WO2023127636A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2023127636A1
WO2023127636A1 PCT/JP2022/047089 JP2022047089W WO2023127636A1 WO 2023127636 A1 WO2023127636 A1 WO 2023127636A1 JP 2022047089 W JP2022047089 W JP 2022047089W WO 2023127636 A1 WO2023127636 A1 WO 2023127636A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
switching
monitoring
sssg
state
Prior art date
Application number
PCT/JP2022/047089
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 星野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023127636A1 publication Critical patent/WO2023127636A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a communication device and communication method used in a mobile communication system.
  • PDCCH monitoring related to monitoring the physical downlink control channel A process of switching states (hereinafter referred to as switching process) is under consideration.
  • the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or PDCCH monitoring is skipped (hereinafter referred to as a PDCCH monitoring skipping state).
  • PDCCH monitoring skipping state a state in which the PDCCH monitoring cycle is lengthened or PDCCH monitoring is skipped.
  • DRX discontinuous reception
  • Such an operation of skipping PDCCH monitoring and an operation of switching PDCCH monitoring states may be referred to as PDCCH monitoring adaptation.
  • the communication device executes HARQ operation by hybrid automatic repeat request (HARQ) based on downlink control information (DCI) on PDCCH.
  • HARQ hybrid automatic repeat request
  • DCI downlink control information
  • the communication device determines whether data received in downlink communication is initial transmission or retransmission based on a New Data Indicator (NDI) included in DCI, and initially transmits data in uplink communication. or resend.
  • NDI New Data Indicator
  • a communication device is a communication device that performs wireless communication with a base station.
  • the communication device comprises a communication unit for communicating data with the base station, and a control unit for managing a hybrid automatic repeat request (HARQ) process for the data.
  • the control unit switches the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) to a PDCCH skipping state that skips the monitoring of the PDCCH, and then switches to the state of monitoring the PDCCH.
  • Predetermined control is performed to terminate the HARQ process that was performed prior to the PDCCH skipping state.
  • a communication method is a communication method executed by a communication device that performs wireless communication with a base station.
  • the communication method comprises: communicating data with the base station; managing a hybrid automatic repeat request (HARQ) process for the data; After switching to the PDCCH skipping state in which PDCCH monitoring is skipped, based on the switching to the state of monitoring the PDCCH, predetermined control is performed to terminate the HARQ process performed before the PDCCH skipping state. a step;
  • HARQ hybrid automatic repeat request
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a sequence diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing an overview of PDCCH skipping according to the embodiment.
  • FIG. 5 is a diagram showing an overview of search space set (SSSG) switching according to the embodiment.
  • FIG. 6 is a diagram illustrating DRX and power saving states according to an embodiment.
  • FIG. 7 is a sequence diagram illustrating an example of SSSG switching according to the embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a sequence diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing
  • FIG. 8 is a diagram illustrating an example of timer-based SSSG switching according to an embodiment.
  • FIG. 9 is a diagram showing the configuration of the UE according to the embodiment.
  • FIG. 10 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 11 is a sequence diagram for explaining the first operation example of the mobile communication system according to the embodiment.
  • FIG. 12 is a diagram for explaining a first operation example of the mobile communication system according to the embodiment.
  • FIG. 13 is a flowchart for explaining a first operation example of the mobile communication system according to the embodiment.
  • FIG. 14 is a flowchart for explaining a second operation example of the mobile communication system according to the embodiment.
  • the communication device switches the PDCCH monitoring state from the PDCCH monitoring state to the PDCCH skipping state in which PDCCH monitoring is skipped, and then switches from the PDCCH skipping state to the PDCCH monitoring state.
  • the communication device After switching to the PDCCH skipping state, the communication device does not receive the PDCCH until it switches back to the PDCCH monitoring state. Therefore, before switching to the PDCCH skipping state, the communication device switches to the PDCCH skipping state after a certain period of time (that is, the period of the PDCCH skipping state) has passed since wireless communication with the base station, and then switches to the PDCCH skipping state. will receive the DCI. There is a concern that the communication device cannot appropriately perform HARQ operation when restarting HARQ operation after switching the PDCCH skipping state.
  • one object of the present disclosure is to provide a communication device and a communication method that enable the HARQ operation to be performed appropriately when the HARQ operation is restarted after switching the PDCCH skipping state.
  • the mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 may be a user equipment defined by 3GPP technical specifications.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE).
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area.
  • One cell belongs to one frequency (carrier frequency) and is composed of one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Quest: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between IP flows, which are the units in which the core network performs QoS control, and radio bearers, which are the units in which the AS (Access Stratum) performs QoS (Quality of Service) control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • the base station 200 configures the UE 100 with a search space corresponding to the candidate timing at which the PDCCH is provided.
  • UE 100 in the RRC connected state monitors PDCCH in the set search space, receives downlink control information (Downlink Control Information: DCI) carried by PDCCH, and assigns resources (scheduling) indicated by DCI.
  • DCI Downlink Control Information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the UE 100 may monitor a set of PDCCH candidates according to the corresponding search space.
  • UE 100 may monitor a set of PDCCH candidates in a downlink BWP control resource set (CORESET) in a serving cell in which PDCCH monitoring is configured, according to the corresponding search space.
  • monitoring may refer to decoding each of the PDCCH candidates according to the monitored DCI format.
  • the base station 200 transmits an RRC message including PDCCH settings (PDCCH settings) to the UE 100, and performs various PDCCH settings for the UE 100.
  • This RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message.
  • the search space settings include a search space period (also referred to as a PDCCH monitoring period), a search space offset (also referred to as a PDCCH monitoring offset), a search space duration (for example, the number of consecutive slots), and PDCCH monitoring. symbols for, aggregation level, search space type, DCI format, etc.
  • each search space (each set of search spaces) may be associated with one CORESET.
  • the search space setting may be set for each of one or more DL BWPs.
  • the search space type may include a UE-specific search space (USS) and/or a UE common search space (CSS).
  • DCI formats include scheduling DCI formats used for PDSCH or PUSCH scheduling and non-scheduling DCI formats not used for such scheduling.
  • DCI transmitted in a scheduling DCI format is called scheduling DCI
  • DCI transmitted in a non-scheduling DCI format is called non-scheduling DCI.
  • Scheduling DCI formats include a downlink DCI format used for PDSCH scheduling (eg, DCI format 1_0, DCI format 1_1, DCI format 1_2) and an uplink DCI format used for PUSCH scheduling (eg, DCI format 0_0, DCI format 0_1 and DCI format 0_2).
  • the scheduling DCI may be UE-specific DCI that is sent for each UE.
  • the scheduling DCI may be transmitted by applying an RNTI (Radio Network Temporary Identifier) assigned to each UE.
  • the downlink DCI format used for PDSCH scheduling is also called downlink assignment.
  • the uplink DCI format used for PUSCH scheduling is also called an uplink grant.
  • non-scheduling DCI formats include, for example, DCI format 2_0 and DCI format 2_6.
  • the non-scheduling DCI may be a DCI that can be transmitted to multiple UEs 100 at once.
  • non-scheduling DCI may be transmitted by applying a common RNTI to multiple UEs 100 .
  • step S2 the UE 100 starts monitoring PDCCH in the search space set by the base station 200.
  • DCI format 1_0, DCI format 0_0, DCI format 1_1, DCI format 0_1, DCI format 1_2, and DCI format 0_2 are configured in the UE 100, and the UE 100 monitors the PDCCH (DCI) based on the configuration.
  • base station 200 may configure UE 100 to monitor DCI format 1_0 and DCI format 0_0 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_1 and DCI format 0_1 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_2 and DCI format 0_2 in a certain search space. That is, for example, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 when CSS is configured for a certain search space. Also, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 2_0 when CSS is configured for a certain search space. In addition, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_1 and DCI format 0_1 when USS is configured for a certain search space.
  • base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_2 and DCI format 0_2 when USS is configured for a certain search space. can be set to
  • the UE 100 receives and detects DCI or PDCCH addressed to itself from the base station 200.
  • the UE 100 uses the C-RNTI (Cell-Radio Network Temporary Identifier (RNTI)) or MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI) or CS-RNTI assigned to the UE 100 from the base station 200.
  • C-RNTI Cell-Radio Network Temporary Identifier (RNTI)
  • MCS-C-RNTI Modulation and Coding Scheme-C-RNTI
  • CS-RNTI Configured Scheduling-RNTI
  • CRC Cyclic Redundancy Check
  • CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the DCI (that is, DCI format) transmitted from the base station 200. ing. That is, the downlink assignment is appended with CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI. Also, CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the uplink grant.
  • step S4 the UE 100 receives downlink data from the base station 200 on the scheduled PDSCH. If the DCI indicates PUSCH scheduling, the UE 100 transmits uplink data to the base station 200 on the scheduled PUSCH in step S5.
  • downlink data is also referred to as downlink shared channel (DL-SCH) data.
  • Uplink data is also referred to as uplink-shared channel (UL-SCH) data.
  • the downlink shared channel and the uplink shared channel are transport channels
  • PDSCH and PUSCH are physical channels. For example, downlink data (DL-SCH data) is mapped to PDSCH, and uplink data (UL-SCH data) is mapped to PUSCH.
  • a MAC entity which is an entity in the MAC layer, includes a HARQ entity for each serving cell.
  • the MAC entity is included in the DCI when the DCI indicates PDSCH scheduling (specifically, downlink assignment (PDSCH resource assignment), i.e., downlink assignment). HARQ information to be sent to the HARQ entity.
  • the MAC entity also instructs the physical layer to send DL-SCH data (specifically, transport blocks (TB)) to the HARQ entity.
  • the HARQ information includes a New Data Indicator (NDI).
  • NDI is used to indicate (or determine) whether the transmission is an initial transmission or a retransmission.
  • the HARQ entity sends the TB and HARQ information to the corresponding HARQ process.
  • a HARQ process receives a TB and associated HARQ information from a HARQ entity. The HARQ process does the following for each received TB and associated HARQ information.
  • the HARQ process will be toggled if the NDI included in the HARQ information is toggled compared to the NDI of the previously received transmission corresponding to that TB, or if the TB is the first received transmission (i.e. There is no previously received NDI for ), consider the received transmission to be an initial transmission. Otherwise (eg, NDI is not toggled), consider the received transmission as a retransmission. In this way, the UE 100 determines whether data received in downlink communication is initial transmission or retransmission, based on the NDI included in the DCI.
  • the MAC entity may attempt to decode the received data if the transmission is an initial transmission. On the other hand, if the transmission is a retransmission, the MAC entity may instruct the physical layer to combine the received data with the data in the buffer for that TB and attempt to decode the data. The MAC entity sends the decoded data (more specifically, MAC PDU) to upper layers.
  • the MAC entity is an uplink grant. and relevant HARQ information contained in the DCI to the HARQ entity.
  • the HARQ entity For each uplink grant, the HARQ entity identifies the HARQ process associated with the uplink grant. The HARQ entity, for each identified HARQ process, compares the NDI included in the HARQ information with the NDI of the previously received transmission corresponding to that TB, if toggled, to the initial transmission. be considered to be The HARQ entity instructs the identified HARQ processes to obtain data to be transmitted (specifically MAC PDUs) and trigger initial transmission. On the other hand, a HARQ entity considers a received transmission as a retransmission if the NDI included in the HARQ information is toggled. The HARQ entity instructs the identified HARQ processes to trigger retransmissions. In this way, the UE 100 determines whether data received in uplink communication is initial transmission or retransmission, based on the NDI included in the DCI.
  • Each HARQ process is associated with a HARQ buffer.
  • a HARQ process stores data (MAC PDUs) in its associated HARQ buffer when a HARQ entity requests an initial transmission.
  • the HARQ process also stores uplink grants received from HARQ entities when the HARQ entities request initial transmissions and retransmissions.
  • the HARQ process directs the physical layer to generate transmissions according to the stored uplink grants.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on the search space setting set by the base station 200 .
  • a PDCCH monitoring state regarding PDCCH monitoring in UE 100 may be referred to as a PDCCH monitoring execution state for monitoring PDCCH.
  • the base station 200 transmits to the UE 100 a skip instruction DCI that instructs PDCCH skipping.
  • Skip instruction DCI is an example of switching instruction DCI.
  • a skip indication DCI may be a scheduling DCI or a non-scheduling DCI.
  • the UE 100 skips PDCCH monitoring for a predetermined period in response to receiving the skip instruction DCI from the base station 200 .
  • the predetermined period for skipping PDCCH monitoring may be set by higher layer signaling (RRC message).
  • the predetermined period may be determined by a timer value (that is, a setting value of a switching timer), or may be determined by the number of consecutive slots or the number of consecutive search spaces.
  • the predetermined period may be referred to as a skipping period.
  • Such PDCCH skipping reduces the power consumption required for the UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • PDCCH skipping may mean skipping PDCCH monitoring, and PDCCH skipping may be referred to as PDCCH monitoring skipping. In this embodiment, such a PDCCH monitoring state in the UE 100 may be referred to as a PDCCH skipping state.
  • the base station 200 configures multiple search space sets, which are sets of settings related to search spaces, in the UE 100 through higher layer signaling (RRC messages).
  • a set of settings related to such a search space is called a Search Space Set (SSS) or a Search Space Set Group (SSSG), but in the following it will be mainly called SSSG.
  • One SSSG includes one or more search space settings and is identified by an SSSG index.
  • base station 200 has SSSG#0 (first search space set) in which search spaces are provided at a predetermined cycle, and SSSG#1 (second search space set) in which search spaces are provided at a cycle longer than the predetermined cycle. space set) shall be set in the UE 100.
  • the base station 200 sets two SSSGs, SSSG#0 and SSSG#1, to the UE 100.
  • Three or more SSSGs are set for each of one or more BWPs (for example, DL BWP). You may set to UE100.
  • setting a plurality of SSSGs (or three or more SSSGs) in the UE 100 may mean setting a plurality of SSSGs (or three or more SSSGs) for one BWP, or a plurality of may mean setting multiple SSSGs (or three or more SSSGs) for each BWP.
  • search spaces include UE-specific search spaces and/or UE-common search spaces as described above
  • a set of settings related to UE-specific search spaces may be referred to as a UE-specific search space set.
  • the set of configurations for UE-common search spaces may be referred to as a UE-common search space set.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on SSSG#0.
  • the base station 200 transmits to the UE 100 a switching instruction DCI that instructs SSSG switching.
  • the switching instruction DCI may be a scheduling DCI or a non-scheduling DCI. That is, the base station 200 uses DCI to instruct the UE 100 to switch from SSSG#0 to SSSG#1.
  • the UE 100 starts switching to SSSG#1 in response to receiving the switching instruction DCI.
  • UE 100 performs switching to SSSG#1 in a symbol after a switching delay time (Switch delay) from the last symbol of PDCCH in SSSG#0.
  • Switch delay may be set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • UE 100 monitors PDCCHs provided in a cycle longer than a predetermined cycle in search spaces.
  • Such search space set switching reduces the power consumption required for UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • switching from SSSG#1 to SSSG#0 may be instructed by the base station 200 using DCI in the same manner as switching from SSSG#0 to SSSG#1, or the UE 100 may switch from SSSG#1 using a timer. You may switch to SSSG#0.
  • the timer value of such a switching timer (Switching timer) is set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • the UE 100 starts monitoring the PDCCH in SSSG#1 in response to detection of the switching instruction DCI to SSSG#1, sets the value of the switching timer to the value set by the upper layer, and activates the switching timer.
  • UE 100 decrements the value of the switching timer, stops monitoring PDCCH in SSSG#1 when the switching timer expires, and starts monitoring PDCCH in SSSG#0 after a switch delay time.
  • indexes also called search space group IDs
  • base station 200 may configure a set (group) of search spaces for UE 100 by configuring an index associated with the one or more search space sets.
  • the name SSSG is merely an example, and any name may be used as long as it is a set (group) of search spaces to which one or more search space sets are associated.
  • one SSSG set in the UE 100 is set to have no search space, and switching to the one SSSG is indicated by DCI, thereby realizing the same operation as the PDCCH skipping described above.
  • a search space is set in one SSSG set in the UE 100, and no monitoring opportunity for the search space is set (or a parameter related to the monitoring opportunity is set to a predetermined value (e.g., "0" or "Null”). ), an operation similar to the PDCCH skipping described above may be realized.
  • UE 100 is configured with a total of three SSSGs: an SSSG with a normal search space period, an SSSG with no search space period, and an SSSG with a long search space period. Flexible power saving can be realized by setting such various SSSGs in the UE 100 and instructing switching of SSSGs by DCI.
  • the UE 100 discontinuously monitors the PDCCH using the DRX operation.
  • the DRX operation is controlled by the following DRX parameters.
  • - DRX cycle Defines the cycle in which the UE 100 wakes up.
  • On duration On-duration: This is the period during which the UE 100 waits to receive the PDCCH after waking up. If the UE 100 successfully decodes the PDCCH, the UE 100 remains awake and starts an inactivity-timer.
  • Inactivity timer Defines the time period during which the UE 100 waits after the last successful PDCCH decoding and sleeps again when the PDCCH decoding fails.
  • the ON duration may be started.
  • FIG. 6 corresponds to the operation with the set value of DRX-SlotOffset set to zero.
  • Retransmission timer defines the time interval during which retransmissions are expected.
  • the UE 100 configured with DRX does not need to monitor the PDCCH in the sleep state (that is, the reception off period), so the power consumption of the UE 100 can be reduced.
  • the UE 100 waits to receive the PDCCH and monitors the PDCCH in the search space during the active time.
  • the active time is any of the on duration timer (drx-onDurationTimer), the inactivity timer (drx-InactivityTimer), the downlink retransmission timer (drx-RetransmissionTimerDL), and the uplink retransmission timer (drx-RetransmissionTimerUL) is in operation. It's time.
  • PDCCH supervisory adaptation is a generic term for PDCCH skipping and SSSG switching. That is, in this embodiment, PDCCH monitoring adaptation may be replaced by PDCCH skipping and/or SSSG switching. In PDCCH monitoring adaptation, a process of switching the PDCCH monitoring state for PDCCH monitoring may be performed.
  • a plurality of SSSGs having different search space cycles (different PDCCH cycles) will be described, but it is possible to set the same search space cycle (different PDCCH cycles) for a plurality of SSSGs. is of course.
  • the base station 200 generates one or more RRC messages and transmits the generated RRC messages to the UE100.
  • the one or more RRC messages may include a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 receives the RRC message.
  • the RRC message includes PDCCH monitoring adaptation settings (hereinafter referred to as PMA settings).
  • the PMA settings may be settings for performing PDCCH monitoring adaptation.
  • PMA setting includes information for setting SSSG, information for setting a switching timer for switching SSSG, information for setting a duration related to PDCCH monitoring, and setting cases related to PDCCH monitoring state switching. may include at least one of information for
  • the information for setting the case may be information for setting the case (also referred to as operation) of PDCCH monitoring adaptation. As described below, it may be specified to perform PDCCH skipping (ie PDCCH skipping only), for example for the case of PDCCH monitoring adaptation. It may also be specified to perform SSSG switching (ie SSSG switching only) as a case of PDCCH monitoring adaptation. It may also be specified to perform PDCCH skipping and SSSG switching as a case of PDCCH monitoring adaptation. That is, cases may be defined corresponding to operations performed as PDCCH monitoring adaptation.
  • Information for setting SSSG includes, for example, information for setting SSSG to which PDCCH skipping is applied, and information for setting SSSG to which SSSG switching is applied. At least one may be included.
  • the SSSG setting information may also include information for setting at least one of a default SSSG (eg, SSSG#0) and a non-default SSSG that is not the default SSSG. That is, SSSG configuration information may be configured for default SSSG and/or non-default SSSG.
  • the SSSG configuration information may include SSSG information configured for each downlink BWP, and may include SSSG information configured for each downlink serving cell. That is, the SSSG configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • the SSSG configuration information may further include a search space configuration associated with each SSSG index (which may be referred to as a group index) corresponding to each SSSG.
  • a search space setting includes one or more search space settings.
  • Each search space configuration includes at least one of search space period, search space offset, search space duration (e.g., number of consecutive slots), symbols for PDCCH monitoring, aggregation level, search space type, and DCI format. OK.
  • the switch timer information may include switch timer information for the default SSSG and may include switch timer information for the non-default SSSG. That is, switching timer information may be configured for default SSSG and/or non-default SSSG. Note that the switching timer may not be set for the default SSSG.
  • the switching timer information may include switching timer information configured for each downlink BWP, and may include switching timer information configured for each downlink serving cell. That is, the switching timer information may be configured for the downlink BWP and/or the downlink serving cell.
  • the switching timer information may include a timer set value of the switching timer.
  • Information for setting a period related to PDCCH monitoring may include information on a period set for each SSSG.
  • the monitoring period information may include period information for the default SSSG and may include period information for the non-default SSSG. That is, monitoring period information may be set for default SSSGs and/or non-default SSSGs.
  • the monitoring period information may include information on a period set for each downlink BWP, or may include information on a period set for each downlink serving cell. That is, the monitoring period information may be configured for the downlink BWP and/or the downlink serving cell.
  • the set period may be a skipping period during which PDCCH monitoring is skipped.
  • a case related to PDCCH monitoring state switching specifically, information for setting a case of PDCCH monitoring adaptation (hereinafter referred to as case setting information as appropriate) includes case information set for each downlink BWP. Alternatively, it may include case information configured for each downlink serving cell. That is, the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • case setting information includes case information set for each downlink BWP.
  • the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • Table 1 shows an example of DCI notification contents in each case.
  • PDCCH skipping that is, execution of PDCCH skipping only
  • the configuration for case #2 configures two different durations of SSSG switching (ie performing SSSG switching only) as PDCCH monitoring adaptation.
  • the configuration for case #3 configures SSSG switching for three different durations (ie performing SSSG switching only) as a PDCCH monitoring adaptation.
  • two different periods of SSSG switching and PDCCH skipping are configured as PDCCH monitoring adaptations.
  • M (set to 1 or 2) indicates the number of periods set based on the monitoring period information. That is, M corresponds to period X. Period X may be referred to as a skipping period.
  • the value set in the information field (hereinafter referred to as the PDCCH monitoring adaptation notification field) in the switching instruction DCI that indicates the PDCCH monitoring adaptation (that is, SSSG switching and/or PDCCH skipping) applied by the UE 100 is indicated. It is associated with the operation (behavior) of the UE 100. Operations of the UE 100 may be defined as follows. • PDCCH skipping is not activated on Beh1. • For Beh1A, PDCCH skipping means stopping PDCCH monitoring for period X. • Beh2 stops monitoring the search space sets associated with SSSG#1 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#0.
  • Beh2A stops monitoring the search space sets associated with SSSG#0 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#1.
  • Beh2B stop monitoring the search space set associated with SSSG#0 and SSSG#1 (if configured) and monitor the search space set associated with SSSG#2.
  • the information indicating the correspondence relationship in Table 1 may be stored in advance in each of the UE 100 and the base station 200, or may be notified from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 When case #1 is configured in the UE 100, the UE 100 has one for PDCCH monitoring for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. Alternatively, multiple periods (including skipping periods) may be set.
  • the UE 100 When case #2 or case #3 is configured in the UE 100, the UE 100 has one serving cell for each of one or more downlink BWPs (or each of one or more SSSGs).
  • One or more group indices may be configured.
  • the UE 100 When case #4 is configured in the UE 100, the UE 100 has PDCCH for each of one or more downlink BWPs (or each of one or more SSSGs) in a certain serving cell, in a certain serving cell. One or more time periods (including skipping periods) for monitoring may be set. Also, in the UE 100, one or more group indexes (SSSG indexes) are set for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. you can Note that the PDCCH monitoring adaptation notification field in DCI for PDCCH monitoring is defined as 2 bits.
  • the RRC message may include field settings indicating the presence or absence of the PDCCH monitoring adaptation notification field for each of one or more DCI formats.
  • the switching indication DCI is a DCI having a DCI format indicating that there is a PDCCH monitoring adaptation notification field by field setting.
  • the presence/absence of the PDCCH monitoring adaptation notification field may be configured commonly or independently for non-scheduling DCI and/or scheduling DCI.
  • the presence/absence of the PDCCH monitoring adaptation notification field (presence/absence) may be set commonly for DCI format 1_1 and DCI format 0_1, and commonly for DCI format 1_2 and DCI format 0_2.
  • the presence or absence (presence/absence) of the PDCCH monitoring adaptation notification field may be set commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the field setting indicating presence/absence of the PDCCH monitoring adaptation notification field may be replaced with the PMA setting. That is, the presence of the PDCCH monitoring adaptation notification field in one or more DCI formats may be indicated by configuring the PMA settings for the UE 100 . For example, UE 100 may identify that one or more DCI formats have a PDCCH monitoring adaptation notification field based on the PMA configuration being configured.
  • the RRC message may include a bit number setting that indicates the number of bits in the PDCCH supervisory adaptation notification field for each of one or more DCI formats.
