WO2024071024A1 - Power conversion device and motor module - Google Patents

Power conversion device and motor module Download PDF

Info

Publication number
WO2024071024A1
WO2024071024A1 PCT/JP2023/034690 JP2023034690W WO2024071024A1 WO 2024071024 A1 WO2024071024 A1 WO 2024071024A1 JP 2023034690 W JP2023034690 W JP 2023034690W WO 2024071024 A1 WO2024071024 A1 WO 2024071024A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
period
connection point
turning
motor
Prior art date
Application number
PCT/JP2023/034690
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 片岡
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2024071024A1 publication Critical patent/WO2024071024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Definitions

  • the present invention relates to a power conversion device and a motor module.
  • Patent Document 1 discloses an operation control device that uses two three-phase inverters to operate an induction motor having a three-phase stator winding and six lead-out terminals. This operation control device controls the output voltage phases of both inverters to be in phase when the induction motor is operating at low speed. In addition, when the induction motor is operating at high speed, the operation control device inverts the voltage phase of one inverter by 180 degrees and halves the output frequency of both inverters to invert the phase rotation. With this control, the number of poles of the induction motor is equivalently switched from four to two when switching from low to high speed operation, eliminating torque shortages during high speed operation without increasing the size of the induction motor.
  • One aspect of the power conversion device of the present invention comprises an H-bridge circuit corresponding to each phase of a motor having two groups of N-phase terminals (N is an integer of 3 or more), an auxiliary circuit corresponding to at least one of the H-bridge circuits, and a control unit that controls the H-bridge circuit and the auxiliary circuit,
  • the H-bridge circuit comprising a first leg including a first switch connected between a positive electrode of a power source and a first connection point, a second switch connected between a negative electrode of the power source and the first connection point, a third switch connected between the positive electrode and the second connection point, and a fourth switch connected between the negative electrode and the second connection point
  • the auxiliary circuit comprising a first rectifying element and a first inductor connected in series between the first connection point and the third connection point, and a fourth switch connected in series between the second connection point and the third connection point.
  • a second rectifier element and a second inductor connected in series between the first connection point and the fourth connection point; a third rectifier element and a third inductor connected in series between the second connection point and the fourth connection point; a fourth rectifier element and a fourth inductor connected in series between the second connection point and the fourth connection point; a fifth switch connected between the positive electrode and the third connection point; a fifth rectifier element having a negative terminal connected to the third connection point and a positive terminal connected to the negative electrode; a sixth rectifier element having a negative terminal connected to the positive electrode and a positive terminal connected to the fourth connection point; and a sixth switch connected between the negative electrode and the fourth connection point, where the positive terminal of the first rectifier element and the positive terminal of the second rectifier element are located on the third connection point side, and the negative terminal of the third rectifier element and the negative terminal of the fourth rectifier element are located on the fourth connection point side.
  • One embodiment of the motor module of the present invention comprises a motor having two N-phase terminal groups (N is an integer equal to or greater than 3) and the power conversion device of the above embodiment.
  • the above aspect of the present invention makes it possible to reduce the switching loss of each switch included in the H-bridge circuit corresponding to each phase of the motor.
  • FIG. 1 is a diagram illustrating a schematic configuration of a motor module 1 according to the present embodiment.
  • FIG. 2 is a diagram showing a circuit configuration of an H-bridge circuit BC corresponding to the U-phase and an auxiliary circuit SC corresponding to the H-bridge circuit BC.
  • FIG. 3 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20.
  • FIG. 4 is a diagram showing the state of each switch and the direction of current in a first period T1 in the PWM cycle TP shown in FIG.
  • FIG. 5 is a diagram showing the state of each switch and the direction of current in the second period T2 in the PWM cycle TP shown in FIG.
  • FIG. 6 is a diagram showing the state of each switch and the direction of current in the third period T3 in the PWM cycle TP shown in FIG.
  • FIG. 7 is a diagram showing the state of each switch and the direction of current in a fourth period T4 in the PWM cycle TP shown in FIG.
  • FIG. 8 is a diagram showing the state of each switch and the direction of current in a fifth period T5 in the PWM cycle TP shown in FIG.
  • FIG. 9 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1.
  • FIG. 10 is a diagram showing the state of each switch and the direction of current in a first period T11 in the PWM cycle TP shown in FIG.
  • FIG. 10 is a diagram showing the state of each switch and the direction of current in a first period T11 in the PWM cycle TP shown in FIG.
  • FIG. 10 is a diagram showing the state of each switch and the direction
  • FIG. 11 is a diagram showing the state of each switch and the direction of current in the second period T12 in the PWM cycle TP shown in FIG.
  • FIG. 12 is a diagram showing the state of each switch and the direction of current in the third period T13 in the PWM cycle TP shown in FIG.
  • FIG. 13 is a diagram showing the state of each switch and the direction of current in a fourth period T14 in the PWM cycle TP shown in FIG.
  • FIG. 14 is a diagram showing the state of each switch and the direction of current in a fifth period T15 in the PWM cycle TP shown in FIG.
  • FIG. 12 is a diagram showing the state of each switch and the direction of current in the third period T13 in the PWM cycle TP shown in FIG.
  • FIG. 13 is a diagram showing the state of each switch and the direction of current in a fourth period T14 in the PWM cycle TP shown in FIG.
  • FIG. 14 is a diagram showing the state of each switch and the direction of current in a fifth period T15 in the PWM
  • FIG. 15 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20.
  • FIG. 16 is a diagram showing the state of each switch and the direction of current in a first period T21 in the PWM cycle TP shown in FIG.
  • FIG. 17 is a diagram showing the state of each switch and the direction of current in the second period T22 in the PWM cycle TP shown in FIG.
  • FIG. 18 is a diagram showing the state of each switch and the direction of current in the third period T23 in the PWM cycle TP shown in FIG.
  • FIG. 19 is a diagram showing the state of each switch and the direction of current in a fourth period T24 in the PWM cycle TP shown in FIG.
  • FIG. 20 is a diagram showing the state of each switch and the direction of current in a fifth period T25 in the PWM cycle TP shown in FIG.
  • FIG. 21 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 within the PWM period TP.
  • FIG. 22 is a diagram showing the state of each switch and the direction of current in a first period T31 in the PWM cycle TP shown in FIG.
  • FIG. 23 is a diagram showing the state of each switch and the direction of current in a second period T32 in the PWM cycle TP shown in FIG.
  • FIG. 24 is a diagram showing the state of each switch and the direction of current in a third period T33 in the PWM cycle TP shown in FIG.
  • FIG. 25 is a diagram showing the state of each switch and the direction of current in a fourth period T34 in the PWM cycle TP shown in FIG.
  • FIG. 26 is a diagram showing the state of each switch and the direction of current in a fifth period T35 in the PWM cycle TP shown in FIG.
  • FIG. 27 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and when, within a PWM period TP, the length of the on period of the first switch Tr1 and the length of the on period of the third switch Tr3 are different and the center of the on period of the first switch Tr1 and the center of the on period of the third switch Tr3 are shifted from each other by a half PWM period.
  • FIG. 28 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively.
  • FIG. 29 is a diagram showing the state of each switch and the direction of current in a first period T51 in the PWM cycle TP shown in FIG.
  • FIG. 30 is a diagram showing the state of each switch and the direction of current in the second period T52 in the PWM cycle TP shown in FIG.
  • FIG. 31 is a diagram showing the state of each switch and the direction of current in a third period T53 in the PWM cycle TP shown in FIG.
  • FIG. 32 is a diagram showing the state of each switch and the direction of current in a fourth period T54 in the PWM cycle TP shown in FIG.
  • FIG. 33 is a diagram showing the state of each switch and the direction of current in a fifth period T55 in the PWM cycle TP shown in FIG.
  • FIG. 34 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
  • FIG. 35 is a diagram showing the state of each switch and the direction of current in a first period T61 in the PWM cycle TP shown in FIG.
  • FIG. 36 is a diagram showing the state of each switch and the direction of current in a second period T62 in the PWM cycle TP shown in FIG.
  • FIG. 37 is a diagram showing the state of each switch and the direction of current in a third period T63 in the PWM cycle TP shown in FIG.
  • FIG. 38 is a diagram showing the state of each switch and the direction of current in a fourth period T64 in the PWM cycle TP shown in FIG.
  • FIG. 39 is a diagram showing the state of each switch and the direction of current in a fifth period T65 in the PWM cycle TP shown in FIG. FIG.
  • FIG. 40 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and when, within a PWM period TP, the length of the on period of the second switch Tr2 and the length of the on period of the fourth switch Tr4 are different and the center of the on period of the second switch Tr2 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
  • FIG. 41 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2.
  • FIG. 42 is a diagram showing the state of each switch and the direction of current in a first period T81 in the PWM cycle TP shown in FIG.
  • FIG. 43 is a diagram showing the state of each switch and the direction of current in a second period T82 in the PWM cycle TP shown in FIG.
  • FIG. 44 is a diagram showing the state of each switch and the direction of current in the third period T83 in the PWM cycle TP shown in FIG.
  • FIG. 45 is a diagram showing the state of each switch and the direction of current in a fourth period T84 in the PWM cycle TP shown in FIG.
  • FIG. 46 is a diagram showing the state of each switch and the direction of current in a fifth period T85 in the PWM cycle TP shown in FIG.
  • FIG. 47 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is longer than the on period of the fourth switch Tr4 within the PWM period TP.
  • FIG. 48 is a diagram showing the state of each switch and the direction of current in a first period T91 in the PWM cycle TP shown in FIG.
  • FIG. 49 is a diagram showing the state of each switch and the direction of current in a second period T92 in the PWM cycle TP shown in FIG.
  • FIG. 50 is a diagram showing the state of each switch and the direction of current in the third period T93 in the PWM cycle TP shown in FIG.
  • FIG. 51 is a diagram showing the state of each switch and the direction of current in a fourth period T94 in the PWM cycle TP shown in FIG.
  • FIG. 52 is a diagram showing the state of each switch and the direction of current in a fifth period T95 in the PWM cycle TP shown in FIG. FIG.
  • FIG. 53 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
  • FIG. 53 shows the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
  • FIG. 54 is a timing chart showing the on/off timings of the first switch Tr1 to the sixth switch Tr6 in a case where a current flows from the first connection point P1 toward the motor 20 and also flows from the motor 20 toward the second connection point P2, and within a PWM period TP, the length of the on period of the first switch Tr1 and the length of the on period of the fourth switch Tr4 are different and the center of the on period of the first switch Tr1 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
  • FIG. 55 is a diagram showing a modified example of the H-bridge circuit BC and the auxiliary circuit SC.
  • Fig. 1 is a diagram showing a schematic configuration of a motor module 1 in this embodiment.
  • the motor module 1 includes a power conversion device 10 and a motor 20.
  • the motor 20 has two N-phase terminal groups (N is an integer equal to or greater than 3). In this embodiment, as an example, N is 3. That is, the motor 20 is a three-phase motor having two three-phase terminal groups.
  • the motor 20 has a first U-phase terminal 21u, a first V-phase terminal 21v, and a first W-phase terminal 21w as one three-phase terminal group.
  • the motor 20 has a second U-phase terminal 22u, a second V-phase terminal 22v, and a second W-phase terminal 22w as the other three-phase terminal group.
  • the motor 20 further has a first U-phase coil 23u, a first V-phase coil 23v, a first W-phase coil 23w, a second U-phase coil 24u, a second V-phase coil 24v, and a second W-phase coil 24w.
  • the motor 20 has a motor case, and a rotor and a stator housed in the motor case.
  • the rotor is a rotating body that is rotatably supported inside the motor case by bearing parts such as rotor bearings.
  • the rotor has an output shaft that is coaxially joined to the rotor and passes axially through the radial inside of the rotor.
  • the stator is set inside the motor case, surrounding the outer circumferential surface of the rotor, and generates the electromagnetic force required to rotate the rotor.
  • the first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are excitation coils provided on the stator.
  • One end of the first U-phase coil 23u is electrically connected to the first U-phase terminal 21u.
  • One end of the first V-phase coil 23v is electrically connected to the first V-phase terminal 21v.
  • One end of the first W-phase coil 23w is electrically connected to the first W-phase terminal 21w.
  • the other end of the first U-phase coil 23u, the other end of the first V-phase coil 23v, and the other end of the first W-phase coil 23w are electrically connected to each other.
  • the second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w are excitation coils provided on the stator.
  • One end of the second U-phase coil 24u is electrically connected to the second U-phase terminal 22u.
  • One end of the second V-phase coil 24v is electrically connected to the second V-phase terminal 22v.
  • One end of the second W-phase coil 24w is electrically connected to the second W-phase terminal 22w.
  • the other end of the second U-phase coil 24u, the other end of the second V-phase coil 24v, and the other end of the second W-phase coil 24w are electrically connected to each other.
  • the power conversion device 10 controls the energization state of each coil included in the motor 20, generating the electromagnetic force required to rotate the rotor. As the rotor rotates, the output shaft also rotates in sync with the rotor.
  • the power conversion device 10 includes a first three-phase full bridge circuit 11, a second three-phase full bridge circuit 12, and a control unit 13.
  • the first three-phase full bridge circuit 11 is electrically connected to one of the three-phase terminal groups of the motor 20.
  • the second three-phase full bridge circuit 12 is electrically connected to the other of the three-phase terminal groups of the motor 20.
  • the first three-phase full bridge circuit 11 and the second three-phase full bridge circuit 12 are each electrically connected to a DC power supply 30.
  • the first three-phase full bridge circuit 11 and the second three-phase full bridge circuit 12 operate in cooperation with each other according to the gate signals output from the control unit 13, thereby performing mutual conversion between DC power and three-phase AC power between the DC power supply 30 and the motor 20.
  • the power conversion device 10 converts the DC power supplied from the DC power supply 30 into three-phase AC power and outputs it to the motor 20.
  • the first three-phase full-bridge circuit 11 has a total of six switches: three high-side switches and three low-side switches.
  • the first three-phase full-bridge circuit 11 has a first U-phase high-side switch UH1, a first V-phase high-side switch VH1, a first W-phase high-side switch WH1, a first U-phase low-side switch UL1, a first V-phase low-side switch VL1, and a first W-phase low-side switch WL1.
  • each switch included in the first three-phase full-bridge circuit 11 is, for example, an n-channel MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • each switch may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or a JFET (Junction Field Effect Transistor). Diodes are connected in inverse parallel to these switches. As described above, when using MOS-FETs as switches, the body diodes of the MOS-FETs may be used instead of diodes.
  • IGBT Insulated Gate Bipolar Transistor
  • JFET Joint Field Effect Transistor
  • the drain terminal of the first U-phase high-side switch UH1, the drain terminal of the first V-phase high-side switch VH1, and the drain terminal of the first W-phase high-side switch WH1 are each electrically connected to the positive electrode of the DC power supply 30.
  • the source terminal of the first U-phase low-side switch UL1, the source terminal of the first V-phase low-side switch VL1, and the source terminal of the first W-phase low-side switch WL1 are each electrically connected to the negative electrode of the DC power supply 30.
  • the source terminal of the first U-phase high-side switch UH1 is electrically connected to the first U-phase terminal 21u and the drain terminal of the first U-phase low-side switch UL1.
  • the source terminal of the first U-phase high-side switch UH1 is electrically connected to one end of the first U-phase coil 23u via the first U-phase terminal 21u.
  • the source terminal of the first V-phase high-side switch VH1 is electrically connected to the first V-phase terminal 21v and the drain terminal of the first V-phase low-side switch VL1.
  • the source terminal of the first V-phase high-side switch VH1 is electrically connected to one end of the first V-phase coil 23v via the first V-phase terminal 21v.
  • the source terminal of the first W-phase high-side switch WH1 is electrically connected to the first W-phase terminal 21w and the drain terminal of the first W-phase low-side switch WL1.
  • the source terminal of the first W-phase high-side switch WH1 is electrically connected to one end of the first W-phase coil 23w via the first W-phase terminal 21w.
  • the gate terminal of the first U-phase high-side switch UH1, the gate terminal of the first V-phase high-side switch VH1, and the gate terminal of the first W-phase high-side switch WH1 are each electrically connected to the control unit 13.
  • the gate terminal of the first U-phase low-side switch UL1, the gate terminal of the first V-phase low-side switch VL1, and the gate terminal of the first W-phase low-side switch WL1 are each electrically connected to the control unit 13.
  • the second three-phase full bridge circuit 12 has a total of six switches: three high-side switches and three low-side switches.
  • the second three-phase full bridge circuit 12 has a second U-phase high-side switch UH2, a second V-phase high-side switch VH2, a second W-phase high-side switch WH2, a second U-phase low-side switch UL2, a second V-phase low-side switch VL2, and a second W-phase low-side switch WL2.
  • each switch included in the second three-phase full bridge circuit 12 is, for example, an n-channel MOS-FET.
  • the drain terminal of the second U-phase high-side switch UH2, the drain terminal of the second V-phase high-side switch VH2, and the drain terminal of the second W-phase high-side switch WH2 are each electrically connected to the positive electrode of the DC power supply 30.
  • the source terminal of the second U-phase low-side switch UL2, the source terminal of the second V-phase low-side switch VL2, and the source terminal of the second W-phase low-side switch WL2 are each electrically connected to the negative electrode of the DC power supply 30.
  • the source terminal of the second U-phase high-side switch UH2 is electrically connected to the second U-phase terminal 22u and the drain terminal of the second U-phase low-side switch UL2.
  • the source terminal of the second U-phase high-side switch UH2 is electrically connected to the other end of the second U-phase coil 24u via the second U-phase terminal 22u.
  • the source terminal of the second V-phase high-side switch VH2 is electrically connected to the second V-phase terminal 22v and the drain terminal of the second V-phase low-side switch VL2.
  • the source terminal of the second V-phase high-side switch VH2 is electrically connected to the other end of the second V-phase coil 24v via the second V-phase terminal 22v.
  • the source terminal of the second W-phase high-side switch WH2 is electrically connected to the second W-phase terminal 22w and the drain terminal of the second W-phase low-side switch WL2.
  • the source terminal of the second W-phase high-side switch WH2 is electrically connected to the other end of the second W-phase coil 24w via the second W-phase terminal 22w.
  • the gate terminal of the second U-phase high-side switch UH2, the gate terminal of the second V-phase high-side switch VH2, and the gate terminal of the second W-phase high-side switch WH2 are each electrically connected to the control unit 13.
  • the gate terminal of the second U-phase low-side switch UL2, the gate terminal of the second V-phase low-side switch VL2, and the gate terminal of the second W-phase low-side switch WL2 are each electrically connected to the control unit 13.
  • the control unit 13 controls each switch included in the first three-phase full-bridge circuit 11 and the second three-phase full-bridge circuit 12.
  • the control unit 13 is an MCU (Microcontroller Unit).
  • the control unit 13 generates gate signals required to control each switch by pulse width modulation, and outputs the gate signals to the gate terminals of each switch.
  • the power conversion device 10 includes an H-bridge circuit corresponding to each phase of the motor 20. Although not shown in FIG. 1, the power conversion device 10 further includes an auxiliary circuit corresponding to at least one of the H-bridge circuits. Below, the circuit configuration of the H-bridge circuit and the auxiliary circuit will be described using the H-bridge circuit corresponding to the U-phase and the auxiliary circuit corresponding to that H-bridge circuit as a representative example.
  • FIG. 2 is a diagram showing the circuit configuration of an H-bridge circuit BC corresponding to the U-phase and an auxiliary circuit SC corresponding to the H-bridge circuit BC.
  • the H-bridge circuit BC includes a first leg U1 and a second leg U2.
  • the first leg U1 includes a first switch Tr1 corresponding to the first U-phase high-side switch UH1, and a second switch Tr2 corresponding to the first U-phase low-side switch UL1.
  • the second leg U2 includes a third switch Tr3 corresponding to the second U-phase high-side switch UH2, and a fourth switch Tr4 corresponding to the second U-phase low-side switch UL2.
  • the first switch Tr1 is electrically connected between the positive electrode of the DC power supply 30 and the first connection point P1. Specifically, the drain terminal of the first switch Tr1 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the first switch Tr1 is electrically connected to the first connection point P1.
  • the first connection point P1 is a node electrically connected to the first U-phase terminal 21u of the motor 20.
  • the second switch Tr2 is electrically connected between the negative electrode of the DC power supply 30 and the first connection point P1. Specifically, the source terminal of the second switch Tr2 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the second switch Tr2 is electrically connected to the first connection point P1.
  • the third switch Tr3 is electrically connected between the positive electrode of the DC power supply 30 and the second connection point P2. Specifically, the drain terminal of the third switch Tr3 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the third switch Tr3 is electrically connected to the second connection point P2.
  • the second connection point P2 is a node electrically connected to the second U-phase terminal 22u of the motor 20.
  • the fourth switch Tr4 is electrically connected between the negative electrode of the DC power supply 30 and the second connection point P2. Specifically, the source terminal of the fourth switch Tr4 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the fourth switch Tr4 is electrically connected to the second connection point P2.
  • the auxiliary circuit SC includes a first rectifier element D1, a second rectifier element D2, a third rectifier element D3, a fourth rectifier element D4, a fifth rectifier element D5, a sixth rectifier element D6, a first inductor L1, a second inductor L2, a third inductor L3, a fourth inductor L4, a fifth switch Tr5, and a sixth switch Tr6.
  • the first rectifier element D1 to the sixth rectifier element D6 are each diodes.
  • the fifth switch Tr5 and the sixth switch Tr6 are each n-channel MOS-FETs.
  • the first rectifier element D1 and the first inductor L1 are connected in series between the first connection point P1 and the third connection point P3. Specifically, the anode terminal of the first rectifier element D1 is electrically connected to the third connection point P3, and the cathode terminal of the first rectifier element D1 is electrically connected to one end of the first inductor L1. The other end of the first inductor L1 is electrically connected to the first connection point P1.
  • the anode terminal corresponds to the positive terminal, and the cathode terminal corresponds to the negative terminal.
  • the second rectifier element D2 and the second inductor L2 are connected in series between the second connection point P2 and the third connection point P3. Specifically, the anode terminal of the second rectifier element D2 is electrically connected to the third connection point P3, and the cathode terminal of the second rectifier element D2 is electrically connected to one end of the second inductor L2. The other end of the second inductor L2 is electrically connected to the second connection point P2.
  • the third rectifier element D3 and the third inductor L3 are connected in series between the first connection point P1 and the fourth connection point P4. Specifically, the cathode terminal of the third rectifier element D3 is electrically connected to the fourth connection point P4, and the anode terminal of the third rectifier element D3 is electrically connected to one end of the third inductor L3. The other end of the third inductor L3 is electrically connected to the first connection point P1.
  • the fourth rectifier element D4 and the fourth inductor L4 are connected in series between the second connection point P2 and the fourth connection point P4. Specifically, the cathode terminal of the fourth rectifier element D4 is electrically connected to the fourth connection point P4, and the anode terminal of the fourth rectifier element D4 is electrically connected to one end of the fourth inductor L4. The other end of the fourth inductor L4 is electrically connected to the second connection point P2.
  • the fifth rectifier element D5 has a cathode terminal electrically connected to the third connection point P3 and an anode terminal electrically connected to the negative electrode of the DC power supply 30.
  • the sixth rectifier element D6 has a cathode terminal electrically connected to the positive electrode of the DC power supply 30 and an anode terminal electrically connected to the fourth connection point P4.
  • the fifth switch Tr5 is electrically connected between the positive electrode of the DC power supply 30 and the third connection point P3. Specifically, the drain terminal of the fifth switch Tr5 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the fifth switch Tr5 is electrically connected to the third connection point P3.
  • the sixth switch Tr6 is electrically connected between the negative electrode of the DC power supply 30 and the fourth connection point P4. Specifically, the source terminal of the sixth switch Tr6 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the sixth switch Tr6 is electrically connected to the fourth connection point P4.
  • the control unit 13 controls the H-bridge circuit BC and the auxiliary circuit SC.
  • the control unit 13 controls the first switch Tr1 to the fourth switch Tr4 included in the H-bridge circuit BC, and the fifth switch Tr5 and the sixth switch Tr6 included in the auxiliary circuit SC.
  • the anode terminal of the first rectifier element D1 and the anode terminal of the second rectifier element D2 are located on the side of the third connection point P3. If the condition that the anode terminal of the first rectifier element D1 is located on the side of the third connection point P3 is satisfied, the position of the first rectifier element D1 and the position of the first inductor L1 may be interchanged. Similarly, if the condition that the anode terminal of the second rectifier element D2 is located on the side of the third connection point P3 is satisfied, the position of the second rectifier element D2 and the position of the second inductor L2 may be interchanged.
  • the cathode terminal of the third rectifier element D3 and the cathode terminal of the fourth rectifier element D4 are located on the side of the fourth connection point P4. If the condition that the cathode terminal of the third rectifier element D3 is located on the side of the fourth connection point P4 is satisfied, the position of the third rectifier element D3 and the position of the third inductor L3 may be interchanged. Similarly, if the condition that the cathode terminal of the fourth rectifier element D4 is located on the side of the fourth connection point P4 is satisfied, the position of the fourth rectifier element D4 and the position of the fourth inductor L4 may be interchanged.
  • the control unit 13 has a first mode in which the first leg U1 and the second leg U2 output voltages of the same phase, and a second mode in which the first leg U1 and the second leg U2 output voltages of opposite phases.
  • the control unit 13 operates in the first mode when the motor 20 is operating at low speed, and operates in the second mode when the motor 20 is operating at high speed.
  • the number of poles of the motor 20 is equivalently switched from four poles to two poles, so that torque deficiency during high speed operation can be eliminated without increasing the size of the motor 20.
  • the control unit 13 performs at least one of the following: a first operation of turning on the fifth switch Tr5 for a first time before turning on at least one of the first switch Tr1 and the third switch Tr3 within one control period of the pulse width modulation; and a second operation of turning on the sixth switch Tr6 for a second time before turning on at least one of the second switch Tr2 and the fourth switch Tr4 within one control period of the pulse width modulation.
  • one control period of the pulse width modulation may be referred to as a "PWM (Pulse Width Modulation) period.”
  • FIG. 3 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the fifth switch Tr5 when a current flows from the first connection point P1 of the first leg U1 toward the motor 20.
  • the first operation is to turn on the fifth switch Tr5 for a first time within the PWM period TP before turning on the first switch Tr1.
  • the state of the second leg U2 is not taken into consideration.
  • FIG. 4 is a diagram showing the state of each switch and the direction of current during the first period T1 in the PWM cycle TP shown in FIG. 3.
  • the current flowing toward the top of each circuit diagram may be referred to as the “upward current,” the current flowing toward the bottom of each circuit diagram as the “downward current,” the current flowing toward the right side of each circuit diagram as the “rightward current,” and the current flowing toward the left side of each circuit diagram as the “leftward current.”
  • the first switch Tr1 is off, the second switch Tr2 is on, and the fifth switch Tr5 is off.
  • an upward current flows through the second switch Tr2, and a current flows from the first connection point P1 toward the motor 20.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 5 is a diagram showing the state of each switch and the direction of the current during the second period T2 in the PWM cycle TP shown in FIG. 3.
  • the first switch Tr1 is off
  • the second switch Tr2 is on
  • the fifth switch Tr5 is on.
  • the potential of the third connection point P3 of the auxiliary circuit SC becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1.
  • the second period T2 when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2.
  • the second period T2 corresponds to the first time during which the fifth switch Tr5 is turned on.
  • FIG. 6 is a diagram showing the state of each switch and the direction of the current during the third period T3 in the PWM cycle TP shown in FIG. 3.
  • the first switch Tr1 is off
  • the second switch Tr2 is on
  • the fifth switch Tr5 is off.
  • the fifth switch Tr5 is turned off during the third period T3
  • the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5.
  • the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 7 is a diagram showing the state of each switch and the direction of the current during the fourth period T4 in the PWM cycle TP shown in FIG. 3.
  • the first switch Tr1 is off, the second switch Tr2 is off, and the fifth switch Tr5 is off.
  • the second switch Tr2 is turned off during the fourth period T4
  • the current flowing through the fifth rectifier element D5 and the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero.
  • the voltage across the first switch Tr1 is the potential difference between the drain terminal and the source terminal. Note that during the fourth period T4, a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
  • FIG. 8 is a diagram showing the state of each switch and the direction of current during the fifth period T5 in the PWM cycle TP shown in FIG. 3.
  • the first switch Tr1 is on, the second switch Tr2 is off, and the fifth switch Tr5 is off.
  • the upward current flowing through the first switch Tr1 also decreases.
  • a downward current flows through the first switch Tr1.
  • the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 match.
  • the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the first switch Tr1 within the PWM period TP.
  • the voltage across the first switch Tr1 becomes nearly zero before the first switch Tr1 is turned on.
  • the control unit 13 performing the above first operation, soft switching of the first switch Tr1 is realized, and the switching loss of the first switch Tr1 can be reduced.
  • the first operation is an operation of turning on the fifth switch Tr5 for a first time before turning on the third switch Tr3 within the PWM period TP. That is, when a current flows from the second connection point P2 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the third switch Tr3 within the PWM period TP. As a result, the voltage across the third switch Tr3 becomes almost zero before the third switch Tr3 is turned on. That is, when the control unit 13 performs the above first operation, soft switching of the third switch Tr3 is realized, and the switching loss of the third switch Tr3 can be reduced.
  • FIG. 9 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the sixth switch Tr6 when a current flows from the motor 20 toward the first connection point P1.
  • the second operation is an operation of turning on the sixth switch Tr6 for a second time within the PWM period TP before turning on the second switch Tr2. Note that in FIG. 9, the state of the second leg U2 is not taken into consideration.
  • FIG. 10 is a diagram showing the state of each switch and the direction of current during the first period T11 in the PWM cycle TP shown in FIG. 9.
  • the first switch Tr1 is on, the second switch Tr2 is off, and the sixth switch Tr6 is off.
  • a current flows from the motor 20 toward the first connection point P1, and an upward current flows through the first switch Tr1.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 11 is a diagram showing the state of each switch and the direction of the current during the second period T12 in the PWM cycle TP shown in FIG. 9.
  • the first switch Tr1 is on
  • the second switch Tr2 is off
  • the sixth switch Tr6 is on.
  • the potential of the fourth connection point P4 of the auxiliary circuit SC becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3.
  • the second period T12 when the rightward current flowing through the third inductor L3 becomes larger than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the first switch Tr1.
  • the second period T12 corresponds to the second time during which the sixth switch Tr6 is on.
  • FIG. 12 is a diagram showing the state of each switch and the direction of the current during the third period T13 in the PWM cycle TP shown in FIG. 9.
  • the first switch Tr1 is on
  • the second switch Tr2 is off
  • the sixth switch Tr6 is off.
  • the sixth switch Tr6 is turned off during the third period T13, the rightward current flowing through the third inductor L3 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6.
  • the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 13 is a diagram showing the state of each switch and the direction of the current during the fourth period T14 in the PWM cycle TP shown in FIG. 9.
  • the first switch Tr1 is off
  • the second switch Tr2 is off
  • the sixth switch Tr6 is off.
  • the current flowing through the third inductor L3 and the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2, and an upward current flows through the body diode of the second switch Tr2.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltage across the second switch Tr2 is approximately zero.
  • a reverse voltage is applied to the third inductor L3, so the rightward current flowing through the third inductor L3 gradually decreases.
  • FIG. 14 is a diagram showing the state of each switch and the direction of the current during the fifth period T15 in the PWM cycle TP shown in FIG. 9.
  • the first switch Tr1 is off
  • the second switch Tr2 is on
  • the sixth switch Tr6 is off.
  • the upward current flowing through the second switch Tr2 also decreases.
  • a downward current flows through the second switch Tr2.
  • the current flowing through the third inductor L3 becomes zero, the current flowing downward through the second switch Tr2 and the current flowing from the motor 20 toward the first connection point P1 match.
  • the control unit 13 performs the second operation of turning on the sixth switch Tr6 for the second time before turning on the second switch Tr2 within the PWM period TP.
  • the voltage across the second switch Tr2 becomes almost zero before the second switch Tr2 is turned on.
  • the control unit 13 performing the above-mentioned second operation, soft switching of the second switch Tr2 is realized, and the switching loss of the second switch Tr2 can be reduced.
  • the second operation is an operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 within the PWM period TP. That is, when a current flows from the motor 20 toward the second connection point P2, the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 within the PWM period TP. As a result, the voltage across the fourth switch Tr4 becomes almost zero before the fourth switch Tr4 is turned on. That is, when the control unit 13 performs the above-mentioned second operation, soft switching of the fourth switch Tr4 is realized, and the switching loss of the fourth switch Tr4 can be reduced.
  • Fig. 15 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from the first connection point P1 and the second connection point P2 toward the motor 20.
  • Fig. 15 also shows changes in the currents of the first inductor L1 and the second inductor L2, the currents of the first switch Tr1 and the third switch Tr3, and the voltages across the first switch Tr1 and the third switch Tr3.
  • I_L1 indicates the current of the first inductor L1
  • I_L2 indicates the current of the second inductor L2.
  • I_Tr1 indicates the current of the first switch Tr1
  • I_Tr3 indicates the current of the third switch Tr3.
  • V_Tr1 indicates the voltage across the first switch Tr1, and V_Tr3 indicates the voltage across the third switch Tr3.
  • the control unit 13 turns on both the first switch Tr1 and the third switch Tr3 at a first timing, and performs a first operation before the first timing within the PWM period TP.
  • the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before simultaneously turning on the first switch Tr1 and the third switch Tr3 within the PWM period TP.
  • FIG. 16 is a diagram showing the state of each switch and the direction of current during the first period T21 in the PWM cycle TP shown in FIG. 15.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are on
  • the fifth switch Tr5 is off.
  • an upward current flows through the second switch Tr2 and the fourth switch Tr4
  • a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20.
  • the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 17 is a diagram showing the state of each switch and the direction of current during the second period T22 in the PWM cycle TP shown in FIG. 15.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are on
  • the fifth switch Tr5 is on.
  • the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1 and the second inductor L2.
  • the second period T22 when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2.
  • the second period T22 when the rightward current flowing through the second inductor L2 becomes larger than the current flowing from the second connection point P2 toward the motor 20, a downward current flows through the fourth switch Tr4.
  • the second period T22 corresponds to the first time during which the fifth switch Tr5 is turned on.
  • FIG. 18 is a diagram showing the state of each switch and the direction of the current during the third period T23 in the PWM cycle TP shown in FIG. 15.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are on
  • the fifth switch Tr5 is off.
  • the fifth switch Tr5 is turned off during the third period T23
  • the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5.
  • the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 19 is a diagram showing the state of each switch and the direction of current during the fourth period T24 in the PWM cycle TP shown in FIG. 15.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are off
  • the fifth switch Tr5 is off.
  • the second switch Tr2 and the fourth switch Tr4 are turned off, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and the current flowing through the second inductor L2 is commutated from the fourth switch Tr4 to the third switch Tr3, and an upward current flows through the body diodes of the first switch Tr1 and the third switch Tr3.
  • the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the positive electrode potential of the DC power supply 30, so the voltages across the first switch Tr1 and the third switch Tr3 are approximately zero.
  • a reverse voltage is applied to the first inductor L1 and the second inductor L2, so the rightward current flowing through the first inductor L1 and the second inductor L2 gradually decreases.
  • FIG. 20 is a diagram showing the state of each switch and the direction of current in a fifth period T25 in the PWM cycle TP shown in FIG. 15.
  • the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off.
  • the upward current flowing through the first switch Tr1 and the third switch Tr3 also decreases.
  • the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5 during the first period T21 from the on timing of the second switch Tr2 and the fourth switch Tr4 to the on timing of the fifth switch Tr5.
  • a second period T22 which is the period after the first period T21 and corresponds to the first time
  • the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns on the fifth switch Tr5.
  • the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5. Furthermore, during a fourth period T24 from the end timing of the third period T23 to the on timing of the first switch Tr1 and the third switch Tr3, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5.
  • the control unit 13 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before simultaneously turning on the first switch Tr1 and the third switch Tr3 within the PWM period TP. As a result, the voltages across the first switch Tr1 and the third switch Tr3 become substantially zero before the first switch Tr1 and the third switch Tr3 are simultaneously turned on.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the third switch Tr3 and reducing switching loss of the first switch Tr1 and the third switch Tr3.
  • the auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
  • Example 1 is an example of soft switching operation in which the first leg U1 and the second leg U2 output voltages of the same phase, and currents flow from the first connection point P1 and the second connection point P2 toward the motor 20.
  • the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or out of phase, but the first leg U1 and the second leg U2 have different duties.
  • FIG. 21 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 within the PWM period TP.
  • the control unit 13 turns on the other switch at the second timing when one of the first switch Tr1 and the third switch Tr3 is on and the other switch is off, and performs the first operation before the second timing within the PWM period TP.
  • the control unit 13 turns on the fifth switch Tr5 for a first time before the second timing at which the first switch Tr1 is turned on.
  • FIG. 22 is a diagram showing the state of each switch and the direction of current during the first period T31 in the PWM cycle TP shown in FIG. 21.
  • the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off.
  • an upward current flows through the second switch Tr2
  • a downward current flows through the third switch Tr3
  • current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30
  • the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 23 is a diagram showing the state of each switch and the direction of the current during the second period T32 in the PWM cycle TP shown in FIG. 21.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 is on.
  • the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1.
  • the second period T32 when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2.
  • the second period T32 corresponds to the first time during which the fifth switch Tr5 is turned on.
  • FIG. 24 is a diagram showing the state of each switch and the direction of the current during the third period T33 in the PWM cycle TP shown in FIG. 21.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 is off.
  • the fifth switch Tr5 is turned off during the third period T33, the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5.
  • the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 25 is a diagram showing the state of each switch and the direction of the current during the fourth period T34 in the PWM cycle TP shown in FIG. 21.
  • the first switch Tr1, the second switch Tr2, and the fourth switch Tr4 are off, the third switch Tr3 is on, and the fifth switch Tr5 is off.
  • the second switch Tr2 is turned off during the fourth period T34, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero.
  • a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
  • Fig. 26 is a diagram showing the state of each switch and the direction of current during a fifth period T35 in the PWM cycle TP shown in Fig. 21.
  • the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off.
  • the upward current flowing through the first switch Tr1 also decreases.
  • a downward current flows through the first switch Tr1.
  • the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 become equal.
  • the control unit 13 turns on the fifth switch Tr5 for the first time before the second timing for turning on the first switch Tr1.
  • the voltage across the first switch Tr1 becomes almost zero before the first switch Tr1 is turned on. Therefore, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 during a PWM period TP, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and reducing the switching loss of the first switch Tr1.
  • FIG. 27 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and the length of the on period of the first switch Tr1 and the length of the on period of the third switch Tr3 are different within a PWM period TP, and the center of the on period of the first switch Tr1 and the center of the on period of the third switch Tr3 are shifted from each other by a half PWM period.
  • the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the first switch Tr1. Also, in the example shown in FIG. 27, in a period T42 in the PWM cycle TP, when the first switch Tr1 is on and the third switch Tr3 is off, the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the third switch Tr3.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the third switch Tr3, and reducing the switching loss of the first switch Tr1 and the third switch Tr3.
  • Fig. 28 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively.
  • Fig. 28 also shows changes in the currents of the third inductor L3 and the fourth inductor L4, the currents of the second switch Tr2 and the fourth switch Tr4, and the voltages across the second switch Tr2 and the fourth switch Tr4.
  • I_L3 indicates the current of the third inductor L3, and I_L4 indicates the current of the fourth inductor L4.
  • I_Tr2 indicates the current of the second switch Tr2, and I_Tr4 indicates the current of the fourth switch Tr4.
  • V_Tr2 indicates the voltage across the second switch Tr2, and V_Tr4 indicates the voltage across the fourth switch Tr4.
  • the control unit 13 turns on both the second switch Tr1 and the fourth switch Tr4 at a third timing, and performs a second operation before the third timing within the PWM period TP.
  • the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time within the PWM period TP before simultaneously turning on the second switch Tr2 and the fourth switch Tr4.
  • FIG. 29 is a diagram showing the state of each switch and the direction of current during the first period T51 in the PWM cycle TP shown in FIG. 28.
  • the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the sixth switch Tr6 is off.
  • current flows from the motor 20 toward the first connection point P1 and the second connection point P2, respectively, and an upward current flows through the first switch Tr1 and the third switch Tr3.
  • the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 30 is a diagram showing the state of each switch and the direction of current during the second period T52 in the PWM cycle TP shown in FIG. 28.
  • the first switch Tr1 and the third switch Tr3 are on
  • the second switch Tr2 and the fourth switch Tr4 are off
  • the sixth switch Tr6 is on.
  • the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3 and the fourth inductor L4.
  • the second period T52 when the rightward current flowing through the third inductor L3 becomes larger than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the first switch Tr1.
  • a downward current flows through the fourth switch Tr3.
  • the second period T52 corresponds to the second time during which the sixth switch Tr6 is turned on.
  • FIG. 31 is a diagram showing the state of each switch and the direction of the current during the third period T53 in the PWM cycle TP shown in FIG. 28.
  • the first switch Tr1 and the third switch Tr3 are on
  • the second switch Tr2 and the fourth switch Tr4 are off
  • the sixth switch Tr6 is off.
  • the sixth switch Tr6 is turned off during the third period T53, the rightward current flowing through the third inductor L3 and the fourth inductor L4 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6.
  • the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 32 is a diagram showing the state of each switch and the direction of the current during the fourth period T54 in the PWM cycle TP shown in FIG. 28.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are off
  • the sixth switch Tr6 is off.
  • the current flowing through the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2 and from the third switch Tr3 to the fourth switch Tr4, and an upward current flows through the body diodes of the second switch Tr2 and the fourth switch Tr4.
  • the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the negative electrode potential of the DC power supply 30, and therefore the voltages across the second switch Tr2 and the fourth switch Tr4 are approximately zero.
  • a voltage in the opposite direction is applied to the third inductor L3 and the fourth inductor L4, so the rightward current flowing through the third inductor L3 and the fourth inductor L4 gradually decreases.
  • FIG. 33 is a diagram showing the state of each switch and the direction of current in the fifth period T55 in the PWM cycle TP shown in FIG. 28.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are on
  • the sixth switch Tr6 is off.
  • the upward current flowing through the second switch Tr2 and the fourth switch Tr4 also decreases.
  • the current flowing through the third inductor L3 becomes smaller than the current flowing from the motor 20 to the first connection point P1
  • a downward current flows through the second switch Tr2.
  • the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6 during a fifth period from the on timing of the first switch Tr1 and the third switch Tr3 to the on timing of the sixth switch Tr6.
  • the first period T51 corresponds to the fifth period.
  • the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns on the sixth switch Tr6.
  • the second period T52 corresponds to the sixth period. Then, in a seventh period following the sixth period, the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6.
  • the third period T53 corresponds to the seventh period. Furthermore, during an eighth period from the end timing of the seventh period to the ON timing of the second switch Tr2 and the fourth switch Tr4, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6.
  • the fourth period T54 corresponds to the eighth period.
  • the control unit 13 performs the second operation of turning on the sixth switch Tr6 for the second time before simultaneously turning on the second switch Tr2 and the fourth switch Tr4 within the PWM period TP.
  • the voltages across the second switch Tr2 and the fourth switch Tr4 become almost zero before the second switch Tr2 and the fourth switch Tr4 are simultaneously turned on.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and the fourth switch Tr4 and reducing the switching loss of the second switch Tr2 and the fourth switch Tr4.
  • the auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
  • Example 3 is an example of soft switching operation in the case where the first leg U1 and the second leg U2 output voltages of the same phase, and current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively.
  • the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or in opposite phase, but the first leg U1 and the second leg U2 have different duties.
  • the switching loss can be minimized by operating the auxiliary circuit SC in synchronization with one of the first leg U1 and the second leg U2.
  • FIG. 34 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
  • the control unit 13 turns on the other switch at the fourth timing when one of the second switch Tr2 and the fourth switch Tr4 is on and the other is off, and performs the second operation before the fourth timing within the PWM period TP.
  • the control unit 13 turns on the sixth switch Tr6 for a second time before the fourth timing at which the second switch Tr2 is turned on.
  • FIG. 35 is a diagram showing the state of each switch and the direction of current during the first period T61 in the PWM cycle TP shown in FIG. 34.
  • the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the sixth switch Tr6 is off.
  • current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and an upward current flows through the first switch Tr1 and a downward current flows through the fourth switch Tr4.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 36 is a diagram showing the state of each switch and the direction of the current during the second period T62 in the PWM cycle TP shown in FIG. 34.
  • the first switch Tr1 and the fourth switch Tr4 are on
  • the second switch Tr2 and the third switch Tr3 are off
  • the sixth switch Tr6 is on.
  • the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3.
  • the second period T62 corresponds to the second time during which the sixth switch Tr6 is turned on.
  • FIG. 37 is a diagram showing the state of each switch and the direction of the current during the third period T63 in the PWM cycle TP shown in FIG. 34.
  • the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the sixth switch Tr6 is off.
  • the sixth switch Tr6 is turned off during the third period T63, the rightward current flowing through the third inductor L3 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6.
  • the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 38 is a diagram showing the state of each switch and the direction of the current during the fourth period T64 in the PWM cycle TP shown in FIG. 34.
  • the fourth switch Tr4 is on, the first switch Tr1, the second switch Tr2, and the third switch Tr3 are off, and the sixth switch Tr6 is off.
  • the current flowing through the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2, and an upward current flows through the body diode of the second switch Tr2.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltage across the second switch Tr2 is approximately zero. Note that during the fourth period T64, a reverse voltage is applied to the third inductor L3, so the rightward current flowing through the third inductor L3 gradually decreases.
  • Fig. 39 is a diagram showing the state of each switch and the direction of current during a fifth period T65 in the PWM cycle TP shown in Fig. 34.
  • the first switch Tr1 and the third switch Tr3 are off
  • the second switch Tr2 and the fourth switch Tr4 are on
  • the sixth switch Tr6 is off.
  • the upward current flowing through the second switch Tr2 also decreases.
  • a downward current flows through the second switch Tr2.
  • the current flowing through the third inductor L3 becomes zero, the current flowing downward through the second switch Tr2 and the current flowing from the motor 20 toward the first connection point P1 become equal.
  • the control unit 13 turns on the sixth switch Tr6 for the second time before the fourth timing at which the second switch Tr2 is turned on. This causes the voltage across the second switch Tr2 to be nearly zero before the second switch Tr2 is turned on. Therefore, when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and reducing the switching loss of the second switch Tr2.
  • FIG. 40 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when current flows from the motor 20 to the first connection point P1 and the second connection point P2, and the length of the on period of the second switch Tr2 and the length of the on period of the fourth switch Tr4 are different within a PWM period TP, and the center of the on period of the second switch Tr2 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
  • the control unit 13 turns on the sixth switch Tr6 for a second time before turning on the second switch Tr2. Also, in the example shown in FIG. 40, in a period T72 within the PWM cycle TP, when the second switch Tr2 is on and the fourth switch Tr4 is off, the control unit 13 turns on the fourth switch Tr4 for a second time before turning on the fourth switch Tr4.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and the fourth switch Tr4, and reducing the switching loss of the second switch Tr2 and the fourth switch Tr4.
  • Example 5 Fig. 41 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2.
  • Example 5 is an example of a soft switching operation when the first leg U1 and the second leg U2 output voltages of opposite phases, a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2.
  • Fig. 41 also shows changes in the currents of the first inductor L1 and the fourth inductor L4, the currents of the first switch Tr1 and the fourth switch Tr4, and the voltages across the first switch Tr1 and the fourth switch Tr4.
  • I_L1 indicates the current in the first inductor L1
  • I_L4 indicates the current in the fourth inductor L4.
  • I_Tr1 indicates the current in the first switch Tr1
  • I_Tr4 indicates the current in the fourth switch Tr4.
  • V_Tr1 indicates the voltage across the first switch Tr1
  • V_Tr4 indicates the voltage across the fourth switch Tr4.
  • the control unit 13 turns on both the first switch Tr1 and the fourth switch Tr4 at the fifth timing, and simultaneously performs the first operation and the second operation before the fifth timing within the PWM period TP.
  • the control unit 13 simultaneously performs a first operation of turning on the fifth switch Tr5 for a first time and a second operation of turning on the sixth switch Tr6 for a second time before simultaneously turning on the first switch Tr1 and the fourth switch Tr4 within the PWM period TP.
  • the first time is equal to the second time.
  • FIG. 42 is a diagram showing the state of each switch and the direction of the current during the first period T81 in the PWM cycle TP shown in FIG. 41.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 and the sixth switch Tr6 are off.
  • an upward current flows through the second switch Tr2
  • a current flows from the first connection point P1 toward the motor 20.
  • a current flows from the motor 20 toward the second connection point P2, and an upward current flows through the third switch Tr3.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30
  • the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 43 is a diagram showing the state of each switch and the direction of the current during the second period T82 in the PWM cycle TP shown in FIG. 41.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 and the sixth switch Tr6 are on.
  • the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30
  • the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, so that a rightward current flows through the first inductor L1 and the fourth inductor L4.
  • the second period T82 when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2.
  • the second period T82 when the rightward current flowing through the fourth inductor L4 becomes larger than the current flowing from the motor 20 toward the second connection point P2, a downward current flows through the third switch Tr3.
  • the second period T82 corresponds to the first time during which the fifth switch Tr5 is turned on, and corresponds to the second time during which the sixth switch Tr6 is turned on.
  • FIG. 44 is a diagram showing the state of each switch and the direction of the current during the third period T83 in the PWM cycle TP shown in FIG. 41.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 and the sixth switch Tr6 are off.
  • the fifth switch Tr5 is turned off
  • the rightward current flowing through the first inductor L1 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5.
  • the sixth switch Tr6 when the sixth switch Tr6 is turned off, the rightward current flowing through the fourth inductor L4 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6.
  • the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30
  • the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 45 is a diagram showing the state of each switch and the direction of current during the fourth period T84 in the PWM cycle TP shown in FIG. 41.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are off
  • the fifth switch Tr5 and the sixth switch Tr6 are off.
  • the second switch Tr2 is turned off during the fourth period T84, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1.
  • the fourth period T84 when the third switch Tr3 is turned off, the current flowing through the fourth inductor L4 is commutated from the third switch Tr3 to the fourth switch Tr4, and an upward current flows through the body diode of the fourth switch Tr4.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltages across the first switch Tr1 and the fourth switch Tr4 are approximately zero.
  • a reverse voltage is applied to the first inductor L1 and the fourth inductor L4, so the rightward current flowing through the first inductor L1 and the fourth inductor L4 gradually decreases.
  • FIG. 46 is a diagram showing the state of each switch and the direction of current in the fifth period T85 in the PWM cycle TP shown in FIG. 41.
  • the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the fifth switch Tr5 and the sixth switch Tr6 are off.
  • the upward current flowing through the first switch Tr1 and the fourth switch Tr4 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 to the motor 20, a downward current flows through the first switch Tr1.
  • the control unit 13 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, the control unit 13 simultaneously performs the first operation and the second operation. That is, during a ninth period from the ON timing of the second switch Tr2 and the third switch Tr3 to the ON timing of the fifth switch Tr5 and the sixth switch Tr6, the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6.
  • the first period T81 corresponds to the ninth period.
  • the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns on the fifth switch Tr5 and the sixth switch Tr6.
  • the second period T82 corresponds to the tenth period.
  • the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6.
  • the third period T83 corresponds to the eleventh period.
  • the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns off the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6.
  • the fourth period T84 corresponds to the twelfth period.
  • the control unit 13 simultaneously performs a first operation of turning on the fifth switch Tr5 for a first time and a second operation of turning on the sixth switch Tr6 for a second time before simultaneously turning on the first switch Tr1 and the fourth switch Tr4 within the PWM period TP.
  • the voltages across the first switch Tr1 and the fourth switch Tr4 become almost zero before the first switch Tr1 and the fourth switch Tr4 are simultaneously turned on.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the fourth switch Tr4 and reducing the switching loss of the first switch Tr1 and the fourth switch Tr4.
  • the auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
  • the first leg U1, the first connection point P1, and the third connection point P3 should be read as the second leg U2, the second connection point P2, and the fourth connection point P4, respectively
  • the first switch Tr1 and the fourth switch Tr4 should be read as the second switch Tr2 and the third switch Tr3, respectively
  • the first inductor L1 and the fourth inductor L4 should be read as the second inductor L2 and the third inductor L3, respectively.
  • Example 5 is an example of soft switching operation in which the first leg U1 and the second leg U2 output voltages of opposite phases, a current flows from the first connection point P1 toward the motor 20, and a current flows from the motor 20 toward the second connection point P2.
  • the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or in opposite phase, but the first leg U1 and the second leg U2 have different duties.
  • the switching loss can be minimized by operating the auxiliary circuit SC in synchronization with one of the first leg U1 and the second leg U2.
  • FIG. 47 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is longer than the on period of the fourth switch Tr4 within the PWM period TP.
  • the control unit 13 turns on the first switch Tr1 at the sixth timing when the first switch Tr1 is off and the fourth switch Tr4 is off, and performs the first operation before the sixth timing within the PWM period TP.
  • the control unit 13 turns on the fifth switch Tr5 for the first time before the sixth timing at which the first switch Tr1 is turned on.
  • FIG. 48 is a diagram showing the state of each switch and the direction of the current during the first period T91 in the PWM cycle TP shown in FIG. 47.
  • the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off.
  • an upward current flows through the second switch Tr2, and a current flows from the first connection point P1 toward the motor 20.
  • a current flows from the motor 20 toward the second connection point P2, and an upward current flows through the third switch Tr3.
  • the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
  • FIG. 49 is a diagram showing the state of each switch and the direction of the current during the second period T92 in the PWM cycle TP shown in FIG. 47.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 is on.
  • the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1.
  • the second period T92 corresponds to the first time during which the fifth switch Tr5 is turned on.
  • FIG. 50 is a diagram showing the state of each switch and the direction of the current during the third period T93 in the PWM cycle TP shown in FIG. 47.
  • the first switch Tr1 and the fourth switch Tr4 are off
  • the second switch Tr2 and the third switch Tr3 are on
  • the fifth switch Tr5 is off.
  • the fifth switch Tr5 is turned off during the third period T93
  • the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5.
  • the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
  • FIG. 51 is a diagram showing the state of each switch and the direction of the current during the fourth period T94 in the PWM cycle TP shown in FIG. 47.
  • the first switch Tr1, the second switch Tr2, and the fourth switch Tr4 are off, the third switch Tr3 is on, and the fifth switch Tr5 is off.
  • the second switch Tr2 is turned off, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1.
  • the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero. Note that during the fourth period T94, a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
  • Fig. 52 is a diagram showing the state of each switch and the direction of current during a fifth period T95 in the PWM cycle TP shown in Fig. 47.
  • the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off.
  • the fifth period T95 as the current flowing through the first inductor L1 decreases, the upward current flowing through the first switch Tr1 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the first switch Tr1.
  • the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 become equal.
  • the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the first switch Tr1 in a state in which the first switch Tr1 is off and the fourth switch Tr4 is off within the PWM period TP. This causes the voltage across the first switch Tr1 to become substantially zero before the first switch Tr1 is turned on.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and reducing the switching loss of the first switch Tr1.
  • FIG. 53 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, and the on period of the first switch Tr1 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
  • the control unit 13 when the first switch Tr1 is off and the fourth switch Tr4 is off, the control unit 13 turns on the fourth switch Tr4 at the seventh timing, and performs the second operation before the seventh timing within the PWM period TP. In other words, when the first switch Tr1 is off and the fourth switch Tr4 is off within the PWM period TP, the control unit 13 performs the second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the fourth switch Tr4 and reducing the switching loss of the fourth switch Tr4.
  • FIG. 54 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2, and the length of the on period of the first switch Tr1 and the length of the on period of the fourth switch Tr4 are different within a PWM period TP, and the center of the on period of the first switch Tr1 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
  • the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the first switch Tr1 in a state in which the third switch Tr3 is on and the first switch Tr1 is off during the PWM period TP. Also, in the example shown in FIG. 54, the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 in a state in which the first switch Tr1 is off and the fourth switch Tr4 is off during the PWM period TP.
  • the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the fourth switch Tr4, and the switching loss of the first switch Tr1 and the fourth switch Tr4 can be reduced.
  • the first leg U1, the first connection point P1, and the third connection point P3 should be read as the second leg U2, the second connection point P2, and the fourth connection point P4, respectively
  • the first switch Tr1 and the fourth switch Tr4 should be read as the second switch Tr2 and the third switch Tr3, respectively
  • the first inductor L1 and the fourth inductor L4 should be read as the second inductor L2 and the third inductor L3, respectively.
  • FIG. 55 is a diagram showing a modified example of the H-bridge circuit BC and the auxiliary circuit SC.
  • the H-bridge circuit BC may include a first capacitor connected in parallel to at least one of the first switch Tr1 to the fourth switch Tr4.
  • the first capacitor C1 is connected in parallel to the first switch Tr1
  • the first capacitor C2 is connected in parallel to the second switch Tr2
  • the first capacitor C3 is connected in parallel to the third switch Tr3
  • the first capacitor C4 is connected in parallel to the fourth switch Tr4.
  • the auxiliary circuit SC may also include a second capacitor connected in parallel to at least one of the fifth switch Tr5 and the sixth switch Tr5.
  • the second capacitor C5 is connected in parallel to the fifth switch Tr5, and the second capacitor C6 is connected in parallel to the sixth switch Tr6.
  • a capacitor may be connected in parallel to at least one of the fifth rectifier element D5 and the sixth rectifier element D6.
  • the motor 20 is illustrated as having a configuration in which the neutral points of the first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are electrically separated from the neutral points of the second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w.
  • the present invention is not limited to this, and a motor may be used in which the neutral points of the first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are electrically connected to the neutral points of the second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w.
  • a motor having two N-phase terminal groups including an H-bridge circuit corresponding to each phase of the motor, an auxiliary circuit corresponding to at least one of the H-bridge circuits, and a control unit that controls the H-bridge circuit and the auxiliary circuit
  • the H-bridge circuit including a first leg including a first switch connected between a positive electrode of a power source and a first connection point, and a second switch connected between a negative electrode of the power source and the first connection point, a second leg including a third switch connected between the positive electrode and the second connection point, and a fourth switch connected between the negative electrode and the second connection point
  • the auxiliary circuit including a first rectifying element and a first inductor connected in series between the first connection point and the third connection point, and a second rectifying element and a second inductor connected in series between the second connection point and the third connection point.
  • the power conversion device according to any one of (1) to (14), wherein the control unit has a first mode in which the first leg and the second leg output voltages of the same phase, and a second mode in which the first leg and the second leg output voltages of opposite phases.
  • the H-bridge circuit includes a first capacitor connected in parallel to at least one of the first switch to the fourth switch.
  • the auxiliary circuit includes a second capacitor connected in parallel to at least one of the fifth switch and the sixth switch.
  • a motor module including a motor having two N-phase terminal groups (N is an integer of 3 or more) and the power conversion device according to any one of (1) to (17).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

