WO2023120434A1 - Base station and communication method - Google Patents

Base station and communication method Download PDF

Info

Publication number
WO2023120434A1
WO2023120434A1 PCT/JP2022/046498 JP2022046498W WO2023120434A1 WO 2023120434 A1 WO2023120434 A1 WO 2023120434A1 JP 2022046498 W JP2022046498 W JP 2022046498W WO 2023120434 A1 WO2023120434 A1 WO 2023120434A1
Authority
WO
WIPO (PCT)
Prior art keywords
trs
boundary
base station
control unit
system information
Prior art date
Application number
PCT/JP2022/046498
Other languages
French (fr)
Japanese (ja)
Inventor
樹 長野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023120434A1 publication Critical patent/WO2023120434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to base stations and communication methods used in mobile communication systems.
  • TRS tracking reference signal
  • RS reference signal for performing time/frequency synchronization (time/frequency tracking).
  • TRS resources also referred to as "TRS opportunities”
  • TRS opportunities TRS resources
  • the base station broadcasts TRS resource settings (TRS configurations) through system information blocks (also referred to as "broadcast information").
  • a communication device in RRC idle state or RRC inactive state receives TRS using the TRS resource configuration set by the system information block, thereby synchronizing without receiving SSB (SS/PBCH Block).
  • SSB SS/PBCH Block
  • an increase in power consumption due to the reception of the SSB is suppressed.
  • system information block (system information) is maintained without being updated within a modification period, which is the period in which the system information block can be updated.
  • the system information is changed at the timing of the boundary between the current correction cycle and the next correction cycle.
  • the communication device may acquire the system information only once within the modification cycle in which the TRS resource setting as system information is updated.
  • a communication device in RRC idle state or RRC inactive state performs discontinuous reception (DRX). Specifically, the communication device wakes up in the set DRX cycle and attempts to receive paging. Also known as such a DRX cycle is extended discontinuous reception (eDRX), which uses a long DRX cycle in units of hyperframes consisting of 1024 system frames. According to eDRX, the period during which the communication device can turn off reception can be extended, so power consumption can be further reduced.
  • eDRX extended discontinuous reception
  • a base station includes: a communication unit that transmits a specific system information block including TRS resource settings that are settings for a tracking reference signal (TRS); and a control unit for updating the TRS resource settings with.
  • TRS tracking reference signal
  • the control unit updates the TRS resource setting only at a timing when a boundary of an acquisition cycle that triggers acquisition of updated system information by a communication device set to enhanced discontinuous reception coincides with a boundary of the correction cycle.
  • a communication method is a communication method executed by a base station.
  • the communication method includes transmitting a specific system information block containing a TRS resource setting that is a setting for a tracking reference signal (TRS); and updating.
  • TRS tracking reference signal
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example operation for a UE in RRC idle state or RRC inactive state.
  • FIG. 4 illustrates an example operation for a UE in RRC idle state or RRC inactive state to receive a TRS.
  • FIG. 5 is a diagram for explaining an overview of eDRX.
  • FIG. 6 is a diagram for explaining problems related to eDRX.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example operation for a UE in RRC idle state or RRC inactive state.
  • FIG. 4 illustrates an example operation for a UE in RRC idle
  • FIG. 7 is a diagram illustrating the configuration of a UE according to the embodiment;
  • FIG. 8 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 9 is a flowchart for explaining the base station 200 according to the first operation example.
  • FIG. 10 is a diagram for explaining the base station 200 according to the first operation example.
  • FIG. 11 is a flowchart (Part 1) for explaining the base station 200 according to the second operation example.
  • FIG. 12 is a flowchart (part 2) for explaining the base station 200 according to the second operation example.
  • a correction cycle for eDRX communication devices (hereinafter referred to as an eDRX acquisition cycle) that is longer than the normal correction cycle is set in a communication device in which eDRX is set (hereinafter referred to as an eDRX communication device).
  • an eDRX communication device For the eDRX communication device, the timing of the boundary between the current eDRX acquisition cycle and the next eDRX acquisition cycle triggers the acquisition of updated system information.
  • one eDRX acquisition period includes a modification period boundary
  • the base station updates the TRS resource configuration at the modification period boundary. Since the eDRX communication device has not had an opportunity to acquire updated system information (that is, the timing of the boundary of the eDRX acquisition cycle has not been reached), after the timing of the boundary of the modification cycle, the updated TRS resource There is a concern that the TRS based on the setting cannot be properly received. An eDRX communication device that has failed to receive a TRS cannot perform time/frequency tracking using the TRS, and thus has a problem of being unable to monitor paging efficiently.
  • one object of the present disclosure is to provide a base station and a communication method that enable communication devices to appropriately receive TRS.
  • the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 may be a user equipment defined by 3GPP technical specifications.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE).
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
  • a frame may consist of 10 ms and may include 10 subframes of 1 ms.
  • a subframe can include a number of slots corresponding to the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs.
  • UE 100 transmits and receives data and control signals on the active BWP.
  • BWP bandwidth part
  • Up to four BWPs can be set in the UE 100, for example.
  • Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive.
  • UE 100 may be configured with up to 12 CORESETs on the serving cell.
  • Each CORESET has an index from 0 to 11.
  • a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Quest: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • FIG. 3 shows an operation example of the UE 100 in RRC idle state or RRC inactive state.
  • UE 100 in RRC idle state or RRC inactive state monitors paging from base station 200 .
  • UE 100 receives PDCCH (Physical Downlink Control Channel) from base station 200 to check whether there is a paging addressed to UE 100 .
  • the UE 100 performs paging by receiving (decoding) downlink control information (DCI) to which CRC (Cyclic Redundancy Check) parity bits scrambled by P-RNTI (Paging Radio Network Temporary Identifier) are added on the PDCCH.
  • DCI downlink control information
  • base station 200 may configure P-RNTI for UE 100 .
  • the DCI may be a DCI format used for PDSCH (Physical Downlink Shared Channel) scheduling. That is, paging messages may be sent on the PDSCH.
  • the DCI to which the CRC parity bits scrambled by the P-RNTI are added is also called paging DCI.
  • the UE 100 intermittently monitors paging using discontinuous reception (DRX).
  • a period for monitoring such paging is called a DRX period.
  • a frame in which the UE 100 should monitor paging is called a paging frame (PF), and a subframe in this PF in which the UE 100 should monitor paging is called a paging occasion (PO).
  • PF paging frame
  • PO paging occasion
  • the base station 200 transmits the SSB to the UE100.
  • SSB is another example of a downlink reference signal.
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • DMRS demodulation reference signal
  • an SSB may consist of four consecutive OFDM symbols in the time domain.
  • the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain.
  • PBCH is a physical channel that carries a Master Information Block (MIB).
  • MIB Master Information Block
  • the UE 100 monitors and receives paging at the PO. Note that the UE 100 maintains the wake-up state from the reception of the SSB in step S21 to the PO. Therefore, the longer the time from the SSB reception timing to the PO timing, the longer the wakeup duration, and the more power consumption of the UE 100 increases.
  • TRS resources also referred to as "TRS opportunities”
  • TRS opportunities are made available to UE 100 in RRC idle state or RRC inactive state.
  • the base station 200 broadcasts TRS resource settings (TRS configurations), which are settings for TRS resources, using a system information block (also referred to as “broadcast information”).
  • FIG. 4 shows an operation example for UE 100 in RRC idle state or RRC inactive state to receive TRS.
  • the TRS may be a CSI-RS used for tracking purposes. That is, in this embodiment, TRS resources may include CSI-RS resources.
  • the base station 200 transmits a specific system information block containing TRS resource settings. Specifically, the base station 200 transmits a system information block containing one or more TRS resource configuration parameters on a broadcast channel.
  • the particular system information block may be an existing system information block other than system information block type 1 (SIB1) or a newly introduced type of system information block.
  • UE 100 receives a specific system information block and obtains TRS resource configuration parameters (ie, TRS resource set configuration).
  • the TRS resource setting for setting TRS for UE 100 in RRC idle state or RRC inactive state is CSI-ResourceConfig/NZP-CSI-RS-ResourceSet, bwp-ID, resourceType, trs-Info , repetition, powerControlOffset, powerControlOffsetSS, requencyDomainAllocation, firstOFDMSymbolInTimeDomain, Density, startingRB, nrofRBs, and subcarrierSpacing as parameters (3G PP TS38.331 reference).
  • TRS resource configuration may be only part of the parameter group configured in UE 100 in the RRC connected state.
  • step S32 the base station 200 transmits TRS.
  • UE 100 receives TRS using TRS resource configuration. By receiving the TRS, the UE 100 can achieve time/frequency synchronization without receiving the SSB.
  • the UE 100 monitors and receives paging at the PO. Note that the UE 100 maintains the wake-up state from the reception of the TRS in step S31 to the PO. When the time from the TRS reception timing to the PO timing is short, the wakeup duration is short, and the power consumption of the UE 100 is reduced. In addition, the UE 100 can reduce power consumption accompanying reception of SSB by not receiving SSB.
  • FIG. 5 shows an operation example of an extended DRX communication device in which extended discontinuous reception (eDRX) is set.
  • eDRX extended discontinuous reception
  • an eDRX UE that is, an eDRX user device
  • eDRX is a technology that uses a longer DRX cycle than normal DRX in order to achieve further power saving of the UE 100 .
  • the UE 100 configured with DRX wakes up every DRX cycle to monitor the PDCCH, and when this monitoring ends, it goes to sleep until the next DRX cycle. Therefore, by using a DRX cycle that is longer than normal DRX (hereinafter referred to as an “eDRX cycle”), the period during which the receiver of the UE 100 can be turned off is lengthened, and further power saving is achieved. be.
  • the DRX cycle is set to a time length of, for example, 32 radio frames, 64 radio frames, 128 radio frames, or 256 radio frames.
  • the eDRX cycle used in eDRX is set to a time length that is an integral multiple of a hyperframe consisting of 1024 radio frames.
  • the UE 100 for which eDRX is configured attempts to receive paging in a specific hyperframe (Paging Hyperframe: PH) in each eDRX cycle.
  • Paging Hyperframe: PH the time span for monitoring paging
  • PTW Paging Timing Window
  • PO Paging Occasion
  • the TRS resources configured for UE 100 in RRC idle state or RRC inactive state can obtain power saving effects as described above, it is desirable that they can also be used by eDRX UEs.
  • the TRS resource is configured by a specific system information block, but there is a problem that the eDRX UE may not be able to receive the TRS if the configuration of the TRS resource is updated.
  • a normal DRX-configured UE (hereinafter referred to as "DRX UE") monitors the PDCCH in the PO for each DRX cycle.
  • the DRX UE performs time/frequency tracking by receiving the TRS just before each PO.
  • the configuration of the TRS resource is notified from the base station 200 to the UE 100 by a specific system information block (hereinafter referred to as a specific SIB as appropriate).
  • a period in which system information such as a specific SIB can be updated is called a modification period. That is, the system information is maintained without being updated within one modification period.
  • the base station 200 When updating the TRS resource configuration (that is, the specific SIB), the base station 200 notifies the UE 100 that the system information will be changed in the next modification period (so-called short message), and the current modification period (modification period #n) and the next modification period (modification period #n+1), the system information (specific SIB) is changed.
  • the eDRX UE monitors the PDCCH in the PO within the PTW every DRX cycle.
  • the eDRX UE performs time/frequency tracking by receiving the TRS immediately before each PTW or each PO.
  • the eDRX UE is set with a modification cycle for the eDRX UE that is longer than the normal modification cycle.
  • Such an amendment period for eDRX UEs is sometimes referred to as an eDRX acquisition period.
  • the timing of the boundary between the current eDRX acquisition cycle and the next eDRX acquisition cycle triggers the acquisition of updated system information.
