WO2018207719A1 - Variable speed motor device - Google Patents

Variable speed motor device Download PDF

Info

Publication number
WO2018207719A1
WO2018207719A1 PCT/JP2018/017591 JP2018017591W WO2018207719A1 WO 2018207719 A1 WO2018207719 A1 WO 2018207719A1 JP 2018017591 W JP2018017591 W JP 2018017591W WO 2018207719 A1 WO2018207719 A1 WO 2018207719A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
mode
coil
phase coil
double
Prior art date
Application number
PCT/JP2018/017591
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正一
Original Assignee
田中 正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/022502 external-priority patent/WO2018029989A1/en
Priority claimed from PCT/JP2017/027702 external-priority patent/WO2018142649A1/en
Application filed by 田中 正一 filed Critical 田中 正一
Priority to JP2019517604A priority Critical patent/JPWO2018207719A1/en
Publication of WO2018207719A1 publication Critical patent/WO2018207719A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • the present invention relates to a variable speed motor device, and more particularly to a variable speed electric machine for a vehicle having a double-ended three-phase coil.
  • Patent Document 1 proposes a double inverter type motor device.
  • the two legs connected to one phase coil are PWM driven in opposite phases.
  • Patent Document 2 proposes injecting a third harmonic current into a stator coil of a double inverter type motor apparatus.
  • Patent Document 3 proposes a double inverter type motor device in which a three-phase rectifier and a short-circuit transistor are further added. According to this motor device, each first terminal of the three-phase coil is connected to the first three-phase inverter, and each second terminal of the three-phase coil is connected to the second three-phase inverter and the three-phase full-wave rectifier. Connected in parallel. The short circuit transistor shorts a pair of DC terminals of the three-phase rectifier.
  • the second three-phase inverter In the star mode, the second three-phase inverter is turned off and the short-circuit transistor is turned on. Thereby, each 2nd terminal of a three phase coil makes the neutral point of a star-shaped connection three phase coil.
  • the short circuit transistor In delta mode, the short circuit transistor is turned off.
  • the two three-phase inverters output two three-phase voltages that are 120 degrees different from each other in electrical angle. Thus, the three phase coils form a delta connection.
  • the motor device can switch between a star connection and a delta connection.
  • this motor device requires the addition of a three-phase rectifier, a short-circuit transistor, and another three-phase inverter compared to a standard three-phase motor device.
  • the disadvantage of this motor device is an increase in manufacturing cost and power loss.
  • Patent Documents 4 and 5 filed by the present applicant propose a double inverter type pole doubling motor device in which a second three-phase coil is further added.
  • this motor device capable of multiplying the number of poles, each first terminal of the first three-phase coil is connected to the first three-phase inverter, and each second terminal of the first three-phase coil is the second 3 Connected to phase inverter. Further, the second three-phase coil is connected to the second three-phase inverter.
  • This motor device has a double pole mode in which the number of poles is doubled and a standard mode in which they are not doubled.
  • the first three-phase coil generates an electromotive force opposite to that in the standard mode in the double pole mode.
  • two three-phase coils are connected in series in the double pole mode and connected in parallel in the standard mode. This motor device can double both the number of poles and the number of turns in the double pole mode.
  • One object of the present invention is to provide a double-ended three-phase coil motor device capable of reducing power loss. Another object of the present invention is to provide a double-ended three-phase coil motor device that can compete with a standard three-phase motor device in the field of vehicle motor devices.
  • the two three-phase inverters are connected to a double-ended three-phase coil.
  • the controller has an H-bridge mode that drives the three phase coils of the double-ended three-phase coil independently of each other.
  • the controller further has a star mode in which one of the two three-phase inverters essentially outputs a neutral voltage.
  • the three legs of the three-phase inverter that outputs the neutral point voltage are synchronously controlled by essentially the same control signal. Thereby, current ripple can be reduced.