One aspect of a power conversion device of the present invention comprises H-bridge circuits corresponding to respective phases of a motor, and an auxiliary circuit corresponding to at least one of the H-bridge circuits, wherein the auxiliary circuit includes: a first rectifying element and a first inductor connected in series between a first connection point and a third connection point; a second rectifying element and a second inductor connected in series between a second connection point and the third connection point; a third rectifying element and a third inductor connected in series between the first connection point and a fourth connection point; a fourth rectifying element and a fourth inductor connected in series between the second connection point and the fourth connection point; a fifth switch connected between a positive electrode of a power source and the third connection point; a fifth rectifying element having a negative electrode terminal connected to the third connection point, and a positive electrode terminal connected to a negative electrode of the power source; a sixth rectifying element having a negative electrode terminal connected to the positive electrode, and a positive electrode terminal connected to the fourth connection point; and a sixth switch connected between the negative electrode and the fourth connection point.

Description

電力変換装置およびモータモジュールPower conversion device and motor module
 本発明は、電力変換装置およびモータモジュールに関する。 The present invention relates to a power conversion device and a motor module.
 特許文献1には、3相の固定子巻線と6つの引き出し端子とを有する誘導電動機を、2台の3相インバータによって運転する運転制御装置が開示されている。この運転制御装置は、誘導電動機の低速運転時に、両インバータの出力電圧位相を同相にする制御を行う。また、運転制御装置は、誘導電動機の高速運転時に、一方のインバータの電圧位相を180度反転させるとともに、両インバータの出力周波数を1/2にして相回転を反転する。この制御により、低速運転から高速運転に移行するときに、誘導電動機の極数が等価的に4極から2極に切り替わるため、誘導電動機の体格を大きくすることなく、高速運転時のトルク不足を解消できる。 Patent Document 1 discloses an operation control device that uses two three-phase inverters to operate an induction motor having a three-phase stator winding and six lead-out terminals. This operation control device controls the output voltage phases of both inverters to be in phase when the induction motor is operating at low speed. In addition, when the induction motor is operating at high speed, the operation control device inverts the voltage phase of one inverter by 180 degrees and halves the output frequency of both inverters to invert the phase rotation. With this control, the number of poles of the induction motor is equivalently switched from four to two when switching from low to high speed operation, eliminating torque shortages during high speed operation without increasing the size of the induction motor.
特開2002-136184号公報JP 2002-136184 A
 特許文献1に開示された技術では、2台のインバータに含まれる各スイッチのスイッチング時に、誘導電動機の駆動効率を低下させる原因となるスイッチング損失が発生する。 In the technology disclosed in Patent Document 1, switching losses occur during switching of the switches in the two inverters, which reduces the driving efficiency of the induction motor.
 本発明の電力変換装置における一つの態様は、2つのN相端子群(Nは3以上の整数)を有するモータの各相に対応するHブリッジ回路と、前記Hブリッジ回路の少なくとも1つに対応する補助回路と、前記Hブリッジ回路及び前記補助回路を制御する制御部と、を備え、前記Hブリッジ回路は、電源の正電極と第1接続点との間に接続される第1スイッチと、前記電源の負電極と前記第1接続点との間に接続される第2スイッチと、を含む第1レグと、前記正電極と第2接続点との間に接続される第3スイッチと、前記負電極と前記第2接続点との間に接続される第4スイッチと、を含む第2レグと、を備え、前記補助回路は、前記第1接続点と第3接続点との間に直列に接続される第1整流素子及び第1インダクタと、前記第2接続点と前記第3接続点との間に直列に接続される第2整流素子及び第2インダクタと、前記第1接続点と第4接続点との間に直列に接続される第3整流素子及び第3インダクタと、前記第2接続点と前記第4接続点との間に直列に接続される第4整流素子及び第4インダクタと、前記正電極と前記第3接続点との間に接続される第5スイッチと、前記第3接続点に接続される負極端子と、前記負電極に接続される正極端子とを有する第5整流素子と、前記正電極に接続される負極端子と、前記第4接続点に接続される正極端子とを有する第6整流素子と、前記負電極と前記第4接続点との間に接続される第6スイッチと、を備え、前記第1整流素子の正極端子及び前記第2整流素子の正極端子は、前記第3接続点の側に位置し、前記第3整流素子の負極端子及び前記第4整流素子の負極端子は、前記第4接続点の側に位置する。 One aspect of the power conversion device of the present invention comprises an H-bridge circuit corresponding to each phase of a motor having two groups of N-phase terminals (N is an integer of 3 or more), an auxiliary circuit corresponding to at least one of the H-bridge circuits, and a control unit that controls the H-bridge circuit and the auxiliary circuit, the H-bridge circuit comprising a first leg including a first switch connected between a positive electrode of a power source and a first connection point, a second switch connected between a negative electrode of the power source and the first connection point, a third switch connected between the positive electrode and the second connection point, and a fourth switch connected between the negative electrode and the second connection point, the auxiliary circuit comprising a first rectifying element and a first inductor connected in series between the first connection point and the third connection point, and a fourth switch connected in series between the second connection point and the third connection point. a second rectifier element and a second inductor connected in series between the first connection point and the fourth connection point; a third rectifier element and a third inductor connected in series between the second connection point and the fourth connection point; a fourth rectifier element and a fourth inductor connected in series between the second connection point and the fourth connection point; a fifth switch connected between the positive electrode and the third connection point; a fifth rectifier element having a negative terminal connected to the third connection point and a positive terminal connected to the negative electrode; a sixth rectifier element having a negative terminal connected to the positive electrode and a positive terminal connected to the fourth connection point; and a sixth switch connected between the negative electrode and the fourth connection point, where the positive terminal of the first rectifier element and the positive terminal of the second rectifier element are located on the third connection point side, and the negative terminal of the third rectifier element and the negative terminal of the fourth rectifier element are located on the fourth connection point side.
 本発明のモータモジュールにおける一つの態様は、2つのN相端子群(Nは3以上の整数)を有するモータと、上記態様の電力変換装置と、を備える。 One embodiment of the motor module of the present invention comprises a motor having two N-phase terminal groups (N is an integer equal to or greater than 3) and the power conversion device of the above embodiment.
 本発明の上記態様によれば、モータの各相に対応するHブリッジ回路に含まれる各スイッチのスイッチング損失を低減できる。 The above aspect of the present invention makes it possible to reduce the switching loss of each switch included in the H-bridge circuit corresponding to each phase of the motor.
図1は、本実施形態におけるモータモジュール1の構成を模式的に示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a motor module 1 according to the present embodiment. 図2は、U相に対応するHブリッジ回路BCと、Hブリッジ回路BCに対応する補助回路SCとの回路構成を示す図である。FIG. 2 is a diagram showing a circuit configuration of an H-bridge circuit BC corresponding to the U-phase and an auxiliary circuit SC corresponding to the H-bridge circuit BC. 図3は、第1接続点P1からモータ20に向かって電流が流れる場合の、第1スイッチTr1、第2スイッチTr2、及び第5スイッチTr5のオンオフタイミングを示すタイミングチャートである。FIG. 3 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20. 図4は、図3に示されるPWM周期TP内の第1期間T1における各スイッチの状態及び電流の向きを示す図である。FIG. 4 is a diagram showing the state of each switch and the direction of current in a first period T1 in the PWM cycle TP shown in FIG. 図5は、図3に示されるPWM周期TP内の第2期間T2における各スイッチの状態及び電流の向きを示す図である。FIG. 5 is a diagram showing the state of each switch and the direction of current in the second period T2 in the PWM cycle TP shown in FIG. 図6は、図3に示されるPWM周期TP内の第3期間T3における各スイッチの状態及び電流の向きを示す図である。FIG. 6 is a diagram showing the state of each switch and the direction of current in the third period T3 in the PWM cycle TP shown in FIG. 図7は、図3に示されるPWM周期TP内の第4期間T4における各スイッチの状態及び電流の向きを示す図である。FIG. 7 is a diagram showing the state of each switch and the direction of current in a fourth period T4 in the PWM cycle TP shown in FIG. 図8は、図3に示されるPWM周期TP内の第5期間T5における各スイッチの状態及び電流の向きを示す図である。FIG. 8 is a diagram showing the state of each switch and the direction of current in a fifth period T5 in the PWM cycle TP shown in FIG. 図9は、モータ20から第1接続点P1に向かって電流が流れる場合の、第1スイッチTr1、第2スイッチTr2、及び第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。FIG. 9 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1. 図10は、図9に示されるPWM周期TP内の第1期間T11における各スイッチの状態及び電流の向きを示す図である。FIG. 10 is a diagram showing the state of each switch and the direction of current in a first period T11 in the PWM cycle TP shown in FIG. 図11は、図9に示されるPWM周期TP内の第2期間T12における各スイッチの状態及び電流の向きを示す図である。FIG. 11 is a diagram showing the state of each switch and the direction of current in the second period T12 in the PWM cycle TP shown in FIG. 図12は、図9に示されるPWM周期TP内の第3期間T13における各スイッチの状態及び電流の向きを示す図である。FIG. 12 is a diagram showing the state of each switch and the direction of current in the third period T13 in the PWM cycle TP shown in FIG. 図13は、図9に示されるPWM周期TP内の第4期間T14における各スイッチの状態及び電流の向きを示す図である。FIG. 13 is a diagram showing the state of each switch and the direction of current in a fourth period T14 in the PWM cycle TP shown in FIG. 図14は、図9に示されるPWM周期TP内の第5期間T15における各スイッチの状態及び電流の向きを示す図である。FIG. 14 is a diagram showing the state of each switch and the direction of current in a fifth period T15 in the PWM cycle TP shown in FIG. 図15は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。FIG. 15 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20. 図16は、図15に示されるPWM周期TP内の第1期間T21における各スイッチの状態及び電流の向きを示す図である。FIG. 16 is a diagram showing the state of each switch and the direction of current in a first period T21 in the PWM cycle TP shown in FIG. 図17は、図15に示されるPWM周期TP内の第2期間T22における各スイッチの状態及び電流の向きを示す図である。FIG. 17 is a diagram showing the state of each switch and the direction of current in the second period T22 in the PWM cycle TP shown in FIG. 図18は、図15に示されるPWM周期TP内の第3期間T23における各スイッチの状態及び電流の向きを示す図である。FIG. 18 is a diagram showing the state of each switch and the direction of current in the third period T23 in the PWM cycle TP shown in FIG. 図19は、図15に示されるPWM周期TP内の第4期間T24における各スイッチの状態及び電流の向きを示す図である。FIG. 19 is a diagram showing the state of each switch and the direction of current in a fourth period T24 in the PWM cycle TP shown in FIG. 図20は、図15に示されるPWM周期TP内の第5期間T25における各スイッチの状態及び電流の向きを示す図である。FIG. 20 is a diagram showing the state of each switch and the direction of current in a fifth period T25 in the PWM cycle TP shown in FIG. 図21は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第3スイッチTr3のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。FIG. 21 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 within the PWM period TP. 図22は、図21に示されるPWM周期TP内の第1期間T31における各スイッチの状態及び電流の向きを示す図である。FIG. 22 is a diagram showing the state of each switch and the direction of current in a first period T31 in the PWM cycle TP shown in FIG. 図23は、図21に示されるPWM周期TP内の第2期間T32における各スイッチの状態及び電流の向きを示す図である。FIG. 23 is a diagram showing the state of each switch and the direction of current in a second period T32 in the PWM cycle TP shown in FIG. 図24は、図21に示されるPWM周期TP内の第3期間T33における各スイッチの状態及び電流の向きを示す図である。FIG. 24 is a diagram showing the state of each switch and the direction of current in a third period T33 in the PWM cycle TP shown in FIG. 図25は、図21に示されるPWM周期TP内の第4期間T34における各スイッチの状態及び電流の向きを示す図である。FIG. 25 is a diagram showing the state of each switch and the direction of current in a fourth period T34 in the PWM cycle TP shown in FIG. 図26は、図21に示されるPWM周期TP内の第5期間T35における各スイッチの状態及び電流の向きを示す図である。FIG. 26 is a diagram showing the state of each switch and the direction of current in a fifth period T35 in the PWM cycle TP shown in FIG. 図27は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において、第1スイッチTr1のオン期間の長さと第3スイッチTr3のオン期間の長さとが異なり、第1スイッチTr1のオン期間のセンターと第3スイッチTr3のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。FIG. 27 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and when, within a PWM period TP, the length of the on period of the first switch Tr1 and the length of the on period of the third switch Tr3 are different and the center of the on period of the first switch Tr1 and the center of the on period of the third switch Tr3 are shifted from each other by a half PWM period. 図28は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。FIG. 28 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively. 図29は、図28に示されるPWM周期TP内の第1期間T51における各スイッチの状態及び電流の向きを示す図である。FIG. 29 is a diagram showing the state of each switch and the direction of current in a first period T51 in the PWM cycle TP shown in FIG. 図30は、図28に示されるPWM周期TP内の第2期間T52における各スイッチの状態及び電流の向きを示す図である。FIG. 30 is a diagram showing the state of each switch and the direction of current in the second period T52 in the PWM cycle TP shown in FIG. 図31は、図28に示されるPWM周期TP内の第3期間T53における各スイッチの状態及び電流の向きを示す図である。FIG. 31 is a diagram showing the state of each switch and the direction of current in a third period T53 in the PWM cycle TP shown in FIG. 図32は、図28に示されるPWM周期TP内の第4期間T54における各スイッチの状態及び電流の向きを示す図である。FIG. 32 is a diagram showing the state of each switch and the direction of current in a fourth period T54 in the PWM cycle TP shown in FIG. 図33は、図28に示されるPWM周期TP内の第5期間T55における各スイッチの状態及び電流の向きを示す図である。FIG. 33 is a diagram showing the state of each switch and the direction of current in a fifth period T55 in the PWM cycle TP shown in FIG. 図34は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において第2スイッチTr2のオン期間が第4スイッチTr4のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。FIG. 34 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP. 図35は、図34に示されるPWM周期TP内の第1期間T61における各スイッチの状態及び電流の向きを示す図である。FIG. 35 is a diagram showing the state of each switch and the direction of current in a first period T61 in the PWM cycle TP shown in FIG. 図36は、図34に示されるPWM周期TP内の第2期間T62における各スイッチの状態及び電流の向きを示す図である。FIG. 36 is a diagram showing the state of each switch and the direction of current in a second period T62 in the PWM cycle TP shown in FIG. 図37は、図34に示されるPWM周期TP内の第3期間T63における各スイッチの状態及び電流の向きを示す図である。FIG. 37 is a diagram showing the state of each switch and the direction of current in a third period T63 in the PWM cycle TP shown in FIG. 図38は、図34に示されるPWM周期TP内の第4期間T64における各スイッチの状態及び電流の向きを示す図である。FIG. 38 is a diagram showing the state of each switch and the direction of current in a fourth period T64 in the PWM cycle TP shown in FIG. 図39は、図34に示されるPWM周期TP内の第5期間T65における各スイッチの状態及び電流の向きを示す図である。FIG. 39 is a diagram showing the state of each switch and the direction of current in a fifth period T65 in the PWM cycle TP shown in FIG. 図40は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において、第2スイッチTr2のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なり、第2スイッチTr2のオン期間のセンターと第4スイッチTr4のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。FIG. 40 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and when, within a PWM period TP, the length of the on period of the second switch Tr2 and the length of the on period of the fourth switch Tr4 are different and the center of the on period of the second switch Tr2 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period. 図41は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合の、第1スイッチTr1から第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。FIG. 41 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2. 図42は、図41に示されるPWM周期TP内の第1期間T81における各スイッチの状態及び電流の向きを示す図である。FIG. 42 is a diagram showing the state of each switch and the direction of current in a first period T81 in the PWM cycle TP shown in FIG. 図43は、図41に示されるPWM周期TP内の第2期間T82における各スイッチの状態及び電流の向きを示す図である。FIG. 43 is a diagram showing the state of each switch and the direction of current in a second period T82 in the PWM cycle TP shown in FIG. 図44は、図41に示されるPWM周期TP内の第3期間T83における各スイッチの状態及び電流の向きを示す図である。FIG. 44 is a diagram showing the state of each switch and the direction of current in the third period T83 in the PWM cycle TP shown in FIG. 図45は、図41に示されるPWM周期TP内の第4期間T84における各スイッチの状態及び電流の向きを示す図である。FIG. 45 is a diagram showing the state of each switch and the direction of current in a fourth period T84 in the PWM cycle TP shown in FIG. 図46は、図41に示されるPWM周期TP内の第5期間T85における各スイッチの状態及び電流の向きを示す図である。FIG. 46 is a diagram showing the state of each switch and the direction of current in a fifth period T85 in the PWM cycle TP shown in FIG. 図47は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも長い場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。FIG. 47 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is longer than the on period of the fourth switch Tr4 within the PWM period TP. 図48は、図47に示されるPWM周期TP内の第1期間T91における各スイッチの状態及び電流の向きを示す図である。FIG. 48 is a diagram showing the state of each switch and the direction of current in a first period T91 in the PWM cycle TP shown in FIG. 図49は、図47に示されるPWM周期TP内の第2期間T92における各スイッチの状態及び電流の向きを示す図である。FIG. 49 is a diagram showing the state of each switch and the direction of current in a second period T92 in the PWM cycle TP shown in FIG. 図50は、図47に示されるPWM周期TP内の第3期間T93における各スイッチの状態及び電流の向きを示す図である。FIG. 50 is a diagram showing the state of each switch and the direction of current in the third period T93 in the PWM cycle TP shown in FIG. 図51は、図47に示されるPWM周期TP内の第4期間T94における各スイッチの状態及び電流の向きを示す図である。FIG. 51 is a diagram showing the state of each switch and the direction of current in a fourth period T94 in the PWM cycle TP shown in FIG. 図52は、図47に示されるPWM周期TP内の第5期間T95における各スイッチの状態及び電流の向きを示す図である。FIG. 52 is a diagram showing the state of each switch and the direction of current in a fifth period T95 in the PWM cycle TP shown in FIG. 図53は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。FIG. 53 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is shorter than the on period of the fourth switch Tr4 within the PWM period TP. 図54は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において、第1スイッチTr1のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なり、第1スイッチTr1のオン期間のセンターと第4スイッチTr4のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。FIG. 54 is a timing chart showing the on/off timings of the first switch Tr1 to the sixth switch Tr6 in a case where a current flows from the first connection point P1 toward the motor 20 and also flows from the motor 20 toward the second connection point P2, and within a PWM period TP, the length of the on period of the first switch Tr1 and the length of the on period of the fourth switch Tr4 are different and the center of the on period of the first switch Tr1 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period. 図55は、Hブリッジ回路BC及び補助回路SCの変形例を示す図である。FIG. 55 is a diagram showing a modified example of the H-bridge circuit BC and the auxiliary circuit SC.
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
 図1は、本実施形態におけるモータモジュール1の構成を模式的に示す図である。図1に示すように、モータモジュール1は、電力変換装置10と、モータ20と、を備える。モータ20は、2つのN相端子群(Nは3以上の整数)を有する。本実施形態では、一例として、Nは3である。すなわち、モータ20は、2つの3相端子群を有する3相モータである。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
Fig. 1 is a diagram showing a schematic configuration of a motor module 1 in this embodiment. As shown in Fig. 1, the motor module 1 includes a power conversion device 10 and a motor 20. The motor 20 has two N-phase terminal groups (N is an integer equal to or greater than 3). In this embodiment, as an example, N is 3. That is, the motor 20 is a three-phase motor having two three-phase terminal groups.
 モータ20は、一方の3相端子群として、第1のU相端子21uと、第1のV相端子21vと、第1のW相端子21wと、を有する。モータ20は、他方の3相端子群として、第2のU相端子22uと、第2のV相端子22vと、第2のW相端子22wと、を有する。さらに、モータ20は、第1のU相コイル23uと、第1のV相コイル23vと、第1のW相コイル23wと、第2のU相コイル24uと、第2のV相コイル24vと、第2のW相コイル24wと、を有する。 The motor 20 has a first U-phase terminal 21u, a first V-phase terminal 21v, and a first W-phase terminal 21w as one three-phase terminal group. The motor 20 has a second U-phase terminal 22u, a second V-phase terminal 22v, and a second W-phase terminal 22w as the other three-phase terminal group. The motor 20 further has a first U-phase coil 23u, a first V-phase coil 23v, a first W-phase coil 23w, a second U-phase coil 24u, a second V-phase coil 24v, and a second W-phase coil 24w.
 図1では図示を省略するが、モータ20は、モータケースと、モータケースに収容されたロータ及びステータとを有する。ロータは、モータケースの内部において、ロータベアリング等の軸受け部品によって回転可能に支持される回転体である。ロータは、ロータの径方向内側を軸方向に貫通した状態でロータと同軸接合される出力軸を有する。ステータは、モータケースの内部において、ロータの外周面を囲った状態でセットされ、ロータを回転させるのに必要な電磁力を発生させる。 Although not shown in FIG. 1, the motor 20 has a motor case, and a rotor and a stator housed in the motor case. The rotor is a rotating body that is rotatably supported inside the motor case by bearing parts such as rotor bearings. The rotor has an output shaft that is coaxially joined to the rotor and passes axially through the radial inside of the rotor. The stator is set inside the motor case, surrounding the outer circumferential surface of the rotor, and generates the electromagnetic force required to rotate the rotor.
 第1のU相コイル23u、第1のV相コイル23v及び第1のW相コイル23wは、それぞれステータに設けられた励磁コイルである。第1のU相コイル23uの一端は、第1のU相端子21uと電気的に接続される。第1のV相コイル23vの一端は、第1のV相端子21vと電気的に接続される。第1のW相コイル23wの一端は、第1のW相端子21wと電気的に接続される。第1のU相コイル23uの他端、第1のV相コイル23vの他端、及び第1のW相コイル23wの他端は、互いに電気的に接続される。 The first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are excitation coils provided on the stator. One end of the first U-phase coil 23u is electrically connected to the first U-phase terminal 21u. One end of the first V-phase coil 23v is electrically connected to the first V-phase terminal 21v. One end of the first W-phase coil 23w is electrically connected to the first W-phase terminal 21w. The other end of the first U-phase coil 23u, the other end of the first V-phase coil 23v, and the other end of the first W-phase coil 23w are electrically connected to each other.
 第2のU相コイル24u、第2のV相コイル24v及び第2のW相コイル24wは、それぞれステータに設けられた励磁コイルである。第2のU相コイル24uの一端は、第2のU相端子22uと電気的に接続される。第2のV相コイル24vの一端は、第2のV相端子22vと電気的に接続される。第2のW相コイル24wの一端は、第2のW相端子22wと電気的に接続される。第2のU相コイル24uの他端、第2のV相コイル24vの他端、及び第2のW相コイル24wの他端は、互いに電気的に接続される。 The second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w are excitation coils provided on the stator. One end of the second U-phase coil 24u is electrically connected to the second U-phase terminal 22u. One end of the second V-phase coil 24v is electrically connected to the second V-phase terminal 22v. One end of the second W-phase coil 24w is electrically connected to the second W-phase terminal 22w. The other end of the second U-phase coil 24u, the other end of the second V-phase coil 24v, and the other end of the second W-phase coil 24w are electrically connected to each other.
 モータ20に含まれる各コイルの通電状態が電力変換装置10によって制御されることにより、ロータを回転させるのに必要な電磁力が発生する。ロータが回転することにより、出力軸もロータに同期して回転する。 The power conversion device 10 controls the energization state of each coil included in the motor 20, generating the electromagnetic force required to rotate the rotor. As the rotor rotates, the output shaft also rotates in sync with the rotor.
 電力変換装置10は、第1の3相フルブリッジ回路11と、第2の3相フルブリッジ回路12と、制御部13と、を備える。第1の3相フルブリッジ回路11は、モータ20の一方の3相端子群と電気的に接続される。第2の3相フルブリッジ回路12は、モータ20の他方の3相端子群と電気的に接続される。第1の3相フルブリッジ回路11と、第2の3相フルブリッジ回路12とは、それぞれ、直流電源30と電気的に接続される。 The power conversion device 10 includes a first three-phase full bridge circuit 11, a second three-phase full bridge circuit 12, and a control unit 13. The first three-phase full bridge circuit 11 is electrically connected to one of the three-phase terminal groups of the motor 20. The second three-phase full bridge circuit 12 is electrically connected to the other of the three-phase terminal groups of the motor 20. The first three-phase full bridge circuit 11 and the second three-phase full bridge circuit 12 are each electrically connected to a DC power supply 30.
 第1の3相フルブリッジ回路11と、第2の3相フルブリッジ回路12とが、制御部13から出力される各ゲート信号に従って協調動作することにより、直流電源30とモータ20との間で、直流電力と3相交流電力との相互変換が行われる。例えば、第1の3相フルブリッジ回路11と、第2の3相フルブリッジ回路12とが、デュアルインバータとして動作するとき、電力変換装置10は、直流電源30から供給される直流電力を三相交流電力に変換してモータ20に出力する。 The first three-phase full bridge circuit 11 and the second three-phase full bridge circuit 12 operate in cooperation with each other according to the gate signals output from the control unit 13, thereby performing mutual conversion between DC power and three-phase AC power between the DC power supply 30 and the motor 20. For example, when the first three-phase full bridge circuit 11 and the second three-phase full bridge circuit 12 operate as a dual inverter, the power conversion device 10 converts the DC power supplied from the DC power supply 30 into three-phase AC power and outputs it to the motor 20.
 第1の3相フルブリッジ回路11は、3つのハイサイドスイッチと、3つのローサイドスイッチとの計6つのスイッチを有する。第1の3相フルブリッジ回路11は、第1のU相ハイサイドスイッチUH1と、第1のV相ハイサイドスイッチVH1と、第1のW相ハイサイドスイッチWH1と、第1のU相ローサイドスイッチUL1と、第1のV相ローサイドスイッチVL1と、第1のW相ローサイドスイッチWL1と、を有する。本実施形態において、第1の3相フルブリッジ回路11に含まれる各スイッチは、例えばnチャネル型のMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。 The first three-phase full-bridge circuit 11 has a total of six switches: three high-side switches and three low-side switches. The first three-phase full-bridge circuit 11 has a first U-phase high-side switch UH1, a first V-phase high-side switch VH1, a first W-phase high-side switch WH1, a first U-phase low-side switch UL1, a first V-phase low-side switch VL1, and a first W-phase low-side switch WL1. In this embodiment, each switch included in the first three-phase full-bridge circuit 11 is, for example, an n-channel MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor).
 なお、各スイッチとして、例えばIGBT(Insulated Gate Bipolar Transistor)、またはJFET(Junction Field Effect Transistor)などを使用してもよい。これらのスイッチには、ダイオードが逆並列に接続される。上記のように、スイッチとしてMOS-FETを使用する場合には、ダイオードの代わりに、MOS-FETのボディダイオードを使用してもよい。 Note that each switch may be, for example, an IGBT (Insulated Gate Bipolar Transistor) or a JFET (Junction Field Effect Transistor). Diodes are connected in inverse parallel to these switches. As described above, when using MOS-FETs as switches, the body diodes of the MOS-FETs may be used instead of diodes.
 第1のU相ハイサイドスイッチUH1のドレイン端子、第1のV相ハイサイドスイッチVH1のドレイン端子、及び第1のW相ハイサイドスイッチWH1のドレイン端子は、それぞれ、直流電源30の正電極と電気的に接続される。第1のU相ローサイドスイッチUL1のソース端子、第1のV相ローサイドスイッチVL1のソース端子、及び第1のW相ローサイドスイッチWL1のソース端子は、それぞれ、直流電源30の負電極と電気的に接続される。 The drain terminal of the first U-phase high-side switch UH1, the drain terminal of the first V-phase high-side switch VH1, and the drain terminal of the first W-phase high-side switch WH1 are each electrically connected to the positive electrode of the DC power supply 30. The source terminal of the first U-phase low-side switch UL1, the source terminal of the first V-phase low-side switch VL1, and the source terminal of the first W-phase low-side switch WL1 are each electrically connected to the negative electrode of the DC power supply 30.
 第1のU相ハイサイドスイッチUH1のソース端子は、第1のU相端子21uと、第1のU相ローサイドスイッチUL1のドレイン端子とのそれぞれと電気的に接続される。つまり、第1のU相ハイサイドスイッチUH1のソース端子は、第1のU相端子21uを介して、第1のU相コイル23uの一端と電気的に接続される。 The source terminal of the first U-phase high-side switch UH1 is electrically connected to the first U-phase terminal 21u and the drain terminal of the first U-phase low-side switch UL1. In other words, the source terminal of the first U-phase high-side switch UH1 is electrically connected to one end of the first U-phase coil 23u via the first U-phase terminal 21u.
 第1のV相ハイサイドスイッチVH1のソース端子は、第1のV相端子21vと、第1のV相ローサイドスイッチVL1のドレイン端子とのそれぞれと電気的に接続される。つまり、第1のV相ハイサイドスイッチVH1のソース端子は、第1のV相端子21vを介して、第1のV相コイル23vの一端と電気的に接続される。 The source terminal of the first V-phase high-side switch VH1 is electrically connected to the first V-phase terminal 21v and the drain terminal of the first V-phase low-side switch VL1. In other words, the source terminal of the first V-phase high-side switch VH1 is electrically connected to one end of the first V-phase coil 23v via the first V-phase terminal 21v.
 第1のW相ハイサイドスイッチWH1のソース端子は、第1のW相端子21wと、第1のW相ローサイドスイッチWL1のドレイン端子とのそれぞれと電気的に接続される。つまり、第1のW相ハイサイドスイッチWH1のソース端子は、第1のW相端子21wを介して、第1のW相コイル23wの一端と電気的に接続される。 The source terminal of the first W-phase high-side switch WH1 is electrically connected to the first W-phase terminal 21w and the drain terminal of the first W-phase low-side switch WL1. In other words, the source terminal of the first W-phase high-side switch WH1 is electrically connected to one end of the first W-phase coil 23w via the first W-phase terminal 21w.
 図1では図示を省略するが、第1のU相ハイサイドスイッチUH1のゲート端子、第1のV相ハイサイドスイッチVH1のゲート端子、及び第1のW相ハイサイドスイッチWH1のゲート端子は、それぞれ、制御部13と電気的に接続される。同様に、第1のU相ローサイドスイッチUL1のゲート端子、第1のV相ローサイドスイッチVL1のゲート端子、及び第1のW相ローサイドスイッチWL1のゲート端子も、それぞれ、制御部13と電気的に接続される。 Although not shown in FIG. 1, the gate terminal of the first U-phase high-side switch UH1, the gate terminal of the first V-phase high-side switch VH1, and the gate terminal of the first W-phase high-side switch WH1 are each electrically connected to the control unit 13. Similarly, the gate terminal of the first U-phase low-side switch UL1, the gate terminal of the first V-phase low-side switch VL1, and the gate terminal of the first W-phase low-side switch WL1 are each electrically connected to the control unit 13.
 第2の3相フルブリッジ回路12は、3つのハイサイドスイッチと、3つのローサイドスイッチとの計6つのスイッチを有する。第2の3相フルブリッジ回路12は、第2のU相ハイサイドスイッチUH2と、第2のV相ハイサイドスイッチVH2と、第2のW相ハイサイドスイッチWH2と、第2のU相ローサイドスイッチUL2と、第2のV相ローサイドスイッチVL2と、第2のW相ローサイドスイッチWL2と、を有する。本実施形態において、第2の3相フルブリッジ回路12に含まれる各スイッチは、例えばnチャネル型のMOS-FETである。 The second three-phase full bridge circuit 12 has a total of six switches: three high-side switches and three low-side switches. The second three-phase full bridge circuit 12 has a second U-phase high-side switch UH2, a second V-phase high-side switch VH2, a second W-phase high-side switch WH2, a second U-phase low-side switch UL2, a second V-phase low-side switch VL2, and a second W-phase low-side switch WL2. In this embodiment, each switch included in the second three-phase full bridge circuit 12 is, for example, an n-channel MOS-FET.
 第2のU相ハイサイドスイッチUH2のドレイン端子、第2のV相ハイサイドスイッチVH2のドレイン端子、及び第2のW相ハイサイドスイッチWH2のドレイン端子は、それぞれ、直流電源30の正電極と電気的に接続される。第2のU相ローサイドスイッチUL2のソース端子、第2のV相ローサイドスイッチVL2のソース端子、及び第2のW相ローサイドスイッチWL2のソース端子は、それぞれ、直流電源30の負電極と電気的に接続される。 The drain terminal of the second U-phase high-side switch UH2, the drain terminal of the second V-phase high-side switch VH2, and the drain terminal of the second W-phase high-side switch WH2 are each electrically connected to the positive electrode of the DC power supply 30. The source terminal of the second U-phase low-side switch UL2, the source terminal of the second V-phase low-side switch VL2, and the source terminal of the second W-phase low-side switch WL2 are each electrically connected to the negative electrode of the DC power supply 30.
 第2のU相ハイサイドスイッチUH2のソース端子は、第2のU相端子22uと、第2のU相ローサイドスイッチUL2のドレイン端子とのそれぞれと電気的に接続される。つまり、第2のU相ハイサイドスイッチUH2のソース端子は、第2のU相端子22uを介して、第2のU相コイル24uの他端と電気的に接続される。 The source terminal of the second U-phase high-side switch UH2 is electrically connected to the second U-phase terminal 22u and the drain terminal of the second U-phase low-side switch UL2. In other words, the source terminal of the second U-phase high-side switch UH2 is electrically connected to the other end of the second U-phase coil 24u via the second U-phase terminal 22u.
 第2のV相ハイサイドスイッチVH2のソース端子は、第2のV相端子22vと、第2のV相ローサイドスイッチVL2のドレイン端子とのそれぞれと電気的に接続される。つまり、第2のV相ハイサイドスイッチVH2のソース端子は、第2のV相端子22vを介して、第2のV相コイル24vの他端と電気的に接続される。 The source terminal of the second V-phase high-side switch VH2 is electrically connected to the second V-phase terminal 22v and the drain terminal of the second V-phase low-side switch VL2. In other words, the source terminal of the second V-phase high-side switch VH2 is electrically connected to the other end of the second V-phase coil 24v via the second V-phase terminal 22v.