  • eDRX UE does not have an opportunity to acquire updated system information (that is, the eDRX acquisition cycle boundary timing has not been reached), so after the modification cycle boundary timing, the updated TRS resource configuration
  • the TRS based on An eDRX UE that has TRS reception failure cannot perform time/frequency tracking using TRS, and there is a problem that efficient PO monitoring cannot be performed.
  • an operation for enabling the UE 100 to appropriately receive the TRS will be described.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the base station 200 has a communication section 210 , a network communication section 220 and a control section 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network communication unit 220 transmits and receives signals to and from the network.
  • the network communication unit 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. Also, the network communication unit 220 receives a signal from the core network device 300 connected via the NG interface, for example, and transmits the signal to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with a node (for example, an adjacent base station, the core network device 300) via the network communication unit 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the communication unit 210 transmits a specific system information block including TRS resource settings, which are settings for tracking reference signals (TRS).
  • TRS resource settings which are settings for tracking reference signals (TRS).
  • the control unit 230 updates the TRS resource setting at the timing of the boundary of the modification period in which the system information can be updated.
  • the control unit 230 updates the TRS resource setting only at the timing when the boundary of the eDRX acquisition cycle and the boundary of the correction cycle coincide with each other, which triggers the eDRX UE in which eDRX is configured to acquire updated system information.
  • the eDRX acquisition cycle is set to the eDRX acquisition cycle while the receiving unit 112 of the UE 100 is turned off.
  • No TRS resource settings are updated before the boundary is reached.
  • UE 100 which is an eDRX UE, can acquire the updated TRS resource configuration with the timing of the boundary of the eDRX acquisition cycle as a trigger. As a result, the UE 100 can appropriately receive the TRS based on the updated TRS resource settings.
  • step S101 the control unit 230 of the base station 200 determines whether or not to update TRS resource settings.
  • the control unit 230 may determine whether to update the system information included in the specific SIB.
  • the specific SIB may contain TRS resource settings commonly used for DRX UEs and eDRX UEs, or contain TRS resource settings for DRX UEs and TRS resource settings for eDRX UEs respectively. good too.
  • control unit 230 determines to update the TRS resource setting, it executes the process of step S102. On the other hand, when the control unit 230 determines not to update the TRS resource setting (or system information), it ends the process.
  • step S102 the control unit 230 updates the TRS resource setting only at the timing when the boundary of the modification cycle coincides with the boundary of the eDRX acquisition cycle.
  • the control unit 230 performs control so as not to update the TRS resource setting at the timing Tn of the boundary of the modification cycle.
  • the control unit 230 may omit updating the TRS resource settings.
  • the control unit 230 updates the TRS resource setting at the timing Tn+m of the boundary of the modification cycle.
  • the control unit 230 may update the TRS resource configuration at the timing of the boundary of the eDRX acquisition cycle (that is, every eDRX acquisition cycle).
  • control unit 230 updates the system information only at the timing when the boundary of the correction cycle coincides with the boundary of the eDRX acquisition cycle.
  • the communication unit 210 of the base station 200 starts transmitting the updated TRS resource setting after the timing Tn+m of the boundary of the correction cycle.
  • control unit 230 may update the TRS resource setting at the timing Tn+m on the boundary of the correction period. Therefore, the control unit 230 does not transmit the TRS resource configuration updated from the TRS resource configuration transmitted within the modification cycle #n+m before the timing Tn+m of the boundary of the modification cycle. After Tn+m, it may start sending updated TRS resource settings.
  • the control unit 230 of the base station 200 updates the TRS resource setting only at the timing when the boundary of the correction cycle coincides with the boundary of the eDRX acquisition cycle.
  • the receiver of the UE 100 that is, the receiving unit 112 is turned off
  • the TRS resource configuration is never updated before reaching the boundary of the eDRX acquisition period.
  • UE 100 which is an eDRX UE, can acquire the updated TRS resource configuration with the timing of the boundary of the eDRX acquisition cycle as a trigger. As a result, the UE 100 can appropriately receive the TRS based on the updated TRS resource settings.
  • step S201 the network communication unit 220 of the base station 200 receives eDRX UE information (hereinafter referred to as eDRX UE information) from the core network device 300 (eg, AMF).
  • eDRX UE information hereinafter referred to as eDRX UE information
  • the eDRX UE information is, for example, information indicating whether an eDRX UE exists within the tracking area to which the base station 200 belongs, information on the eDRX UE within the tracking area to which the base station 200 belongs, and information on the RAN paging area to which the base station 200 belongs. information indicating whether or not an eDRX UE exists in the base station 200, or information on the eDRX UE in the RAN paging area to which the base station 200 belongs. Note that the RAN paging area is an area narrower than the tracking area.
  • the eDRX UE information may include, for example, the identifier of the UE 100 using the extended DRX cycle.
  • control unit 230 of the base station 200 selects an update method. Specifically, control unit 230 selects one of the first update method and the second update method.
  • the first update method is a method that can update the TRS resource setting at the timing of the boundary of the correction period regardless of whether the boundary of the correction period coincides with the boundary of the acquisition period. Therefore, the control unit 230 can update the TRS resource configuration at the timing of the boundary of the modification period (that is, every modification period).
  • the second update method is a method that can update the TRS resource setting only at the timing when the boundary of the correction period matches the boundary of the acquisition period. Therefore, the control unit 230 may update the TRS resource configuration at the timing of the boundary of the eDRX acquisition cycle (ie, every eDRX acquisition cycle).
  • the control unit 230 may select one of the first update method and the second update method based on the eDRXUE information.
  • the control unit 230 may determine, for example, based on the eDRX UE information, whether an eDRX UE exists within the cell managed by the base station 200. When the control unit 230 determines that there is no eDRX UE in the cell, it selects the first update method. On the other hand, when the control unit 230 determines that there is an eDRX UE in the cell, it selects the second update method.
  • the control unit 230 may determine whether or not there are at least a predetermined number of eDRX UEs in the cell managed by the base station 200. If the control unit 230 determines that there are not more than a predetermined number of eDRX UEs in the cell, it selects the first update method. On the other hand, if the control unit 230 determines that there are more than the predetermined number of eDRX UEs in the cell, it selects the second update method.
  • the control unit 230 determines that there is no eDRX UE in the RRC inactive state based on information indicating whether or not there is an eDRX UE in the RAN paging area to which the base station 200 belongs, the first Select the update method for On the other hand, when the control unit 230 determines that there is an eDRX UE in the RRC inactive state in the cell, it selects the second update method.
  • step S203 the control unit 230 switches the update method for updating the TRS resource settings to the selected update method. It should be noted that the control unit 230 maintains the used updating method when controlling the updating of the TRS resource setting using the method already selected.
  • Step S211 is the same as step S101.
  • step S212 the control unit 230 determines whether or not the second update method is used. When switching to the second update method, the control unit 230 determines that the second update method is used. When switching to the first update method, the control unit 230 determines that the second update method is not used.
  • control unit 230 executes the process of step S213 when the second update method is used. On the other hand, when the second update method is not used, control unit 230 executes the process of step S214.
  • control unit 230 may determine whether or not the first update method is used. When switching to the first update method, the control unit 230 determines that the first update method is used. When switching to the second update method, the control unit 230 determines that the first update method is not used. If the first update method is not used, control unit 230 executes the process of step S213. On the other hand, when the first update method is used, control unit 230 executes the process of step S214.
  • Step S213 is the same as step S102.
  • the control unit 230 controls the updating of TRS resource settings using the second updating method.
  • step S214 the control unit 230 updates the TRS resource setting at the timing of the boundary of the modification period.
  • the control unit 230 can update the TRS resource configuration at the timing of the boundary of the modification period (that is, every modification period) regardless of whether the boundary of the modification period coincides with the boundary of the acquisition period. .
  • the control unit 230 controls updating of TRS resource settings using the first updating method.
  • control unit 230 may control the updating of the TRS resource settings using one of the first updating method and the second updating method. Since the control unit 230 can change the TRS resource setting update method, flexible system operation is possible.
  • the network communication unit 220 may receive eDRXUE information from the core network device 300 .
  • the control unit 230 may switch between the first update scheme and the second update scheme based on the eDRXUE information. As a result, the control unit 230 can change the TRS resource configuration update method based on the eDRX UE, enabling flexible system operation.
  • control unit 230 when the control unit 230 determines that there is no eDRX UE in the cell managed by the base station 200, it may control the updating of the TRS resource configuration using the first updating method. As a result, since there are no eDRX UEs in the cell, even if the TRS resource configuration update cycle is shorter than the eDRX acquisition cycle, there is no impact on the eDRX UEs. Since the control unit 230 can make the update cycle of the TRS resource configuration shorter than the eDRX acquisition cycle, flexible system operation is possible.
  • control unit 230 of the base station 200 may select one of the first update method and the second update method based on information other than the eDRXUE information. good. Also, the control unit 230 may control updating of the TRS resource configuration using an updating method different from the first updating method and the second updating method.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • the control unit (230) controls the TRS only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the enhanced DRX communication device set to the enhanced discontinuous reception coincides with the boundary of the modification cycle.
  • the control unit (230) controls updating of the TRS resource configuration using one of a first updating scheme and a second updating scheme
  • the first update method is a method that can update the TRS resource setting at the timing of the boundary of the modification period regardless of whether the boundary of the modification period coincides with the boundary of the acquisition period
  • Appendix 3 further comprising a network communication unit that receives information of the enhanced DRX communication device from a core network device;
  • the base station (200) according to appendix 2, wherein the control unit (230) switches between the first update method and the second update method based on the information.
  • control unit (230) determines that the enhanced DRX communication device does not exist in the cell managed by the base station (200)
  • the control unit (230) updates the TRS resource configuration using the first update method.
  • a base station (200) according to appendix 2 or 3.
  • TRS resource settings which are settings for a tracking reference signal (TRS)
  • TRS tracking reference signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station (200) comprises: a communication unit (210) that transmits a specific system information block including a TRS resource configuration, which is a configuration for a tracking reference signal (TRS); and a control unit (230) that updates the TRS resource configuration at the timing of a boundary of a correction period at which system information may be updated. The control unit (230) updates the TRS resource configuration only at a timing when a boundary of an acquisition period, which serves as a trigger for acquisition of updated system information by a communication device in which an enhanced discontinuous reception is configured, matches the boundary of the correction period.

