WO2023080036A1 - Communication device, base station, and communication method - Google Patents

Communication device, base station, and communication method Download PDF

Info

Publication number
WO2023080036A1
WO2023080036A1 PCT/JP2022/040001 JP2022040001W WO2023080036A1 WO 2023080036 A1 WO2023080036 A1 WO 2023080036A1 JP 2022040001 W JP2022040001 W JP 2022040001W WO 2023080036 A1 WO2023080036 A1 WO 2023080036A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
index
base station
cell
bwp
Prior art date
Application number
PCT/JP2022/040001
Other languages
French (fr)
Japanese (ja)
Inventor
樹 長野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023080036A1 publication Critical patent/WO2023080036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
  • a specific user device having a reduced communication capacity compared to general user devices is designated as a 5th generation (5G) system.
  • 5G 5th generation
  • a specific user device is a user device that has middle-range performance and price for IoT (Internet of Things). a small number of receivers.
  • IoT Internet of Things
  • Such a specific user equipment is called RedCap UE (Reduced Capability User Equipment).
  • BWP Bandwidth Part
  • a user equipment for which BWP is set does not need to support the same bandwidth as the cell bandwidth, and can perform communication in a frequency band narrower than the cell bandwidth.
  • BWP includes initial BWP (initial DL BWP and initial UL BWP) and dedicated BWP (dedicated DL BWP and dedicated UL BWP).
  • DL refers to downlink
  • UL refers to downlink.
  • the initial BWP is a BWP that is used at least for initial access, and is commonly used by a plurality of user devices.
  • a dedicated BWP is a BWP that is dedicated (UE-specific) to a certain user equipment.
  • the base station transmits a synchronization signal block (SSB: Synchronization Signal/PBCH (Physical Broadcast Channel) block) at the initial BWP (initial DL BWP).
  • SSB Synchronization Signal/PBCH (Physical Broadcast Channel) block
  • a synchronization signal block may also be referred to as a synchronization signal and physical broadcast channel block.
  • An SSB associated with System Information Block Type 1 (SIB1) is called a Cell Defining SSB (CD-SSB). From the perspective of one UE, one serving cell is associated with one CD-SSB. SIB1 is also called RMSI (Remaining Minimum System Information). For example, the user equipment performs cell search and cell selection/reselection based on the received CD-SSB.
  • SIB1 Remaining Minimum System Information
  • RedCap UE In 3GPP, assuming RedCap UE, it has been agreed to set an initial BWP for RedCap UE independently of the conventional initial BWP. Such a newly introduced initial BWP is called a separate initial BWP. Also, it has been proposed to set SSB transmission in separate initial DL BWP (for example, see Non-Patent Documents 2 and 3).
  • spatial setting from the base station to the user equipment is set.
  • Such spatial settings include parameters for setting signals to be referred to in PUCCH beam control, and SSB indexes can be set as such parameters (see Non-Patent Document 4, for example).
  • a user equipment for which an SSB index is set as a spatial setting for PUCCH transmission performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used for receiving the SSB indicated by the SSB index (for example, non-patent literature 5).
  • a communication device (100) shows a transmitter (111) that performs sounding reference signal (SRS) transmission, and a synchronization signal and a physical broadcast channel block (SSB) that are referred to for the SRS transmission. It comprises a receiver (112) that receives configuration information including an SSB index from the base station (200), and a controller (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index.
  • the control unit (120) identifies the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving the absolute radio frequency channel number indicating the frequency position where the non-cell-defined SSB is transmitted.
  • the base station (200) includes a receiving unit (212) that receives sounding reference signal (SRS) transmission from the communication device (100), and a synchronization signal and physical broadcast that are referred to the SRS transmission.
  • a transmitter (211) configured to transmit configuration information including an SSB index indicating a channel block (SSB) to the communication device (100).
  • the transmitting unit (211) transmits an absolute radio frequency channel number indicating a frequency position where the non-cell defined SSB is transmitted, for specifying the SSB indicated by the SSB index as a non-cell defined SSB (502). Send to the communication device (100).
  • a communication method is a communication method executed by the communication device (100).
  • the communication method comprises the step of transmitting a sounding reference signal (SRS), and transmitting configuration information including a synchronization signal and an SSB index indicating a physical broadcast channel block (SSB) to be referred to for the SRS transmission to the base station (200). ), and controlling the SRS transmission by referring to the SSB indicated by the SSB index.
  • the controlling step includes identifying the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving an absolute radio frequency channel number indicating a frequency location on which the non-cell-defined SSB is transmitted. .
  • a communication method is a communication method executed by the base station (200).
  • the communication method includes steps of receiving a sounding reference signal (SRS) transmission from a communication device (100), and setting a synchronization signal and an SSB index indicating a physical broadcast channel block (SSB) to be referenced for the SRS transmission. transmitting information to said communication device (100); absolute radio indicating a frequency location on which said non-cell-defined SSB is transmitted, for identifying said SSB indicated by said SSB index as a non-cell-defined SSB (502); and sending a frequency channel number to the communication device (100).
  • SRS sounding reference signal
  • SSB index physical broadcast channel block
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of RRC parameters for SSB.
  • FIG. 4 is a diagram showing an example of the relationship between SSB and initial BWP according to the embodiment.
  • FIG. 5 is a diagram showing the configuration of the UE according to the embodiment.
  • FIG. 6 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of SSB identification operation in the UE according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of PUCCH transmission beam control according to the first embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 9 is a diagram showing an example of spatial relationship setting information (PUCCH-SpatialRelationInfo) according to the first embodiment.
  • FIG. 10 is a diagram showing an example of spatial relationship setting information (PUCCH-SpatialRelationInfo) according to the first embodiment.
  • FIG. 11 is a diagram illustrating an example of SRS transmission beam control according to the first embodiment.
  • FIG. 12 is a diagram showing an example of spatial relationship setting information (SRS-SpatialRelationInfo) according to the first embodiment.
  • FIG. 13 is a diagram showing an example of RLM/BFD control according to the first embodiment.
  • FIG. 14 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment.
  • RadioLinkMonitoringRS RadioLinkMonitoringRS
  • FIG. 15 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment.
  • FIG. 16 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment.
  • FIG. 17 is a diagram illustrating an example of UL transmission power control according to the first embodiment.
  • FIG. 18 is a diagram showing an example of pathloss reference signal setting information according to the first embodiment.
  • FIG. 19 is a diagram showing an example of pathloss reference signal setting information according to the first embodiment.
  • FIG. 20 is a diagram showing an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control according to the first embodiment.
  • FIG. 21 is a diagram showing an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control according to the first embodiment.
  • FIG. 22 is a diagram showing an example of SSB identification operation in the UE 100 according to the second embodiment.
  • FIG. 23 is a diagram illustrating an example of PUCCH transmission beam control according to the second embodiment.
  • FIG. 24 is a diagram illustrating an example of SRS transmission beam control according to the second embodiment.
  • FIG. 25 is a diagram showing an example of RLM/BFD control according to the second embodiment.
  • FIG. 26 is a diagram illustrating an example of UL transmission power control according to the second embodiment.
  • FIG. 27 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment;
  • FIG. 27 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment;
  • FIG. 28 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment
  • 29 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment
  • FIG. FIG. 30 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment
  • 31 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment
  • FIG. 32 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment
  • the base station when a separate initial BWP is set in addition to the conventional initial BWP, the base station transmits CD-SSB in the conventional initial DL BWP and non It is conceivable to transmit cell-defined SSB (Non-CD-SSB).
  • the present disclosure provides a user equipment, base station, and communication that enable appropriate control of PUCCH transmission even when Non-CD-SSB is transmitted in a cell in addition to CD-SSB
  • the purpose is to provide a method.
  • the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • UE 100 is a communication device that communicates via base station 200 .
  • UE 100 is a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NR UEs 100 two types of UEs are assumed as NR UEs 100: a general UE (Non-RedCap UE) 100A and a specific UE (RedCap UE) 100B having reduced communication capacity compared to the general UE 100A.
  • the general UE 100A has advanced communication capabilities such as high-speed, large-capacity (enhanced mobile broadband: eMBB) and ultra-reliable and low-latency communications (URLLC), which are features of NR. Therefore, the general UE 100A has higher communication capability than the specific UE 100B.
  • the general UE 100A may be an existing UE, that is, a UE prior to release 16 of the 3GPP technical specifications (so-called legacy UE).
  • the specific UE 100B is a UE with reduced device cost and complexity compared to the general UE 100A.
  • the specific UE 100B is a UE 100 having middle-range performance and price for IoT.
  • the maximum bandwidth used for wireless communication is set narrower, and the number of receivers is smaller. .
  • the receiver is sometimes called a reception branch.
  • the specific UE 100B is sometimes called a Reduced capability NR device.
  • UE 100 when the general UE 100A and the specific UE 100B are not distinguished, they are simply referred to as UE 100.
  • the specific UE 100B complies with the LPWA (Low Power Wide Area) standard, for example, the LTE (Long Term Evolution) Cat. 1/1bis, LTE Cat. M1 (LTE-M), LTE Cat. It may be possible to communicate at a communication speed equal to or higher than the communication speed specified by NB1 (NB-IoT).
  • the specific UE 100B may be able to communicate with a bandwidth equal to or greater than the bandwidth defined by the LPWA standard.
  • the specific UE 100B may have a limited bandwidth for communication compared to UEs of Release 15 or Release 16 of the 3GPP technical specifications.
  • the maximum bandwidth (also referred to as UE maximum bandwidth) supported by a particular UE 100B may be 20 MHz.
  • the maximum bandwidth supported by the specific UE 100B may be 100 MHz.
  • the specific UE 100B may have only one receiver that receives radio signals.
  • the specific UE 100B may be, for example, a wearable device, a sensor device, or the like.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block (RB) is a resource allocation unit, and is composed of multiple OFDM symbols and multiple subcarriers. Specifically, in 5G systems, downlink and uplink transmissions are organized within a radio frame of 10 ms duration.
  • a radio frame consists of 10 subframes.
  • one subframe may be 1 ms.
  • one subframe may consist of one or more slots.
  • the number of symbols forming one slot is 14 for a normal CP (Cyclic Prefix) and 12 for an extended CP.
  • the number of slots forming one subframe changes according to the set subcarrier interval. For example, for normal CP, if the subcarrier spacing is set to 15 kHz, the number of slots per subframe is 1 (i.e., 14 symbols), and if the subcarrier spacing is set to 30 kHz, the subframe If the number of slots per subframe is 2 (i.e.
  • the number of slots per subframe is 4 (i.e. 56 symbols) and the subcarrier spacing is 120kHz. is set, the number of slots per subframe is 8 (ie, 128 symbols). Also, when 60 kHz is set as the subcarrier spacing for the extended CP, the number of slots per subframe is 4 (that is, 48 symbols).
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE100 is C -RNTI (Cell -Radio Network Temporary Identifier) and MCS -C -RNTI (MCS -C -RNTI) assigned from base station 200 to UE100.
  • C -RNTI Cell -Radio Network Temporary Identifier
  • MCS -C -RNTI MCS -C -RNTI
  • EME -C -RNTI or CS -RNTI (CONFIGURED SCHEDULING- RNTI) is used to blind-decode the PDCCH, and the successfully decoded DCI is acquired as the DCI addressed to the own UE.
  • the DCI transmitted from the base station 200 is added with CRC parity bits scrambled by C-RNTI and MCS-C-RNTI or CS-RNTI.
  • the UE 100 can use a bandwidth narrower than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs.
  • BWP bandwidth part
  • UE 100 transmits and receives data and control signals on the active BWP.
  • Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive.
  • UE 100 may be configured with up to 12 CORESETs on the serving cell.
  • Each CORESET has an index from 0 to 11.
  • a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • BWP BWP
  • BWP BWP
  • the UE 100 is configured with up to four DL BWPs and up to four UL BWPs in one serving cell according to its capabilities.
  • DL BWP and UL BWP are simply referred to as BWP when not distinguished from each other.
  • the initial BWP is a BWP that is used at least for initial access and is commonly used by multiple UEs 100 .
  • Each of the initial DL BWP and the initial UL BWP is defined with a BWP identifier bwp-id of "0".
  • the initial BWP includes the initial BWP derived and set by the master information block (MIB) transmitted on the PBCH, and the system information block (SIB), specifically set by the system information block type 1 (SIB1).
  • MIB master information block
  • SIB system information block
  • the initial BWP set by the MIB has a bandwidth according to CORESET#0 which is set using parameters contained in the MIB.
  • the initial BWP set by SIB1 is set by various parameters (locationAndBandwidth, subscriberSpacing, cyclicPrefix) included in ServingCellConfigCommonSIB, which is an information element in SIB1.
  • UE100 At the time of initial access to the cell, UE100 that has received the SSB of the cell, from the setting value of controlResourceSetZero (integer value from 0 to 15) in pdcch-ConfigSIB1 is an information element included in the PBCH (MIB), Type -0 Acquire the PDCCH CSS set bandwidth (24, 48, or 96 RBs). The UE 100 then monitors the Type-0 PDCCH CSS set to acquire SIB1, and acquires locationAndBandwidth, which is a parameter indicating the frequency position and/or bandwidth of the initial BWP, from SIB1.
  • SIB1 PBCH
  • locationAndBandwidth which is a parameter indicating the frequency position and/or bandwidth of the initial BWP
  • the UE 100 uses the initial BWP set by the MIB, that is, the bandwidth based on CORESET #0, for the initial BWP until it receives message 4 (Msg.4) in the random access procedure in the initial access.
  • Msg. 4 the UE 100 uses the bandwidth set by locationAndBandwidth in SIB1 for the initial BWP.
  • Msg. 4 may be the RRCSetup message, the RRCResume message, or the RRCReestablishment message.
  • the UE 100 transitions from, for example, the RRC idle state to the RRC connected state by such initial access (random access procedure).
  • a dedicated BWP is a BWP that is set exclusively for a certain UE 100 (UE-specific).
  • a bwp-id other than "0" may be set for the dedicated BWP.
  • a dedicated DL BWP and a dedicated UL BWP are set based on BWP-Downlink and BWP-Uplink, which are information elements included in the SavingcellConfig in the RRC message, which is dedicated signaling transmitted from the base station 200 to the UE 100.
  • BWP-Downlink and BWP-Uplink may include various parameters (locationAndBandwidth, subsidiarySpacing, cyclicPrefix) for setting the BWP.
  • the base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs. For example, the base station 200 can transmit to the UE 100 a BWP identifier indicating the BWP to be activated when executing the configuration, that is, the BWP that is first used in communication with the base station 200 .
  • a BWP identifier indicating the BWP to be activated when executing the configuration, that is, the BWP that is first used in communication with the base station 200 .
  • PDCCH DCI
  • RRC signaling MAC control element
  • MAC CE MAC control element
  • communication in the active BWP means transmission in the uplink shared channel (UL-SCH: Uplink-Shared Channel) in the BWP, transmission in the random access channel (RACH: Random Access Channel) in the BWP (physical random access channel (PRACH: Physical RACH) opportunity is set), monitoring of the physical downlink control channel (PDCCH: Physical Downlink Control Channel) in the BWP, physical uplink control channel (PUCCH: Physical Uplink Control Channel in the BWP ) (when the PUCCH resource is set), a report of channel state information (CSI: Channel State Information) for the BWP, and a downlink shared channel (DL-SCH: Downlink-Shared Channel) in the BWP may include at least one of receiving
  • the UL-SCH is a transport channel and is mapped to a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • Data transmitted on the UL-SCH is also referred to as UL-SCH data.
  • UL-SCH is a transport channel and is mapped to a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • Data transmitted on the DL-SCH is also referred to as DL-SCH data.
  • DL-SCH data For example, it may correspond to DL-SCH data and downlink user data.
  • PUCCH is used to transmit uplink control information (UCI).
  • the uplink control information includes HARQ-ACK (Hybrid Automatic Repeat Request), CSI, and/or SR (Scheduling Request).
  • HARQ-ACK includes positive acknowledgment or negative acknowledgment.
  • PUCCH is used to transmit HARQ-ACK for PDSCH (that is, DL-SCH (DL-SCH data, downlink user data)).
  • DL-SCH data and/or downlink user data are also referred to as downlink transport blocks.
  • UE 100 monitors, for example, a set of PDCCH candidates in one or more control resource sets (CORESET(s): Control Resource Set(s)) in an active DL BWP.
  • PDCCH monitoring may include decoding each of the PDCCH candidates according to a monitored downlink control information (DCI) format.
  • DCI downlink control information
  • the UE 100 may monitor a DCI format to which a CRC (Cyclic Redundancy Check, also referred to as a CRC parity bit) scrambled by an RNTI (Radio Network Temporary Identifier) set by the base station 200 is added.
  • CRC Cyclic Redundancy Check
  • RNTI is SI-RNTI (System Information-RNTI), RA-RNTI (Random Access RNTI), TC-RNTI (Temporary C-RNTI), P-RNTI (Paging RNTI), and/or C-RNTI (Cell-RNTI) may be included.
  • a set of PDCCH candidates monitored by the UE 100 may be defined as a PDCCH search space set.
  • the search space set includes a common search space set (CSS set(s): Common Search Space set(s)) and/or a UE-specific search space set (USS set(s): UE Specific Search Space set(s)). It's okay. Therefore, the base station 200 configures the CORESET and/or search space set to the UE 100, and the UE 100 may monitor the PDCCH in the configured CORESET and/or search space set.
  • SSB Base station 200 transmits SSB in initial DL BWP.
  • the SSB is composed of four consecutive OFDM symbols, in which a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (MIB), and a demodulation reference signal (DMRS) for the PBCH are arranged.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • MIB PBCH
  • DMRS demodulation reference signal
  • the position of the resource element (time resource/frequency resource) to which the SSB is mapped is specified in the technical specifications of 3GPP, for example, "Section 7.4.3.1" of "TS38.211 v16.2.0" and "TS38 .213 v16.2.0, section 4.1.
  • the bandwidth of SSB is, for example, 240 consecutive sub-carriers, ie a bandwidth of 20 RBs.
  • the SSB associated with SIB1 is called cell-specific SSB (CD-SSB). From the perspective of one UE 100, one serving cell is associated with one CD-SSB.
  • SIB1 is also called RMSI (Remaining Minimum System Information).
  • RMSI Remaining Minimum System Information
  • One CD-SSB corresponds to one cell with a unique NCGI (NR Cell Global Identifier).
  • NCGI NR Cell Global Identifier
  • SSBs not associated with SIB1 (RMSI) are referred to as non-cell-specific SSBs (Non-CD-SSBs).
  • the base station 200 notifies the UE 100 of the SSB being transmitted, for example, by the parameters (ssb-PositionsInBurst, ssb-periodicityServingCell) included in the information element ServingCellConfigCommonSIB in SIB1.
  • ssb-PositionsInBurst indicates the time position of the SSB being transmitted within the half-frame (5 ms) SS burst.
  • ssb-periodicityServingCell indicates the SSB transmission period.
  • the UE 100 can grasp the SSB of which SSB index is being transmitted. Specifically, the maximum number of SSBs in a half-frame (up to 64) is determined according to the subcarrier spacing and the frequency band, and the UE 100 can identify SSB candidate positions in the time domain based on the SSB index. Based on ssb-PositionsInBurst, UE 100 recognizes whether or not SSB is actually being transmitted at the candidate position. However, the SSB index is not associated with the frequency position on which the corresponding SSB is transmitted. Therefore, when multiple SSBs are transmitted in one cell, UE 100 cannot grasp the frequency position based on the SSB index.
  • Separate initial BWP In 3GPP, assuming a specific UE 100B (RedCap UE), it is agreed to set an initial BWP (second initial BWP) for the specific UE 100B (RedCap UE) independently of the conventional initial BWP. Such a newly introduced initial BWP is called a separate initial BWP.
  • a conventional initial BWP is a first initial BWP assuming a general UE 100 (Non-RedCap UE).
  • the separate initials BWP are second initials BWP different from the first initials BWP.
  • the bandwidth of the separate initial BWP may be less than or equal to the maximum bandwidth of the specific UE 100B (RedCap UE).
  • the frequency band of the separate initial BWP may be set so as not to overlap with the frequency band of the conventional initial BWP so as not to adversely affect UL transmission of the general UE 100 (Non-RedCap UE).
  • the base station 200 transmits a parameter (for example, locationAndBandwidth) indicating the frequency position and/or bandwidth for each of the separate initial DL BWP and/or the separate initial UL BWP using SIB1.
  • the subcarrier spacing and cyclic prefix parameters for example, subcarrierSpacing, cyclicPrefix
  • CORESET#0 does not have to be set in the separate initial DL BWP.
  • SIB1 does not have to be transmitted.
  • FIG. 4 shows an example of the relationship between SSB and initial BWP.
  • the base station 200 (cell) transmits CD-SSB 501 within the frequency band of the first initial BWP 503 and transmits Non-CD-SSB 502 within the frequency band of the second initial BWP 504.
  • the second initial BWP 504 is spaced apart from the first initial BWP 503 in the frequency domain. Since Non-CD-SSB 502 is transmitted in second initial BWP 504, specific UE 100B (RedCap UE) efficiently controls communication in second initial BWP 504 at the same frequency position based on Non-CD-SSB 502. becomes possible.
  • the specific UE 100B uses the measurement result for the CD-SSB 501 upon initial access with the second initial BWP 504.
  • the CD-SSB 501 and the second initial BWP 504 have different frequency bands, there is concern that the measurement results may differ from the actual radio quality of the second initial BWP 504 .
  • the specific UE 100B performs initial access with the second initial BWP504 based on the measurement results for the Non-CD-SSB502, since the frequency band is the same for the Non-CD-SSB502 and the second initial BWP504, Correct measurement results are available. Further, the specific UE 100B does not need to perform frequency switching (retuning) between the frequency band of the first initial BWP 503 and the frequency band of the second initial BWP 504.
  • the base station 200 (cell) transmits CD-SSB 501 in the first initial BWP 503, which is the conventional initial DL BWP, and non-CD in the second initial BWP 504, which is the separate initial DL BWP.
  • CD-SSB 501 in the first initial BWP 503, which is the conventional initial DL BWP, and non-CD in the second initial BWP 504, which is the separate initial DL BWP.
  • - Send SSB 502
  • spatial setting is set by base station 200 for the purpose of PUCCH beam control.
  • Such spatial setting includes a parameter for setting a signal to be referred to in PUCCH beam control, and can set an SSB index as the parameter.
  • UE 100 for which an SSB index is set as a spatial setting for PUCCH transmission performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used for reception of SSB indicated by the SSB index.
  • spatial setting is set from base station 200 to UE 100.
  • Such spatial settings include parameters for setting signals to be referred to in SRS beam control, and SSB indexes can be set as the parameters.
  • UE 100 for which an SSB index is set as a spatial setting for SRS transmission performs SRS transmission using the same spatial domain filter as the spatial domain filter used for reception of SSB indicated by the SSB index.
  • the UE 100 performs at least one of radio link monitoring (RLM) and beam failure detection (BFD) based on the reference signal received from the base station 200 .
  • the base station 200 transmits to the UE 100 RLM reference signal configuration information for configuring reference signals used for at least one of RLM and BFD (hereinafter abbreviated as “RLM/BFD” as appropriate).
  • RLM/BFD RLM reference signal configuration information for configuring reference signals used for at least one of RLM and BFD
  • Such configuration information includes parameters for configuring signals to be referenced in RLM/BFD, and SSB indexes can be configured as the parameters.
  • the UE 100 performs path loss estimation for uplink transmission power control based on the reference signal received from the base station 200 .
  • the base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation.
  • Such setting information includes a parameter for setting a signal to be referred to in pathloss estimation, and can set an SSB index as the parameter.
  • UE 100 in which such an SSB index is set performs path loss estimation (calculation of path loss) using the SSB indicated by the SSB index.
  • an SSB index is set in UE 100 on the assumption that there is only one SSB in the serving cell.
  • CD-SSB 501 when Non-CD-SSB 502 is transmitted in the cell, UE 100 uses which SSB for PUCCH and / or SRS. It becomes unclear whether it should be used for beam control.
  • SSB index is set in UE 100 on the assumption that there is only one SSB in the serving cell.
  • Non-CD-SSB 502 is transmitted in the cell in addition to CD-SSB 501, UE 100 will not know which SSB to use for pathloss estimation.
  • the UE 100 may be a general UE 100A or a specific UE 100B.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the UE 100 configured in this way receives the SSB transmitted in the initial BWP, which is part of the bandwidth of the cell of the base station 200 (serving cell).
  • transmission section 111 performs PUCCH transmission to base station 200 .
  • Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling PUCCH transmission.
  • Control section 120 refers to the SSB indicated by the SSB index included in the received configuration information to control PUCCH transmission.
  • the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to appropriately control PUCCH transmission.
  • Such configuration information may be spatial relationship configuration information that configures spatial settings for beam control for transmitting PUCCH.
  • control unit 120 performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used to receive Non-CD-SSB502.
  • control section 120 controls to perform PUCCH transmission using the same spatial domain filter as the spatial domain filter used for receiving CD-SSB 501. . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, beam control of PUCCH transmission can be appropriately performed.
  • the transmission section 111 performs SRS transmission to the base station 200 .
  • Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling SRS transmission.
  • the control unit 120 controls SRS transmission by referring to the SSB indicated by the SSB index included in the received configuration information.
  • the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, SRS transmission can be appropriately controlled.
  • SRS transmission refers to an operation in which the base station 200 transmits an SRS, which is an uplink physical signal for channel estimation used to estimate an uplink channel state, to the base station 200 .
  • SRS transmission is performed according to the setting. That is, SRS transmission is an operation for uplink link adaptation.
  • Link adaptation adapts the modulation and coding scheme (MCS) applied to data transmission to channel conditions.
  • MCS modulation and coding scheme
  • Such configuration information may be spatial relationship configuration information that configures spatial settings for beam control for transmitting SRS.
  • control section 120 performs SRS transmission using the same spatial domain filter as the spatial domain filter used for receiving Non-CD-SSB 502. Control.
  • control section 120 controls to perform SRS transmission using the same spatial domain filter as the spatial domain filter used for receiving CD-SSB 501. . Therefore, even when non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, beam control for SRS transmission can be appropriately performed.
  • the receiving section 112 receives from the base station 200 configuration information including an SSB index indicating an SSB to be referenced for performing RLM/BFD.
  • the control unit 120 performs RLM/BFD by referring to the SSB indicated by the SSB index included in the received configuration information.
  • the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
  • the RLM/BFD includes, for example, a process of monitoring the reception state of the reference signal in the PHY layer of the UE 100 and detecting a failure event (for example, loss of synchronization).
  • the UE 100 counts failure event notifications sent from the PHY layer to the MAC layer using a counter, and detects radio link failure or beam failure when the count value reaches a specified number of times or more within a predetermined time.
  • the SSB index is configured in the configuration information, UE 100 performs RLM/BFD using SSB.
  • Such configuration information may be RLM reference signal configuration information that configures reference signals used for at least one of RLM and BFD.
  • the control unit 120 uses the Non-CD-SSB 502 to perform RLM/BFD.
  • the control unit 120 identifies that the SSB indicated by the SSB index is the CD-SSB 501, the CD-SSB 501 is used to perform RLM/BFD. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
  • the receiving unit 112 receives from the base station 200 configuration information including an SSB index indicating an SSB to be referenced for path loss estimation for uplink (UL) transmission power control. do.
  • the control unit 120 performs path loss estimation by referring to the SSB indicated by the SSB index included in the configuration information.
  • the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
  • Such setting information may be pathloss reference signal setting information for setting reference signals used for pathloss estimation.
  • control section 120 uses Non-CD-SSB 502 to perform path loss estimation.
  • the SSB indicated by the SSB index is identified as CD-SSB501
  • control section 120 uses CD-SSB501 to perform path loss estimation. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
  • the CD-SSB 501 may be the SSB transmitted in the first initial BWP 503 (that is, the conventional initial DL BWP) of the cell (serving cell).
  • Non-CD-SSB 502 may be SSB transmitted in a second initial BWP 504 (that is, a separate initial DL BWP) different from the first initial BWP 503 in the cell (serving cell).
  • the UE 100 since Non-CD-SSB502 is transmitted in the second initial BWP504, the UE 100 efficiently controls the communication in the second initial BWP504 in the same frequency position based on the Non-CD-SSB502. becomes possible.
  • the first initial BWP 503 may be an initial BWP for general UE 100A (that is, Non-RedCap UE).
  • the second initial BWP 504 may be an initial BWP for a specific UE 100B (that is, RedCap UE) whose communication capacity is reduced compared to the general UE 100A. This enables the specific UE 100B (RedCap UE) to efficiently control communication in the second initial BWP504 located at the same frequency position based on the Non-CD-SSB502.
  • the identification information may be frequency information indicating the frequency position where the SSB indicated by the SSB index is transmitted.
  • the frequency information may be a frequency identifier, eg, an Absolute Radio-Frequency Channel Number (ARFCN).
  • the frequency information may be RB numbers indicating radio resource locations in the frequency domain.
  • the identification information may be a BWP identifier (bwp-id) indicating the downlink BWP in which the SSB indicated by the SSB index is transmitted. If it is assumed that the BWP to which the CD-SSB 501 is sent and the BWP to which the Non-CD-SSB 502 is sent are necessarily different, the BWP identifier is suitable as identification information.
  • the BWP identifier can be configured with a smaller amount of information (that is, a shorter bit length) than the information indicating the frequency position described above.
  • the identification information may be an SSB type identifier indicating either CD-SSB 501 or Non-CD-SSB 502 as the SSB type indicated by the SSB index.
  • the SSB type identifier is suitable as the identification information.
  • the SSB type identifier may be 1-bit flag information such as "0" for CD-SSB 501 and "1" for Non-CD-SSB 502, for example. As a result, the identification information can be configured with a small amount of information.
  • Base station configuration The configuration of the base station 200 according to the embodiment will be described with reference to FIG.
  • Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the base station 200 manages the cell (serving cell) in which the UE 100 is located.
  • Transmitter 211 transmits SSB in initial BWP.
  • Receiving section 212 receives PUCCH (UCI) from UE 100 located in the cell (serving cell).
  • the transmitting unit 211, the SSB index indicating the SSB to be referred to by the UE 100 to control the transmission of the PUCCH, and the SSB indicated by the SSB index is either CD-SSB501 or Non-CD-SSB502 and setting information including identification information for specifying whether or not is transmitted to the UE 100. This allows the UE 100 to appropriately control PUCCH transmission even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501 .
  • the receiving unit 212 receives SRS from the UE 100 located in the cell (serving cell).
  • Transmitting section 211 includes an SSB index indicating an SSB that UE 100 refers to for controlling SRS transmission, and an identification for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and the setting information including the information is transmitted to the UE 100 . This allows the UE 100 to appropriately control SRS transmission even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501 .
  • the transmitting section 111 transmits to the UE 100 configuration information including an SSB index indicating the SSB that the UE 100 refers to in order to perform RLM/BFD.
  • the configuration information further includes identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . This enables the UE 100 to appropriately perform RLM/BFD even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501.
  • the transmitting unit 211 transmits to the UE 100 configuration information including an SSB index indicating an SSB that the UE 100 refers to in order to perform path loss estimation for uplink transmission power control.
  • the configuration information further includes identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • Example of operation according to the first embodiment An operation example of the mobile communication system 1 according to the first embodiment will be described. First, with reference to FIG. 7, an example of the SSB identification operation in the UE 100 according to the first embodiment will be described. In this operation, the UE 100 may be in the RRC connected state.
  • the receiving unit 112 receives configuration information including the SSB index and identification information from the base station 200.
  • the configuration information may be sent from the base station 200 to the UE 100 in UE-specific signaling, for example, an RRC message such as an RRC Reconfiguration message.
  • step S12 the control unit 120 determines whether or not the identification information received in step S11 corresponds to the Non-CD-SSB502.
  • step S13 control unit 120 determines that the SSB index received in step S11 is the SSB index of Non-CD-SSB. Identify there is.
  • step S14 control unit 120 identifies that the SSB index received in step S11 is the SSB index of CD-SSB 501. .
  • control section 120 determines that the SSB index of CD-SSB 501 is based on the identification information corresponding to the SSB index for each configuration information. It may be specified whether it is the SSB index or the SSB index of the Non-CD-SSB 502 .
  • step S101 the base station 200 transmits to the UE 100 spatial relationship setting information (PUCCH-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting PUCCH.
  • UE 100 receives the spatial relationship setting information (PUCCH-SpatialRelationInfo).
  • Spatial relationship setting information specifies an SSB index indicating an SSB to be referred to for controlling PUCCH transmission, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for
  • the base station 200 may set multiple pieces of spatial relationship setting information (PUCCH-SpatialRelationInfo) in the UE 100.
  • Each of the plurality of spatial relationship setting information (PUCCH-SpatialRelationInfo) may include a combination of SSB index and identification information.
  • the base station 200 may activate/deactivate the spatial relationship setting information (PUCCH-SpatialRelationInfo) by transmitting PUCCH spatial relation Activation/Deactivation MAC CE to the UE 100.
  • step S102 based on the identification information received in step S101, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
  • step S103 the UE 100 receives the SSB identified in step S102 from the base station 200.
  • step S104 the UE 100 performs beam control for PUCCH transmission using the SSB received in step S103.
  • the UE 100 for which an SSB index (ssb-Index) is set as a spatial setting for PUCCH transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for PUCCH transmission.
  • ssb-Index is configured as a spatial setting for a PUCCH resource
  • the UE 100 uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index when performing transmission on the PUCCH resource.
  • step S105 the UE 100 performs PUCCH transmission to the base station 200.
  • Base station 200 receives PUCCH.
  • FIG. 9 and 10 show description examples in the 3GPP RRC layer technical specification "TS38.331".
  • Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 may include a serving cell identifier (servingCellId) 1102 to which the spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 is applied.
  • Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 may include an SSB index (ssb-Index) 1103 as a setting of a reference signal (referenceSignal).
  • Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 includes frequency information (ssbFrequency-r17) 1104, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1105, BWP as identification information associated with SSB index (ssb-Index) 1103. At least one of an identifier (ssb-DL-BWP-r17) 1106 and an SSB type identifier (ssb-Type-r17) 1107 is included.
  • -r17 means that the information element is introduced in Release 17 of the 3GPP technical specifications, but may be introduced in Release 18 or later.
  • the condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
  • step S201 the base station 200 transmits to the UE 100 spatial relationship setting information (SRS-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting SRS.
  • the UE 100 receives spatial relationship setting information (SRS-SpatialRelationInfo).
  • Spatial relationship setting information specifies an SSB index indicating an SSB to be referred to for controlling SRS transmission, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for
  • step S202 based on the identification information received in step S201, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
  • step S203 the UE 100 receives the SSB identified in step S202 from the base station 200.
  • step S204 the UE 100 performs beam control for SRS transmission using the SSB received in step S203.
  • the UE 100 for which the SSB index (ssb-Index) is set as the spatial setting for SRS transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for SRS transmission.
  • ssb-Index is set as a spatial setting for an SRS resource, and when the UE 100 performs transmission on the SRS resource, the spatial domain filter is the same as the spatial domain filter used for reception of the SSB of the ssb-Index.
  • step S205 the UE 100 performs SRS transmission to the base station 200.
  • Base station 200 receives the SRS.
  • FIG. 12 and 13 show description examples in the 3GPP RRC layer technical specification "TS38.331".
  • Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 is included in SRS settings (SRS-Config).
  • Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 may include a serving cell identifier (servingCellId) 1202 to which the spatial relationship setting information (SRS-SpatialRelationInfo) 1201 is applied.
  • Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 may include an SSB index (ssb-Index) 1203 as a setting of a reference signal (referenceSignal).
  • identification information associated with the SSB index (ssb-Index) 1203, frequency information (ssbFrequency-r17) 1204, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1205, BWP identifier (ssb-DL-BWP-r17) 1206, and SSB type identifier (ssb-Type-r17) 1207 are provided.
  • the condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
  • step S301 the base station 200 transmits RLM reference signal setting information (RadioLinkMonitoringRS) for setting reference signals used for RLM/BFD to the UE100.
  • the UE 100 receives RLM reference signal configuration information (RadioLinkMonitoringRS).
  • the RLM reference signal configuration information specifies an SSB index indicating an SSB to be referenced for performing RLM/BFD, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for.
  • step S302 based on the identification information received in step S301, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
  • step S303 the UE 100 receives the SSB identified in step S302 from the base station 200.
  • step S304 the UE 100 performs RLM/BFD using the SSB received in step S303.
  • the UE 100 may perform RLM on a cell-by-cell basis.
  • RLM radio link failure
  • the UE 100 may perform processing to recover from the RLF.
  • the UE 100 may perform BFD on a beam-by-beam basis within a cell.
  • the UE 100 may perform processing for recovery from the beam failure.
  • RLM reference signal setting information (RadioLinkMonitoringRS) according to the first embodiment will be described with reference to FIGS. 15 and 16 show description examples in the 3GPP RRC layer technical specification "TS38.331".
  • the RLM reference signal setting information (RadioLinkMonitoringRS) 1301 can set the purpose of the corresponding reference signal, that is, BFD (beamFailure), RLM (rlf), or both (both) as the detection target.
  • RLM reference signal configuration information (RadioLinkMonitoringRS) 1301 may include an SSB index (ssb-Index) 1302 as a configuration of detection resource (detectionResource).
  • identification information associated with the SSB index (ssb-Index) 1302 frequency information (ssbFrequency-r17) 1303, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1304, BWP identifier (ssb-DL-BWP-r17) 1305, and an SSB type identifier (ssb-Type-r17) 1306 are provided.
  • the condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
  • step S401 the base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation for UL transmission power control.
  • UE 100 receives the pathloss reference signal configuration information.
  • the target of UL transmission power control is at least one of PUCCH, PUSCH, and SRI (Service Request Indicator)-PUSCH.
  • the pathloss reference signal configuration information includes an SSB index indicating an SSB to be referenced for pathloss estimation, and identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and including.
  • step S402 based on the identification information received in step S401, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
  • step S403 the UE 100 receives the SSB identified in step S402 from the base station 200.
  • step S404 the UE 100 performs path loss estimation using the SSB received in step S403.
  • the UE 100 measures the reception power of the SSB received from the base station 200 in step S403, and estimates the path loss by subtracting the reception power from the transmission power of the SSB.
  • the UE 100 can grasp the SSB transmission power from the SSB transmission power information (ss-PBCH-BlockPower) transmitted from the base station 200, for example, in the system information.
  • SSB transmission power information ss-PBCH-BlockPower
  • step S405 the UE 100 determines UL transmission power using the path loss estimated in step S404.
  • a specific example of the calculation formula for determining the UL transmission power will be described later.
  • the UE 100 transmits a UL signal to the base station 200 with the UL transmission power determined at step S405.
  • the UL signal is at least one of PUCCH signal, PUSCH signal, and SRI-PUSCH signal.
  • FIG. 18 to 21 show description examples in the 3GPP RRC layer technical specification "TS38.331".
  • Figures 18 and 19 show an example of setting information (PUCCH-PowerControl) for setting UE-specific parameters for PUCCH transmission power control.
  • Configuration information (PUCCH-PowerControl) includes pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 .
  • Pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 includes SSB index (ssb-Index-r16) 1406 when SSB (ssb-r17) is configured as the reference signal (referenceSignal-r17).
  • Pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 includes frequency information (ssbFrequency-r17) 1402, SSB subcarrier spacing (ssbSubcarrierSpacing- r17) 1403, BWP identifier (ssb-DL-BWP-r17) 1404, and/or SSB type identifier (ssb-Type-r17) 1405 are provided.
  • the condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
  • Figures 20 and 21 show an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control.
  • Configuration information (PUSCH-PowerControl) includes pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 .
  • Pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 includes SSB index (ssb-Index-r16) 1506 when SSB (ssb-r17) is configured as the reference signal (referenceSignal-r17).
  • Pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 includes frequency information (ssbFrequency-r17) 1502, SSB subcarrier spacing (ssbSubcarrierSpacing- r17) 1503, BWP identifier (ssb-DL-BWP-r17) 1504, and/or SSB type identifier (ssb-Type-r17) 1505 are provided.
  • the condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
  • the UE 100 uses such identification information (eg, identification information included in spatial relationship setting information (PUCCH-SpatialRelationInfo), identification information included in spatial relationship setting information (SRS-SpatialRelationInfo), information, identification information included in the RLM reference signal configuration information (RadioLinkMonitoringRS), and identification information included in the pathloss reference signal configuration information), the SSB indicated by the SSB index is CD-SSB 501 and Non-CD - Autonomously identify which of the SSBs 502 it is.
  • identification information eg, identification information included in spatial relationship setting information (PUCCH-SpatialRelationInfo), identification information included in spatial relationship setting information (SRS-SpatialRelationInfo), information, identification information included in the RLM reference signal configuration information (RadioLinkMonitoringRS), and identification information included in the pathloss reference signal configuration information
  • the SSB indicated by the SSB index is CD-SSB 501 and Non-CD - Autonomously identify which of the SSBs 502 it is.
  • the transmitting section 111 performs PUCCH transmission to the base station 200.
  • Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling PUCCH transmission.
  • Control section 120 refers to the SSB indicated by the SSB index included in the received configuration information to control PUCCH transmission.
  • the SSB indicated by the SSB index is Non-CD- Identify it as SSB502.
  • UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to appropriately control PUCCH transmission.
  • the second initial BWP503 for the general UE100A and the second initial BWP504 for the specific UE100B is set in the cell (serving cell), and the second initial BWP504 on the condition that Non-CD-SSB502 is transmitted.
  • UE 100 when Non-CD-SSB 502 is transmitted in second initial BWP 504, UE 100 (specific UE 100B) identifies that SSB indicated by the set SSB index is Non-CD-SSB 502. Note that the UE 100 (specific UE 100B) may ascertain whether or not the Non-CD-SSB 502 is being transmitted by monitoring (searching) the Non-CD-SSB 502 in the cell (serving cell). UE 100 (specific UE 100B) may grasp whether Non-CD-SSB 502 is transmitted based on the system information of the cell (serving cell).
  • the control unit 120 of the UE 100 may specify that the SSB indicated by the set SSB index is the CD-SSB 501 when the UE 100 is the specific UE 100B and the predetermined condition is not satisfied.
  • the SSB indicated by the set SSB index is CD-SSB501 may be specified as
  • the transmission section 111 performs SRS transmission to the base station 200.
  • Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling SRS transmission.
  • the control unit 120 controls SRS transmission by referring to the SSB indicated by the SSB index included in the received configuration information.
  • the SSB indicated by the SSB index is Non-CD- Identify it as SSB502.
  • UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, SRS transmission can be appropriately controlled.
  • the receiving section 112 receives from the base station 200 configuration information including SSB indexes indicating SSBs to be referred to for performing RLM/BFD.
  • the control unit 120 performs RLM/BFD by referring to the SSB indicated by the SSB index included in the received configuration information.
  • the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
  • the receiving section 112 receives from the base station 200 configuration information including SSB indexes indicating SSBs to be referenced for path loss estimation for uplink transmission power control.
  • the control unit 120 performs path loss estimation by referring to the SSB indicated by the SSB index included in the received configuration information.
  • the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
  • Example of operation according to the second embodiment An operation example of the mobile communication system 1 according to the second embodiment will be described. First, with reference to FIG. 22, an example of the SSB specifying operation in the UE 100 according to the second embodiment will be described. Here, it is assumed that the UE 100 is the specific UE 100B. In this operation, the UE 100 may be in the RRC connected state.
  • the receiving unit 112 receives configuration information including the SSB index and identification information from the base station 200.
  • the configuration information may be sent from the base station 200 to the UE 100 in UE-specific signaling, for example, an RRC message such as an RRC Reconfiguration message.
  • the control unit 120 determines whether or not a predetermined condition is satisfied.
  • the predetermined condition is that the first initial BWP 503 for the general UE 100A and the second initial BWP 504 (separate initial DL BWP) for the specific UE 100B are set in the serving cell, and Non-CD-SSB 502 is transmitted in the second initial BWP 504. This is the condition.
  • step S23 the control unit 120 identifies that the SSB index received in step S21 is the SSB index of Non-CD-SSB.
  • step S24 the control unit 120 identifies that the SSB index received in step S21 is the SSB index of the CD-SSB 501.
  • control section 120 determines whether the SSB index is CD-CD based on whether a predetermined condition is satisfied for each configuration information. It may be specified whether it is the SSB index of SSB 501 or the SSB index of Non-CD-SSB 502 .
  • step S111 the base station 200 transmits to the UE 100 spatial relationship setting information (PUCCH-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting PUCCH.
  • UE 100 receives the spatial relationship setting information (PUCCH-SpatialRelationInfo).
  • Spatial relationship setting information includes an SSB index that indicates an SSB that is referenced to control PUCCH transmission.
  • the spatial relationship setting information does not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB501 or Non-CD-SSB502. good.
  • the base station 200 may set multiple pieces of spatial relationship setting information (PUCCH-SpatialRelationInfo) in the UE 100.
  • Each of the plurality of spatial relationship setting information (PUCCH-SpatialRelationInfo) may include a combination of SSB index and identification information.
  • the base station 200 may activate/deactivate the spatial relationship setting information (PUCCH-SpatialRelationInfo) by transmitting PUCCH spatial relation Activation/Deactivation MAC CE to the UE 100.
  • step S112 the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
  • step S103 the UE 100 receives the SSB identified in step S112 from the base station 200.
  • step S104 the UE 100 performs beam control for PUCCH transmission using the SSB received in step S103.
  • the UE 100 for which an SSB index (ssb-Index) is set as a spatial setting for PUCCH transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for PUCCH transmission.
  • ssb-Index is configured as a spatial setting for a PUCCH resource
  • the UE 100 uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index when performing transmission on the PUCCH resource.
  • step S105 the UE 100 performs PUCCH transmission to the base station 200.
  • Base station 200 receives PUCCH.
  • step S211 the base station 200 transmits to the UE 100 spatial relationship setting information (SRS-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting SRS.
  • the UE 100 receives spatial relationship setting information (SRS-SpatialRelationInfo).
  • Spatial relationship setting information includes an SSB index that indicates an SSB that is referenced to control SRS transmission.
  • the spatial relationship setting information does not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. good.
  • step S212 the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
  • step S203 the UE 100 receives the SSB identified in step S212 from the base station 200.
  • step S204 the UE 100 performs beam control for SRS transmission using the SSB received in step S203.
  • the UE 100 for which the SSB index (ssb-Index) is set as the spatial setting for SRS transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for SRS transmission.
  • ssb-Index is set as a spatial setting for an SRS resource, and when the UE 100 performs transmission on the SRS resource, the spatial domain filter is the same as the spatial domain filter used for reception of the SSB of the ssb-Index.
  • step S205 the UE 100 performs SRS transmission to the base station 200.
  • Base station 200 receives the SRS.
  • step S311 the base station 200 transmits to the UE 100 RLM reference signal setting information (RadioLinkMonitoringRS) for setting reference signals used for RLM/BFD.
  • the UE 100 receives RLM reference signal configuration information (RadioLinkMonitoringRS).
  • the RLM reference signal setting information includes an SSB index indicating an SSB to be referenced for performing RLM/BFD.
  • the RLM reference signal configuration information may not include identification information for identifying whether the SSB indicated by the SSB index is CD-SSB501 or Non-CD-SSB502. .
  • step S312 the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
  • step S303 the UE 100 receives the SSB identified in step S312 from the base station 200.
  • step S304 the UE 100 performs RLM/BFD using the SSB received in step S303.
  • the UE 100 may perform RLM on a cell-by-cell basis.
  • RLM radio link failure
  • the UE 100 may perform processing to recover from the RLF.
  • the UE 100 may perform BFD on a beam-by-beam basis within a cell.
  • the UE 100 may perform processing for recovery from the beam failure.
  • step S411 the base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation for UL transmission power control.
  • UE 100 receives the pathloss reference signal configuration information.
  • the target of UL transmission power control is at least one of PUCCH, PUSCH, and SRI (Service Request Indicator)-PUSCH.
  • the pathloss reference signal setting information includes an SSB index indicating an SSB to be referenced for pathloss estimation.
  • the pathloss reference signal configuration information may not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
  • step S412 the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
  • step S403 the UE 100 receives the SSB identified in step S412 from the base station 200.
  • step S404 the UE 100 performs path loss estimation using the SSB received in step S403.
  • the UE 100 measures the reception power of the SSB received from the base station 200 in step S403, and estimates the path loss by subtracting the reception power from the transmission power of the SSB.
  • the UE 100 can grasp the SSB transmission power from the SSB transmission power information (ss-PBCH-BlockPower) transmitted from the base station 200, for example, in the system information.
  • SSB transmission power information ss-PBCH-BlockPower
  • step S405 the UE 100 determines UL transmission power using the path loss estimated in step S404.
  • the UE 100 transmits a UL signal to the base station 200 with the UL transmission power determined at step S405.
  • the UL signal is at least one of PUCCH signal, PUSCH signal, and SRI-PUSCH signal.
  • FIGS. 27 to 32 show description examples in the 3GPP PHY layer technical specification “TS38.213”.
  • FIG. 27 shows a calculation formula for determining the PUSCH transmission power.
  • Path loss PL
  • the UE 100 performs transmission power control such that the PUSCH transmission power increases as the path loss increases.
  • FIG. 28 shows an operation example of the UE 100 (specific UE 100B).
  • the specific UE 100B (RedCap UE) determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S502, the specific UE 100B is provided with pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and enableDefaultBeamPL-ForSRS, or the specific UE 100B is provided with a dedicated higher layer parameter (dedicated higher layer parameters) are provided.
  • PUSCH-PathlossReferenceRS pathloss reference signal configuration information
  • enableDefaultBeamPL-ForSRS enableDefaultBeamPL-ForSRS
  • step S503 the specific UE 100B calculates the pathloss (PL) using the Non-CD-SSB 502 transmitted in the second initial BWP 504 (separate initial DL BWP) and indicated by the SSB index (SS/PBCH block index).
  • PUSCH-PathlossReferenceRS pathloss reference signal configuration information
  • enableDefaultBeamPL-ForSRS enableDefaultBeamPL-ForSRS
  • step S504 the UE 100 determines whether the pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and the enableDefaultBeamPL-ForSRS are not provided, or before the dedicated higher layer parameters are provided to the UE 100. judge. If pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and enableDefaultBeamPL-ForSRS are not provided, or before dedicated higher layer parameters are provided to UE 100, UE 100 acquires the MIB. Calculate the path loss (PL) using the SSB of the SSB index used for
  • FIG. 29 shows a calculation formula for determining PUCCH transmission power.
  • Path loss PL
  • the UE 100 performs transmission power control such that PUCCH transmission power is increased as the path loss increases.
  • FIG. 30 shows an operation example of the UE 100 (mainly the specific UE 100B).
  • the specific UE 100B (RedCap UE) determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S512, the specific UE 100B is not provided with pathloss reference signal configuration information (PathlossReferenceRS), or the specific UE 100B is provided with dedicated higher layer parameters.
  • PathlossReferenceRS pathloss reference signal configuration information
  • the specific UE 100B uses the second initial BWP 504 Calculate path loss (PL) using Non-CD-SSB 502 transmitted in (separate initial DL BWP) and indicated by SSB index (SS/PBCH block index).
  • PathlossReferenceRS pathloss reference signal configuration information
  • the specific UE 100B uses the second initial BWP 504 Calculate path loss (PL) using Non-CD-SSB 502 transmitted in (separate initial DL BWP) and indicated by SSB index (SS/PBCH block index).
  • step S51 If the second initial BWP 504 (separate initial DL BWP) is not set and/or if the Non-CD-SSB 502 is not transmitted in the second initial BWP 504, the specific UE 100B proceeds to step S514.
  • step S514 the UE 100 determines whether the pathloss reference signal configuration information (PathlossReferenceRS) is not provided or before the dedicated higher layer parameters are provided to the UE 100. If the pathloss reference signal configuration information (PUCCH-PathlossReferenceRS) is not provided, or before the UE 100 is provided with dedicated higher layer parameters (dedicated higher layer parameters), the UE 100 is used to acquire the MIB Compute the pathloss (PL) using the SSB of the SSB index.
  • PathlossReferenceRS pathloss reference signal configuration information
  • FIG. 31 shows a calculation formula for determining the SRS transmission power.
  • Path loss PL
  • the UE 100 performs transmission power control such that the SRS transmission power increases as the path loss increases.
  • FIG. 32 shows an operation example of the UE 100 (specific UE 100B).
  • the specific UE 100B determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S522, the specific UE 100B is not provided with pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id, or the specific UE 100B is provided with a dedicated higher layer parameter (dedicated higher layer parameters) are provided.
  • PathlossReferenceRS pathloss reference signal configuration information
  • SRS-PathlossReferenceRS-Id dedicated higher layer parameter
  • the specific UE 100B calculates the pathloss (PL) using the Non-CD-SSB 502 transmitted in the second initial BWP 504 (separate initial DL BWP) and indicated by the SSB index (SS/PBCH block index).
  • step S524 If the second initial BWP 504 (separate initial DL BWP) is not set and/or if the Non-CD-SSB 502 is not transmitted in the second initial BWP 504, the specific UE 100B proceeds to step S524.
  • step S524 the UE 100 is provided with no pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id, or before the dedicated higher layer parameters are provided to the specific UE 100B. judge. If pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id is not provided, or before dedicated higher layer parameters are provided to UE 100, UE 100 acquires the MIB. Calculate the path loss (PL) using the SSB of the SSB index used for
  • the second embodiment may be used in combination with the first embodiment described above.
  • the UE 100 performs the operation according to the second embodiment before receiving the identification information from the base station 200, and then performs the operation according to the first embodiment after receiving the identification information from the base station 200. good.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • SSB synchronization signal block
  • BWP initial bandwidth part
  • SRS sounding reference signal
  • the cell-defined SSB (501) is the SSB transmitted in the first initial BWP (503) of the cell;
  • the user equipment (100) of Claim 1 wherein said non-cell defined SSB (502) is an SSB transmitted in said cell in a second initial BWP (504) different from said first initial BWP (503).
  • the first initial BWP (503) is an initial BWP for general user equipment (100A)
  • the second initial BWP (504) is an initial BWP for a specific user device (100B) whose communication capability is reduced compared to the general user device (100A).
  • the identification information is a BWP identifier indicating a downlink BWP in which the SSB indicated by the SSB index is transmitted.
  • the identification information is an SSB type identifier indicating either the cell-defined SSB (501) or the non-cell-defined SSB (502) as the type of the SSB indicated by the SSB index. 1.
  • a user equipment (100) that receives a synchronization signal block (SSB) transmitted in an initial bandwidth part (BWP) that is part of the bandwidth of a cell of a base station (200), a transmitting unit (111) that transmits a sounding reference signal (SRS) to the base station (200); a receiving unit (112) that receives configuration information including an SSB index indicating the SSB that is referred to for controlling the SRS transmission from the base station (200); a control unit (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index included in the configuration information;
  • the control unit (120) A user equipment (100) identifying that said SSB indicated by said SSB index is a non-cell defined SSB (502).
  • the predetermined condition is that a first initial BWP (503) for the general user equipment (100A) and a second initial BWP (504) for the specific user equipment (100B) are set in the cell, and User equipment (100) according to clause 7, provided that said non-cell defined SSB (502) is transmitted in an initial BWP (504).
  • the control unit (120) controls that the SSB indicated by the SSB index is a cell-defined SSB (501).
  • a user equipment (100) according to clause 7 or 8. Appendix 10.
  • the user equipment (100) according to any one of appendices 1 to 9, wherein said configuration information is spatial relationship configuration information for configuring spatial settings related to beam control for transmitting said SRS.
  • said configuration information is spatial relationship configuration information for configuring spatial settings related to beam control for transmitting said SRS.
  • SRS sounding reference signal
  • the receiving step includes receiving the configuration information further including identification information for specifying whether the SSB indicated by the SSB index is a cell-defined SSB (501) or a non-cell-defined SSB (502).
  • SRS sounding reference signal