 第2のW相ハイサイドスイッチWH2のソース端子は、第2のW相端子22wと、第2のW相ローサイドスイッチWL2のドレイン端子とのそれぞれと電気的に接続される。つまり、第2のW相ハイサイドスイッチWH2のソース端子は、第2のW相端子22wを介して、第2のW相コイル24wの他端と電気的に接続される。 The source terminal of the second W-phase high-side switch WH2 is electrically connected to the second W-phase terminal 22w and the drain terminal of the second W-phase low-side switch WL2. In other words, the source terminal of the second W-phase high-side switch WH2 is electrically connected to the other end of the second W-phase coil 24w via the second W-phase terminal 22w.
 図1では図示を省略するが、第2のU相ハイサイドスイッチUH2のゲート端子、第2のV相ハイサイドスイッチVH2のゲート端子、及び第2のW相ハイサイドスイッチWH2のゲート端子は、それぞれ、制御部13と電気的に接続される。同様に、第2のU相ローサイドスイッチUL2のゲート端子、第2のV相ローサイドスイッチVL2のゲート端子、及び第2のW相ローサイドスイッチWL2のゲート端子も、それぞれ、制御部13と電気的に接続される。 Although not shown in FIG. 1, the gate terminal of the second U-phase high-side switch UH2, the gate terminal of the second V-phase high-side switch VH2, and the gate terminal of the second W-phase high-side switch WH2 are each electrically connected to the control unit 13. Similarly, the gate terminal of the second U-phase low-side switch UL2, the gate terminal of the second V-phase low-side switch VL2, and the gate terminal of the second W-phase low-side switch WL2 are each electrically connected to the control unit 13.
 制御部13は、第1の3相フルブリッジ回路11および第2の3相フルブリッジ回路12に含まれる各スイッチを制御する。一例として、制御部13は、MCU(Microcontroller Unit)である。制御部13は、各スイッチをパルス幅変調で制御するために必要なゲート信号を生成し、各スイッチのゲート端子にゲート信号を出力する。 The control unit 13 controls each switch included in the first three-phase full-bridge circuit 11 and the second three-phase full-bridge circuit 12. As an example, the control unit 13 is an MCU (Microcontroller Unit). The control unit 13 generates gate signals required to control each switch by pulse width modulation, and outputs the gate signals to the gate terminals of each switch.
 上記の説明から理解されるように、電力変換装置10は、モータ20の各相に対応するHブリッジ回路を備える。図1では図示を省略するが、電力変換装置10は、Hブリッジ回路の少なくとも1つに対応する補助回路をさらに備える。以下では、U相に対応するHブリッジ回路と、そのHブリッジ回路に対応する補助回路とを代表的に用いて、Hブリッジ回路及び補助回路の回路構成について説明する。 As can be understood from the above description, the power conversion device 10 includes an H-bridge circuit corresponding to each phase of the motor 20. Although not shown in FIG. 1, the power conversion device 10 further includes an auxiliary circuit corresponding to at least one of the H-bridge circuits. Below, the circuit configuration of the H-bridge circuit and the auxiliary circuit will be described using the H-bridge circuit corresponding to the U-phase and the auxiliary circuit corresponding to that H-bridge circuit as a representative example.
 図2は、U相に対応するHブリッジ回路BCと、そのHブリッジ回路BCに対応する補助回路SCとの回路構成を示す図である。図2に示すように、Hブリッジ回路BCは、第1レグU1と、第2レグU2と、を備える。第1レグU1は、第1のU相ハイサイドスイッチUH1に対応する第1スイッチTr1と、第1のU相ローサイドスイッチUL1に対応する第2スイッチTr2と、を含む。第2レグU2は、第2のU相ハイサイドスイッチUH2に対応する第3スイッチTr3と、第2のU相ローサイドスイッチUL2に対応する第4スイッチTr4と、を含む。 FIG. 2 is a diagram showing the circuit configuration of an H-bridge circuit BC corresponding to the U-phase and an auxiliary circuit SC corresponding to the H-bridge circuit BC. As shown in FIG. 2, the H-bridge circuit BC includes a first leg U1 and a second leg U2. The first leg U1 includes a first switch Tr1 corresponding to the first U-phase high-side switch UH1, and a second switch Tr2 corresponding to the first U-phase low-side switch UL1. The second leg U2 includes a third switch Tr3 corresponding to the second U-phase high-side switch UH2, and a fourth switch Tr4 corresponding to the second U-phase low-side switch UL2.
 第1スイッチTr1は、直流電源30の正電極と第1接続点P1との間に電気的に接続される。具体的には、第1スイッチTr1のドレイン端子が、直流電源30の正電極と電気的に接続され、第1スイッチTr1のソース端子が、第1接続点P1と電気的に接続される。第1接続点P1は、モータ20の第1のU相端子21uと電気的に接続されるノードである。 The first switch Tr1 is electrically connected between the positive electrode of the DC power supply 30 and the first connection point P1. Specifically, the drain terminal of the first switch Tr1 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the first switch Tr1 is electrically connected to the first connection point P1. The first connection point P1 is a node electrically connected to the first U-phase terminal 21u of the motor 20.
 第2スイッチTr2は、直流電源30の負電極と第1接続点P1との間に電気的に接続される。具体的には、第2スイッチTr2のソース端子が、直流電源30の負電極と電気的に接続され、第2スイッチTr2のドレイン端子が、第1接続点P1と電気的に接続される。 The second switch Tr2 is electrically connected between the negative electrode of the DC power supply 30 and the first connection point P1. Specifically, the source terminal of the second switch Tr2 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the second switch Tr2 is electrically connected to the first connection point P1.
 第3スイッチTr3は、直流電源30の正電極と第2接続点P2との間に電気的に接続される。具体的には、第3スイッチTr3のドレイン端子が、直流電源30の正電極と電気的に接続され、第3スイッチTr3のソース端子が、第2接続点P2と電気的に接続される。第2接続点P2は、モータ20の第2のU相端子22uと電気的に接続されるノードである。 The third switch Tr3 is electrically connected between the positive electrode of the DC power supply 30 and the second connection point P2. Specifically, the drain terminal of the third switch Tr3 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the third switch Tr3 is electrically connected to the second connection point P2. The second connection point P2 is a node electrically connected to the second U-phase terminal 22u of the motor 20.
 第4スイッチTr4は、直流電源30の負電極と第2接続点P2との間に電気的に接続される。具体的には、第4スイッチTr4のソース端子が、直流電源30の負電極と電気的に接続され、第4スイッチTr4のドレイン端子が、第2接続点P2と電気的に接続される。 The fourth switch Tr4 is electrically connected between the negative electrode of the DC power supply 30 and the second connection point P2. Specifically, the source terminal of the fourth switch Tr4 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the fourth switch Tr4 is electrically connected to the second connection point P2.
 補助回路SCは、第1整流素子D1と、第2整流素子D2と、第3整流素子D3と、第4整流素子D4と、第5整流素子D5と、第6整流素子D6と、第1インダクタL1と、第2インダクタL2と、第3インダクタL3と、第4インダクタL4と、第5スイッチTr5と、第6スイッチTr6と、を備える。例えば、第1整流素子D1から第6整流素子D6は、それぞれ、ダイオードである。また、例えば、第5スイッチTr5及び第6スイッチTr6は、それぞれ、nチャネル型のMOS-FETである。 The auxiliary circuit SC includes a first rectifier element D1, a second rectifier element D2, a third rectifier element D3, a fourth rectifier element D4, a fifth rectifier element D5, a sixth rectifier element D6, a first inductor L1, a second inductor L2, a third inductor L3, a fourth inductor L4, a fifth switch Tr5, and a sixth switch Tr6. For example, the first rectifier element D1 to the sixth rectifier element D6 are each diodes. Also, for example, the fifth switch Tr5 and the sixth switch Tr6 are each n-channel MOS-FETs.
 第1整流素子D1及び第1インダクタL1は、第1接続点P1と第3接続点P3との間に直列に接続される。具体的には、第1整流素子D1のアノード端子が、第3接続点P3と電気的に接続され、第1整流素子D1のカソード端子が、第1インダクタL1の一端と電気的に接続される。第1インダクタL1の他端は、第1接続点P1と電気的に接続される。アノード端子は、正極端子に相当し、カソード端子は、負極端子に相当する。 The first rectifier element D1 and the first inductor L1 are connected in series between the first connection point P1 and the third connection point P3. Specifically, the anode terminal of the first rectifier element D1 is electrically connected to the third connection point P3, and the cathode terminal of the first rectifier element D1 is electrically connected to one end of the first inductor L1. The other end of the first inductor L1 is electrically connected to the first connection point P1. The anode terminal corresponds to the positive terminal, and the cathode terminal corresponds to the negative terminal.
 第2整流素子D2及び第2インダクタL2は、第2接続点P2と第3接続点P3との間に直列に接続される。具体的には、第2整流素子D2のアノード端子が、第3接続点P3と電気的に接続され、第2整流素子D2のカソード端子が、第2インダクタL2の一端と電気的に接続される。第2インダクタL2の他端は、第2接続点P2と電気的に接続される。 The second rectifier element D2 and the second inductor L2 are connected in series between the second connection point P2 and the third connection point P3. Specifically, the anode terminal of the second rectifier element D2 is electrically connected to the third connection point P3, and the cathode terminal of the second rectifier element D2 is electrically connected to one end of the second inductor L2. The other end of the second inductor L2 is electrically connected to the second connection point P2.
 第3整流素子D3及び第3インダクタL3は、第1接続点P1と第4接続点P4との間に直列に接続される。具体的には、第3整流素子D3のカソード端子が、第4接続点P4と電気的に接続され、第3整流素子D3のアノード端子が、第3インダクタL3の一端と電気的に接続される。第3インダクタL3の他端は、第1接続点P1と電気的に接続される。 The third rectifier element D3 and the third inductor L3 are connected in series between the first connection point P1 and the fourth connection point P4. Specifically, the cathode terminal of the third rectifier element D3 is electrically connected to the fourth connection point P4, and the anode terminal of the third rectifier element D3 is electrically connected to one end of the third inductor L3. The other end of the third inductor L3 is electrically connected to the first connection point P1.
 第4整流素子D4及び第4インダクタL4は、第2接続点P2と第4接続点P4との間に直列に接続される。具体的には、第4整流素子D4のカソード端子が、第4接続点P4と電気的に接続され、第4整流素子D4のアノード端子が、第4インダクタL4の一端と電気的に接続される。第4インダクタL4の他端は、第2接続点P2と電気的に接続される。 The fourth rectifier element D4 and the fourth inductor L4 are connected in series between the second connection point P2 and the fourth connection point P4. Specifically, the cathode terminal of the fourth rectifier element D4 is electrically connected to the fourth connection point P4, and the anode terminal of the fourth rectifier element D4 is electrically connected to one end of the fourth inductor L4. The other end of the fourth inductor L4 is electrically connected to the second connection point P2.
 第5整流素子D5は、第3接続点P3と電気的に接続されるカソード端子と、直流電源30の負電極と電気的に接続されるアノード端子と、を有する。第6整流素子D6は、直流電源30の正電極と電気的に接続されるカソード端子と、第4接続点P4と電気的に接続されるアノード端子と、を有する。 The fifth rectifier element D5 has a cathode terminal electrically connected to the third connection point P3 and an anode terminal electrically connected to the negative electrode of the DC power supply 30. The sixth rectifier element D6 has a cathode terminal electrically connected to the positive electrode of the DC power supply 30 and an anode terminal electrically connected to the fourth connection point P4.
 第5スイッチTr5は、直流電源30の正電極と第3接続点P3との間に電気的に接続される。具体的には、第5スイッチTr5のドレイン端子が、直流電源30の正電極と電気的に接続され、第5スイッチTr5のソース端子が、第3接続点P3と電気的に接続される。 The fifth switch Tr5 is electrically connected between the positive electrode of the DC power supply 30 and the third connection point P3. Specifically, the drain terminal of the fifth switch Tr5 is electrically connected to the positive electrode of the DC power supply 30, and the source terminal of the fifth switch Tr5 is electrically connected to the third connection point P3.
 第6スイッチTr6は、直流電源30の負電極と第4接続点P4との間に電気的に接続される。具体的には、第6スイッチTr6のソース端子が、直流電源30の負電極と電気的に接続され、第6スイッチTr6のドレイン端子が、第4接続点P4と電気的に接続される。 The sixth switch Tr6 is electrically connected between the negative electrode of the DC power supply 30 and the fourth connection point P4. Specifically, the source terminal of the sixth switch Tr6 is electrically connected to the negative electrode of the DC power supply 30, and the drain terminal of the sixth switch Tr6 is electrically connected to the fourth connection point P4.
 制御部13は、Hブリッジ回路BC及び補助回路SCを制御する。制御部13は、Hブリッジ回路BCに含まれる第1スイッチTr1から第4スイッチTr4と、補助回路SCに含まれる第5スイッチTr5及び第6スイッチTr6とを制御する。 The control unit 13 controls the H-bridge circuit BC and the auxiliary circuit SC. The control unit 13 controls the first switch Tr1 to the fourth switch Tr4 included in the H-bridge circuit BC, and the fifth switch Tr5 and the sixth switch Tr6 included in the auxiliary circuit SC.
 上記のように、補助回路SCにおいて、第1整流素子D1のアノード端子及び第2整流素子D2のアノード端子は、第3接続点P3の側に位置する。第1整流素子D1のアノード端子が第3接続点P3の側に位置するという条件を満たすのであれば、第1整流素子D1の位置と、第1インダクタL1の位置とを入れ替えてもよい。同様に、第2整流素子D2のアノード端子が第3接続点P3の側に位置するという条件を満たすのであれば、第2整流素子D2の位置と、第2インダクタL2の位置とを入れ替えてもよい。 As described above, in the auxiliary circuit SC, the anode terminal of the first rectifier element D1 and the anode terminal of the second rectifier element D2 are located on the side of the third connection point P3. If the condition that the anode terminal of the first rectifier element D1 is located on the side of the third connection point P3 is satisfied, the position of the first rectifier element D1 and the position of the first inductor L1 may be interchanged. Similarly, if the condition that the anode terminal of the second rectifier element D2 is located on the side of the third connection point P3 is satisfied, the position of the second rectifier element D2 and the position of the second inductor L2 may be interchanged.
 補助回路SCにおいて、第3整流素子D3のカソード端子及び第4整流素子D4のカソード端子は、第4接続点P4の側に位置する。第3整流素子D3のカソード端子が第4接続点P4の側に位置するという条件を満たすのであれば、第3整流素子D3の位置と、第3インダクタL3の位置とを入れ替えてもよい。同様に、第4整流素子D4のカソード端子が第4接続点P4の側に位置するという条件を満たすのであれば、第4整流素子D4の位置と、第4インダクタL4の位置とを入れ替えてもよい。 In the auxiliary circuit SC, the cathode terminal of the third rectifier element D3 and the cathode terminal of the fourth rectifier element D4 are located on the side of the fourth connection point P4. If the condition that the cathode terminal of the third rectifier element D3 is located on the side of the fourth connection point P4 is satisfied, the position of the third rectifier element D3 and the position of the third inductor L3 may be interchanged. Similarly, if the condition that the cathode terminal of the fourth rectifier element D4 is located on the side of the fourth connection point P4 is satisfied, the position of the fourth rectifier element D4 and the position of the fourth inductor L4 may be interchanged.
 以上が、モータモジュール1の構成に関する説明である。以下では、電力変換装置10が備える制御部13の動作について説明する。なお、以下では、説明の便宜上、モータ20の各相に対応するHブリッジ回路のうち、U相に対応するHブリッジ回路BCと、そのHブリッジ回路BCに対応する補助回路SCとを参照しながら、制御部13の動作について説明するが、V相及びW相についても同様の動作が適用されることに留意されたい。 The above is an explanation of the configuration of the motor module 1. Below, the operation of the control unit 13 provided in the power conversion device 10 will be explained. Note that, for ease of explanation, the operation of the control unit 13 will be explained below with reference to the H-bridge circuit BC corresponding to the U-phase and the auxiliary circuit SC corresponding to that H-bridge circuit BC, among the H-bridge circuits corresponding to each phase of the motor 20, but it should be noted that the same operation also applies to the V-phase and W-phase.
 制御部13は、第1レグU1及び第2レグU2が同位相の電圧を出力する第1モードと、第1レグU1及び第2レグU2が逆位相の電圧を出力する第2モードと、を有する。例えば、制御部13は、モータ20の低速運転時に第1モードで動作し、モータ20の高速運転時に第2モードで動作する。この制御により、低速運転から高速運転に移行するときに、モータ20の極数が等価的に4極から2極に切り替わるため、モータ20の体格を大きくすることなく、高速運転時のトルク不足を解消できる。 The control unit 13 has a first mode in which the first leg U1 and the second leg U2 output voltages of the same phase, and a second mode in which the first leg U1 and the second leg U2 output voltages of opposite phases. For example, the control unit 13 operates in the first mode when the motor 20 is operating at low speed, and operates in the second mode when the motor 20 is operating at high speed. With this control, when switching from low speed to high speed operation, the number of poles of the motor 20 is equivalently switched from four poles to two poles, so that torque deficiency during high speed operation can be eliminated without increasing the size of the motor 20.
 上記のように、モータ20の回転数に応じて極数を切り換える制御は、特許文献1に開示されているため、本実施形態では詳細な説明を省略する。本実施形態では、制御部13が、各モードにおいて、Hブリッジ回路BCに含まれる第1スイッチTr1から第4スイッチTr4の少なくとも1つのスイッチング損失を低減するソフトスイッチングを実現するために行う動作について詳しく説明する。なお、以下の説明において、制御部13が、ソフトスイッチングを実現するために行う動作を、「ソフトスイッチング動作」と呼称する場合がある。 As described above, the control of switching the number of poles according to the rotation speed of the motor 20 is disclosed in Patent Document 1, so a detailed description will be omitted in this embodiment. In this embodiment, a detailed description will be given of the operation performed by the control unit 13 in each mode to achieve soft switching that reduces switching loss in at least one of the first switch Tr1 to the fourth switch Tr4 included in the H-bridge circuit BC. In the following description, the operation performed by the control unit 13 to achieve soft switching may be referred to as a "soft switching operation."
 まず、ソフトスイッチング動作の各実施例について説明する前に、ソフトスイッチング動作の基本となるソフトスイッチング基本動作について説明する。ソフトスイッチング基本動作として、制御部13は、パルス幅変調の1制御周期内において第1スイッチTr1と第3スイッチTr3との少なくとも一方をオンにする前に第5スイッチTr5を第1時間オンにする第1動作と、パルス幅変調の1制御周期内において第2スイッチTr2と第4スイッチTr4との少なくとも一方をオンにする前に第6スイッチTr6を第2時間オンにする第2動作と、の少なくとも一方を行う。以下では、パルス幅変調の1制御周期を、「PWM(Pulse Width Modulation)周期」と呼称する場合がある。 First, before describing each embodiment of the soft switching operation, the basic soft switching operation that is the basis of the soft switching operation will be described. As the basic soft switching operation, the control unit 13 performs at least one of the following: a first operation of turning on the fifth switch Tr5 for a first time before turning on at least one of the first switch Tr1 and the third switch Tr3 within one control period of the pulse width modulation; and a second operation of turning on the sixth switch Tr6 for a second time before turning on at least one of the second switch Tr2 and the fourth switch Tr4 within one control period of the pulse width modulation. Hereinafter, one control period of the pulse width modulation may be referred to as a "PWM (Pulse Width Modulation) period."
 図3は、第1レグU1の第1接続点P1からモータ20に向かって電流が流れる場合の、第1スイッチTr1、第2スイッチTr2、及び第5スイッチTr5のオンオフタイミングを示すタイミングチャートである。図3に示すように、第1接続点P1からモータ20に向かって電流が流れる場合、第1動作は、PWM周期TP内において第1スイッチTr1をオンにする前に第5スイッチTr5を第1時間オンにする動作である。なお、図3では、第2レグU2の状態を不問としている。 FIG. 3 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the fifth switch Tr5 when a current flows from the first connection point P1 of the first leg U1 toward the motor 20. As shown in FIG. 3, when a current flows from the first connection point P1 toward the motor 20, the first operation is to turn on the fifth switch Tr5 for a first time within the PWM period TP before turning on the first switch Tr1. Note that in FIG. 3, the state of the second leg U2 is not taken into consideration.
 図4は、図3に示されるPWM周期TP内の第1期間T1における各スイッチの状態及び電流の向きを示す図である。以下では、説明の便宜上、各回路図の上側に向かって流れる電流を「上向きの電流」、各回路図の下側に向かって流れる電流を「下向きの電流」、各回路図の右側に向かって流れる電流を「右向きの電流」、各回路図の左側に向かって流れる電流を「左向きの電流」と呼称する場合がある。 FIG. 4 is a diagram showing the state of each switch and the direction of current during the first period T1 in the PWM cycle TP shown in FIG. 3. For ease of explanation, in the following, the current flowing toward the top of each circuit diagram may be referred to as the "upward current," the current flowing toward the bottom of each circuit diagram as the "downward current," the current flowing toward the right side of each circuit diagram as the "rightward current," and the current flowing toward the left side of each circuit diagram as the "leftward current."
 図4に示すように、第1期間T1において、第1スイッチTr1はオフ、第2スイッチTr2はオン、第5スイッチTr5はオフである。第1期間T1において、第2スイッチTr2に上向きの電流が流れ、第1接続点P1からモータ20に向かって電流が流れる。第1期間T1において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しい。 As shown in FIG. 4, in the first period T1, the first switch Tr1 is off, the second switch Tr2 is on, and the fifth switch Tr5 is off. In the first period T1, an upward current flows through the second switch Tr2, and a current flows from the first connection point P1 toward the motor 20. In the first period T1, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30.
 図5は、図3に示されるPWM周期TP内の第2期間T2における各スイッチの状態及び電流の向きを示す図である。図5に示すように、第2期間T2において、第1スイッチTr1はオフ、第2スイッチTr2はオン、第5スイッチTr5はオンである。第2期間T2において、第5スイッチTr5がオンになると、補助回路SCの第3接続点P3の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1インダクタL1に右向きの電流が流れる。第2期間T2において、第1インダクタL1に流れる右向きの電流が、第1接続点P1からモータ20に向かって流れる電流より大きくなると、第2スイッチTr2に下向きの電流が流れる。第2期間T2は、第5スイッチTr5がオンにされる第1時間に相当する。 FIG. 5 is a diagram showing the state of each switch and the direction of the current during the second period T2 in the PWM cycle TP shown in FIG. 3. As shown in FIG. 5, during the second period T2, the first switch Tr1 is off, the second switch Tr2 is on, and the fifth switch Tr5 is on. When the fifth switch Tr5 is turned on during the second period T2, the potential of the third connection point P3 of the auxiliary circuit SC becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1. During the second period T2, when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2. The second period T2 corresponds to the first time during which the fifth switch Tr5 is turned on.
 図6は、図3に示されるPWM周期TP内の第3期間T3における各スイッチの状態及び電流の向きを示す図である。図6に示すように、第3期間T3において、第1スイッチTr1はオフ、第2スイッチTr2はオン、第5スイッチTr5はオフである。第3期間T3において、第5スイッチTr5がオフになると、第2スイッチTr2に流れる下向きの電流が、第5スイッチTr5から第5整流素子D5に転流し、第5整流素子D5に上向きの電流が流れる。第3期間T3において、第3接続点P3の電位は、直流電源30の負電極電位とほぼ等しい。 FIG. 6 is a diagram showing the state of each switch and the direction of the current during the third period T3 in the PWM cycle TP shown in FIG. 3. As shown in FIG. 6, during the third period T3, the first switch Tr1 is off, the second switch Tr2 is on, and the fifth switch Tr5 is off. When the fifth switch Tr5 is turned off during the third period T3, the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5. During the third period T3, the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
 図7は、図3に示されるPWM周期TP内の第4期間T4における各スイッチの状態及び電流の向きを示す図である。図7に示すように、第4期間T4において、第1スイッチTr1はオフ、第2スイッチTr2はオフ、第5スイッチTr5はオフである。第4期間T4において、第2スイッチTr2がオフになると、第5整流素子D5及び第1インダクタL1に流れる電流が、第2スイッチTr2から第1スイッチTr1に転流し、第1スイッチTr1のボディダイオードに上向きの電流が流れる。第4期間T4において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1スイッチTr1の両端電圧は、ほぼゼロとなる。第1スイッチTr1の両端電圧とは、ドレイン端子とソース端子との間の電位差である。なお、第4期間T4において、第1インダクタL1には逆向きの電圧が印加されるため、第1インダクタL1に流れる右向きの電流は徐々に減少する。 FIG. 7 is a diagram showing the state of each switch and the direction of the current during the fourth period T4 in the PWM cycle TP shown in FIG. 3. As shown in FIG. 7, during the fourth period T4, the first switch Tr1 is off, the second switch Tr2 is off, and the fifth switch Tr5 is off. When the second switch Tr2 is turned off during the fourth period T4, the current flowing through the fifth rectifier element D5 and the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1. During the fourth period T4, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero. The voltage across the first switch Tr1 is the potential difference between the drain terminal and the source terminal. Note that during the fourth period T4, a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
 図8は、図3に示されるPWM周期TP内の第5期間T5における各スイッチの状態及び電流の向きを示す図である。図8に示すように、第5期間T5において、第1スイッチTr1はオン、第2スイッチTr2はオフ、第5スイッチTr5はオフである。第5期間T5において、第1インダクタL1に流れる電流の減少に伴い、第1スイッチTr1に流れる上向きの電流も減少する。そして、第1インダクタL1に流れる電流が、第1接続点P1からモータ20に向かって流れる電流より小さくなると、第1スイッチTr1に下向きの電流が流れる。なお、第1インダクタL1に流れる電流がゼロになると、第1スイッチTr1に下向きに流れる電流と、第1接続点P1からモータ20に向かって流れる電流とが一致する。 FIG. 8 is a diagram showing the state of each switch and the direction of current during the fifth period T5 in the PWM cycle TP shown in FIG. 3. As shown in FIG. 8, during the fifth period T5, the first switch Tr1 is on, the second switch Tr2 is off, and the fifth switch Tr5 is off. During the fifth period T5, as the current flowing through the first inductor L1 decreases, the upward current flowing through the first switch Tr1 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the first switch Tr1. When the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 match.
 以上のように、制御部13は、第1接続点P1からモータ20に向かって電流が流れる場合、PWM周期TP内において第1スイッチTr1をオンにする前に第5スイッチTr5を第1時間オンにする第1動作を行う。これにより、第1スイッチTr1がオンになる前に、第1スイッチTr1の両端電圧がほぼゼロとなる。すなわち、制御部13が上記の第1動作を行うことにより、第1スイッチTr1のソフトスイッチングが実現され、第1スイッチTr1のスイッチング損失を低減できる。 As described above, when a current flows from the first connection point P1 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the first switch Tr1 within the PWM period TP. As a result, the voltage across the first switch Tr1 becomes nearly zero before the first switch Tr1 is turned on. In other words, by the control unit 13 performing the above first operation, soft switching of the first switch Tr1 is realized, and the switching loss of the first switch Tr1 can be reduced.
 なお、第2接続点P2からモータ20に向かって電流が流れる場合、第1動作は、PWM周期TP内において第3スイッチTr3をオンにする前に第5スイッチTr5を第1時間オンにする動作である。すなわち、制御部13は、第2接続点P2からモータ20に向かって電流が流れる場合、PWM周期TP内において第3スイッチTr3をオンにする前に第5スイッチTr5を第1時間オンにする第1動作を行う。これにより、第3スイッチTr3がオンになる前に、第3スイッチTr3の両端電圧がほぼゼロとなる。すなわち、制御部13が上記の第1動作を行うことにより、第3スイッチTr3のソフトスイッチングが実現され、第3スイッチTr3のスイッチング損失を低減できる。 When a current flows from the second connection point P2 toward the motor 20, the first operation is an operation of turning on the fifth switch Tr5 for a first time before turning on the third switch Tr3 within the PWM period TP. That is, when a current flows from the second connection point P2 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the third switch Tr3 within the PWM period TP. As a result, the voltage across the third switch Tr3 becomes almost zero before the third switch Tr3 is turned on. That is, when the control unit 13 performs the above first operation, soft switching of the third switch Tr3 is realized, and the switching loss of the third switch Tr3 can be reduced.
 図9は、モータ20から第1接続点P1に向かって電流が流れる場合の、第1スイッチTr1、第2スイッチTr2、及び第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。図9に示すように、モータ20から第1接続点P1に向かって電流が流れる場合、第2動作は、PWM周期TP内において第2スイッチTr2をオンにする前に第6スイッチTr6を第2時間オンにする動作である。なお、図9では、第2レグU2の状態を不問としている。 FIG. 9 is a timing chart showing the on/off timing of the first switch Tr1, the second switch Tr2, and the sixth switch Tr6 when a current flows from the motor 20 toward the first connection point P1. As shown in FIG. 9, when a current flows from the motor 20 toward the first connection point P1, the second operation is an operation of turning on the sixth switch Tr6 for a second time within the PWM period TP before turning on the second switch Tr2. Note that in FIG. 9, the state of the second leg U2 is not taken into consideration.
 図10は、図9に示されるPWM周期TP内の第1期間T11における各スイッチの状態及び電流の向きを示す図である。図10に示すように、第1期間T11において、第1スイッチTr1はオン、第2スイッチTr2はオフ、第6スイッチTr6はオフである。第1期間T11において、モータ20から第1接続点P1に向かって電流が流れ、第1スイッチTr1に上向きの電流が流れる。第1期間T11において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 10 is a diagram showing the state of each switch and the direction of current during the first period T11 in the PWM cycle TP shown in FIG. 9. As shown in FIG. 10, during the first period T11, the first switch Tr1 is on, the second switch Tr2 is off, and the sixth switch Tr6 is off. During the first period T11, a current flows from the motor 20 toward the first connection point P1, and an upward current flows through the first switch Tr1. During the first period T11, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30.
 図11は、図9に示されるPWM周期TP内の第2期間T12における各スイッチの状態及び電流の向きを示す図である。図11に示すように、第2期間T12において、第1スイッチTr1はオン、第2スイッチTr2はオフ、第6スイッチTr6はオンである。第2期間T12において、第6スイッチTr6がオンになると、補助回路SCの第4接続点P4の電位は、直流電源30の負電極電位とほぼ等しくなるため、第3インダクタL3に右向きの電流が流れる。第2期間T12において、第3インダクタL3に流れる右向きの電流が、モータ20から第1接続点P1に向かって流れる電流より大きくなると、第1スイッチTr1に下向きの電流が流れる。第2期間T12は、第6スイッチTr6がオンにされる第2時間に相当する。 11 is a diagram showing the state of each switch and the direction of the current during the second period T12 in the PWM cycle TP shown in FIG. 9. As shown in FIG. 11, during the second period T12, the first switch Tr1 is on, the second switch Tr2 is off, and the sixth switch Tr6 is on. When the sixth switch Tr6 is on during the second period T12, the potential of the fourth connection point P4 of the auxiliary circuit SC becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3. During the second period T12, when the rightward current flowing through the third inductor L3 becomes larger than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the first switch Tr1. The second period T12 corresponds to the second time during which the sixth switch Tr6 is on.
 図12は、図9に示されるPWM周期TP内の第3期間T13における各スイッチの状態及び電流の向きを示す図である。図12に示すように、第3期間T13において、第1スイッチTr1はオン、第2スイッチTr2はオフ、第6スイッチTr6はオフである。第3期間T13において、第6スイッチTr6がオフになると、第3インダクタL3に流れる右向きの電流が、第6スイッチTr6から第6整流素子D6に転流し、第6整流素子D6に上向きの電流が流れる。第3期間T13において、第4接続点P4の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 12 is a diagram showing the state of each switch and the direction of the current during the third period T13 in the PWM cycle TP shown in FIG. 9. As shown in FIG. 12, during the third period T13, the first switch Tr1 is on, the second switch Tr2 is off, and the sixth switch Tr6 is off. When the sixth switch Tr6 is turned off during the third period T13, the rightward current flowing through the third inductor L3 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6. During the third period T13, the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
 図13は、図9に示されるPWM周期TP内の第4期間T14における各スイッチの状態及び電流の向きを示す図である。図13に示すように、第4期間T14において、第1スイッチTr1はオフ、第2スイッチTr2はオフ、第6スイッチTr6はオフである。第4期間T14において、第1スイッチTr1がオフになると、第3インダクタL3及び第6整流素子D6に流れる電流が、第1スイッチTr1から第2スイッチTr2に転流し、第2スイッチTr2のボディダイオードに上向きの電流が流れる。第4期間T14において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しくなるため、第2スイッチTr2の両端電圧は、ほぼゼロとなる。なお、第4期間T14において、第3インダクタL3には逆向きの電圧が印加されるため、第3インダクタL3に流れる右向きの電流は徐々に減少する。 13 is a diagram showing the state of each switch and the direction of the current during the fourth period T14 in the PWM cycle TP shown in FIG. 9. As shown in FIG. 13, during the fourth period T14, the first switch Tr1 is off, the second switch Tr2 is off, and the sixth switch Tr6 is off. When the first switch Tr1 is turned off during the fourth period T14, the current flowing through the third inductor L3 and the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2, and an upward current flows through the body diode of the second switch Tr2. During the fourth period T14, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltage across the second switch Tr2 is approximately zero. Note that during the fourth period T14, a reverse voltage is applied to the third inductor L3, so the rightward current flowing through the third inductor L3 gradually decreases.
 図14は、図9に示されるPWM周期TP内の第5期間T15における各スイッチの状態及び電流の向きを示す図である。図14に示すように、第5期間T15において、第1スイッチTr1はオフ、第2スイッチTr2はオン、第6スイッチTr6はオフである。第5期間T15において、第3インダクタL3に流れる電流の減少に伴い、第2スイッチTr2に流れる上向きの電流も減少する。そして、第3インダクタL3に流れる電流が、モータ20から第1接続点P1に向かって流れる電流より小さくなると、第2スイッチTr2に下向きの電流が流れる。第3インダクタL3に流れる電流がゼロになると、第2スイッチTr2に下向きに流れる電流と、モータ20から第1接続点P1に向かって流れる電流とが一致する。 14 is a diagram showing the state of each switch and the direction of the current during the fifth period T15 in the PWM cycle TP shown in FIG. 9. As shown in FIG. 14, during the fifth period T15, the first switch Tr1 is off, the second switch Tr2 is on, and the sixth switch Tr6 is off. During the fifth period T15, as the current flowing through the third inductor L3 decreases, the upward current flowing through the second switch Tr2 also decreases. Then, when the current flowing through the third inductor L3 becomes smaller than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the second switch Tr2. When the current flowing through the third inductor L3 becomes zero, the current flowing downward through the second switch Tr2 and the current flowing from the motor 20 toward the first connection point P1 match.
 以上のように、制御部13は、モータ20から第1接続点P1に向かって電流が流れる場合、PWM周期TP内において第2スイッチTr2をオンにする前に第6スイッチTr6を第2時間オンにする第2動作を行う。これにより、第2スイッチTr2がオンになる前に、第2スイッチTr2の両端電圧がほぼゼロとなる。すなわち、制御部13が上記の第2動作を行うことにより、第2スイッチTr2のソフトスイッチングが実現され、第2スイッチTr2のスイッチング損失を低減できる。 As described above, when a current flows from the motor 20 toward the first connection point P1, the control unit 13 performs the second operation of turning on the sixth switch Tr6 for the second time before turning on the second switch Tr2 within the PWM period TP. As a result, the voltage across the second switch Tr2 becomes almost zero before the second switch Tr2 is turned on. In other words, by the control unit 13 performing the above-mentioned second operation, soft switching of the second switch Tr2 is realized, and the switching loss of the second switch Tr2 can be reduced.