Description

基地局及び通信方法Base station and communication method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年12月23日に出願された特許出願番号2021-209674号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-209674, filed December 23, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる基地局及び通信方法に関する。 The present disclosure relates to base stations and communication methods used in mobile communication systems.
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)の技術仕様に準拠する移動通信システムにおいて、無線リソース制御(Radio Resource Control:RRC)コネクティッド状態にある通信装置に対して、通信装置個別に設定される参照信号(Reference Signal:RS)に、トラッキング参照信号(Tracking Reference Signal:TRS)がある。TRSは、時間・周波数同期(時間・周波数トラッキング)を行うための参照信号である。 A communication device in a radio resource control (RRC) connected state in a mobile communication system conforming to the technical specifications of the 3GPP (registered trademark; the same shall apply hereinafter) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems. On the other hand, there is a tracking reference signal (TRS) in the reference signal (reference signal: RS) that is set for each communication device. TRS is a reference signal for performing time/frequency synchronization (time/frequency tracking).
 3GPPにおいて、RRCアイドル状態又はRRCインアクティブ状態にある通信装置向けに消費電力を削減するための技術の標準化に向けた議論が行われている。このような技術において、RRCコネクティッド状態にある通信装置に向けて設定されたTRSリソース(「TRS機会」とも称される)を、RRCアイドル状態又はRRCインアクティブ状態にある通信装置においても利用可能とすることが検討されている(例えば、非特許文献1参照)。具体的には、基地局は、TRSリソース設定(TRS configurations)をシステム情報ブロック(「報知情報」とも称される)によってブロードキャストする。  3GPP is discussing standardization of techniques for reducing power consumption for communication devices in RRC idle state or RRC inactive state. In such technology, TRS resources (also referred to as "TRS opportunities") configured for communication devices in RRC connected state can be used by communication devices in RRC idle state or RRC inactive state. (For example, see Non-Patent Document 1). Specifically, the base station broadcasts TRS resource settings (TRS configurations) through system information blocks (also referred to as "broadcast information").
 RRCアイドル状態又はRRCインアクティブ状態にある通信装置は、システム情報ブロックにより設定されたTRSリソース設定を用いてTRSを受信することにより、SSB(SS/PBCH Block)を受信しなくても同期を取ることができ、同期を確立してからページングを監視するまでのウェイクアップ持続時間を短縮し得る。そして、SSBを受信しないことにより、SSBの受信に伴う消費電力の増加が抑制される。 A communication device in RRC idle state or RRC inactive state receives TRS using the TRS resource configuration set by the system information block, thereby synchronizing without receiving SSB (SS/PBCH Block). can reduce the wake-up duration between establishing synchronization and monitoring paging. By not receiving the SSB, an increase in power consumption due to the reception of the SSB is suppressed.
 なお、システム情報ブロック(システム情報)は、システム情報ブロックが更新され得る周期である修正周期(modification period)内では更新させずに維持される。現在の修正周期と次の修正周期との境界のタイミングでシステム情報が変更される。通信装置は、システム情報としてのTRSリソース設定が更新された修正周期内で1回だけシステム情報を取得すればよい。 It should be noted that the system information block (system information) is maintained without being updated within a modification period, which is the period in which the system information block can be updated. The system information is changed at the timing of the boundary between the current correction cycle and the next correction cycle. The communication device may acquire the system information only once within the modification cycle in which the TRS resource setting as system information is updated.
 ところで、RRCアイドル状態又はRRCインアクティブ状態にある通信装置は、間欠受信(discontinues reception:DRX)を行う。具体的には、通信装置は、設定されたDRXサイクルでウェイクアップしてページングの受信を試みる。また、このようなDRXサイクルとして、1024システムフレームからなるハイパーフレーム単位で長いDRXサイクルを用いる拡張間欠受信(extended discontinues reception:eDRX)も知られている。eDRXによれば、通信装置が受信をオフできる期間を延長できるため、更なる低消費電力化が可能である。 By the way, a communication device in RRC idle state or RRC inactive state performs discontinuous reception (DRX). Specifically, the communication device wakes up in the set DRX cycle and attempts to receive paging. Also known as such a DRX cycle is extended discontinuous reception (eDRX), which uses a long DRX cycle in units of hyperframes consisting of 1024 system frames. According to eDRX, the period during which the communication device can turn off reception can be extended, so power consumption can be further reduced.
 第1の態様に係る基地局は、トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信する通信部と、システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新する制御部と、を備える。前記制御部は、拡張間欠受信が設定された通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する。 A base station according to a first aspect includes: a communication unit that transmits a specific system information block including TRS resource settings that are settings for a tracking reference signal (TRS); and a control unit for updating the TRS resource settings with. The control unit updates the TRS resource setting only at a timing when a boundary of an acquisition cycle that triggers acquisition of updated system information by a communication device set to enhanced discontinuous reception coincides with a boundary of the correction cycle. .
 第2の態様に係る通信方法は、基地局で実行される通信方法である。当該通信方法は、トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信するステップと、システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新するステップと、を備える。前記TRSリソース設定を更新するステップでは、拡張間欠受信が設定された通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する。 A communication method according to the second aspect is a communication method executed by a base station. The communication method includes transmitting a specific system information block containing a TRS resource setting that is a setting for a tracking reference signal (TRS); and updating. In the step of updating the TRS resource setting, only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the communication device in which the enhanced discontinuous reception is set coincides with the boundary of the correction cycle, the TRS Update resource settings.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図である。 図3は、RRCアイドル状態又はRRCインアクティブ状態にあるUEについての動作例を示す図である。 図4は、RRCアイドル状態又はRRCインアクティブ状態にあるUEがTRSを受信するための動作例を示す図である。 図5は、eDRXの概要を説明するための図である。 図6は、eDRXに関連する問題点を説明するための図である。 図7は、実施形態に係るUEの構成を示す図である。 図8は、実施形態に係る基地局の構成を示す図である。 図9は、第1動作例に係る基地局200を説明するためのフローチャートである。 図10は、第1動作例に係る基地局200を説明するための図である。 図11は、第2動作例に係る基地局200を説明するためのフローチャート(その1)である。 図12は、第2動作例に係る基地局200を説明するためのフローチャート(その2)である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment. FIG. 3 is a diagram illustrating an example operation for a UE in RRC idle state or RRC inactive state. FIG. 4 illustrates an example operation for a UE in RRC idle state or RRC inactive state to receive a TRS. FIG. 5 is a diagram for explaining an overview of eDRX. FIG. 6 is a diagram for explaining problems related to eDRX. FIG. 7 is a diagram illustrating the configuration of a UE according to the embodiment; FIG. 8 is a diagram showing the configuration of a base station according to the embodiment. FIG. 9 is a flowchart for explaining the base station 200 according to the first operation example. FIG. 10 is a diagram for explaining the base station 200 according to the first operation example. FIG. 11 is a flowchart (Part 1) for explaining the base station 200 according to the second operation example. FIG. 12 is a flowchart (part 2) for explaining the base station 200 according to the second operation example.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 eDRXが設定された通信装置(以下、eDRX通信装置と称する)には、通常の修正周期よりも長いeDRX通信装置向けの修正周期(以下、eDRX取得周期と称する)が設定される。eDRX通信装置にとって、現在のeDRX取得周期と次のeDRX取得周期との間の境界のタイミングが、更新されたシステム情報を取得する契機となる。 A correction cycle for eDRX communication devices (hereinafter referred to as an eDRX acquisition cycle) that is longer than the normal correction cycle is set in a communication device in which eDRX is set (hereinafter referred to as an eDRX communication device). For the eDRX communication device, the timing of the boundary between the current eDRX acquisition cycle and the next eDRX acquisition cycle triggers the acquisition of updated system information.
 ここで、1つのeDRX取得周期内に修正周期の境界が含まれ、且つ、基地局が修正周期の境界で、TRSリソース設定を更新するケースを想定する。eDRX通信装置は、更新されたシステム情報を取得する契機が発生していない(すなわち、eDRX取得周期の境界のタイミングに達していない)ので、修正周期の境界のタイミング後において、更新されたTRSリソース設定に基づくTRSを適切に受信することができない懸念がある。TRSの受信失敗が生じたeDRX通信装置は、TRSを用いた時間・周波数トラッキングを行うことができず、効率的なページングの監視を行うことができないという問題がある。 Here, assume a case where one eDRX acquisition period includes a modification period boundary, and the base station updates the TRS resource configuration at the modification period boundary. Since the eDRX communication device has not had an opportunity to acquire updated system information (that is, the timing of the boundary of the eDRX acquisition cycle has not been reached), after the timing of the boundary of the modification cycle, the updated TRS resource There is a concern that the TRS based on the setting cannot be properly received. An eDRX communication device that has failed to receive a TRS cannot perform time/frequency tracking using the TRS, and thus has a problem of being unable to monitor paging efficiently.
 そこで、本開示は、通信装置がTRSを適切に受信可能とする基地局及び通信方法を提供することを目的の一つとする。 Therefore, one object of the present disclosure is to provide a base station and a communication method that enable communication devices to appropriately receive TRS.
 (移動通信システムの構成)
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
(Configuration of mobile communication system)
A configuration of a mobile communication system 1 according to an embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS). Hereinafter, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置(例えば、Aerial UE)であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. UE 100 may be a device used by a user. The UE 100 may be a user equipment defined by 3GPP technical specifications. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE). The UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE). The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。 A configuration example of a protocol stack in the mobile communication system 1 according to the embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。 The protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 物理チャネルは、時間領域における複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。 A physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain. One subframe consists of a plurality of OFDM symbols in the time domain. A resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers. A frame may consist of 10 ms and may include 10 subframes of 1 ms. A subframe can include a number of slots corresponding to the subcarrier spacing.
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。 Among physical channels, the physical downlink control channel (PDCCH) plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRBからなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。 In NR, the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth). The base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs. UE 100 transmits and receives data and control signals on the active BWP. Up to four BWPs can be set in the UE 100, for example. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(control resource set:CORESET)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。 For example, the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell. CORESET is a radio resource for control information that the UE 100 should receive. UE 100 may be configured with up to 12 CORESETs on the serving cell. Each CORESET has an index from 0 to 11. For example, a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
 MACレイヤは、データの優先制御、ハイブリッドARQ(Hybrid Automatic Repeat reQuest:HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Quest: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF). Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 (想定シナリオ)
 図3乃至図6を参照して、実施形態に係る移動通信システム1における想定シナリオについて説明する。
(Assumed scenario)
An assumed scenario in the mobile communication system 1 according to the embodiment will be described with reference to FIGS. 3 to 6. FIG.
 図3に、RRCアイドル状態又はRRCインアクティブ状態にあるUE100についての動作例を示す。 FIG. 3 shows an operation example of the UE 100 in RRC idle state or RRC inactive state.