  • each leg of the two three-phase inverters switches between the PWM period and the potential fixing period at a predetermined interval. Thereby, the temperature difference between two three-phase inverters can be reduced.
  • the stator coil has a second three-phase coil connected to one of the two three-phase inverters.
  • the second three-phase coil is a star-connected three-phase coil or a second double-ended three-phase coil. This second double-ended three-phase coil is connected to a third three-phase inverter.
  • the controller has a series mode that essentially connects these two three-phase coils in series and a parallel mode that essentially connects these two three-phase coils in parallel. This improves the low speed torque and the effective speed range.
  • the stator coil further has a second three-phase coil.
  • the double-ended three-phase coil and the second three-phase coil are separately concentrated and wound around the two stator cores of the tandem motor.
  • the stator poles of the two stator cores are shifted from each other by a half stator pole pitch in the circumferential direction.
  • the two stator cores face a common saddle coil.
  • the two three-phase inverters are connected to a double-ended three-phase coil.
  • the controller has an H-bridge mode that drives the three phase coils of the double-ended three-phase coil independently of each other.
  • each phase coil of the double-ended three-phase coil is connected to the PWM leg and the potential fixing leg.
  • the PWM leg is switched by a pulse width modulation method. Either of the two arm transistors of the potential fixing leg always maintains the on state.
  • the double-ended three-phase coil is connected to a three-phase inverter and a three-phase rectifier.
  • the pair of DC terminals of the three-phase rectifier is connected to the pair of DC terminals of the three-phase inverter through a backflow prevention diode.
  • a pair of DC terminals of the three-phase rectifier are short-circuited by a short-circuit transistor.
  • the three-phase inverter supplies a three-phase current to the double-ended three-phase coil.
  • the three-phase inverter and the three-phase rectifier rectify the three-phase voltage generated by the double-ended three-phase coil.
  • the double-ended three-phase coil is connected to a three-phase inverter and a three-phase rectifier.
  • the three-phase rectifier is connected to a star-connected three-phase coil.
  • the three-phase inverter supplies a three-phase current to a double-ended three-phase coil and a star-connected three-phase coil that are essentially connected in series.
  • the three-phase inverter outputs a neutral point voltage.
  • the double-ended three-phase coil and the star-connected three-phase coil are essentially connected in parallel.
  • the double-ended three-phase coil and the star-connected three-phase coil are wound separately on two stator cores arranged in tandem.
  • the two stator cores separately face different Landel rotor cores.
  • the direction of the field current supplied to the field coil wound around one of the two Randell rotor cores is reversed when the mode is switched.
  • FIG. 1 is a wiring diagram showing the motor device of the first embodiment.
  • FIG. 2 is a flowchart showing a mode selection routine.
  • FIG. 3 is a timing chart showing an average waveform of three-phase voltages in the star mode.
  • FIG. 4 is a schematic wiring diagram showing the star mode.
  • FIG. 5 is a schematic wiring diagram showing the star mode.
  • FIG. 6 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 7 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 8 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 9 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 10 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 11 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 12 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 13 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 14 is a timing chart showing the states of the six legs.
  • FIG. 15 is a schematic wiring diagram showing a conventional three-phase motor device.
  • FIG. 16 is a schematic wiring diagram showing the H-bridge mode.
  • FIG. 17 is a wiring diagram showing the serial mode of the second embodiment.
  • FIG. 18 is a wiring diagram showing the parallel mode of the second embodiment.
  • FIG. 19 is a wiring diagram showing the series star mode of the third embodiment.
  • FIG. 20 is a wiring diagram showing the series H-bridge mode of the third embodiment.
  • FIG. 21 is a wiring diagram showing the parallel star mode of the third embodiment.
  • FIG. 22 is a wiring diagram showing the parallel H-bridge mode of the third embodiment.
  • FIG. 23 is a cross-sectional view showing a tandem concentrated winding induction motor.
  • FIG. 24 is an axial sectional view showing a saddle-shaped rotor.
  • FIG. 25 is a side view showing the front stator core.