 なお、モータ20から第2接続点P2に向かって電流が流れる場合、第2動作は、PWM周期TP内において第4スイッチTr4をオンにする前に第6スイッチTr6を第2時間オンにする動作である。すなわち、制御部13は、モータ20から第2接続点P2に向かって電流が流れる場合、PWM周期TP内において第4スイッチTr4をオンにする前に第6スイッチTr6を第2時間オンにする第2動作を行う。これにより、第4スイッチTr4がオンになる前に、第4スイッチTr4の両端電圧がほぼゼロとなる。すなわち、制御部13が上記の第2動作を行うことにより、第4スイッチTr4のソフトスイッチングが実現され、第4スイッチTr4のスイッチング損失を低減できる。 When a current flows from the motor 20 toward the second connection point P2, the second operation is an operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 within the PWM period TP. That is, when a current flows from the motor 20 toward the second connection point P2, the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 within the PWM period TP. As a result, the voltage across the fourth switch Tr4 becomes almost zero before the fourth switch Tr4 is turned on. That is, when the control unit 13 performs the above-mentioned second operation, soft switching of the fourth switch Tr4 is realized, and the switching loss of the fourth switch Tr4 can be reduced.
 上記のソフトスイッチング基本動作を踏まえ、以下では、ソフトスイッチング動作の各実施例について説明する。  Based on the above basic soft switching operation, we will now explain various examples of soft switching operation.
〔実施例1〕
 図15は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。なお、図15は、第1インダクタL1及び第2インダクタL2の電流と、第1スイッチTr1及び第3スイッチTr3の電流と、第1スイッチTr1及び第3スイッチTr3の両端電圧との変化も示す。
Example 1
Fig. 15 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from the first connection point P1 and the second connection point P2 toward the motor 20. Fig. 15 also shows changes in the currents of the first inductor L1 and the second inductor L2, the currents of the first switch Tr1 and the third switch Tr3, and the voltages across the first switch Tr1 and the third switch Tr3.
 図15において、I_L1は、第1インダクタL1の電流を示し、I_L2は、第2インダクタL2の電流を示す。I_Tr1は、第1スイッチTr1の電流を示し、I_Tr3は、第3スイッチTr3の電流を示す。V_Tr1は、第1スイッチTr1の両端電圧を示し、V_Tr3は、第3スイッチTr3の両端電圧を示す。 In FIG. 15, I_L1 indicates the current of the first inductor L1, and I_L2 indicates the current of the second inductor L2. I_Tr1 indicates the current of the first switch Tr1, and I_Tr3 indicates the current of the third switch Tr3. V_Tr1 indicates the voltage across the first switch Tr1, and V_Tr3 indicates the voltage across the third switch Tr3.
 図15に示すように、制御部13は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合、第1スイッチTr1及び第3スイッチTr3の両方を第1タイミングでオンにし、PWM周期TP内において、第1タイミングの前に第1動作を行う。言い換えれば、制御部13は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合、PWM周期TP内において第1スイッチTr1及び第3スイッチTr3を同時にオンにする前に第5スイッチTr5を第1時間オンにする第1動作を行う。 15, when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 turns on both the first switch Tr1 and the third switch Tr3 at a first timing, and performs a first operation before the first timing within the PWM period TP. In other words, when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before simultaneously turning on the first switch Tr1 and the third switch Tr3 within the PWM period TP.
 図16は、図15に示されるPWM周期TP内の第1期間T21における各スイッチの状態及び電流の向きを示す図である。図16に示すように、第1期間T21において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオン、第5スイッチTr5はオフである。第1期間T21において、第2スイッチTr2及び第4スイッチTr4に上向きの電流が流れ、第1接続点P1及び第2接続点P2のそれぞれからモータ20に向かって電流が流れる。第1期間T21において、第1接続点P1及び第2接続点P2の電位は、それぞれ、直流電源30の負電極電位とほぼ等しい。 FIG. 16 is a diagram showing the state of each switch and the direction of current during the first period T21 in the PWM cycle TP shown in FIG. 15. As shown in FIG. 16, during the first period T21, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are on, and the fifth switch Tr5 is off. During the first period T21, an upward current flows through the second switch Tr2 and the fourth switch Tr4, and a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20. During the first period T21, the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the negative electrode potential of the DC power supply 30.
 図17は、図15に示されるPWM周期TP内の第2期間T22における各スイッチの状態及び電流の向きを示す図である。図17に示すように、第2期間T22において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオン、第5スイッチTr5はオンである。第2期間T22において、第5スイッチTr5がオンになると、第3接続点P3の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1インダクタL1及び第2インダクタL2に右向きの電流が流れる。第2期間T22において、第1インダクタL1に流れる右向きの電流が、第1接続点P1からモータ20に向かって流れる電流より大きくなると、第2スイッチTr2に下向きの電流が流れる。また、第2期間T22において、第2インダクタL2に流れる右向きの電流が、第2接続点P2からモータ20に向かって流れる電流より大きくなると、第4スイッチTr4に下向きの電流が流れる。第2期間T22は、第5スイッチTr5がオンにされる第1時間に相当する。 17 is a diagram showing the state of each switch and the direction of current during the second period T22 in the PWM cycle TP shown in FIG. 15. As shown in FIG. 17, during the second period T22, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are on, and the fifth switch Tr5 is on. During the second period T22, when the fifth switch Tr5 is turned on, the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1 and the second inductor L2. During the second period T22, when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2. In addition, in the second period T22, when the rightward current flowing through the second inductor L2 becomes larger than the current flowing from the second connection point P2 toward the motor 20, a downward current flows through the fourth switch Tr4. The second period T22 corresponds to the first time during which the fifth switch Tr5 is turned on.
 図18は、図15に示されるPWM周期TP内の第3期間T23における各スイッチの状態及び電流の向きを示す図である。図18に示すように、第3期間T23において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオン、第5スイッチTr5はオフである。第3期間T23において、第5スイッチTr5がオフになると、第2スイッチTr2に流れる下向きの電流が、第5スイッチTr5から第5整流素子D5に転流し、第5整流素子D5に上向きの電流が流れる。第3期間T23において、第3接続点P3の電位は、直流電源30の負電極電位とほぼ等しい。 18 is a diagram showing the state of each switch and the direction of the current during the third period T23 in the PWM cycle TP shown in FIG. 15. As shown in FIG. 18, during the third period T23, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are on, and the fifth switch Tr5 is off. When the fifth switch Tr5 is turned off during the third period T23, the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5. During the third period T23, the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
 図19は、図15に示されるPWM周期TP内の第4期間T24における各スイッチの状態及び電流の向きを示す図である。図19に示すように、第4期間T24において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオフ、第5スイッチTr5はオフである。第4期間T24において、第2スイッチTr2及び第4スイッチTr4がオフになると、第1インダクタL1に流れる電流が、第2スイッチTr2から第1スイッチTr1に転流するとともに、第2インダクタL2に流れる電流が、第4スイッチTr4から第3スイッチTr3に転流し、第1スイッチTr1及び第3スイッチTr3のボディダイオードに上向きの電流が流れる。また、第4期間T24において、第1接続点P1及び第2接続点P2の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1スイッチTr1及び第3スイッチTr3の両端電圧は、ほぼゼロとなる。なお、第4期間T24において、第1インダクタL1及び第2インダクタL2には逆向きの電圧が印加されるため、第1インダクタL1及び第2インダクタL2に流れる右向きの電流は徐々に減少する。 19 is a diagram showing the state of each switch and the direction of current during the fourth period T24 in the PWM cycle TP shown in FIG. 15. As shown in FIG. 19, during the fourth period T24, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off. During the fourth period T24, when the second switch Tr2 and the fourth switch Tr4 are turned off, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and the current flowing through the second inductor L2 is commutated from the fourth switch Tr4 to the third switch Tr3, and an upward current flows through the body diodes of the first switch Tr1 and the third switch Tr3. In addition, in the fourth period T24, the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the positive electrode potential of the DC power supply 30, so the voltages across the first switch Tr1 and the third switch Tr3 are approximately zero. In addition, in the fourth period T24, a reverse voltage is applied to the first inductor L1 and the second inductor L2, so the rightward current flowing through the first inductor L1 and the second inductor L2 gradually decreases.
 図20は、図15に示されるPWM周期TP内の第5期間T25における各スイッチの状態及び電流の向きを示す図である。図20に示すように、第5期間T25において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第5スイッチTr5はオフである。第5期間T25において、第1インダクタL1及び第2インダクタL2に流れる電流の減少に伴い、第1スイッチTr1及び第3スイッチTr3に流れる上向きの電流も減少する。そして、第1インダクタL1に流れる電流が、第1接続点P1からモータ20に向かって流れる電流より小さくなり、第2インダクタL2に流れる電流が、第2接続点P2からモータ20に向かって流れる電流より小さくなると、第1スイッチTr1及び第3スイッチTr3に下向きの電流が流れる。
 なお、第1インダクタL1に流れる電流がゼロになると、第1スイッチTr1に下向きに流れる電流と、第1接続点P1からモータ20に向かって流れる電流とが一致する。また、第2インダクタL2に流れる電流がゼロになると、第3スイッチTr3に下向きに流れる電流と、第2接続点P2からモータ20に向かって流れる電流とが一致する。
20 is a diagram showing the state of each switch and the direction of current in a fifth period T25 in the PWM cycle TP shown in FIG. 15. As shown in FIG. 20, in the fifth period T25, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off. In the fifth period T25, as the current flowing through the first inductor L1 and the second inductor L2 decreases, the upward current flowing through the first switch Tr1 and the third switch Tr3 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 to the motor 20 and the current flowing through the second inductor L2 becomes smaller than the current flowing from the second connection point P2 to the motor 20, a downward current flows through the first switch Tr1 and the third switch Tr3.
When the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 matches the current flowing from the first connection point P1 toward the motor 20. When the current flowing through the second inductor L2 becomes zero, the current flowing downward through the third switch Tr3 matches the current flowing from the second connection point P2 toward the motor 20.
 上記のように、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合の第1動作として、制御部13は、第2スイッチTr2及び第4スイッチTr4のオンタイミングから第5スイッチTr5のオンタイミングまでの第1期間T21において、第1スイッチTr1及び第3スイッチTr3をオフにし、第2スイッチTr2及び第4スイッチTr4をオンにし、第5スイッチTr5をオフにする。
 そして、制御部13は、第1期間T21の後の期間であって且つ第1時間に対応する第2期間T22において、第1スイッチTr1及び第3スイッチTr3をオフにし、第2スイッチTr2及び第4スイッチTr4をオンにし、第5スイッチTr5をオンにする。
 そして、制御部13は、第2期間T22の後の第3期間T23において、第1スイッチTr1及び第3スイッチTr3をオフにし、第2スイッチTr2及び第4スイッチTr4をオンにし、第5スイッチTr5をオフにする。
 さらに、制御部13は、第3期間T23の終了タイミングから第1スイッチTr1及び第3スイッチTr3のオンタイミングまでの第4期間T24に、第1スイッチTr1及び第3スイッチTr3をオフにし、第2スイッチTr2及び第4スイッチTr4をオフにし、第5スイッチTr5をオフにする。
As described above, as a first operation when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5 during the first period T21 from the on timing of the second switch Tr2 and the fourth switch Tr4 to the on timing of the fifth switch Tr5.
Then, in a second period T22 which is the period after the first period T21 and corresponds to the first time, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns on the fifth switch Tr5.
Then, in a third period T23 following the second period T22, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns on the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5.
Furthermore, during a fourth period T24 from the end timing of the third period T23 to the on timing of the first switch Tr1 and the third switch Tr3, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the fifth switch Tr5.
 以上のように、制御部13は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合、PWM周期TP内において第1スイッチTr1及び第3スイッチTr3を同時にオンにする前に第5スイッチTr5を第1時間オンにする第1動作を行う。これにより、第1スイッチTr1及び第3スイッチTr3が同時にオンになる前に、第1スイッチTr1及び第3スイッチTr3の両端電圧がほぼゼロとなる。従って、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1及び第3スイッチTr3のソフトスイッチングが実現され、第1スイッチTr1及び第3スイッチTr3のスイッチング損失を低減できる。
 このように、第1スイッチTr1及び第3スイッチTr3のターンオンタイミングを同期させると、第1レグU1と第2レグU2との両方でソフトスイッチングを実現できる。
 補助回路SCに含まれるスイッチ素子は、第5スイッチTr5と第6スイッチTr6との2つだけであり、この補助回路SCによって第1レグU1と第2レグU2との両方でソフトスイッチングを実行できることから、補助回路SC、補助回路SCの駆動回路、及び補助回路SCの制御信号を簡略化でき、回路のコストダウン及び回路面積の削減を実現することができる。
As described above, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before simultaneously turning on the first switch Tr1 and the third switch Tr3 within the PWM period TP. As a result, the voltages across the first switch Tr1 and the third switch Tr3 become substantially zero before the first switch Tr1 and the third switch Tr3 are simultaneously turned on. Therefore, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the third switch Tr3 and reducing switching loss of the first switch Tr1 and the third switch Tr3.
In this manner, by synchronizing the turn-on timing of the first switch Tr1 and the third switch Tr3, soft switching can be achieved in both the first leg U1 and the second leg U2.
The auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
 上記の実施例1は、第1レグU1及び第2レグU2が同位相の電圧を出力し、且つ第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れる場合におけるソフトスイッチング動作の一例である。しかしながら、モータ20の回転中に極数の切り換え制御を行う場合、第1レグU1の出力電圧と、第2レグU2の出力電圧とが、単純に同位相或いは逆位相の関係にあるだけでなく、第1レグU1と第2レグU2とでデューティが異なる状態が発生する。 The above-mentioned Example 1 is an example of soft switching operation in which the first leg U1 and the second leg U2 output voltages of the same phase, and currents flow from the first connection point P1 and the second connection point P2 toward the motor 20. However, when controlling the number of poles to be switched while the motor 20 is rotating, the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or out of phase, but the first leg U1 and the second leg U2 have different duties.
 極数の切り換え制御は短時間で行われるため、極数の切り換え制御が行われる期間において、補助回路SCの動作を停止して、Hブリッジ回路BCに含まれる各スイッチのハードスイッチングを行ったとしても、スイッチング損失は大きくならない。しかしながら、以下の実施例2で説明するように、第1レグU1と第2レグU2との一方に同期して補助回路SCを動作させることにより、スイッチング損失を極力抑えることができる。 Since the pole number switching control is performed in a short time, even if the operation of the auxiliary circuit SC is stopped and hard switching of each switch included in the H-bridge circuit BC is performed during the period in which the pole number switching control is performed, switching loss does not increase. However, as will be explained in the following Example 2, by operating the auxiliary circuit SC in synchronization with either the first leg U1 or the second leg U2, switching loss can be minimized.
〔実施例2〕
 図21は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第3スイッチTr3のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。
Example 2
FIG. 21 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 within the PWM period TP.
 このように、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間の長さと第3スイッチTr3のオン期間の長さとが異なる場合、制御部13は、第1スイッチTr1と第3スイッチTr3との一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、他方のスイッチを第2タイミングでオンにし、PWM周期TP内において、第2タイミングの前に第1動作を行う。 In this way, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and the length of the on-period of the first switch Tr1 and the length of the on-period of the third switch Tr3 are different within the PWM period TP, the control unit 13 turns on the other switch at the second timing when one of the first switch Tr1 and the third switch Tr3 is on and the other switch is off, and performs the first operation before the second timing within the PWM period TP.
 図21に示す例では、制御部13は、PWM周期TP内において、第3スイッチTr3がオンであり、且つ第1スイッチTr1がオフである状態において、第1スイッチTr1をオンにする第2タイミングの前に、第5スイッチTr5を第1時間オンにする。 In the example shown in FIG. 21, when the third switch Tr3 is on and the first switch Tr1 is off within the PWM period TP, the control unit 13 turns on the fifth switch Tr5 for a first time before the second timing at which the first switch Tr1 is turned on.
 図22は、図21に示されるPWM周期TP内の第1期間T31における各スイッチの状態及び電流の向きを示す図である。図22に示すように、第1期間T31において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオフである。第1期間T31において、第2スイッチTr2に上向きの電流が流れ、第3スイッチTr3に下向きの電流が流れ、第1接続点P1及び第2接続点P2のそれぞれからモータ20に向かって電流が流れる。第1期間T31において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しく、第2接続点P2の電位は、直流電源30の正電極電位とほぼ等しい。 22 is a diagram showing the state of each switch and the direction of current during the first period T31 in the PWM cycle TP shown in FIG. 21. As shown in FIG. 22, during the first period T31, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off. During the first period T31, an upward current flows through the second switch Tr2, a downward current flows through the third switch Tr3, and current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20. During the first period T31, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
 図23は、図21に示されるPWM周期TP内の第2期間T32における各スイッチの状態及び電流の向きを示す図である。図23に示すように、第2期間T32において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオンである。第2期間T32において、第5スイッチTr5がオンになると、第3接続点P3の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1インダクタL1に右向きの電流が流れる。第2期間T32において、第1インダクタL1に流れる右向きの電流が、第1接続点P1からモータ20に向かって流れる電流より大きくなると、第2スイッチTr2に下向きの電流が流れる。第2期間T32は、第5スイッチTr5がオンにされる第1時間に相当する。 23 is a diagram showing the state of each switch and the direction of the current during the second period T32 in the PWM cycle TP shown in FIG. 21. As shown in FIG. 23, during the second period T32, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is on. During the second period T32, when the fifth switch Tr5 is turned on, the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1. During the second period T32, when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2. The second period T32 corresponds to the first time during which the fifth switch Tr5 is turned on.
 図24は、図21に示されるPWM周期TP内の第3期間T33における各スイッチの状態及び電流の向きを示す図である。図24に示すように、第3期間T33において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオフである。第3期間T33において、第5スイッチTr5がオフになると、第2スイッチTr2に流れる下向きの電流が、第5スイッチTr5から第5整流素子D5に転流し、第5整流素子D5に上向きの電流が流れる。第3期間T33において、第3接続点P3の電位は、直流電源30の負電極電位とほぼ等しい。 24 is a diagram showing the state of each switch and the direction of the current during the third period T33 in the PWM cycle TP shown in FIG. 21. As shown in FIG. 24, during the third period T33, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off. When the fifth switch Tr5 is turned off during the third period T33, the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5. During the third period T33, the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
 図25は、図21に示されるPWM周期TP内の第4期間T34における各スイッチの状態及び電流の向きを示す図である。図25に示すように、第4期間T34において、第1スイッチTr1、第2スイッチTr2及び第4スイッチTr4はオフ、第3スイッチTr3はオン、第5スイッチTr5はオフである。第4期間T34において、第2スイッチTr2がオフになると、第1インダクタL1に流れる電流が、第2スイッチTr2から第1スイッチTr1に転流し、第1スイッチTr1のボディダイオードに上向きの電流が流れる。また、第4期間T34において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1スイッチTr1の両端電圧は、ほぼゼロとなる。なお、第4期間T34において、第1インダクタL1には逆向きの電圧が印加されるため、第1インダクタL1に流れる右向きの電流は徐々に減少する。 25 is a diagram showing the state of each switch and the direction of the current during the fourth period T34 in the PWM cycle TP shown in FIG. 21. As shown in FIG. 25, during the fourth period T34, the first switch Tr1, the second switch Tr2, and the fourth switch Tr4 are off, the third switch Tr3 is on, and the fifth switch Tr5 is off. When the second switch Tr2 is turned off during the fourth period T34, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1. During the fourth period T34, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero. During the fourth period T34, a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
 図26は、図21に示されるPWM周期TP内の第5期間T35における各スイッチの状態及び電流の向きを示す図である。図26に示すように、第5期間T35において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第5スイッチTr5はオフである。第5期間T35において、第1インダクタL1に流れる電流の減少に伴い、第1スイッチTr1に流れる上向きの電流も減少する。そして、第1インダクタL1に流れる電流が、第1接続点P1からモータ20に向かって流れる電流より小さくなると、第1スイッチTr1に下向きの電流が流れる。
 なお、第1インダクタL1に流れる電流がゼロになると、第1スイッチTr1に下向きに流れる電流と、第1接続点P1からモータ20に向かって流れる電流とが一致する。
Fig. 26 is a diagram showing the state of each switch and the direction of current during a fifth period T35 in the PWM cycle TP shown in Fig. 21. As shown in Fig. 26, during the fifth period T35, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off. During the fifth period T35, as the current flowing through the first inductor L1 decreases, the upward current flowing through the first switch Tr1 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the first switch Tr1.
When the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 become equal.
 以上のように、制御部13は、PWM周期TP内において、第3スイッチTr3がオンであり、且つ第1スイッチTr1がオフである状態において、第1スイッチTr1をオンにする第2タイミングの前に、第5スイッチTr5を第1時間オンにする。これにより、第1スイッチTr1がオンになる前に、第1スイッチTr1の両端電圧がほぼゼロとなる。従って、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第3スイッチTr3のオン期間よりも短い場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1のソフトスイッチングが実現され、第1スイッチTr1のスイッチング損失を低減できる。 As described above, in a state in which the third switch Tr3 is on and the first switch Tr1 is off during a PWM period TP, the control unit 13 turns on the fifth switch Tr5 for the first time before the second timing for turning on the first switch Tr1. As a result, the voltage across the first switch Tr1 becomes almost zero before the first switch Tr1 is turned on. Therefore, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20 and the on period of the first switch Tr1 is shorter than the on period of the third switch Tr3 during a PWM period TP, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and reducing the switching loss of the first switch Tr1.
 図27は、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において、第1スイッチTr1のオン期間の長さと第3スイッチTr3のオン期間の長さとが異なり、第1スイッチTr1のオン期間のセンターと第3スイッチTr3のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。 FIG. 27 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and the length of the on period of the first switch Tr1 and the length of the on period of the third switch Tr3 are different within a PWM period TP, and the center of the on period of the first switch Tr1 and the center of the on period of the third switch Tr3 are shifted from each other by a half PWM period.
 図27に示す例では、制御部13は、PWM周期TP内の期間T41において、第3スイッチTr3がオンであり、且つ第1スイッチTr1がオフである状態において、第1スイッチTr1をオンにする前に、第5スイッチTr5を第1時間オンにする。また、図27に示す例では、制御部13は、PWM周期TP内の期間T42において、第1スイッチTr1がオンであり、且つ第3スイッチTr3がオフである状態において、第3スイッチTr3をオンにする前に、第5スイッチTr5を第1時間オンにする。 27, in a period T41 in the PWM cycle TP, when the third switch Tr3 is on and the first switch Tr1 is off, the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the first switch Tr1. Also, in the example shown in FIG. 27, in a period T42 in the PWM cycle TP, when the first switch Tr1 is on and the third switch Tr3 is off, the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the third switch Tr3.
 これにより、第1スイッチTr1がオンになる前に、第1スイッチTr1の両端電圧がほぼゼロとなるとともに、第3スイッチTr3がオンになる前に、第3スイッチTr3の両端電圧がほぼゼロとなる。従って、第1接続点P1と第2接続点P2とのそれぞれからモータ20に向かって電流が流れ、且つPWM周期TP内において、第1スイッチTr1のオン期間の長さと第3スイッチTr3のオン期間の長さとが異なり、第1スイッチTr1のオン期間のセンターと第3スイッチTr3のオン期間のセンターとが互いにPWM半周期ずれている場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1及び第3スイッチTr3のソフトスイッチングが実現され、第1スイッチTr1及び第3スイッチTr3のスイッチング損失を低減できる。 As a result, the voltage across the first switch Tr1 becomes almost zero before the first switch Tr1 is turned on, and the voltage across the third switch Tr3 becomes almost zero before the third switch Tr3 is turned on. Therefore, when a current flows from each of the first connection point P1 and the second connection point P2 toward the motor 20, and the length of the on-period of the first switch Tr1 and the length of the on-period of the third switch Tr3 are different within the PWM period TP, and the center of the on-period of the first switch Tr1 and the center of the on-period of the third switch Tr3 are shifted from each other by a half PWM period, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the third switch Tr3, and reducing the switching loss of the first switch Tr1 and the third switch Tr3.
〔実施例3〕
 図28は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。なお、図28は、第3インダクタL3及び第4インダクタL4の電流と、第2スイッチTr2及び第4スイッチTr4の電流と、第2スイッチTr2及び第4スイッチTr4の両端電圧との変化も示す。
Example 3
Fig. 28 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively. Fig. 28 also shows changes in the currents of the third inductor L3 and the fourth inductor L4, the currents of the second switch Tr2 and the fourth switch Tr4, and the voltages across the second switch Tr2 and the fourth switch Tr4.
 図28において、I_L3は、第3インダクタL3の電流を示し、I_L4は、第4インダクタL4の電流を示す。I_Tr2は、第2スイッチTr2の電流を示し、I_Tr4は、第4スイッチTr4の電流を示す。V_Tr2は、第2スイッチTr2の両端電圧を示し、V_Tr4は、第4スイッチTr4の両端電圧を示す。 In FIG. 28, I_L3 indicates the current of the third inductor L3, and I_L4 indicates the current of the fourth inductor L4. I_Tr2 indicates the current of the second switch Tr2, and I_Tr4 indicates the current of the fourth switch Tr4. V_Tr2 indicates the voltage across the second switch Tr2, and V_Tr4 indicates the voltage across the fourth switch Tr4.
 図28に示すように、制御部13は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合、第2スイッチTr1及び第4スイッチTr4の両方を第3タイミングでオンにし、PWM周期TP内において、第3タイミングの前に第2動作を行う。言い換えれば、制御部13は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合、PWM周期TP内において第2スイッチTr2及び第4スイッチTr4を同時にオンにする前に第6スイッチTr6を第2時間オンにする第2動作を行う。 28, when a current flows from the motor 20 toward each of the first connection point P1 and the second connection point P2, the control unit 13 turns on both the second switch Tr1 and the fourth switch Tr4 at a third timing, and performs a second operation before the third timing within the PWM period TP. In other words, when a current flows from the motor 20 toward each of the first connection point P1 and the second connection point P2, the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time within the PWM period TP before simultaneously turning on the second switch Tr2 and the fourth switch Tr4.
 図29は、図28に示されるPWM周期TP内の第1期間T51における各スイッチの状態及び電流の向きを示す図である。図29に示すように、第1期間T51において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第6スイッチTr6はオフである。第1期間T51において、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、第1スイッチTr1及び第3スイッチTr3に上向きの電流が流れる。第1期間T51において、第1接続点P1及び第2接続点P2の電位は、それぞれ、直流電源30の正電極電位とほぼ等しい。 FIG. 29 is a diagram showing the state of each switch and the direction of current during the first period T51 in the PWM cycle TP shown in FIG. 28. As shown in FIG. 29, during the first period T51, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the sixth switch Tr6 is off. During the first period T51, current flows from the motor 20 toward the first connection point P1 and the second connection point P2, respectively, and an upward current flows through the first switch Tr1 and the third switch Tr3. During the first period T51, the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the positive electrode potential of the DC power supply 30.
 図30は、図28に示されるPWM周期TP内の第2期間T52における各スイッチの状態及び電流の向きを示す図である。図30に示すように、第2期間T52において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第6スイッチTr6はオンである。第2期間T52において、第6スイッチTr6がオンになると、第4接続点P4の電位は、直流電源30の負電極電位とほぼ等しくなるため、第3インダクタL3及び第4インダクタL4に右向きの電流が流れる。第2期間T52において、第3インダクタL3に流れる右向きの電流が、モータ20から第1接続点P1に向かって流れる電流より大きくなると、第1スイッチTr1に下向きの電流が流れる。また、第2期間T52において、第4インダクタL4に流れる右向きの電流が、モータ20から第2接続点P2に向かって流れる電流より大きくなると、第3スイッチTr3に下向きの電流が流れる。第2期間T52は、第6スイッチTr6がオンにされる第2時間に相当する。 30 is a diagram showing the state of each switch and the direction of current during the second period T52 in the PWM cycle TP shown in FIG. 28. As shown in FIG. 30, during the second period T52, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the sixth switch Tr6 is on. During the second period T52, when the sixth switch Tr6 is turned on, the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3 and the fourth inductor L4. During the second period T52, when the rightward current flowing through the third inductor L3 becomes larger than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the first switch Tr1. In addition, in the second period T52, when the rightward current flowing through the fourth inductor L4 becomes larger than the current flowing from the motor 20 toward the second connection point P2, a downward current flows through the third switch Tr3. The second period T52 corresponds to the second time during which the sixth switch Tr6 is turned on.
 図31は、図28に示されるPWM周期TP内の第3期間T53における各スイッチの状態及び電流の向きを示す図である。図31に示すように、第3期間T53において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第6スイッチTr6はオフである。第3期間T53において、第6スイッチTr6がオフになると、第3インダクタL3及び第4インダクタL4に流れる右向きの電流が、第6スイッチTr6から第6整流素子D6に転流し、第6整流素子D6に上向きの電流が流れる。第3期間T53において、第4接続点P4の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 31 is a diagram showing the state of each switch and the direction of the current during the third period T53 in the PWM cycle TP shown in FIG. 28. As shown in FIG. 31, during the third period T53, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the sixth switch Tr6 is off. When the sixth switch Tr6 is turned off during the third period T53, the rightward current flowing through the third inductor L3 and the fourth inductor L4 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6. During the third period T53, the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
 図32は、図28に示されるPWM周期TP内の第4期間T54における各スイッチの状態及び電流の向きを示す図である。図32に示すように、第4期間T54において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオフ、第6スイッチTr6はオフである。第4期間T54において、第1スイッチTr1及び第3スイッチTr3がオフになると、第6整流素子D6に流れる電流が、第1スイッチTr1から第2スイッチTr2に転流するとともに、第3スイッチTr3から第4スイッチTr4に転流し、第2スイッチTr2及び第4スイッチTr4のボディダイオードに上向きの電流が流れる。第4期間T54において、第1接続点P1及び第2接続点P2の電位は、それぞれ、直流電源30の負電極電位とほぼ等しくなるため、第2スイッチTr2及び第4スイッチTr4の両端電圧は、ほぼゼロとなる。なお、第4期間T54において、第3インダクタL3及び第4インダクタL4には逆向きの電圧が印加されるため、第3インダクタL3及び第4インダクタL4に流れる右向きの電流は徐々に減少する。 32 is a diagram showing the state of each switch and the direction of the current during the fourth period T54 in the PWM cycle TP shown in FIG. 28. As shown in FIG. 32, during the fourth period T54, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are off, and the sixth switch Tr6 is off. During the fourth period T54, when the first switch Tr1 and the third switch Tr3 are off, the current flowing through the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2 and from the third switch Tr3 to the fourth switch Tr4, and an upward current flows through the body diodes of the second switch Tr2 and the fourth switch Tr4. During the fourth period T54, the potentials of the first connection point P1 and the second connection point P2 are approximately equal to the negative electrode potential of the DC power supply 30, and therefore the voltages across the second switch Tr2 and the fourth switch Tr4 are approximately zero. In addition, in the fourth period T54, a voltage in the opposite direction is applied to the third inductor L3 and the fourth inductor L4, so the rightward current flowing through the third inductor L3 and the fourth inductor L4 gradually decreases.
 図33は、図28に示されるPWM周期TP内の第5期間T55における各スイッチの状態及び電流の向きを示す図である。図33に示すように、第5期間T55において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオン、第6スイッチTr6はオフである。第5期間T55において、第3インダクタL3及び第4インダクタL4に流れる電流の減少に伴い、第2スイッチTr2及び第4スイッチTr4に流れる上向きの電流も減少する。そして、第3インダクタL3に流れる電流が、モータ20から第1接続点P1に向かって流れる電流よりも小さくなると、第2スイッチTr2に下向きの電流が流れる。また、第4インダクタL4に流れる電流が、モータ20から第2接続点P2に向かって流れる電流よりも小さくなると、第4スイッチTr4に下向きの電流が流れる。
 なお、第3インダクタL3に流れる電流がゼロになると、第2スイッチTr2に下向きに流れる電流と、モータ20から第1接続点P1に向かって流れる電流とが一致する。また、第4インダクタL4に流れる電流がゼロになると、第4スイッチTr4に下向きに流れる電流と、モータ20から第2接続点P2に向かって流れる電流とが一致する。
33 is a diagram showing the state of each switch and the direction of current in the fifth period T55 in the PWM cycle TP shown in FIG. 28. As shown in FIG. 33, in the fifth period T55, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are on, and the sixth switch Tr6 is off. In the fifth period T55, as the current flowing through the third inductor L3 and the fourth inductor L4 decreases, the upward current flowing through the second switch Tr2 and the fourth switch Tr4 also decreases. Then, when the current flowing through the third inductor L3 becomes smaller than the current flowing from the motor 20 to the first connection point P1, a downward current flows through the second switch Tr2. Also, when the current flowing through the fourth inductor L4 becomes smaller than the current flowing from the motor 20 to the second connection point P2, a downward current flows through the fourth switch Tr4.
When the current flowing through the third inductor L3 becomes zero, the current flowing downward through the second switch Tr2 and the current flowing from the motor 20 to the first connection point P1 become equal. When the current flowing through the fourth inductor L4 becomes zero, the current flowing downward through the fourth switch Tr4 and the current flowing from the motor 20 to the second connection point P2 become equal.
 上記のように、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合の第2動作として、制御部13は、第1スイッチTr1及び第3スイッチTr3のオンタイミングから第6スイッチTr6のオンタイミングまでの第5期間において、第1スイッチTr1及び第3スイッチTr3をオンにし、第2スイッチTr2及び第4スイッチTr4をオフにし、第6スイッチTr6をオフにする。第1期間T51が、第5期間に対応する。