 RRCアイドル状態又はRRCインアクティブ状態にあるUE100は、基地局200からのページングを監視する。具体的には、UE100は、基地局200からのPDCCH(Physical Downlink Control Channel)を受信することにより、UE100宛てのページングがあるか否かを確認する。例えば、UE100は、P-RNTI(Paging Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check)パリティビットが付加された下りリンク制御情報(DCI)をPDCCHにおいて受信(デコード)することによって、ページングのメッセージを受信してもよい。ここで、基地局200は、P-RNTIをUE100に対して設定してもよい。また、DCIは、PDSCH(Physical Downlink Shared Channel)のスケジューリングに用いられるDCIフォーマットであってもよい。すなわち、ページングのメッセージは、PDSCHにおいて送信されてもよい。ここで、P-RNTIによってスクランブルされたCRCパリティビットが付加されたDCIは、ページングDCIとも称される。 UE 100 in RRC idle state or RRC inactive state monitors paging from base station 200 . Specifically, UE 100 receives PDCCH (Physical Downlink Control Channel) from base station 200 to check whether there is a paging addressed to UE 100 . For example, the UE 100 performs paging by receiving (decoding) downlink control information (DCI) to which CRC (Cyclic Redundancy Check) parity bits scrambled by P-RNTI (Paging Radio Network Temporary Identifier) are added on the PDCCH. You may receive messages from Here, base station 200 may configure P-RNTI for UE 100 . Also, the DCI may be a DCI format used for PDSCH (Physical Downlink Shared Channel) scheduling. That is, paging messages may be sent on the PDSCH. Here, the DCI to which the CRC parity bits scrambled by the P-RNTI are added is also called paging DCI.
 ここで、UE100は、電力消費を軽減するために、間欠受信(Discontinuous Reception:DRX)を用いて間欠的にページングを監視する。このようなページングを監視する周期は、DRX周期と称される。また、UE100がページングを監視するべきフレームはページングフレーム(PF)と称され、このPFの中でUE100がページングを監視するべきサブフレームはページング機会(Paging Occasion:PO)と称される。 Here, in order to reduce power consumption, the UE 100 intermittently monitors paging using discontinuous reception (DRX). A period for monitoring such paging is called a DRX period. Also, a frame in which the UE 100 should monitor paging is called a paging frame (PF), and a subframe in this PF in which the UE 100 should monitor paging is called a paging occasion (PO).
 ステップS21において、基地局200は、SSBをUE100に送信する。SSBは、下りリンク参照信号の他の例である。SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルから構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(すなわち、20リソースブロック)から構成されてもよい。PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。UE100は、SSBを受信することにより時間・周波数同期を行う。 In step S21, the base station 200 transmits the SSB to the UE100. SSB is another example of a downlink reference signal. The SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS). For example, an SSB may consist of four consecutive OFDM symbols in the time domain. Also, the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain. PBCH is a physical channel that carries a Master Information Block (MIB). The UE 100 performs time/frequency synchronization by receiving the SSB.
 ステップS22において、UE100は、POにおいてページングを監視及び受信する。なお、UE100は、ステップS21でSSBを受信してからPOまでの間においてウェイクアップした状態を維持する。そのため、SSBの受信タイミングからPOのタイミングまでの時間が長いほど、ウェイクアップ持続時間が長くなり、UE100の消費電力が増大する。 At step S22, the UE 100 monitors and receives paging at the PO. Note that the UE 100 maintains the wake-up state from the reception of the SSB in step S21 to the PO. Therefore, the longer the time from the SSB reception timing to the PO timing, the longer the wakeup duration, and the more power consumption of the UE 100 increases.
 3GPPにおいて、RRCアイドル状態又はRRCインアクティブ状態にあるUE100向けに消費電力を削減するための技術の標準化に向けた議論が行われている。このような技術において、RRCコネクティッド状態にあるUE100に向けて設定されたTRSリソース(「TRS機会」とも称される)を、RRCアイドル状態又はRRCインアクティブ状態にあるUE100においても利用可能とすることが検討されている。具体的には、基地局200は、TRSリソース用の設定であるTRSリソース設定(TRS configurations)をシステム情報ブロック(「報知情報」とも称される)によってブロードキャストする。  3GPP is discussing standardization of technology for reducing power consumption for UE 100 in RRC idle state or RRC inactive state. In such technology, TRS resources (also referred to as "TRS opportunities") configured for UE 100 in RRC connected state are made available to UE 100 in RRC idle state or RRC inactive state. is being considered. Specifically, the base station 200 broadcasts TRS resource settings (TRS configurations), which are settings for TRS resources, using a system information block (also referred to as “broadcast information”).
 図4に、RRCアイドル状態又はRRCインアクティブ状態にあるUE100がTRSを受信するための動作例を示す。なお、TRSは、トラッキングの用途で用いるCSI-RSであってもよい。すなわち、本実施形態において、TRSリソースは、CSI-RSリソースを含んでもよい。 FIG. 4 shows an operation example for UE 100 in RRC idle state or RRC inactive state to receive TRS. Note that the TRS may be a CSI-RS used for tracking purposes. That is, in this embodiment, TRS resources may include CSI-RS resources.
 ステップS31において、基地局200は、TRSリソース設定を含む特定のシステム情報ブロックを送信する。具体的には、基地局200は、1又は複数のTRSリソース設定パラメータ群を含むシステム情報ブロックをブロードキャストチャネル上で送信する。特定のシステム情報ブロックは、システム情報ブロック・タイプ1(SIB1)以外の既存のシステム情報ブロックであってもよいし、新しく導入されるタイプのシステム情報ブロックであってもよい。UE100は、特定のシステム情報ブロックを受信し、TRSリソース設定パラメータ群(すなわち、TRSリソースセット設定)を取得する。 In step S31, the base station 200 transmits a specific system information block containing TRS resource settings. Specifically, the base station 200 transmits a system information block containing one or more TRS resource configuration parameters on a broadcast channel. The particular system information block may be an existing system information block other than system information block type 1 (SIB1) or a newly introduced type of system information block. UE 100 receives a specific system information block and obtains TRS resource configuration parameters (ie, TRS resource set configuration).
 ここで、RRCアイドル状態又はRRCインアクティブ状態にあるUE100用にTRSを設定するためのTRSリソース設定は、CSI-ResourceConfig/NZP-CSI-RS-ResourceSetであり、bwp-ID、resourceType、trs-Info、repetition、powerControlOffset、powerControlOffsetSS、requencyDomainAllocation、firstOFDMSymbolInTimeDomain、Density、startingRB、nrofRBs、及びsubcarrierSpacingを各パラメータとして含んでよい(3GPP TS38.331参照)。TRSリソース設定は、RRCコネクティッド状態にあるUE100に設定されるパラメータ群の一部のみであってもよい。 Here, the TRS resource setting for setting TRS for UE 100 in RRC idle state or RRC inactive state is CSI-ResourceConfig/NZP-CSI-RS-ResourceSet, bwp-ID, resourceType, trs-Info , repetition, powerControlOffset, powerControlOffsetSS, requencyDomainAllocation, firstOFDMSymbolInTimeDomain, Density, startingRB, nrofRBs, and subcarrierSpacing as parameters (3G PP TS38.331 reference). TRS resource configuration may be only part of the parameter group configured in UE 100 in the RRC connected state.
 ステップS32において、基地局200は、TRSを送信する。UE100は、TRSリソース設定を用いてTRSを受信する。UE100は、TRSを受信することにより、SSBを受信しなくても時間・周波数同期を取ることができる。 In step S32, the base station 200 transmits TRS. UE 100 receives TRS using TRS resource configuration. By receiving the TRS, the UE 100 can achieve time/frequency synchronization without receiving the SSB.
 ステップS33において、UE100は、POにおいてページングを監視及び受信する。なお、UE100は、ステップS31でTRSを受信してからPOまでの間においてウェイクアップした状態を維持する。TRSの受信タイミングからPOのタイミングまでの時間が短い場合、ウェイクアップ持続時間が短くなり、UE100の消費電力が低減される。また、UE100は、SSBを受信しないことにより、SSBの受信に伴う消費電力を低減できる。 At step S33, the UE 100 monitors and receives paging at the PO. Note that the UE 100 maintains the wake-up state from the reception of the TRS in step S31 to the PO. When the time from the TRS reception timing to the PO timing is short, the wakeup duration is short, and the power consumption of the UE 100 is reduced. In addition, the UE 100 can reduce power consumption accompanying reception of SSB by not receiving SSB.
 図5に、拡張間欠受信(extended Discontinues Reception:eDRX)が設定された拡張DRX通信装置についての動作例を示す。なお、拡張DRX通信装置の一例として、以下、eDRX UE(すなわち、eDRXユーザ装置)を例に挙げて説明する。 FIG. 5 shows an operation example of an extended DRX communication device in which extended discontinuous reception (eDRX) is set. As an example of an enhanced DRX communication device, an eDRX UE (that is, an eDRX user device) will be described below.
 eDRXは、UE100の更なる省電力化を実現するために、通常のDRXに比べて長いDRXサイクルを用いる技術である。DRXが設定されたUE100は、DRXサイクルごとにウェイクアップしてPDCCHを監視し、この監視が終了すると次のDRXサイクルまでスリープ状態になる。そのため、通常のDRXに比べて長いDRXサイクル(以下、「eDRXサイクル」と称する)を用いることにより、UE100の受信機をオフすることが可能な期間が長くなり、更なる省電力化が実現される。 eDRX is a technology that uses a longer DRX cycle than normal DRX in order to achieve further power saving of the UE 100 . The UE 100 configured with DRX wakes up every DRX cycle to monitor the PDCCH, and when this monitoring ends, it goes to sleep until the next DRX cycle. Therefore, by using a DRX cycle that is longer than normal DRX (hereinafter referred to as an “eDRX cycle”), the period during which the receiver of the UE 100 can be turned off is lengthened, and further power saving is achieved. be.
 通常のDRXでは、そのDRXサイクルが例えば32無線フレーム、64無線フレーム、128無線フレーム、又は256無線フレームの時間長に設定される。これに対し、eDRXで用いるeDRXサイクルは、1024無線フレームからなるハイパーフレームの整数倍の時間長に設定される。 In normal DRX, the DRX cycle is set to a time length of, for example, 32 radio frames, 64 radio frames, 128 radio frames, or 256 radio frames. On the other hand, the eDRX cycle used in eDRX is set to a time length that is an integral multiple of a hyperframe consisting of 1024 radio frames.
 一方で、eDRXが設定されたUE100(すなわち、eDRX UE)は、eDRXサイクルごとに特定のハイパーフレーム(Paging Hyperframe:PH)でページングの受信を試みる。このとき、ページングを監視する時間幅をPTW(Paging Timing Window)と呼び、PTW期間中は通常のDRXに従ってPO(Paging Occasion)を監視する。 On the other hand, the UE 100 for which eDRX is configured (that is, the eDRX UE) attempts to receive paging in a specific hyperframe (Paging Hyperframe: PH) in each eDRX cycle. At this time, the time span for monitoring paging is called PTW (Paging Timing Window), and PO (Paging Occasion) is monitored according to normal DRX during the PTW period.
 RRCアイドル状態又はRRCインアクティブ状態にあるUE100向けに設定されるTRSリソースは、上述のような省電力効果を得ることができるため、eDRX UEにおいても使用可能であることが望ましい。ここで、TRSリソースは、特定のシステム情報ブロックによって設定されるが、TRSリソースの設定が更新される場合にeDRX UEがTRSを受信できなくなり得るという問題がある。 Since the TRS resources configured for UE 100 in RRC idle state or RRC inactive state can obtain power saving effects as described above, it is desirable that they can also be used by eDRX UEs. Here, the TRS resource is configured by a specific system information block, but there is a problem that the eDRX UE may not be able to receive the TRS if the configuration of the TRS resource is updated.
 図6を参照して、上記問題点について説明する。通常のDRXが設定されたUE(以下、「DRX UE」と称する)は、DRXサイクルごとにPOにおいてPDCCHを監視する。DRX UEは、各POの直前でTRSを受信することにより、時間・周波数トラッキングを行う。TRSリソースの設定は、特定のシステム情報ブロック(以下、特定SIBと適宜称する)によって基地局200からUE100に通知される。このような特定SIB等のシステム情報が更新され得る周期は、修正周期(modification period)と称される。すなわち、1つの修正周期内において、システム情報は更新されずに維持される。TRSリソースの設定(すなわち、特定SIB)を更新する場合、基地局200は、次の修正周期でシステム情報を変更する旨(いわゆる、ショートメッセージ)をUE100に通知し、現在の修正周期(modification period #n)と次の修正周期(modification period #n+1)との境界のタイミングでシステム情報(特定SIB)を変更する。 The above problems will be described with reference to FIG. A normal DRX-configured UE (hereinafter referred to as "DRX UE") monitors the PDCCH in the PO for each DRX cycle. The DRX UE performs time/frequency tracking by receiving the TRS just before each PO. The configuration of the TRS resource is notified from the base station 200 to the UE 100 by a specific system information block (hereinafter referred to as a specific SIB as appropriate). A period in which system information such as a specific SIB can be updated is called a modification period. That is, the system information is maintained without being updated within one modification period. When updating the TRS resource configuration (that is, the specific SIB), the base station 200 notifies the UE 100 that the system information will be changed in the next modification period (so-called short message), and the current modification period (modification period #n) and the next modification period (modification period #n+1), the system information (specific SIB) is changed.
 一方、eDRX UEは、DRXサイクルごとにPTW内のPOにおいてPDCCHを監視する。eDRX UEは、各PTWの直前又は各POの直前でTRSを受信することにより、時間・周波数トラッキングを行う。eDRX UEには、通常の修正周期よりも長いeDRX UE向けの修正周期が設定される。このようなeDRX UE向けの修正周期は、eDRX取得周期(eDRX acquisition period)と称されることがある。eDRX UEにとって、現在のeDRX取得周期と次のeDRX取得周期との間の境界のタイミングが、更新されたシステム情報を取得する契機となる。 On the other hand, the eDRX UE monitors the PDCCH in the PO within the PTW every DRX cycle. The eDRX UE performs time/frequency tracking by receiving the TRS immediately before each PTW or each PO. The eDRX UE is set with a modification cycle for the eDRX UE that is longer than the normal modification cycle. Such an amendment period for eDRX UEs is sometimes referred to as an eDRX acquisition period. For the eDRX UE, the timing of the boundary between the current eDRX acquisition cycle and the next eDRX acquisition cycle triggers the acquisition of updated system information.