Abstract

This communication device (100) comprises: a transmission unit (111) for transmitting a sounding reference signal (SRS); a reception unit (112) for receiving, from a base station (200), configuration information that includes an SSB index indicating a synchronization signal and physical notification channel block (SSB), which is referenced for the SRS transmission; and a control unit (120) for referring to the SSB indicated by the SSB index and controlling the SRS transmission. Upon reception of an absolute radio frequency channel number indicating a frequency position at which a non-cell-defining SSB is transmitted, the control unit (120) specifies that the SSB indicated by the SSB index is a non-cell-defining SSB (502).

Description

通信装置、基地局、及び通信方法Communication device, base station, and communication method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年11月2日に出願された特許出願番号2021-179799号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-179799, filed November 2, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる通信装置、基地局、及び通信方法に関する。 The present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、一般ユーザ装置に比べて低減された通信能力を有する特定ユーザ装置を第5世代(5G)システムで提供することが検討されている。特定ユーザ装置は、IoT(Internet of Things)向けにミドルレンジの性能・価格を有するユーザ装置であって、例えば、一般ユーザ装置に比べて、無線通信に用いる最大帯域幅が狭く設定されていたり、受信機の数が少なかったりする。このような特定ユーザ装置は、RedCap UE(Reduced Capability User Equipment)と称される。 In recent years, in the 3GPP (registered trademark; the same shall apply hereinafter) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, a specific user device having a reduced communication capacity compared to general user devices is designated as a 5th generation (5G) system. are being considered to be provided. A specific user device is a user device that has middle-range performance and price for IoT (Internet of Things). a small number of receivers. Such a specific user equipment is called RedCap UE (Reduced Capability User Equipment).
 また、5Gシステムでは、ユーザ装置の消費電力の削減及び広帯域キャリアの有効活用のために、帯域幅部分(BWP:Bandwidth Part)が規定されている(例えば、非特許文献1参照)。BWPが設定されたユーザ装置は、セルの帯域幅と同じ帯域幅に対応する必要がなく、セルの帯域幅より狭い周波数帯域で通信を実行することが可能となる。BWPには、イニシャルBWP(イニシャルDL BWP及びイニシャルUL BWP)と、専用BWP(専用DL BWP及び専用UL BWP)とがある。ここで、DLは下りリンクを指し、ULは下りリンクを指す。イニシャルBWPは、少なくともイニシャルアクセスに用いられるBWPであって、複数のユーザ装置に共通で用いられる。専用BWPは、あるユーザ装置に専用(UE固有)に設定されるBWPである。 In addition, in the 5G system, a bandwidth part (BWP: Bandwidth Part) is defined for the purpose of reducing power consumption of user equipment and making effective use of broadband carriers (see, for example, Non-Patent Document 1). A user equipment for which BWP is set does not need to support the same bandwidth as the cell bandwidth, and can perform communication in a frequency band narrower than the cell bandwidth. BWP includes initial BWP (initial DL BWP and initial UL BWP) and dedicated BWP (dedicated DL BWP and dedicated UL BWP). Here, DL refers to downlink and UL refers to downlink. The initial BWP is a BWP that is used at least for initial access, and is commonly used by a plurality of user devices. A dedicated BWP is a BWP that is dedicated (UE-specific) to a certain user equipment.
 基地局は、イニシャルBWP(イニシャルDL BWP)において、同期信号ブロック(SSB:Synchronization Signal/PBCH(Physical Broadcast Channel) block)を送信する。同期信号ブロックは、同期信号及び物理報知チャネルブロックと称されてもよい。システム情報ブロック・タイプ1(SIB1)と対応付けられたSSBは、セル定義SSB(CD-SSB:Cell Defining SSB)と称される。ある1つのUEの観点では、1つのサービングセルは1つのCD-SSBと対応付けられる。SIB1は、RMSI(Remaining Minimum System Information)とも称される。例えば、ユーザ装置は、受信したCD-SSBに基づいて、セルサーチ及びセル選択・再選択を行う。 The base station transmits a synchronization signal block (SSB: Synchronization Signal/PBCH (Physical Broadcast Channel) block) at the initial BWP (initial DL BWP). A synchronization signal block may also be referred to as a synchronization signal and physical broadcast channel block. An SSB associated with System Information Block Type 1 (SIB1) is called a Cell Defining SSB (CD-SSB). From the perspective of one UE, one serving cell is associated with one CD-SSB. SIB1 is also called RMSI (Remaining Minimum System Information). For example, the user equipment performs cell search and cell selection/reselection based on the received CD-SSB.
 3GPPにおいて、RedCap UEを想定して、従来のイニシャルBWPとは独立に、RedCap UE向けのイニシャルBWPを設定することが合意されている。このような新たに導入されるイニシャルBWPは、セパレートイニシャルBWPと称される。また、セパレートイニシャルDL BWPにおいてSSBの送信を設定することが提案されている(例えば、非特許文献2、3参照)。 In 3GPP, assuming RedCap UE, it has been agreed to set an initial BWP for RedCap UE independently of the conventional initial BWP. Such a newly introduced initial BWP is called a separate initial BWP. Also, it has been proposed to set SSB transmission in separate initial DL BWP (for example, see Non-Patent Documents 2 and 3).
 ところで、ユーザ装置から基地局へ上りリンク制御情報(UCI: Uplink Control Information)を伝送する物理上りリンク制御チャネル(PUCCH)のビーム制御を目的として、基地局からユーザ装置に対して空間セッティング(spatial setting)が設定される。このような空間セッティングは、PUCCHのビーム制御において参照する信号を設定するパラメータを含み、当該パラメータとしてSSBインデックスを設定できる(例えば、非特許文献4参照)。PUCCH送信に対する空間セッティングとしてSSBインデックスが設定されたユーザ装置は、当該SSBインデックスが示すSSBの受信に対して用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCH送信を行う(例えば、非特許文献5参照)。 By the way, for the purpose of beam control of a physical uplink control channel (PUCCH) that transmits uplink control information (UCI) from the user equipment to the base station, spatial setting from the base station to the user equipment ) is set. Such spatial settings include parameters for setting signals to be referred to in PUCCH beam control, and SSB indexes can be set as such parameters (see Non-Patent Document 4, for example). A user equipment for which an SSB index is set as a spatial setting for PUCCH transmission performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used for receiving the SSB indicated by the SSB index (for example, non-patent literature 5).
 第1の態様に係る通信装置(100)は、サウンディング参照信号(SRS)送信を行う送信部(111)と、前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を 前記基地局(200)から受信する受信部(112)と、前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御する制御部(120)と、を備える。前記制御部(120)は、非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を受信した場合、前記SSBインデックスが示す前記SSBを前記非セル定義SSB(502)として特定する。 A communication device (100) according to a first aspect shows a transmitter (111) that performs sounding reference signal (SRS) transmission, and a synchronization signal and a physical broadcast channel block (SSB) that are referred to for the SRS transmission. It comprises a receiver (112) that receives configuration information including an SSB index from the base station (200), and a controller (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index. The control unit (120) identifies the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving the absolute radio frequency channel number indicating the frequency position where the non-cell-defined SSB is transmitted.
 第2の態様に係る基地局(200)は、サウンディング参照信号(SRS)送信を通信装置(100)から受信する受信部(212)と、前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記通信装置(100)に送信する送信部(211)と、を備える。前記送信部(211)は、前記SSBインデックスが示す前記SSBを非セル定義SSB(502)として特定するための、前記非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を、前記通信装置(100)に送信する。 The base station (200) according to the second aspect includes a receiving unit (212) that receives sounding reference signal (SRS) transmission from the communication device (100), and a synchronization signal and physical broadcast that are referred to the SRS transmission. a transmitter (211) configured to transmit configuration information including an SSB index indicating a channel block (SSB) to the communication device (100). The transmitting unit (211) transmits an absolute radio frequency channel number indicating a frequency position where the non-cell defined SSB is transmitted, for specifying the SSB indicated by the SSB index as a non-cell defined SSB (502). Send to the communication device (100).
 第3の態様に係る通信方法は、通信装置(100)で実行される通信方法である。前記通信方法は、サウンディング参照信号(SRS)送信を行うステップと、前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記基地局(200)から受信するステップと、前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御するステップと、を含む。前記制御するステップは、非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を受信した場合、前記SSBインデックスが示す前記SSBを前記非セル定義SSB(502)として特定するステップを含む。 A communication method according to the third aspect is a communication method executed by the communication device (100). The communication method comprises the step of transmitting a sounding reference signal (SRS), and transmitting configuration information including a synchronization signal and an SSB index indicating a physical broadcast channel block (SSB) to be referred to for the SRS transmission to the base station (200). ), and controlling the SRS transmission by referring to the SSB indicated by the SSB index. The controlling step includes identifying the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving an absolute radio frequency channel number indicating a frequency location on which the non-cell-defined SSB is transmitted. .
 第4の態様に係る通信方法は、基地局(200)で実行される通信方法である。前記通信方法は、サウンディング参照信号(SRS)送信を通信装置(100)から受信するステップと、前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記通信装置(100)に送信するステップと、前記SSBインデックスが示す前記SSBを非セル定義SSB(502)として特定するための、前記非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を、前記通信装置(100)に送信するステップと、を含む。 A communication method according to the fourth aspect is a communication method executed by the base station (200). The communication method includes steps of receiving a sounding reference signal (SRS) transmission from a communication device (100), and setting a synchronization signal and an SSB index indicating a physical broadcast channel block (SSB) to be referenced for the SRS transmission. transmitting information to said communication device (100); absolute radio indicating a frequency location on which said non-cell-defined SSB is transmitted, for identifying said SSB indicated by said SSB index as a non-cell-defined SSB (502); and sending a frequency channel number to the communication device (100).
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。 The objects, features, advantages, etc. of the present disclosure will become clearer from the detailed description below with reference to the accompanying drawings.
図1は、実施形態に係る移動通信システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. 図2は、実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment. 図3は、SSBに関するRRCパラメータの一例を示す図である。FIG. 3 is a diagram illustrating an example of RRC parameters for SSB. 図4は、実施形態に係るSSBとイニシャルBWPとの関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between SSB and initial BWP according to the embodiment. 図5は、実施形態に係るUEの構成を示す図である。FIG. 5 is a diagram showing the configuration of the UE according to the embodiment. 図6は、実施形態に係る基地局の構成を示す図である。FIG. 6 is a diagram showing the configuration of a base station according to the embodiment. 図7は、第1実施形態に係るUEにおけるSSB特定動作の一例を示す図である。FIG. 7 is a diagram illustrating an example of SSB identification operation in the UE according to the first embodiment. 図8は、第1実施形態に係るPUCCH送信ビーム制御の一例を示す図である。FIG. 8 is a diagram illustrating an example of PUCCH transmission beam control according to the first embodiment. 図9は、第1実施形態に係る空間関係設定情報(PUCCH-SpatialRelationInfo)の一例を示す図である。FIG. 9 is a diagram showing an example of spatial relationship setting information (PUCCH-SpatialRelationInfo) according to the first embodiment. 図10は、第1実施形態に係る空間関係設定情報(PUCCH-SpatialRelationInfo)の一例を示す図である。FIG. 10 is a diagram showing an example of spatial relationship setting information (PUCCH-SpatialRelationInfo) according to the first embodiment. 図11は、第1実施形態に係るSRS送信ビーム制御の一例を示す図である。FIG. 11 is a diagram illustrating an example of SRS transmission beam control according to the first embodiment. 図12は、第1実施形態に係る空間関係設定情報(SRS-SpatialRelationInfo)の一例を示す図である。FIG. 12 is a diagram showing an example of spatial relationship setting information (SRS-SpatialRelationInfo) according to the first embodiment. 図13は、第1実施形態に係るRLM/BFD制御の一例を示す図である。FIG. 13 is a diagram showing an example of RLM/BFD control according to the first embodiment. 図14は、第1実施形態に係るRLM参照信号設定情報(RadioLinkMonitoringRS)の一例を示す図である。FIG. 14 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment. 図15は、第1実施形態に係るRLM参照信号設定情報(RadioLinkMonitoringRS)の一例を示す図である。FIG. 15 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment. 図16は、第1実施形態に係るRLM参照信号設定情報(RadioLinkMonitoringRS)の一例を示す図である。FIG. 16 is a diagram illustrating an example of RLM reference signal configuration information (RadioLinkMonitoringRS) according to the first embodiment. 図17は、第1実施形態に係るUL送信電力制御の一例を示す図である。FIG. 17 is a diagram illustrating an example of UL transmission power control according to the first embodiment. 図18は、第1実施形態に係るパスロス参照信号設定情報の一例を示す図である。FIG. 18 is a diagram showing an example of pathloss reference signal setting information according to the first embodiment. 図19は、第1実施形態に係るパスロス参照信号設定情報の一例を示す図である。FIG. 19 is a diagram showing an example of pathloss reference signal setting information according to the first embodiment. 図20は、第1実施形態に係るPUSCHの送信電力制御のためのUE固有パラメータを設定する設定情報(PUSCH-PowerControl)の一例を示す図である。FIG. 20 is a diagram showing an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control according to the first embodiment. 図21は、第1実施形態に係るPUSCHの送信電力制御のためのUE固有パラメータを設定する設定情報(PUSCH-PowerControl)の一例を示す図である。FIG. 21 is a diagram showing an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control according to the first embodiment. 図22は、第2実施形態に係るUE100におけるSSB特定動作の一例を示す図である。FIG. 22 is a diagram showing an example of SSB identification operation in the UE 100 according to the second embodiment. 図23は、第2実施形態に係るPUCCH送信ビーム制御の一例を示す図である。FIG. 23 is a diagram illustrating an example of PUCCH transmission beam control according to the second embodiment. 図24は、第2実施形態に係るSRS送信ビーム制御の一例を示す図である。FIG. 24 is a diagram illustrating an example of SRS transmission beam control according to the second embodiment. 図25は、第2実施形態に係るRLM/BFD制御の一例を示す図である。FIG. 25 is a diagram showing an example of RLM/BFD control according to the second embodiment. 図26は、第2実施形態に係るUL送信電力制御の一例を示す図である。FIG. 26 is a diagram illustrating an example of UL transmission power control according to the second embodiment. 図27は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。FIG. 27 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment; 図28は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。FIG. 28 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment; 図29は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。29 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment; FIG. 図30は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。FIG. 30 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment; 図31は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。31 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment; FIG. 図32は、第2実施形態に係るUEにおけるUL送信電力の一例を示す図である。FIG. 32 is a diagram illustrating an example of UL transmission power in a UE according to the second embodiment;
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 基地局の1つのセルにおいて、従来のイニシャルBWPに加えて、セパレートイニシャルBWPが設定される場合、当該基地局は、従来のイニシャルDL BWPにおいてCD-SSBを送信するとともに、セパレートイニシャルDL BWPにおいて非セル定義SSB(Non-CD-SSB)を送信することが考えられる。 In one cell of the base station, when a separate initial BWP is set in addition to the conventional initial BWP, the base station transmits CD-SSB in the conventional initial DL BWP and non It is conceivable to transmit cell-defined SSB (Non-CD-SSB).
 既存の3GPPの技術仕様では、SSBをPUCCHのビーム制御に用いる場合、サービングセル内にSSBが1つしかないことを前提としてSSBインデックスがユーザ装置に設定される。しかしながら、SSBがサービングセルにおいて1つしか送信されなければ問題ないが、CD-SSBに加えて、Non-CD-SSBが当該セルにおいて送信されるとなると、ユーザ装置がどのSSBをPUCCHのビーム制御に用いるべきか分からなくなるという問題がある。 In the existing 3GPP technical specifications, when SSB is used for PUCCH beam control, an SSB index is set in the user equipment on the assumption that there is only one SSB in the serving cell. However, if only one SSB is transmitted in the serving cell, there is no problem, but in addition to CD-SSB, when Non-CD-SSB is transmitted in the cell, which SSB the user equipment uses for PUCCH beam control There is a problem of not knowing whether to use it or not.
 そこで、本開示は、CD-SSBに加えてNon-CD-SSBがセルにおいて送信される場合であっても、PUCCH送信の制御を適切に行うことを可能とするユーザ装置、基地局、及び通信方法を提供することを目的とする。 Therefore, the present disclosure provides a user equipment, base station, and communication that enable appropriate control of PUCCH transmission even when Non-CD-SSB is transmitted in a cell in addition to CD-SSB The purpose is to provide a method.
 [第1実施形態]
 (移動通信システムの構成)
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
[First embodiment]
(Configuration of mobile communication system)
A configuration of a mobile communication system 1 according to an embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS). Hereinafter, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 UE100は、基地局200を介して通信する通信装置である。UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 UE 100 is a communication device that communicates via base station 200 . UE 100 is a device used by a user. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein. The UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon. The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
 実施形態において、NRのUE100として、一般UE(Non-RedCap UE)100Aと、一般UE100Aに比べて低減された通信能力を有する特定UE(RedCap UE)100Bとの2種類のUEを想定する。一般UE100Aは、NRの特徴である高速大容量(enhanced Mobile Broadband:eMBB)及び超高信頼低遅延(Ultra-Reliable and Low Latency Communications:URLLC)といった高度な通信能力を有する。従って、一般UE100Aは、特定UE100Bよりも高い通信能力を有する。一般UE100Aは、既存のUE、すなわち、3GPPの技術仕様のリリース16以前のUE(いわゆる、レガシーUE)であってもよい。 In the embodiment, two types of UEs are assumed as NR UEs 100: a general UE (Non-RedCap UE) 100A and a specific UE (RedCap UE) 100B having reduced communication capacity compared to the general UE 100A. The general UE 100A has advanced communication capabilities such as high-speed, large-capacity (enhanced mobile broadband: eMBB) and ultra-reliable and low-latency communications (URLLC), which are features of NR. Therefore, the general UE 100A has higher communication capability than the specific UE 100B. The general UE 100A may be an existing UE, that is, a UE prior to release 16 of the 3GPP technical specifications (so-called legacy UE).
 特定UE100Bは、一般UE100Aに比べて装置コスト及び複雑さが低減されたUEである。特定UE100Bは、IoT向けにミドルレンジの性能・価格を有するUE100であって、例えば、一般UE100Aに比べて、無線通信に用いる最大帯域幅が狭く設定されていたり、受信機の数が少なかったりする。なお、受信機は、受信ブランチと称されることがある。特定UE100Bは、Reduced capability NR deviceと称されることがある。以下において、一般UE100A及び特定UE100Bを区別しないときは単にUE100と称する。 The specific UE 100B is a UE with reduced device cost and complexity compared to the general UE 100A. The specific UE 100B is a UE 100 having middle-range performance and price for IoT. For example, compared to the general UE 100A, the maximum bandwidth used for wireless communication is set narrower, and the number of receivers is smaller. . Note that the receiver is sometimes called a reception branch. The specific UE 100B is sometimes called a Reduced capability NR device. Hereinafter, when the general UE 100A and the specific UE 100B are not distinguished, they are simply referred to as UE 100.
 特定UE100Bは、LPWA(Low Power Wide Area)規格、例えば、LTE(Long Term Evolution) Cat.1/1bis、LTE Cat.M1(LTE-M)、LTE Cat.NB1(NB-IoT)で規定されている通信速度以上の通信速度で通信可能であってもよい。特定UE100Bは、LPWA規格で規定されている帯域幅以上の帯域幅で通信可能であってよい。特定UE100Bは、3GPPの技術仕様のリリース15又はリリース16のUEと比較して、通信に用いる帯域幅が限定されていてもよい。例えば、FR1(Frequency Range 1)について、特定UE100Bによってサポートされる最大帯域幅(UE最大帯域幅とも称される)は、20MHzであってよい。また、FR2(Frequency Range 2)について、特定UE100Bによってサポートされる最大帯域幅は、100MHzであってよい。特定UE100Bは、無線信号を受信する受信機を1つのみ有していてよい。特定UE100Bは、例えば、ウェアラブル装置又はセンサ装置等であってよい。 The specific UE 100B complies with the LPWA (Low Power Wide Area) standard, for example, the LTE (Long Term Evolution) Cat. 1/1bis, LTE Cat. M1 (LTE-M), LTE Cat. It may be possible to communicate at a communication speed equal to or higher than the communication speed specified by NB1 (NB-IoT). The specific UE 100B may be able to communicate with a bandwidth equal to or greater than the bandwidth defined by the LPWA standard. The specific UE 100B may have a limited bandwidth for communication compared to UEs of Release 15 or Release 16 of the 3GPP technical specifications. For example, for FR1 (Frequency Range 1), the maximum bandwidth (also referred to as UE maximum bandwidth) supported by a particular UE 100B may be 20 MHz. Also, for FR2 (Frequency Range 2), the maximum bandwidth supported by the specific UE 100B may be 100 MHz. The specific UE 100B may have only one receiver that receives radio signals. The specific UE 100B may be, for example, a wearable device, a sensor device, or the like.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。 A configuration example of a protocol stack in the mobile communication system 1 according to the embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。 The protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 物理チャネルは、時間領域における複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロック(RB)は、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。具体的には、5Gシステムにおいて、下り送信及び上り送信は、10msの持続時間の無線フレーム内で構成される。 A physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain. One subframe consists of a plurality of OFDM symbols in the time domain. A resource block (RB) is a resource allocation unit, and is composed of multiple OFDM symbols and multiple subcarriers. Specifically, in 5G systems, downlink and uplink transmissions are organized within a radio frame of 10 ms duration.
 例えば、無線フレームは、10個のサブフレームにより構成される。例えば、1つのサブフレームは、1msであってもよい。また、1つのサブフレームは、1以上のスロットにより構成されてもよい。例えば、1つのスロットを構成するシンボルの数は、通常CP(Cyclic Prefix)で14個であり、拡張CPで12個である。また、1つのサブフレームを構成するスロットの数は、設定されたサブキャリア間隔に応じて変化する。例えば、通常CPに対して、サブキャリア間隔として15kHzが設定された場合、サブフレーム当たりのスロットの数は1(すなわち、14シンボル)であり、サブキャリア間隔として30kHzが設定された場合、サブフレーム当たりのスロットの数は2(すなわち、28シンボル)であり、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、56シンボル)であり、サブキャリア間隔として120kHzが設定された場合、サブフレーム当たりのスロットの数は8(すなわち、128シンボル)である。また、拡張CPに対して、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、48シンボル)である。 For example, a radio frame consists of 10 subframes. For example, one subframe may be 1 ms. Also, one subframe may consist of one or more slots. For example, the number of symbols forming one slot is 14 for a normal CP (Cyclic Prefix) and 12 for an extended CP. Also, the number of slots forming one subframe changes according to the set subcarrier interval. For example, for normal CP, if the subcarrier spacing is set to 15 kHz, the number of slots per subframe is 1 (i.e., 14 symbols), and if the subcarrier spacing is set to 30 kHz, the subframe If the number of slots per subframe is 2 (i.e. 28 symbols) and the subcarrier spacing is set to 60kHz, the number of slots per subframe is 4 (i.e. 56 symbols) and the subcarrier spacing is 120kHz. is set, the number of slots per subframe is 8 (ie, 128 symbols). Also, when 60 kHz is set as the subcarrier spacing for the extended CP, the number of slots per subframe is 4 (that is, 48 symbols).
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。例えば、UE100は、基地局200からUE100に割り当てられたC-RNTI(Cell-Radio Network Temporary Identifier)及びMCS-C-RNTI(Modulation and Coding Scheme-C-RNTI)、又はCS-RNTI(Configured Scheduling-RNTI)を用いてPDCCHのブラインドデコードを行い、デコードに成功したDCIを自UE宛てのDCIとして取得する。ここで、基地局200から送信されるDCIには、C-RNTI及びMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRCパリティビットが付加されている。 Among physical channels, the physical downlink control channel (PDCCH) plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control. For example, the UE100 is C -RNTI (Cell -Radio Network Temporary Identifier) and MCS -C -RNTI (MCS -C -RNTI) assigned from base station 200 to UE100. EME -C -RNTI), or CS -RNTI (CONFIGURED SCHEDULING- RNTI) is used to blind-decode the PDCCH, and the successfully decoded DCI is acquired as the DCI addressed to the own UE. Here, the DCI transmitted from the base station 200 is added with CRC parity bits scrambled by C-RNTI and MCS-C-RNTI or CS-RNTI.
 UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRBからなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。 The UE 100 can use a bandwidth narrower than the system bandwidth (that is, the cell bandwidth). The base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs. UE 100 transmits and receives data and control signals on the active BWP. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(CORESET:control resource set)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。 For example, the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell. CORESET is a radio resource for control information that the UE 100 should receive. UE 100 may be configured with up to 12 CORESETs on the serving cell. Each CORESET has an index from 0 to 11. For example, a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF). Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 (BWP)
 UE100の消費電力の削減及び広帯域キャリアの有効活用のためにBWPが規定されている。BWPには、イニシャルBWP(イニシャルDL BWP及びイニシャルUL BWP)と、専用BWP(専用DL BWP及び専用UL BWP)とがある。UE100には、その能力に応じて、ある1つのサービングセル内で最大4つまでのDL BWP及び最大4つまでのUL BWPが設定される。なお、以下において、DL BWP及びUL BWPを区別しないときは単にBWPと称する。
(BWP)
BWP is defined to reduce the power consumption of the UE 100 and effectively utilize broadband carriers. BWP includes initial BWP (initial DL BWP and initial UL BWP) and dedicated BWP (dedicated DL BWP and dedicated UL BWP). The UE 100 is configured with up to four DL BWPs and up to four UL BWPs in one serving cell according to its capabilities. In the following description, DL BWP and UL BWP are simply referred to as BWP when not distinguished from each other.
 イニシャルBWPは、少なくともイニシャルアクセスに用いられるBWPであって、複数のUE100に共通で用いられる。イニシャルDL BWP及びイニシャルUL BWPのそれぞれは、BWP識別子であるbwp-idが“0”として規定される。イニシャルBWPには、PBCHで伝送されるマスタ情報ブロック(MIB)により導出及び設定されるイニシャルBWPと、システム情報ブロック(SIB)、具体的には、システム情報ブロック・タイプ1(SIB1)により設定されるイニシャルBWPとの2種類がある。MIBにより設定されるイニシャルBWPは、MIBに含まれるパラメータを用いて設定されるCORESET#0に応じた帯域幅を有する。SIB1により設定されるイニシャルBWPは、SIB1中の情報要素であるServingCellConfigCommonSIBに含まれる各種パラメータ(locationAndBandwidth、subcarrierSpacing、cyclicPrefix)により設定される。 The initial BWP is a BWP that is used at least for initial access and is commonly used by multiple UEs 100 . Each of the initial DL BWP and the initial UL BWP is defined with a BWP identifier bwp-id of "0". The initial BWP includes the initial BWP derived and set by the master information block (MIB) transmitted on the PBCH, and the system information block (SIB), specifically set by the system information block type 1 (SIB1). There are two types: the initials BWP. The initial BWP set by the MIB has a bandwidth according to CORESET#0 which is set using parameters contained in the MIB. The initial BWP set by SIB1 is set by various parameters (locationAndBandwidth, subscriberSpacing, cyclicPrefix) included in ServingCellConfigCommonSIB, which is an information element in SIB1.