  • the number of bits of the PDCCH monitoring adaptation notification field may be directly configured commonly or independently.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 0_1 and/or commonly for DCI format 1_2 and DCI format 0_2.
  • a PDCCH supervisory adaptation notification field of up to 2 bits is configured for DCI format 1_1 and/or DCI format 0_1, and/or a PDCCH supervisory adaptation notification field of 1 bit is configured for DCI format 1_2 and DCI format 0_2.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the number of bits setting indicating the number of bits of the PDCCH supervisory adaptation notification field may be replaced with the PMA setting.
  • the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats may be determined by configuring the PMA settings for the UE 100 .
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of SSSGs configured based on information for configuring SSSGs.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of periods set based on the monitoring period information.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats, depending on the case set based on the case setting information (for example, shown in Table 1. may determine the number of bits to be stored).
  • step S12 the UE 100 stores the information set by the base station 200.
  • the base station 200 transmits a switching instruction DCI having a PDCCH monitoring adaptation notification field to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI on the PDCCH.
  • the UE 100 may determine whether or not the DCI format of the detected DCI corresponds to the switching instruction DCI, based on field settings set by the base station 200 .
  • step S14 the UE 100 acquires the value set in the PDCCH monitoring adaptation notification field of the switching instruction DCI received in step S13.
  • UE 100 may specify the number of bits in the PDCCH monitoring adaptation notification field based on the bit number setting set by base station 200 and then acquire the value set in the PDCCH monitoring adaptation notification field.
  • the UE 100 is based on the number of SSSG indexes set in the UE 100 (i.e., the number of entries in the set SSSG index (list)), and the number of bits of the PDCCH monitoring adaptation notification field is specified.
  • the value set in the PDCCH supervisory adaptation notification field may be obtained.
  • UE 100 calculates and identifies the number of bits of the PDCCH monitoring adaptation notification field by an integer value rounded up after the decimal point of log2 (I). good too.
  • step S15 the UE 100 changes the PDCCH monitoring state to the state corresponding to the value set in the PDCCH monitoring adaptation notification field (hereinafter referred to as the PDCCH monitoring adaptation notification field value) in the received switching instruction DCI based on the set case. switch.
  • the PDCCH monitoring adaptation notification field value the PDCCH monitoring adaptation notification field value
  • An operation example of the UE 100 according to the number of bits of the PDCCH monitoring adaptation notification field in each case is shown below.
  • Case #1 PDCCH Supervisory Adaptation Notification field in DCI for PDCCH Monitoring is 1 bit If the PDCCH Supervisory Adaptation Notification field value is '0', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '1', PDCCH skipping is performed during the configured period (the period of the first value).
  • PDCCH supervisory adaptation notification field in DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '01', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (second value period). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (the period of the third value).
  • Case #2 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 1 bit If the PDCCH supervisory adaptation notification field value is '0', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '1', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • Case #3 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • PDCCH monitoring adaptation notification field value is '10'
  • start monitoring the PDCCH according to the search space set corresponding to group index #2 and start monitoring the PDCCH according to the search space set corresponding to the other group index value. Stop monitoring.
  • the definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '1' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '2' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (second value period).
  • timer-based SSSG switching according to this embodiment will be described with reference to FIG.
  • the UE 100 switches between SSSGs on a timer basis and three or more SSSGs can be configured in the UE 100 .
  • the base station 200 may set one of the SSSGs set in the UE 100 as a default SSSG in the UE 100.
  • the base station 200 may specify one of the SSSG indices set in the UE 100 as "defaultSSSG-Id".
  • the base station 200 may set the 'defaultSSSG-Id' using an RRC message. That is, the base station 200 may configure the default SSSG for the UE 100 using information included in the RRC message.
  • the default SSSG may be an SSSG determined according to a predetermined rule shared in advance by the base station 200 and the UE 100 among SSSGs set in the UE 100 .
  • the default SSSG may be the SSSG set in the UE 100 by the base station 200 as the default SSSG.
  • step S21 the UE 100 for which multiple SSSGs have been set by the base station 200 monitors the PDCCH using one of the multiple SSSGs.
  • step S22 the UE 100 receives a switching instruction DCI that instructs switching to another SSSG from the base station 200 on the PDCCH.
  • step S23 the UE 100 switches to the SSSG specified by the switching instruction DCI and activates the timer (switching timer) associated with the SSSG.
  • step S24 the UE 100 determines whether the switching timer has expired.
  • step S25 the UE 100 switches to the default SSSG among the multiple set SSSGs.
  • the base station 200 can grasp the SSSG to which the UE 100 is switched. Since the switching timer is a value set by the base station 200, the base station 200 manages the switching timer in the same manner as the UE 100, and can recognize that the switching timer has expired in the UE 100.
  • the UE 100 determines the default SSSG according to a predetermined rule. do. For example, if the RRC message does not contain information for setting the default SSSG, the UE 100 may determine the default SSSG according to a predetermined rule.
  • the predetermined rule is, for example, a rule defined by 3GPP technical specifications, and a rule shared in advance by the base station 200 and the UE 100 .
  • the predetermined rule is the SSSG corresponding to the SSSG index with the smallest value among the SSSG indexes set in the UE 100, or the SSSG corresponding to the SSSG index with the largest value. good. For example, if the rule is to set the SSSG corresponding to the SSSG index with the smallest value as the default SSSG, the UE 100 determines the SSSG with SSSG index #0 as the default SSSG. If the rule is to set the SSSG corresponding to the SSSG index with the largest value as the default SSSG, the UE 100 determines the SSSG of SSSG index #4 as the default SSSG.
  • the UE 100 may receive from the base station 200 correspondence information indicating the correspondence between the SSSG index set in the UE 100 and the value set in the SSSG information field in the switching instruction DCI.
  • the predetermined rule may be a rule for determining, as the default SSSG, the SSSG corresponding to the SSSG index indicated by a specific value (eg, "0") set in the SSSG information field in the switching instruction DCI.
  • the UE 100 determines, as the default SSSG, an SSSG having an SSSG index in which the value set in the SSSG information field in the switching instruction DCI is "0".
  • the predetermined rule may be a rule that determines the SSSG corresponding to the SSSG index (for example, index #0) having a predetermined value among the SSSG indices set in the UE 100 as the default SSSG.
  • the predetermined rule may be a rule for determining, among the SSSGs set in the UE 100, SSSGs other than SSSGs skipping PDCCH monitoring as default SSSGs. That is, UE 100 may assume that the SSSG index corresponding to PDCCH skipping is not set as the default SSSG.
  • the UE 100 may apply a specific SSSG when switching from a DRX reception off period to a reception on period (active time).
  • the predetermined rule may be a rule that determines that particular SSSG as the default SSSG. That is, the UE 100 may determine the first SSSG to monitor the PDCCH after the DRX reception off period has elapsed as the default SSSG.
  • the base station 200 may transmit an RRC message including information for setting the specific SSSG, and the UE 100 may determine the specific SSSG as the default SSSG.
  • the base station 200 transmits an RRC message including information for setting the default SSSG, and the UE 100 uses the default SSSG as the first SSSG to monitor the PDCCH after the DRX reception off period has passed. good too.
  • the UE 100 may receive a scheduling DCI indicating radio resources allocated to the UE 100 as a switching instruction DCI. After receiving the scheduling DCI as the switching instruction DCI, the UE 100 may start the switching timer at the timing of switching to one SSSG (specifically, the slot for performing SSSG switching).
  • the UE 100 may use a common value as the switching timer value applied to two or more of the three or more SSSGs set in the UE 100 .
  • the base station 200 may set a common value as the switching timer value applied to two or more SSSGs among the three or more SSSGs set in the UE 100 .
  • the UE 100 may use an individual value for each SSSG as the switching timer value applied to each SSSG set in the UE 100 .
  • the base station 200 may set an individual switching timer setting value in the UE 100 for each SSSG.
  • the UE 100 may activate the switching timer associated with the SSSG at the timing (slot) at which switching to the SSSG is started.
  • the timing (slot) at which switching to the SSSG is started.
  • resources used for PDCCH monitoring are not dedicated, and switching to the relevant SSSG can be started at any timing. Taking advantage of this advantage, it is possible to minimize the effect of the switching delay time without disturbing the PDCCH monitoring operation. Note that the UE 100 may monitor the PDDCH assuming the default SSSG after the switching timer expires.
  • the UE 100 After switching to the PDCCH skipping state, the UE 100 does not receive the PDCCH until switching back to the PDCCH monitoring state. Therefore, the UE 100 switches to the PDCCH skipping state after a certain period of time (that is, the period in the PDCCH skipping state) has passed after performing wireless communication with the base station 200 before switching to the PDCCH skipping state, and then switches to the PDCCH skipping state. will receive the DCI.
  • the UE 100 restarts the HARQ operation after switching the PDCCH skipping state, there is a concern that the HARQ operation cannot be properly performed.
  • the UE 100 since the UE 100 has not monitored the PDCCH for a certain period of time, it is possible that the PDCCH (specifically, the NDI indicated by 1 bit) cannot be received normally. In addition, UE 100 may not hold the NDI included in the last received PDCCH because some time has passed since the last PDCCH was received before switching the PDCCH skipping state. In addition, there is a concern that retransmission may be performed inefficiently due to changes in the communication environment (for example, channel state) in the UE 100 before and after switching the PDCCH skipping state. Therefore, in the present embodiment, when the HARQ operation is resumed after switching the PDCCH skipping state, it is possible to appropriately perform the HARQ operation.
  • the PDCCH specifically, the NDI indicated by 1 bit
  • the "PDCCH monitoring state" in this embodiment may include skipping PDCCH monitoring and/or performing PDCCH monitoring in the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from skipping PDCCH monitoring to monitoring PDCCH with the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from the operation of monitoring the PDCCH in the configured SSSG to the operation of skipping the monitoring of the PDCCH.
  • switching the PDCCH monitoring state includes switching the operation from the operation of monitoring the PDCCH in the set first SSSG to the operation of monitoring the PDCCH in the set second SSSG. good too.
  • switching the PDCCH monitoring state may include switching the SSSG used for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH skipping to the SSSG configured for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH monitoring to the SSSG configured for PDCCH skipping.
  • switching the PDCCH monitoring state may include switching the SSSG from the first SSSG set for PDCCH monitoring to the second SSSG set for PDCCH monitoring.
  • switching the PDCCH monitoring state may correspond to execution of PDCCH monitoring adaptation.
  • the SSSG used for PDCCH monitoring is also referred to as a PDCCH monitoring state for ease of explanation.
  • the set SSSG includes a default SSSG.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitting section 111 and the receiving section 112 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the UE 100 performs wireless communication with the base station 200.
  • the communication unit 110 communicates data with the base station 200 .
  • the control unit 120 manages the data hybrid automatic repeat request (HARQ) process.
  • the control unit 120 switches the PDCCH monitoring state regarding monitoring of the physical downlink control channel (PDCCH) to a PDCCH skipping state that skips monitoring of the PDCCH, and then switches to a state that monitors the PDCCH.
  • Predetermined control is performed to terminate the HARQ process that was performed prior to the state.
  • UE 100 does not perform retransmission in the HARQ process performed before the PDCCH skipping state. As a result, when the HARQ operation is resumed after switching the PDCCH skipping state, the HARQ operation can be properly performed.
  • Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space.
  • the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • step S101 the base station 200 (transmitting section 211) transmits an RRC message to the UE100.
  • the RRC message may be a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 (receiving unit 112) receives the RRC message.
  • the RRC message includes switching control information for controlling switching processing for switching the PDCCH monitoring state.
  • the switching control information may be, for example, information for controlling switching processing for switching the PDCCH monitoring state according to at least one of the multiple types of voluntary uplink transmission.
  • the switching control information is included in an information element commonly applicable to multiple types of spontaneous uplink transmission. As described above, the switching control information may be included as the information element, for example, in the PDCCH configuration (PDCCH-Config) for configuring user equipment-specific PDCCH parameters.
  • the switching control information may include common parameters (for example, common settings) that are commonly applied to switching processes corresponding to multiple types of voluntary uplink transmission. Therefore, the common parameters are, for example, CG-induced switching processing, SR-induced switching processing for switching the PDCCH monitoring state according to the scheduling request (SR), and RACH (Random Access Channel) transmission (or PRACH (Physical RACH) transmission). may be commonly applied to control the RACH-triggered switching process to switch the PDCCH monitoring state by
  • the UE 100 can execute various switching processes triggered by at least one of multiple types of spontaneous uplink transmission based on the common parameter. That is, in this embodiment, multiple types of spontaneous uplink transmission may include transmission of a scheduling request (SR). Also, multiple types of spontaneous uplink transmission may include RACH transmission (or PRACH transmission). Also, multiple types of spontaneous uplink transmission may include CG transmission.
  • the switching control information may include individual parameters (for example, individual settings) individually applied to each of the switching processes corresponding to multiple types of voluntary uplink transmission. Therefore, the individual parameters are, for example, parameters applied only to control the CG-induced switching process, parameters applied only to control the SR-induced switching process, and parameters applied only to control the RACH-induced switching process. may include at least any of the parameters
  • Individual parameters may indicate settings that are not set by common parameters. Alternatively, individual parameters may indicate settings that are prioritized over common parameters. In addition, whether the individual parameter enables execution of switching processing in at least one uplink transmission among multiple types of spontaneous uplink transmission (or switching based on multiple types of spontaneous uplink transmission) (or set) or not.
  • the individual parameter may include information (for example, 1-bit flag information) indicating whether to enable or disable execution of the CG-induced switching process (or CG-induced switching). .
  • the individual parameter may include information (for example, 1-bit flag information) indicating whether to enable or disable execution of the SR-induced switching process (or SR-induced switching).
  • the individual parameter is information (for example, a 1-bit flag information).
  • the UE 100 control unit 120
  • the common parameter may include 1-bit flag information indicating whether to enable or disable each switching process.
  • the RRC message may include a CG setting (Configured GrantConfig) for setting parameters used for CG transmission.
  • the CG settings may contain individual parameters that apply only to control the CG-triggered switching process.
  • the PDCCH configuration may include common parameters and individual parameters.
  • the CG configuration may contain individual parameters that are not included in the PDCCH configuration.
  • the PDCCH configuration may include only common parameters and the CG configuration may include dedicated parameters.
  • the UE 100 when receiving the switching control information, execution of switching processing based on spontaneous uplink transmission (or switching based on spontaneous uplink transmission) is enabled (or set may be determined (or identified) as When receiving the switching control information, the UE 100 (control unit 120) may determine that execution of the CG-induced switching process (or CG-induced switching) is enabled (or set).
  • the switching control information may, for example, configure PDCCH monitoring adaptation (or execution of the PDCCH monitoring adaptation) based on voluntary uplink transmission.
  • the switching control information may also configure PDCCH supervisory adaptation (or execution of such PDCCH supervisory adaptation) when type 2 CG transmission is enabled (activated).
  • the switching control information may include PDCCH monitoring adaptation settings (PMA settings). Therefore, the switching control information may include at least one of SSSG configuration information, switching timer information, monitoring period information, and case configuration information.
  • the UE 100 (control unit 120) may determine that execution of the CG-induced switching process is enabled (set) when the RRC message includes the PMA setting.
  • the switching control information may include at least one of the information included in the PMA settings. Accordingly, the switching control information may be at least part of the information included in the PMA configuration, for example.
  • the switching control information may be information regarding whether to enable (or set) the execution of the CG-based switching process.
  • the UE 100 (control unit 120) may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
  • the UE 100 may control not to perform the CG-induced switching process when the RRC message does not include switching control information. For example, the UE 100 (control unit 120) is not set to enable execution of the CG-induced switching process, and/or the PDCCH monitoring state (for example, SSSG) of the switching destination when performing the CG-induced switching process is If it is not set, CG-induced switching processing is not performed even if CG transmission is performed. This can prevent the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 from being inconsistent.
  • the PDCCH monitoring state for example, SSSG
  • the switching control information may include information indicating a switching timer value for setting a predetermined period for skipping PDCCH monitoring.
  • the PDCCH monitor skipping state may be maintained while the switch timer is running.
  • the switching control information may be information regarding whether to enable (or set) execution of the predetermined control described later.
  • the UE 100 (control unit 120) may perform predetermined control based on switching control information indicating that the predetermined control is enabled.
  • the RRC message may include switching control information for controlling voluntary uplink transmission (or setting to switch the PDCCH monitoring state at a trigger different from the trigger for the uplink transmission).
  • step S102 the base station 200 (transmitting section 211) transmits a switching instruction DCI that instructs PDCCH skipping or SSSG switching to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI.
  • FIG. 12 illustrates a case where switching instruction DCI instructing PDCCH skipping is transmitted to UE 100 on PDCCH.
  • the switching instruction DCI may be an instruction for switching to the PDCCH skipping state in which PDCCH monitoring is skipped as the PDCCH monitoring state.
  • step S103 the UE 100 (control unit 120) switches the PDCCH monitoring state in response to receiving the switching instruction DCI. Specifically, UE 100 (control section 120) switches the PDCCH monitoring state to the PDCCH skipping state. For example, when PDCCH skipping is set, UE 100 (control unit 120) monitors the PDCCH for a predetermined period (set predetermined period) according to the value set in the switching instruction DCI (skip instruction DCI). You can skip across When SSSG switching is set, the UE 100 (control unit 120) may switch to the SSSG indicated by the switching instruction DCI according to the value set in the switching instruction DCI. As a result, UE 100 enters a power saving state in which power consumption required for PDCCH monitoring is reduced.
  • the UE 100 may start a switching timer in response to switching to the PDCCH skipping state.
  • UE 100 (control unit 120) starts a switching timer.
  • step S104 the UE 100 (control unit 120) switches from the PDCCH skipping state to the PDCCH monitoring execution state.
  • the UE 100 (control unit 120) may switch to the PDCCH monitoring execution state, for example, based on expiration of the switching timer.
  • step S105 the UE 100 (communication unit 110) may receive DCI on the PDCCH.
  • step S106 the UE 100 (communication unit 110) performs predetermined control to prevent retransmission of data communicated before the PDCCH skipping state. Specifically, the UE 100 (control unit 120) switches the PDCCH monitoring state to the PDCCH skipping state, and then performs predetermined control based on switching to the PDCCH monitoring execution state. The UE 100 (control unit 120) may perform, for example, the following operations as the predetermined control.
  • the UE 100 may perform predetermined control based on the switching control information.
  • the UE 100 may perform predetermined control, for example, based on switching control information indicating that the predetermined control is enabled.
  • step S111 the UE 100 (communication unit 110) receives PDCCH (corresponding to step S105).
  • step S112 the UE 100 (control unit 120) determines whether the received PDCCH is the first received PDCCH after the PDCCH skipping period (ie skipping period) expires. UE 100 (control unit 120) executes the process of step S113 when the received PDCCH is the first received PDCCH. On the other hand, UE 100 (control unit 120) executes the process of step S114 when the received PDCCH is not the first received PDCCH.
  • the UE 100 may regard transmission of scheduling (downlink assignment and/or uplink grant) indicated by DCI included in PDCCH as initial transmission. That is, the UE 100 (control unit 120), for example, considers that the NDI included in DCI is toggled. That is, UE 100 (control unit 120), for example, when the PDCCH monitoring is performed (or resumed) based on the expiration of the PDCCH skipping period, the DCI format transmitted in the first detected PDCCH (i.e., downlink assignment message and/or uplink grant) may be considered toggled.
  • scheduling downlink assignment and/or uplink grant
  • UE 100 performs (or resumes) monitoring of PDCCH based on the expiration of the PDCCH skipping period, DCI format transmitted in PDCCH (that is, downlink assignment and / or uplink link grant), the NDI may be considered toggled regardless of the value of the NDI.
  • the UE 100 compares the NDI (that is, the value of NDI) included in the DCI with the NDI (that is, the value of NDI) of the transmission corresponding to the previously received TB, and toggles. You can ignore whether or not
  • step S114 the UE 100 (control unit 120) executes HARQ operation.
  • the UE 100 (control unit 120) considers that the NDI included in the DCI has been toggled, so in HARQ operation, the scheduling transmission indicated by the DCI is processed as an initial transmission instead of a retransmission.
  • control unit 120 specifically instructs the physical layer to combine the received data with the data in the buffer for the TB when the scheduling transmission indicated by DCI is PDSCH transmission. You may attempt to decode the data without
  • UE 100 when the scheduling transmission indicated by DCI is PUSCH transmission, UE 100 (control unit 120) stores data (MAC PDU) in the associated HARQ buffer, and stores the stored uplink Instruct the physical layer to generate transmissions according to the link grant.
  • the UE 100 (control unit 120) performs predetermined control to terminate the HARQ process that was performed before the PDCCH skipping state.
  • UE 100 (control section 120) does not perform retransmission in the HARQ process performed before the PDCCH skipping state.
  • the HARQ operation can be properly performed.
  • the UE 100 (control unit 120) can not normally receive the NDI in the PDCCH, even if it does not hold the NDI included in the last received PDCCH before switching the PDCCH skipping state , HARQ operations can be properly performed because retransmissions are not performed in the HARQ process that was performed before the PDCCH skipping state.
  • UE 100 control section 120
  • the HARQ operation can be properly performed.
  • the UE 100 may regard transmission scheduled by DCI as initial transmission regardless of the value of NDI included in DCI. As a result, retransmission is not performed in the HARQ process that was performed before the PDCCH skipping state, so HARQ operation can be properly performed.
  • the UE 100 may perform predetermined control based on the switching control information. This allows the UE 100 to perform predetermined control under the control of the base station 200 .
  • step S201 the PDCCH skipping period (ie skipping period) expires.
  • UE 100 control unit 120 may determine that the PDCCH skipping period has expired, for example, according to expiration of the switching timer.
  • step S202 the UE 100 (control unit 120) flushes the retransmission control buffer. Specifically, the UE 100 (control unit 120) flushes all HARQ buffers. That is, UE 100 (control section 120) may flush HARQ buffers (for example, all HARQ buffers) based on expiration of the PDCCH skipping period.
  • the UE 100 (control unit 120) receives (or may detect) a switching instruction DCI that instructs PDCCH skipping (that is, a PDCCH monitoring adaptation notification field that is set to a value that instructs PDCCH skipping), HARQ Buffers (eg, all HARQ buffers) may be flushed. That is, the UE 100 (control unit 120) may flush HARQ buffers (eg, all HARQ buffers) based on reception of the switching instruction DCI instructing switching to the PDCCH skipping state as the PDCCH monitoring state.
  • UE 100 (control unit 120) does not perform retransmission in the HARQ process that was performed before the PDCCH skipping state because data is not saved in all HARQ buffers.
  • the HARQ operation can be properly performed.
  • Embodiments UE 100 may perform operations different from those described above as predetermined control.
  • the UE 100 may flush all HARQ buffers, for example, in response to starting the switching timer.
  • the UE 100 may perform predetermined control when the PDCCH skipping period is longer than or equal to the predetermined period. UE 100 (control unit 120) does not need to perform predetermined control when the PDCCH skipping period is less than the predetermined period.
  • the UE 100 may receive information indicating the predetermined period from the base station 200.
  • the information may be included in switching control information, for example.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • the control unit (120) switches the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) to the PDCCH skipping state in which monitoring of the PDCCH is skipped, and then switches to the state of monitoring the PDCCH.
  • a communication apparatus (100) that performs predetermined control for terminating the HARQ process performed before the PDCCH skipping state.
  • the communication unit (110) receives downlink control information (DCI) including a new data indicator (NDI) on the first detected PDCCH after switching to the PDCCH skipping state by monitoring the PDCCH, In the predetermined control, the control unit (120) regards the transmission scheduled by the DCI as an initial transmission regardless of the value of NDI included in the DCI received on the first detected PDCCH.
  • DCI downlink control information
  • NDI new data indicator
  • the control unit (120) manages a retransmission control buffer that holds the data, The communication device (100) according to appendix 1, wherein the control unit (120) flushes the retransmission control buffer in the predetermined control.
  • the communication unit (110) receives switching control information for controlling switching of the PDCCH monitoring state from the base station (200), 4.
  • the communication device (100) according to any one of additional notes 1 to 3, wherein the control unit (120) performs the predetermined control based on the switching control information.
  • PDCCH physical downlink control channel