 ここで、1つのeDRX取得周期内に修正周期の境界が含まれ、且つ、基地局200が修正周期の境界でTRSリソース設定を更新するケースを想定する。eDRX UEは、更新されたシステム情報を取得する契機が発生していない(すなわち、eDRX取得周期の境界のタイミングに達していない)ので、修正周期の境界のタイミング後において、更新されたTRSリソース設定に基づくTRSを適切に受信することができない懸念がある。TRSの受信失敗が生じたeDRX UEは、TRSを用いた時間・周波数トラッキングを行うことができず、効率的なPO監視を行うことができないという問題がある。後述の一実施形態において、UE100がTRSを適切に受信可能とするための動作について説明する。 Here, assume a case where one eDRX acquisition period includes a modification period boundary, and the base station 200 updates the TRS resource configuration at the modification period boundary. eDRX UE does not have an opportunity to acquire updated system information (that is, the eDRX acquisition cycle boundary timing has not been reached), so after the modification cycle boundary timing, the updated TRS resource configuration There is a concern that the TRS based on An eDRX UE that has TRS reception failure cannot perform time/frequency tracking using TRS, and there is a problem that efficient PO monitoring cannot be performed. In one embodiment described later, an operation for enabling the UE 100 to appropriately receive the TRS will be described.
 (ユーザ装置の構成)
 図7を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(Configuration of user device)
A configuration of the UE 100 according to the embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
 (基地局の構成)
 図8を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワーク通信部220と、制御部230とを有する。
(Base station configuration)
A configuration of the base station 200 according to the embodiment will be described with reference to FIG. The base station 200 has a communication section 210 , a network communication section 220 and a control section 230 .
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an RF circuit. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワーク通信部220は、信号をネットワークと送受信する。ネットワーク通信部220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワーク通信部220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network communication unit 220 transmits and receives signals to and from the network. The network communication unit 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. Also, the network communication unit 220 receives a signal from the core network device 300 connected via the NG interface, for example, and transmits the signal to the core network device 300 .
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワーク通信部220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Also, the control unit 230 controls communication with a node (for example, an adjacent base station, the core network device 300) via the network communication unit 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 このように構成された基地局200において、通信部210は、トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信する。制御部230は、システム情報が更新され得る修正周期の境界のタイミングでTRSリソース設定を更新する。制御部230は、eDRXが設定されたeDRX UEが更新されたシステム情報を取得する契機となるeDRX取得周期の境界と修正周期の境界が一致するタイミングでのみ、TRSリソース設定を更新する。これにより、UE100が、拡張DRXが設定されることによって修正周期よりも長い拡張DRXサイクルを用いている場合であっても、UE100の受信部112がオフされている間であってeDRX取得周期の境界に達する前に、TRSリソース設定が更新されることがない。eDRX UEであるUE100は、eDRX取得周期の境界のタイミングを契機として、更新されたTRSリソース設定を取得することができる。その結果、UE100は、更新されたTRSリソース設定に基づくTRSを適切に受信できる。 In the base station 200 configured in this way, the communication unit 210 transmits a specific system information block including TRS resource settings, which are settings for tracking reference signals (TRS). The control unit 230 updates the TRS resource setting at the timing of the boundary of the modification period in which the system information can be updated. The control unit 230 updates the TRS resource setting only at the timing when the boundary of the eDRX acquisition cycle and the boundary of the correction cycle coincide with each other, which triggers the eDRX UE in which eDRX is configured to acquire updated system information. As a result, even if the UE 100 uses an extended DRX cycle that is longer than the modified cycle due to the extended DRX being configured, the eDRX acquisition cycle is set to the eDRX acquisition cycle while the receiving unit 112 of the UE 100 is turned off. No TRS resource settings are updated before the boundary is reached. UE 100, which is an eDRX UE, can acquire the updated TRS resource configuration with the timing of the boundary of the eDRX acquisition cycle as a trigger. As a result, the UE 100 can appropriately receive the TRS based on the updated TRS resource settings.
 (第1動作例)
 図9及び図10を参照して、第1動作例について説明する。本動作は、上述の構成及び動作を前提としている。
(First operation example)
A first operation example will be described with reference to FIGS. 9 and 10. FIG. This operation is premised on the configuration and operation described above.
 ステップS101において、基地局200の制御部230は、TRSリソース設定を更新するか否かを判定する。制御部230は、特定SIBに含まれるシステム情報を更新するか否かを判定してもよい。 In step S101, the control unit 230 of the base station 200 determines whether or not to update TRS resource settings. The control unit 230 may determine whether to update the system information included in the specific SIB.
 なお、特定SIBは、DRX UEとeDRX UEとに共通に用いられるTRSリソース設定を含んでいてもよいし、DRX UE用のTRSリソース設定とeDRX UE用のTRSリソース設定とのそれぞれを含んでいてもよい。 Note that the specific SIB may contain TRS resource settings commonly used for DRX UEs and eDRX UEs, or contain TRS resource settings for DRX UEs and TRS resource settings for eDRX UEs respectively. good too.
 制御部230は、TRSリソース設定を更新すると判定した場合、ステップS102の処理を実行する。一方で、制御部230は、TRSリソース設定(又はシステム情報)を更新しないと判定した場合、処理を終了する。 When the control unit 230 determines to update the TRS resource setting, it executes the process of step S102. On the other hand, when the control unit 230 determines not to update the TRS resource setting (or system information), it ends the process.
 ステップS102において、制御部230は、修正周期の境界がeDRX取得周期の境界と一致するタイミングでのみ、TRSリソース設定を更新する。 In step S102, the control unit 230 updates the TRS resource setting only at the timing when the boundary of the modification cycle coincides with the boundary of the eDRX acquisition cycle.
 図10に示すように、例えば、修正周期#nと次の修正周期#n+1との境界のタイミングTnでは、修正周期の境界がeDRX取得周期の境界と一致しない。このため、制御部230は、修正周期の境界のタイミングTnでは、TRSリソース設定を更新しない制御を行う。制御部230は、TRSリソース設定の更新を省略してよい。 As shown in FIG. 10, for example, at the timing Tn of the boundary between the correction cycle #n and the next correction cycle #n+1, the boundary of the correction cycle does not match the boundary of the eDRX acquisition cycle. Therefore, the control unit 230 performs control so as not to update the TRS resource setting at the timing Tn of the boundary of the modification cycle. The control unit 230 may omit updating the TRS resource settings.
 その後、修正周期#n+mと次の修正周期#n+m+1との境界と、eDRX取得周期#p+qと次の修正周期#p+q+1との境界とが一致する。従って、制御部230は、修正周期の境界のタイミングTn+mでは、TRSリソース設定を更新する。制御部230は、eDRX取得周期の境界のタイミングで(すなわち、eDRX取得周期ごとに)TRSリソース設定を更新してもよい。 After that, the boundary between the modified cycle #n+m and the next modified cycle #n+m+1 and the boundary between the eDRX acquisition cycle #p+q and the next modified cycle #p+q+1 coincide. Therefore, the control unit 230 updates the TRS resource setting at the timing Tn+m of the boundary of the modification cycle. The control unit 230 may update the TRS resource configuration at the timing of the boundary of the eDRX acquisition cycle (that is, every eDRX acquisition cycle).
 制御部230は、特定SIBに含まれるシステム情報のうちTRSリソース設定以外のシステム情報を更新する場合も、修正周期の境界がeDRX取得周期の境界と一致するタイミングでのみ、当該システム情報を更新してもよい。 Even when updating system information other than the TRS resource setting among the system information included in the specific SIB, the control unit 230 updates the system information only at the timing when the boundary of the correction cycle coincides with the boundary of the eDRX acquisition cycle. may
 その後、基地局200の通信部210は、修正周期の境界のタイミングTn+m以後に、更新されたTRSリソース設定の送信を開始する。 After that, the communication unit 210 of the base station 200 starts transmitting the updated TRS resource setting after the timing Tn+m of the boundary of the correction cycle.
 なお、制御部230は、修正周期の境界のタイミングTn+mにおいてTRSリソース設定の更新を適用してもよい。従って、制御部230は、修正周期#n+m内で送信されているTRSリソース設定から更新されたTRSリソース設定を修正周期の境界のタイミングTn+mよりも前に送信せずに、修正周期の境界のタイミングTn+m以後に、更新されたTRSリソース設定の送信を開始してもよい。 Note that the control unit 230 may update the TRS resource setting at the timing Tn+m on the boundary of the correction period. Therefore, the control unit 230 does not transmit the TRS resource configuration updated from the TRS resource configuration transmitted within the modification cycle #n+m before the timing Tn+m of the boundary of the modification cycle. After Tn+m, it may start sending updated TRS resource settings.
 以上のように、基地局200の制御部230は、修正周期の境界がeDRX取得周期の境界と一致するタイミングでのみ、TRSリソース設定を更新する。これにより、UE100が、拡張DRXが設定されることによって修正周期よりも長い拡張DRXサイクルを用いている場合であっても、UE100の受信機(すなわち、受信部112)がオフされている間であってeDRX取得周期の境界に達する前に、TRSリソース設定が更新されることがない。eDRX UEであるUE100は、eDRX取得周期の境界のタイミングを契機として、更新されたTRSリソース設定を取得することができる。その結果、UE100は、更新されたTRSリソース設定に基づくTRSを適切に受信できる。 As described above, the control unit 230 of the base station 200 updates the TRS resource setting only at the timing when the boundary of the correction cycle coincides with the boundary of the eDRX acquisition cycle. As a result, even when the UE 100 uses an extended DRX cycle longer than the correction cycle due to the extended DRX being set, the receiver of the UE 100 (that is, the receiving unit 112) is turned off The TRS resource configuration is never updated before reaching the boundary of the eDRX acquisition period. UE 100, which is an eDRX UE, can acquire the updated TRS resource configuration with the timing of the boundary of the eDRX acquisition cycle as a trigger. As a result, the UE 100 can appropriately receive the TRS based on the updated TRS resource settings.
 (第2動作例)
 図11及び図12を参照して、第2動作例について説明する。上述の動作例と同様の説明は適宜省略する。第2動作例では、基地局200の制御部230は、TRSリソース設定の更新に関する更新方式を切り替える。
(Second operation example)
A second operation example will be described with reference to FIGS. 11 and 12 . Descriptions similar to those of the above operation example are omitted as appropriate. In the second operation example, the control unit 230 of the base station 200 switches the update method for updating the TRS resource configuration.
 図11に示すように、ステップS201において、基地局200のネットワーク通信部220は、eDRX UEの情報(以下、eDRXUE情報)をコアネットワーク装置300(例えば、AMF)から受信する。 As shown in FIG. 11, in step S201, the network communication unit 220 of the base station 200 receives eDRX UE information (hereinafter referred to as eDRX UE information) from the core network device 300 (eg, AMF).
 eDRXUE情報は、例えば、基地局200が属するトラッキングエリア内にeDRX UEが存在するか否かを示す情報、基地局200が属するトラッキングエリア内におけるeDRX UEの情報、基地局200が属するRANページングエリア内にeDRX UEが存在するか否かを示す情報、基地局200が属するRANページングエリア内におけるeDRX UEの情報、の少なくともいずれかの情報を含んでよい。なお、RANページングエリアは、トラッキングエリアよりも狭いエリアである。eDRXUE情報は、例えば、拡張DRXサイクルを用いているUE100の識別子を含んでよい。 The eDRX UE information is, for example, information indicating whether an eDRX UE exists within the tracking area to which the base station 200 belongs, information on the eDRX UE within the tracking area to which the base station 200 belongs, and information on the RAN paging area to which the base station 200 belongs. information indicating whether or not an eDRX UE exists in the base station 200, or information on the eDRX UE in the RAN paging area to which the base station 200 belongs. Note that the RAN paging area is an area narrower than the tracking area. The eDRX UE information may include, for example, the identifier of the UE 100 using the extended DRX cycle.
 ステップS202において、基地局200の制御部230は、更新方式を選択する。具体的には、制御部230は、第1の更新方式と第2の更新方式とのうち、一方の通信方式を選択する。 At step S202, the control unit 230 of the base station 200 selects an update method. Specifically, control unit 230 selects one of the first update method and the second update method.
 第1の更新方式は、修正期間の境界が取得期間の境界と一致するか否かに関わらず修正期間の境界のタイミングでTRSリソース設定を更新し得る方式である。従って、制御部230は、修正期間の境界のタイミングで(すなわち、修正周期ごとに)TRSリソース設定を更新し得る。 The first update method is a method that can update the TRS resource setting at the timing of the boundary of the correction period regardless of whether the boundary of the correction period coincides with the boundary of the acquisition period. Therefore, the control unit 230 can update the TRS resource configuration at the timing of the boundary of the modification period (that is, every modification period).