 セルに対するイニシャルアクセス時において、当該セルのSSBを受信したUE100は、そのPBCH(MIB)に含まれる情報要素であるpdcch-ConfigSIB1内のcontrolResourceSetZero(0から15までの整数値)の設定値から、Type-0 PDCCH CSS setの帯域幅(24、48、又は96RBs)を取得する。そして、UE100は、Type-0 PDCCH CSS setをモニタリングしてSIB1を取得し、SIB1から、イニシャルBWPの周波数位置及び/又は帯域幅を示すパラメータであるlocationAndBandwidthを取得する。UE100は、イニシャルアクセスにおけるランダムアクセスプロシージャ中のメッセージ4(Msg.4)を受信するまでの間は、MIBにより設定されるイニシャルBWP、すなわち、CORESET #0に基づく帯域幅をイニシャルBWPに用いる。これに対しMsg.4の受信後は、UE100は、SIB1中のlocationAndBandwidthで設定された帯域幅をイニシャルBWPに用いる。なお、Msg.4は、RRCSetupメッセージ、RRCResumeメッセージ、又はRRCReestablishmentメッセージであってもよい。UE100は、このようなイニシャルアクセス(ランダムアクセスプロシージャ)により、例えばRRCアイドル状態からRRCコネクティッド状態に遷移する。 At the time of initial access to the cell, UE100 that has received the SSB of the cell, from the setting value of controlResourceSetZero (integer value from 0 to 15) in pdcch-ConfigSIB1 is an information element included in the PBCH (MIB), Type -0 Acquire the PDCCH CSS set bandwidth (24, 48, or 96 RBs). The UE 100 then monitors the Type-0 PDCCH CSS set to acquire SIB1, and acquires locationAndBandwidth, which is a parameter indicating the frequency position and/or bandwidth of the initial BWP, from SIB1. The UE 100 uses the initial BWP set by the MIB, that is, the bandwidth based on CORESET #0, for the initial BWP until it receives message 4 (Msg.4) in the random access procedure in the initial access. On the other hand, Msg. 4, the UE 100 uses the bandwidth set by locationAndBandwidth in SIB1 for the initial BWP. In addition, Msg. 4 may be the RRCSetup message, the RRCResume message, or the RRCReestablishment message. The UE 100 transitions from, for example, the RRC idle state to the RRC connected state by such initial access (random access procedure).
 専用BWPは、あるUE100に専用(UE固有)に設定されるBWPである。専用BWPには、“0”以外のbwp-idが設定されてもよい。例えば、基地局200からUE100に送信される専用シグナリングであるRRCメッセージ中のSevingcellConfigに含まれる情報要素であるBWP-Downlink及びBWP-Uplinkに基づいて、専用DL BWP及び専用UL BWPがそれぞれ設定される。例えば、BWP-Downlink及びBWP-Uplinkのそれぞれに、当該BWPを設定する各種パラメータ(locationAndBandwidth、subcarrierSpacing、cyclicPrefix)が含まれてもよい。 A dedicated BWP is a BWP that is set exclusively for a certain UE 100 (UE-specific). A bwp-id other than "0" may be set for the dedicated BWP. For example, a dedicated DL BWP and a dedicated UL BWP are set based on BWP-Downlink and BWP-Uplink, which are information elements included in the SavingcellConfig in the RRC message, which is dedicated signaling transmitted from the base station 200 to the UE 100. . For example, each of BWP-Downlink and BWP-Uplink may include various parameters (locationAndBandwidth, subsidiarySpacing, cyclicPrefix) for setting the BWP.
 基地局200は、設定された1つ又は複数のBWPのうち、基地局200との通信に用いるBWP(すなわち、アクティブBWP)をUE100へ通知できる。例えば、基地局200は、設定の実行時にアクティブにするBWP、すなわち、基地局200との通信で最初に用いるBWPを示すBWP識別子をUE100へ送信できる。また、アクティブBWPからアクティブBWPでないBWP(以下、非アクティブBWP)への切り替え、及び非アクティブBWPからアクティブBWPへの切り替えの制御には、例えば、PDCCH(DCI)、RRCシグナリング、MAC制御要素(MAC CE)、又はタイマによる切り替えが用いられる。 The base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs. For example, the base station 200 can transmit to the UE 100 a BWP identifier indicating the BWP to be activated when executing the configuration, that is, the BWP that is first used in communication with the base station 200 . In addition, for the control of switching from an active BWP to a BWP that is not an active BWP (hereinafter referred to as inactive BWP) and switching from an inactive BWP to an active BWP, for example, PDCCH (DCI), RRC signaling, MAC control element (MAC CE), or switching by a timer is used.
 なお、アクティブBWPにおける通信とは、当該BWPにおける上りリンク共用チャネル(UL-SCH:Uplink-Shared Channel)での送信、当該BWPにおけるランダムアクセスチャネル(RACH:Random Acces Channel)での送信(物理ランダムアクセスチャネル(PRACH:Physical RACH)機会が設定されている場合)、当該BWPにおける物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)のモニタ、当該BWPにおける物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)での送信(PUCCHリソースが設定されている場合)、当該BWPに対するチャネル状態情報(CSI:Channel State Information)のレポート、及び、当該BWPにおける下りリンク共用チャネル(DL-SCH:Downlink-Shared Channel)の受信の少なくともいずれかが含まれてもよい。 In addition, communication in the active BWP means transmission in the uplink shared channel (UL-SCH: Uplink-Shared Channel) in the BWP, transmission in the random access channel (RACH: Random Access Channel) in the BWP (physical random access channel (PRACH: Physical RACH) opportunity is set), monitoring of the physical downlink control channel (PDCCH: Physical Downlink Control Channel) in the BWP, physical uplink control channel (PUCCH: Physical Uplink Control Channel in the BWP ) (when the PUCCH resource is set), a report of channel state information (CSI: Channel State Information) for the BWP, and a downlink shared channel (DL-SCH: Downlink-Shared Channel) in the BWP may include at least one of receiving
 ここで、UL-SCHはトランスポートチャネルであり、物理チャネルである物理上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)にマップされる。また、UL-SCHで送信されるデータは、UL-SCHデータとも称される。例えば、UL-SCHデータ、上りユーザーデータに対応してもよい。また、DL-SCHはトランスポートチャネルであり、物理チャネルである物理下りリンク共用チャネル(PDSCH:Phsyical downlink Shared Channel)にマップされる。また、DL-SCHで送信されるデータは、DL-SCHデータとも称される。例えば、DL-SCHデータ、下りユーザーデータに対応してもよい。 Here, the UL-SCH is a transport channel and is mapped to a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel). Data transmitted on the UL-SCH is also referred to as UL-SCH data. For example, it may correspond to UL-SCH data and uplink user data. DL-SCH is a transport channel and is mapped to a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel). Data transmitted on the DL-SCH is also referred to as DL-SCH data. For example, it may correspond to DL-SCH data and downlink user data.
 PUCCHは、上りリンク制御情報(UCI)を送信するために用いられる。例えば、上りリンク制御情報は、HARQ-ACK(Hybrid Automatic Repeat Request)、CSI、及び/又は、SR(Scheduling Request)を含む。HARQ-ACKは、肯定応答(Positive Acknowledgment)、又は、否定応答(Negative Acknowledgment)を含む。例えば、PUCCHは、PDSCH(すなわち、DL-SCH(DL-SCHデータ、下りユーザーデータ))に対するHARQ-ACKの送信に用いられる。ここで、DL-SCHデータ、及び/又は、下りユーザーデータは、下りトランスポートブロックとも称される。 PUCCH is used to transmit uplink control information (UCI). For example, the uplink control information includes HARQ-ACK (Hybrid Automatic Repeat Request), CSI, and/or SR (Scheduling Request). HARQ-ACK includes positive acknowledgment or negative acknowledgment. For example, PUCCH is used to transmit HARQ-ACK for PDSCH (that is, DL-SCH (DL-SCH data, downlink user data)). Here, DL-SCH data and/or downlink user data are also referred to as downlink transport blocks.
 UE100は、例えば、アクティブなDL BWPにおいて、1又は複数のコントロールリソースセット(CORESET(s):Control Resource Set(s))におけるPDCCH候補のセットを監視する。PDCCHの監視は、監視される下りリンク制御情報(DCI)フォーマットに従って、PDCCH候補のそれぞれをデコードすることを含んでもよい。ここで、UE100は、基地局200によって設定されたRNTI(Radio Network Temporary Identifier)によってスクランブルされたCRC(Cyclic Redundancy Check、CRCパリティビットとも称される)が付加されたDCIフォーマットを監視してもよい。ここで、RNTIは、SI-RNTI(System Information-RNTI)、RA-RNTI(Random Access RNTI)、TC-RNTI(Temporary C-RNTI)、P-RNTI(Paging RNTI)、及び/又は、C-RNTI(Cell-RNTI)を含んでもよい。UE100が監視するPDCCH候補のセットは、PDCCHのサーチスペースセットとして規定されてもよい。サーチスペースセットは、共通サーチスペースセット(CSS set(s):Common Search Space set(s))及び/又はUE固有サーチスペースセット(USS set(s):UE Specific Search Space set(s))を含んでもよい。従って、基地局200は、CORESET及び/又はサーチスペースセットをUE100に設定し、UE100は、設定されたCORESET及び/又はサーチスペースセットにおいて、PDCCHを監視してもよい。 UE 100 monitors, for example, a set of PDCCH candidates in one or more control resource sets (CORESET(s): Control Resource Set(s)) in an active DL BWP. PDCCH monitoring may include decoding each of the PDCCH candidates according to a monitored downlink control information (DCI) format. Here, the UE 100 may monitor a DCI format to which a CRC (Cyclic Redundancy Check, also referred to as a CRC parity bit) scrambled by an RNTI (Radio Network Temporary Identifier) set by the base station 200 is added. . Here, RNTI is SI-RNTI (System Information-RNTI), RA-RNTI (Random Access RNTI), TC-RNTI (Temporary C-RNTI), P-RNTI (Paging RNTI), and/or C-RNTI (Cell-RNTI) may be included. A set of PDCCH candidates monitored by the UE 100 may be defined as a PDCCH search space set. The search space set includes a common search space set (CSS set(s): Common Search Space set(s)) and/or a UE-specific search space set (USS set(s): UE Specific Search Space set(s)). It's okay. Therefore, the base station 200 configures the CORESET and/or search space set to the UE 100, and the UE 100 may monitor the PDCCH in the configured CORESET and/or search space set.
 (SSB)
 基地局200は、イニシャルDL BWPにおいてSSBを送信する。例えば、SSBは、連続する4つのOFDMシンボルから構成され、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(MIB)、及び、PBCHの復調参照信号(DMRS)が配置される。SSBがマップされるリソースエレメント(時間リソース・周波数リソース)の位置は、3GPPの技術仕様書、例えば「TS38.211 v16.2.0」の「section 7.4.3.1」、及び「TS38.213 v16.2.0」の「section 4.1」に規定されている。SSBの帯域幅は、例えば、240の連続するサブキャリア、すなわち、20RBの帯域幅である。
(SSB)
Base station 200 transmits SSB in initial DL BWP. For example, the SSB is composed of four consecutive OFDM symbols, in which a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (MIB), and a demodulation reference signal (DMRS) for the PBCH are arranged. The position of the resource element (time resource/frequency resource) to which the SSB is mapped is specified in the technical specifications of 3GPP, for example, "Section 7.4.3.1" of "TS38.211 v16.2.0" and "TS38 .213 v16.2.0, section 4.1. The bandwidth of SSB is, for example, 240 consecutive sub-carriers, ie a bandwidth of 20 RBs.
 SIB1と対応付けられたSSBは、セル固有SSB(CD-SSB)と称される。ある1つのUE100の観点では、1つのサービングセルは1つのCD-SSBと対応付けられる。なお、SIB1は、RMSI(Remaining Minimum System Information)とも称される。1つのCD-SSBは、一意のNCGI(NR Cell Global Identifier)を持つ1つのセルと対応する。SIB1(RMSI)と対応付けられていないSSBは、非セル固有SSB(Non-CD-SSB)と称される。 The SSB associated with SIB1 is called cell-specific SSB (CD-SSB). From the perspective of one UE 100, one serving cell is associated with one CD-SSB. In addition, SIB1 is also called RMSI (Remaining Minimum System Information). One CD-SSB corresponds to one cell with a unique NCGI (NR Cell Global Identifier). SSBs not associated with SIB1 (RMSI) are referred to as non-cell-specific SSBs (Non-CD-SSBs).
 基地局200は、図3に示すように、例えばSIB1中の情報要素であるServingCellConfigCommonSIBに含まれるパラメータ(ssb-PositionsInBurst、ssb-periodicityServingCell)により、送信されているSSBについてUE100に通知する。ssb-PositionsInBurstは、ハーフフレーム(5ms)のSSバースト内で送信されているSSBの時間位置を示す。ssb-periodicityServingCellは、SSBの送信周期を示す。 As shown in FIG. 3, the base station 200 notifies the UE 100 of the SSB being transmitted, for example, by the parameters (ssb-PositionsInBurst, ssb-periodicityServingCell) included in the information element ServingCellConfigCommonSIB in SIB1. ssb-PositionsInBurst indicates the time position of the SSB being transmitted within the half-frame (5 ms) SS burst. ssb-periodicityServingCell indicates the SSB transmission period.
 UE100は、ssb-PositionsInBurstに基づいて、どのSSBインデックスのSSBが送信されているかを把握できる。具体的には、ハーフフレーム内のSSBの最大数(最大で64まで)はサブキャリア間隔及び周波数帯域に応じて定まり、UE100は、SSBインデックスに基づいて時間ドメインにおけるSSBの候補位置を特定できる。UE100は、当該候補位置で実際にSSBが送信されているか否かをssb-PositionsInBurstに基づいて把握する。但し、SSBインデックスは、対応するSSBが送信される周波数位置と対応付けられていない。そのため、1つのセルで複数のSSBが送信されるような場合、UE100は、SSBインデックスに基づいてその周波数位置を把握できない。 Based on ssb-PositionsInBurst, the UE 100 can grasp the SSB of which SSB index is being transmitted. Specifically, the maximum number of SSBs in a half-frame (up to 64) is determined according to the subcarrier spacing and the frequency band, and the UE 100 can identify SSB candidate positions in the time domain based on the SSB index. Based on ssb-PositionsInBurst, UE 100 recognizes whether or not SSB is actually being transmitted at the candidate position. However, the SSB index is not associated with the frequency position on which the corresponding SSB is transmitted. Therefore, when multiple SSBs are transmitted in one cell, UE 100 cannot grasp the frequency position based on the SSB index.
 (セパレートイニシャルBWP)
 3GPPにおいて、特定UE100B(RedCap UE)を想定して、従来のイニシャルBWPとは独立に、特定UE100B(RedCap UE)向けのイニシャルBWP(第2イニシャルBWP)を設定することが合意されている。このような新たに導入されるイニシャルBWPは、セパレートイニシャルBWPと称される。従来のイニシャルBWPは、一般UE100(Non-RedCap UE)を想定した第1イニシャルBWPである。セパレートイニシャルBWPは、第1イニシャルBWPと異なる第2イニシャルBWPである。
(Separate initial BWP)
In 3GPP, assuming a specific UE 100B (RedCap UE), it is agreed to set an initial BWP (second initial BWP) for the specific UE 100B (RedCap UE) independently of the conventional initial BWP. Such a newly introduced initial BWP is called a separate initial BWP. A conventional initial BWP is a first initial BWP assuming a general UE 100 (Non-RedCap UE). The separate initials BWP are second initials BWP different from the first initials BWP.
 セパレートイニシャルBWPの帯域幅は、特定UE100B(RedCap UE)の最大帯域幅以下であってもよい。セパレートイニシャルBWPの周波数帯域は、一般UE100(Non-RedCap UE)のUL送信に悪影響を与えないように、従来のイニシャルBWPの周波数帯域と重複しないように設定されてもよい。 The bandwidth of the separate initial BWP may be less than or equal to the maximum bandwidth of the specific UE 100B (RedCap UE). The frequency band of the separate initial BWP may be set so as not to overlap with the frequency band of the conventional initial BWP so as not to adversely affect UL transmission of the general UE 100 (Non-RedCap UE).
 例えば、基地局200は、SIB1により、セパレートイニシャルDL BWP及び/又はセパレートイニシャルUL BWPのそれぞれに対する周波数位置及び/又は帯域幅を示すパラメータ(例えばlocationAndBandwidth)を送信する。なお、セパレートイニシャルDL BWP及び/又はセパレートイニシャルUL BWPのそれぞれに対するサブキャリア間隔やサイクリックプレフィックスのパラメータ(例えば、subcarrierSpacing、cyclicPrefix)は設定されてもよいし、設定されなくてもよい。セパレートイニシャルDL BWPにおいて、CORESET#0は設定されなくてもよい。また、セパレートイニシャルDL BWPにおいて、SIB1は送信されなくてもよい。 For example, the base station 200 transmits a parameter (for example, locationAndBandwidth) indicating the frequency position and/or bandwidth for each of the separate initial DL BWP and/or the separate initial UL BWP using SIB1. The subcarrier spacing and cyclic prefix parameters (for example, subcarrierSpacing, cyclicPrefix) for each of the separate initial DL BWP and/or the separate initial UL BWP may or may not be set. CORESET#0 does not have to be set in the separate initial DL BWP. Also, in the separate initial DL BWP, SIB1 does not have to be transmitted.
 実施形態において、セパレートイニシャルDL BWPにおいてSSBが送信されることを想定する。図4に、SSBとイニシャルBWPとの関係の一例を示す。 In the embodiment, it is assumed that SSB is transmitted in separate initial DL BWP. FIG. 4 shows an example of the relationship between SSB and initial BWP.
 図4に示す例において、基地局200(セル)は、第1イニシャルBWP503の周波数帯域内においてCD-SSB501を送信し、第2イニシャルBWP504の周波数帯域内においてNon-CD-SSB502を送信する。第2イニシャルBWP504は、周波数ドメインにおいて第1イニシャルBWP503から離間して配置されている。第2イニシャルBWP504でNon-CD-SSB502が送信されるため、特定UE100B(RedCap UE)は、Non-CD-SSB502に基づいて、同じ周波数位置にある第2イニシャルBWP504における通信を効率的に制御することが可能になる。 In the example shown in FIG. 4, the base station 200 (cell) transmits CD-SSB 501 within the frequency band of the first initial BWP 503 and transmits Non-CD-SSB 502 within the frequency band of the second initial BWP 504. The second initial BWP 504 is spaced apart from the first initial BWP 503 in the frequency domain. Since Non-CD-SSB 502 is transmitted in second initial BWP 504, specific UE 100B (RedCap UE) efficiently controls communication in second initial BWP 504 at the same frequency position based on Non-CD-SSB 502. becomes possible.
 例えば、特定UE100Bが、第2イニシャルBWP504でのイニシャルアクセスにあたり、CD-SSB501に対する測定結果を用いる場合を想定する。この場合、CD-SSB501と第2イニシャルBWP504とで周波数帯域が異なるため、第2イニシャルBWP504の実際の無線品質と異なる測定結果である懸念がある。これに対し、特定UE100BがNon-CD-SSB502に対する測定結果に基づいて第2イニシャルBWP504でのイニシャルアクセスを行う場合、Non-CD-SSB502と第2イニシャルBWP504とで周波数帯域が同じであるため、正しい測定結果を利用可能になる。また、特定UE100Bは、第1イニシャルBWP503の周波数帯域と第2イニシャルBWP504の周波数帯域との間で周波数切り替え(retuning)を行わなくても済む。 For example, assume that the specific UE 100B uses the measurement result for the CD-SSB 501 upon initial access with the second initial BWP 504. In this case, since the CD-SSB 501 and the second initial BWP 504 have different frequency bands, there is concern that the measurement results may differ from the actual radio quality of the second initial BWP 504 . On the other hand, when the specific UE 100B performs initial access with the second initial BWP504 based on the measurement results for the Non-CD-SSB502, since the frequency band is the same for the Non-CD-SSB502 and the second initial BWP504, Correct measurement results are available. Further, the specific UE 100B does not need to perform frequency switching (retuning) between the frequency band of the first initial BWP 503 and the frequency band of the second initial BWP 504.
 このように、実施形態では、基地局200(セル)は、従来のイニシャルDL BWPである第1イニシャルBWP503においてCD-SSB501を送信するとともに、セパレートイニシャルDL BWPである第2イニシャルBWP504においてNon-CD-SSB502を送信する。 Thus, in the embodiment, the base station 200 (cell) transmits CD-SSB 501 in the first initial BWP 503, which is the conventional initial DL BWP, and non-CD in the second initial BWP 504, which is the separate initial DL BWP. - Send SSB 502;
 ところで、UE100は、PUCCHのビーム制御を目的として基地局200から空間セッティング(spatial setting)が設定される。このような空間セッティングは、PUCCHのビーム制御において参照する信号を設定するパラメータを含み、当該パラメータとしてSSBインデックスを設定できる。PUCCH送信に対する空間セッティングとしてSSBインデックスが設定されたUE100は、当該SSBインデックスが示すSSBの受信に対して用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCH送信を行う。 By the way, for UE 100, spatial setting is set by base station 200 for the purpose of PUCCH beam control. Such spatial setting includes a parameter for setting a signal to be referred to in PUCCH beam control, and can set an SSB index as the parameter. UE 100 for which an SSB index is set as a spatial setting for PUCCH transmission performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used for reception of SSB indicated by the SSB index.
 また、UE100から基地局200へ送信するサウンディング参照信号(SRS)のビーム制御を目的として、基地局200からUE100に対して空間セッティング(spatial setting)が設定される。このような空間セッティングは、SRSのビーム制御において参照する信号を設定するパラメータを含み、当該パラメータとしてSSBインデックスを設定できる。SRS送信に対する空間セッティングとしてSSBインデックスが設定されたUE100は、当該SSBインデックスが示すSSBの受信に対して用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてSRS送信を行う。 Also, for the purpose of beam control of sounding reference signals (SRS) transmitted from UE 100 to base station 200, spatial setting is set from base station 200 to UE 100. Such spatial settings include parameters for setting signals to be referred to in SRS beam control, and SSB indexes can be set as the parameters. UE 100 for which an SSB index is set as a spatial setting for SRS transmission performs SRS transmission using the same spatial domain filter as the spatial domain filter used for reception of SSB indicated by the SSB index.
 また、UE100は、基地局200から受信する参照信号に基づいて無線リンクモニタリング(RLM)及びビーム障害検出(BFD)の少なくとも一方の動作を行う。基地局200は、RLM及びBFDの少なくとも一方(以下、適宜「RLM/BFD」と略記する)に用いる参照信号を設定するRLM参照信号設定情報をUE100に送信する。このような設定情報は、RLM/BFDにおいて参照する信号を設定するパラメータを含み、当該パラメータとしてSSBインデックスを設定できる。 Also, the UE 100 performs at least one of radio link monitoring (RLM) and beam failure detection (BFD) based on the reference signal received from the base station 200 . The base station 200 transmits to the UE 100 RLM reference signal configuration information for configuring reference signals used for at least one of RLM and BFD (hereinafter abbreviated as “RLM/BFD” as appropriate). Such configuration information includes parameters for configuring signals to be referenced in RLM/BFD, and SSB indexes can be configured as the parameters.
 また、UE100は、基地局200から受信する参照信号に基づいて、上りリンク送信電力制御のためのパスロス推定を行う。基地局200は、パスロス推定に用いる参照信号を設定するパスロス参照信号設定情報をUE100に送信する。このような設定情報は、パスロス推定において参照する信号を設定するパラメータを含み、当該パラメータとしてSSBインデックスを設定できる。このようなSSBインデックスが設定されたUE100は、当該SSBインデックスが示すSSBを用いてパスロス推定(パスロスの算出)を行う。 Also, the UE 100 performs path loss estimation for uplink transmission power control based on the reference signal received from the base station 200 . The base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation. Such setting information includes a parameter for setting a signal to be referred to in pathloss estimation, and can set an SSB index as the parameter. UE 100 in which such an SSB index is set performs path loss estimation (calculation of path loss) using the SSB indicated by the SSB index.
 既存の3GPPの技術仕様では、SSBをPUCCH及び/又はSRSのビーム制御に用いる場合、サービングセル内にSSBが1つしかないことを前提としてSSBインデックスがUE100に設定される。しかしながら、SSBがサービングセルにおいて1つしか送信されなければ問題ないが、CD-SSB501に加えて、Non-CD-SSB502が当該セルにおいて送信されるとなると、UE100がどのSSBをPUCCH及び/又はSRSのビーム制御に用いるべきか分からなくなる。 According to existing 3GPP technical specifications, when SSB is used for PUCCH and/or SRS beam control, an SSB index is set in UE 100 on the assumption that there is only one SSB in the serving cell. However, there is no problem if only one SSB is transmitted in the serving cell, but in addition to CD-SSB 501, when Non-CD-SSB 502 is transmitted in the cell, UE 100 uses which SSB for PUCCH and / or SRS. It becomes unclear whether it should be used for beam control.
 同様に、既存の3GPPの技術仕様では、SSBをRLM/BFDに用いる場合、サービングセル内にSSBが1つしかないことを前提としてSSBインデックスがUE100に設定される。しかしながら、CD-SSB501に加えてNon-CD-SSB502が当該セルにおいて送信される場合、UE100がどのSSBをRLM/BFDに用いるべきか分からなくなる。 Similarly, in existing 3GPP technical specifications, when SSB is used for RLM/BFD, an SSB index is set in UE 100 on the assumption that there is only one SSB in the serving cell. However, if Non-CD-SSB 502 is transmitted in the cell in addition to CD-SSB 501, UE 100 will not know which SSB to use for RLM/BFD.
 同様に、既存の3GPPの技術仕様では、SSBを上りリンク送信電力制御のためのパスロス推定に用いる場合、サービングセル内にSSBが1つしかないことを前提としてSSBインデックスがUE100に設定される。しかしながら、CD-SSB501に加えてNon-CD-SSB502が当該セルにおいて送信される場合、UE100がどのSSBをパスロス推定に用いるべきか分からなくなる。 Similarly, in existing 3GPP technical specifications, when SSB is used for path loss estimation for uplink transmission power control, an SSB index is set in UE 100 on the assumption that there is only one SSB in the serving cell. However, if Non-CD-SSB 502 is transmitted in the cell in addition to CD-SSB 501, UE 100 will not know which SSB to use for pathloss estimation.
 (ユーザ装置の構成)
 図5を参照して、実施形態に係るUE100の構成について説明する。UE100は、一般UE100Aであってもよいし、特定UE100Bであってもよい。UE100は、通信部110及び制御部120を備える。
(Configuration of user device)
A configuration of the UE 100 according to the embodiment will be described with reference to FIG. The UE 100 may be a general UE 100A or a specific UE 100B. UE 100 includes communication unit 110 and control unit 120 .
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
 このように構成されたUE100は、基地局200のセル(サービングセル)の帯域幅の一部であるイニシャルBWPにおいて送信されるSSBを受信する。第1実施形態に係るUE100において、送信部111は、基地局200に対するPUCCH送信を行う。受信部112は、PUCCH送信を制御するために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してPUCCH送信を制御する。第1実施形態において、受信部112は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む設定情報を受信する。これにより、UE100は、識別情報に基づいて、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定可能である。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、PUCCH送信の制御を適切に行うことが可能になる。 The UE 100 configured in this way receives the SSB transmitted in the initial BWP, which is part of the bandwidth of the cell of the base station 200 (serving cell). In UE 100 according to the first embodiment, transmission section 111 performs PUCCH transmission to base station 200 . Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling PUCCH transmission. Control section 120 refers to the SSB indicated by the SSB index included in the received configuration information to control PUCCH transmission. In the first embodiment, the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . Thereby, the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to appropriately control PUCCH transmission.
 このような設定情報は、PUCCHを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報であってもよい。制御部120は、SSBインデックスが示すSSBがNon-CD-SSB502であると特定した場合、Non-CD-SSB502の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCH送信を行うように制御する。一方、制御部120は、SSBインデックスが示すSSBがCD-SSB501であると特定した場合、CD-SSB501の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてPUCCH送信を行うように制御する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、PUCCH送信のビーム制御を適切に行うことが可能になる。 Such configuration information may be spatial relationship configuration information that configures spatial settings for beam control for transmitting PUCCH. When the SSB indicated by the SSB index is identified as Non-CD-SSB502, control unit 120 performs PUCCH transmission using the same spatial domain filter as the spatial domain filter used to receive Non-CD-SSB502. Control. On the other hand, when the SSB indicated by the SSB index is identified as CD-SSB 501, control section 120 controls to perform PUCCH transmission using the same spatial domain filter as the spatial domain filter used for receiving CD-SSB 501. . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, beam control of PUCCH transmission can be appropriately performed.
 また、第1実施形態に係るUE100において、送信部111は、基地局200に対するSRS送信を行う。受信部112は、SRS送信を制御するために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してSRS送信を制御する。第1実施形態において、受信部112は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む設定情報を受信する。これにより、UE100は、識別情報に基づいて、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定可能である。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、SRS送信の制御を適切に行うことが可能になる。 Also, in the UE 100 according to the first embodiment, the transmission section 111 performs SRS transmission to the base station 200 . Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling SRS transmission. The control unit 120 controls SRS transmission by referring to the SSB indicated by the SSB index included in the received configuration information. In the first embodiment, the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . Thereby, the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, SRS transmission can be appropriately controlled.
 なお、SRS送信とは、基地局200が上りリンクのチャネル状態の推定に用いるチャネル推定用の上りリンク物理信号であるSRSを基地局200に送信する動作をいい、UE100は、基地局200からの設定に応じてSRS送信を行う。すなわち、SRS送信は、上りリンクのリンクアダプテーションのための動作である。リンクアダプテーションは、データ送信に適用する変調・符号化方式(MCS)をチャネル状態に適応させるものである。 Note that SRS transmission refers to an operation in which the base station 200 transmits an SRS, which is an uplink physical signal for channel estimation used to estimate an uplink channel state, to the base station 200 . SRS transmission is performed according to the setting. That is, SRS transmission is an operation for uplink link adaptation. Link adaptation adapts the modulation and coding scheme (MCS) applied to data transmission to channel conditions.