Abstract

A communication device (100) that performs wireless communication with a base station (200) comprises a communication unit (110) that communicates data with the base station (200), and a control unit (120) that manages a hybrid automatic repeat request (HARQ) process for the data. The control unit (120) switches a PDCCH monitoring state pertaining to monitoring of a physical downlink control channel (PDCCH) to a PDCCH skipping state for skipping the monitoring of the PDCCH, and then, on the basis of switching to a state for monitoring the PDCCH, performs a predetermined control for ending the HARQ process that was being performed before the PDCCH skipping state.

Description

通信装置及び通信方法Communication device and communication method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年12月28日に出願された特許出願番号2021-214689号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-214689, filed December 28, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる通信装置及び通信方法に関する。 The present disclosure relates to a communication device and communication method used in a mobile communication system.
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、無線リソース制御(Radio Resource Control:RRC)コネクティッド状態にある通信装置の消費電力を低減するパワーセービング技術を第5世代(5G)システムに導入することが検討されている。 In recent years, in the 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, power to reduce the power consumption of communication devices in a radio resource control (RRC) connected state The introduction of saving techniques into fifth generation (5G) systems is under consideration.
 例えば、パワーセービング技術の一つとして、通信装置における物理下りリンク制御チャネル(Physical Downlink Control Channel:PDCCH)の監視に必要な消費電力を低減するために、物理下りリンク制御チャネルの監視に関するPDCCHの監視状態を切り替える処理(以下、切り替え処理)を行うことが検討されている。例えば、通信装置は、切り替え処理によって、PDCCHの監視状態を、PDCCHの監視周期を長くする又はPDCCHの監視をスキップする状態(以下、PDCCH監視スキッピング状態)に切り替える。特に、通信装置において、RRCコネクティッド状態の間欠受信(Discontinuous Reception:DRX)におけるアクティブ時間内において動的にPDCCH監視状態を切り替えることにより、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。このようなPDCCHの監視をスキップする動作及びPDCCHの監視状態を切り替える動作は、PDCCH監視アダプテーション(PDCCH monitoring adaptation)と称されることがある。 For example, as one of the power saving techniques, in order to reduce the power consumption required for monitoring a physical downlink control channel (PDCCH) in a communication device, PDCCH monitoring related to monitoring the physical downlink control channel A process of switching states (hereinafter referred to as switching process) is under consideration. For example, the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or PDCCH monitoring is skipped (hereinafter referred to as a PDCCH monitoring skipping state). In particular, in a communication device, by dynamically switching the PDCCH monitoring state during the active time in discontinuous reception (DRX) in the RRC connected state, a greater power consumption reduction effect than the power consumption reduction by DRX can be achieved. Obtainable. Such an operation of skipping PDCCH monitoring and an operation of switching PDCCH monitoring states may be referred to as PDCCH monitoring adaptation.
 ところで、通信装置は、PDCCH上で下りリンク制御情報(Downlink Control Information:DCI)に基づいて、ハイブリッド自動再送要求(Hybrid Automatic Repeat reQuest:HARQ)によるHARQ動作を実行する。通信装置は、HARQ動作によって、DCIに含まれる新規データインジケータ(New Data Indicator:NDI)に基づいて、下りリンク通信において受信したデータが初期送信か再送かを判定し、上り通信においてデータを初期送信するか再送するかを判定する。 By the way, the communication device executes HARQ operation by hybrid automatic repeat request (HARQ) based on downlink control information (DCI) on PDCCH. Through HARQ operation, the communication device determines whether data received in downlink communication is initial transmission or retransmission based on a New Data Indicator (NDI) included in DCI, and initially transmits data in uplink communication. or resend.
 第1の態様に係る通信装置は、基地局との無線通信を行う通信装置である。前記通信装置は、前記基地局とデータを通信する通信部と、前記データのハイブリッド自動再送要求(HARQ)プロセスを管理する制御部と、を備える。前記制御部は、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行う。 A communication device according to the first aspect is a communication device that performs wireless communication with a base station. The communication device comprises a communication unit for communicating data with the base station, and a control unit for managing a hybrid automatic repeat request (HARQ) process for the data. The control unit switches the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) to a PDCCH skipping state that skips the monitoring of the PDCCH, and then switches to the state of monitoring the PDCCH. Predetermined control is performed to terminate the HARQ process that was performed prior to the PDCCH skipping state.
 第2の態様に係る通信方法は、基地局との無線通信を行う通信装置で実行される通信方法である。前記通信方法は、前記基地局とデータを通信するステップと、前記データのハイブリッド自動再送要求(HARQ)プロセスを管理するステップと、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行うステップと、を備える。 A communication method according to the second aspect is a communication method executed by a communication device that performs wireless communication with a base station. The communication method comprises: communicating data with the base station; managing a hybrid automatic repeat request (HARQ) process for the data; After switching to the PDCCH skipping state in which PDCCH monitoring is skipped, based on the switching to the state of monitoring the PDCCH, predetermined control is performed to terminate the HARQ process performed before the PDCCH skipping state. a step;
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、実施形態に係る移動通信システムにおける無線通信動作の概要を示すシーケンス図である。 図4は、実施形態に係るPDCCHスキッピングの概要を示す図である。 図5は、実施形態に係るサーチスペースセット(SSSG)切り替えの概要を示す図である。 図6は、実施形態に係るDRX及びパワーセービング状態を示す図である。 図7は、実施形態に係るSSSG切り替えの一例を示すシーケンス図である。 図8は、実施形態に係るタイマベースのSSSG切り替えの一例を示す図である。 図9は、実施形態に係るUEの構成を示す図である。 図10は、実施形態に係る基地局の構成を示す図である。 図11は、実施形態に係る移動通信システムの第1動作例を説明するためのシーケンス図である。 図12は、実施形態に係る移動通信システムの第1動作例を説明するための図である。 図13は、実施形態に係る移動通信システムの第1動作例を説明するためのフローチャートである。 図14は、実施形態に係る移動通信システムの第2動作例を説明するためのフローチャートである。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment; FIG. 3 is a sequence diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment. FIG. 4 is a diagram showing an overview of PDCCH skipping according to the embodiment. FIG. 5 is a diagram showing an overview of search space set (SSSG) switching according to the embodiment. FIG. 6 is a diagram illustrating DRX and power saving states according to an embodiment. FIG. 7 is a sequence diagram illustrating an example of SSSG switching according to the embodiment. FIG. 8 is a diagram illustrating an example of timer-based SSSG switching according to an embodiment. FIG. 9 is a diagram showing the configuration of the UE according to the embodiment. FIG. 10 is a diagram showing the configuration of a base station according to the embodiment. FIG. 11 is a sequence diagram for explaining the first operation example of the mobile communication system according to the embodiment. FIG. 12 is a diagram for explaining a first operation example of the mobile communication system according to the embodiment. FIG. 13 is a flowchart for explaining a first operation example of the mobile communication system according to the embodiment. FIG. 14 is a flowchart for explaining a second operation example of the mobile communication system according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 通信装置が、PDCCHの監視状態を、PDCCHを監視する状態からPDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えて、その後PDCCHスキッピング状態からPDCCHを監視する状態へ切り替えるケースを想定する。 Assume a case where the communication device switches the PDCCH monitoring state from the PDCCH monitoring state to the PDCCH skipping state in which PDCCH monitoring is skipped, and then switches from the PDCCH skipping state to the PDCCH monitoring state.
 通信装置は、PDCCHスキッピング状態へ切り替えた後、PDCCHを監視する状態へ再び切り替えるまで、PDCCHを受信しない。従って、通信装置は、PDCCHスキッピング状態へ切り替える前に基地局と無線通信を行ってからある程度の期間(すなわち、PDCCHスキッピング状態である期間)が経過した後にPDCCHスキッピング状態へ切り替えて、その後、PDCCH上でDCIを受信することとなる。通信装置は、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合、HARQ動作を適切に行うことができない懸念がある。 After switching to the PDCCH skipping state, the communication device does not receive the PDCCH until it switches back to the PDCCH monitoring state. Therefore, before switching to the PDCCH skipping state, the communication device switches to the PDCCH skipping state after a certain period of time (that is, the period of the PDCCH skipping state) has passed since wireless communication with the base station, and then switches to the PDCCH skipping state. will receive the DCI. There is a concern that the communication device cannot appropriately perform HARQ operation when restarting HARQ operation after switching the PDCCH skipping state.
 そこで、本開示は、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことを可能とする通信装置及び通信方法を提供することを目的の一つとする。 Therefore, one object of the present disclosure is to provide a communication device and a communication method that enable the HARQ operation to be performed appropriately when the HARQ operation is restarted after switching the PDCCH skipping state.
 (1)移動通信システム
 本実施形態に係る移動通信システムについて説明する。
(1) Mobile communication system A mobile communication system according to this embodiment will be described.
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。 First, the configuration of a mobile communication system 1 according to this embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS). In the following, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置(例えば、Aerial UE)であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. UE 100 may be a device used by a user. The UE 100 may be a user equipment defined by 3GPP technical specifications. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE). The UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE). The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. One cell belongs to one frequency (carrier frequency) and is composed of one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。 Next, a configuration example of a protocol stack according to this embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。 The protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 MACレイヤは、データの優先制御、ハイブリッドARQ(Hybrid Automatic Repeat reQuest:HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(Modulation and Coding Scheme:MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Quest: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS(Quality of Service)制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between IP flows, which are the units in which the core network performs QoS control, and radio bearers, which are the units in which the AS (Access Stratum) performs QoS (Quality of Service) control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF). Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 次に、図3を参照して、本実施形態に係る移動通信システム1における無線通信動作の概要について説明する。 Next, with reference to FIG. 3, an overview of wireless communication operations in the mobile communication system 1 according to this embodiment will be described.
 基地局200は、PDCCHが設けられる候補タイミングに相当するサーチスペースをUE100に設定する。RRCコネクティッド状態にあるUE100は、設定されたサーチスペースにおいてPDCCHを監視(モニタ)し、PDCCHで運ばれる下りリンク制御情報(Downlink Control Information:DCI)を受信し、DCIが示すリソース割当(スケジューリング)に従って物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)の受信及び/又は物理上りリンク共有チャネル(Physical Uplink Shared Channel:PUSCH)の送信を行う。例えば、UE100は、対応するサーチスペースに従って、PDCCHの候補のセットを監視してもよい。すなわち、UE100は、対応するサーチスペースに従って、PDCCHの監視が設定されたサービングセルにおける下りリンクBWPでの制御リソースセット(Control Resource Set:CORESET)で、PDCCHの候補のセットを監視してもよい。ここで、モニタとは、モニタされるDCIフォーマットに従って、PDCCHの候補のそれぞれをデコードすることを示していてもよい。 The base station 200 configures the UE 100 with a search space corresponding to the candidate timing at which the PDCCH is provided. UE 100 in the RRC connected state monitors PDCCH in the set search space, receives downlink control information (Downlink Control Information: DCI) carried by PDCCH, and assigns resources (scheduling) indicated by DCI. According to the physical downlink shared channel (PDSCH) reception and / or physical uplink shared channel (PUSCH) is transmitted. For example, the UE 100 may monitor a set of PDCCH candidates according to the corresponding search space. That is, UE 100 may monitor a set of PDCCH candidates in a downlink BWP control resource set (CORESET) in a serving cell in which PDCCH monitoring is configured, according to the corresponding search space. Here, monitoring may refer to decoding each of the PDCCH candidates according to the monitored DCI format.
 図3に示すように、ステップS1において、基地局200は、PDCCHに関する設定(PDCCH設定)を含むRRCメッセージをUE100に送信し、PDCCHに関する各種設定をUE100に対して行う。このRRCメッセージは、UE固有のRRCメッセージであって、例えばRRC Reconfigurationメッセージであってもよい。ここで、PDCCHに関する設定のうちサーチスペース設定は、サーチスペース周期(PDCCH監視周期とも称する)、サーチスペースオフセット(PDCCH監視オフセットとも称する)、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット等を含む。ここで、サーチスペースのそれぞれ(サーチスペースの設定のそれぞれ)は、1つのCORESETに関連してもよい。また、サーチスペースの設定は、1以上のDL BWPのそれぞれに対して設定されてもよい。ここで、サーチスペースのタイプは、UE固有のサーチスペース(UE-specific Search Space:USS)及び/又はUE共通のサーチスペース(Common Search Space:CSS)を含んでもよい。 As shown in FIG. 3, in step S1, the base station 200 transmits an RRC message including PDCCH settings (PDCCH settings) to the UE 100, and performs various PDCCH settings for the UE 100. This RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message. Here, among the settings related to PDCCH, the search space settings include a search space period (also referred to as a PDCCH monitoring period), a search space offset (also referred to as a PDCCH monitoring offset), a search space duration (for example, the number of consecutive slots), and PDCCH monitoring. symbols for, aggregation level, search space type, DCI format, etc. Here, each search space (each set of search spaces) may be associated with one CORESET. Also, the search space setting may be set for each of one or more DL BWPs. Here, the search space type may include a UE-specific search space (USS) and/or a UE common search space (CSS).
 DCIフォーマットには、PDSCH又はPUSCHのスケジューリングに用いられるスケジューリングDCIフォーマットと、このようなスケジューリングに用いられない非スケジューリングDCIフォーマットとがある。スケジューリングDCIフォーマットで送信されるDCIをスケジューリングDCIと称し、非スケジューリングDCIフォーマットで送信されるDCIを非スケジューリングDCIと称する。 DCI formats include scheduling DCI formats used for PDSCH or PUSCH scheduling and non-scheduling DCI formats not used for such scheduling. DCI transmitted in a scheduling DCI format is called scheduling DCI, and DCI transmitted in a non-scheduling DCI format is called non-scheduling DCI.
 スケジューリングDCIフォーマットには、PDSCHのスケジューリングに用いられる下りリンクDCIフォーマット(例えば、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット1_2)と、PUSCHスケジューリングに用いられる上りリンクDCIフォーマット(例えば、DCIフォーマット0_0、DCIフォーマット0_1、DCIフォーマット0_2)とがある。スケジューリングDCIは、UE個別に送信されるUE固有のDCIであってもよい。例えば、スケジューリングDCIは、UE個別に割り当てられるRNTI(Radio Network Temporary Identifier)を適用して送信されてもよい。ここで、PDSCHのスケジューリングに用いられる下りリンクDCIフォーマットは、下りリンクアサインメントとも称される。また、PUSCHスケジューリングに用いられる上りリンクDCIフォーマットは、上りリンクグラントとも称される。 Scheduling DCI formats include a downlink DCI format used for PDSCH scheduling (eg, DCI format 1_0, DCI format 1_1, DCI format 1_2) and an uplink DCI format used for PUSCH scheduling (eg, DCI format 0_0, DCI format 0_1 and DCI format 0_2). The scheduling DCI may be UE-specific DCI that is sent for each UE. For example, the scheduling DCI may be transmitted by applying an RNTI (Radio Network Temporary Identifier) assigned to each UE. Here, the downlink DCI format used for PDSCH scheduling is also called downlink assignment. Also, the uplink DCI format used for PUSCH scheduling is also called an uplink grant.
 一方、非スケジューリングDCIフォーマットには、例えば、DCIフォーマット2_0、DCIフォーマット2_6がある。非スケジューリングDCIは、複数のUE100に一斉に送信可能なDCIであってもよい。例えば、非スケジューリングDCIは、複数のUE100に共通のRNTIを適用して送信されてもよい。 On the other hand, non-scheduling DCI formats include, for example, DCI format 2_0 and DCI format 2_6. The non-scheduling DCI may be a DCI that can be transmitted to multiple UEs 100 at once. For example, non-scheduling DCI may be transmitted by applying a common RNTI to multiple UEs 100 .
 ステップS2において、UE100は、基地局200から設定されたサーチスペースにおけるPDCCHの監視を開始する。例えば、DCIフォーマット1_0、DCIフォーマット0_0、DCIフォーマット1_1、DCIフォーマット0_1、DCIフォーマット1_2、及びDCIフォーマット0_2のそれぞれがUE100に設定されており、UE100は設定に基づいてPDCCH(DCI)を監視する。例えば、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_0及びDCIフォーマット0_0を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_1及びDCIフォーマット0_1を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_2及びDCIフォーマット0_2を監視するように設定してもよい。すなわち、例えば、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット2_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_1及びDCIフォーマット0_1に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_2及びDCIフォーマット0_2に対するPDCCHの候補を監視するように設定してもよい。 In step S2, the UE 100 starts monitoring PDCCH in the search space set by the base station 200. For example, DCI format 1_0, DCI format 0_0, DCI format 1_1, DCI format 0_1, DCI format 1_2, and DCI format 0_2 are configured in the UE 100, and the UE 100 monitors the PDCCH (DCI) based on the configuration. For example, base station 200 may configure UE 100 to monitor DCI format 1_0 and DCI format 0_0 in a certain search space. Also, base station 200 may configure UE 100 to monitor DCI format 1_1 and DCI format 0_1 in a certain search space. Also, base station 200 may configure UE 100 to monitor DCI format 1_2 and DCI format 0_2 in a certain search space. That is, for example, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 when CSS is configured for a certain search space. Also, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 2_0 when CSS is configured for a certain search space. In addition, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_1 and DCI format 0_1 when USS is configured for a certain search space. can be set to Also, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_2 and DCI format 0_2 when USS is configured for a certain search space. can be set to
 ステップS3において、UE100は、自UE宛てのDCI又はPDCCHを基地局200から受信及び検出する。例えば、UE100は、基地局200からUE100に割り当てられたC-RNTI(Cell-Radio Network Temporary Identifier(RNTI))、又はMCS-C-RNTI(Modulation and Coding Scheme-C-RNTI)、又はCS-RNTI(Configured Scheduling-RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。ここで、基地局200から送信されるDCI(すなわち、DCIフォーマット)には、C-RNTI、又はMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRC(Cyclic Redundancy Check)パリティビットが付加されている。すなわち、下りリンクアサインメントには、C-RNTI、又はMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRCパリティビットが付加されている。また、上りリンクグラントには、C-RNTI、又はMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRCパリティビットが付加されている。 In step S3, the UE 100 receives and detects DCI or PDCCH addressed to itself from the base station 200. For example, the UE 100 uses the C-RNTI (Cell-Radio Network Temporary Identifier (RNTI)) or MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI) or CS-RNTI assigned to the UE 100 from the base station 200. (Configured Scheduling-RNTI) is used to perform blind decoding of the PDCCH, and the successfully decoded DCI is acquired as the DCI addressed to its own UE. Here, CRC (Cyclic Redundancy Check) parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the DCI (that is, DCI format) transmitted from the base station 200. ing. That is, the downlink assignment is appended with CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI. Also, CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the uplink grant.
 DCIがPDSCHのスケジューリングを示す場合、ステップS4において、UE100は、スケジューリングされたPDSCHで基地局200から下りリンクデータを受信する。DCIがPUSCHのスケジューリングを示す場合、ステップS5において、UE100は、スケジューリングされたPUSCHで基地局200に上りリンクデータを送信する。ここで、下りリンクデータは、下りリンク共用チャネル(Downlink-Shared Channel:DL-SCH)のデータとも称される。また、上りリンクデータは、上りリンク共有チャネル(Uplink-Shared Channel:UL-SCH)のデータとも称される。ここで、下りリンク共用チャネル及び上りリンク共有チャネルはトランスポートチャネルであり、PDSCH及びPUSCHは物理チャネルである。例えば、下りリンクデータ(DL-SCHのデータ)はPDSCHにマップされ、上りリンクデータ(UL-SCHのデータ)はPUSCHにマップされる。 When the DCI indicates PDSCH scheduling, in step S4, the UE 100 receives downlink data from the base station 200 on the scheduled PDSCH. If the DCI indicates PUSCH scheduling, the UE 100 transmits uplink data to the base station 200 on the scheduled PUSCH in step S5. Here, downlink data is also referred to as downlink shared channel (DL-SCH) data. Uplink data is also referred to as uplink-shared channel (UL-SCH) data. Here, the downlink shared channel and the uplink shared channel are transport channels, and PDSCH and PUSCH are physical channels. For example, downlink data (DL-SCH data) is mapped to PDSCH, and uplink data (UL-SCH data) is mapped to PUSCH.
 (2)HARQ動作
 HARQ動作の概要について説明する。なお、HARQ動作の詳細については、3GPP技術仕様書に規定されている。
(2) HARQ operation An overview of HARQ operation will be explained. Details of the HARQ operation are specified in the 3GPP technical specifications.
 MACレイヤにおけるエンティティであるMACエンティティは、各サービングセル用のHARQエンティティを含む。 A MAC entity, which is an entity in the MAC layer, includes a HARQ entity for each serving cell.
 (2.1)下りリンクでのHARQ動作
 MACエンティティは、DCIがPDSCHのスケジューリング(具体的には、下りリンク割り当て(PDSCHのリソース割り当て)、すなわち、下りリンクアサインメント)を示す場合、DCIに含まれるHARQ情報をHARQエンティティへ送る。また、MACエンティティは、物理レイヤがDL-SCHのデータ(具体的には、トランスポートブロック(TB))をHARQエンティティへ送るように指示する。
(2.1) HARQ operation in downlink The MAC entity is included in the DCI when the DCI indicates PDSCH scheduling (specifically, downlink assignment (PDSCH resource assignment), i.e., downlink assignment). HARQ information to be sent to the HARQ entity. The MAC entity also instructs the physical layer to send DL-SCH data (specifically, transport blocks (TB)) to the HARQ entity.
 HARQ情報は、新規データインジケータ(New Data Indicator:NDI)を含む。NDIは、送信が初期送信か再送かを示す(又は、判定する)ために用いられる。 The HARQ information includes a New Data Indicator (NDI). NDI is used to indicate (or determine) whether the transmission is an initial transmission or a retransmission.
 HARQエンティティは、TB及びHARQ情報を対応するHARQプロセスへ送信する。HARQプロセスは、TB及び関連するHARQ情報をHARQエンティティから受信する。HARQプロセスは、受信したそれぞれのTB及び関連するHARQ情報について、以下の処理を行う。 The HARQ entity sends the TB and HARQ information to the corresponding HARQ process. A HARQ process receives a TB and associated HARQ information from a HARQ entity. The HARQ process does the following for each received TB and associated HARQ information.