 第2の更新方式は、修正期間の境界が取得期間の境界と一致するかタイミングでのみTRSリソース設定を更新し得る方式である。従って、制御部230は、eDRX取得周期の境界のタイミングで(すなわち、eDRX取得周期ごとに)TRSリソース設定を更新し得る。 The second update method is a method that can update the TRS resource setting only at the timing when the boundary of the correction period matches the boundary of the acquisition period. Therefore, the control unit 230 may update the TRS resource configuration at the timing of the boundary of the eDRX acquisition cycle (ie, every eDRX acquisition cycle).
 制御部230は、eDRXUE情報に基づいて、第1の更新方式と第2の更新方式とのうち、一方の通信方式を選択してよい。制御部230は、例えば、eDRXUE情報に基づいて、基地局200が管理するセル内にeDRX UEが存在するか否かを判定してよい。制御部230は、当該セル内にeDRX UEが存在しないと判定した場合、第1の更新方式を選択する。一方で、制御部230は、当該セル内にeDRX UEが存在すると判定した場合、第2の更新方式を選択する。 The control unit 230 may select one of the first update method and the second update method based on the eDRXUE information. The control unit 230 may determine, for example, based on the eDRX UE information, whether an eDRX UE exists within the cell managed by the base station 200. When the control unit 230 determines that there is no eDRX UE in the cell, it selects the first update method. On the other hand, when the control unit 230 determines that there is an eDRX UE in the cell, it selects the second update method.
 制御部230は、例えば、eDRXUE情報に基づいて、基地局200が管理するセル内に少なくとも所定数以上のeDRX UEが存在するか否かを判定してよい。制御部230は、当該セル内に所定数以上のeDRX UEが存在しないと判定した場合、第1の更新方式を選択する。一方で、制御部230は、当該セル内に所定数以上のeDRX UEが存在すると判定した場合、第2の更新方式を選択する。制御部230は、例えば、基地局200が属するRANページングエリア内にeDRX UEが存在するか否かを示す情報に基づいて、RRCインアクティブ状態にあるeDRX UEが存在しないと判定した場合、第1の更新方式を選択する。一方で、制御部230は、当該セル内に、RRCインアクティブ状態にあるeDRX UEが存在すると判定した場合、第2の更新方式を選択する。 For example, based on the eDRX UE information, the control unit 230 may determine whether or not there are at least a predetermined number of eDRX UEs in the cell managed by the base station 200. If the control unit 230 determines that there are not more than a predetermined number of eDRX UEs in the cell, it selects the first update method. On the other hand, if the control unit 230 determines that there are more than the predetermined number of eDRX UEs in the cell, it selects the second update method. For example, when the control unit 230 determines that there is no eDRX UE in the RRC inactive state based on information indicating whether or not there is an eDRX UE in the RAN paging area to which the base station 200 belongs, the first Select the update method for On the other hand, when the control unit 230 determines that there is an eDRX UE in the RRC inactive state in the cell, it selects the second update method.
 ステップS203において、制御部230は、TRSリソース設定を更新する更新方式を選択した更新方式へ切り替える。なお、制御部230は、既に選択した方式を用いてTRSリソース設定の更新を制御している場合、用いている更新方式を維持する。 In step S203, the control unit 230 switches the update method for updating the TRS resource settings to the selected update method. It should be noted that the control unit 230 maintains the used updating method when controlling the updating of the TRS resource setting using the method already selected.
 次に、図12を参照して、第2動作例に係るTRSリソース設定の更新の制御動作について説明する。 Next, with reference to FIG. 12, the control operation for updating TRS resource settings according to the second operation example will be described.
 ステップS211は、ステップS101と同様である。 Step S211 is the same as step S101.
 ステップS212において、制御部230は、第2の更新方式が用いられているか否かを判定する。制御部230は、第2の更新方式に切り替えられている場合、第2の更新方式が用いられていると判定する。制御部230は、第1の更新方式に切り替えられている場合、第2の更新方式が用いられていないと判定する。 In step S212, the control unit 230 determines whether or not the second update method is used. When switching to the second update method, the control unit 230 determines that the second update method is used. When switching to the first update method, the control unit 230 determines that the second update method is not used.
 制御部230は、第2の更新方式が用いられている場合、ステップS213の処理を実行する。一方で、制御部230は、第2の更新方式が用いられていない場合、ステップS214の処理を実行する。 The control unit 230 executes the process of step S213 when the second update method is used. On the other hand, when the second update method is not used, control unit 230 executes the process of step S214.
 なお、制御部230は、第1の更新方式が用いられているか否かを判定してもよい。制御部230は、第1の更新方式に切り替えられている場合、第1の更新方式が用いられていると判定する。制御部230は、第2の更新方式に切り替えられている場合、第1の更新方式が用いられていないと判定する。制御部230は、第1の更新方式が用いられていない場合、ステップS213の処理を実行する。一方で、制御部230は、第1の更新方式が用いられている場合、ステップS214の処理を実行する。 Note that the control unit 230 may determine whether or not the first update method is used. When switching to the first update method, the control unit 230 determines that the first update method is used. When switching to the second update method, the control unit 230 determines that the first update method is not used. If the first update method is not used, control unit 230 executes the process of step S213. On the other hand, when the first update method is used, control unit 230 executes the process of step S214.
 ステップS213は、ステップS102と同様である。制御部230は、第2の更新方式を用いて、TRSリソース設定の更新を制御する。 Step S213 is the same as step S102. The control unit 230 controls the updating of TRS resource settings using the second updating method.
 ステップS214において、制御部230は、修正周期の境界のタイミングでTRSリソース設定を更新する。具体的には、制御部230は、修正期間の境界が取得期間の境界と一致するか否かに関わらず修正期間の境界のタイミングで(すなわち、修正周期ごとに)TRSリソース設定を更新し得る。このように、制御部230は、第1の更新方式を用いて、TRSリソース設定の更新を制御する。 In step S214, the control unit 230 updates the TRS resource setting at the timing of the boundary of the modification period. Specifically, the control unit 230 can update the TRS resource configuration at the timing of the boundary of the modification period (that is, every modification period) regardless of whether the boundary of the modification period coincides with the boundary of the acquisition period. . Thus, the control unit 230 controls updating of TRS resource settings using the first updating method.
 以上のように、制御部230は、第1の更新方式と第2の更新方式との一方の更新方式を用いて、TRSリソース設定の更新を制御してよい。制御部230は、TRSリソース設定の更新方式を変更することができるため、柔軟なシステム運用が可能となる。 As described above, the control unit 230 may control the updating of the TRS resource settings using one of the first updating method and the second updating method. Since the control unit 230 can change the TRS resource setting update method, flexible system operation is possible.
 また、ネットワーク通信部220は、eDRXUE情報をコアネットワーク装置300から受信してよい。制御部230は、eDRXUE情報に基づいて、第1の更新方式と第2の更新方式とを切り替えてよい。これにより、制御部230は、eDRX UEに基づいて、TRSリソース設定の更新方式を変更することができるため、柔軟なシステム運用が可能となる。 Also, the network communication unit 220 may receive eDRXUE information from the core network device 300 . The control unit 230 may switch between the first update scheme and the second update scheme based on the eDRXUE information. As a result, the control unit 230 can change the TRS resource configuration update method based on the eDRX UE, enabling flexible system operation.
 また、制御部230は、基地局200が管理するセル内にeDRX UEが存在しないと判定した場合、第1の更新方式を用いて、TRSリソース設定の更新を制御してよい。これにより、セル内にeDRX UEが存在しないため、TRSリソース設定の更新周期をeDRX取得周期よりも短くしても、eDRX UEへの影響がない。制御部230は、TRSリソース設定の更新周期をeDRX取得周期よりも短くすることができるため、柔軟なシステム運用が可能となる。 Also, when the control unit 230 determines that there is no eDRX UE in the cell managed by the base station 200, it may control the updating of the TRS resource configuration using the first updating method. As a result, since there are no eDRX UEs in the cell, even if the TRS resource configuration update cycle is shorter than the eDRX acquisition cycle, there is no impact on the eDRX UEs. Since the control unit 230 can make the update cycle of the TRS resource configuration shorter than the eDRX acquisition cycle, flexible system operation is possible.
 (その他の実施形態)
 上述の第2動作例において、基地局200の制御部230は、eDRXUE情報以外の情報に基づいて、第1の更新方式と第2の更新方式とのうち、一方の通信方式を選択してもよい。また、制御部230は、第1の更新方式及び第2の更新方式と異なる更新方式を用いて、TRSリソース設定の更新を制御してもよい。
(Other embodiments)
In the second operation example described above, the control unit 230 of the base station 200 may select one of the first update method and the second update method based on information other than the eDRXUE information. good. Also, the control unit 230 may control updating of the TRS resource configuration using an updating method different from the first updating method and the second updating method.
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, references to "based on" and "depending on/in response to" are used unless otherwise specified. does not mean The phrase "based on" means both "based only on" and "based at least in part on." Similarly, the phrase "depending on" means both "only depending on" and "at least partially depending on." Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first," "second," etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed therein or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in plural unless the context clearly indicates otherwise. shall include things.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 基地局(200)であって、
 トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信する通信部(210)と、
 システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新する制御部(230)と、を備え、
 前記制御部(230)は、拡張間欠受信が設定された拡張DRX通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する
 基地局(200)。
(Appendix 1)
A base station (200),
a communication unit (210) for transmitting a specific system information block containing TRS resource settings, which are settings for a tracking reference signal (TRS);
a control unit (230) for updating the TRS resource settings at the timing of the boundary of a modification period in which system information can be updated;
The control unit (230) controls the TRS only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the enhanced DRX communication device set to the enhanced discontinuous reception coincides with the boundary of the modification cycle. A base station (200) that updates resource settings.
 (付記2)
 前記制御部(230)は、第1の更新方式と第2の更新方式との一方の更新方式を用いて、前記TRSリソース設定の更新を制御し、
 前記第1の更新方式は、前記修正周期の境界が前記取得周期の境界と一致するか否かに関わらず前記修正周期の境界のタイミングで前記TRSリソース設定を更新し得る方式であり、
 前記第2の更新方式は、前記修正周期の境界が前記取得周期の境界と一致するタイミングでのみ、前記TRSリソース設定を更新し得る方式である
 付記1に記載の基地局(200)。
(Appendix 2)
The control unit (230) controls updating of the TRS resource configuration using one of a first updating scheme and a second updating scheme,
The first update method is a method that can update the TRS resource setting at the timing of the boundary of the modification period regardless of whether the boundary of the modification period coincides with the boundary of the acquisition period,
The base station (200) according to appendix 1, wherein the second update method is a method that can update the TRS resource configuration only at timings when the boundary of the correction period coincides with the boundary of the acquisition period.
 (付記3)
 前記拡張DRX通信装置の情報を、コアネットワーク装置から受信するネットワーク通信部をさらに備え、
 前記制御部(230)は、前記情報に基づいて、前記第1の更新方式と前記第2の更新方式とを切り替える
 付記2に記載の基地局(200)。
(Appendix 3)
further comprising a network communication unit that receives information of the enhanced DRX communication device from a core network device;
The base station (200) according to appendix 2, wherein the control unit (230) switches between the first update method and the second update method based on the information.
 (付記4)
 前記制御部(230)は、前記基地局(200)が管理するセル内に前記拡張DRX通信装置が存在しないと判定した場合、前記第1の更新方式を用いて、前記TRSリソース設定の更新を制御する
 付記2又は3に記載の基地局(200)。
(Appendix 4)
When the control unit (230) determines that the enhanced DRX communication device does not exist in the cell managed by the base station (200), the control unit (230) updates the TRS resource configuration using the first update method. A base station (200) according to appendix 2 or 3.
 (付記5)
 基地局(200)で実行される通信方法であって、
 トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信するステップと、
 システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新するステップと、を備え、
 前記TRSリソース設定を更新するステップでは、拡張間欠受信が設定された通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する
 通信方法。
(Appendix 5)
A communication method performed in a base station (200), comprising:
transmitting a specific system information block containing TRS resource settings, which are settings for a tracking reference signal (TRS);
updating the TRS resource settings at the timing of revision period boundaries at which system information may be updated;
In the step of updating the TRS resource setting, only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the communication device in which the enhanced discontinuous reception is set coincides with the boundary of the correction cycle, the TRS Communication method to update resource settings.