 そして、制御部13は、第5期間の後の期間であって且つ第2時間に対応する第6期間において、第1スイッチTr1及び第3スイッチTr3をオンにし、第2スイッチTr2及び第4スイッチTr4をオフにし、第6スイッチTr6をオンにする。第2期間T52が、第6期間に対応する。
 そして、制御部13は、第6期間の後の第7期間において、第1スイッチTr1及び第3スイッチTr3をオンにし、第2スイッチTr2及び第4スイッチTr4をオフにし、第6スイッチTr6をオフにする。第3期間T53が、第7期間に対応する。
 さらに、制御部13は、第7期間の終了タイミングから第2スイッチTr2及び第4スイッチTr4のオンタイミングまでの第8期間に、第1スイッチTr1及び第3スイッチTr3をオフにし、第2スイッチTr2及び第4スイッチTr4をオフにし、第6スイッチTr6をオフにする。第4期間T54が、第8期間に対応する。
As described above, as a second operation in the case where a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6 during a fifth period from the on timing of the first switch Tr1 and the third switch Tr3 to the on timing of the sixth switch Tr6. The first period T51 corresponds to the fifth period.
Then, in a sixth period which is a period after the fifth period and corresponds to the second time, the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns on the sixth switch Tr6. The second period T52 corresponds to the sixth period.
Then, in a seventh period following the sixth period, the control unit 13 turns on the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6. The third period T53 corresponds to the seventh period.
Furthermore, during an eighth period from the end timing of the seventh period to the ON timing of the second switch Tr2 and the fourth switch Tr4, the control unit 13 turns off the first switch Tr1 and the third switch Tr3, turns off the second switch Tr2 and the fourth switch Tr4, and turns off the sixth switch Tr6. The fourth period T54 corresponds to the eighth period.
 以上のように、制御部13は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合、PWM周期TP内において第2スイッチTr2及び第4スイッチTr4を同時にオンにする前に第6スイッチTr6を第2時間オンにする第2動作を行う。これにより、第2スイッチTr2及び第4スイッチTr4が同時にオンになる前に、第2スイッチTr2及び第4スイッチTr4の両端電圧がほぼゼロとなる。従って、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第2スイッチTr2及び第4スイッチTr4のソフトスイッチングが実現され、第2スイッチTr2及び第4スイッチTr4のスイッチング損失を低減できる。
 このように、第2スイッチTr2及び第4スイッチTr4のターンオンタイミングを同期させると、第1レグU1と第2レグU2との両方でソフトスイッチングを実現できる。
 補助回路SCに含まれるスイッチ素子は、第5スイッチTr5と第6スイッチTr6との2つだけであり、この補助回路SCによって第1レグU1と第2レグU2との両方でソフトスイッチングを実行できることから、補助回路SC、補助回路SCの駆動回路、及び補助回路SCの制御信号を簡略化でき、回路のコストダウン及び回路面積の削減を実現することができる。
As described above, when a current flows from the motor 20 toward each of the first connection point P1 and the second connection point P2, the control unit 13 performs the second operation of turning on the sixth switch Tr6 for the second time before simultaneously turning on the second switch Tr2 and the fourth switch Tr4 within the PWM period TP. As a result, the voltages across the second switch Tr2 and the fourth switch Tr4 become almost zero before the second switch Tr2 and the fourth switch Tr4 are simultaneously turned on. Therefore, when a current flows from the motor 20 toward each of the first connection point P1 and the second connection point P2, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and the fourth switch Tr4 and reducing the switching loss of the second switch Tr2 and the fourth switch Tr4.
In this manner, by synchronizing the turn-on timing of the second switch Tr2 and the fourth switch Tr4, soft switching can be achieved in both the first leg U1 and the second leg U2.
The auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
 上記の実施例3は、第1レグU1及び第2レグU2が同位相の電圧を出力し、且つモータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れる場合におけるソフトスイッチング動作の一例である。しかしながら、既に述べたように、モータ20の回転中に極数の切り換え制御を行う場合、第1レグU1の出力電圧と、第2レグU2の出力電圧とが、単純に同位相或いは逆位相の関係にあるだけでなく、第1レグU1と第2レグU2とでデューティが異なる状態が発生する。以下の実施例4で説明するように、上記の場合でも、第1レグU1と第2レグU2との一方に同期して補助回路SCを動作させることにより、スイッチング損失を極力抑えることができる。 The above-mentioned Example 3 is an example of soft switching operation in the case where the first leg U1 and the second leg U2 output voltages of the same phase, and current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively. However, as already mentioned, when controlling the switching of the number of poles while the motor 20 is rotating, the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or in opposite phase, but the first leg U1 and the second leg U2 have different duties. As will be explained in the following Example 4, even in the above case, the switching loss can be minimized by operating the auxiliary circuit SC in synchronization with one of the first leg U1 and the second leg U2.
〔実施例4〕
 図34は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において第2スイッチTr2のオン期間が第4スイッチTr4のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。
Example 4
FIG. 34 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
 このように、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において第2スイッチTr2のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なる場合、制御部13は、第2スイッチTr2と第4スイッチTr4との一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、他方のスイッチを第4タイミングでオンにし、PWM周期TP内において、第4タイミングの前に第2動作を行う。 In this way, when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and the length of the on-period of the second switch Tr2 and the length of the on-period of the fourth switch Tr4 are different within the PWM period TP, the control unit 13 turns on the other switch at the fourth timing when one of the second switch Tr2 and the fourth switch Tr4 is on and the other is off, and performs the second operation before the fourth timing within the PWM period TP.
 図34に示す例では、制御部13は、第4スイッチTr4がオンであり、且つ第2スイッチTr2がオフである状態において、第2スイッチTr2をオンにする第4タイミングの前に、第6スイッチTr6を第2時間オンにする。 In the example shown in FIG. 34, when the fourth switch Tr4 is on and the second switch Tr2 is off, the control unit 13 turns on the sixth switch Tr6 for a second time before the fourth timing at which the second switch Tr2 is turned on.
 図35は、図34に示されるPWM周期TP内の第1期間T61における各スイッチの状態及び電流の向きを示す図である。図35に示すように、第1期間T61において、第1スイッチTr1及び第4スイッチTr4はオン、第2スイッチTr2及び第3スイッチTr3はオフ、第6スイッチTr6はオフである。第1期間T61において、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、第1スイッチTr1に上向きの電流が流れ、第4スイッチTr4に下向きの電流が流れる。第1期間T61において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しく、第2接続点P2の電位は、直流電源30の負電極電位とほぼ等しい。 35 is a diagram showing the state of each switch and the direction of current during the first period T61 in the PWM cycle TP shown in FIG. 34. As shown in FIG. 35, during the first period T61, the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the sixth switch Tr6 is off. During the first period T61, current flows from the motor 20 to the first connection point P1 and the second connection point P2, respectively, and an upward current flows through the first switch Tr1 and a downward current flows through the fourth switch Tr4. During the first period T61, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the negative electrode potential of the DC power supply 30.
 図36は、図34に示されるPWM周期TP内の第2期間T62における各スイッチの状態及び電流の向きを示す図である。図36に示すように、第2期間T62において、第1スイッチTr1及び第4スイッチTr4はオン、第2スイッチTr2及び第3スイッチTr3はオフ、第6スイッチTr6はオンである。第2期間T62において、第6スイッチTr6がオンになると、第4接続点P4の電位は、直流電源30の負電極電位とほぼ等しくなるため、第3インダクタL3に右向きの電流が流れる。第2期間T62において、第3インダクタL3に流れる右向きの電流が、モータ20から第1接続点P1に向かって流れる電流より大きくなると、第1スイッチTr1に下向きの電流が流れる。第2期間T62は、第6スイッチTr6がオンにされる第2時間に相当する。 FIG. 36 is a diagram showing the state of each switch and the direction of the current during the second period T62 in the PWM cycle TP shown in FIG. 34. As shown in FIG. 36, during the second period T62, the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the sixth switch Tr6 is on. During the second period T62, when the sixth switch Tr6 is turned on, the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, and a rightward current flows through the third inductor L3. During the second period T62, when the rightward current flowing through the third inductor L3 becomes larger than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the first switch Tr1. The second period T62 corresponds to the second time during which the sixth switch Tr6 is turned on.
 図37は、図34に示されるPWM周期TP内の第3期間T63における各スイッチの状態及び電流の向きを示す図である。図37に示すように、第3期間T63において、第1スイッチTr1及び第4スイッチTr4はオン、第2スイッチTr2及び第3スイッチTr3はオフ、第6スイッチTr6はオフである。第3期間T63において、第6スイッチTr6がオフになると、第3インダクタL3に流れる右向きの電流が、第6スイッチTr6から第6整流素子D6に転流し、第6整流素子D6に上向きの電流が流れる。第3期間T63において、第4接続点P4の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 37 is a diagram showing the state of each switch and the direction of the current during the third period T63 in the PWM cycle TP shown in FIG. 34. As shown in FIG. 37, during the third period T63, the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the sixth switch Tr6 is off. When the sixth switch Tr6 is turned off during the third period T63, the rightward current flowing through the third inductor L3 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6. During the third period T63, the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
 図38は、図34に示されるPWM周期TP内の第4期間T64における各スイッチの状態及び電流の向きを示す図である。図38に示すように、第4期間T64において、第4スイッチTr4はオン、第1スイッチTr1、第2スイッチTr2及び第3スイッチTr3はオフ、第6スイッチTr6はオフである。第4期間T64において、第1スイッチTr1がオフになると、第6整流素子D6に流れる電流が、第1スイッチTr1から第2スイッチTr2に転流し、第2スイッチTr2のボディダイオードに上向きの電流が流れる。第4期間T64において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しくなるため、第2スイッチTr2の両端電圧は、ほぼゼロとなる。なお、第4期間T64において、第3インダクタL3には逆向きの電圧が印加されるため、第3インダクタL3に流れる右向きの電流は徐々に減少する。 FIG. 38 is a diagram showing the state of each switch and the direction of the current during the fourth period T64 in the PWM cycle TP shown in FIG. 34. As shown in FIG. 38, during the fourth period T64, the fourth switch Tr4 is on, the first switch Tr1, the second switch Tr2, and the third switch Tr3 are off, and the sixth switch Tr6 is off. When the first switch Tr1 is turned off during the fourth period T64, the current flowing through the sixth rectifier element D6 is commutated from the first switch Tr1 to the second switch Tr2, and an upward current flows through the body diode of the second switch Tr2. During the fourth period T64, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltage across the second switch Tr2 is approximately zero. Note that during the fourth period T64, a reverse voltage is applied to the third inductor L3, so the rightward current flowing through the third inductor L3 gradually decreases.
 図39は、図34に示されるPWM周期TP内の第5期間T65における各スイッチの状態及び電流の向きを示す図である。図39に示すように、第5期間T65において、第1スイッチTr1及び第3スイッチTr3はオフ、第2スイッチTr2及び第4スイッチTr4はオン、第6スイッチTr6はオフである。第5期間T65において、第3インダクタL3に流れる電流の減少に伴い、第2スイッチTr2に流れる上向きの電流も減少する。そして、第3インダクタL3に流れる電流が、モータ20から第1接続点P1に向かって流れる電流より小さくなると、第2スイッチTr2に下向きの電流が流れる。
 なお、第3インダクタL3に流れる電流がゼロになると、第2スイッチTr2に下向きに流れる電流と、モータ20から第1接続点P1に向かって流れる電流とが一致する。
Fig. 39 is a diagram showing the state of each switch and the direction of current during a fifth period T65 in the PWM cycle TP shown in Fig. 34. As shown in Fig. 39, during the fifth period T65, the first switch Tr1 and the third switch Tr3 are off, the second switch Tr2 and the fourth switch Tr4 are on, and the sixth switch Tr6 is off. During the fifth period T65, as the current flowing through the third inductor L3 decreases, the upward current flowing through the second switch Tr2 also decreases. Then, when the current flowing through the third inductor L3 becomes smaller than the current flowing from the motor 20 toward the first connection point P1, a downward current flows through the second switch Tr2.
When the current flowing through the third inductor L3 becomes zero, the current flowing downward through the second switch Tr2 and the current flowing from the motor 20 toward the first connection point P1 become equal.
 以上のように、制御部13は、PWM周期TP内において、第4スイッチTr4がオンであり、且つ第2スイッチTr2がオフである状態において、第2スイッチTr2をオンにする第4タイミングの前に、第6スイッチTr6を第2時間オンにする。これにより、第2スイッチTr2がオンになる前に、第2スイッチTr2の両端電圧がほぼゼロとなる。従って、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において第2スイッチTr2のオン期間が第4スイッチTr4のオン期間よりも短い場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第2スイッチTr2のソフトスイッチングが実現され、第2スイッチTr2のスイッチング損失を低減できる。 As described above, in a PWM period TP, when the fourth switch Tr4 is on and the second switch Tr2 is off, the control unit 13 turns on the sixth switch Tr6 for the second time before the fourth timing at which the second switch Tr2 is turned on. This causes the voltage across the second switch Tr2 to be nearly zero before the second switch Tr2 is turned on. Therefore, when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and the on period of the second switch Tr2 is shorter than the on period of the fourth switch Tr4 within the PWM period TP, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and reducing the switching loss of the second switch Tr2.
 図40は、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において、第2スイッチTr2のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なり、第2スイッチTr2のオン期間のセンターと第4スイッチTr4のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。 FIG. 40 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when current flows from the motor 20 to the first connection point P1 and the second connection point P2, and the length of the on period of the second switch Tr2 and the length of the on period of the fourth switch Tr4 are different within a PWM period TP, and the center of the on period of the second switch Tr2 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
 図40に示す例では、制御部13は、PWM周期TP内の期間T71において、第4スイッチTr4がオンであり、且つ第2スイッチTr2がオフである状態において、第2スイッチTr2をオンにする前に、第6スイッチTr6を第2時間オンにする。また、図40に示す例では、制御部13は、PWM周期TP内の期間T72において、第2スイッチTr2がオンであり、且つ第4スイッチTr4がオフである状態において、第4スイッチTr4をオンにする前に、第4スイッチTr4を第2時間オンにする。 In the example shown in FIG. 40, in a period T71 within the PWM cycle TP, when the fourth switch Tr4 is on and the second switch Tr2 is off, the control unit 13 turns on the sixth switch Tr6 for a second time before turning on the second switch Tr2. Also, in the example shown in FIG. 40, in a period T72 within the PWM cycle TP, when the second switch Tr2 is on and the fourth switch Tr4 is off, the control unit 13 turns on the fourth switch Tr4 for a second time before turning on the fourth switch Tr4.
 これにより、第2スイッチTr2がオンになる前に、第2スイッチTr2の両端電圧がほぼゼロとなるとともに、第4スイッチTr4がオンになる前に、第4スイッチTr4の両端電圧がほぼゼロとなる。従って、モータ20から第1接続点P1と第2接続点P2とのそれぞれに向かって電流が流れ、且つPWM周期TP内において、第2スイッチTr2のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なり、第2スイッチTr2のオン期間のセンターと第4スイッチTr4のオン期間のセンターとが互いにPWM半周期ずれている場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第2スイッチTr2及び第4スイッチTr4のソフトスイッチングが実現され、第2スイッチTr2及び第4スイッチTr4のスイッチング損失を低減できる。 As a result, the voltage across the second switch Tr2 becomes almost zero before the second switch Tr2 is turned on, and the voltage across the fourth switch Tr4 becomes almost zero before the fourth switch Tr4 is turned on. Therefore, when a current flows from the motor 20 to each of the first connection point P1 and the second connection point P2, and the length of the on-period of the second switch Tr2 and the length of the on-period of the fourth switch Tr4 are different within the PWM period TP, and the center of the on-period of the second switch Tr2 and the center of the on-period of the fourth switch Tr4 are shifted from each other by a half PWM period, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the second switch Tr2 and the fourth switch Tr4, and reducing the switching loss of the second switch Tr2 and the fourth switch Tr4.
〔実施例5〕
 図41は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合の、第1スイッチTr1から第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。実施例5は、第1レグU1及び第2レグU2が逆位相の電圧を出力し、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合におけるソフトスイッチング動作の一例である。なお、図41は、第1インダクタL1及び第4インダクタL4の電流と、第1スイッチTr1及び第4スイッチTr4の電流と、第1スイッチTr1及び第4スイッチTr4の両端電圧との変化も示す。
Example 5
Fig. 41 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2. Example 5 is an example of a soft switching operation when the first leg U1 and the second leg U2 output voltages of opposite phases, a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2. Fig. 41 also shows changes in the currents of the first inductor L1 and the fourth inductor L4, the currents of the first switch Tr1 and the fourth switch Tr4, and the voltages across the first switch Tr1 and the fourth switch Tr4.
 図41において、I_L1は、第1インダクタL1の電流を示し、I_L4は、第4インダクタL4の電流を示す。I_Tr1は、第1スイッチTr1の電流を示し、I_Tr4は、第4スイッチTr4の電流を示す。V_Tr1は、第1スイッチTr1の両端電圧を示し、V_Tr4は、第4スイッチTr4の両端電圧を示す。 In FIG. 41, I_L1 indicates the current in the first inductor L1, and I_L4 indicates the current in the fourth inductor L4. I_Tr1 indicates the current in the first switch Tr1, and I_Tr4 indicates the current in the fourth switch Tr4. V_Tr1 indicates the voltage across the first switch Tr1, and V_Tr4 indicates the voltage across the fourth switch Tr4.
 図41に示すように、制御部13は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合、第1スイッチTr1と第4スイッチTr4との両方を第5タイミングでオンにし、PWM周期TP内において、第5タイミングの前に第1動作及び第2動作を同時に行う。 As shown in FIG. 41, when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, the control unit 13 turns on both the first switch Tr1 and the fourth switch Tr4 at the fifth timing, and simultaneously performs the first operation and the second operation before the fifth timing within the PWM period TP.
 言い換えれば、制御部13は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合、PWM周期TP内において第1スイッチTr1及び第4スイッチTr4を同時にオンにする前に、第5スイッチTr5を第1時間オンにする第1動作と、第6スイッチTr6を第2時間オンにする第2動作とを同時に行う。この場合、第1時間は、第2時間と等しい。 In other words, when a current flows from the first connection point P1 toward the motor 20 and from the motor 20 toward the second connection point P2, the control unit 13 simultaneously performs a first operation of turning on the fifth switch Tr5 for a first time and a second operation of turning on the sixth switch Tr6 for a second time before simultaneously turning on the first switch Tr1 and the fourth switch Tr4 within the PWM period TP. In this case, the first time is equal to the second time.
 図42は、図41に示されるPWM周期TP内の第1期間T81における各スイッチの状態及び電流の向きを示す図である。図42に示すように、第1期間T81において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5及び第6スイッチTr6はオフである。第1期間T81において、第2スイッチTr2に上向きの電流が流れ、第1接続点P1からモータ20に向かって電流が流れる。また、第1期間T81において、モータ20から第2接続点P2に向かって電流が流れ、第3スイッチTr3に上向きの電流が流れる。第1期間T81において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しく、第2接続点P2の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 42 is a diagram showing the state of each switch and the direction of the current during the first period T81 in the PWM cycle TP shown in FIG. 41. As shown in FIG. 42, during the first period T81, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 and the sixth switch Tr6 are off. During the first period T81, an upward current flows through the second switch Tr2, and a current flows from the first connection point P1 toward the motor 20. Also, during the first period T81, a current flows from the motor 20 toward the second connection point P2, and an upward current flows through the third switch Tr3. During the first period T81, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
 図43は、図41に示されるPWM周期TP内の第2期間T82における各スイッチの状態及び電流の向きを示す図である。図43に示すように、第2期間T82において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5及び第6スイッチTr6はオンである。第2期間T82において、第5スイッチTr5及び第6スイッチTr6がオンになると、第3接続点P3の電位は、直流電源30の正電極電位とほぼ等しくなり、第4接続点P4の電位は、直流電源30の負電極電位とほぼ等しくなるため、第1インダクタL1及び第4インダクタL4に右向きの電流が流れる。第2期間T82において、第1インダクタL1に流れる右向きの電流が、第1接続点P1からモータ20に向かって流れる電流より大きくなると、第2スイッチTr2に下向きの電流が流れる。また、第2期間T82において、第4インダクタL4に流れる右向きの電流が、モータ20から第2接続点P2に向かって流れる電流より大きくなると、第3スイッチTr3に下向きの電流が流れる。第2期間T82は、第5スイッチTr5がオンにされる第1時間に相当し、且つ第6スイッチTr6がオンにされる第2時間に相当する。 FIG. 43 is a diagram showing the state of each switch and the direction of the current during the second period T82 in the PWM cycle TP shown in FIG. 41. As shown in FIG. 43, during the second period T82, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 and the sixth switch Tr6 are on. During the second period T82, when the fifth switch Tr5 and the sixth switch Tr6 are on, the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and the potential of the fourth connection point P4 becomes approximately equal to the negative electrode potential of the DC power supply 30, so that a rightward current flows through the first inductor L1 and the fourth inductor L4. During the second period T82, when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2. In addition, in the second period T82, when the rightward current flowing through the fourth inductor L4 becomes larger than the current flowing from the motor 20 toward the second connection point P2, a downward current flows through the third switch Tr3. The second period T82 corresponds to the first time during which the fifth switch Tr5 is turned on, and corresponds to the second time during which the sixth switch Tr6 is turned on.
 図44は、図41に示されるPWM周期TP内の第3期間T83における各スイッチの状態及び電流の向きを示す図である。図44に示すように、第3期間T83において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5及び第6スイッチTr6はオフである。第3期間T83において、第5スイッチTr5がオフになると、第1インダクタL1に流れる右向きの電流が、第5スイッチTr5から第5整流素子D5に転流し、第5整流素子D5に上向きの電流が流れる。また、第3期間T83において、第6スイッチTr6がオフになると、第4インダクタL4に流れる右向きの電流が、第6スイッチTr6から第6整流素子D6に転流し、第6整流素子D6に上向きの電流が流れる。第3期間T83において、第3接続点P3の電位は、直流電源30の負電極電位とほぼ等しく、第4接続点P4の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 44 is a diagram showing the state of each switch and the direction of the current during the third period T83 in the PWM cycle TP shown in FIG. 41. As shown in FIG. 44, during the third period T83, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 and the sixth switch Tr6 are off. During the third period T83, when the fifth switch Tr5 is turned off, the rightward current flowing through the first inductor L1 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5. Also, during the third period T83, when the sixth switch Tr6 is turned off, the rightward current flowing through the fourth inductor L4 is commutated from the sixth switch Tr6 to the sixth rectifier element D6, and an upward current flows through the sixth rectifier element D6. In the third period T83, the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30, and the potential of the fourth connection point P4 is approximately equal to the positive electrode potential of the DC power supply 30.
 図45は、図41に示されるPWM周期TP内の第4期間T84における各スイッチの状態及び電流の向きを示す図である。図45に示すように、第4期間T84において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオフ、第5スイッチTr5及び第6スイッチTr6はオフである。第4期間T84において、第2スイッチTr2がオフになると、第1インダクタL1に流れる電流が、第2スイッチTr2から第1スイッチTr1に転流し、第1スイッチTr1のボディダイオードに上向きの電流が流れる。また、第4期間T84において、第3スイッチTr3がオフになると、第4インダクタL4に流れる電流が、第3スイッチTr3から第4スイッチTr4に転流し、第4スイッチTr4のボディダイオードに上向きの電流が流れる。第4期間T84において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しくなり、第2接続点P2の電位は、直流電源30の負電極電位とほぼ等しくなるため、第1スイッチTr1及び第4スイッチTr4の両端電圧は、ほぼゼロとなる。なお、第4期間T84において、第1インダクタL1及び第4インダクタL4には逆向きの電圧が印加されるため、第1インダクタL1及び第4インダクタL4に流れる右向きの電流は徐々に減少する。 FIG. 45 is a diagram showing the state of each switch and the direction of current during the fourth period T84 in the PWM cycle TP shown in FIG. 41. As shown in FIG. 45, during the fourth period T84, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are off, and the fifth switch Tr5 and the sixth switch Tr6 are off. When the second switch Tr2 is turned off during the fourth period T84, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1. Also, during the fourth period T84, when the third switch Tr3 is turned off, the current flowing through the fourth inductor L4 is commutated from the third switch Tr3 to the fourth switch Tr4, and an upward current flows through the body diode of the fourth switch Tr4. In the fourth period T84, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the negative electrode potential of the DC power supply 30, so that the voltages across the first switch Tr1 and the fourth switch Tr4 are approximately zero. Note that in the fourth period T84, a reverse voltage is applied to the first inductor L1 and the fourth inductor L4, so the rightward current flowing through the first inductor L1 and the fourth inductor L4 gradually decreases.
 図46は、図41に示されるPWM周期TP内の第5期間T85における各スイッチの状態及び電流の向きを示す図である。図46に示すように、第5期間T85において、第1スイッチTr1及び第4スイッチTr4はオン、第2スイッチTr2及び第3スイッチTr3はオフ、第5スイッチTr5及び第6スイッチTr6はオフである。第5期間T85において、第1インダクタL1及び第4インダクタL4に流れる電流の減少に伴い、第1スイッチTr1及び第4スイッチTr4に流れる上向きの電流も減少する。そして、第1インダクタL1に流れる電流が、第1接続点P1からモータ20に向かって流れる電流より小さくなると、第1スイッチTr1に下向きの電流が流れる。また、第4インダクタL4に流れる電流が、モータ20から第2接続点P2に向かって流れる電流より小さくなると、第4スイッチTr4に下向きの電流が流れる。
 なお、第1インダクタL1に流れる電流がゼロになると、第1スイッチTr1に下向きに流れる電流と、第1接続点P1からモータ20に向かって流れる電流とが一致する。また、第4インダクタL4に流れる電流がゼロになると、第4スイッチTr4に下向きに流れる電流と、モータ20から第2接続点P2に向かって流れる電流とが一致する。
46 is a diagram showing the state of each switch and the direction of current in the fifth period T85 in the PWM cycle TP shown in FIG. 41. As shown in FIG. 46, in the fifth period T85, the first switch Tr1 and the fourth switch Tr4 are on, the second switch Tr2 and the third switch Tr3 are off, and the fifth switch Tr5 and the sixth switch Tr6 are off. In the fifth period T85, as the current flowing through the first inductor L1 and the fourth inductor L4 decreases, the upward current flowing through the first switch Tr1 and the fourth switch Tr4 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 to the motor 20, a downward current flows through the first switch Tr1. Also, when the current flowing through the fourth inductor L4 becomes smaller than the current flowing from the motor 20 to the second connection point P2, a downward current flows through the fourth switch Tr4.
When the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 matches the current flowing from the first connection point P1 toward the motor 20. When the current flowing through the fourth inductor L4 becomes zero, the current flowing downward through the fourth switch Tr4 matches the current flowing from the motor 20 toward the second connection point P2.
 上記のように、制御部13は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合、第1動作及び第2動作を同時に行う。
 すなわち、制御部13は、第2スイッチTr2及び第3スイッチTr3のオンタイミングから第5スイッチTr5及び第6スイッチTr6のオンタイミングまでの第9期間において、第1スイッチTr1及び第4スイッチTr4をオフにし、第2スイッチTr2及び第3スイッチTr3をオンにし、第5スイッチTr5及び第6スイッチTr6をオフにする。第1期間T81が、第9期間に相当する。
 そして、制御部13は、第9期間の後の期間であって且つ第1時間に対応する第10期間において、第1スイッチTr1及び第4スイッチTr4をオフにし、第2スイッチTr2及び第3スイッチTr3をオンにし、第5スイッチTr5及び第6スイッチTr6をオンにする。第2期間T82が、第10期間に相当する。
 そして、制御部13は、第10期間の後の第11期間において、第1スイッチTr1及び第4スイッチTr4をオフにし、第2スイッチTr2及び第3スイッチTr3をオンにし、第5スイッチTr5及び第6スイッチTr6をオフにする。第3期間T83が、第11期間に相当する。
 さらに、制御部13は、第11期間の終了タイミングから第1スイッチTr1及び第4スイッチTr4のオンタイミングまでの第12期間に、第1スイッチTr1及び第4スイッチTr4をオフにし、第2スイッチTr2及び第3スイッチTr3をオフにし、第5スイッチTr5及び第6スイッチTr6をオフにする。第4期間T84が、第12期間に相当する。
As described above, when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, the control unit 13 simultaneously performs the first operation and the second operation.
That is, during a ninth period from the ON timing of the second switch Tr2 and the third switch Tr3 to the ON timing of the fifth switch Tr5 and the sixth switch Tr6, the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6. The first period T81 corresponds to the ninth period.
Then, in a tenth period which is a period following the ninth period and corresponds to the first time, the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns on the fifth switch Tr5 and the sixth switch Tr6. The second period T82 corresponds to the tenth period.
Then, in an eleventh period after the tenth period, the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns on the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6. The third period T83 corresponds to the eleventh period.
Furthermore, during a twelfth period from the end timing of the eleventh period to the on timing of the first switch Tr1 and the fourth switch Tr4, the control unit 13 turns off the first switch Tr1 and the fourth switch Tr4, turns off the second switch Tr2 and the third switch Tr3, and turns off the fifth switch Tr5 and the sixth switch Tr6. The fourth period T84 corresponds to the twelfth period.
 以上のように、制御部13は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合、PWM周期TP内において第1スイッチTr1及び第4スイッチTr4を同時にオンにする前に、第5スイッチTr5を第1時間オンにする第1動作と、第6スイッチTr6を第2時間オンにする第2動作とを同時に行う。これにより、第1スイッチTr1及び第4スイッチTr4が同時にオンになる前に、第1スイッチTr1及び第4スイッチTr4の両端電圧がほぼゼロとなる。従って、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1及び第4スイッチTr4のソフトスイッチングが実現され、第1スイッチTr1及び第4スイッチTr4のスイッチング損失を低減できる。
 このように、第1スイッチTr1及び第4スイッチTr4のターンオンタイミングを同期させると、第1レグU1と第2レグU2との両方でソフトスイッチングを実現できる。
 補助回路SCに含まれるスイッチ素子は、第5スイッチTr5と第6スイッチTr6との2つだけであり、この補助回路SCによって第1レグU1と第2レグU2との両方でソフトスイッチングを実行できることから、補助回路SC、補助回路SCの駆動回路、及び補助回路SCの制御信号を簡略化でき、回路のコストダウン及び回路面積の削減を実現することができる。
As described above, when a current flows from the first connection point P1 to the motor 20 and from the motor 20 to the second connection point P2, the control unit 13 simultaneously performs a first operation of turning on the fifth switch Tr5 for a first time and a second operation of turning on the sixth switch Tr6 for a second time before simultaneously turning on the first switch Tr1 and the fourth switch Tr4 within the PWM period TP. As a result, the voltages across the first switch Tr1 and the fourth switch Tr4 become almost zero before the first switch Tr1 and the fourth switch Tr4 are simultaneously turned on. Therefore, when a current flows from the first connection point P1 to the motor 20 and from the motor 20 to the second connection point P2, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the fourth switch Tr4 and reducing the switching loss of the first switch Tr1 and the fourth switch Tr4.
In this manner, by synchronizing the turn-on timing of the first switch Tr1 and the fourth switch Tr4, soft switching can be achieved in both the first leg U1 and the second leg U2.
The auxiliary circuit SC includes only two switch elements, a fifth switch Tr5 and a sixth switch Tr6. This auxiliary circuit SC can perform soft switching in both the first leg U1 and the second leg U2. This allows the auxiliary circuit SC, the drive circuit for the auxiliary circuit SC, and the control signal for the auxiliary circuit SC to be simplified, thereby achieving reduced circuit costs and area.
 なお、第2接続点P2からモータ20に向かって電流が流れ、且つモータ20から第1接続点P1に向かって電流が流れる場合には、実施例5の説明において、第1レグU1、第1接続点P1及び第3接続点P3を、第2レグU2、第2接続点P2及び第4接続点P4にそれぞれ読み替え、第1スイッチTr1及び第4スイッチTr4を、第2スイッチTr2及び第3スイッチTr3にそれぞれ読み替え、第1インダクタL1及び第4インダクタL4を、第2インダクタL2及び第3インダクタL3にそれぞれ読み替えればよい。 In addition, when a current flows from the second connection point P2 to the motor 20 and from the motor 20 to the first connection point P1, in the explanation of the fifth embodiment, the first leg U1, the first connection point P1, and the third connection point P3 should be read as the second leg U2, the second connection point P2, and the fourth connection point P4, respectively, the first switch Tr1 and the fourth switch Tr4 should be read as the second switch Tr2 and the third switch Tr3, respectively, and the first inductor L1 and the fourth inductor L4 should be read as the second inductor L2 and the third inductor L3, respectively.
 実施例5は、第1レグU1及び第2レグU2が逆位相の電圧を出力し、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れる場合におけるソフトスイッチング動作の一例である。既に述べたように、モータ20の回転中に極数の切り換え制御を行う場合、第1レグU1の出力電圧と、第2レグU2の出力電圧とが、単純に同位相或いは逆位相の関係にあるだけでなく、第1レグU1と第2レグU2とでデューティが異なる状態が発生する。しかしながら、以下の実施例6で説明するように、この場合にも、第1レグU1と第2レグU2との一方に同期して補助回路SCを動作させることにより、スイッチング損失を極力抑えることができる。 Example 5 is an example of soft switching operation in which the first leg U1 and the second leg U2 output voltages of opposite phases, a current flows from the first connection point P1 toward the motor 20, and a current flows from the motor 20 toward the second connection point P2. As already mentioned, when controlling the number of poles to be switched while the motor 20 is rotating, the output voltage of the first leg U1 and the output voltage of the second leg U2 are not simply in phase or in opposite phase, but the first leg U1 and the second leg U2 have different duties. However, as will be explained in Example 6 below, even in this case, the switching loss can be minimized by operating the auxiliary circuit SC in synchronization with one of the first leg U1 and the second leg U2.
〔実施例6〕
