替えを防止できる。 The UE 100 (control unit 120) stops the first timer when performing the CG-induced switching process. Stopping the first timer prevents switching to the default SSSG due to expiration of the first timer.
 UE100(制御部120)は、CG起因切り替え処理を行う際に、第2監視状態の持続時間を定める第2タイマを始動する。第2タイマには、例えば期間Yがタイマ値としてセットされる。第2タイマのタイマ値(タイマ設定値)は、RRCメッセージにより基地局200からUE100に設定されてもよい。UE100(制御部120)は、CG起因切り替え処理を行う際に、当該タイマ値をセットした第2タイマを始動する。これにより、基地局200が第2監視状態の持続時間を制御できる。 The UE 100 (control unit 120) starts a second timer that determines the duration of the second monitoring state when performing the CG-induced switching process. A period Y, for example, is set as a timer value in the second timer. The timer value (timer setting value) of the second timer may be set from the base station 200 to the UE 100 by an RRC message. The UE 100 (control unit 120) starts the second timer in which the timer value is set when performing the CG-induced switching process. This allows the base station 200 to control the duration of the second monitoring state.
 UE100(制御部120)は、第2監視状態において、CG送信又はCG送信トリガに応じて第2タイマを再始動してもよい。CG送信によりデータ通信が発生するため、第2タイマを再始動することにより第2監視状態の持続時間を延長できる。 The UE 100 (control unit 120) may restart the second timer in response to CG transmission or a CG transmission trigger in the second monitoring state. Since data communication occurs due to CG transmission, the duration of the second monitoring state can be extended by restarting the second timer.
 UE100(制御部120)は、第2タイマの満了に応じて、予め定められたPDCCH監視状態に切り替える。すなわち、UE100(制御部120)は、期間Yが満了すると、第2監視状態を終了する。第2タイマの満了時に切り替え先となる予め定められたPDCCH監視状態は、デフォルトSSSG(defaultSearchSpaceSet)又は最初のSSSG(firstSearchSpaceSet)であってもよい。 The UE 100 (control unit 120) switches to a predetermined PDCCH monitoring state upon expiration of the second timer. That is, the UE 100 (control unit 120) terminates the second monitoring state when the period Y expires. The predetermined PDCCH monitoring state to switch to upon expiration of the second timer may be the default SSSG (defaultSearchSpaceSet) or the first SSSG (firstSearchSpaceSet).
 (7)その他の実施形態
 上述の実施形態において、例えば「上りリンク送信」は、「自発的な上りリンク送信」へと置き換えられてもよい。
(7) Other Embodiments In the above embodiments, for example, "uplink transmission" may be replaced with "voluntary uplink transmission."
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the base station 200 may include multiple units. The plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack. The upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer. The first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit). The plurality of units may include a third unit that performs processing below the PHY layer. The second unit may perform processing above the PHY layer. The third unit may be an RU (Radio Unit). Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, references to "based on" and "depending on/in response to" are used unless otherwise specified. does not mean The phrase "based on" means both "based only on" and "based at least in part on." Similarly, the phrase "depending on" means both "only depending on" and "at least partially depending on." Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first," "second," etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed therein or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in plural unless the context clearly indicates otherwise. shall include things.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 基地局(200)との無線通信を行う通信装置(100)であって、
 前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行う送信部(111)と、
 前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行う制御部(120)と、を備え、
 前記制御部(120)は、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行い、
 前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
 通信装置(100)。
(Appendix 1)
A communication device (100) that performs wireless communication with a base station (200),
a transmission unit (111) that performs CG transmission, which is uplink transmission based on the configuration grant (CG) from the base station (200);
A control unit (120) that performs CG-induced switching processing to switch the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) according to the CG transmission,
The control unit (120) performs the CG-induced switching process in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by the CG transmission. ,
The HARQ-RTT timer is a timer that defines a minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200). The communication device (100).
 (付記2)
 前記制御部(120)は、前記PDCCH監視状態が前記PDCCHの監視を行わないPDCCHスキッピング状態である場合、前記HARQ-RTTタイマが満了したことに基づいて、前記CG起因切り替え処理によって前記PDCCHを監視する状態へ切り替える
 付記1に記載の通信装置(100)。
(Appendix 2)
When the PDCCH monitoring state is a PDCCH skipping state in which the PDCCH is not monitored, the control unit (120) monitors the PDCCH by the CG-based switching process based on the expiration of the HARQ-RTT timer. The communication device (100) according to appendix 1, wherein the communication device (100) switches to a state of
 (付記3)
 前記制御部(120)は、