 このような設定情報は、SRSを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報であってもよい。制御部120は、SSBインデックスが示すSSBがNon-CD-SSB502であると特定した場合、Non-CD-SSB502の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてSRS送信を行うように制御する。一方、制御部120は、SSBインデックスが示すSSBがCD-SSB501であると特定した場合、CD-SSB501の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いてSRS送信を行うように制御する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、SRS送信のビーム制御を適切に行うことが可能になる。 Such configuration information may be spatial relationship configuration information that configures spatial settings for beam control for transmitting SRS. When the SSB indicated by the SSB index is identified as Non-CD-SSB 502, control section 120 performs SRS transmission using the same spatial domain filter as the spatial domain filter used for receiving Non-CD-SSB 502. Control. On the other hand, when the SSB indicated by the SSB index is identified as CD-SSB 501, control section 120 controls to perform SRS transmission using the same spatial domain filter as the spatial domain filter used for receiving CD-SSB 501. . Therefore, even when non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, beam control for SRS transmission can be appropriately performed.
 また、第1実施形態に係るUE100において、受信部112は、RLM/BFDを行うために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してRLM/BFDを行う。第1実施形態において、受信部112は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む設定情報を受信する。これにより、UE100は、識別情報に基づいて、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定可能である。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、RLM/BFDを適切に行うことが可能になる。 Also, in the UE 100 according to the first embodiment, the receiving section 112 receives from the base station 200 configuration information including an SSB index indicating an SSB to be referenced for performing RLM/BFD. The control unit 120 performs RLM/BFD by referring to the SSB indicated by the SSB index included in the received configuration information. In the first embodiment, the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . Thereby, the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
 なお、RLM/BFDは、例えば、UE100のPHYレイヤにおいて参照信号の受信状態を監視して障害イベント(例えば、同期外れ)を検出する処理を含む。UE100は、PHYレイヤからMACレイヤに通知される障害イベント通知をカウンタでカウントし、所定時間内でカウント値が規定回数以上になると、無線リンク障害又はビーム障害を検出する。SSBインデックスが設定情報で設定された場合、UE100は、SSBを用いてRLM/BFDを行う。 Note that the RLM/BFD includes, for example, a process of monitoring the reception state of the reference signal in the PHY layer of the UE 100 and detecting a failure event (for example, loss of synchronization). The UE 100 counts failure event notifications sent from the PHY layer to the MAC layer using a counter, and detects radio link failure or beam failure when the count value reaches a specified number of times or more within a predetermined time. When the SSB index is configured in the configuration information, UE 100 performs RLM/BFD using SSB.
 このような設定情報は、RLM及びBFDの少なくとも一方に用いる参照信号を設定するRLM参照信号設定情報であってもよい。制御部120は、SSBインデックスが示すSSBがNon-CD-SSB502であると特定した場合、Non-CD-SSB502を用いてRLM/BFDを行う。一方、制御部120は、SSBインデックスが示すSSBがCD-SSB501であると特定した場合、CD-SSB501を用いてRLM/BFDを行う。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、RLM/BFDを適切に行うことが可能になる。 Such configuration information may be RLM reference signal configuration information that configures reference signals used for at least one of RLM and BFD. When determining that the SSB indicated by the SSB index is the Non-CD-SSB 502, the control unit 120 uses the Non-CD-SSB 502 to perform RLM/BFD. On the other hand, when the control unit 120 identifies that the SSB indicated by the SSB index is the CD-SSB 501, the CD-SSB 501 is used to perform RLM/BFD. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
 また、第1実施形態に係るUE100において、受信部112は、上りリンク(UL)送信電力制御のためのパスロス推定を行うために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、設定情報に含まれるSSBインデックスが示すSSBを参照してパスロス推定を行う。第1実施形態において、受信部112は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む設定情報を受信する。これにより、UE100は、識別情報に基づいて、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定可能である。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、パスロス推定を適切に行うことが可能になる。 Also, in the UE 100 according to the first embodiment, the receiving unit 112 receives from the base station 200 configuration information including an SSB index indicating an SSB to be referenced for path loss estimation for uplink (UL) transmission power control. do. The control unit 120 performs path loss estimation by referring to the SSB indicated by the SSB index included in the configuration information. In the first embodiment, the receiving unit 112 receives setting information further including identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . Thereby, the UE 100 can identify whether the SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 based on the identification information. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
 このような設定情報は、パスロス推定に用いる参照信号を設定するパスロス参照信号設定情報であってもよい。制御部120は、SSBインデックスが示すSSBがNon-CD-SSB502であると特定した場合、Non-CD-SSB502を用いてパスロス推定を行う。一方、制御部120は、SSBインデックスが示すSSBがCD-SSB501であると特定した場合、CD-SSB501を用いてパスロス推定を行う。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、パスロス推定を適切に行うことが可能になる。 Such setting information may be pathloss reference signal setting information for setting reference signals used for pathloss estimation. When the SSB indicated by the SSB index is identified as Non-CD-SSB 502, control section 120 uses Non-CD-SSB 502 to perform path loss estimation. On the other hand, when the SSB indicated by the SSB index is identified as CD-SSB501, control section 120 uses CD-SSB501 to perform path loss estimation. Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
 ここで、CD-SSB501は、セル(サービングセル)の第1イニシャルBWP503(すなわち、従来のイニシャルDL BWP)において送信されるSSBであってもよい。Non-CD-SSB502は、当該セル(サービングセル)において、第1イニシャルBWP503と異なる第2イニシャルBWP504(すなわち、セパレートイニシャルDL BWP)において送信されるSSBであってもよい。このように、第2イニシャルBWP504でNon-CD-SSB502が送信されるため、UE100は、Non-CD-SSB502に基づいて、同じ周波数位置にある第2イニシャルBWP504における通信を効率的に制御することが可能になる。 Here, the CD-SSB 501 may be the SSB transmitted in the first initial BWP 503 (that is, the conventional initial DL BWP) of the cell (serving cell). Non-CD-SSB 502 may be SSB transmitted in a second initial BWP 504 (that is, a separate initial DL BWP) different from the first initial BWP 503 in the cell (serving cell). Thus, since Non-CD-SSB502 is transmitted in the second initial BWP504, the UE 100 efficiently controls the communication in the second initial BWP504 in the same frequency position based on the Non-CD-SSB502. becomes possible.
 第1イニシャルBWP503は、一般UE100A(すなわち、Non-RedCap UE)向けのイニシャルBWPであってもよい。第2イニシャルBWP504は、一般UE100Aに比べて通信能力が低減された特定UE100B(すなわち、RedCap UE)向けのイニシャルBWPであってもよい。これにより、特定UE100B(RedCap UE)は、Non-CD-SSB502に基づいて、同じ周波数位置にある第2イニシャルBWP504における通信を効率的に制御することが可能になる。 The first initial BWP 503 may be an initial BWP for general UE 100A (that is, Non-RedCap UE). The second initial BWP 504 may be an initial BWP for a specific UE 100B (that is, RedCap UE) whose communication capacity is reduced compared to the general UE 100A. This enables the specific UE 100B (RedCap UE) to efficiently control communication in the second initial BWP504 located at the same frequency position based on the Non-CD-SSB502.
 第1実施形態において、識別情報は、SSBインデックスが示すSSBが送信される周波数位置を示す周波数情報であってもよい。周波数情報は、周波数識別子、例えば、絶対無線周波数チャンネル番号(ARFCN:Absolute Radio-Frequency Channel Number)であってもよい。周波数情報は、周波数ドメインにおける無線リソース位置を示すRB番号であってもよい。これにより、UE100は、識別情報としての周波数情報に基づいて、SSBインデックスが示すSSBが送信される周波数位置を把握でき、SSBインデックスが示すSSBを適切に受信可能になる。 In the first embodiment, the identification information may be frequency information indicating the frequency position where the SSB indicated by the SSB index is transmitted. The frequency information may be a frequency identifier, eg, an Absolute Radio-Frequency Channel Number (ARFCN). The frequency information may be RB numbers indicating radio resource locations in the frequency domain. Thereby, the UE 100 can grasp the frequency position where the SSB indicated by the SSB index is transmitted based on the frequency information as the identification information, and can appropriately receive the SSB indicated by the SSB index.
 第1実施形態において、識別情報は、SSBインデックスが示すSSBが送信される下りリンクBWPを示すBWP識別子(bwp-id)であってもよい。CD-SSB501が送られるBWPとNon-CD-SSB502が送られるBWPとが必ず異なるという前提である場合、BWP識別子が識別情報として好適である。BWP識別子は、上述の周波数位置を示す情報に比べて少ない情報量(すなわち、短いビット長)で構成可能である。 In the first embodiment, the identification information may be a BWP identifier (bwp-id) indicating the downlink BWP in which the SSB indicated by the SSB index is transmitted. If it is assumed that the BWP to which the CD-SSB 501 is sent and the BWP to which the Non-CD-SSB 502 is sent are necessarily different, the BWP identifier is suitable as identification information. The BWP identifier can be configured with a smaller amount of information (that is, a shorter bit length) than the information indicating the frequency position described above.
 第1実施形態において、識別情報は、SSBインデックスが示すSSBのタイプとして、CD-SSB501及びNon-CD-SSB502のいずれか一方を示すSSBタイプ識別子であってもよい。Non-CD-SSB502が送られる周波数等、Non-CD-SSB502をUE100が受信するために必要な情報が別途設定されると仮定した場合、SSBタイプ識別子が識別情報として好適である。SSBタイプ識別子は、例えば、CD-SSB501の場合は“0”、Non-CD-SSB502の場合は“1”といった1ビットのフラグ情報であってもよい。これにより、識別情報を少ない情報量で構成可能である。 In the first embodiment, the identification information may be an SSB type identifier indicating either CD-SSB 501 or Non-CD-SSB 502 as the SSB type indicated by the SSB index. Assuming that the information necessary for the UE 100 to receive the Non-CD-SSB 502, such as the frequency to which the Non-CD-SSB 502 is sent, is set separately, the SSB type identifier is suitable as the identification information. The SSB type identifier may be 1-bit flag information such as "0" for CD-SSB 501 and "1" for Non-CD-SSB 502, for example. As a result, the identification information can be configured with a small amount of information.
 (基地局の構成)
 図6を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
(Base station configuration)
The configuration of the base station 200 according to the embodiment will be described with reference to FIG. Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an RF circuit. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network interface 220 transmits and receives signals to and from the network. The network interface 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Also, the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 第1実施形態に係る基地局200は、UE100が在圏するセル(サービングセル)を管理する。送信部211は、イニシャルBWPにおいてSSBを送信する。受信部212は、当該セル(サービングセル)に在圏するUE100からPUCCH(UCI)を受信する。第1実施形態において、送信部211は、PUCCHの送信を制御するためにUE100が参照するSSBを示すSSBインデックスと、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む設定情報をUE100に送信する。これにより、CD-SSB501に加えてNon-CD-SSB502が当該セル(サービングセル)において送信される場合であっても、UE100がPUCCH送信の制御を適切に行うことが可能になる。 The base station 200 according to the first embodiment manages the cell (serving cell) in which the UE 100 is located. Transmitter 211 transmits SSB in initial BWP. Receiving section 212 receives PUCCH (UCI) from UE 100 located in the cell (serving cell). In the first embodiment, the transmitting unit 211, the SSB index indicating the SSB to be referred to by the UE 100 to control the transmission of the PUCCH, and the SSB indicated by the SSB index is either CD-SSB501 or Non-CD-SSB502 and setting information including identification information for specifying whether or not is transmitted to the UE 100. This allows the UE 100 to appropriately control PUCCH transmission even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501 .
 また、第1実施形態に係る基地局200において、受信部212は、当該セル(サービングセル)に在圏するUE100からSRSを受信する。送信部211は、SRSの送信を制御するためにUE100が参照するSSBを示すSSBインデックスと、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む設定情報をUE100に送信する。これにより、CD-SSB501に加えてNon-CD-SSB502が当該セル(サービングセル)において送信される場合であっても、UE100がSRS送信の制御を適切に行うことが可能になる。 Also, in the base station 200 according to the first embodiment, the receiving unit 212 receives SRS from the UE 100 located in the cell (serving cell). Transmitting section 211 includes an SSB index indicating an SSB that UE 100 refers to for controlling SRS transmission, and an identification for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and the setting information including the information is transmitted to the UE 100 . This allows the UE 100 to appropriately control SRS transmission even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501 .
 また、第1実施形態に係る基地局200において、送信部111は、RLM/BFDを行うためにUE100が参照するSSBを示すSSBインデックスを含む設定情報をUE100に送信する。当該設定情報は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む。これにより、CD-SSB501に加えてNon-CD-SSB502が当該セル(サービングセル)において送信される場合であっても、UE100がRLM/BFDを適切に行うことが可能になる。 In addition, in the base station 200 according to the first embodiment, the transmitting section 111 transmits to the UE 100 configuration information including an SSB index indicating the SSB that the UE 100 refers to in order to perform RLM/BFD. The configuration information further includes identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . This enables the UE 100 to appropriately perform RLM/BFD even when Non-CD-SSB 502 is transmitted in the cell (serving cell) in addition to CD-SSB 501.
 また、第1実施形態に係る基地局200において、送信部211は、上りリンク送信電力制御のためのパスロス推定を行うためにUE100が参照するSSBを示すSSBインデックスを含む設定情報をUE100に送信する。当該設定情報は、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報をさらに含む。これにより、CD-SSB501に加えてNon-CD-SSB502が当該セル(サービングセル)において送信される場合であっても、UE100が上りリンク送信電力制御のためのパスロス推定を適切に行うことが可能になる。 Also, in the base station 200 according to the first embodiment, the transmitting unit 211 transmits to the UE 100 configuration information including an SSB index indicating an SSB that the UE 100 refers to in order to perform path loss estimation for uplink transmission power control. . The configuration information further includes identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 . Thereby, even when Non-CD-SSB502 is transmitted in the cell (serving cell) in addition to CD-SSB501, the UE 100 can appropriately perform path loss estimation for uplink transmission power control. Become.
 (第1実施形態に係る動作例)
 第1実施形態に係る移動通信システム1の動作例について説明する。まず、図7を参照して、第1実施形態に係るUE100におけるSSB特定動作の一例について説明する。この動作において、UE100は、RRCコネクティッド状態にあってもよい。
(Example of operation according to the first embodiment)
An operation example of the mobile communication system 1 according to the first embodiment will be described. First, with reference to FIG. 7, an example of the SSB identification operation in the UE 100 according to the first embodiment will be described. In this operation, the UE 100 may be in the RRC connected state.
 ステップS11において、受信部112は、SSBインデックス及び識別情報を含む設定情報を基地局200から受信する。設定情報は、UE専用シグナリング、例えば、RRC Reconfigurationメッセージ等のRRCメッセージで基地局200からUE100に送信されてもよい。 In step S11, the receiving unit 112 receives configuration information including the SSB index and identification information from the base station 200. The configuration information may be sent from the base station 200 to the UE 100 in UE-specific signaling, for example, an RRC message such as an RRC Reconfiguration message.
 ステップS12において、制御部120は、ステップS11で受信した識別情報がNon-CD-SSB502と対応するか否かを判定する。 In step S12, the control unit 120 determines whether or not the identification information received in step S11 corresponds to the Non-CD-SSB502.
 ステップS11で受信した識別情報がNon-CD-SSB502と対応する場合(ステップS12:YES)、ステップS13において、制御部120は、ステップS11で受信したSSBインデックスがNon-CD-SSBのSSBインデックスであると特定する。 If the identification information received in step S11 corresponds to Non-CD-SSB 502 (step S12: YES), in step S13, control unit 120 determines that the SSB index received in step S11 is the SSB index of Non-CD-SSB. Identify there is.
 ステップS11で受信した識別情報がCD-SSB501と対応する場合(ステップS12:NO)、ステップS14において、制御部120は、ステップS11で受信したSSBインデックスがCD-SSB501のSSBインデックスであると特定する。 If the identification information received in step S11 corresponds to CD-SSB 501 (step S12: NO), in step S14, control unit 120 identifies that the SSB index received in step S11 is the SSB index of CD-SSB 501. .
 なお、制御部120は、それぞれSSBインデックスを含む複数の設定情報が基地局200から設定された場合、設定情報ごとに、SSBインデックスと対応する識別情報に基づいて、当該SSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定してもよい。 Note that when a plurality of pieces of configuration information each including an SSB index are configured from base station 200, control section 120 determines that the SSB index of CD-SSB 501 is based on the identification information corresponding to the SSB index for each configuration information. It may be specified whether it is the SSB index or the SSB index of the Non-CD-SSB 502 .
 (1)PUCCH送信ビーム制御
 次に、図8を参照して、第1実施形態に係るPUCCH送信ビーム制御の一例について説明する。
(1) PUCCH Transmission Beam Control Next, an example of PUCCH transmission beam control according to the first embodiment will be described with reference to FIG.
 ステップS101において、基地局200は、PUCCHを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報(PUCCH-SpatialRelationInfo)をUE100に送信する。UE100は、空間関係設定情報(PUCCH-SpatialRelationInfo)を受信する。 In step S101, the base station 200 transmits to the UE 100 spatial relationship setting information (PUCCH-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting PUCCH. UE 100 receives the spatial relationship setting information (PUCCH-SpatialRelationInfo).
 空間関係設定情報(PUCCH-SpatialRelationInfo)は、PUCCH送信を制御するために参照するSSBを示すSSBインデックスと、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む。 Spatial relationship setting information (PUCCH-SpatialRelationInfo) specifies an SSB index indicating an SSB to be referred to for controlling PUCCH transmission, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for
 基地局200は、空間関係設定情報(PUCCH-SpatialRelationInfo)をUE100に複数設定してもよい。当該複数の空間関係設定情報(PUCCH-SpatialRelationInfo)のそれぞれは、SSBインデックス及び識別情報の組み合わせを含んでもよい。基地局200は、PUCCH spatial relation Activation/Deactivation MAC CEをUE100に送信することにより、空間関係設定情報(PUCCH-SpatialRelationInfo)をアクティブ化/ディアクティブ化してもよい。 The base station 200 may set multiple pieces of spatial relationship setting information (PUCCH-SpatialRelationInfo) in the UE 100. Each of the plurality of spatial relationship setting information (PUCCH-SpatialRelationInfo) may include a combination of SSB index and identification information. The base station 200 may activate/deactivate the spatial relationship setting information (PUCCH-SpatialRelationInfo) by transmitting PUCCH spatial relation Activation/Deactivation MAC CE to the UE 100.
 ステップS102において、UE100は、ステップS101で受信した識別情報に基づいて、当該識別情報と対応するSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定する。 In step S102, based on the identification information received in step S101, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
 ステップS103において、UE100は、ステップS102で特定したSSBを基地局200から受信する。 In step S103, the UE 100 receives the SSB identified in step S102 from the base station 200.
 ステップS104において、UE100は、ステップS103で受信したSSBを用いてPUCCH送信のビーム制御を行う。具体的には、PUCCH送信に対する空間セッティングとしてSSBインデックス(ssb-Index)が設定されたUE100は、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタをPUCCH送信に適用する。例えば、PUCCHリソースに対して空間セッティングとしてssb-Indexが設定され、UE100は、当該PUCCHリソースにおける送信を実行する場合に、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタを用いる。 In step S104, the UE 100 performs beam control for PUCCH transmission using the SSB received in step S103. Specifically, the UE 100 for which an SSB index (ssb-Index) is set as a spatial setting for PUCCH transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for PUCCH transmission. apply to For example, ssb-Index is configured as a spatial setting for a PUCCH resource, and the UE 100 uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index when performing transmission on the PUCCH resource. Use a spatial domain filter.
 ステップS105において、UE100は、基地局200に対してPUCCH送信を行う。基地局200は、PUCCHを受信する。 In step S105, the UE 100 performs PUCCH transmission to the base station 200. Base station 200 receives PUCCH.
 図9及び図10を参照して、第1実施形態に係る空間関係設定情報(PUCCH-SpatialRelationInfo)1101の一例について説明する。なお、図9及び図10は、3GPPのRRCレイヤの技術仕様書「TS38.331」における記載例を示している。 An example of the spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 according to the first embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 and 10 show description examples in the 3GPP RRC layer technical specification "TS38.331".
 空間関係設定情報(PUCCH-SpatialRelationInfo)1101は、当該空間関係設定情報(PUCCH-SpatialRelationInfo)1101を適用するサービングセルの識別子(servingCellId)1102を含み得る。空間関係設定情報(PUCCH-SpatialRelationInfo)1101は、参照信号(referenceSignal)の設定として、SSBインデックス(ssb-Index)1103を含み得る。 Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 may include a serving cell identifier (servingCellId) 1102 to which the spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 is applied. Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 may include an SSB index (ssb-Index) 1103 as a setting of a reference signal (referenceSignal).
 空間関係設定情報(PUCCH-SpatialRelationInfo)1101は、SSBインデックス(ssb-Index)1103と対応付けられた識別情報として、周波数情報(ssbFrequency-r17)1104、SSBサブキャリア間隔(ssbSubcarrierSpacing-r17)1105、BWP識別子(ssb-DL-BWP-r17)1106、及びSSBタイプ識別子(ssb-Type-r17)1107のうち、少なくともいずれかを含む。ここで「-r17」とは、3GPP技術仕様のリリース17で導入される情報要素であることを意味するが、リリース18以降で導入されてもよい。このような識別情報が必須(Mandatory)として設けられる条件(Cond)は、RedCap UEについて設定されたセパレートイニシャルDL BWPでNon-CD-SSB502が送信されているという条件(NCD-SSB)であってもよい。 Spatial relationship setting information (PUCCH-SpatialRelationInfo) 1101 includes frequency information (ssbFrequency-r17) 1104, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1105, BWP as identification information associated with SSB index (ssb-Index) 1103. At least one of an identifier (ssb-DL-BWP-r17) 1106 and an SSB type identifier (ssb-Type-r17) 1107 is included. Here "-r17" means that the information element is introduced in Release 17 of the 3GPP technical specifications, but may be introduced in Release 18 or later. The condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
 (2)SRS送信ビーム制御
 次に、図11を参照して、第1実施形態に係るSRS送信ビーム制御の一例について説明する。
(2) SRS Transmission Beam Control Next, an example of SRS transmission beam control according to the first embodiment will be described with reference to FIG.
 ステップS201において、基地局200は、SRSを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報(SRS-SpatialRelationInfo)をUE100に送信する。UE100は、空間関係設定情報(SRS-SpatialRelationInfo)を受信する。 In step S201, the base station 200 transmits to the UE 100 spatial relationship setting information (SRS-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting SRS. The UE 100 receives spatial relationship setting information (SRS-SpatialRelationInfo).
 空間関係設定情報(SRS-SpatialRelationInfo)は、SRS送信を制御するために参照するSSBを示すSSBインデックスと、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む。 Spatial relationship setting information (SRS-SpatialRelationInfo) specifies an SSB index indicating an SSB to be referred to for controlling SRS transmission, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for
 ステップS202において、UE100は、ステップS201で受信した識別情報に基づいて、当該識別情報と対応するSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定する。 In step S202, based on the identification information received in step S201, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
 ステップS203において、UE100は、ステップS202で特定したSSBを基地局200から受信する。 In step S203, the UE 100 receives the SSB identified in step S202 from the base station 200.
 ステップS204において、UE100は、ステップS203で受信したSSBを用いてSRS送信のビーム制御を行う。具体的には、SRS送信に対する空間セッティングとしてSSBインデックス(ssb-Index)が設定されたUE100は、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタをSRS送信に適用する。例えば、SRSリソースに対して空間セッティングとしてssb-Indexが設定され、UE100は、当該SRSリソースにおける送信を実行する場合に、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタを用いる。 In step S204, the UE 100 performs beam control for SRS transmission using the SSB received in step S203. Specifically, the UE 100 for which the SSB index (ssb-Index) is set as the spatial setting for SRS transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for SRS transmission. apply to For example, ssb-Index is set as a spatial setting for an SRS resource, and when the UE 100 performs transmission on the SRS resource, the spatial domain filter is the same as the spatial domain filter used for reception of the SSB of the ssb-Index. Use a spatial domain filter.
 ステップS205において、UE100は、基地局200に対してSRS送信を行う。基地局200は、SRSを受信する。 In step S205, the UE 100 performs SRS transmission to the base station 200. Base station 200 receives the SRS.
 図12及び図13を参照して、第1実施形態に係る空間関係設定情報(SRS-SpatialRelationInfo)の一例について説明する。なお、図12及び図13は、3GPPのRRCレイヤの技術仕様書「TS38.331」における記載例を示している。 An example of the spatial relationship setting information (SRS-SpatialRelationInfo) according to the first embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 and 13 show description examples in the 3GPP RRC layer technical specification "TS38.331".
 空間関係設定情報(SRS-SpatialRelationInfo)1201は、SRS設定(SRS-Config)に含まれる。空間関係設定情報(SRS-SpatialRelationInfo)1201は、当該空間関係設定情報(SRS-SpatialRelationInfo)1201を適用するサービングセルの識別子(servingCellId)1202を含み得る。空間関係設定情報(SRS-SpatialRelationInfo)1201は、参照信号(referenceSignal)の設定として、SSBインデックス(ssb-Index)1203を含み得る。 Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 is included in SRS settings (SRS-Config). Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 may include a serving cell identifier (servingCellId) 1202 to which the spatial relationship setting information (SRS-SpatialRelationInfo) 1201 is applied. Spatial relationship setting information (SRS-SpatialRelationInfo) 1201 may include an SSB index (ssb-Index) 1203 as a setting of a reference signal (referenceSignal).
 SSBインデックス(ssb-Index)1203と対応付けられた識別情報として、周波数情報(ssbFrequency-r17)1204、SSBサブキャリア間隔(ssbSubcarrierSpacing-r17)1205、BWP識別子(ssb-DL-BWP-r17)1206、及びSSBタイプ識別子(ssb-Type-r17)1207のうち、少なくともいずれかが設けられる。このような識別情報が必須(Mandatory)として設けられる条件(Cond)は、RedCap UEについて設定されたセパレートイニシャルDL BWPでNon-CD-SSB502が送信されているという条件(NCD-SSB)であってもよい。 As identification information associated with the SSB index (ssb-Index) 1203, frequency information (ssbFrequency-r17) 1204, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1205, BWP identifier (ssb-DL-BWP-r17) 1206, and SSB type identifier (ssb-Type-r17) 1207 are provided. The condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
 (3)RLM/BFD制御
 次に、図14を参照して、第1実施形態に係るRLM/BFD制御の一例について説明する。
(3) RLM/BFD Control Next, an example of RLM/BFD control according to the first embodiment will be described with reference to FIG.