 HARQプロセスは、HARQ情報に含まれるNDIが、以前に受信した当該TBに対応する送信のNDIと比較して、トグルされている場合、又は、当該TBが最初に受信した送信(すなわち、当該TBについて以前に受信したNDIが存在しない)である場合、受信した送信を初期送信であるとみなす。そうでない場合(例えば、NDIがトグルされていない場合)、受信した送信を再送とみなす。このようにして、UE100は、DCIに含まれるNDIに基づいて、下りリンク通信において受信したデータが初期送信か再送かを判定する。 The HARQ process will be toggled if the NDI included in the HARQ information is toggled compared to the NDI of the previously received transmission corresponding to that TB, or if the TB is the first received transmission (i.e. There is no previously received NDI for ), consider the received transmission to be an initial transmission. Otherwise (eg, NDI is not toggled), consider the received transmission as a retransmission. In this way, the UE 100 determines whether data received in downlink communication is initial transmission or retransmission, based on the NDI included in the DCI.
 MACエンティティは、当該送信が初期送信である場合、受信したデータのデコードを試みてよい。一方で、MACエンティティは、当該送信が再送である場合、受信したデータを当該TB用のバッファ内のデータと組み合わせるように物理レイヤに指示して、データのデコードを試みてよい。MACエンティティは、デコードされたデータ(具体的には、MAC PDU)を上位レイヤに送る。 The MAC entity may attempt to decode the received data if the transmission is an initial transmission. On the other hand, if the transmission is a retransmission, the MAC entity may instruct the physical layer to combine the received data with the data in the buffer for that TB and attempt to decode the data. The MAC entity sends the decoded data (more specifically, MAC PDU) to upper layers.
 (2.2)上りリンクでのHARQ動作
 MACエンティティは、DCIがPUSCHのスケジューリング(具体的には、上りリンク割り当て(PUSCHのリソース割り当て)、すなわち、上りリンクグラント)を示す場合、上りリンクグラントとDCIに含まれる関連したHARQ情報とをHARQエンティティへ送る。
(2.2) HARQ operation in uplink When the DCI indicates PUSCH scheduling (specifically, uplink allocation (PUSCH resource allocation), i.e., uplink grant), the MAC entity is an uplink grant. and relevant HARQ information contained in the DCI to the HARQ entity.
 各上りリンクグラントについて、HARQエンティティは、上りリンクグラントに関連付けられているHARQプロセスを識別する。HARQエンティティは、識別されたHARQプロセスのそれぞれについて、HARQ情報に含まれるNDIが、以前に受信した当該TBに対応する送信のNDIと比較して、トグルされている場合、受信した送信を初期送信であるとみなす。HARQエンティティは、送信すべきデータ(具体的には、MAC PDU)を取得して、初期送信をトリガするように識別されたHARQプロセスに指示する。一方で、HARQエンティティは、HARQ情報に含まれるNDIがトグルされている場合、受信した送信を再送とみなす。HARQエンティティは、再送をトリガするように識別されたHARQプロセスに指示する。このようにして、UE100は、DCIに含まれるNDIに基づいて、上りリンク通信において受信したデータが初期送信か再送かを判定する。 For each uplink grant, the HARQ entity identifies the HARQ process associated with the uplink grant. The HARQ entity, for each identified HARQ process, compares the NDI included in the HARQ information with the NDI of the previously received transmission corresponding to that TB, if toggled, to the initial transmission. be considered to be The HARQ entity instructs the identified HARQ processes to obtain data to be transmitted (specifically MAC PDUs) and trigger initial transmission. On the other hand, a HARQ entity considers a received transmission as a retransmission if the NDI included in the HARQ information is toggled. The HARQ entity instructs the identified HARQ processes to trigger retransmissions. In this way, the UE 100 determines whether data received in uplink communication is initial transmission or retransmission, based on the NDI included in the DCI.
 各HARQプロセスは、HARQバッファに関連付けられている。HARQプロセスは、HARQエンティティが初期送信を要求した場合、関連付けられたHARQバッファにデータ(MAC PDU)を記憶する。また、HARQプロセスは、HARQエンティティが初期送信及び再送を要求した場合、HARQエンティティから受信した上りリンクグラントを記憶する。HARQプロセスは、記憶された上りリンクグラントに従って送信を生成するように物理レイヤへ指示する。 Each HARQ process is associated with a HARQ buffer. A HARQ process stores data (MAC PDUs) in its associated HARQ buffer when a HARQ entity requests an initial transmission. The HARQ process also stores uplink grants received from HARQ entities when the HARQ entities request initial transmissions and retransmissions. The HARQ process directs the physical layer to generate transmissions according to the stored uplink grants.
 (3)パワーセービング技術の概要
 本実施形態に係るパワーセービング技術の概要について説明する。
(3) Overview of Power Saving Technology An overview of the power saving technology according to this embodiment will be described.
 まず、図4を参照して、本実施形態に係るPDCCHスキッピングの概要について説明する。以下において、UE100はRRCコネクティッド状態にあるものとする。 First, an overview of PDCCH skipping according to this embodiment will be described with reference to FIG. It is assumed below that the UE 100 is in the RRC connected state.
 第1に、UE100は、基地局200から設定されたサーチスペース設定に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。本実施形態において、このようなUE100におけるPDCCHの監視に関するPDCCH監視状態は、PDCCHを監視するPDCCH監視実行状態と称することがある。 First, the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on the search space setting set by the base station 200 . In the present embodiment, such a PDCCH monitoring state regarding PDCCH monitoring in UE 100 may be referred to as a PDCCH monitoring execution state for monitoring PDCCH.
 第2に、基地局200は、PDCCHスキッピングを指示するスキップ指示DCIをUE100に送信する。スキップ指示DCIは、切り替え指示DCIの一例である。スキップ指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。 Second, the base station 200 transmits to the UE 100 a skip instruction DCI that instructs PDCCH skipping. Skip instruction DCI is an example of switching instruction DCI. A skip indication DCI may be a scheduling DCI or a non-scheduling DCI.
 第3に、UE100は、基地局200からのスキップ指示DCIの受信に応じて、PDCCHの監視を所定期間にわたってスキップする。PDCCHの監視をスキップする所定期間は、上位レイヤシグナリング(RRCメッセージ)により設定されてもよい。所定期間は、タイマ値(すなわち、切り替えタイマの設定値)により定められてもよいし、連続するスロット数又は連続するサーチスペース数により定められてもよい。当該所定期間は、スキッピング期間と称されてもよい。このようなPDCCHスキッピングにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。なお、PDCCHスキッピングはPDCCHの監視をスキップすることを意味してもよく、PDCCHスキッピングをPDCCH監視スキッピングと称しても良い。本実施形態において、このようなUE100におけるPDCCH監視状態は、PDCCHスキッピング状態と称することがある。 Third, the UE 100 skips PDCCH monitoring for a predetermined period in response to receiving the skip instruction DCI from the base station 200 . The predetermined period for skipping PDCCH monitoring may be set by higher layer signaling (RRC message). The predetermined period may be determined by a timer value (that is, a setting value of a switching timer), or may be determined by the number of consecutive slots or the number of consecutive search spaces. The predetermined period may be referred to as a skipping period. Such PDCCH skipping reduces the power consumption required for the UE 100 to monitor the PDCCH, and can achieve dynamic power saving. Note that PDCCH skipping may mean skipping PDCCH monitoring, and PDCCH skipping may be referred to as PDCCH monitoring skipping. In this embodiment, such a PDCCH monitoring state in the UE 100 may be referred to as a PDCCH skipping state.
 次に、図5を参照して、本実施形態に係るサーチスペースセットグループ切り替え(SSSG switching)の概要について説明する。 Next, an overview of search space set group switching (SSSG switching) according to this embodiment will be described with reference to FIG.
 第1に、基地局200は、サーチスペースに関する設定のセットであるサーチスペースセットを上位レイヤシグナリング(RRCメッセージ)によってUE100に複数設定する。このようなサーチスペースに関する設定のセットはサーチスペースセット(Search Space Set:SSS)又はサーチスペースセットグループ(Search Space Set Group:SSSG)と称されるが、以下においては、主としてSSSGと称することとする。1つのSSSGは、1つ又は複数のサーチスペース設定を含み、SSSGのインデックスにより識別される。図5の例において、基地局200は、所定周期でサーチスペースが設けられるSSSG#0(第1サーチスペースセット)と、所定周期よりも長い周期でサーチスペースが設けられるSSSG#1(第2サーチスペースセット)とをUE100に設定するものとする。ここでは基地局200がSSSG#0及びSSSG#1の2つのSSSGをUE100に設定する一例を示しているが、1以上のBWP(例えば、DL BWP)のそれぞれに対して3つ以上のSSSGをUE100に設定してもよい。なお、UE100に複数のSSSG(若しくは3つ以上のSSSG)を設定するとは、1つのBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよいし、複数のBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよい。また、前述のとおりサーチスペースがUE固有のサーチスペース及び/又はUE共通のサーチスペースを含む点を勘案すると、UE固有のサーチスペースに関する設定のセットはUE固有のサーチスペースセットと称されてもよく、UE共通のサーチスペースに関する設定のセットはUE共通のサーチスペースセットと称されてもよい。 First, the base station 200 configures multiple search space sets, which are sets of settings related to search spaces, in the UE 100 through higher layer signaling (RRC messages). A set of settings related to such a search space is called a Search Space Set (SSS) or a Search Space Set Group (SSSG), but in the following it will be mainly called SSSG. . One SSSG includes one or more search space settings and is identified by an SSSG index. In the example of FIG. 5, base station 200 has SSSG#0 (first search space set) in which search spaces are provided at a predetermined cycle, and SSSG#1 (second search space set) in which search spaces are provided at a cycle longer than the predetermined cycle. space set) shall be set in the UE 100. Here, an example is shown in which the base station 200 sets two SSSGs, SSSG#0 and SSSG#1, to the UE 100. Three or more SSSGs are set for each of one or more BWPs (for example, DL BWP). You may set to UE100. Note that setting a plurality of SSSGs (or three or more SSSGs) in the UE 100 may mean setting a plurality of SSSGs (or three or more SSSGs) for one BWP, or a plurality of may mean setting multiple SSSGs (or three or more SSSGs) for each BWP. Also, considering that search spaces include UE-specific search spaces and/or UE-common search spaces as described above, a set of settings related to UE-specific search spaces may be referred to as a UE-specific search space set. , the set of configurations for UE-common search spaces may be referred to as a UE-common search space set.
 第2に、UE100は、SSSG#0に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。 Second, the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on SSSG#0.
 第3に、基地局200は、SSSG切り替えを指示する切り替え指示DCIをUE100に送信する。切り替え指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。すなわち、基地局200は、DCIを用いて、SSSG#0からSSSG#1への切り替えをUE100に指示する。 Third, the base station 200 transmits to the UE 100 a switching instruction DCI that instructs SSSG switching. The switching instruction DCI may be a scheduling DCI or a non-scheduling DCI. That is, the base station 200 uses DCI to instruct the UE 100 to switch from SSSG#0 to SSSG#1.
 第4に、UE100は、切り替え指示DCIの受信に応じてSSSG#1への切り替えを開始する。UE100は、SSSG#0におけるPDCCHの最後のシンボルから切り替え遅延時間(Switch delay)後のシンボルでSSSG#1への切り替えを実施する。このような切り替え遅延時間は、上位レイヤシグナリング(RRCメッセージ)により基地局200からUE100に設定されてもよい。 Fourth, the UE 100 starts switching to SSSG#1 in response to receiving the switching instruction DCI. UE 100 performs switching to SSSG#1 in a symbol after a switching delay time (Switch delay) from the last symbol of PDCCH in SSSG#0. Such a switching delay time may be set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
 第5に、UE100は、SSSG#1に基づいて、所定周期よりも長い周期で設けられたPDCCHをサーチスペースにおいて監視する。このようなサーチスペースセット切り替えにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。 Fifth, based on SSSG#1, UE 100 monitors PDCCHs provided in a cycle longer than a predetermined cycle in search spaces. Such search space set switching reduces the power consumption required for UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
 なお、SSSG#1からSSSG#0への切り替えは、SSSG#0からSSSG#1への切り替えと同様に基地局200がDCIにより指示してもよいし、タイマを用いてUE100がSSSG#1からSSSG#0へ切り替えてもよい。このような切り替えタイマ(Switching timer)のタイマ値は、上位レイヤシグナリング(RRCメッセージ)で基地局200からUE100に設定される。UE100は、SSSG#1への切り替え指示DCIの検出に応じてSSSG#1におけるPDCCHの監視を開始するとともに、切り替えタイマの値を上位レイヤによって設定された値にセットして切り替えタイマを起動する。UE100は、切り替えタイマの値をデクリメントし、切り替えタイマが満了した場合にはSSSG#1におけるPDCCHの監視を停止し、切り替え遅延時間(Switch delay)後にSSSG#0におけるPDCCHの監視を開始する。 Note that switching from SSSG#1 to SSSG#0 may be instructed by the base station 200 using DCI in the same manner as switching from SSSG#0 to SSSG#1, or the UE 100 may switch from SSSG#1 using a timer. You may switch to SSSG#0. The timer value of such a switching timer (Switching timer) is set from the base station 200 to the UE 100 by higher layer signaling (RRC message). The UE 100 starts monitoring the PDCCH in SSSG#1 in response to detection of the switching instruction DCI to SSSG#1, sets the value of the switching timer to the value set by the upper layer, and activates the switching timer. UE 100 decrements the value of the switching timer, stops monitoring PDCCH in SSSG#1 when the switching timer expires, and starts monitoring PDCCH in SSSG#0 after a switch delay time.
 なお、SSSG#0における“#0”及びSSSG#1における“#1”は、サーチスペースのセット(グループ)に対するインデックス(サーチスペースグループIDとも称される)を示している。すなわち、インデックスによって識別されるサーチスペースのセット(グループ)に、1以上のサーチスペースセットが関連付けられてもよい。例えば、基地局200は、当該1以上のサーチスペースセットに関連するインデックスを設定することによって、UE100に対してサーチスペースのセット(グループ)を設定してもよい。本実施形態において、SSSGという名称は単なる一例であり、1以上のサーチスペースセットが関連付けられるサーチスペースのセット(グループ)であれば、その名称は問わない。 "#0" in SSSG#0 and "#1" in SSSG#1 indicate indexes (also called search space group IDs) for sets (groups) of search spaces. That is, one or more search space sets may be associated with a set (group) of search spaces identified by an index. For example, base station 200 may configure a set (group) of search spaces for UE 100 by configuring an index associated with the one or more search space sets. In this embodiment, the name SSSG is merely an example, and any name may be used as long as it is a set (group) of search spaces to which one or more search space sets are associated.
 サーチスペースセット切り替えにおいて、UE100に設定する1つのSSSGにおいてサーチスペースを有しない設定とし、当該1つのSSSGへの切り替えをDCIで指示することにより、上述のPDCCHスキッピングと同様な動作を実現できる。また、UE100に設定する1つのSSSGにおいてサーチスペースを設定し、当該サーチスペースに対するモニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値(例えば、“0”又は“Null”)に設定する)ことにより、上述のPDCCHスキッピングと同様な動作を実現してもよい。以下、説明を容易とするために、上述のPDCCHスキッピングと同様な動作を実現するための設定として、1つのSSSGにおいてサーチスペースを有しないことについて記載するが、モニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値に設定する)ことに置き換えられてもよいことは勿論である。また、UE100に設定する他のSSSGにおいて、長いサーチスペース周期を有する設定とし、当該1つのSSSGへの切り替えをDCIで指示することもできる。このような動作を実現するためには、通常のサーチスペース周期を有するSSSGと、サーチスペースを有しないSSSGと、長いサーチスペース周期を有するSSSGとの合計3つのSSSGをUE100に設定する。このような様々なSSSGをUE100に設定し、SSSGの切り替えをDCIで指示することにより、柔軟なパワーセービングを実現できる。 In search space set switching, one SSSG set in the UE 100 is set to have no search space, and switching to the one SSSG is indicated by DCI, thereby realizing the same operation as the PDCCH skipping described above. Also, a search space is set in one SSSG set in the UE 100, and no monitoring opportunity for the search space is set (or a parameter related to the monitoring opportunity is set to a predetermined value (e.g., "0" or "Null"). ), an operation similar to the PDCCH skipping described above may be realized. Hereinafter, in order to facilitate the explanation, as a setting for realizing the same operation as the PDCCH skipping described above, it will be described that there is no search space in one SSSG, but no monitoring opportunity is set (or monitoring setting a parameter related to the opportunity to a predetermined value). Also, in other SSSGs set in the UE 100, it is possible to set them to have a long search space cycle, and to instruct switching to the one SSSG by DCI. In order to realize such an operation, UE 100 is configured with a total of three SSSGs: an SSSG with a normal search space period, an SSSG with no search space period, and an SSSG with a long search space period. Flexible power saving can be realized by setting such various SSSGs in the UE 100 and instructing switching of SSSGs by DCI.
 次に本実施形態に関し、図6を参照して、間欠受信(DRX)について説明するとともに、パワーセービング状態について説明する。 Next, regarding this embodiment, discontinuous reception (DRX) will be described, and the power saving state will be described with reference to FIG.
 UE100にDRXが設定される場合、UE100は、DRX動作を利用して不連続的にPDCCHを監視する。具体的には、次のDRXパラメータによりDRX動作が制御される。
 ・DRXサイクル:UE100がウェイクアップする周期を規定する。
 ・オン持続時間(on-duration):ウェイクアップ後に、PDCCHを受信するためにUE100が待機する区間である。UE100がPDCCHの復号に成功した場合、UE100は、ウェイクアップした状態を維持し、非アクティブタイマ(inactivity-timer)を開始する。
 ・非アクティブタイマ:最後のPDCCH復号の成功からUE100が待機する時間区間であって、PDCCH復号失敗時にUE100が再びスリープする区間を規定する。なお、これに加え非アクティブタイマが満了した後に所定の設定値DRXスロットオフセット(DRX-SlotOffset)を経過した後にオン持続時間を開始する動作としてもよい。図6はDRX-SlotOffsetの設定値をゼロとした動作に相当する。
 ・再送タイマ:再送が予想される間の時間区間を規定する。
When DRX is configured in the UE 100, the UE 100 discontinuously monitors the PDCCH using the DRX operation. Specifically, the DRX operation is controlled by the following DRX parameters.
- DRX cycle: Defines the cycle in which the UE 100 wakes up.
On duration (on-duration): This is the period during which the UE 100 waits to receive the PDCCH after waking up. If the UE 100 successfully decodes the PDCCH, the UE 100 remains awake and starts an inactivity-timer.
Inactivity timer: Defines the time period during which the UE 100 waits after the last successful PDCCH decoding and sleeps again when the PDCCH decoding fails. In addition to this, after the inactivity timer expires and a predetermined set value DRX-SlotOffset elapses, the ON duration may be started. FIG. 6 corresponds to the operation with the set value of DRX-SlotOffset set to zero.
• Retransmission timer: defines the time interval during which retransmissions are expected.
 このように、DRXが設定されたUE100は、スリープ状態(すなわち、受信オフ期間)においてPDCCHを監視する必要が無いため、UE100の消費電力を低減できる。一方、UE100は、アクティブ時間にある間は、PDCCHを受信するために待機し、PDCCHをサーチスペースにおいて監視する。アクティブ時間は、オン持続時間タイマ(drx-onDurationTimer)、非アクティブタイマ(drx-InactivityTimer)、下りリンク再送タイマ(drx-RetransmissionTimerDL)、上りリンク再送タイマ(drx-RetransmissionTimerUL)のいずれかが動作中である時間である。 In this way, the UE 100 configured with DRX does not need to monitor the PDCCH in the sleep state (that is, the reception off period), so the power consumption of the UE 100 can be reduced. On the other hand, the UE 100 waits to receive the PDCCH and monitors the PDCCH in the search space during the active time. The active time is any of the on duration timer (drx-onDurationTimer), the inactivity timer (drx-InactivityTimer), the downlink retransmission timer (drx-RetransmissionTimerDL), and the uplink retransmission timer (drx-RetransmissionTimerUL) is in operation. It's time.
 上述のPDCCHスキッピング又はサーチスペースセット切り替えをDRXのアクティブ時間内で実施することにより、アクティブ時間内において動的にパワーセービング状態に切り替えることが可能であり、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。 By performing the above-described PDCCH skipping or search space set switching within the active time of DRX, it is possible to dynamically switch to the power saving state during the active time, and the power consumption is greater than the low power consumption achieved by DRX. A reduction effect can be obtained.
 次に、図7を参照して、本実施形態に係るPDCCH監視アダプテーション(PDCCH monitoring adaptation)の一例について説明する。PDCCH監視アダプテーションは、PDCCHスキッピングとSSSG切り替えとの総称である。すなわち、本実施形態において、PDCCH監視アダプテーションは、PDCCHスキッピング及び/又はSSSG切り替えに置き換えられてもよい。PDCCH監視アダプテーションでは、PDCCHの監視に関するPDCCH監視状態を切り替える処理が実行されてよい。 Next, an example of PDCCH monitoring adaptation according to this embodiment will be described with reference to FIG. PDCCH supervisory adaptation is a generic term for PDCCH skipping and SSSG switching. That is, in this embodiment, PDCCH monitoring adaptation may be replaced by PDCCH skipping and/or SSSG switching. In PDCCH monitoring adaptation, a process of switching the PDCCH monitoring state for PDCCH monitoring may be performed.
 ここでは、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGと、サーチスペースを有しないSSSGとを含む様々なSSSGの中から、1つ又は複数のSSSGをUE100に設定可能とし、SSSGの切り替え(すなわち、PDCCH監視状態の切り替え)をDCIで指示することによって柔軟なパワーセービングを実現することを想定する。ここで、本実施形態において、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGについて記載するが、複数のSSSGに対して同じ値のサーチスペース周期(異なるPDCCH周期)を設定可能であることは勿論である。 Here, a plurality of SSSGs having different search space cycles (different PDCCH cycles) and various SSSGs including SSSGs having no search space, one or more SSSGs can be set in the UE 100, and the SSSG's It is assumed that flexible power saving is realized by indicating switching (that is, switching of PDCCH monitoring state) with DCI. Here, in this embodiment, a plurality of SSSGs having different search space cycles (different PDCCH cycles) will be described, but it is possible to set the same search space cycle (different PDCCH cycles) for a plurality of SSSGs. is of course.
 図7に示すように、ステップS11において、基地局200は、1つ又は複数のRRCメッセージを生成し、生成したRRCメッセージをUE100に送信する。1つ又は複数のRRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)を含んでもよい。UE100は、RRCメッセージを受信する。 As shown in FIG. 7, in step S11, the base station 200 generates one or more RRC messages and transmits the generated RRC messages to the UE100. The one or more RRC messages may include a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE. UE 100 receives the RRC message.
 RRCメッセージは、PDCCH監視アダプテーションの設定(以下、PMA設定と称する)を含む。PMA設定は、PDCCH監視アダプテーションを実行するための設定であってよい。PMA設定は、SSSGを設定するための情報、SSSGを切り替える切り替えタイマを設定するための情報、PDCCHの監視に関する期間(duration)を設定するための情報、及び、PDCCH監視状態の切り替えに関するケースを設定するための情報の少なくともいずれかを含んでよい。 The RRC message includes PDCCH monitoring adaptation settings (hereinafter referred to as PMA settings). The PMA settings may be settings for performing PDCCH monitoring adaptation. PMA setting includes information for setting SSSG, information for setting a switching timer for switching SSSG, information for setting a duration related to PDCCH monitoring, and setting cases related to PDCCH monitoring state switching. may include at least one of information for
 なお、当該ケースを設定するための情報は、PDCCH監視アダプテーションのケース(動作とも称される)を設定するための情報であってよい。以下に記載するように、例えば、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、SSSG切り替え(すなわち、SSSG切り替えのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング且つSSSG切り替えを実行することが規定されてもよい。すなわち、PDCCH監視アダプテーションとして実行される動作に対応して、ケースが規定されてもよい。 Note that the information for setting the case may be information for setting the case (also referred to as operation) of PDCCH monitoring adaptation. As described below, it may be specified to perform PDCCH skipping (ie PDCCH skipping only), for example for the case of PDCCH monitoring adaptation. It may also be specified to perform SSSG switching (ie SSSG switching only) as a case of PDCCH monitoring adaptation. It may also be specified to perform PDCCH skipping and SSSG switching as a case of PDCCH monitoring adaptation. That is, cases may be defined corresponding to operations performed as PDCCH monitoring adaptation.