 図47は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも長い場合の、第1スイッチTr1から第4スイッチTr4と、第5スイッチTr5とのオンオフタイミングを示すタイミングチャートである。
Example 6
FIG. 47 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the fifth switch Tr5 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2 and when the on period of the first switch Tr1 is longer than the on period of the fourth switch Tr4 within the PWM period TP.
 このように、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なる場合、制御部13は、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第1スイッチTr1を第6タイミングでオンにし、PWM周期TP内において、第6タイミングの前に第1動作を行う。 In this way, when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, and the length of the on period of the first switch Tr1 differs from the length of the on period of the fourth switch Tr4 within the PWM period TP, the control unit 13 turns on the first switch Tr1 at the sixth timing when the first switch Tr1 is off and the fourth switch Tr4 is off, and performs the first operation before the sixth timing within the PWM period TP.
 図47に示す例では、制御部13は、PWM周期TP内において、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第1スイッチTr1をオンにする第6タイミングの前に、第5スイッチTr5を第1時間オンにする。 In the example shown in FIG. 47, when the first switch Tr1 is off and the fourth switch Tr4 is off within the PWM period TP, the control unit 13 turns on the fifth switch Tr5 for the first time before the sixth timing at which the first switch Tr1 is turned on.
 図48は、図47に示されるPWM周期TP内の第1期間T91における各スイッチの状態及び電流の向きを示す図である。図48に示すように、第1期間T91において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオフである。第1期間T91において、第2スイッチTr2に上向きの電流が流れ、第1接続点P1からモータ20に向かって電流が流れる。また、第1期間T91において、モータ20から第2接続点P2に向かって電流が流れ、第3スイッチTr3に上向きの電流が流れる。第1期間T91において、第1接続点P1の電位は、直流電源30の負電極電位とほぼ等しく、第2接続点P2の電位は、直流電源30の正電極電位とほぼ等しい。 FIG. 48 is a diagram showing the state of each switch and the direction of the current during the first period T91 in the PWM cycle TP shown in FIG. 47. As shown in FIG. 48, during the first period T91, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off. During the first period T91, an upward current flows through the second switch Tr2, and a current flows from the first connection point P1 toward the motor 20. Also, during the first period T91, a current flows from the motor 20 toward the second connection point P2, and an upward current flows through the third switch Tr3. During the first period T91, the potential of the first connection point P1 is approximately equal to the negative electrode potential of the DC power supply 30, and the potential of the second connection point P2 is approximately equal to the positive electrode potential of the DC power supply 30.
 図49は、図47に示されるPWM周期TP内の第2期間T92における各スイッチの状態及び電流の向きを示す図である。図49に示すように、第2期間T92において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオンである。第2期間T92において、第5スイッチTr5がオンになると、第3接続点P3の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1インダクタL1に右向きの電流が流れる。第2期間T92において、第1インダクタL1に流れる右向きの電流が、第1接続点P1からモータ20に向かって流れる電流より大きくなると、第2スイッチTr2に下向きの電流が流れる。第2期間T92は、第5スイッチTr5がオンにされる第1時間に相当する。 FIG. 49 is a diagram showing the state of each switch and the direction of the current during the second period T92 in the PWM cycle TP shown in FIG. 47. As shown in FIG. 49, during the second period T92, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is on. During the second period T92, when the fifth switch Tr5 is turned on, the potential of the third connection point P3 becomes approximately equal to the positive electrode potential of the DC power supply 30, and a rightward current flows through the first inductor L1. During the second period T92, when the rightward current flowing through the first inductor L1 becomes larger than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the second switch Tr2. The second period T92 corresponds to the first time during which the fifth switch Tr5 is turned on.
 図50は、図47に示されるPWM周期TP内の第3期間T93における各スイッチの状態及び電流の向きを示す図である。図50に示すように、第3期間T93において、第1スイッチTr1及び第4スイッチTr4はオフ、第2スイッチTr2及び第3スイッチTr3はオン、第5スイッチTr5はオフである。第3期間T93において、第5スイッチTr5がオフになると、第2スイッチTr2に流れる下向きの電流が、第5スイッチTr5から第5整流素子D5に転流し、第5整流素子D5に上向きの電流が流れる。第3期間T93において、第3接続点P3の電位は、直流電源30の負電極電位とほぼ等しい。 FIG. 50 is a diagram showing the state of each switch and the direction of the current during the third period T93 in the PWM cycle TP shown in FIG. 47. As shown in FIG. 50, during the third period T93, the first switch Tr1 and the fourth switch Tr4 are off, the second switch Tr2 and the third switch Tr3 are on, and the fifth switch Tr5 is off. When the fifth switch Tr5 is turned off during the third period T93, the downward current flowing through the second switch Tr2 is commutated from the fifth switch Tr5 to the fifth rectifier element D5, and an upward current flows through the fifth rectifier element D5. During the third period T93, the potential of the third connection point P3 is approximately equal to the negative electrode potential of the DC power supply 30.
 図51は、図47に示されるPWM周期TP内の第4期間T94における各スイッチの状態及び電流の向きを示す図である。図51に示すように、第4期間T94において、第1スイッチTr1、第2スイッチTr2及び第4スイッチTr4はオフ、第3スイッチTr3はオン、第5スイッチTr5はオフである。第4期間T94において、第2スイッチTr2がオフになると、第1インダクタL1に流れる電流が、第2スイッチTr2から第1スイッチTr1に転流し、第1スイッチTr1のボディダイオードに上向きの電流が流れる。第4期間T94において、第1接続点P1の電位は、直流電源30の正電極電位とほぼ等しくなるため、第1スイッチTr1の両端電圧は、ほぼゼロとなる。なお、第4期間T94において、第1インダクタL1には逆向きの電圧が印加されるため、第1インダクタL1に流れる右向きの電流は徐々に減少する。 FIG. 51 is a diagram showing the state of each switch and the direction of the current during the fourth period T94 in the PWM cycle TP shown in FIG. 47. As shown in FIG. 51, during the fourth period T94, the first switch Tr1, the second switch Tr2, and the fourth switch Tr4 are off, the third switch Tr3 is on, and the fifth switch Tr5 is off. During the fourth period T94, when the second switch Tr2 is turned off, the current flowing through the first inductor L1 is commutated from the second switch Tr2 to the first switch Tr1, and an upward current flows through the body diode of the first switch Tr1. During the fourth period T94, the potential of the first connection point P1 is approximately equal to the positive electrode potential of the DC power supply 30, so that the voltage across the first switch Tr1 is approximately zero. Note that during the fourth period T94, a reverse voltage is applied to the first inductor L1, so the rightward current flowing through the first inductor L1 gradually decreases.
 図52は、図47に示されるPWM周期TP内の第5期間T95における各スイッチの状態及び電流の向きを示す図である。図52に示すように、第5期間T95において、第1スイッチTr1及び第3スイッチTr3はオン、第2スイッチTr2及び第4スイッチTr4はオフ、第5スイッチTr5はオフである。第5期間T95において、第1インダクタL1に流れる電流の減少に伴い、第1スイッチTr1に流れる上向きの電流も減少する。そして、第1インダクタL1に流れる電流が、第1接続点P1からモータ20に向かって流れる電流より小さくなると、第1スイッチTr1に下向きの電流が流れる。
 なお、第1インダクタL1に流れる電流がゼロになると、第1スイッチTr1に下向きに流れる電流と、第1接続点P1からモータ20に向かって流れる電流とが一致する。
Fig. 52 is a diagram showing the state of each switch and the direction of current during a fifth period T95 in the PWM cycle TP shown in Fig. 47. As shown in Fig. 52, during the fifth period T95, the first switch Tr1 and the third switch Tr3 are on, the second switch Tr2 and the fourth switch Tr4 are off, and the fifth switch Tr5 is off. During the fifth period T95, as the current flowing through the first inductor L1 decreases, the upward current flowing through the first switch Tr1 also decreases. Then, when the current flowing through the first inductor L1 becomes smaller than the current flowing from the first connection point P1 toward the motor 20, a downward current flows through the first switch Tr1.
When the current flowing through the first inductor L1 becomes zero, the current flowing downward through the first switch Tr1 and the current flowing from the first connection point P1 toward the motor 20 become equal.
 以上のように、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも長い場合、制御部13は、PWM周期TP内において、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第1スイッチTr1をオンにする前に、第5スイッチTr5を第1時間オンにする。これにより、第1スイッチTr1がオンになる前に、第1スイッチTr1の両端電圧がほぼゼロとなる。従って、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも長い場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1のソフトスイッチングが実現され、第1スイッチTr1のスイッチング損失を低減できる。 As described above, when a current flows from the first connection point P1 toward the motor 20 and a current flows from the motor 20 toward the second connection point P2, and the on period of the first switch Tr1 is longer than the on period of the fourth switch Tr4 within the PWM period TP, the control unit 13 turns on the fifth switch Tr5 for a first time before turning on the first switch Tr1 in a state in which the first switch Tr1 is off and the fourth switch Tr4 is off within the PWM period TP. This causes the voltage across the first switch Tr1 to become substantially zero before the first switch Tr1 is turned on. Therefore, when a current flows from the first connection point P1 to the motor 20, and a current flows from the motor 20 to the second connection point P2, and the on-period of the first switch Tr1 is longer than the on-period of the fourth switch Tr4 within the PWM period TP, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and reducing the switching loss of the first switch Tr1.
 図53は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において第1スイッチTr1のオン期間が第4スイッチTr4のオン期間よりも短い場合の、第1スイッチTr1から第4スイッチTr4と、第6スイッチTr6とのオンオフタイミングを示すタイミングチャートである。 FIG. 53 is a timing chart showing the on/off timing of the first switch Tr1 to the fourth switch Tr4 and the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and a current flows from the motor 20 to the second connection point P2, and the on period of the first switch Tr1 is shorter than the on period of the fourth switch Tr4 within the PWM period TP.
 図53に示す例では、制御部13は、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第4スイッチTr4を第7タイミングでオンにし、PWM周期TP内において、第7タイミングの前に第2動作を行う。言い換えれば、制御部13は、PWM周期TP内において、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第4スイッチTr4をオンにする前に、第6スイッチTr6を第2時間オンにする第2動作を行う。 In the example shown in FIG. 53, when the first switch Tr1 is off and the fourth switch Tr4 is off, the control unit 13 turns on the fourth switch Tr4 at the seventh timing, and performs the second operation before the seventh timing within the PWM period TP. In other words, when the first switch Tr1 is off and the fourth switch Tr4 is off within the PWM period TP, the control unit 13 performs the second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4.
 これにより、第4スイッチTr4がオンになる前に、第4スイッチTr4の両端電圧がほぼゼロとなる。従って、図53に示す例の場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第4スイッチTr4のソフトスイッチングが実現され、第4スイッチTr4のスイッチング損失を低減できる。 As a result, the voltage across the fourth switch Tr4 becomes nearly zero before the fourth switch Tr4 is turned on. Therefore, in the example shown in FIG. 53, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the fourth switch Tr4 and reducing the switching loss of the fourth switch Tr4.
 図54は、第1接続点P1からモータ20に向かって電流が流れ、且つモータ20から第2接続点P2に向かって電流が流れ、且つPWM周期TP内において、第1スイッチTr1のオン期間の長さと第4スイッチTr4のオン期間の長さとが異なり、第1スイッチTr1のオン期間のセンターと第4スイッチTr4のオン期間のセンターとが互いにPWM半周期ずれている場合の、第1スイッチTr1から第6スイッチTr6のオンオフタイミングを示すタイミングチャートである。 FIG. 54 is a timing chart showing the on/off timing of the first switch Tr1 to the sixth switch Tr6 when a current flows from the first connection point P1 to the motor 20 and also flows from the motor 20 to the second connection point P2, and the length of the on period of the first switch Tr1 and the length of the on period of the fourth switch Tr4 are different within a PWM period TP, and the center of the on period of the first switch Tr1 and the center of the on period of the fourth switch Tr4 are shifted from each other by a half PWM period.
 図54に示す例では、制御部13は、PWM周期TP内において、第3スイッチTr3がオンであり、且つ第1スイッチTr1がオフである状態において、第1スイッチTr1をオンにする前に、第5スイッチTr5を第1時間オンにする第1動作を行う。また、図54に示す例では、制御部13は、PWM周期TP内において、第1スイッチTr1がオフであり、且つ第4スイッチTr4がオフである状態において、第4スイッチTr4をオンにする前に、第6スイッチTr6を第2時間オンにする第2動作を行う。 In the example shown in FIG. 54, the control unit 13 performs a first operation of turning on the fifth switch Tr5 for a first time before turning on the first switch Tr1 in a state in which the third switch Tr3 is on and the first switch Tr1 is off during the PWM period TP. Also, in the example shown in FIG. 54, the control unit 13 performs a second operation of turning on the sixth switch Tr6 for a second time before turning on the fourth switch Tr4 in a state in which the first switch Tr1 is off and the fourth switch Tr4 is off during the PWM period TP.
 これにより、第1スイッチTr1がオンになる前に、第1スイッチTr1の両端電圧がほぼゼロとなるとともに、第4スイッチTr4がオンになる前に、第4スイッチTr4の両端電圧がほぼゼロとなる。従って、図54に示す例の場合には、制御部13が上記のソフトスイッチング動作を行うことにより、第1スイッチTr1及び第4スイッチTr4のソフトスイッチングが実現され、第1スイッチTr1及び第4スイッチTr4のスイッチング損失を低減できる。 As a result, the voltage across the first switch Tr1 becomes nearly zero before the first switch Tr1 is turned on, and the voltage across the fourth switch Tr4 becomes nearly zero before the fourth switch Tr4 is turned on. Therefore, in the example shown in FIG. 54, the control unit 13 performs the above-mentioned soft switching operation, thereby realizing soft switching of the first switch Tr1 and the fourth switch Tr4, and the switching loss of the first switch Tr1 and the fourth switch Tr4 can be reduced.
 なお、第2接続点P2からモータ20に向かって電流が流れ、且つモータ20から第1接続点P1に向かって電流が流れる場合には、実施例6の説明において、第1レグU1、第1接続点P1及び第3接続点P3を、第2レグU2、第2接続点P2及び第4接続点P4にそれぞれ読み替え、第1スイッチTr1及び第4スイッチTr4を、第2スイッチTr2及び第3スイッチTr3にそれぞれ読み替え、第1インダクタL1及び第4インダクタL4を、第2インダクタL2及び第3インダクタL3にそれぞれ読み替えればよい。 In addition, when a current flows from the second connection point P2 to the motor 20 and from the motor 20 to the first connection point P1, in the explanation of the sixth embodiment, the first leg U1, the first connection point P1, and the third connection point P3 should be read as the second leg U2, the second connection point P2, and the fourth connection point P4, respectively, the first switch Tr1 and the fourth switch Tr4 should be read as the second switch Tr2 and the third switch Tr3, respectively, and the first inductor L1 and the fourth inductor L4 should be read as the second inductor L2 and the third inductor L3, respectively.
〔変形例〕
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
[Modifications]
The present invention is not limited to the above-described embodiment, and the configurations described in this specification can be appropriately combined within a range not mutually contradictory.
 図55は、Hブリッジ回路BC及び補助回路SCの変形例を示す図である。Hブリッジ回路BCは、第1スイッチTr1から第4スイッチTr4の少なくとも1つに並列に接続される第1コンデンサを備えてもよい。図55に示す変形例では、第1コンデンサC1が第1スイッチTr1に並列に接続され、第1コンデンサC2が第2スイッチTr2に並列に接続され、第1コンデンサC3が第3スイッチTr3に並列に接続され、第1コンデンサC4が第4スイッチTr4に並列に接続される。このような構成を採用することにより、第1スイッチTr1から第4スイッチTr4のターンオフ損失も低減することができる。 FIG. 55 is a diagram showing a modified example of the H-bridge circuit BC and the auxiliary circuit SC. The H-bridge circuit BC may include a first capacitor connected in parallel to at least one of the first switch Tr1 to the fourth switch Tr4. In the modified example shown in FIG. 55, the first capacitor C1 is connected in parallel to the first switch Tr1, the first capacitor C2 is connected in parallel to the second switch Tr2, the first capacitor C3 is connected in parallel to the third switch Tr3, and the first capacitor C4 is connected in parallel to the fourth switch Tr4. By adopting such a configuration, the turn-off loss of the first switch Tr1 to the fourth switch Tr4 can also be reduced.
 また、補助回路SCは、第5スイッチTr5及び第6スイッチTr5の少なくとも1つに並列に接続される第2コンデンサを備えてもよい。図55に示す変形例では、第2コンデンサC5が第5スイッチTr5に並列に接続され、第2コンデンサC6が第6スイッチTr6に並列に接続される。このような構成を採用することにより、第5スイッチTr5及び第6スイッチTr6のターンオフ損失も低減することができる。なお、第5整流素子D5及び第6整流素子D6の少なくとも1つに、コンデンサを並列に接続してもよい。 The auxiliary circuit SC may also include a second capacitor connected in parallel to at least one of the fifth switch Tr5 and the sixth switch Tr5. In the modified example shown in FIG. 55, the second capacitor C5 is connected in parallel to the fifth switch Tr5, and the second capacitor C6 is connected in parallel to the sixth switch Tr6. By adopting such a configuration, the turn-off loss of the fifth switch Tr5 and the sixth switch Tr6 can also be reduced. A capacitor may be connected in parallel to at least one of the fifth rectifier element D5 and the sixth rectifier element D6.
 上記実施形態では、第1のU相コイル23u、第1のV相コイル23v、及び第1のW相コイル23wの中性点と、第2のU相コイル24u、第2のV相コイル24v、及び第2のW相コイル24wの中性点とが、電気的に切り離された構成を有するモータ20を例示した。本発明は、これに限定されず、第1のU相コイル23u、第1のV相コイル23v、及び第1のW相コイル23wの中性点と、第2のU相コイル24u、第2のV相コイル24v、及び第2のW相コイル24wの中性点とが、電気的に接続された構成を有するモータを使用してもよい。 In the above embodiment, the motor 20 is illustrated as having a configuration in which the neutral points of the first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are electrically separated from the neutral points of the second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w. The present invention is not limited to this, and a motor may be used in which the neutral points of the first U-phase coil 23u, the first V-phase coil 23v, and the first W-phase coil 23w are electrically connected to the neutral points of the second U-phase coil 24u, the second V-phase coil 24v, and the second W-phase coil 24w.
 なお、本技術は以下のような構成をとることが可能である。(1)2つのN相端子群(Nは3以上の整数)を有するモータの各相に対応するHブリッジ回路と、前記Hブリッジ回路の少なくとも1つに対応する補助回路と、前記Hブリッジ回路及び前記補助回路を制御する制御部と、を備え、前記Hブリッジ回路は、電源の正電極と第1接続点との間に接続される第1スイッチと、前記電源の負電極と前記第1接続点との間に接続される第2スイッチと、を含む第1レグと、前記正電極と第2接続点との間に接続される第3スイッチと、前記負電極と前記第2接続点との間に接続される第4スイッチと、を含む第2レグと、を備え、前記補助回路は、前記第1接続点と第3接続点との間に直列に接続される第1整流素子及び第1インダクタと、前記第2接続点と前記第3接続点との間に直列に接続される第2整流素子及び第2インダクタと、前記第1接続点と第4接続点との間に直列に接続される第3整流素子及び第3インダクタと、前記第2接続点と前記第4接続点との間に直列に接続される第4整流素子及び第4インダクタと、前記正電極と前記第3接続点との間に接続される第5スイッチと、前記第3接続点に接続される負極端子と、前記負電極に接続される正極端子とを有する第5整流素子と、前記正電極に接続される負極端子と、前記第4接続点に接続される正極端子とを有する第6整流素子と、前記負電極と前記第4接続点との間に接続される第6スイッチと、を備え、前記第1整流素子の正極端子及び前記第2整流素子の正極端子は、前記第3接続点の側に位置し、前記第3整流素子の負極端子及び前記第4整流素子の負極端子は、前記第4接続点の側に位置する、電力変換装置。(2)前記制御部は、パルス幅変調の1制御周期内において前記第1スイッチと前記第3スイッチとの少なくとも一方をオンにする前に前記第5スイッチを第1時間オンにする第1動作と、前記1制御周期内において前記第2スイッチと前記第4スイッチとの少なくとも一方をオンにする前に前記第6スイッチを第2時間オンにする第2動作と、の少なくとも一方を行う、(1)に記載の電力変換装置。(3)前記第1接続点から前記モータに向かって電流が流れる場合、前記第1動作は、前記1制御周期内において前記第1スイッチをオンにする前に前記第5スイッチを前記第1時間オンにする動作であり、前記第2接続点から前記モータに向かって電流が流れる場合、前記第1動作は、前記1制御周期内において前記第3スイッチをオンにする前に前記第5スイッチを前記第1時間オンにする動作である、(2)に記載の電力変換装置。(4)前記モータから前記第1接続点に向かって電流が流れる場合、前記第2動作は、前記1制御周期内において前記第2スイッチをオンにする前に前記第6スイッチを前記第2時間オンにする動作であり、前記モータから前記第2接続点に向かって電流が流れる場合、前記第2動作は、前記1制御周期内において前記第4スイッチをオンにする前に前記第6スイッチを前記第2時間オンにする動作である、(2)に記載の電力変換装置。(5)前記制御部は、前記第1接続点と前記第2接続点とのそれぞれから前記モータに向かって電流が流れる場合、前記第1スイッチ及び前記第3スイッチの両方を第1タイミングでオンにし、前記1制御周期内において、前記第1タイミングの前に前記第1動作を行う、(3)に記載の電力変換装置。(6)前記制御部は、前記第1動作を行う場合、前記第2スイッチ及び前記第4スイッチのオンタイミングから前記第5スイッチのオンタイミングまでの第1期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオフにすることと、前記第1期間の後の期間であって且つ前記第1時間に対応する第2期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオンにすることと、前記第2期間の後の第3期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオフにし、前記第3期間の終了タイミングから前記第1スイッチ及び前記第3スイッチのオンタイミングまでの第4期間に、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第5スイッチをオフにすることと、を行う、(5)に記載の電力変換装置。(7)前記制御部は、前記第1接続点と前記第2接続点との両方から前記モータに向かって電流が流れる場合、前記第1スイッチと前記第3スイッチとの一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、前記他方のスイッチを第2タイミングでオンにし、前記1制御周期内において、前記第2タイミングの前に前記第1動作を行う、(3)に記載の電力変換装置。(8)前記制御部は、前記モータから前記第1接続点と前記第2接続点とのそれぞれに向かって電流が流れる場合、前記第2スイッチ及び前記第4スイッチの両方を第3タイミングでオンにし、前記1制御周期内において、前記第3タイミングの前に前記第2動作を行う、(4)に記載の電力変換装置。(9)前記制御部は、前記第2動作を行う場合、前記第1スイッチ及び前記第3スイッチのオンタイミングから前記第6スイッチのオンタイミングまでの第5期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにすることと、前記第5期間の後の期間であって且つ前記第2時間に対応する第6期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオンにすることと、前記第6期間の後の第7期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにし、前記第7期間の終了タイミングから前記第2スイッチ及び前記第4スイッチのオンタイミングまでの第8期間に、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにすることと、を行う、(8)に記載の電力変換装置。(10)前記制御部は、前記モータから前記第1接続点と前記第2接続点とのそれぞれに向かって電流が流れる場合、前記第2スイッチと前記第4スイッチとの一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、前記他方のスイッチを第4タイミングでオンにし、前記1制御周期内において、前記第4タイミングの前に前記第2動作を行う、(4)に記載の電力変換装置。(11)前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチと前記第4スイッチとの両方を第5タイミングでオンにし、前記1制御周期内において、前記第5タイミングの前に前記第1動作及び前記第2動作を同時に行い、前記第1時間は、前記第2時間と等しい、(2)に記載の電力変換装置。(12)前記制御部は、前記第1動作及び前記第2動作を同時に行う場合、前記第2スイッチ及び前記第3スイッチのオンタイミングから前記第5スイッチ及び前記第6スイッチのオンタイミングまでの第9期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオフにすることと、前記第9期間の後の期間であって且つ前記第1時間に対応する第10期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオンにすることと、前記第10期間の後の第11期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオフにし、前記第11期間の終了タイミングから前記第1スイッチ及び前記第4スイッチのオンタイミングまでの第12期間に、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオフにし、前記第5スイッチ及び前記第6スイッチをオフにすることと、を行う、(11)に記載の電力変換装置。(13)前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチがオフであり、且つ前記第4スイッチがオフである状態において、前記第1スイッチを第6タイミングでオンにし、前記1制御周期内において、前記第6タイミングの前に前記第1動作を行う、(2)に記載の電力変換装置。(14)前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチがオフであり、且つ前記第4スイッチがオフである状態において、前記第4スイッチを第7タイミングでオンにし、前記1制御周期内において、前記第7タイミングの前に前記第2動作を行う、(2)に記載の電力変換装置。(15)前記制御部は、前記第1レグ及び前記第2レグが同位相の電圧を出力する第1モードと、前記第1レグ及び前記第2レグが逆位相の電圧を出力する第2モードと、を有する、(1)から(14)のいずれか一項に記載の電力変換装置。(16)前記Hブリッジ回路は、前記第1スイッチから前記第4スイッチの少なくとも1つに並列に接続される第1コンデンサを備える、(1)から(15)のいずれか一項に記載の電力変換装置。(17)前記補助回路は、前記第5スイッチ及び前記第6スイッチの少なくとも1つに並列に接続される第2コンデンサを備える、(1)から(16)のいずれか一項に記載の電力変換装置。(18)2つのN相端子群(Nは3以上の整数)を有するモータと、(1)から(17)のいずれか一項に記載の電力変換装置と、を備える、モータモジュール。 The present technology can be configured as follows: (1) A motor having two N-phase terminal groups (N is an integer of 3 or more), including an H-bridge circuit corresponding to each phase of the motor, an auxiliary circuit corresponding to at least one of the H-bridge circuits, and a control unit that controls the H-bridge circuit and the auxiliary circuit, the H-bridge circuit including a first leg including a first switch connected between a positive electrode of a power source and a first connection point, and a second switch connected between a negative electrode of the power source and the first connection point, a second leg including a third switch connected between the positive electrode and the second connection point, and a fourth switch connected between the negative electrode and the second connection point, the auxiliary circuit including a first rectifying element and a first inductor connected in series between the first connection point and the third connection point, and a second rectifying element and a second inductor connected in series between the second connection point and the third connection point. a third rectifier element and a third inductor connected in series between the first connection point and a fourth connection point, a fourth rectifier element and a fourth inductor connected in series between the second connection point and the fourth connection point, a fifth switch connected between the positive electrode and the third connection point, a fifth rectifier element having a negative terminal connected to the third connection point and a positive terminal connected to the negative electrode, a sixth rectifier element having a negative terminal connected to the positive electrode and a positive terminal connected to the fourth connection point, and a sixth switch connected between the negative electrode and the fourth connection point, wherein the positive terminal of the first rectifier element and the positive terminal of the second rectifier element are located on the third connection point side, and the negative terminal of the third rectifier element and the negative terminal of the fourth rectifier element are located on the fourth connection point side. (2) The power conversion device according to (1), wherein the control unit performs at least one of a first operation of turning on the fifth switch for a first time before turning on at least one of the first switch and the third switch in one control period of pulse width modulation and a second operation of turning on the sixth switch for a second time before turning on at least one of the second switch and the fourth switch in one control period. (3) The power conversion device according to (2), wherein, when a current flows from the first connection point to the motor, the first operation is an operation of turning on the fifth switch for the first time before turning on the first switch in one control period, and when a current flows from the second connection point to the motor, the first operation is an operation of turning on the fifth switch for the first time before turning on the third switch in one control period. (4) The power conversion device according to (2), wherein, when a current flows from the motor to the first connection point, the second operation is an operation of turning on the sixth switch for the second time before turning on the second switch in the one control period, and when a current flows from the motor to the second connection point, the second operation is an operation of turning on the sixth switch for the second time before turning on the fourth switch in the one control period. (5) The power conversion device according to (3), wherein, when a current flows from each of the first connection point and the second connection point to the motor, the control unit turns on both the first switch and the third switch at a first timing, and performs the first operation before the first timing in the one control period. (6) The power conversion device described in (5), wherein, when the control unit performs the first operation, in a first period from an on-timing of the second switch and the fourth switch to an on-timing of the fifth switch, the control unit turns off the first switch and the third switch, turns on the second switch and the fourth switch, and turns off the fifth switch; in a second period that is a period after the first period and corresponds to the first time, the control unit turns off the first switch and the third switch, turns on the second switch and the fourth switch, and turns on the fifth switch; in a third period after the second period, the control unit turns off the first switch and the third switch, turns on the second switch and the fourth switch, and turns off the fifth switch; and in a fourth period from an end timing of the third period to the on-timing of the first switch and the third switch, the control unit turns off the second switch and the fourth switch, and turns off the fifth switch. (7) The power conversion device according to (3), wherein, when a current flows from both the first connection point and the second connection point toward the motor, in a state in which one of the first switch and the third switch is on and the other switch is off, the control unit turns on the other switch at a second timing and performs the first operation before the second timing within the one control period. (8) The power conversion device according to (4), wherein, when a current flows from the motor toward each of the first connection point and the second connection point, the control unit turns on both the second switch and the fourth switch at a third timing and performs the second operation before the third timing within the one control period. (9) The power conversion device described in (8), wherein, when the control unit performs the second operation, in a fifth period from an on-timing of the first switch and the third switch to an on-timing of the sixth switch, it turns on the first switch and the third switch, turns off the second switch and the fourth switch, and turns off the sixth switch; in a sixth period which is a period after the fifth period and corresponds to the second time, it turns on the first switch and the third switch, turns off the second switch and the fourth switch, and turns on the sixth switch; in a seventh period after the sixth period, it turns on the first switch and the third switch, turns off the second switch and the fourth switch, and turns off the sixth switch; and in an eighth period from an end timing of the seventh period to an on-timing of the second switch and the fourth switch, it turns off the first switch and the third switch, turns off the second switch and the fourth switch, and turns off the sixth switch. (10) The power conversion device according to (4), wherein, when a current flows from the motor to each of the first connection point and the second connection point, in a state in which one of the second switch and the fourth switch is on and the other switch is off, the control unit turns on the other switch at a fourth timing, and performs the second operation before the fourth timing within the one control period. (11) The power conversion device according to (2), wherein, when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, the control unit turns on both the first switch and the fourth switch at a fifth timing, and performs the first operation and the second operation simultaneously before the fifth timing within the one control period, and the first time is equal to the second time. (12) The power conversion device according to (11), wherein, when the first operation and the second operation are performed simultaneously, the control unit turns off the first switch and the fourth switch, turns on the second switch and the third switch, and turns off the fifth switch and the sixth switch in a ninth period from an on timing of the second switch and the third switch to an on timing of the fifth switch and the sixth switch; turns off the first switch and the fourth switch, turns on the second switch and the third switch, and turns on the fifth switch and the sixth switch in a tenth period that is a period after the ninth period and corresponds to the first time; turns off the first switch and the fourth switch, turns on the second switch and the third switch, and turns off the fifth switch and the sixth switch in an eleventh period after the tenth period; and turns off the first switch and the fourth switch, turns on the second switch and the third switch, and turns off the fifth switch and the sixth switch in a twelfth period from an end timing of the eleventh period to an on timing of the first switch and the fourth switch. (13) The power conversion device according to (2), wherein, when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, the control unit turns on the first switch at a sixth timing in a state where the first switch is off and the fourth switch is off, and performs the first operation before the sixth timing within the one control period. (14) The power conversion device according to (2), wherein, when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, the control unit turns on the fourth switch at a seventh timing in a state where the first switch is off and the fourth switch is off, and performs the second operation before the seventh timing within the one control period. (15) The power conversion device according to any one of (1) to (14), wherein the control unit has a first mode in which the first leg and the second leg output voltages of the same phase, and a second mode in which the first leg and the second leg output voltages of opposite phases. (16) The power conversion device according to any one of (1) to (15), in which the H-bridge circuit includes a first capacitor connected in parallel to at least one of the first switch to the fourth switch. (17) The power conversion device according to any one of (1) to (16), in which the auxiliary circuit includes a second capacitor connected in parallel to at least one of the fifth switch and the sixth switch. (18) A motor module including a motor having two N-phase terminal groups (N is an integer of 3 or more) and the power conversion device according to any one of (1) to (17).