 ステップS301において、基地局200は、RLM/BFDに用いる参照信号を設定するRLM参照信号設定情報(RadioLinkMonitoringRS)をUE100に送信する。UE100は、RLM参照信号設定情報(RadioLinkMonitoringRS)を受信する。 In step S301, the base station 200 transmits RLM reference signal setting information (RadioLinkMonitoringRS) for setting reference signals used for RLM/BFD to the UE100. The UE 100 receives RLM reference signal configuration information (RadioLinkMonitoringRS).
 RLM参照信号設定情報(RadioLinkMonitoringRS)は、RLM/BFDを行うために参照するSSBを示すSSBインデックスと、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む。 The RLM reference signal configuration information (RadioLinkMonitoringRS) specifies an SSB index indicating an SSB to be referenced for performing RLM/BFD, and whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and identification information for.
 ステップS302において、UE100は、ステップS301で受信した識別情報に基づいて、当該識別情報と対応するSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定する。 In step S302, based on the identification information received in step S301, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
 ステップS303において、UE100は、ステップS302で特定したSSBを基地局200から受信する。 In step S303, the UE 100 receives the SSB identified in step S302 from the base station 200.
 ステップS304において、UE100は、ステップS303で受信したSSBを用いてRLM/BFDを行う。UE100は、セル単位でRLMを行ってもよい。UE100は、RLMにより無線リンク障害(RLF)を検出した場合、RLFからリカバリするための処理を行ってもよい。UE100は、セル内のビーム単位でBFDを行ってもよい。UE100は、BFDによりビーム障害を検出した場合、ビーム障害からリカバリするための処理を行ってもよい。 In step S304, the UE 100 performs RLM/BFD using the SSB received in step S303. The UE 100 may perform RLM on a cell-by-cell basis. When the UE 100 detects a radio link failure (RLF) by RLM, the UE 100 may perform processing to recover from the RLF. The UE 100 may perform BFD on a beam-by-beam basis within a cell. When the UE 100 detects a beam failure by BFD, the UE 100 may perform processing for recovery from the beam failure.
 図15及び図16を参照して、第1実施形態に係るRLM参照信号設定情報(RadioLinkMonitoringRS)の一例について説明する。なお、図15及び図16は、3GPPのRRCレイヤの技術仕様書「TS38.331」における記載例を示している。 An example of the RLM reference signal setting information (RadioLinkMonitoringRS) according to the first embodiment will be described with reference to FIGS. 15 and 16 show description examples in the 3GPP RRC layer technical specification "TS38.331".
 RLM参照信号設定情報(RadioLinkMonitoringRS)1301は、対応する参照信号の用途(purpose)、すなわち、検出対象として、BFD(beamFailure)、RLM(rlf)、これらの両方(both)のいずれかを設定できる。RLM参照信号設定情報(RadioLinkMonitoringRS)1301は、検出リソース(detectionResource)の設定として、SSBインデックス(ssb-Index)1302を含み得る。 The RLM reference signal setting information (RadioLinkMonitoringRS) 1301 can set the purpose of the corresponding reference signal, that is, BFD (beamFailure), RLM (rlf), or both (both) as the detection target. RLM reference signal configuration information (RadioLinkMonitoringRS) 1301 may include an SSB index (ssb-Index) 1302 as a configuration of detection resource (detectionResource).
 SSBインデックス(ssb-Index)1302と対応付けられた識別情報として、周波数情報(ssbFrequency-r17)1303、SSBサブキャリア間隔(ssbSubcarrierSpacing-r17)1304、BWP識別子(ssb-DL-BWP-r17)1305、及びSSBタイプ識別子(ssb-Type-r17)1306のうち、少なくともいずれかが設けられる。このような識別情報が必須(Mandatory)として設けられる条件(Cond)は、RedCap UEについて設定されたセパレートイニシャルDL BWPでNon-CD-SSB502が送信されているという条件(NCD-SSB)であってもよい。 As identification information associated with the SSB index (ssb-Index) 1302, frequency information (ssbFrequency-r17) 1303, SSB subcarrier spacing (ssbSubcarrierSpacing-r17) 1304, BWP identifier (ssb-DL-BWP-r17) 1305, and an SSB type identifier (ssb-Type-r17) 1306 are provided. The condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
 (4)UL送信電力制御
 次に、図17を参照して、第1実施形態に係るUL送信電力制御の一例について説明する。
(4) UL Transmission Power Control Next, an example of UL transmission power control according to the first embodiment will be described with reference to FIG.
 ステップS401において、基地局200は、UL送信電力制御のためのパスロス推定に用いる参照信号を設定するパスロス参照信号設定情報をUE100に送信する。UE100は、パスロス参照信号設定情報を受信する。UL送信電力制御の対象は、PUCCH、PUSCH、及びSRI(Service Request Indicator)-PUSCHのうち少なくとも1つである。 In step S401, the base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation for UL transmission power control. UE 100 receives the pathloss reference signal configuration information. The target of UL transmission power control is at least one of PUCCH, PUSCH, and SRI (Service Request Indicator)-PUSCH.
 パスロス参照信号設定情報は、パスロス推定を行うために参照するSSBを示すSSBインデックスと、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報と、を含む。 The pathloss reference signal configuration information includes an SSB index indicating an SSB to be referenced for pathloss estimation, and identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. and including.
 ステップS402において、UE100は、ステップS401で受信した識別情報に基づいて、当該識別情報と対応するSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定する。 In step S402, based on the identification information received in step S401, UE 100 identifies whether the SSB index corresponding to the identification information is the SSB index of CD-SSB 501 or the SSB index of Non-CD-SSB 502. do.
 ステップS403において、UE100は、ステップS402で特定したSSBを基地局200から受信する。 In step S403, the UE 100 receives the SSB identified in step S402 from the base station 200.
 ステップS404において、UE100は、ステップS403で受信したSSBを用いてパスロス推定を行う。例えば、UE100は、ステップS403で基地局200から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。なお、UE100は、基地局200から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を把握できる。 In step S404, the UE 100 performs path loss estimation using the SSB received in step S403. For example, the UE 100 measures the reception power of the SSB received from the base station 200 in step S403, and estimates the path loss by subtracting the reception power from the transmission power of the SSB. Note that the UE 100 can grasp the SSB transmission power from the SSB transmission power information (ss-PBCH-BlockPower) transmitted from the base station 200, for example, in the system information.
 ステップS405において、UE100は、ステップS404で推定したパスロスを用いてUL送信電力を決定する。UL送信電力を決定するための計算式の具体例については後述する。 In step S405, the UE 100 determines UL transmission power using the path loss estimated in step S404. A specific example of the calculation formula for determining the UL transmission power will be described later.
 ステップS406において、UE100は、ステップS405で決定したUL送信電力でUL信号を基地局200に送信する。UL信号は、PUCCH信号、PUSCH信号、及びSRI-PUSCH信号のうち少なくとも1つである。 At step S406, the UE 100 transmits a UL signal to the base station 200 with the UL transmission power determined at step S405. The UL signal is at least one of PUCCH signal, PUSCH signal, and SRI-PUSCH signal.
 図18乃至図21を参照して、第1実施形態に係るパスロス参照信号設定情報の一例について説明する。なお、図18乃至図21は、3GPPのRRCレイヤの技術仕様書「TS38.331」における記載例を示している。 An example of the pathloss reference signal setting information according to the first embodiment will be described with reference to FIGS. 18 to 21. FIG. 18 to 21 show description examples in the 3GPP RRC layer technical specification "TS38.331".
 図18及び図19に、PUCCHの送信電力制御のためのUE固有パラメータを設定する設定情報(PUCCH-PowerControl)の一例を示す。設定情報(PUCCH-PowerControl)は、パスロス参照信号設定情報(PUCCH-PathlossReferenceRS-r17)1401を含む。パスロス参照信号設定情報(PUCCH-PathlossReferenceRS-r17)1401は、参照信号(referenceSignal-r17)としてSSB(ssb-r17)を設定する場合、SSBインデックス(ssb-Index-r16)1406を含む。パスロス参照信号設定情報(PUCCH-PathlossReferenceRS-r17)1401は、SSBインデックス(ssb-Index-r16)1406と対応付けられた識別情報として、周波数情報(ssbFrequency-r17)1402、SSBサブキャリア間隔(ssbSubcarrierSpacing-r17)1403、BWP識別子(ssb-DL-BWP-r17)1404、及びSSBタイプ識別子(ssb-Type-r17)1405のうち、少なくともいずれかが設けられる。このような識別情報が必須(Mandatory)として設けられる条件(Cond)は、RedCap UEについて設定されたセパレートイニシャルDL BWPでNon-CD-SSB502が送信されているという条件(NCD-SSB)であってもよい。  Figures 18 and 19 show an example of setting information (PUCCH-PowerControl) for setting UE-specific parameters for PUCCH transmission power control. Configuration information (PUCCH-PowerControl) includes pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 . Pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 includes SSB index (ssb-Index-r16) 1406 when SSB (ssb-r17) is configured as the reference signal (referenceSignal-r17). Pathloss reference signal configuration information (PUCCH-PathlossReferenceRS-r17) 1401 includes frequency information (ssbFrequency-r17) 1402, SSB subcarrier spacing (ssbSubcarrierSpacing- r17) 1403, BWP identifier (ssb-DL-BWP-r17) 1404, and/or SSB type identifier (ssb-Type-r17) 1405 are provided. The condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
 図20及び図21に、PUSCHの送信電力制御のためのUE固有パラメータを設定する設定情報(PUSCH-PowerControl)の一例を示す。設定情報(PUSCH-PowerControl)は、パスロス参照信号設定情報(PUSCH-PathlossReferenceRS-r17)1501を含む。パスロス参照信号設定情報(PUSCH-PathlossReferenceRS-r17)1501は、参照信号(referenceSignal-r17)としてSSB(ssb-r17)を設定する場合、SSBインデックス(ssb-Index-r16)1506を含む。パスロス参照信号設定情報(PUSCH-PathlossReferenceRS-r17)1501は、SSBインデックス(ssb-Index-r16)1506と対応付けられた識別情報として、周波数情報(ssbFrequency-r17)1502、SSBサブキャリア間隔(ssbSubcarrierSpacing-r17)1503、BWP識別子(ssb-DL-BWP-r17)1504、及びSSBタイプ識別子(ssb-Type-r17)1505のうち、少なくともいずれかが設けられる。このような識別情報が必須(Mandatory)として設けられる条件(Cond)は、RedCap UEについて設定されたセパレートイニシャルDL BWPでNon-CD-SSB502が送信されているという条件(NCD-SSB)であってもよい。  Figures 20 and 21 show an example of setting information (PUSCH-PowerControl) for setting UE-specific parameters for PUSCH transmission power control. Configuration information (PUSCH-PowerControl) includes pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 . Pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 includes SSB index (ssb-Index-r16) 1506 when SSB (ssb-r17) is configured as the reference signal (referenceSignal-r17). Pathloss reference signal configuration information (PUSCH-PathlossReferenceRS-r17) 1501 includes frequency information (ssbFrequency-r17) 1502, SSB subcarrier spacing (ssbSubcarrierSpacing- r17) 1503, BWP identifier (ssb-DL-BWP-r17) 1504, and/or SSB type identifier (ssb-Type-r17) 1505 are provided. The condition (Cond) under which such identification information is provided as mandatory is the condition (NCD-SSB) that Non-CD-SSB 502 is transmitted in the separate initial DL BWP set for the RedCap UE. good too.
 [第2実施形態]
 第2実施形態について、上述の第1実施形態との相違点を主として説明する。
[Second embodiment]
Regarding the second embodiment, differences from the above-described first embodiment will be mainly described.
 上述の第1実施形態において、UE100が、基地局200からの識別情報に基づいて、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定する一例について説明した。これに対し、第2実施形態においては、UE100は、このような識別情報(例えば、空間関係設定情報(PUCCH-SpatialRelationInfo)に含まれる識別情報、空間関係設定情報(SRS-SpatialRelationInfo)に含まれる識別情報、RLM参照信号設定情報(RadioLinkMonitoringRS)に含まれる識別情報、及び、パスロス参照信号設定情報に含まれる識別情報)を受信していなくても、SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを自律的に特定する。 In the first embodiment described above, an example in which the UE 100 identifies whether the SSB indicated by the SSB index is the CD-SSB 501 or the Non-CD-SSB 502 based on the identification information from the base station 200 has been described. In contrast, in the second embodiment, the UE 100 uses such identification information (eg, identification information included in spatial relationship setting information (PUCCH-SpatialRelationInfo), identification information included in spatial relationship setting information (SRS-SpatialRelationInfo), information, identification information included in the RLM reference signal configuration information (RadioLinkMonitoringRS), and identification information included in the pathloss reference signal configuration information), the SSB indicated by the SSB index is CD-SSB 501 and Non-CD - Autonomously identify which of the SSBs 502 it is.
 第2実施形態に係るUE100において、送信部111は、基地局200に対するPUCCH送信を行う。受信部112は、PUCCH送信を制御するために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してPUCCH送信を制御する。第2実施形態において、制御部120は、UE100が一般UE100Aに比べて通信能力が低減された特定UE100Bであって、且つ、所定条件が満たされた場合、SSBインデックスが示すSSBがNon-CD-SSB502であると特定する。すなわち、UE100は、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを自律的に特定する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、PUCCH送信の制御を適切に行うことが可能になる。 In the UE 100 according to the second embodiment, the transmitting section 111 performs PUCCH transmission to the base station 200. Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling PUCCH transmission. Control section 120 refers to the SSB indicated by the SSB index included in the received configuration information to control PUCCH transmission. In the second embodiment, when the UE 100 is a specific UE 100B whose communication capacity is reduced compared to the general UE 100A and a predetermined condition is satisfied, the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to appropriately control PUCCH transmission.
 所定条件は、一般UE100A向けの第1イニシャルBWP503及び特定UE100B向けの第2イニシャルBWP504がセル(サービングセル)において設定され、且つ、第2イニシャルBWP504においてNon-CD-SSB502が送信されているという条件である。すなわち、UE100(特定UE100B)は、第2イニシャルBWP504においてNon-CD-SSB502が送信されている場合、設定されたSSBインデックスが示すSSBがNon-CD-SSB502であると特定する。なお、UE100(特定UE100B)は、当該セル(サービングセル)においてNon-CD-SSB502をモニタリング(サーチ)することにより、Non-CD-SSB502が送信されているか否かを把握してもよい。UE100(特定UE100B)は、当該セル(サービングセル)のシステム情報に基づいて、Non-CD-SSB502が送信されているか否かを把握してもよい。 Predetermined conditions, the second initial BWP503 for the general UE100A and the second initial BWP504 for the specific UE100B is set in the cell (serving cell), and the second initial BWP504 on the condition that Non-CD-SSB502 is transmitted. be. That is, when Non-CD-SSB 502 is transmitted in second initial BWP 504, UE 100 (specific UE 100B) identifies that SSB indicated by the set SSB index is Non-CD-SSB 502. Note that the UE 100 (specific UE 100B) may ascertain whether or not the Non-CD-SSB 502 is being transmitted by monitoring (searching) the Non-CD-SSB 502 in the cell (serving cell). UE 100 (specific UE 100B) may grasp whether Non-CD-SSB 502 is transmitted based on the system information of the cell (serving cell).
 UE100の制御部120は、当該UE100が特定UE100Bであって、且つ、所定条件が満たされない場合、設定されたSSBインデックスが示すSSBがCD-SSB501であると特定してもよい。例えば、UE100は、当該セル(サービングセル)において、第2イニシャルBWP504が設定されていない場合、及び/又はNon-CD-SSB502が送信されていない場合、設定されたSSBインデックスが示すSSBがCD-SSB501であると特定してもよい。 The control unit 120 of the UE 100 may specify that the SSB indicated by the set SSB index is the CD-SSB 501 when the UE 100 is the specific UE 100B and the predetermined condition is not satisfied. For example, UE 100, in the cell (serving cell), if the second initial BWP504 is not set and / or if Non-CD-SSB502 is not transmitted, the SSB indicated by the set SSB index is CD-SSB501 may be specified as
 第2実施形態に係るUE100において、送信部111は、基地局200に対するSRS送信を行う。受信部112は、SRS送信を制御するために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してSRS送信を制御する。第2実施形態において、制御部120は、UE100が一般UE100Aに比べて通信能力が低減された特定UE100Bであって、且つ、所定条件が満たされた場合、SSBインデックスが示すSSBがNon-CD-SSB502であると特定する。すなわち、UE100は、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを自律的に特定する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、SRS送信の制御を適切に行うことが可能になる。 In the UE 100 according to the second embodiment, the transmission section 111 performs SRS transmission to the base station 200. Receiving section 112 receives, from base station 200, configuration information including an SSB index indicating an SSB to be referred to for controlling SRS transmission. The control unit 120 controls SRS transmission by referring to the SSB indicated by the SSB index included in the received configuration information. In the second embodiment, when the UE 100 is a specific UE 100B whose communication capacity is reduced compared to the general UE 100A and a predetermined condition is satisfied, the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, SRS transmission can be appropriately controlled.
 第2実施形態に係るUE100において、受信部112は、RLM/BFDを行うために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してRLM/BFDを行う。第2実施形態において、制御部120は、UE100が一般UE100Aに比べて通信能力が低減された特定UE100Bであって、且つ、所定条件が満たされた場合、SSBインデックスが示すSSBがNon-CD-SSB502であると特定する。すなわち、UE100は、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを自律的に特定する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、RLM/BFDを適切に行うことが可能になる。 In the UE 100 according to the second embodiment, the receiving section 112 receives from the base station 200 configuration information including SSB indexes indicating SSBs to be referred to for performing RLM/BFD. The control unit 120 performs RLM/BFD by referring to the SSB indicated by the SSB index included in the received configuration information. In the second embodiment, when the UE 100 is a specific UE 100B whose communication capacity is reduced compared to the general UE 100A and a predetermined condition is satisfied, the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, it is possible to perform RLM/BFD appropriately.
 第2実施形態に係るUE100において、受信部112は、上りリンク送信電力制御のためのパスロス推定を行うために参照するSSBを示すSSBインデックスを含む設定情報を基地局200から受信する。制御部120は、受信した設定情報に含まれるSSBインデックスが示すSSBを参照してパスロス推定を行う。第2実施形態において、制御部120は、UE100が一般UE100Aに比べて通信能力が低減された特定UE100Bであって、且つ、所定条件が満たされた場合、SSBインデックスが示すSSBがNon-CD-SSB502であると特定する。すなわち、UE100は、設定されたSSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを自律的に特定する。よって、CD-SSB501に加えてNon-CD-SSB502がセル(サービングセル)において送信される場合であっても、パスロス推定を適切に行うことが可能になる。 In the UE 100 according to the second embodiment, the receiving section 112 receives from the base station 200 configuration information including SSB indexes indicating SSBs to be referenced for path loss estimation for uplink transmission power control. The control unit 120 performs path loss estimation by referring to the SSB indicated by the SSB index included in the received configuration information. In the second embodiment, when the UE 100 is a specific UE 100B whose communication capacity is reduced compared to the general UE 100A and a predetermined condition is satisfied, the SSB indicated by the SSB index is Non-CD- Identify it as SSB502. That is, UE 100 autonomously identifies which SSB indicated by the set SSB index is CD-SSB 501 or Non-CD-SSB 502 . Therefore, even when Non-CD-SSB 502 is transmitted in a cell (serving cell) in addition to CD-SSB 501, path loss estimation can be performed appropriately.
 (第2実施形態に係る動作例)
 第2実施形態に係る移動通信システム1の動作例について説明する。まず、図22を参照して、第2実施形態に係るUE100におけるSSB特定動作の一例について説明する。ここでは、UE100が特定UE100Bであるものとする。この動作において、UE100は、RRCコネクティッド状態にあってもよい。
(Example of operation according to the second embodiment)
An operation example of the mobile communication system 1 according to the second embodiment will be described. First, with reference to FIG. 22, an example of the SSB specifying operation in the UE 100 according to the second embodiment will be described. Here, it is assumed that the UE 100 is the specific UE 100B. In this operation, the UE 100 may be in the RRC connected state.
 ステップS21において、受信部112は、SSBインデックス及び識別情報を含む設定情報を基地局200から受信する。設定情報は、UE専用シグナリング、例えば、RRC Reconfigurationメッセージ等のRRCメッセージで基地局200からUE100に送信されてもよい。 In step S21, the receiving unit 112 receives configuration information including the SSB index and identification information from the base station 200. The configuration information may be sent from the base station 200 to the UE 100 in UE-specific signaling, for example, an RRC message such as an RRC Reconfiguration message.
 ステップS22において、制御部120は、所定条件が満たされているか否かを判定する。所定条件は、一般UE100A向けの第1イニシャルBWP503及び特定UE100B向けの第2イニシャルBWP504(セパレートイニシャルDL BWP)がサービングセルにおいて設定され、且つ、第2イニシャルBWP504においてNon-CD-SSB502が送信されているという条件である。 At step S22, the control unit 120 determines whether or not a predetermined condition is satisfied. The predetermined condition is that the first initial BWP 503 for the general UE 100A and the second initial BWP 504 (separate initial DL BWP) for the specific UE 100B are set in the serving cell, and Non-CD-SSB 502 is transmitted in the second initial BWP 504. This is the condition.
 所定条件が満たされていると判定した場合(ステップS22:YES)、ステップS23において、制御部120は、ステップS21で受信したSSBインデックスがNon-CD-SSBのSSBインデックスであると特定する。 When it is determined that the predetermined condition is satisfied (step S22: YES), in step S23, the control unit 120 identifies that the SSB index received in step S21 is the SSB index of Non-CD-SSB.
 所定条件が満たされていないと判定した場合(ステップS22:NO)、ステップS24において、制御部120は、ステップS21で受信したSSBインデックスがCD-SSB501のSSBインデックスであると特定する。 If it is determined that the predetermined condition is not satisfied (step S22: NO), in step S24, the control unit 120 identifies that the SSB index received in step S21 is the SSB index of the CD-SSB 501.
 なお、制御部120は、それぞれSSBインデックスを含む複数の設定情報が基地局200から設定された場合、設定情報ごとに、所定条件が満たされているか否かに基づいて、当該SSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを特定してもよい。 Note that when a plurality of pieces of configuration information each including an SSB index are configured from base station 200, control section 120 determines whether the SSB index is CD-CD based on whether a predetermined condition is satisfied for each configuration information. It may be specified whether it is the SSB index of SSB 501 or the SSB index of Non-CD-SSB 502 .
 (1)PUCCH送信ビーム制御
 次に、図23を参照して、第2実施形態に係るPUCCH送信ビーム制御の一例について説明する。
(1) PUCCH Transmission Beam Control Next, an example of PUCCH transmission beam control according to the second embodiment will be described with reference to FIG.
 ステップS111において、基地局200は、PUCCHを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報(PUCCH-SpatialRelationInfo)をUE100に送信する。UE100は、空間関係設定情報(PUCCH-SpatialRelationInfo)を受信する。 In step S111, the base station 200 transmits to the UE 100 spatial relationship setting information (PUCCH-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting PUCCH. UE 100 receives the spatial relationship setting information (PUCCH-SpatialRelationInfo).
 空間関係設定情報(PUCCH-SpatialRelationInfo)は、PUCCH送信を制御するために参照するSSBを示すSSBインデックスを含む。第2実施形態において、空間関係設定情報(PUCCH-SpatialRelationInfo)は、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報を含まなくてもよい。 Spatial relationship setting information (PUCCH-SpatialRelationInfo) includes an SSB index that indicates an SSB that is referenced to control PUCCH transmission. In the second embodiment, the spatial relationship setting information (PUCCH-SpatialRelationInfo) does not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB501 or Non-CD-SSB502. good.
 基地局200は、空間関係設定情報(PUCCH-SpatialRelationInfo)をUE100に複数設定してもよい。当該複数の空間関係設定情報(PUCCH-SpatialRelationInfo)のそれぞれは、SSBインデックス及び識別情報の組み合わせを含んでもよい。基地局200は、PUCCH spatial relation Activation/Deactivation MAC CEをUE100に送信することにより、空間関係設定情報(PUCCH-SpatialRelationInfo)をアクティブ化/ディアクティブ化してもよい。 The base station 200 may set multiple pieces of spatial relationship setting information (PUCCH-SpatialRelationInfo) in the UE 100. Each of the plurality of spatial relationship setting information (PUCCH-SpatialRelationInfo) may include a combination of SSB index and identification information. The base station 200 may activate/deactivate the spatial relationship setting information (PUCCH-SpatialRelationInfo) by transmitting PUCCH spatial relation Activation/Deactivation MAC CE to the UE 100.
 ステップS112において、UE100は、所定条件が満たされているか否かに基づいて、設定されたSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを自律的に特定する。 In step S112, the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
 ステップS103において、UE100は、ステップS112で特定したSSBを基地局200から受信する。 In step S103, the UE 100 receives the SSB identified in step S112 from the base station 200.
 ステップS104において、UE100は、ステップS103で受信したSSBを用いてPUCCH送信のビーム制御を行う。具体的には、PUCCH送信に対する空間セッティングとしてSSBインデックス(ssb-Index)が設定されたUE100は、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタをPUCCH送信に適用する。例えば、PUCCHリソースに対して空間セッティングとしてssb-Indexが設定され、UE100は、当該PUCCHリソースにおける送信を実行する場合に、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタを用いる。 In step S104, the UE 100 performs beam control for PUCCH transmission using the SSB received in step S103. Specifically, the UE 100 for which an SSB index (ssb-Index) is set as a spatial setting for PUCCH transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for PUCCH transmission. apply to For example, ssb-Index is configured as a spatial setting for a PUCCH resource, and the UE 100 uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index when performing transmission on the PUCCH resource. Use a spatial domain filter.
 ステップS105において、UE100は、基地局200に対してPUCCH送信を行う。基地局200は、PUCCHを受信する。 In step S105, the UE 100 performs PUCCH transmission to the base station 200. Base station 200 receives PUCCH.
 (2)SRS送信ビーム制御
 次に、図24を参照して、第2実施形態に係るSRS送信ビーム制御の一例について説明する。
(2) SRS Transmission Beam Control Next, an example of SRS transmission beam control according to the second embodiment will be described with reference to FIG.
 ステップS211において、基地局200は、SRSを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報(SRS-SpatialRelationInfo)をUE100に送信する。UE100は、空間関係設定情報(SRS-SpatialRelationInfo)を受信する。 In step S211, the base station 200 transmits to the UE 100 spatial relationship setting information (SRS-SpatialRelationInfo) for setting spatial settings regarding beam control for transmitting SRS. The UE 100 receives spatial relationship setting information (SRS-SpatialRelationInfo).
 空間関係設定情報(SRS-SpatialRelationInfo)は、SRS送信を制御するために参照するSSBを示すSSBインデックスを含む。第2実施形態において、空間関係設定情報(SRS-SpatialRelationInfo)は、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報を含まなくてもよい。 Spatial relationship setting information (SRS-SpatialRelationInfo) includes an SSB index that indicates an SSB that is referenced to control SRS transmission. In the second embodiment, the spatial relationship setting information (SRS-SpatialRelationInfo) does not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502. good.
 ステップS212において、UE100は、所定条件が満たされているか否かに基づいて、設定されたSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを自律的に特定する。 In step S212, the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
 ステップS203において、UE100は、ステップS212で特定したSSBを基地局200から受信する。 In step S203, the UE 100 receives the SSB identified in step S212 from the base station 200.
 ステップS204において、UE100は、ステップS203で受信したSSBを用いてSRS送信のビーム制御を行う。具体的には、SRS送信に対する空間セッティングとしてSSBインデックス(ssb-Index)が設定されたUE100は、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタをSRS送信に適用する。例えば、SRSリソースに対して空間セッティングとしてssb-Indexが設定され、UE100は、当該SRSリソースにおける送信を実行する場合に、当該ssb-IndexのSSBの受信に対して用いた空間ドメインフィルタと同一の空間ドメインフィルタを用いる。 In step S204, the UE 100 performs beam control for SRS transmission using the SSB received in step S203. Specifically, the UE 100 for which the SSB index (ssb-Index) is set as the spatial setting for SRS transmission uses the same spatial domain filter as the spatial domain filter used for receiving the SSB of the ssb-Index for SRS transmission. apply to For example, ssb-Index is set as a spatial setting for an SRS resource, and when the UE 100 performs transmission on the SRS resource, the spatial domain filter is the same as the spatial domain filter used for reception of the SSB of the ssb-Index. Use a spatial domain filter.