 SSSGを設定するための情報(以下、SSSG設定情報と適宜称する)は、例えば、PDCCHスキッピングが適用されるSSSGを設定するための情報、及びSSSG切り替えが適用されるSSSGを設定するための情報の少なくとも一方を含んでよい。また、SSSG設定情報は、デフォルトSSSG(例えば、SSSG#0)、及び、デフォルトSSSGではない非デフォルト(non-default)SSSGの少なくとも一方を設定するための情報を含んでよい。すなわち、SSSG設定情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。SSSG設定情報は、下りリンクBWP毎に設定されるSSSGの情報を含んでよいし、下りリンクサービングセル毎に設定されるSSSGの情報を含んでよい。すなわち、SSSG設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。 Information for setting SSSG (hereinafter referred to as SSSG setting information as appropriate) includes, for example, information for setting SSSG to which PDCCH skipping is applied, and information for setting SSSG to which SSSG switching is applied. At least one may be included. The SSSG setting information may also include information for setting at least one of a default SSSG (eg, SSSG#0) and a non-default SSSG that is not the default SSSG. That is, SSSG configuration information may be configured for default SSSG and/or non-default SSSG. The SSSG configuration information may include SSSG information configured for each downlink BWP, and may include SSSG information configured for each downlink serving cell. That is, the SSSG configuration information may be configured for the downlink BWP and/or the downlink serving cell.
 SSSG設定情報は、各SSSGに対応するSSSGインデックス(グループインデックスと称されてもよい)のそれぞれと対応付けられたサーチスペース設定をさらに含んでよい。サーチスペース設定は、1つ又は複数のサーチスペース設定を含む。各サーチスペース設定は、サーチスペース周期、サーチスペースオフセット、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット、の少なくともいずれかを含んでよい。 The SSSG configuration information may further include a search space configuration associated with each SSSG index (which may be referred to as a group index) corresponding to each SSSG. A search space setting includes one or more search space settings. Each search space configuration includes at least one of search space period, search space offset, search space duration (e.g., number of consecutive slots), symbols for PDCCH monitoring, aggregation level, search space type, and DCI format. OK.
 SSSGを切り替える切り替えタイマを設定するための情報(以下、切り替えタイマ情報と適宜称する)は、SSSG毎に設定される切り替えタイマの情報を含んでよい。切り替えタイマ情報は、デフォルトSSSG用の切り替えタイマの情報を含んでよいし、非デフォルトSSSG用の切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。なお、デフォルトSSSGに対して、切り替えタイマが設定されなくてもよい。また、切り替えタイマ情報は、下りリンクBWP毎に設定される切り替えタイマの情報を含んでよいし、下りリンクサービングセル毎に設定される切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。切り替えタイマ情報は、切り替えタイマのタイマ設定値を含んでよい。 Information for setting a switching timer for switching between SSSGs (hereinafter referred to as switching timer information as appropriate) may include information on switching timers set for each SSSG. The switch timer information may include switch timer information for the default SSSG and may include switch timer information for the non-default SSSG. That is, switching timer information may be configured for default SSSG and/or non-default SSSG. Note that the switching timer may not be set for the default SSSG. Also, the switching timer information may include switching timer information configured for each downlink BWP, and may include switching timer information configured for each downlink serving cell. That is, the switching timer information may be configured for the downlink BWP and/or the downlink serving cell. The switching timer information may include a timer set value of the switching timer.
 PDCCHの監視に関する期間を設定するための情報(以下、監視期間情報と適宜称する)は、SSSG毎に設定される期間の情報を含んでよい。監視期間情報は、デフォルトSSSG用の期間の情報を含んでよいし、非デフォルトSSSG用の期間の情報を含んでよい。すなわち、監視期間情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。監視期間情報は、下りリンクBWP毎に設定される期間の情報を含んでよいし、下りリンクサービングセル毎に設定される期間の情報を含んでよい。すなわち、監視期間情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。設定される期間は、PDCCHの監視をスキップするスキッピング期間であってもよい。 Information for setting a period related to PDCCH monitoring (hereinafter referred to as monitoring period information as appropriate) may include information on a period set for each SSSG. The monitoring period information may include period information for the default SSSG and may include period information for the non-default SSSG. That is, monitoring period information may be set for default SSSGs and/or non-default SSSGs. The monitoring period information may include information on a period set for each downlink BWP, or may include information on a period set for each downlink serving cell. That is, the monitoring period information may be configured for the downlink BWP and/or the downlink serving cell. The set period may be a skipping period during which PDCCH monitoring is skipped.
 PDCCH監視状態の切り替えに関するケース、具体的には、PDCCH監視アダプテーションのケースを設定するための情報(以下、ケース設定情報と適宜称する)は、下りリンクBWP毎に設定されるケースの情報を含んでよいし、下りリンクサービングセル毎に設定されるケースの情報を含んでよい。すなわち、ケース設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。ケースと、PDCCH監視アダプテーション(すなわち、PDCCH監視状態)の動作との対応関係の一例を表1に示す。また、表1に各ケースでのDCI通知内容の一例を示す。 A case related to PDCCH monitoring state switching, specifically, information for setting a case of PDCCH monitoring adaptation (hereinafter referred to as case setting information as appropriate) includes case information set for each downlink BWP. Alternatively, it may include case information configured for each downlink serving cell. That is, the case configuration information may be configured for the downlink BWP and/or the downlink serving cell. An example of the correspondence between cases and PDCCH monitoring adaptation (ie, PDCCH monitoring state) behavior is shown in Table 1. Table 1 shows an example of DCI notification contents in each case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ケース#1の設定によって、PDCCH監視アダプテーションとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみの実行)が設定される。ケース#2の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#3の設定によって、PDCCH監視アダプテーションとして、3つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#4の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替えとPDCCHスキッピング(すなわち、PDCCHスキッピング且つSSSG切り替えの実行)とが設定される。ケース#4において、M(1又は2に設定されている)は、監視期間情報に基づいて設定される期間の個数を示している。すなわち、Mは、期間Xに対応する。期間Xは、スキッピング期間と称されてもよい。 By setting case #1, PDCCH skipping (that is, execution of PDCCH skipping only) is set as PDCCH monitoring adaptation. The configuration for case #2 configures two different durations of SSSG switching (ie performing SSSG switching only) as PDCCH monitoring adaptation. The configuration for case #3 configures SSSG switching for three different durations (ie performing SSSG switching only) as a PDCCH monitoring adaptation. With the configuration of case #4, two different periods of SSSG switching and PDCCH skipping (ie performing PDCCH skipping and SSSG switching) are configured as PDCCH monitoring adaptations. In case #4, M (set to 1 or 2) indicates the number of periods set based on the monitoring period information. That is, M corresponds to period X. Period X may be referred to as a skipping period.
 また、各ケースは、UE100が適用するPDCCH監視アダプテーション(すなわち、SSSG切り替え及び/又はPDCCHスキッピング)を指示する切り替え指示DCI中の情報フィールド(以下、PDCCH監視アダプテーション通知フィールド)にセットされる値が示すUE100の動作(振る舞い)と対応付けられている。UE100の動作は、以下のように定義されてよい。
 ・Beh1では、PDCCHスキッピングがアクティブ化されない。
 ・Beh1Aでは、PDCCHスキッピングが、期間Xの間PDCCH監視を停止することを意味する。
 ・Beh2では、(設定されている場合に)SSSG#1及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#0に対応付けられているサーチスペースセットを監視する。
 ・Beh2Aでは、(設定されている場合に)SSSG#0及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#1に対応付けられているサーチスペースセットを監視する。
 ・Beh2Bでは、(設定されている場合に)SSSG#0及びSSSG#1に対応付けられているサーチスペースセットの監視を停止し、SSSG#2に対応付けられているサーチスペースセットを監視する。
In each case, the value set in the information field (hereinafter referred to as the PDCCH monitoring adaptation notification field) in the switching instruction DCI that indicates the PDCCH monitoring adaptation (that is, SSSG switching and/or PDCCH skipping) applied by the UE 100 is indicated. It is associated with the operation (behavior) of the UE 100. Operations of the UE 100 may be defined as follows.
• PDCCH skipping is not activated on Beh1.
• For Beh1A, PDCCH skipping means stopping PDCCH monitoring for period X.
• Beh2 stops monitoring the search space sets associated with SSSG#1 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#0.
• Beh2A stops monitoring the search space sets associated with SSSG#0 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#1.
• In Beh2B, stop monitoring the search space set associated with SSSG#0 and SSSG#1 (if configured) and monitor the search space set associated with SSSG#2.
 なお、表1の対応関係を示す情報は、UE100及び基地局200のそれぞれで予め記憶されていてもよいし、RRCメッセージにより基地局200からUE100へ通知されてもよい。 The information indicating the correspondence relationship in Table 1 may be stored in advance in each of the UE 100 and the base station 200, or may be notified from the base station 200 to the UE 100 by an RRC message.
 ケース#1がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキッピング期間を含む)が設定されてよい。 When case #1 is configured in the UE 100, the UE 100 has one for PDCCH monitoring for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. Alternatively, multiple periods (including skipping periods) may be set.
 ケース#2又はケース#3がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。 When case #2 or case #3 is configured in the UE 100, the UE 100 has one serving cell for each of one or more downlink BWPs (or each of one or more SSSGs). One or more group indices (SSSG indices) may be configured.
 ケース#4がUE100に設定される場合、UE100には、あるサービングセルにおいて、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキッピング期間を含む)が設定されてよい。また、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。なお、PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドは、2ビットとして規定される。 When case #4 is configured in the UE 100, the UE 100 has PDCCH for each of one or more downlink BWPs (or each of one or more SSSGs) in a certain serving cell, in a certain serving cell. One or more time periods (including skipping periods) for monitoring may be set. Also, in the UE 100, one or more group indexes (SSSG indexes) are set for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. you can Note that the PDCCH monitoring adaptation notification field in DCI for PDCCH monitoring is defined as 2 bits.
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定を含んでもよい。切り替え指示DCIは、フィールド設定によりPDCCH監視アダプテーション通知フィールドが有ることが示されたDCIフォーマットを有するDCIである。非スケジューリングDCI及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることが示されてもよい。例えば、UE100は、PMA設定が設定されたことに基づいて、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることを識別してもよい。 The RRC message may include field settings indicating the presence or absence of the PDCCH monitoring adaptation notification field for each of one or more DCI formats. The switching indication DCI is a DCI having a DCI format indicating that there is a PDCCH monitoring adaptation notification field by field setting. The presence/absence of the PDCCH monitoring adaptation notification field may be configured commonly or independently for non-scheduling DCI and/or scheduling DCI. The presence/absence of the PDCCH monitoring adaptation notification field (presence/absence) may be set commonly for DCI format 1_1 and DCI format 0_1, and commonly for DCI format 1_2 and DCI format 0_2. The presence or absence (presence/absence) of the PDCCH monitoring adaptation notification field may be set commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2. Here, the field setting indicating presence/absence of the PDCCH monitoring adaptation notification field may be replaced with the PMA setting. That is, the presence of the PDCCH monitoring adaptation notification field in one or more DCI formats may be indicated by configuring the PMA settings for the UE 100 . For example, UE 100 may identify that one or more DCI formats have a PDCCH monitoring adaptation notification field based on the PMA configuration being configured.
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定を含んでもよい。非スケジューリングDCI、及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドのビット数が直接設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。例えば、DCIフォーマット1_1及び/又はDCIフォーマット0_1に対して2ビットまでのPDCCH監視アダプテーション通知フィールドが設定され、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して1ビットのPDCCH監視アダプテーション通知フィールドが設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数が決定されてもよい。例えば、UE100は、SSSGを設定するための情報に基づいて設定されたSSSGの数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、監視期間情報に基づいて設定された期間の数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、ケース設定情報に基づいて設定されたケースに応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい(例えば、表1に示されるビット数を決定してもよい)。 The RRC message may include a bit number setting that indicates the number of bits in the PDCCH supervisory adaptation notification field for each of one or more DCI formats. For non-scheduling DCI and/or scheduling DCI, the number of bits of the PDCCH monitoring adaptation notification field may be directly configured commonly or independently. The number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 0_1 and/or commonly for DCI format 1_2 and DCI format 0_2. For example, a PDCCH supervisory adaptation notification field of up to 2 bits is configured for DCI format 1_1 and/or DCI format 0_1, and/or a PDCCH supervisory adaptation notification field of 1 bit is configured for DCI format 1_2 and DCI format 0_2. may be set. The number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2. Here, the number of bits setting indicating the number of bits of the PDCCH supervisory adaptation notification field may be replaced with the PMA setting. That is, the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats may be determined by configuring the PMA settings for the UE 100 . For example, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of SSSGs configured based on information for configuring SSSGs. Also, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of periods set based on the monitoring period information. Also, UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats, depending on the case set based on the case setting information (for example, shown in Table 1. may determine the number of bits to be stored).
 ステップS12において、UE100は、基地局200から設定された情報を記憶する。 In step S12, the UE 100 stores the information set by the base station 200.
 ステップS13において、基地局200は、PDCCH監視アダプテーション通知フィールドを有する切り替え指示DCIをPDCCH上でUE100に送信する。UE100は、切り替え指示DCIをPDCCH上で受信する。UE100は、基地局200から設定されたフィールド設定に基づいて、検出したDCIのDCIフォーマットが切り替え指示DCIに該当するか否かを判定してもよい。 In step S13, the base station 200 transmits a switching instruction DCI having a PDCCH monitoring adaptation notification field to the UE 100 on the PDCCH. UE 100 receives the switching instruction DCI on the PDCCH. The UE 100 may determine whether or not the DCI format of the detected DCI corresponds to the switching instruction DCI, based on field settings set by the base station 200 .
 ステップS14において、UE100は、ステップS13で受信した切り替え指示DCIのPDCCH監視アダプテーション通知フィールドにセットされた値を取得する。UE100は、基地局200から設定されたビット数設定に基づいて、PDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。ここで、上述のとおり、例えば、UE100は、UE100に設定されたSSSGインデックスの数(すなわち、設定されたSSSGインデックス(リスト)のエントリ数)に基づいてPDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。例えば、UE100に設定されたSSSGインデックスの数を「I」とした場合、UE100は、PDCCH監視アダプテーション通知フィールドのビット数を、log2(I)の小数点以下を切り上げた整数値により算出及び特定してもよい。 In step S14, the UE 100 acquires the value set in the PDCCH monitoring adaptation notification field of the switching instruction DCI received in step S13. UE 100 may specify the number of bits in the PDCCH monitoring adaptation notification field based on the bit number setting set by base station 200 and then acquire the value set in the PDCCH monitoring adaptation notification field. Here, as described above, for example, the UE 100 is based on the number of SSSG indexes set in the UE 100 (i.e., the number of entries in the set SSSG index (list)), and the number of bits of the PDCCH monitoring adaptation notification field is specified. Additionally, the value set in the PDCCH supervisory adaptation notification field may be obtained. For example, when the number of SSSG indexes set in UE 100 is set to "I", UE 100 calculates and identifies the number of bits of the PDCCH monitoring adaptation notification field by an integer value rounded up after the decimal point of log2 (I). good too.
 ステップS15において、UE100は、設定されたケースに基づいて、受信した切り替え指示DCI中のPDCCH監視アダプテーション通知フィールドにセットされた値(以下、PDCCH監視アダプテーション通知フィールド値)に対応する状態へPDCCH監視状態を切り替える。以下に、各ケースにおけるPDCCH監視アダプテーション通知フィールドのビット数に応じたUE100の動作例を示す。 In step S15, the UE 100 changes the PDCCH monitoring state to the state corresponding to the value set in the PDCCH monitoring adaptation notification field (hereinafter referred to as the PDCCH monitoring adaptation notification field value) in the received switching instruction DCI based on the set case. switch. An operation example of the UE 100 according to the number of bits of the PDCCH monitoring adaptation notification field in each case is shown below.
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
Case #1: PDCCH Supervisory Adaptation Notification field in DCI for PDCCH Monitoring is 1 bit If the PDCCH Supervisory Adaptation Notification field value is '0', no PDCCH skipping is performed.
If the PDCCH monitoring adaptation notification field value is '1', PDCCH skipping is performed during the configured period (the period of the first value).
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第3の値の期間)においてPDCCHスキッピングを実行する。
Case #1: PDCCH supervisory adaptation notification field in DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', no PDCCH skipping is performed.
If the PDCCH monitoring adaptation notification field value is '01', PDCCH skipping is performed during the configured period (the period of the first value).
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (second value period).
If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (the period of the third value).
 ・ケース#2:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
Case #2: If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 1 bit If the PDCCH supervisory adaptation notification field value is '0', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '1', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
 ・ケース#3:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、グループインデックス#2に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
Case #3: If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', start monitoring the PDCCH according to the search space set corresponding to group index #2, and start monitoring the PDCCH according to the search space set corresponding to the other group index value. Stop monitoring.
The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
 ・ケース#4:PDCCH監視に対する期間の数として「1」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
Case #4: If the number of periods for PDCCH monitoring is set to '1' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value).
The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
 ・ケース#4:PDCCH監視に対する期間の数として「2」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
Case #4: If the number of periods for PDCCH monitoring is set to '2' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value.
If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value).
If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (second value period).
 次に、図8を参照して、本実施形態に係るタイマベースのSSSG切り替えの一例について説明する。ここでは、UE100がタイマベースでSSSGの切り替えを行う場合で、UE100に3つ以上のSSSGが設定され得る場合を想定する。 Next, an example of timer-based SSSG switching according to this embodiment will be described with reference to FIG. Here, it is assumed that the UE 100 switches between SSSGs on a timer basis and three or more SSSGs can be configured in the UE 100 .
 基地局200は、UE100に設定するSSSGのうち1つをデフォルトSSSGとしてUE100に設定してもよい。例えば、基地局200は、UE100に設定するSSSGインデックスのうち1つを「defaultSSSG-Id」として指定してもよい。例えば、基地局200は、RRCメッセージを用いて「defaultSSSG-Id」を設定してもよい。すなわち、基地局200は、RRCメッセージに含まれる情報を用いて、UE100に対してデフォルトSSSGを設定してもよい。デフォルトSSSGは、UE100に設定されたSSSGのうち、基地局200及びUE100が予め共有している所定規則によって決定されるSSSGであってもよい。デフォルトSSSGは、基地局200によりデフォルトSSSGとしてUE100に設定されたSSSGであってもよい。 The base station 200 may set one of the SSSGs set in the UE 100 as a default SSSG in the UE 100. For example, the base station 200 may specify one of the SSSG indices set in the UE 100 as "defaultSSSG-Id". For example, the base station 200 may set the 'defaultSSSG-Id' using an RRC message. That is, the base station 200 may configure the default SSSG for the UE 100 using information included in the RRC message. The default SSSG may be an SSSG determined according to a predetermined rule shared in advance by the base station 200 and the UE 100 among SSSGs set in the UE 100 . The default SSSG may be the SSSG set in the UE 100 by the base station 200 as the default SSSG.
 図8に示すように、ステップS21において、基地局200により複数のSSSGが設定されたUE100は、当該複数のSSSGのうち1つのSSSGを用いてPDCCHを監視する。 As shown in FIG. 8, in step S21, the UE 100 for which multiple SSSGs have been set by the base station 200 monitors the PDCCH using one of the multiple SSSGs.
 ステップS22において、UE100は、他のSSSGへの切り替えを指示する切り替え指示DCIをPDCCH上で基地局200から受信する。 In step S22, the UE 100 receives a switching instruction DCI that instructs switching to another SSSG from the base station 200 on the PDCCH.
 ステップS23において、UE100は、切り替え指示DCIで指定されたSSSGへの切り替えを行うとともに、当該SSSGと対応付けられたタイマ(切り替えタイマ)を起動する。 In step S23, the UE 100 switches to the SSSG specified by the switching instruction DCI and activates the timer (switching timer) associated with the SSSG.
 ステップS24において、UE100は、切り替えタイマが満了したか否かを判定する。 In step S24, the UE 100 determines whether the switching timer has expired.
 切り替えタイマが満了した場合(ステップS24:YES)、ステップS25において、UE100は、設定された複数のSSSGのうちデフォルトSSSGに切り替える。ここで、基地局200から「defaultSSSG-Id」として指定されたSSSGに切り替えることにより、基地局200は、UE100の切り替え先のSSSGを把握できる。なお、切り替えタイマは基地局200が設定した値であるため、基地局200は、UE100と同様に切り替えタイマを管理し、UE100において切り替えタイマが満了したことを把握できる。 When the switching timer expires (step S24: YES), in step S25, the UE 100 switches to the default SSSG among the multiple set SSSGs. Here, by switching to the SSSG specified by the base station 200 as “defaultSSSG-Id”, the base station 200 can grasp the SSSG to which the UE 100 is switched. Since the switching timer is a value set by the base station 200, the base station 200 manages the switching timer in the same manner as the UE 100, and can recognize that the switching timer has expired in the UE 100.