  前記PDCCHスキッピング状態の期間と対応付けられたスキップ期間タイマを有し、
  前記スキップ期間タイマが動作中である場合に、前記PDCCHスキッピング状態を維持し、
 前記制御部(120)は、前記HARQ-RTTタイマの満了に基づいて、前記スキップ期間タイマを停止する
 付記2に記載の通信装置(100)。
(Appendix 3)
The control unit (120)
a skip duration timer associated with the duration of the PDCCH skipping state;
maintaining the PDCCH skipping state when the skip period timer is running;
The communication device (100) according to appendix 2, wherein the control unit (120) stops the skip period timer based on expiration of the HARQ-RTT timer.
 (付記4)
 前記制御部(120)は、現在のサーチスペースセットグループ(SSSG)において前記PDCCHスキッピング状態である場合、前記HARQ-RTTタイマの満了に応じて、前記CG起因切り替え処理によって前記PDCCHを監視する状態へ切り替える
 付記2に記載の通信装置(100)。
(Appendix 4)
When the current search space set group (SSSG) is in the PDCCH skipping state, the control unit (120) shifts to a state of monitoring the PDCCH by the CG-based switching process in response to the expiration of the HARQ-RTT timer. The communication device (100) according to appendix 2.
 (付記5)
 前記制御部(120)は、前記HARQ-RTTタイマの満了に応じて、前記PDCCHを監視するSSSGとして所定のSSSGに切り替える
 付記4に記載の通信装置(100)。
(Appendix 5)
The communication device (100) according to appendix 4, wherein the control unit (120) switches to a predetermined SSSG as the SSSG for monitoring the PDCCH in response to expiration of the HARQ-RTT timer.
 (付記6)
 前記制御部(120)は、デフォルトに設定されたデフォルトSSSGが設定されている場合、前記HARQ-RTTタイマの満了に応じて、前記所定のSSSGとして、前記デフォルトSSSGに切り替える
 付記5に記載の通信装置(100)。
(Appendix 6)
The control unit (120) switches to the default SSSG as the predetermined SSSG in response to expiration of the HARQ-RTT timer when a default SSSG is set. Communication according to appendix 5 A device (100).
 (付記7)
 前記制御部(120)は、前記デフォルトSSSGが設定されていない場合、前記HARQ-RTTタイマの満了に応じて、前記基地局(200)により設定された前記所定のSSSGに切り替える
 付記6に記載の通信装置(100)。
(Appendix 7)
The control unit (120) switches to the predetermined SSSG set by the base station (200) upon expiration of the HARQ-RTT timer when the default SSSG is not set. A communication device (100).
 (付記8)
 前記CG起因切り替え処理を制御するための切り替え制御情報を受信する受信部(112)をさらに備え、
 前記制御部(120)は、前記切り替え制御情報に基づいて、前記CG起因切り替え処理を制御する
 付記1から7のいずれか1項に記載の通信装置(100)。
(Appendix 8)
further comprising a receiving unit (112) for receiving switching control information for controlling the CG-induced switching process,
8. The communication device (100) according to any one of appendices 1 to 7, wherein the control unit (120) controls the CG-induced switching process based on the switching control information.
 (付記9)
 前記切り替え制御情報は、前記CG起因切り替え処理を有効にするか否かに関する情報であり、
 前記制御部(120)は、前記CG起因切り替え処理を有効にすることを前記切り替え制御情報が示すことに基づいて前記CG起因切り替え処理を行う
 付記8に記載の通信装置(100)。
(Appendix 9)
The switching control information is information regarding whether to enable the CG-based switching process,
The communication device (100) according to appendix 8, wherein the control unit (120) performs the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
 (付記10)
 通信装置(100)との無線通信を行う基地局(200)であって、
 前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信による上りリンクデータを前記通信装置(100)から受信する受信部(212)と、
 前記CG送信で送信した前記上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を制御するための切り替え制御情報を、前記通信装置(100)へ送信する送信部(211)と、を備え、
 前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
 基地局。
(Appendix 10)
A base station (200) that performs wireless communication with a communication device (100),
a receiving unit (212) that receives uplink data by CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station (200), from the communication device (100);
Physical downlink control channel (PDCCH) in response to expiration of the HARQ-round trip time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of the uplink data transmitted in the CG transmission PDCCH monitoring state related to monitoring a transmission unit (211) for transmitting switching control information for controlling switching processing caused by CG switching to the communication device (100);
The HARQ-RTT timer is a timer that defines the minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).
 (付記11)
 基地局(200)との無線通信を行う通信装置(100)で実行される通信方法であって、
 前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行うステップと、
 前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行うステップと、を備え、
 前記CG起因切り替え処理を行うステップでは、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行い、
 前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
 通信方法。
(Appendix 11)
A communication method executed by a communication device (100) that performs wireless communication with a base station (200),
a step of performing CG transmission, which is an uplink transmission based on a configuration grant (CG) from the base station (200);
According to the CG transmission, performing a CG-induced switching process for switching a PDCCH monitoring state regarding monitoring of a physical downlink control channel (PDCCH);
In the step of performing the CG-induced switching process, in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted in the CG transmission, the CG-induced switching process and
The HARQ-RTT timer is a timer that defines a minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).