 ステップS205において、UE100は、基地局200に対してSRS送信を行う。基地局200は、SRSを受信する。 In step S205, the UE 100 performs SRS transmission to the base station 200. Base station 200 receives the SRS.
 (3)RLM/BFD制御
 次に、図25を参照して、第2実施形態に係るRLM/BFD制御の一例について説明する。
(3) RLM/BFD Control Next, an example of RLM/BFD control according to the second embodiment will be described with reference to FIG.
 ステップS311において、基地局200は、RLM/BFDに用いる参照信号を設定するRLM参照信号設定情報(RadioLinkMonitoringRS)をUE100に送信する。UE100は、RLM参照信号設定情報(RadioLinkMonitoringRS)を受信する。 In step S311, the base station 200 transmits to the UE 100 RLM reference signal setting information (RadioLinkMonitoringRS) for setting reference signals used for RLM/BFD. The UE 100 receives RLM reference signal configuration information (RadioLinkMonitoringRS).
 RLM参照信号設定情報(RadioLinkMonitoringRS)は、RLM/BFDを行うために参照するSSBを示すSSBインデックスを含む。第2実施形態において、RLM参照信号設定情報(RadioLinkMonitoringRS)は、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報を含まなくてもよい。 The RLM reference signal setting information (RadioLinkMonitoringRS) includes an SSB index indicating an SSB to be referenced for performing RLM/BFD. In the second embodiment, the RLM reference signal configuration information (RadioLinkMonitoringRS) may not include identification information for identifying whether the SSB indicated by the SSB index is CD-SSB501 or Non-CD-SSB502. .
 ステップS312において、UE100は、所定条件が満たされているか否かに基づいて、設定されたSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを自律的に特定する。 In step S312, the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
 ステップS303において、UE100は、ステップS312で特定したSSBを基地局200から受信する。 In step S303, the UE 100 receives the SSB identified in step S312 from the base station 200.
 ステップS304において、UE100は、ステップS303で受信したSSBを用いてRLM/BFDを行う。UE100は、セル単位でRLMを行ってもよい。UE100は、RLMにより無線リンク障害(RLF)を検出した場合、RLFからリカバリするための処理を行ってもよい。UE100は、セル内のビーム単位でBFDを行ってもよい。UE100は、BFDによりビーム障害を検出した場合、ビーム障害からリカバリするための処理を行ってもよい。 In step S304, the UE 100 performs RLM/BFD using the SSB received in step S303. The UE 100 may perform RLM on a cell-by-cell basis. When the UE 100 detects a radio link failure (RLF) by RLM, the UE 100 may perform processing to recover from the RLF. The UE 100 may perform BFD on a beam-by-beam basis within a cell. When the UE 100 detects a beam failure by BFD, the UE 100 may perform processing for recovery from the beam failure.
 (4)UL送信電力制御
 次に、図26を参照して、第2実施形態に係るUL送信電力制御の一例について説明する。
(4) UL Transmission Power Control Next, an example of UL transmission power control according to the second embodiment will be described with reference to FIG.
 ステップS411において、基地局200は、UL送信電力制御のためのパスロス推定に用いる参照信号を設定するパスロス参照信号設定情報をUE100に送信する。UE100は、パスロス参照信号設定情報を受信する。UL送信電力制御の対象は、PUCCH、PUSCH、及びSRI(Service Request Indicator)-PUSCHのうち少なくとも1つである。 In step S411, the base station 200 transmits to the UE 100 pathloss reference signal setting information for setting reference signals used for pathloss estimation for UL transmission power control. UE 100 receives the pathloss reference signal configuration information. The target of UL transmission power control is at least one of PUCCH, PUSCH, and SRI (Service Request Indicator)-PUSCH.
 パスロス参照信号設定情報は、パスロス推定を行うために参照するSSBを示すSSBインデックスを含む。パスロス参照信号設定情報は、当該SSBインデックスが示すSSBがCD-SSB501及びNon-CD-SSB502のいずれであるかを特定するための識別情報を含まなくてもよい。 The pathloss reference signal setting information includes an SSB index indicating an SSB to be referenced for pathloss estimation. The pathloss reference signal configuration information may not include identification information for specifying whether the SSB indicated by the SSB index is CD-SSB 501 or Non-CD-SSB 502 .
 ステップS412において、UE100は、所定条件が満たされているか否かに基づいて、設定されたSSBインデックスがCD-SSB501のSSBインデックスであるか又はNon-CD-SSB502のSSBインデックスであるかを自律的に特定する。 In step S412, the UE 100 autonomously determines whether the set SSB index is the SSB index of the CD-SSB 501 or the SSB index of the Non-CD-SSB 502 based on whether a predetermined condition is satisfied. to be specified.
 ステップS403において、UE100は、ステップS412で特定したSSBを基地局200から受信する。 In step S403, the UE 100 receives the SSB identified in step S412 from the base station 200.
 ステップS404において、UE100は、ステップS403で受信したSSBを用いてパスロス推定を行う。例えば、UE100は、ステップS403で基地局200から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。なお、UE100は、基地局200から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を把握できる。 In step S404, the UE 100 performs path loss estimation using the SSB received in step S403. For example, the UE 100 measures the reception power of the SSB received from the base station 200 in step S403, and estimates the path loss by subtracting the reception power from the transmission power of the SSB. Note that the UE 100 can grasp the SSB transmission power from the SSB transmission power information (ss-PBCH-BlockPower) transmitted from the base station 200, for example, in the system information.
 ステップS405において、UE100は、ステップS404で推定したパスロスを用いてUL送信電力を決定する。 In step S405, the UE 100 determines UL transmission power using the path loss estimated in step S404.
 ステップS406において、UE100は、ステップS405で決定したUL送信電力でUL信号を基地局200に送信する。UL信号は、PUCCH信号、PUSCH信号、及びSRI-PUSCH信号のうち少なくとも1つである。 At step S406, the UE 100 transmits a UL signal to the base station 200 with the UL transmission power determined at step S405. The UL signal is at least one of PUCCH signal, PUSCH signal, and SRI-PUSCH signal.
 ここで、図27乃至図32を参照して、第2実施形態に係るUE100におけるUL送信電力の一例について説明する。なお、図27乃至図32は、3GPPのPHYレイヤの技術仕様書「TS38.213」における記載例を示している。 Here, an example of UL transmission power in the UE 100 according to the second embodiment will be described with reference to FIGS. 27 to 32. FIG. 27 to 32 show description examples in the 3GPP PHY layer technical specification “TS38.213”.
 図27に、PUSCH送信電力を決定するための計算式を示す。この計算式において、パスロス(PL)が用いられる。例えば、UE100は、パスロスが大きいほどPUSCH送信電力を上昇させるような送信電力制御を行う。 FIG. 27 shows a calculation formula for determining the PUSCH transmission power. Path loss (PL) is used in this calculation formula. For example, the UE 100 performs transmission power control such that the PUSCH transmission power increases as the path loss increases.
 図28に、UE100(特定UE100B)の動作例を示す。ステップS501において、特定UE100B(RedCap UE)は、所定条件が満たされているか否かを判定する。具体的には、特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定され、且つ、第2イニシャルBWP504においてNon-CD-SSB502が送信されているか否かを判定する。所定条件が満たされている場合、ステップS502において、特定UE100Bは、パスロス参照信号設定情報(PUSCH-PathlossReferenceRS)及びenableDefaultBeamPL-ForSRSが提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PUSCH-PathlossReferenceRS)及びenableDefaultBeamPL-ForSRSが提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、ステップS503において、特定UE100Bは、第2イニシャルBWP504(separate initial DL BWP)において送信され且つSSBインデックス(SS/PBCH block index)で示されるNon-CD-SSB502を用いてパスロス(PL)を計算する。 FIG. 28 shows an operation example of the UE 100 (specific UE 100B). In step S501, the specific UE 100B (RedCap UE) determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S502, the specific UE 100B is provided with pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and enableDefaultBeamPL-ForSRS, or the specific UE 100B is provided with a dedicated higher layer parameter (dedicated higher layer parameters) are provided. If pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and enableDefaultBeamPL-ForSRS are not provided, or if the specific UE 100B is not provided with dedicated higher layer parameters (dedicated higher layer parameters), in step S503, the specific UE 100B calculates the pathloss (PL) using the Non-CD-SSB 502 transmitted in the second initial BWP 504 (separate initial DL BWP) and indicated by the SSB index (SS/PBCH block index).
 特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定されていない場合、及び/又は第2イニシャルBWP504においてNon-CD-SSB502が送信されていない場合、ステップS504に処理を進める。 If the second initial BWP 504 (separate initial DL BWP) is not set and/or if the Non-CD-SSB 502 is not transmitted in the second initial BWP 504, the specific UE 100B proceeds to step S504.
 ステップS504において、UE100は、パスロス参照信号設定情報(PUSCH-PathlossReferenceRS)及びenableDefaultBeamPL-ForSRSが提供されていないか、又はUE100に専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PUSCH-PathlossReferenceRS)及びenableDefaultBeamPL-ForSRSが提供されていないか、又はUE100に専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、UE100は、MIBを取得するために用いたSSBインデックスのSSBを用いてパスロス(PL)を計算する。 In step S504, the UE 100 determines whether the pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and the enableDefaultBeamPL-ForSRS are not provided, or before the dedicated higher layer parameters are provided to the UE 100. judge. If pathloss reference signal configuration information (PUSCH-PathlossReferenceRS) and enableDefaultBeamPL-ForSRS are not provided, or before dedicated higher layer parameters are provided to UE 100, UE 100 acquires the MIB. Calculate the path loss (PL) using the SSB of the SSB index used for
 図29に、PUCCH送信電力を決定するための計算式を示す。この計算式において、パスロス(PL)が用いられる。例えば、UE100は、パスロスが大きいほどPUCCH送信電力を上昇させるような送信電力制御を行う。 FIG. 29 shows a calculation formula for determining PUCCH transmission power. Path loss (PL) is used in this calculation formula. For example, the UE 100 performs transmission power control such that PUCCH transmission power is increased as the path loss increases.
 図30に、UE100(主に、特定UE100B)の動作例を示す。ステップS511において、特定UE100B(RedCap UE)は、所定条件が満たされているか否かを判定する。具体的には、特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定され、且つ、第2イニシャルBWP504においてNon-CD-SSB502が送信されているか否かを判定する。所定条件が満たされている場合、ステップS512において、特定UE100Bは、パスロス参照信号設定情報(PathlossReferenceRS)が提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PathlossReferenceRS)が提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、ステップS513において、特定UE100Bは、第2イニシャルBWP504(separate initial DL BWP)において送信され且つSSBインデックス(SS/PBCH block index)で示されるNon-CD-SSB502を用いてパスロス(PL)を計算する。 FIG. 30 shows an operation example of the UE 100 (mainly the specific UE 100B). In step S511, the specific UE 100B (RedCap UE) determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S512, the specific UE 100B is not provided with pathloss reference signal configuration information (PathlossReferenceRS), or the specific UE 100B is provided with dedicated higher layer parameters. determine whether it is before If the pathloss reference signal configuration information (PathlossReferenceRS) is not provided, or if the specific UE 100B is before the dedicated higher layer parameters (dedicated higher layer parameters), then in step S513, the specific UE 100B uses the second initial BWP 504 Calculate path loss (PL) using Non-CD-SSB 502 transmitted in (separate initial DL BWP) and indicated by SSB index (SS/PBCH block index).
 特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定されていない場合、及び/又は第2イニシャルBWP504においてNon-CD-SSB502が送信されていない場合、ステップS514に処理を進める。 If the second initial BWP 504 (separate initial DL BWP) is not set and/or if the Non-CD-SSB 502 is not transmitted in the second initial BWP 504, the specific UE 100B proceeds to step S514.
 ステップS514において、UE100は、パスロス参照信号設定情報(PathlossReferenceRS)が提供されていないか、又はUE100に専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PUCCH-PathlossReferenceRS)が提供されていないか、又はUE100に専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、UE100は、MIBを取得するために用いたSSBインデックスのSSBを用いてパスロス(PL)を計算する。 In step S514, the UE 100 determines whether the pathloss reference signal configuration information (PathlossReferenceRS) is not provided or before the dedicated higher layer parameters are provided to the UE 100. If the pathloss reference signal configuration information (PUCCH-PathlossReferenceRS) is not provided, or before the UE 100 is provided with dedicated higher layer parameters (dedicated higher layer parameters), the UE 100 is used to acquire the MIB Compute the pathloss (PL) using the SSB of the SSB index.
 図31に、SRS送信電力を決定するための計算式を示す。この計算式において、パスロス(PL)が用いられる。例えば、UE100は、パスロスが大きいほどSRS送信電力を上昇させるような送信電力制御を行う。 FIG. 31 shows a calculation formula for determining the SRS transmission power. Path loss (PL) is used in this calculation formula. For example, the UE 100 performs transmission power control such that the SRS transmission power increases as the path loss increases.
 図32に、UE100(特定UE100B)の動作例を示す。ステップS521において、特定UE100B(RedCap UE)は、所定条件が満たされているか否かを判定する。具体的には、特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定され、且つ、第2イニシャルBWP504においてNon-CD-SSB502が送信されているか否かを判定する。所定条件が満たされている場合、ステップS522において、特定UE100Bは、パスロス参照信号設定情報(PathlossReferenceRS)又はSRS-PathlossReferenceRS―Idが提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PathlossReferenceRS)又はSRS-PathlossReferenceRS―Idが提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、ステップS523において、特定UE100Bは、第2イニシャルBWP504(separate initial DL BWP)において送信され且つSSBインデックス(SS/PBCH block index)で示されるNon-CD-SSB502を用いてパスロス(PL)を計算する。 FIG. 32 shows an operation example of the UE 100 (specific UE 100B). In step S521, the specific UE 100B (RedCap UE) determines whether or not a predetermined condition is satisfied. Specifically, the specific UE 100B determines whether or not the second initial BWP 504 (separate initial DL BWP) is set and Non-CD-SSB 502 is transmitted in the second initial BWP 504. If the predetermined condition is satisfied, in step S522, the specific UE 100B is not provided with pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id, or the specific UE 100B is provided with a dedicated higher layer parameter (dedicated higher layer parameters) are provided. If the pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id is not provided, or before the dedicated higher layer parameters are provided to the specific UE 100B, in step S523, the specific UE 100B calculates the pathloss (PL) using the Non-CD-SSB 502 transmitted in the second initial BWP 504 (separate initial DL BWP) and indicated by the SSB index (SS/PBCH block index).
 特定UE100Bは、第2イニシャルBWP504(セパレートイニシャルDL BWP)が設定されていない場合、及び/又は第2イニシャルBWP504においてNon-CD-SSB502が送信されていない場合、ステップS524に処理を進める。 If the second initial BWP 504 (separate initial DL BWP) is not set and/or if the Non-CD-SSB 502 is not transmitted in the second initial BWP 504, the specific UE 100B proceeds to step S524.
 ステップS524において、UE100は、パスロス参照信号設定情報(PathlossReferenceRS)又はSRS-PathlossReferenceRS―Idが提供されていないか、又は特定UE100Bに専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前であるかを判定する。パスロス参照信号設定情報(PathlossReferenceRS)又はSRS-PathlossReferenceRS―Idが提供されていないか、又はUE100に専用上位レイヤパラメータ(dedicated higher layer parameters)が提供される前である場合、UE100は、MIBを取得するために用いたSSBインデックスのSSBを用いてパスロス(PL)を計算する。 In step S524, the UE 100 is provided with no pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id, or before the dedicated higher layer parameters are provided to the specific UE 100B. judge. If pathloss reference signal configuration information (PathlossReferenceRS) or SRS-PathlossReferenceRS-Id is not provided, or before dedicated higher layer parameters are provided to UE 100, UE 100 acquires the MIB. Calculate the path loss (PL) using the SSB of the SSB index used for
 [その他の実施形態]
 第2実施形態は、上述の第1実施形態と併用されてもよい。例えば、UE100は、基地局200から識別情報を受信する前において第2実施形態に係る動作を行った後、基地局200から識別情報を受信した後において第1実施形態に係る動作を行ってもよい。
[Other embodiments]
The second embodiment may be used in combination with the first embodiment described above. For example, the UE 100 performs the operation according to the second embodiment before receiving the identification information from the base station 200, and then performs the operation according to the first embodiment after receiving the identification information from the base station 200. good.
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR.
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although the embodiments have been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes can be made without departing from the scope of the invention.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。 
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 基地局(200)のセルの帯域幅の一部であるイニシャル帯域幅部分(BWP)において送信される同期信号ブロック(SSB)を受信するユーザ装置(100)であって、
 前記基地局(200)に対するサウンディング参照信号(SRS)送信を行う送信部(111)と、
 前記SRS送信を制御するために参照する前記SSBを示すSSBインデックスを含む設定情報を前記基地局(200)から受信する受信部(112)と、
 前記設定情報に含まれる前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御する制御部(120)と、を備え、
 前記受信部(112)は、前記SSBインデックスが示す前記SSBがセル定義SSB(501)及び非セル定義SSB(502)のいずれであるかを特定するための識別情報をさらに含む前記設定情報を受信する
 ユーザ装置(100)。
 (付記2)
 前記セル定義SSB(501)は、前記セルの第1イニシャルBWP(503)において送信されるSSBであり、
 前記非セル定義SSB(502)は、前記セルにおいて、前記第1イニシャルBWP(503)と異なる第2イニシャルBWP(504)において送信されるSSBである
 付記1に記載のユーザ装置(100)。
 (付記3)
 前記第1イニシャルBWP(503)は、一般ユーザ装置(100A)向けのイニシャルBWPであり、
 前記第2イニシャルBWP(504)は、前記一般ユーザ装置(100A)に比べて通信能力が低減された特定ユーザ装置(100B)向けのイニシャルBWPである
 付記1又は2に記載のユーザ装置(100)。
 (付記4)
 前記識別情報は、前記SSBインデックスが示す前記SSBが送信される周波数位置を示す情報である
 付記1乃至3のいずれか1つに記載のユーザ装置(100)。
 (付記5)
 前記識別情報は、前記SSBインデックスが示す前記SSBが送信される下りリンクBWPを示すBWP識別子である
 付記1乃至3のいずれか1つに記載のユーザ装置(100)。
 (付記6)
 前記識別情報は、前記SSBインデックスが示す前記SSBのタイプとして、前記セル定義SSB(501)及び前記非セル定義SSB(502)のいずれか一方を示すSSBタイプ識別子である
 付記1乃至3のいずれか1つに記載のユーザ装置(100)。
 (付記7)
 基地局(200)のセルの帯域幅の一部であるイニシャル帯域幅部分(BWP)において送信される同期信号ブロック(SSB)を受信するユーザ装置(100)であって、
 前記基地局(200)に対するサウンディング参照信号(SRS)送信を行う送信部(111)と、
 前記SRS送信を制御するために参照する前記SSBを示すSSBインデックスを含む設定情報を前記基地局(200)から受信する受信部(112)と、
 前記設定情報に含まれる前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御する制御部(120)と、を備え、
 前記制御部(120)は、前記ユーザ装置(100)が一般ユーザ装置(100A)に比べて通信能力が低減された特定ユーザ装置(100B)であって、且つ、所定条件が満たされた場合、前記SSBインデックスが示す前記SSBが非セル定義SSB(502)であると特定する
 ユーザ装置(100)。
 (付記8)
 前記所定条件は、前記一般ユーザ装置(100A)向けの第1イニシャルBWP(503)及び前記特定ユーザ装置(100B)向けの第2イニシャルBWP(504)が前記セルにおいて設定され、且つ、前記第2イニシャルBWP(504)において前記非セル定義SSB(502)が送信されているという条件である
 付記7に記載のユーザ装置(100)。
 (付記9)
 前記制御部(120)は、前記ユーザ装置(100)が特定ユーザ装置(100B)であって、且つ、前記所定条件が満たされない場合、前記SSBインデックスが示す前記SSBがセル定義SSB(501)であると特定する
 付記7又は8に記載のユーザ装置(100)。
 (付記10)
 前記設定情報は、前記SRSを送信するためのビーム制御に関する空間セッティングを設定する空間関係設定情報である
 付記1乃至9のいずれか1つに記載のユーザ装置(100)。
 (付記11)
 前記制御部(120)は、前記SSBインデックスが示す前記SSBが前記非セル定義SSB(502)であると特定した場合、前記非セル定義SSB(502)の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いて前記SRS送信を行うように制御する
 付記1乃至10のいずれか1つに記載のユーザ装置(100)。
 (付記12)
 セルを管理する基地局(200)であって、
 前記セルの帯域幅の一部であるイニシャル帯域幅部分(BWP)において同期信号ブロック(SSB)を送信する送信部(211)と、
 前記セルに在圏するユーザ装置(100)からサウンディング参照信号(SRS)を受信する受信部(212)と、を備え、
 前記送信部(211)は、前記SRSの送信を制御するために前記ユーザ装置(100)が参照する前記SSBを示すSSBインデックスと、前記SSBインデックスが示す前記SSBがセル定義SSB(501)及び非セル定義SSB(502)のいずれであるかを特定するための識別情報と、を含む設定情報を前記ユーザ装置(100)に送信する
 基地局(200)。
 (付記13)
 基地局(200)のセルの帯域幅の一部であるイニシャル帯域幅部分(BWP)において送信される同期信号ブロック(SSB)を受信するユーザ装置(100)で実行する通信方法であって、
 サウンディング参照信号(SRS)送信を制御するために参照する前記SSBを示すSSBインデックスを含む設定情報を前記基地局(200)から受信するステップ(S201)と、
 前記設定情報に含まれる前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御するステップ(S202、S203、S204)と、
 前記基地局(200)に対して前記SRS送信を行うステップ(S205)と、を備え、
 前記受信するステップは、前記SSBインデックスが示す前記SSBがセル定義SSB(501)及び非セル定義SSB(502)のいずれであるかを特定するための識別情報をさらに含む前記設定情報を受信するステップを含む
 通信方法。
 (付記14)
 基地局(200)のセルの帯域幅の一部であるイニシャル帯域幅部分(BWP)において送信される同期信号ブロック(SSB)を受信するユーザ装置(100)で実行する通信方法であって、
 サウンディング参照信号(SRS)送信を制御するために参照する前記SSBを示すSSBインデックスを含む設定情報を前記基地局(200)から受信するステップ(S211)と、
 前記設定情報に含まれる前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御するステップ(S212、S203、S204)と、
 前記基地局(200)に対して前記SRS送信を行うステップ(S205)と、を備え、
 前記制御するステップは、前記ユーザ装置(100)が一般ユーザ装置(100A)に比べて通信能力が低減された特定ユーザ装置(100B)であって、且つ、所定条件が満たされた場合、前記SSBインデックスが示す前記SSBが非セル定義SSB(502)
であると特定するステップ(S212)を含む
 通信方法。
(Appendix 1)
A user equipment (100) that receives a synchronization signal block (SSB) transmitted in an initial bandwidth part (BWP) that is part of the bandwidth of a cell of a base station (200),
a transmitting unit (111) that transmits a sounding reference signal (SRS) to the base station (200);
a receiving unit (112) that receives configuration information including an SSB index indicating the SSB that is referred to for controlling the SRS transmission from the base station (200);
a control unit (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index included in the configuration information;
The receiving unit (112) receives the configuration information further including identification information for specifying whether the SSB indicated by the SSB index is a cell-defined SSB (501) or a non-cell-defined SSB (502). User Equipment (100).
(Appendix 2)
the cell-defined SSB (501) is the SSB transmitted in the first initial BWP (503) of the cell;
The user equipment (100) of Claim 1, wherein said non-cell defined SSB (502) is an SSB transmitted in said cell in a second initial BWP (504) different from said first initial BWP (503).
(Appendix 3)
The first initial BWP (503) is an initial BWP for general user equipment (100A),
The user device (100) according to appendix 1 or 2, wherein the second initial BWP (504) is an initial BWP for a specific user device (100B) whose communication capability is reduced compared to the general user device (100A). .
(Appendix 4)
The user apparatus (100) according to any one of appendices 1 to 3, wherein the identification information is information indicating a frequency position where the SSB indicated by the SSB index is transmitted.
(Appendix 5)
The user equipment (100) according to any one of appendices 1 to 3, wherein the identification information is a BWP identifier indicating a downlink BWP in which the SSB indicated by the SSB index is transmitted.
(Appendix 6)
The identification information is an SSB type identifier indicating either the cell-defined SSB (501) or the non-cell-defined SSB (502) as the type of the SSB indicated by the SSB index. 1. A user equipment (100) according to one.
(Appendix 7)
A user equipment (100) that receives a synchronization signal block (SSB) transmitted in an initial bandwidth part (BWP) that is part of the bandwidth of a cell of a base station (200),
a transmitting unit (111) that transmits a sounding reference signal (SRS) to the base station (200);
a receiving unit (112) that receives configuration information including an SSB index indicating the SSB that is referred to for controlling the SRS transmission from the base station (200);
a control unit (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index included in the configuration information;
When the user device (100) is a specific user device (100B) whose communication capability is reduced compared to a general user device (100A) and a predetermined condition is satisfied, the control unit (120) A user equipment (100) identifying that said SSB indicated by said SSB index is a non-cell defined SSB (502).
(Appendix 8)
The predetermined condition is that a first initial BWP (503) for the general user equipment (100A) and a second initial BWP (504) for the specific user equipment (100B) are set in the cell, and User equipment (100) according to clause 7, provided that said non-cell defined SSB (502) is transmitted in an initial BWP (504).
(Appendix 9)
When the user equipment (100) is a specific user equipment (100B) and the predetermined condition is not satisfied, the control unit (120) controls that the SSB indicated by the SSB index is a cell-defined SSB (501). A user equipment (100) according to clause 7 or 8.
(Appendix 10)
10. The user equipment (100) according to any one of appendices 1 to 9, wherein said configuration information is spatial relationship configuration information for configuring spatial settings related to beam control for transmitting said SRS.
(Appendix 11)
When the control unit (120) identifies that the SSB indicated by the SSB index is the non-cell-defined SSB (502), The user equipment (100) according to any one of appendices 1 to 10, wherein the SRS transmission is controlled using a domain filter.
(Appendix 12)
A base station (200) that manages a cell,
a transmitter (211) for transmitting a synchronization signal block (SSB) in an initial bandwidth part (BWP), which is part of the bandwidth of the cell;
A receiving unit (212) that receives a sounding reference signal (SRS) from the user equipment (100) located in the cell,
The transmitting unit (211) generates an SSB index indicating the SSB that the user equipment (100) refers to in order to control the transmission of the SRS, and A base station (200) that transmits configuration information including identification information for specifying which one of the cell-defined SSBs (502) and the user equipment (100).
(Appendix 13)
1. A communication method for execution in a user equipment (100) receiving a synchronization signal block (SSB) transmitted in an initial bandwidth part (BWP) of a cell bandwidth of a base station (200), comprising:
a step of receiving configuration information from the base station (200) including an SSB index indicating the SSB to be referred to for controlling sounding reference signal (SRS) transmission (S201);
referring to the SSB indicated by the SSB index included in the configuration information and controlling the SRS transmission (S202, S203, S204);
A step (S205) of performing the SRS transmission to the base station (200),
The receiving step includes receiving the configuration information further including identification information for specifying whether the SSB indicated by the SSB index is a cell-defined SSB (501) or a non-cell-defined SSB (502). including communication methods.
(Appendix 14)
1. A communication method for execution in a user equipment (100) receiving a synchronization signal block (SSB) transmitted in an initial bandwidth part (BWP) of a cell bandwidth of a base station (200), comprising:
a step of receiving configuration information from the base station (200) including an SSB index indicating the SSB to be referred to for controlling sounding reference signal (SRS) transmission (S211);
referring to the SSB indicated by the SSB index included in the configuration information and controlling the SRS transmission (S212, S203, S204);
A step (S205) of performing the SRS transmission to the base station (200),
In the step of controlling, when the user device (100) is a specific user device (100B) whose communication capability is reduced compared to a general user device (100A) and a predetermined condition is satisfied, the SSB The SSB indicated by the index is a non-cell defined SSB (502)
A communication method, including a step (S212) of specifying that the