 UE100は、デフォルトSSSGが基地局200により設定されていない場合、具体的には、「defaultSSSG-Id」としてデフォルトSSSGが基地局200から明示的に指定されていない場合、所定規則に従ってデフォルトSSSGを決定する。例えば、UE100は、RRCメッセージにデフォルトSSSGを設定するための情報が含まれていない場合には、所定規則に従ってデフォルトSSSGを決定してもよい。所定規則は、例えば3GPPの技術仕様で規定される規則であり、基地局200及びUE100が予め共有している規則である。 If the default SSSG is not set by the base station 200, specifically, if the default SSSG is not explicitly specified by the base station 200 as "defaultSSSG-Id", the UE 100 determines the default SSSG according to a predetermined rule. do. For example, if the RRC message does not contain information for setting the default SSSG, the UE 100 may determine the default SSSG according to a predetermined rule. The predetermined rule is, for example, a rule defined by 3GPP technical specifications, and a rule shared in advance by the base station 200 and the UE 100 .
 ここで、所定規則は、UE100に設定されたSSSGインデックスのうち、最も値が小さいSSSGインデックスに対応するSSSG、又は最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、最も値が小さいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#0のSSSGをデフォルトSSSGとして決定する。最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#4のSSSGをデフォルトSSSGとして決定する。 Here, the predetermined rule is the SSSG corresponding to the SSSG index with the smallest value among the SSSG indexes set in the UE 100, or the SSSG corresponding to the SSSG index with the largest value. good. For example, if the rule is to set the SSSG corresponding to the SSSG index with the smallest value as the default SSSG, the UE 100 determines the SSSG with SSSG index #0 as the default SSSG. If the rule is to set the SSSG corresponding to the SSSG index with the largest value as the default SSSG, the UE 100 determines the SSSG of SSSG index #4 as the default SSSG.
 上述のように、UE100は、UE100に設定するSSSGインデックスと、切り替え指示DCI中のSSSG情報フィールドにセットされる値との対応関係を示す対応関係情報を基地局200から受信してもよい。所定規則は、切り替え指示DCI中のSSSG情報フィールドにセットされる値として特定の値(例えば、「0」)で示されるSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、UE100は、切り替え指示DCI中のSSSG情報フィールドにセットされる値が「0」で示されるSSSGインデックスを有するSSSGをデフォルトSSSGとして決定する。 As described above, the UE 100 may receive from the base station 200 correspondence information indicating the correspondence between the SSSG index set in the UE 100 and the value set in the SSSG information field in the switching instruction DCI. The predetermined rule may be a rule for determining, as the default SSSG, the SSSG corresponding to the SSSG index indicated by a specific value (eg, "0") set in the SSSG information field in the switching instruction DCI. For example, the UE 100 determines, as the default SSSG, an SSSG having an SSSG index in which the value set in the SSSG information field in the switching instruction DCI is "0".
 所定規則は、UE100に設定されたSSSGインデックスのうち、予め定められた値を有するSSSGインデックス(例えば、インデックス#0)に対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。 The predetermined rule may be a rule that determines the SSSG corresponding to the SSSG index (for example, index #0) having a predetermined value among the SSSG indices set in the UE 100 as the default SSSG.
 所定規則は、UE100に設定されたSSSGのうち、PDCCHの監視をスキップするSSSG以外のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、デフォルトSSSGとして、PDCCHスキッピングに対応するSSSGインデックスは設定されないと想定してもよい。 The predetermined rule may be a rule for determining, among the SSSGs set in the UE 100, SSSGs other than SSSGs skipping PDCCH monitoring as default SSSGs. That is, UE 100 may assume that the SSSG index corresponding to PDCCH skipping is not set as the default SSSG.
 UE100にDRXが設定されている場合、UE100は、DRXの受信オフ期間から受信オン期間(アクティブ時間)に切り替わる際に特定のSSSGを適用してもよい。所定規則は、当該特定のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGをデフォルトSSSGとして決定してもよい。例えば、基地局200は、RRCメッセージに当該特定のSSSGを設定するための情報を含めて送信し、UE100は、当該特定のSSSGをデフォルトSSSGとして決定してもよい。また、基地局200は、RRCメッセージにデフォルトSSSGを設定するための情報を含めて送信し、UE100は、当該デフォルトSSSGを、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGとして用いてもよい。 When DRX is configured in the UE 100, the UE 100 may apply a specific SSSG when switching from a DRX reception off period to a reception on period (active time). The predetermined rule may be a rule that determines that particular SSSG as the default SSSG. That is, the UE 100 may determine the first SSSG to monitor the PDCCH after the DRX reception off period has elapsed as the default SSSG. For example, the base station 200 may transmit an RRC message including information for setting the specific SSSG, and the UE 100 may determine the specific SSSG as the default SSSG. In addition, the base station 200 transmits an RRC message including information for setting the default SSSG, and the UE 100 uses the default SSSG as the first SSSG to monitor the PDCCH after the DRX reception off period has passed. good too.
 UE100は、UE100に割り当てられた無線リソースを示すスケジューリングDCIを切り替え指示DCIとして受信してもよい。UE100は、切り替え指示DCIとしてスケジューリングDCIを受信した後、1つのSSSGへの切り替えを行うタイミング(具体的には、SSSG切り替えを実行するスロット)で切り替えタイマを起動してもよい。 The UE 100 may receive a scheduling DCI indicating radio resources allocated to the UE 100 as a switching instruction DCI. After receiving the scheduling DCI as the switching instruction DCI, the UE 100 may start the switching timer at the timing of switching to one SSSG (specifically, the slot for performing SSSG switching).
 UE100は、UE100に設定される3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を用いてもよい。基地局200は、UE100に設定する3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を設定してもよい。 The UE 100 may use a common value as the switching timer value applied to two or more of the three or more SSSGs set in the UE 100 . The base station 200 may set a common value as the switching timer value applied to two or more SSSGs among the three or more SSSGs set in the UE 100 .
 UE100は、UE100に設定されるSSSGのそれぞれに適用する切り替えタイマの値として、SSSGごとに個別の値を用いてもよい。基地局200は、SSSGごとに個別の切り替えタイマ設定値をUE100に設定してもよい。 The UE 100 may use an individual value for each SSSG as the switching timer value applied to each SSSG set in the UE 100 . The base station 200 may set an individual switching timer setting value in the UE 100 for each SSSG.
 UE100は、切り替え先のSSSGがPDCCHスキッピングに対応するSSSGである場合、当該SSSGへの切り替えを開始するタイミング(スロット)で、当該SSSGと対応付けられた切り替えタイマを起動してもよい。PDCCHスキッピング状態にある場合、すなわちPDCCHの監視をスキップする所定期間においては、PDCCH監視に用いるリソースが専有されておらず、任意のタイミングで切り替え当該SSSGへの切り替えを開始できる。この利点を活用し、PDCCH監視の動作を阻害することなく切り替え遅延時間の影響を最小化することが可能となる。なお、UE100は、当該切り替えタイマの満了後、デフォルトSSSGを想定してPDDCHを監視してもよい。 When the switching destination SSSG is an SSSG that supports PDCCH skipping, the UE 100 may activate the switching timer associated with the SSSG at the timing (slot) at which switching to the SSSG is started. When in the PDCCH skipping state, that is, during a predetermined period during which PDCCH monitoring is skipped, resources used for PDCCH monitoring are not dedicated, and switching to the relevant SSSG can be started at any timing. Taking advantage of this advantage, it is possible to minimize the effect of the switching delay time without disturbing the PDCCH monitoring operation. Note that the UE 100 may monitor the PDDCH assuming the default SSSG after the switching timer expires.
 ここで、UE100が、PDCCHの監視状態を、PDCCHスキッピング状態へ切り替えて、その後、PDCCH監視実行状態へ切り替えるケースを想定する。 Here, assume a case where the UE 100 switches the PDCCH monitoring state to the PDCCH skipping state and then switches to the PDCCH monitoring execution state.
 UE100は、PDCCHスキッピング状態へ切り替えた後、PDCCHを監視する状態へ再び切り替えるまで、PDCCHを受信しない。従って、UE100は、PDCCHスキッピング状態へ切り替える前に基地局200と無線通信を行ってからある程度の期間(すなわち、PDCCHスキッピング状態である期間)が経過した後にPDCCHスキッピング状態へ切り替えて、その後、PDCCH上でDCIを受信することとなる。UE100は、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合、HARQ動作を適切に行うことができない懸念がある。 After switching to the PDCCH skipping state, the UE 100 does not receive the PDCCH until switching back to the PDCCH monitoring state. Therefore, the UE 100 switches to the PDCCH skipping state after a certain period of time (that is, the period in the PDCCH skipping state) has passed after performing wireless communication with the base station 200 before switching to the PDCCH skipping state, and then switches to the PDCCH skipping state. will receive the DCI. When the UE 100 restarts the HARQ operation after switching the PDCCH skipping state, there is a concern that the HARQ operation cannot be properly performed.
 例えば、UE100は、ある程度の期間PDCCHを監視していなかったため、PDCCH(具体的には、1ビットで示されるNDI)を正常に受信できないこともあり得る。また、UE100は、PDCCHスキッピング状態の切り替え前に最後にPDCCHを受信してからある程度経過しているため、最後に受信したPDCCHに含まれるNDIを保持していないこともあり得る。また、PDCCHスキッピング状態の切り替え前後でUE100における通信環境(例えば、チャネル状態)が変わることで、効率が悪い再送を実行する懸念がある。よって、本実施形態では、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことを可能とする。 For example, since the UE 100 has not monitored the PDCCH for a certain period of time, it is possible that the PDCCH (specifically, the NDI indicated by 1 bit) cannot be received normally. In addition, UE 100 may not hold the NDI included in the last received PDCCH because some time has passed since the last PDCCH was received before switching the PDCCH skipping state. In addition, there is a concern that retransmission may be performed inefficiently due to changes in the communication environment (for example, channel state) in the UE 100 before and after switching the PDCCH skipping state. Therefore, in the present embodiment, when the HARQ operation is resumed after switching the PDCCH skipping state, it is possible to appropriately perform the HARQ operation.
 ここで、本実施形態における「PDCCH監視状態」は、PDCCHの監視をスキップすること、及び/又は、設定されたSSSGでPDCCHの監視を実行することが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHの監視をスキップする動作から、設定されたSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定されたSSSGでPDCCHの監視をする動作から、PDCCHの監視をスキップする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定された第1のSSSGでPDCCHの監視をする動作から、設定された第2のSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。 Here, the "PDCCH monitoring state" in this embodiment may include skipping PDCCH monitoring and/or performing PDCCH monitoring in the configured SSSG. For example, switching the PDCCH monitoring state may include switching the operation from skipping PDCCH monitoring to monitoring PDCCH with the configured SSSG. Also, switching the PDCCH monitoring state may include switching the operation from the operation of monitoring the PDCCH in the configured SSSG to the operation of skipping the monitoring of the PDCCH. In addition, switching the PDCCH monitoring state includes switching the operation from the operation of monitoring the PDCCH in the set first SSSG to the operation of monitoring the PDCCH in the set second SSSG. good too.
 また、PDCCH監視状態の切り替えとは、PDCCHの監視に用いられるSSSGを切り替えることが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHスキッピング用に設定されたSSSGから、PDCCHの監視用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定されたSSSGから、PDCCHスキッピング用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定された第1のSSSGから、PDCCHの監視用に設定された第2のSSSGに、SSSGを切り替えることが含まれてもよい。 Also, switching the PDCCH monitoring state may include switching the SSSG used for PDCCH monitoring. For example, switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH skipping to the SSSG configured for PDCCH monitoring. Also, switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH monitoring to the SSSG configured for PDCCH skipping. Also, switching the PDCCH monitoring state may include switching the SSSG from the first SSSG set for PDCCH monitoring to the second SSSG set for PDCCH monitoring.
 すなわち、本実施形態において、PDCCH監視状態の切り替えとは、PDCCH監視アダプテーションの実行に対応してもよい。ここで、本実施形態において、説明を容易するために、PDCCHの監視に用いられるSSSGをPDCCH監視状態とも記載する。また、上述のとおり、設定されたSSSGには、デフォルトSSSG(Default SSSG)が含まれる。 That is, in the present embodiment, switching the PDCCH monitoring state may correspond to execution of PDCCH monitoring adaptation. Here, in the present embodiment, the SSSG used for PDCCH monitoring is also referred to as a PDCCH monitoring state for ease of explanation. Also, as described above, the set SSSG includes a default SSSG.
 (4)ユーザ装置の構成
 図10を参照して、本実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(4) Configuration of User Equipment A configuration of the UE 100 according to the present embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitting section 111 and the receiving section 112 may be configured including an antenna and an RF circuit. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
 本実施形態に係るUE100は、基地局200との無線通信を行う。通信部110は、基地局200とデータを通信する。制御部120は、データのハイブリッド自動再送要求(HARQ)プロセスを管理する。制御部120は、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、PDCCHを監視する状態へ切り替えたことに基づいて、PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行う。UE100(制御部120)は、PDCCHスキッピング状態よりも前に行っていたHARQプロセスにて再送を行わない。その結果、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことができる。 The UE 100 according to this embodiment performs wireless communication with the base station 200. The communication unit 110 communicates data with the base station 200 . The control unit 120 manages the data hybrid automatic repeat request (HARQ) process. The control unit 120 switches the PDCCH monitoring state regarding monitoring of the physical downlink control channel (PDCCH) to a PDCCH skipping state that skips monitoring of the PDCCH, and then switches to a state that monitors the PDCCH. Predetermined control is performed to terminate the HARQ process that was performed prior to the state. UE 100 (control unit 120) does not perform retransmission in the HARQ process performed before the PDCCH skipping state. As a result, when the HARQ operation is resumed after switching the PDCCH skipping state, the HARQ operation can be properly performed.
 (5)基地局の構成
 図11を参照して、本実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
(5) Configuration of Base Station The configuration of the base station 200 according to this embodiment will be described with reference to FIG. Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an antenna and an RF circuit. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network interface 220 transmits and receives signals to and from the network. The network interface 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Also, the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 (6)移動通信システムの動作
 (6.1)第1動作例
 上述の構成及び動作を前提として、移動通信システム1の第1動作例について、図11及び図12を用いて、説明する。なお、上述の説明との相違点を主として説明する。
(6) Operation of Mobile Communication System (6.1) First Operation Example Assuming the configuration and operation described above, a first operation example of the mobile communication system 1 will be described with reference to FIGS. 11 and 12. FIG. Note that differences from the above description will be mainly described.
 ステップS101において、基地局200(送信部211)は、RRCメッセージをUE100に送信する。RRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)であってもよい。UE100(受信部112)は、RRCメッセージを受信する。 In step S101, the base station 200 (transmitting section 211) transmits an RRC message to the UE100. The RRC message may be a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE. UE 100 (receiving unit 112) receives the RRC message.
 RRCメッセージは、PDCCH監視状態を切り替える切り替え処理を制御するための切り替え制御情報を含む。切り替え制御情報は、例えば、複数種別の自発的な上りリンク送信のうち少なくともいずれかの上りリンク送信に応じてPDCCH監視状態を切り替える切り替え処理を制御するための情報であってよい。切り替え制御情報は、複数種別の自発的な上りリンク送信に共通に適用可能な情報要素に含まれている。上述のとおり、切り替え制御情報は、当該情報要素として、例えば、ユーザ装置固有のPDCCHパラメータを設定するためのPDCCH設定(PDCCH-Config)に含まれてよい。 The RRC message includes switching control information for controlling switching processing for switching the PDCCH monitoring state. The switching control information may be, for example, information for controlling switching processing for switching the PDCCH monitoring state according to at least one of the multiple types of voluntary uplink transmission. The switching control information is included in an information element commonly applicable to multiple types of spontaneous uplink transmission. As described above, the switching control information may be included as the information element, for example, in the PDCCH configuration (PDCCH-Config) for configuring user equipment-specific PDCCH parameters.
 切り替え制御情報は、複数種別の自発的な上りリンク送信に応じた切り替え処理に共通に適用される共通パラメータ(例えば、共通の設定)を含んでよい。従って、共通パラメータは、例えば、CG起因切り替え処理、スケジューリング要求(SR)に応じてPDCCH監視状態を切り替えるSR起因切り替え処理、及びRACH(Random Access Channel)送信(又はPRACH(Physical RACH)送信)に応じてPDCCH監視状態を切り替えるRACH起因切り替え処理を制御するために共通に適用されてよい。これにより、UE100(制御部120)は、共通パラメータに基づいて、複数種別の自発的な上りリンク送信の少なくともいずれかを契機として、各種切り替え処理を実行できる。すなわち、本実施形態において、複数種別の自発的な上りリンク送信は、スケジューリング要求(SR)の送信を含んでもよい。また、複数種別の自発的な上りリンク送信は、RACH送信(又はPRACH送信)を含んでもよい。また、複数種別の自発的な上りリンク送信は、CG送信を含んでもよい。 The switching control information may include common parameters (for example, common settings) that are commonly applied to switching processes corresponding to multiple types of voluntary uplink transmission. Therefore, the common parameters are, for example, CG-induced switching processing, SR-induced switching processing for switching the PDCCH monitoring state according to the scheduling request (SR), and RACH (Random Access Channel) transmission (or PRACH (Physical RACH) transmission). may be commonly applied to control the RACH-triggered switching process to switch the PDCCH monitoring state by By this means, the UE 100 (control unit 120) can execute various switching processes triggered by at least one of multiple types of spontaneous uplink transmission based on the common parameter. That is, in this embodiment, multiple types of spontaneous uplink transmission may include transmission of a scheduling request (SR). Also, multiple types of spontaneous uplink transmission may include RACH transmission (or PRACH transmission). Also, multiple types of spontaneous uplink transmission may include CG transmission.
 切り替え制御情報は、複数種別の自発的な上りリンク送信に応じた切り替え処理のそれぞれに個別に適用される個別パラメータ(例えば、個別の設定)を含んでよい。従って、個別パラメータは、例えば、CG起因切り替え処理を制御するためにのみ適用されるパラメータ、SR起因切り替え処理を制御するためにのみ適用されるパラメータ、及びRACH起因切り替え処理を制御するためにのみ適用されるパラメータの少なくともいずれかを含んでよい。 The switching control information may include individual parameters (for example, individual settings) individually applied to each of the switching processes corresponding to multiple types of voluntary uplink transmission. Therefore, the individual parameters are, for example, parameters applied only to control the CG-induced switching process, parameters applied only to control the SR-induced switching process, and parameters applied only to control the RACH-induced switching process. may include at least any of the parameters
 個別パラメータは、共通パラメータにより設定されない設定を示してよい。或いは、個別パラメータは、共通パラメータよりも優先される設定を示してよい。また、個別パラメータは、複数種別の自発的な上りリンク送信のうち少なくともいずれかの上りリンク送信において切り替え処理の実行(又は当該複数種別の自発的な上りリンク送信に基づく切り替え)を有効にするか(又は設定するか)否かを示してよい。例えば、個別パラメータは、CG起因切り替え処理の実行(又はCG起因切り替え)を有効(enable)にするか又は無効(disable)にするかを示す情報(例えば、1ビットのフラグ情報)を含んでもよい。また、個別パラメータは、SR起因切り替え処理の実行(又はSR起因切り替え)を有効(enable)にするか又は無効(disable)にするかを示す情報(例えば、1ビットのフラグ情報)を含んでもよい。また、個別パラメータは、RACH起因切り替え処理の実行(又はRACH起因切り替え)を有効(enable)にするか(又は設定するか)又は無効(disable)にするかを示す情報(例えば、1ビットのフラグ情報)を含んでもよい。これにより、UE100(制御部120)は、個別パラメータに基づいて、複数種別の自発的な上りリンク送信の少なくともいずれかを契機として、有効である各種切り替え処理を実行できる。なお、共通パラメータが、各切り替え処理を有効(enable)にするか又は無効(disable)にするかを示す1ビットのフラグ情報を含んでいてもよい。 Individual parameters may indicate settings that are not set by common parameters. Alternatively, individual parameters may indicate settings that are prioritized over common parameters. In addition, whether the individual parameter enables execution of switching processing in at least one uplink transmission among multiple types of spontaneous uplink transmission (or switching based on multiple types of spontaneous uplink transmission) (or set) or not. For example, the individual parameter may include information (for example, 1-bit flag information) indicating whether to enable or disable execution of the CG-induced switching process (or CG-induced switching). . In addition, the individual parameter may include information (for example, 1-bit flag information) indicating whether to enable or disable execution of the SR-induced switching process (or SR-induced switching). . In addition, the individual parameter is information (for example, a 1-bit flag information). By this means, the UE 100 (control unit 120) can execute various effective switching processes triggered by at least one of multiple types of spontaneous uplink transmission based on the individual parameter. Note that the common parameter may include 1-bit flag information indicating whether to enable or disable each switching process.
 また、RRCメッセージは、CG送信に用いられるパラメータを設定するためのCG設定(ConfiguredGrantConfig)を含んでよい。CG設定は、CG起因切り替え処理を制御するためにのみ適用される個別パラメータを含んでいてもよい。 In addition, the RRC message may include a CG setting (Configured GrantConfig) for setting parameters used for CG transmission. The CG settings may contain individual parameters that apply only to control the CG-triggered switching process.
 従って、PDCCH設定は、共通パラメータと個別パラメータとを含んでいてよい。CG設定は、PDCCH設定に含まれない個別パラメータを含んでいてもよい。また、PDCCH設定は、共通パラメータのみを含み、CG設定は個別パラメータを含んでいてもよい。 Therefore, the PDCCH configuration may include common parameters and individual parameters. The CG configuration may contain individual parameters that are not included in the PDCCH configuration. Also, the PDCCH configuration may include only common parameters and the CG configuration may include dedicated parameters.
 UE100(制御部120)は、切り替え制御情報を受信した場合、自発的な上りリンク送信に基づく切り替え処理の実行(又は、自発的な上りリンク送信に基づく切り替え)が有効化された(又は設定された)と判定(又は識別)してもよい。UE100(制御部120)は、切り替え制御情報を受信した場合、CG起因切り替え処理の実行(又は、CG起因切り替え)が有効化された(又は設定された)と判定してもよい。 UE 100 (control unit 120), when receiving the switching control information, execution of switching processing based on spontaneous uplink transmission (or switching based on spontaneous uplink transmission) is enabled (or set may be determined (or identified) as When receiving the switching control information, the UE 100 (control unit 120) may determine that execution of the CG-induced switching process (or CG-induced switching) is enabled (or set).