Claims (11)

  1.  基地局(200)との無線通信を行う通信装置(100)であって、
     前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行う送信部(111)と、
     前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行う制御部(120)と、を備え、
     前記制御部(120)は、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行い、
     前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
     通信装置(100)。
    A communication device (100) that performs wireless communication with a base station (200),
    a transmission unit (111) that performs CG transmission, which is uplink transmission based on the configuration grant (CG) from the base station (200);
    A control unit (120) that performs CG-induced switching processing to switch the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) according to the CG transmission,
    The control unit (120) performs the CG-induced switching process in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted by the CG transmission. ,
    The HARQ-RTT timer is a timer that defines a minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200). The communication device (100).
  2.  前記制御部(120)は、前記PDCCH監視状態が前記PDCCHの監視を行わないPDCCHスキッピング状態である場合、前記HARQ-RTTタイマが満了したことに基づいて、前記CG起因切り替え処理によって前記PDCCHを監視する状態へ切り替える
     請求項1に記載の通信装置(100)。
    When the PDCCH monitoring state is a PDCCH skipping state in which the PDCCH is not monitored, the control unit (120) monitors the PDCCH by the CG-based switching process based on the expiration of the HARQ-RTT timer. The communication device (100) of claim 1, wherein the communication device (100) switches to a state of
  3.  前記制御部(120)は、
      前記PDCCHスキッピング状態の期間と対応付けられたスキップ期間タイマを有し、
      前記スキップ期間タイマが動作中である場合に、前記PDCCHスキッピング状態を維持し、
     前記制御部(120)は、前記HARQ-RTTタイマの満了に基づいて、前記スキップ期間タイマを停止する
     請求項2に記載の通信装置(100)。
    The control unit (120)
    a skip duration timer associated with the duration of the PDCCH skipping state;
    maintaining the PDCCH skipping state when the skip period timer is running;
    The communication device (100) according to claim 2, wherein the controller (120) stops the skip duration timer based on expiration of the HARQ-RTT timer.
  4.  前記制御部(120)は、現在のサーチスペースセットグループ(SSSG)において前記PDCCHスキッピング状態である場合、前記HARQ-RTTタイマの満了に応じて、前記CG起因切り替え処理によって前記PDCCHを監視する状態へ切り替える
     請求項2に記載の通信装置(100)。
    When the current search space set group (SSSG) is in the PDCCH skipping state, the control unit (120) shifts to a state of monitoring the PDCCH by the CG-based switching process in response to the expiration of the HARQ-RTT timer. 3. The communication device (100) of claim 2, wherein the switching.
  5.  前記制御部(120)は、前記HARQ-RTTタイマの満了に応じて、前記PDCCHを監視するSSSGとして所定のSSSGに切り替える
     請求項4に記載の通信装置(100)。
    The communication device (100) according to claim 4, wherein the control unit (120) switches the SSSG for monitoring the PDCCH to a predetermined SSSG in response to expiration of the HARQ-RTT timer.
  6.  前記制御部(120)は、デフォルトに設定されたデフォルトSSSGが設定されている場合、前記HARQ-RTTタイマの満了に応じて、前記所定のSSSGとして、前記デフォルトSSSGに切り替える
     請求項5に記載の通信装置(100)。