Claims (18)

  1.  2つのN相端子群(Nは3以上の整数)を有するモータの各相に対応するHブリッジ回路と、
     前記Hブリッジ回路の少なくとも1つに対応する補助回路と、
     前記Hブリッジ回路及び前記補助回路を制御する制御部と、
     を備え、
     前記Hブリッジ回路は、
      電源の正電極と第1接続点との間に接続される第1スイッチと、前記電源の負電極と前記第1接続点との間に接続される第2スイッチと、を含む第1レグと、
      前記正電極と第2接続点との間に接続される第3スイッチと、前記負電極と前記第2接続点との間に接続される第4スイッチと、を含む第2レグと、
     を備え、
     前記補助回路は、
      前記第1接続点と第3接続点との間に直列に接続される第1整流素子及び第1インダクタと、
      前記第2接続点と前記第3接続点との間に直列に接続される第2整流素子及び第2インダクタと、
      前記第1接続点と第4接続点との間に直列に接続される第3整流素子及び第3インダクタと、
      前記第2接続点と前記第4接続点との間に直列に接続される第4整流素子及び第4インダクタと、
      前記正電極と前記第3接続点との間に接続される第5スイッチと、
      前記第3接続点に接続される負極端子と、前記負電極に接続される正極端子とを有する第5整流素子と、
      前記正電極に接続される負極端子と、前記第4接続点に接続される正極端子とを有する第6整流素子と、
      前記負電極と前記第4接続点との間に接続される第6スイッチと、
     を備え、
     前記第1整流素子の正極端子及び前記第2整流素子の正極端子は、前記第3接続点の側に位置し、
     前記第3整流素子の負極端子及び前記第4整流素子の負極端子は、前記第4接続点の側に位置する、
     電力変換装置。
    an H-bridge circuit corresponding to each phase of a motor having two N-phase terminal groups (N is an integer of 3 or more);
    an auxiliary circuit corresponding to at least one of the H-bridge circuits;
    A control unit that controls the H-bridge circuit and the auxiliary circuit;
    Equipped with
    The H-bridge circuit includes:
    a first leg including a first switch connected between a positive electrode of a power source and a first node, and a second switch connected between a negative electrode of the power source and the first node;
    a second leg including a third switch connected between the positive electrode and a second connection point and a fourth switch connected between the negative electrode and the second connection point;
    Equipped with
    The auxiliary circuit includes:
    a first rectifying element and a first inductor connected in series between the first connection point and a third connection point;
    a second rectifying element and a second inductor connected in series between the second connection point and the third connection point;
    a third rectifying element and a third inductor connected in series between the first connection point and the fourth connection point;
    a fourth rectifying element and a fourth inductor connected in series between the second connection point and the fourth connection point;
    a fifth switch connected between the positive electrode and the third node;
    a fifth rectifier element having a negative terminal connected to the third connection point and a positive terminal connected to the negative electrode;
    a sixth rectifier element having a negative electrode terminal connected to the positive electrode and a positive electrode terminal connected to the fourth connection point;
    a sixth switch connected between the negative electrode and the fourth connection point;
    Equipped with
    a positive terminal of the first rectifying element and a positive terminal of the second rectifying element are located on the third connection point side;
    The negative terminal of the third rectifier element and the negative terminal of the fourth rectifier element are located on the fourth connection point side.
    Power conversion equipment.
  2.  前記制御部は、パルス幅変調の1制御周期内において前記第1スイッチと前記第3スイッチとの少なくとも一方をオンにする前に前記第5スイッチを第1時間オンにする第1動作と、前記1制御周期内において前記第2スイッチと前記第4スイッチとの少なくとも一方をオンにする前に前記第6スイッチを第2時間オンにする第2動作と、の少なくとも一方を行う、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the control unit performs at least one of a first operation of turning on the fifth switch for a first time before turning on at least one of the first switch and the third switch in one control period of pulse width modulation, and a second operation of turning on the sixth switch for a second time before turning on at least one of the second switch and the fourth switch in one control period.
  3.  前記第1接続点から前記モータに向かって電流が流れる場合、前記第1動作は、前記1制御周期内において前記第1スイッチをオンにする前に前記第5スイッチを前記第1時間オンにする動作であり、
     前記第2接続点から前記モータに向かって電流が流れる場合、前記第1動作は、前記1制御周期内において前記第3スイッチをオンにする前に前記第5スイッチを前記第1時間オンにする動作である、請求項2に記載の電力変換装置。
    when a current flows from the first connection point to the motor, the first action is an action of turning on the fifth switch for the first time before turning on the first switch within one control period,
    3. The power conversion device according to claim 2, wherein when a current flows from the second connection point toward the motor, the first operation is an operation of turning on the fifth switch for the first time before turning on the third switch within one control period.
  4.  前記モータから前記第1接続点に向かって電流が流れる場合、前記第2動作は、前記1制御周期内において前記第2スイッチをオンにする前に前記第6スイッチを前記第2時間オンにする動作であり、
     前記モータから前記第2接続点に向かって電流が流れる場合、前記第2動作は、前記1制御周期内において前記第4スイッチをオンにする前に前記第6スイッチを前記第2時間オンにする動作である、請求項2に記載の電力変換装置。
    when a current flows from the motor to the first connection point, the second operation is an operation of turning on the sixth switch for the second period before turning on the second switch within one control period,
    3. The power conversion device according to claim 2, wherein when a current flows from the motor to the second connection point, the second operation is an operation of turning on the sixth switch for the second period before turning on the fourth switch within the one control period.
  5.  前記制御部は、前記第1接続点と前記第2接続点とのそれぞれから前記モータに向かって電流が流れる場合、前記第1スイッチ及び前記第3スイッチの両方を第1タイミングでオンにし、前記1制御周期内において、前記第1タイミングの前に前記第1動作を行う、請求項3に記載の電力変換装置。 The power conversion device according to claim 3, wherein the control unit turns on both the first switch and the third switch at a first timing when a current flows from each of the first connection point and the second connection point toward the motor, and performs the first operation before the first timing within one control period.
  6.  前記制御部は、前記第1動作を行う場合、
     前記第2スイッチ及び前記第4スイッチのオンタイミングから前記第5スイッチのオンタイミングまでの第1期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオフにすることと、
     前記第1期間の後の期間であって且つ前記第1時間に対応する第2期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオンにすることと、
     前記第2期間の後の第3期間において、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオンにし、前記第5スイッチをオフにし、
     前記第3期間の終了タイミングから前記第1スイッチ及び前記第3スイッチのオンタイミングまでの第4期間に、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第5スイッチをオフにすることと、
     を行う、請求項5に記載の電力変換装置。
    When the control unit performs the first operation,
    during a first period from an on-timing of the second switch and the fourth switch to an on-timing of the fifth switch, turning off the first switch and the third switch, turning on the second switch and the fourth switch, and turning off the fifth switch;
    during a second period following the first period and corresponding to the first time, turning off the first switch and the third switch, turning on the second switch and the fourth switch, and turning on the fifth switch;
    In a third period after the second period, the first switch and the third switch are turned off, the second switch and the fourth switch are turned on, and the fifth switch is turned off;
    during a fourth period from an end timing of the third period to an on timing of the first switch and the third switch, turning off the first switch and the third switch, turning off the second switch and the fourth switch, and turning off the fifth switch;
    The power conversion device according to claim 5 ,
  7.  前記制御部は、前記第1接続点と前記第2接続点との両方から前記モータに向かって電流が流れる場合、前記第1スイッチと前記第3スイッチとの一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、前記他方のスイッチを第2タイミングでオンにし、前記1制御周期内において、前記第2タイミングの前に前記第1動作を行う、請求項3に記載の電力変換装置。 The power conversion device according to claim 3, wherein when current flows from both the first connection point and the second connection point toward the motor, the control unit turns on the other switch of the first switch and the third switch at a second timing in a state in which one of the first switch and the third switch is on and the other switch is off, and performs the first operation before the second timing within one control period.
  8.  前記制御部は、前記モータから前記第1接続点と前記第2接続点とのそれぞれに向かって電流が流れる場合、前記第2スイッチ及び前記第4スイッチの両方を第3タイミングでオンにし、前記1制御周期内において、前記第3タイミングの前に前記第2動作を行う、請求項4に記載の電力変換装置。 The power conversion device according to claim 4, wherein the control unit turns on both the second switch and the fourth switch at a third timing when a current flows from the motor to each of the first connection point and the second connection point, and performs the second operation before the third timing within one control period.
  9.  前記制御部は、前記第2動作を行う場合、
     前記第1スイッチ及び前記第3スイッチのオンタイミングから前記第6スイッチのオンタイミングまでの第5期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにすることと、
     前記第5期間の後の期間であって且つ前記第2時間に対応する第6期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオンにすることと、
     前記第6期間の後の第7期間において、前記第1スイッチ及び前記第3スイッチをオンにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにし、
     前記第7期間の終了タイミングから前記第2スイッチ及び前記第4スイッチのオンタイミングまでの第8期間に、前記第1スイッチ及び前記第3スイッチをオフにし、前記第2スイッチ及び前記第4スイッチをオフにし、前記第6スイッチをオフにすることと、
     を行う、請求項8に記載の電力変換装置。
    When the control unit performs the second operation,
    during a fifth period from an on-timing of the first switch and the third switch to an on-timing of the sixth switch, turning on the first switch and the third switch, turning off the second switch and the fourth switch, and turning off the sixth switch;
    in a sixth period that is a period after the fifth period and corresponds to the second time, turning on the first switch and the third switch, turning off the second switch and the fourth switch, and turning on the sixth switch;
    In a seventh period after the sixth period, the first switch and the third switch are turned on, the second switch and the fourth switch are turned off, and the sixth switch is turned off;
    during an eighth period from an end timing of the seventh period to an on timing of the second switch and the fourth switch, turning off the first switch and the third switch, turning off the second switch and the fourth switch, and turning off the sixth switch;
    The power conversion device according to claim 8 ,
  10.  前記制御部は、前記モータから前記第1接続点と前記第2接続点とのそれぞれに向かって電流が流れる場合、前記第2スイッチと前記第4スイッチとの一方のスイッチがオンであり、且つ他方のスイッチがオフである状態において、前記他方のスイッチを第4タイミングでオンにし、前記1制御周期内において、前記第4タイミングの前に前記第2動作を行う、請求項4に記載の電力変換装置。 The power conversion device according to claim 4, wherein when a current flows from the motor to each of the first connection point and the second connection point, the control unit turns on the other switch at a fourth timing when one of the second switch and the fourth switch is on and the other switch is off, and performs the second operation before the fourth timing within one control period.
  11.  前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチと前記第4スイッチとの両方を第5タイミングでオンにし、前記1制御周期内において、前記第5タイミングの前に前記第1動作及び前記第2動作を同時に行い、
     前記第1時間は、前記第2時間と等しい、
     請求項2に記載の電力変換装置。
    the control unit turns on both the first switch and the fourth switch at a fifth timing when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, and performs the first operation and the second operation simultaneously before the fifth timing within one control period;
    The first time is equal to the second time.
    The power conversion device according to claim 2 .
  12.  前記制御部は、前記第1動作及び前記第2動作を同時に行う場合、
     前記第2スイッチ及び前記第3スイッチのオンタイミングから前記第5スイッチ及び前記第6スイッチのオンタイミングまでの第9期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオフにすることと、
     前記第9期間の後の期間であって且つ前記第1時間に対応する第10期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオンにすることと、
     前記第10期間の後の第11期間において、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオンにし、前記第5スイッチ及び前記第6スイッチをオフにし、
     前記第11期間の終了タイミングから前記第1スイッチ及び前記第4スイッチのオンタイミングまでの第12期間に、前記第1スイッチ及び前記第4スイッチをオフにし、前記第2スイッチ及び前記第3スイッチをオフにし、前記第5スイッチ及び前記第6スイッチをオフにすることと、
     を行う、請求項11に記載の電力変換装置。
    When the control unit performs the first operation and the second operation simultaneously,
    during a ninth period from an on-timing of the second switch and the third switch to an on-timing of the fifth switch and the sixth switch, turning off the first switch and the fourth switch, turning on the second switch and the third switch, and turning off the fifth switch and the sixth switch;
    in a tenth period which is a period following the ninth period and corresponds to the first time, turning off the first switch and the fourth switch, turning on the second switch and the third switch, and turning on the fifth switch and the sixth switch;
    In an eleventh period after the tenth period, the first switch and the fourth switch are turned off, the second switch and the third switch are turned on, and the fifth switch and the sixth switch are turned off;
    during a twelfth period from an end timing of the eleventh period to an on timing of the first switch and the fourth switch, turning off the first switch and the fourth switch, turning off the second switch and the third switch, and turning off the fifth switch and the sixth switch;
    The power converter according to claim 11 ,
  13.  前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチがオフであり、且つ前記第4スイッチがオフである状態において、前記第1スイッチを第6タイミングでオンにし、前記1制御周期内において、前記第6タイミングの前に前記第1動作を行う、請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein, when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, the control unit turns on the first switch at a sixth timing in a state in which the first switch is off and the fourth switch is off, and performs the first operation before the sixth timing within one control period.
  14.  前記制御部は、前記第1接続点から前記モータに向かって電流が流れ、前記モータから前記第2接続点に向かって電流が流れる場合、前記第1スイッチがオフであり、且つ前記第4スイッチがオフである状態において、前記第4スイッチを第7タイミングでオンにし、前記1制御周期内において、前記第7タイミングの前に前記第2動作を行う、請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein, when a current flows from the first connection point to the motor and a current flows from the motor to the second connection point, the control unit turns on the fourth switch at a seventh timing in a state in which the first switch is off and the fourth switch is off, and performs the second operation before the seventh timing within one control period.
  15.  前記制御部は、前記第1レグ及び前記第2レグが同位相の電圧を出力する第1モードと、前記第1レグ及び前記第2レグが逆位相の電圧を出力する第2モードと、を有する、請求項1から14のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 14, wherein the control unit has a first mode in which the first leg and the second leg output voltages of the same phase, and a second mode in which the first leg and the second leg output voltages of opposite phases.
  16.  前記Hブリッジ回路は、前記第1スイッチから前記第4スイッチの少なくとも1つに並列に接続される第1コンデンサを備える、請求項1から14のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 14, wherein the H-bridge circuit includes a first capacitor connected in parallel to at least one of the first switch to the fourth switch.
  17.  前記補助回路は、前記第5スイッチ及び前記第6スイッチの少なくとも1つに並列に接続される第2コンデンサを備える、請求項16に記載の電力変換装置。 The power conversion device of claim 16, wherein the auxiliary circuit includes a second capacitor connected in parallel to at least one of the fifth switch and the sixth switch.
  18.  2つのN相端子群(Nは3以上の整数)を有するモータと、
     請求項1から14のいずれか一項に記載の電力変換装置と、
     を備える、モータモジュール。
    A motor having two N-phase terminal groups (N is an integer of 3 or more);
    The power conversion device according to any one of claims 1 to 14,
    A motor module comprising:
PCT/JP2023/034690 2022-09-30 2023-09-25 Power conversion device and motor module WO2024071024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158410 2022-09-30
JP2022158410 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071024A1 true WO2024071024A1 (en) 2024-04-04