 切り替え制御情報は、例えば、自発的な上りリンク送信に基づくPDCCH監視アダプテーション(又は当該PDCCH監視アダプテーションの実行)を設定するものであってよい。また、切り替え制御情報は、タイプ2CG送信が有効である(アクティベート化されている)ときのPDCCH監視アダプテーション(又は当該PDCCH監視アダプテーションの実行)を設定するものであってよい。 The switching control information may, for example, configure PDCCH monitoring adaptation (or execution of the PDCCH monitoring adaptation) based on voluntary uplink transmission. The switching control information may also configure PDCCH supervisory adaptation (or execution of such PDCCH supervisory adaptation) when type 2 CG transmission is enabled (activated).
 上述のとおり、切り替え制御情報は、PDCCH監視アダプテーションの設定(PMA設定)を含んでよい。従って、切り替え制御情報は、SSSG設定情報、切り替えタイマ情報、監視期間情報、及び、ケース設定情報の少なくともいずれかの情報を含んでよい。UE100(制御部120)は、RRCメッセージがPMA設定を含む場合に、CG起因切り替え処理の実行が有効化(設定)されたと判定してもよい。 As described above, the switching control information may include PDCCH monitoring adaptation settings (PMA settings). Therefore, the switching control information may include at least one of SSSG configuration information, switching timer information, monitoring period information, and case configuration information. The UE 100 (control unit 120) may determine that execution of the CG-induced switching process is enabled (set) when the RRC message includes the PMA setting.
 なお、切り替え制御情報は、PMA設定に含まれる情報の少なくともいずれかを含んでよい。従って、切り替え制御情報は、例えば、PMA設定に含まれる情報の少なくとも一部であってもよい。 Note that the switching control information may include at least one of the information included in the PMA settings. Accordingly, the switching control information may be at least part of the information included in the PMA configuration, for example.
 また、切り替え制御情報は、CG起因切り替え処理の実行を有効にするか(又は設定するか)否かに関する情報であってよい。UE100(制御部120)は、CG起因切り替え処理を有効にすることを切り替え制御情報が示すことに基づいてCG起因切り替え処理を行ってよい。 Also, the switching control information may be information regarding whether to enable (or set) the execution of the CG-based switching process. The UE 100 (control unit 120) may perform the CG-induced switching process based on the switching control information indicating that the CG-induced switching process is enabled.
 また、UE100(制御部120)は、RRCメッセージが切り替え制御情報を含まない場合、CG起因切り替え処理を行わないように制御してもよい。例えば、UE100(制御部120)は、CG起因切り替え処理の実行を有効にすることが設定されていない、及び/又は、CG起因切り替え処理を行うときの切り替え先のPDCCH監視状態(例えばSSSG)が設定されていない場合、CG送信を行ってもCG起因切り替え処理を行わない。これにより、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることを防止できる。 Also, the UE 100 (control unit 120) may control not to perform the CG-induced switching process when the RRC message does not include switching control information. For example, the UE 100 (control unit 120) is not set to enable execution of the CG-induced switching process, and/or the PDCCH monitoring state (for example, SSSG) of the switching destination when performing the CG-induced switching process is If it is not set, CG-induced switching processing is not performed even if CG transmission is performed. This can prevent the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 from being inconsistent.
 切り替え制御情報は、PDCCHの監視をスキップする所定期間を設定するための切り替えタイマ値を示す情報を含んでよい。切り替えタイマが動作中の間、PDCCH監視スキッピング状態を維持してよい。 The switching control information may include information indicating a switching timer value for setting a predetermined period for skipping PDCCH monitoring. The PDCCH monitor skipping state may be maintained while the switch timer is running.
 切り替え制御情報は、後述の所定制御の実行を有効にするか(又は設定するか)否かに関する情報であってよい。UE100(制御部120)は、所定制御を有効にすることを切り替え制御情報が示すことに基づいて所定制御を行ってよい。 The switching control information may be information regarding whether to enable (or set) execution of the predetermined control described later. The UE 100 (control unit 120) may perform predetermined control based on switching control information indicating that the predetermined control is enabled.
 なお、RRCメッセージは、自発的な上りリンク送信(又は当該上りリンク送信のトリガと異なる契機でPDCCH監視状態を切り替える設定)を制御するための切り替え制御情報を含んでいてよい。 Note that the RRC message may include switching control information for controlling voluntary uplink transmission (or setting to switch the PDCCH monitoring state at a trigger different from the trigger for the uplink transmission).
 ステップS102において、基地局200(送信部211)は、PDCCHスキッピング又はSSSG切り替えを指示する切り替え指示DCIをPDCCH上でUE100に送信する。UE100(受信部112)は、切り替え指示DCIを受信する。図12には、PDCCHスキッピングを指示する切り替え指示DCIをPDCCH上でUE100に送信しているケースが例示されている。切り替え指示DCIは、PDCCH監視状態としてPDCCHの監視をスキップするPDCCHスキッピング状態に切り替えるための指示であってよい。 In step S102, the base station 200 (transmitting section 211) transmits a switching instruction DCI that instructs PDCCH skipping or SSSG switching to the UE 100 on the PDCCH. UE 100 (receiving unit 112) receives the switching instruction DCI. FIG. 12 illustrates a case where switching instruction DCI instructing PDCCH skipping is transmitted to UE 100 on PDCCH. The switching instruction DCI may be an instruction for switching to the PDCCH skipping state in which PDCCH monitoring is skipped as the PDCCH monitoring state.
 ステップS103において、UE100(制御部120)は、切り替え指示DCIの受信に応じて、PDCCH監視状態を切り替える。具体的には、UE100(制御部120)は、PDCCH監視状態をPDCCHスキッピング状態へ切り替える。例えば、PDCCHスキッピングが設定されている場合、UE100(制御部120)は、切り替え指示DCI(スキップ指示DCI)にセットされている値に応じて、PDCCHの監視を所定期間(設定された所定期間)にわたってスキップしてもよい。SSSG切り替えが設定されている場合、UE100(制御部120)は、切り替え指示DCIにセットされている値に応じて、当該切り替え指示DCIで指示されたSSSGに切り替えてもよい。その結果、UE100は、PDCCHの監視に必要な消費電力が低減されたパワーセービング状態になる。 In step S103, the UE 100 (control unit 120) switches the PDCCH monitoring state in response to receiving the switching instruction DCI. Specifically, UE 100 (control section 120) switches the PDCCH monitoring state to the PDCCH skipping state. For example, when PDCCH skipping is set, UE 100 (control unit 120) monitors the PDCCH for a predetermined period (set predetermined period) according to the value set in the switching instruction DCI (skip instruction DCI). You can skip across When SSSG switching is set, the UE 100 (control unit 120) may switch to the SSSG indicated by the switching instruction DCI according to the value set in the switching instruction DCI. As a result, UE 100 enters a power saving state in which power consumption required for PDCCH monitoring is reduced.
 図12に示すように、UE100(制御部120)は、PDCCHスキッピング状態への切り替えに応じて、切り替えタイマを開始してよい。時刻t1において、UE100(制御部120)は、切り替えタイマを開始する。 As shown in FIG. 12, the UE 100 (control unit 120) may start a switching timer in response to switching to the PDCCH skipping state. At time t1, UE 100 (control unit 120) starts a switching timer.
 ステップS104において、UE100(制御部120)は、PDCCHスキッピング状態からPDCCH監視実行状態へ切り替える。UE100(制御部120)は、例えば、切り替えタイマの満了に基づいて、PDCCH監視実行状態へ切り替えてよい。 In step S104, the UE 100 (control unit 120) switches from the PDCCH skipping state to the PDCCH monitoring execution state. The UE 100 (control unit 120) may switch to the PDCCH monitoring execution state, for example, based on expiration of the switching timer.
 ステップS105において、UE100(通信部110)は、PDCCH上でDCIを受信してよい。 In step S105, the UE 100 (communication unit 110) may receive DCI on the PDCCH.
 ステップS106において、UE100(通信部110)は、PDCCHスキッピング状態よりも前に通信されたデータの再送が行われないようにするための所定制御を実行する。具体的には、UE100(制御部120)は、PDCCH監視状態を、PDCCHスキッピング状態へ切り替えた後、PDCCH監視実行状態へ切り替えたことに基づいて、所定制御を実行する。UE100(制御部120)は、所定制御として、例えば、以下の動作を実行してよい。 In step S106, the UE 100 (communication unit 110) performs predetermined control to prevent retransmission of data communicated before the PDCCH skipping state. Specifically, the UE 100 (control unit 120) switches the PDCCH monitoring state to the PDCCH skipping state, and then performs predetermined control based on switching to the PDCCH monitoring execution state. The UE 100 (control unit 120) may perform, for example, the following operations as the predetermined control.
 UE100(制御部120)は、切り替え制御情報に基づいて、所定制御を行ってよい。UE100(制御部120)は、例えば、所定制御を有効にすることを切り替え制御情報が示すことに基づいて、所定制御を行ってよい。 The UE 100 (control unit 120) may perform predetermined control based on the switching control information. The UE 100 (control unit 120) may perform predetermined control, for example, based on switching control information indicating that the predetermined control is enabled.
 図13に示すように、ステップS111において、UE100(通信部110)は、PDCCHを受信する(ステップS105に対応)。 As shown in FIG. 13, in step S111, the UE 100 (communication unit 110) receives PDCCH (corresponding to step S105).
 ステップS112において、UE100(制御部120)は、受信したPDCCHが、PDCCHスキッピング期間(すなわち、スキッピング期間)の満了後に最初に受信したPDCCHであるか否かを判定する。UE100(制御部120)は、受信したPDCCHが最初に受信したPDCCHである場合、ステップS113の処理を実行する。一方で、UE100(制御部120)は、受信したPDCCHが最初に受信したPDCCHでない場合、ステップS114の処理を実行する。 In step S112, the UE 100 (control unit 120) determines whether the received PDCCH is the first received PDCCH after the PDCCH skipping period (ie skipping period) expires. UE 100 (control unit 120) executes the process of step S113 when the received PDCCH is the first received PDCCH. On the other hand, UE 100 (control unit 120) executes the process of step S114 when the received PDCCH is not the first received PDCCH.
 ステップS113において、UE100(制御部120)は、PDCCHに含まれるDCIで示されたスケジューリング(下りリンクアサインメント、及び/又は、上りリンクグラント)の送信を初期送信とみなしてもよい。すなわち、UE100(制御部120)は、例えば、DCIに含まれるNDIがトグルされているとみなす。すなわち、UE100(制御部120)は、例えば、PDCCHスキッピング期間の満了に基づいてPDCCHの監視を実行(又は、再開)した場合、最初に検出したPDCCHで送信されるDCIフォーマット(すなわち、下りリンクアサインメント、及び/又は、上りリンクグラント)に含まれるNDIはトグルされているとみなしてもよい。例えば、UE100(制御部120)は、PDCCHスキッピング期間の満了に基づいてPDCCHの監視を実行(又は、再開)し、PDCCHで送信されるDCIフォーマット(すなわち、下りリンクアサインメント、及び/又は、上りリンクグラント)を受信した場合、NDIの値にかかわらず、NDIはトグルされているとみなしてもよい。或いは、UE100(制御部120)は、DCIに含まれるNDI(すなわち、NDIの値)が、以前に受信した当該TBに対応する送信のNDI(すなわち、NDIの値)と比較して、トグルされているか否かを無視してもよい。 In step S113, the UE 100 (control unit 120) may regard transmission of scheduling (downlink assignment and/or uplink grant) indicated by DCI included in PDCCH as initial transmission. That is, the UE 100 (control unit 120), for example, considers that the NDI included in DCI is toggled. That is, UE 100 (control unit 120), for example, when the PDCCH monitoring is performed (or resumed) based on the expiration of the PDCCH skipping period, the DCI format transmitted in the first detected PDCCH (i.e., downlink assignment message and/or uplink grant) may be considered toggled. For example, UE 100 (control unit 120) performs (or resumes) monitoring of PDCCH based on the expiration of the PDCCH skipping period, DCI format transmitted in PDCCH (that is, downlink assignment and / or uplink link grant), the NDI may be considered toggled regardless of the value of the NDI. Alternatively, the UE 100 (control unit 120) compares the NDI (that is, the value of NDI) included in the DCI with the NDI (that is, the value of NDI) of the transmission corresponding to the previously received TB, and toggles. You can ignore whether or not
 ステップS114において、UE100(制御部120)は、HARQ動作を実行する。これにより、UE100(制御部120)は、DCIに含まれるNDIがトグルされているとみなしているため、HARQ動作において、DCIで示されたスケジューリングの送信を再送ではなく、初期送信として処理する。 In step S114, the UE 100 (control unit 120) executes HARQ operation. As a result, the UE 100 (control unit 120) considers that the NDI included in the DCI has been toggled, so in HARQ operation, the scheduling transmission indicated by the DCI is processed as an initial transmission instead of a retransmission.
 UE100(制御部120)は、DCIで示されたスケジューリングの送信がPDSCHの送信である場合、具体的には、受信したデータを当該TB用のバッファ内のデータと組み合わせるように物理レイヤに指示することなく、データのデコードを試みてもよい。 UE 100 (control unit 120) specifically instructs the physical layer to combine the received data with the data in the buffer for the TB when the scheduling transmission indicated by DCI is PDSCH transmission. You may attempt to decode the data without
 UE100(制御部120)は、DCIで示されたスケジューリングの送信がPUSCHの送信である場合、具体的には、関連付けられたHARQバッファにデータ(MAC PDU)を記憶した上で、記憶された上りリンクグラントに従って送信を生成するように物理レイヤへ指示する。 Specifically, when the scheduling transmission indicated by DCI is PUSCH transmission, UE 100 (control unit 120) stores data (MAC PDU) in the associated HARQ buffer, and stores the stored uplink Instruct the physical layer to generate transmissions according to the link grant.
 以上によれば、UE100(制御部120)は、PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行う。これにより、UE100(制御部120)は、PDCCHスキッピング状態よりも前に行っていたHARQプロセスにて再送を行わない。その結果、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことができる。 According to the above, the UE 100 (control unit 120) performs predetermined control to terminate the HARQ process that was performed before the PDCCH skipping state. As a result, UE 100 (control section 120) does not perform retransmission in the HARQ process performed before the PDCCH skipping state. As a result, when the HARQ operation is resumed after switching the PDCCH skipping state, the HARQ operation can be properly performed.
 例えば、UE100(制御部120)は、PDCCH内のNDIを正常に受信できなかったり、PDCCHスキッピング状態の切り替え前に最後に受信したPDCCHに含まれるNDIを保持していなかったりした場合であっても、PDCCHスキッピング状態よりも前に行っていたHARQプロセスにて再送を行わないため、HARQ動作を適切に行うことができる。 For example, the UE 100 (control unit 120) can not normally receive the NDI in the PDCCH, even if it does not hold the NDI included in the last received PDCCH before switching the PDCCH skipping state , HARQ operations can be properly performed because retransmissions are not performed in the HARQ process that was performed before the PDCCH skipping state.
 或いは、PDCCHスキッピング状態の切り替え前後でUE100における通信環境(例えば、チャネル状態)が変わっていたとしても、UE100(制御部120)は、効率の悪い再送を実行しなくなる。その結果、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことができる。 Alternatively, even if the communication environment (for example, channel state) in UE 100 changes before and after switching the PDCCH skipping state, UE 100 (control section 120) will not perform inefficient retransmission. As a result, when the HARQ operation is resumed after switching the PDCCH skipping state, the HARQ operation can be properly performed.
 上述のとおり、UE100(制御部120)は、DCIに含まれるNDIの値にかかわらず、DCIによりスケジュールされた送信を初期送信とみなしてよい。これにより、PDCCHスキッピング状態よりも前に行っていたHARQプロセスにて再送を行わないため、HARQ動作を適切に行うことができる。 As described above, the UE 100 (control unit 120) may regard transmission scheduled by DCI as initial transmission regardless of the value of NDI included in DCI. As a result, retransmission is not performed in the HARQ process that was performed before the PDCCH skipping state, so HARQ operation can be properly performed.
 また、UE100(制御部120)は、切り替え制御情報に基づいて、所定制御を行ってよい。これにより、基地局200の制御下でUE100が所定制御を行うことが可能となる。 Also, the UE 100 (control unit 120) may perform predetermined control based on the switching control information. This allows the UE 100 to perform predetermined control under the control of the base station 200 .
 (6.2)第2動作例
 移動通信システム1の第2動作例について、図14を用いて、説明する。なお、上述の説明との相違点を主として説明する。第2動作例では、UE100(制御部120)は、所定制御において、HARQバッファをフラッシュする。
(6.2) Second Operation Example A second operation example of the mobile communication system 1 will be described with reference to FIG. Note that differences from the above description will be mainly described. In the second operation example, the UE 100 (control unit 120) flushes the HARQ buffer in predetermined control.
 図14に示すように、ステップS201において、PDCCHスキッピング期間(すなわち、スキッピング期間)が満了する。UE100(制御部120)は、例えば、切り替えタイマの満了に応じて、PDCCHスキッピング期間が満了したと判定してもよい。 As shown in FIG. 14, in step S201, the PDCCH skipping period (ie skipping period) expires. UE 100 (control unit 120) may determine that the PDCCH skipping period has expired, for example, according to expiration of the switching timer.
 ステップS202において、UE100(制御部120)は、再送制御用バッファをフラッシュする。具体的には、UE100(制御部120)は、全てのHARQバッファをフラッシュする。すなわち、UE100(制御部120)は、PDCCHスキッピング期間の満了に基づいて、HARQバッファ(例えば、全てのHARQバッファ)をフラッシュしてもよい。ここで、UE100(制御部120)は、PDCCHスキッピングを指示する切り替え指示DCI(すなわち、PDCCHスキッピングを指示する値にセットされたPDCCH監視アダプテーション通知フィールド)の受信(検出でもよい)に基づいて、HARQバッファ(例えば、全てのHARQバッファ)をフラッシュしてもよい。すなわち、UE100(制御部120)は、PDCCH監視状態として、PDCCHスキッピング状態に切り替えることを指示する切り替え指示DCIの受信に基づいて、HARQバッファ(例えば、全てのHARQバッファ)をフラッシュしてもよい。 In step S202, the UE 100 (control unit 120) flushes the retransmission control buffer. Specifically, the UE 100 (control unit 120) flushes all HARQ buffers. That is, UE 100 (control section 120) may flush HARQ buffers (for example, all HARQ buffers) based on expiration of the PDCCH skipping period. Here, the UE 100 (control unit 120) receives (or may detect) a switching instruction DCI that instructs PDCCH skipping (that is, a PDCCH monitoring adaptation notification field that is set to a value that instructs PDCCH skipping), HARQ Buffers (eg, all HARQ buffers) may be flushed. That is, the UE 100 (control unit 120) may flush HARQ buffers (eg, all HARQ buffers) based on reception of the switching instruction DCI instructing switching to the PDCCH skipping state as the PDCCH monitoring state.
 これにより、UE100(制御部120)は、全てのHARQバッファにデータが保存されていないため、PDCCHスキッピング状態よりも前に行っていたHARQプロセスにて再送を行わない。その結果、PDCCHスキッピング状態の切り替え後にHARQ動作を再開した場合に、HARQ動作を適切に行うことができる。 As a result, UE 100 (control unit 120) does not perform retransmission in the HARQ process that was performed before the PDCCH skipping state because data is not saved in all HARQ buffers. As a result, when the HARQ operation is resumed after switching the PDCCH skipping state, the HARQ operation can be properly performed.
 (7)その他の実施形態
 UE100(制御部120)は、所定制御として、上述と異なる動作を実行してもよい。UE100(制御部120)は、例えば、切り替えタイマを開始したことに応じて、全てのHARQバッファをフラッシュしてもよい。
(7) Other Embodiments UE 100 (control unit 120) may perform operations different from those described above as predetermined control. The UE 100 (control unit 120) may flush all HARQ buffers, for example, in response to starting the switching timer.
 また、UE100(制御部120)は、PDCCHスキッピング期間が所定期間以上である場合に、所定制御を実行してもよい。UE100(制御部120)は、PDCCHスキッピング期間が所定期間未満である場合に、所定制御を実行しなくてもよい。 Also, the UE 100 (control unit 120) may perform predetermined control when the PDCCH skipping period is longer than or equal to the predetermined period. UE 100 (control unit 120) does not need to perform predetermined control when the PDCCH skipping period is less than the predetermined period.
 UE100(制御部120)は、所定期間を示す情報を基地局200から受信してもよい。当該情報は、例えば、切り替え制御情報に含まれていてもよい。 The UE 100 (control unit 120) may receive information indicating the predetermined period from the base station 200. The information may be included in switching control information, for example.
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the base station 200 may include multiple units. The plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack. The upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer. The first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit). The plurality of units may include a third unit that performs processing below the PHY layer. The second unit may perform processing above the PHY layer. The third unit may be an RU (Radio Unit). Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, references to "based on" and "depending on/in response to" are used unless otherwise specified. does not mean The phrase "based on" means both "based only on" and "based at least in part on." Similarly, the phrase "depending on" means both "only depending on" and "at least partially depending on." Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first," "second," etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in plural unless the context clearly indicates otherwise. shall include things.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 基地局(200)との無線通信を行う通信装置(100)であって、
 前記基地局(200)とデータを通信する通信部(110)と、
 前記データのハイブリッド自動再送要求(HARQ)プロセスを管理する制御部(120)と、を備え、
 前記制御部(120)は、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行う
 通信装置(100)。
(Appendix 1)
A communication device (100) that performs wireless communication with a base station (200),
a communication unit (110) for communicating data with the base station (200);
a control unit (120) for managing a hybrid automatic repeat request (HARQ) process for the data;
The control unit (120) switches the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) to the PDCCH skipping state in which monitoring of the PDCCH is skipped, and then switches to the state of monitoring the PDCCH. a communication apparatus (100) that performs predetermined control for terminating the HARQ process performed before the PDCCH skipping state.
 (付記2)
 前記通信部(110)は、前記PDCCHの監視により前記PDCCHスキッピング状態への切り替え後に最初に検出したPDCCH上で、新規データインジケータ(NDI)を含む下りリンク制御情報(DCI)を受信し、
 前記制御部(120)は、前記所定制御において、前記最初に検出したPDCCH上で受信した前記DCIに含まれるNDIの値にかかわらず、前記DCIによりスケジュールされた送信を初期送信とみなす
 付記1に記載の通信装置(100)。
(Appendix 2)
The communication unit (110) receives downlink control information (DCI) including a new data indicator (NDI) on the first detected PDCCH after switching to the PDCCH skipping state by monitoring the PDCCH,
In the predetermined control, the control unit (120) regards the transmission scheduled by the DCI as an initial transmission regardless of the value of NDI included in the DCI received on the first detected PDCCH. A communication device (100) as described.
 (付記3)
 前記制御部(120)は、前記データを保持する再送制御用バッファを管理し、
 前記制御部(120)は、前記所定制御において、前記再送制御用バッファをフラッシュする
 付記1に記載の通信装置(100)。
(Appendix 3)
The control unit (120) manages a retransmission control buffer that holds the data,
The communication device (100) according to appendix 1, wherein the control unit (120) flushes the retransmission control buffer in the predetermined control.
 (付記4)
 前記通信部(110)は、前記PDCCH監視状態の切り替えを制御するための切り替え制御情報を前記基地局(200)から受信し、
 前記制御部(120)は、前記切り替え制御情報に基づいて、前記所定制御を行う
 付記1から3のいずれか1項に記載の通信装置(100)。
(Appendix 4)
The communication unit (110) receives switching control information for controlling switching of the PDCCH monitoring state from the base station (200),
4. The communication device (100) according to any one of additional notes 1 to 3, wherein the control unit (120) performs the predetermined control based on the switching control information.
 (付記5)
 基地局(200)との無線通信を行う通信装置(100)で実行される通信方法であって、
 前記基地局(200)とデータを通信するステップと、
 前記データのハイブリッド自動再送要求(HARQ)プロセスを管理するステップと、
 物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行うステップと、を備える
 通信方法。
 