Claims (8)

  1.  通信装置(100)であって、
     サウンディング参照信号(SRS)送信を行う送信部(111)と、
     前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を 前記基地局(200)から受信する受信部(112)と、
     前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御する制御部(120)と、を備え、
     前記制御部(120)は、非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を受信した場合、前記SSBインデックスが示す前記SSBを前記非セル定義SSB(502)として特定する
     通信装置(100)。
    A communication device (100),
    a transmission unit (111) that performs sounding reference signal (SRS) transmission;
    a receiving unit (112) for receiving configuration information including an SSB index indicating a synchronization signal and a physical broadcast channel block (SSB) referred to for the SRS transmission from the base station (200);
    A control unit (120) that controls the SRS transmission by referring to the SSB indicated by the SSB index,
    The control unit (120) identifies the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving an absolute radio frequency channel number indicating a frequency position where the non-cell-defined SSB is transmitted. A device (100).
  2.  前記非セル定義SSB(502)は、前記基地局のセルにおいて、RedCapユーザ装置向けのイニシャルBWPにおいて送信される
     請求項1に記載の通信装置(100)。
    2. The communication device (100) of claim 1, wherein the non-cell defined SSB (502) is transmitted in an initial BWP for RedCap user equipment in the cell of the base station.
  3.  前記制御部(120)は、前記通信装置(100)が、RedCapユーザ装置であって、且つ、前記非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を受信していない場合、前記SSBインデックスが示す前記SSBをセル定義SSB(501)として特定する
     請求項1に記載の通信装置(100)。
    When the communication device (100) is a RedCap user device and has not received an absolute radio frequency channel number indicating a frequency position where the non-cell defined SSB is transmitted, The communication device (100) of claim 1, wherein the SSB indicated by the SSB index is identified as a cell-defined SSB (501).
  4.  前記設定情報は、前記SRSの送信に関する空間関係設定情報を含む
     請求項1に記載の通信装置(100)。
    2. The communication device (100) of claim 1, wherein the configuration information includes spatial relationship configuration information regarding transmission of the SRS.
  5.  前記制御部(120)は、前記SSBインデックスが示す前記SSBが前記非セル定義SSB(502)であると特定した場合、前記非セル定義SSB(502)の受信に用いた空間ドメインフィルタと同じ空間ドメインフィルタを用いて前記SRS送信を行うように制御する
     請求項1に記載の通信装置(100)。
    When the control unit (120) identifies that the SSB indicated by the SSB index is the non-cell-defined SSB (502), The communication device (100) according to claim 1, wherein the SRS transmission is controlled using a domain filter.
  6.  基地局(200)であって、
     サウンディング参照信号(SRS)送信を通信装置(100)から受信する受信部(212)と、
     前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記通信装置(100)に送信する送信部(211)と、を備え、
     前記送信部(211)は、前記SSBインデックスが示す前記SSBを非セル定義SSB(502)として特定するための、前記非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を、前記通信装置(100)に送信する
     基地局(200)。
    A base station (200),
    a receiver (212) for receiving sounding reference signal (SRS) transmissions from the communication device (100);
    a transmission unit (211) configured to transmit configuration information including an SSB index indicating a synchronization signal and a physical broadcast channel block (SSB) referenced for the SRS transmission to the communication device (100),
    The transmitting unit (211) transmits an absolute radio frequency channel number indicating a frequency position where the non-cell defined SSB is transmitted, for specifying the SSB indicated by the SSB index as a non-cell defined SSB (502). A base station (200) that transmits to a communication device (100).
  7.  通信装置(100)で実行される通信方法であって、
     サウンディング参照信号(SRS)送信を行うステップと、
     前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記基地局(200)から受信するステップと、
     前記SSBインデックスが示す前記SSBを参照して前記SRS送信を制御するステップと、を含み、
     前記制御するステップは、非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を受信した場合、前記SSBインデックスが示す前記SSBを前記非セル定義SSB(502)として特定するステップを含む
     通信方法。
    A communication method performed by a communication device (100), comprising:
    performing a Sounding Reference Signal (SRS) transmission;
    receiving from the base station (200) configuration information including an SSB index indicating a synchronization signal and a physical broadcast channel block (SSB) referenced for the SRS transmission;
    and controlling the SRS transmission by referring to the SSB indicated by the SSB index;
    The controlling step includes identifying the SSB indicated by the SSB index as the non-cell-defined SSB (502) when receiving an absolute radio frequency channel number indicating a frequency location on which the non-cell-defined SSB is transmitted. Communication method.
  8.  基地局(200)で実行される通信方法であって、
     サウンディング参照信号(SRS)送信を通信装置(100)から受信するステップと、
     前記SRS送信に対して参照される同期信号及び物理報知チャネルブロック(SSB)を示すSSBインデックスを含む設定情報を前記通信装置(100)に送信するステップと、
     前記SSBインデックスが示す前記SSBを非セル定義SSB(502)として特定するための、前記非セル定義SSBが送信される周波数位置を示す絶対無線周波数チャンネル番号を、前記通信装置(100)に送信するステップと、を含む
     通信方法。
     