Claims (5)

  1.  基地局(200)であって、
     トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信する通信部(210)と、
     システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新する制御部(230)と、を備え、
     前記制御部(230)は、拡張間欠受信が設定された拡張DRX通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する
     基地局(200)。
    A base station (200),
    a communication unit (210) for transmitting a specific system information block containing TRS resource settings, which are settings for a tracking reference signal (TRS);
    a control unit (230) for updating the TRS resource settings at the timing of the boundary of a modification period in which system information can be updated;
    The control unit (230) controls the TRS only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the enhanced DRX communication device set to the enhanced discontinuous reception coincides with the boundary of the modification cycle. A base station (200) that updates resource settings.
  2.  前記制御部(230)は、第1の更新方式と第2の更新方式との一方の更新方式を用いて、前記TRSリソース設定の更新を制御し、
     前記第1の更新方式は、前記修正周期の境界が前記取得周期の境界と一致するか否かに関わらず前記修正周期の境界のタイミングで前記TRSリソース設定を更新し得る方式であり、
     前記第2の更新方式は、前記修正周期の境界が前記取得周期の境界と一致するタイミングでのみ、前記TRSリソース設定を更新し得る方式である
     請求項1に記載の基地局(200)。
    The control unit (230) controls updating of the TRS resource configuration using one of a first updating scheme and a second updating scheme,
    The first update method is a method that can update the TRS resource setting at the timing of the boundary of the modification period regardless of whether the boundary of the modification period coincides with the boundary of the acquisition period,
    The base station (200) according to claim 1, wherein the second update scheme is a scheme that can update the TRS resource configuration only at timings when the boundary of the modification period coincides with the boundary of the acquisition period.
  3.  前記拡張DRX通信装置の情報を、コアネットワーク装置から受信するネットワーク通信部をさらに備え、
     前記制御部(230)は、前記情報に基づいて、前記第1の更新方式と前記第2の更新方式とを切り替える
     請求項2に記載の基地局(200)。
    further comprising a network communication unit that receives information of the enhanced DRX communication device from a core network device;
    The base station (200) according to Claim 2, wherein the control unit (230) switches between the first update scheme and the second update scheme based on the information.
  4.  前記制御部(230)は、前記基地局(200)が管理するセル内に前記拡張DRX通信装置が存在しないと判定した場合、前記第1の更新方式を用いて、前記TRSリソース設定の更新を制御する
     請求項2又は3に記載の基地局(200)。
    When the control unit (230) determines that the enhanced DRX communication device does not exist in the cell managed by the base station (200), the control unit (230) updates the TRS resource configuration using the first update method. A base station (200) according to claim 2 or 3 for controlling.
  5.  基地局(200)で実行される通信方法であって、
     トラッキング参照信号(TRS)用の設定であるTRSリソース設定を含む特定のシステム情報ブロックを送信するステップと、
     システム情報が更新され得る修正周期の境界のタイミングで前記TRSリソース設定を更新するステップと、を備え、
     前記TRSリソース設定を更新するステップでは、拡張間欠受信が設定された通信装置が更新されたシステム情報を取得する契機となる取得周期の境界と前記修正周期の境界が一致するタイミングでのみ、前記TRSリソース設定を更新する
     通信方法。
     