Family

ID=90477834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034690 WO2024071024A1 (en) 2022-09-30 2023-09-25 Power conversion device and motor module

Country Status (1)

Country Link
WO (1) WO2024071024A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064766A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2020090220A1 (en) * 2018-11-01 2020-05-07 株式会社デンソー Driving device for rotary electrical machine
WO2020095802A1 (en) * 2018-11-05 2020-05-14 株式会社デンソー Drive system
WO2022153941A1 (en) * 2021-01-13 2022-07-21 株式会社デンソー Motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064766A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2020090220A1 (en) * 2018-11-01 2020-05-07 株式会社デンソー Driving device for rotary electrical machine
WO2020095802A1 (en) * 2018-11-05 2020-05-14 株式会社デンソー Drive system
WO2022153941A1 (en) * 2021-01-13 2022-07-21 株式会社デンソー Motor control device

Similar Documents

Publication Publication Date Title
US7358698B2 (en) Field-winding type of synchronous machine
JP2006149153A (en) Controller for motor
WO2018110242A1 (en) Control device for rotating electrical machine, and rotating electrical machine system
JP6272797B2 (en) Motor drive control device and motor drive control method
JP2007074858A (en) Inverter device and refrigeration cycle device
WO2012098585A1 (en) Three-phase inverter for driving variable-speed electric machine
US5771166A (en) Asymmetrical bridge inverter circuit for driving a switched reluctance motor
JP2013150491A (en) Control device for switched reluctance motor
JP7218460B2 (en) 3-phase motor drive
JP6742393B2 (en) Electric power conversion device, generator motor control device, and electric power steering device
US6528964B2 (en) Method and system of reducing turn-off loss and noise in a switched reluctance motor drive
WO2024071024A1 (en) Power conversion device and motor module
JP5106888B2 (en) AC motor device for vehicle
JP4300209B2 (en) Inverter device
JP4016819B2 (en) Inverter device, drive control device, and drive control method
JP2014039446A (en) Pole change motor device
US10027252B2 (en) Rotating electric machine system
JP3783639B2 (en) AC generator motor for vehicle
JP2003324986A (en) Control method for three-phase brushless dc motor
JP2017112819A (en) Source resultant pulse number switching electrical machine
WO2019244212A1 (en) Variable-speed motor device
WO2018207719A1 (en) Variable speed motor device
JP2017131013A (en) Power conversion circuit
JP3167114B2 (en) Drive circuit for switched reluctance motor
JPWO2019038814A1 (en) Power conversion device and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872247

Country of ref document: EP

Kind code of ref document: A1