    6. The control unit (120) according to claim 5, wherein when a default SSSG set to a default is set, the predetermined SSSG is switched to the default SSSG according to expiration of the HARQ-RTT timer. A communication device (100).
  7.  前記制御部(120)は、前記デフォルトSSSGが設定されていない場合、前記HARQ-RTTタイマの満了に応じて、前記基地局(200)により設定された前記所定のSSSGに切り替える
     請求項6に記載の通信装置(100)。
    7. The control unit (120) switches to the predetermined SSSG set by the base station (200) upon expiration of the HARQ-RTT timer when the default SSSG is not set. communication device (100).
  8.  前記CG起因切り替え処理を制御するための切り替え制御情報を受信する受信部(112)をさらに備え、
     前記制御部(120)は、前記切り替え制御情報に基づいて、前記CG起因切り替え処理を制御する
     請求項1又は2に記載の通信装置(100)。
    further comprising a receiving unit (112) for receiving switching control information for controlling the CG-induced switching process,
    The communication device (100) according to Claim 1 or 2, wherein the control unit (120) controls the CG-induced switching process based on the switching control information.
  9.  前記切り替え制御情報は、前記CG起因切り替え処理を有効にするか否かに関する情報であり、
     前記制御部(120)は、前記CG起因切り替え処理を有効にすることを前記切り替え制御情報が示すことに基づいて前記CG起因切り替え処理を行う
     請求項8に記載の通信装置(100)。
    The switching control information is information regarding whether to enable the CG-based switching process,
    The communication device (100) according to Claim 8, wherein the control unit (120) performs the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
  10.  通信装置(100)との無線通信を行う基地局(200)であって、
     前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信による上りリンクデータを前記通信装置(100)から受信する受信部(212)と、
     前記CG送信で送信した前記上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を制御するための切り替え制御情報を、前記通信装置(100)へ送信する送信部(211)と、を備え、
     前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
     基地局。
    A base station (200) that performs wireless communication with a communication device (100),
    a receiving unit (212) that receives uplink data by CG transmission, which is uplink transmission based on a configuration grant (CG) from the base station (200), from the communication device (100);
    Physical downlink control channel (PDCCH) in response to expiration of the HARQ-round trip time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of the uplink data transmitted in the CG transmission PDCCH monitoring state related to monitoring a transmission unit (211) for transmitting switching control information for controlling switching processing caused by CG switching to the communication device (100);
    The HARQ-RTT timer is a timer that defines the minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).
  11.  基地局(200)との無線通信を行う通信装置(100)で実行される通信方法であって、
     前記基地局(200)からの設定グラント(CG)に基づく上りリンク送信であるCG送信を行うステップと、
     前記CG送信に応じて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるCG起因切り替え処理を行うステップと、を備え、
     前記CG起因切り替え処理を行うステップでは、前記CG送信で送信した上りリンクデータのハイブリッド自動再送要求(HARQ)処理に用いるHARQ-ラウンドトリップタイム(RTT)タイマの満了に応じて、前記CG起因切り替え処理を行い、
     前記HARQ-RTTタイマは、前記通信装置(100)が前記上りリンクデータに対応する送達確認情報を前記基地局(200)から受信するまでの最小期間を規定するタイマである
     通信方法。
     