    A communication method performed in a base station (200), comprising:
    transmitting a specific system information block containing TRS resource settings, which are settings for a tracking reference signal (TRS);
    updating the TRS resource settings at the timing of revision period boundaries at which system information may be updated;
    In the step of updating the TRS resource setting, only at the timing when the boundary of the acquisition cycle that triggers acquisition of updated system information by the communication device in which the enhanced discontinuous reception is set coincides with the boundary of the correction cycle, the TRS Communication method to update resource settings.
PCT/JP2022/046498 2021-12-23 2022-12-16 Base station and communication method WO2023120434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209674 2021-12-23
JP2021-209674 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120434A1 true WO2023120434A1 (en) 2023-06-29

Family

ID=86902699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046498 WO2023120434A1 (en) 2021-12-23 2022-12-16 Base station and communication method

Country Status (1)

Country Link
WO (1) WO2023120434A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515986A (en) * 2015-05-04 2018-06-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Techniques for paging in extended discontinuous reception

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515986A (en) * 2015-05-04 2018-06-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Techniques for paging in extended discontinuous reception

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Configuration of TRS/CSI-RS for paging enhancement", 3GPP DRAFT; R1-2104533, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210519 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010856 *
CATT: "TRS/CSI-RS SI update mechanism for DRX and eDRX UEs", 3GPP DRAFT; R2-2110403, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066844 *

Similar Documents

Publication Publication Date Title
KR20190098721A (en) Method and apparatus for trnsmitting and receiving control information for paging in a wireless communication system
KR20220141852A (en) Additional reference signals for UEs in non-connected states
EP4102916A1 (en) Phr triggering method accommodating dormant portion of bandwidth in next-generation mobile communication system, and phr configuration method and device
WO2023120434A1 (en) Base station and communication method
WO2023132271A1 (en) Communication device, base station, and communication method
WO2023153312A1 (en) Communication device and communication method
WO2023008483A1 (en) Communication device, base station, and communication method
WO2023022188A1 (en) Communication device, base station, and communication method
WO2023008481A1 (en) Communication device, base station, and communication method
EP3222104B1 (en) Efficient use of hs-scch orders and mac control information
WO2023048183A1 (en) User equipment, base station, and communication method
WO2023068350A1 (en) Communication device, base station, and communication method
WO2023127634A1 (en) Communication device, base station, and communication method
WO2023063262A1 (en) Communication device, base station, and communication method
WO2023068356A1 (en) Communication device, base station, and communication method
WO2023127638A1 (en) Base station and communication method
US20240073924A1 (en) Communication apparatus, base station, and method
US20240080170A1 (en) Communication apparatus, base station, and communication method
WO2023127639A1 (en) Base station and communication method
EP4336930A1 (en) Communication device, base station, and communication method
WO2023080036A1 (en) Communication device, base station, and communication method
WO2023080037A1 (en) Communication device, base station, and communication method
WO2022260103A1 (en) Communication device, base station, and communication method
US20230403705A1 (en) Method and device used in communication nodes for wireless communication
WO2023080035A1 (en) Communication device, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911137

Country of ref document: EP

Kind code of ref document: A1