(Appendix 5)
A communication method executed by a communication device (100) that performs wireless communication with a base station (200),
communicating data with the base station (200);
managing a hybrid automatic repeat request (HARQ) process for the data;
After switching the PDCCH monitoring state for monitoring the physical downlink control channel (PDCCH) to the PDCCH skipping state that skips the monitoring of the PDCCH, based on switching to the state of monitoring the PDCCH, from the PDCCH skipping state performing a predetermined control to terminate a previously running HARQ process.

Claims (5)

  1.  基地局(200)との無線通信を行う通信装置(100)であって、
     前記基地局(200)とデータを通信する通信部(110)と、
     前記データのハイブリッド自動再送要求(HARQ)プロセスを管理する制御部(120)と、を備え、
     前記制御部(120)は、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行う
     通信装置(100)。
    A communication device (100) that performs wireless communication with a base station (200),
    a communication unit (110) for communicating data with the base station (200);
    a control unit (120) for managing a hybrid automatic repeat request (HARQ) process for the data;
    The control unit (120) switches the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) to the PDCCH skipping state in which monitoring of the PDCCH is skipped, and then switches to the state of monitoring the PDCCH. a communication apparatus (100) that performs predetermined control for terminating the HARQ process performed before the PDCCH skipping state.
  2.  前記通信部(110)は、前記PDCCHの監視により前記PDCCHスキッピング状態への切り替え後に最初に検出したPDCCH上で、新規データインジケータ(NDI)を含む下りリンク制御情報(DCI)を受信し、
     前記制御部(120)は、前記所定制御において、前記最初に検出したPDCCH上で受信した前記DCIに含まれるNDIの値にかかわらず、前記DCIによりスケジュールされた送信を初期送信とみなす
     請求項1に記載の通信装置(100)。
    The communication unit (110) receives downlink control information (DCI) including a new data indicator (NDI) on the first detected PDCCH after switching to the PDCCH skipping state by monitoring the PDCCH,
    The control unit (120), in the predetermined control, regards the transmission scheduled by the DCI as an initial transmission regardless of the value of NDI included in the DCI received on the first detected PDCCH. A communication device (100) according to claim 1.
  3.  前記制御部(120)は、前記データを保持する再送制御用バッファを管理し、
     前記制御部(120)は、前記所定制御において、前記再送制御用バッファをフラッシュする
     請求項1に記載の通信装置(100)。
    The control unit (120) manages a retransmission control buffer that holds the data,
    The communication device (100) according to Claim 1, wherein the control unit (120) flushes the retransmission control buffer in the predetermined control.
  4.  前記通信部(110)は、前記PDCCH監視状態の切り替えを制御するための切り替え制御情報を前記基地局(200)から受信し、
     前記制御部(120)は、前記切り替え制御情報に基づいて、前記所定制御を行う
     請求項1又は2に記載の通信装置(100)。
    The communication unit (110) receives switching control information for controlling switching of the PDCCH monitoring state from the base station (200),
    The communication device (100) according to claim 1 or 2, wherein the control section (120) performs the predetermined control based on the switching control information.
  5.  基地局(200)との無線通信を行う通信装置(100)で実行される通信方法であって、
     前記基地局(200)とデータを通信するステップと、
     前記データのハイブリッド自動再送要求(HARQ)プロセスを管理するステップと、
     物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を、前記PDCCHの監視をスキップするPDCCHスキッピング状態へ切り替えた後、前記PDCCHを監視する状態へ切り替えたことに基づいて、前記PDCCHスキッピング状態よりも前に行っていたHARQプロセスを終了するための所定制御を行うステップと、を備える
     通信方法。
     
    A communication method executed by a communication device (100) that performs wireless communication with a base station (200),
    communicating data with the base station (200);
    managing a hybrid automatic repeat request (HARQ) process for the data;
    After switching the PDCCH monitoring state for monitoring the physical downlink control channel (PDCCH) to the PDCCH skipping state that skips the monitoring of the PDCCH, based on switching to the state of monitoring the PDCCH, from the PDCCH skipping state performing a predetermined control to terminate a previously running HARQ process.
PCT/JP2022/047089 2021-12-28 2022-12-21 Communication device and communication method WO2023127636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214689 2021-12-28
JP2021214689 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127636A1 true WO2023127636A1 (en) 2023-07-06

Family

ID=86999054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047089 WO2023127636A1 (en) 2021-12-28 2022-12-21 Communication device and communication method

Country Status (1)

Country Link
WO (1) WO2023127636A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Enhanced DCI-based power saving adaptation", 3GPP TSG RAN WG1 MEETING #105E, R1-2105118, 12 May 2021 (2021-05-12), XP052011206 *
HUAWEI, HISILICON: "Extensions to Rel-16 DCI-based power saving adaptation for an active BWP", 3GPP TSG RAN WG1 MEETING #106BIS-E R1-2108746, 2 October 2021 (2021-10-02), XP052057843 *

Similar Documents

Publication Publication Date Title
JP2018014747A (en) Improved discontinuous reception operation having additional wake-up opportunity
EP2930980A1 (en) Method and system for discontinuous reception operation for long term evolution advanced carrier aggregation
US20100195605A1 (en) Discontinuous Reception Start Offset Coordinated with Semi-Persistent Scheduling System and Method
US10973080B2 (en) Radio terminal, processor, and base station
WO2023127636A1 (en) Communication device and communication method
WO2023112959A1 (en) Communication device, base station, and communication method
WO2023112961A1 (en) Communication device, base station, and communication method
WO2023112960A1 (en) Communication device, base station, and communication method
WO2023127634A1 (en) Communication device, base station, and communication method
WO2022260106A1 (en) Communication device, base station, and communication method
WO2022260103A1 (en) Communication device, base station, and communication method
WO2022260105A1 (en) Communication device, base station, and communication method
WO2024071076A1 (en) Communication device and communication method
WO2024071078A1 (en) Communication device, base station, and communication method
WO2022234801A1 (en) Communication device, base station, and communication method
WO2022234796A1 (en) Communication device, base station, and communication method
WO2022234834A1 (en) Communication device, base station, and method
US20240137973A1 (en) Communication apparatus, base station, and communication method
WO2022234835A1 (en) User equipment, base station, and communication control method
WO2022234838A1 (en) Communication device, base station, and method
WO2023048183A1 (en) User equipment, base station, and communication method
WO2023120434A1 (en) Base station and communication method
JP2022172972A (en) User device and communication method
WO2023022188A1 (en) Communication device, base station, and communication method
WO2023153312A1 (en) Communication device and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915859

Country of ref document: EP

Kind code of ref document: A1