    A communication method executed by a communication device (100) that performs wireless communication with a base station (200),
    a step of performing CG transmission, which is an uplink transmission based on a configuration grant (CG) from the base station (200);
    According to the CG transmission, performing a CG-induced switching process for switching a PDCCH monitoring state regarding monitoring of a physical downlink control channel (PDCCH);
    In the step of performing the CG-induced switching process, in response to expiration of a HARQ-Round Trip Time (RTT) timer used for hybrid automatic repeat request (HARQ) processing of uplink data transmitted in the CG transmission, the CG-induced switching process and
    The HARQ-RTT timer is a timer that defines a minimum period until the communication device (100) receives acknowledgment information corresponding to the uplink data from the base station (200).
PCT/JP2022/046041 2021-12-17 2022-12-14 Communication device, base station, and communication method WO2023112961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205581 2021-12-17
JP2021-205581 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112961A1 true WO2023112961A1 (en) 2023-06-22

Family

ID=86774385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046041 WO2023112961A1 (en) 2021-12-17 2022-12-14 Communication device, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2023112961A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "DCI-based power saving adaptation during DRX ActiveTime", 3GPP DRAFT; R1-2109955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058873 *
OPPO: "Discussion on PDCCH skipping", 3GPP DRAFT; R2-2202994, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220201, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052110836 *
OPPO: "Power saving enhancement for connected mode UE", 3GPP DRAFT; R2-2109493, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-Meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052065979 *
QUALCOMM INCORPORATED: "Maintenance on UE Power Saving Enhancements", 3GPP DRAFT; R1-2207197, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 13 August 2022 (2022-08-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275134 *

Similar Documents

Publication Publication Date Title
JP6555557B2 (en) Power-efficient scheduling request procedure based on threshold
JP2012530406A (en) Method and system for intermittent reception for long term evolution advanced carrier aggregation
JP2022536767A (en) Transmitting/receiving device and scheduling device
WO2023112961A1 (en) Communication device, base station, and communication method
WO2023112959A1 (en) Communication device, base station, and communication method
WO2023127636A1 (en) Communication device and communication method
WO2023112960A1 (en) Communication device, base station, and communication method
WO2023127634A1 (en) Communication device, base station, and communication method
WO2022260106A1 (en) Communication device, base station, and communication method
WO2022260105A1 (en) Communication device, base station, and communication method
WO2022260103A1 (en) Communication device, base station, and communication method
WO2024071076A1 (en) Communication device and communication method
WO2022234796A1 (en) Communication device, base station, and communication method
WO2022234801A1 (en) Communication device, base station, and communication method
US20240073924A1 (en) Communication apparatus, base station, and method
WO2024071078A1 (en) Communication device, base station, and communication method
US20240137973A1 (en) Communication apparatus, base station, and communication method
WO2022234838A1 (en) Communication device, base station, and method
WO2022234835A1 (en) User equipment, base station, and communication control method
WO2023048183A1 (en) User equipment, base station, and communication method
JP2022172972A (en) User device and communication method
WO2023120434A1 (en) Base station and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907484

Country of ref document: EP

Kind code of ref document: A1