    A communication method performed in a base station (200), comprising:
    receiving a Sounding Reference Signal (SRS) transmission from a communication device (100);
    a step of transmitting configuration information including an SSB index indicating a synchronization signal and a physical broadcast channel block (SSB) referenced for the SRS transmission to the communication device (100);
    transmitting to the communication device (100) an absolute radio frequency channel number indicating a frequency position on which the non-cell defined SSB is transmitted, for identifying the SSB indicated by the SSB index as a non-cell defined SSB (502); and a communication method.
PCT/JP2022/040001 2021-11-02 2022-10-26 Communication device, base station, and communication method WO2023080036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179799 2021-11-02
JP2021-179799 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080036A1 true WO2023080036A1 (en) 2023-05-11

Family

ID=86241026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040001 WO2023080036A1 (en) 2021-11-02 2022-10-26 Communication device, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2023080036A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210109A1 (en) * 2020-04-15 2021-10-21 株式会社Nttドコモ Terminal, wireless communication method, and base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210109A1 (en) * 2020-04-15 2021-10-21 株式会社Nttドコモ Terminal, wireless communication method, and base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Use of NCD-SSB instead of CD-SSB for RedCap UEs", 3GPP DRAFT; R2-2110773, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20211101 - 20211112, 29 October 2021 (2021-10-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052071997 *

Similar Documents

Publication Publication Date Title
CN109076540B (en) Terminal device and method
RU2577481C2 (en) Cross-scheduling for random access response
CN109155936B (en) Terminal device and method
US8570948B2 (en) Communication system, mobile station apparatus, radio link state management method, and integrated circuit
US9220095B2 (en) Communication system, mobile station device, base station device, random access processing method, and integrated circuit
WO2019095246A1 (en) Uplink transmission scheme
WO2020204804A1 (en) Methods for physical downlink control channel (pdcch) based wake up signal (wus) configuration
US20220345920A1 (en) User equipment, base station, and method
US20220038210A1 (en) Terminal apparatus, base station apparatus, and communication method
CN114175558B (en) User equipment, base station and method
US20230371022A1 (en) Terminal apparatus, base station apparatus, and communication method
CN114175562B (en) User equipment, base station apparatus and method
US20230023825A1 (en) Terminal apparatus, base station apparatus, and communication method
WO2023080036A1 (en) Communication device, base station, and communication method
WO2023080037A1 (en) Communication device, base station, and communication method
WO2023080035A1 (en) Communication device, base station, and communication method
WO2023080038A1 (en) Communication device, base station, and communication method
US20220345921A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2015070342A (en) Base station, terminal, and communication method
US20240107428A1 (en) User equipment, base station, and communication control method
WO2023080160A1 (en) Communication device, base station, and communication method
WO2023153383A1 (en) Communication device and communication method
WO2023238686A1 (en) Communication device, base station, and communication method
EP4336933A1 (en) Communication device, base station, and method
WO2023238689A1 (en) Communication device, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889856

Country of ref document: EP

Kind code of ref document: A1