  • FIG. 26 is a side view showing the rear stator core.
  • FIG. 27 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces in the double pole mode.
  • FIG. 28 is a vector diagram showing six phase magnetic fields.
  • FIG. 29 is a side view showing the front stator core.
  • FIG. 30 is a side view showing the rear stator core.
  • FIG. 31 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces in the double phase mode.
  • FIG. 32 is a vector diagram showing phase magnetic field vectors.
  • FIG. 33 is a wiring diagram showing the motor mode of the fourth embodiment.
  • FIG. 34 is a wiring diagram showing the power generation mode of the fourth embodiment.
  • FIG. 35 is a wiring diagram showing the motor mode of the fifth embodiment.
  • FIG. 36 is a wiring diagram showing the power generation mode of the fifth embodiment.
  • FIG. 37 is an axial sectional view showing a starter generator.
  • FIG. 38 is a development view showing the arrangement of the rotor poles.
  • FIG. 39 is a wiring diagram showing the rotor circuit.
  • FIG. 40 is a side view showing the terminal ring.
  • FIG. 41 is a development view showing the arrangement of the stator coils in the motor mode.
  • FIG. 42 is a development view showing the arrangement of the stator coils in the power generation mode.
  • FIG. 1 is a wiring diagram showing a double-ended three-phase coil motor device used as a traction motor.
  • a traction motor including a three-phase synchronous motor or a three-phase induction motor has a stator coil 1.
  • the stator coil 1 composed of a double-ended three-phase coil is composed of a U-phase coil 1U, a V-phase coil 1V, and a W-phase coil 1W.
  • Stator coil 1 is connected to two three-phase inverters 3 and 4.
  • the inverter 3 consists of legs 3U, 3V and 3W.
  • the inverter 4 consists of legs 4U, 4V and 4W.
  • each of the six legs 3U-4W comprises an upper arm switch and a lower arm switch connected in series.
  • Each arm switch consists of an IGBT with an anti-parallel diode.
  • the U-phase coil 1U connects the AC terminals of the legs 3U and 4U.
  • the V-phase coil 1V connects the leg 3V and 4V AC terminals.
  • the W-phase coil 1W connects the leg 3W and 4W AC terminals.
  • a DC link voltage Vd is applied to the inverters 3 and 4.
  • Leg 3U outputs phase voltage VU
  • leg 3V outputs phase voltage VV
  • leg 3W outputs phase voltage VW.
  • Leg 4U outputs phase voltage VU2
  • leg 4V outputs phase voltage VV2
  • leg 4W outputs phase voltage VW2.
  • the controller 100 performs pulse width modulation (PWM) control on the inverters 3 and 4.
  • PWM pulse width modulation
  • the controller 100 has a star mode and an H bridge mode.
  • FIG. 2 is a flowchart showing a mode selection routine of the controller 100. Step S100 determines whether a high torque value exceeding a predetermined value is required. When a high torque value is required, the star mode is executed (S102), otherwise the H bridge mode is executed (S104).
  • FIG. 3 is a timing chart showing average waveforms of the three-phase voltages VU, VV, and VW in the star mode.
  • the three legs 4U, 4V, and 4W of the inverter 4 operating as a neutral point output a neutral point voltage Vn.
  • the neutral point voltage Vn means a neutral point voltage of a conventional Wye-connected three-phase coil.
  • a common PWM duty ratio is applied to legs 4U, 4V, and 4W. As a result, the legs 4U, 4V, and 4W output the average output voltage Vn that is equal to each other.
  • FIG. 4 shows an example of a period during which the upper arm transistors of the legs 4U, 4V, and 4W are turned on.
  • a part of the U-phase current IU flowing from the phase coil 1U to the leg 4U becomes a V-phase current IV flowing to the phase coil 1V through the leg 4V.
  • the other part of the U-phase current IU is a W-phase current IW that flows to the phase coil 1W through the leg 4W.
  • FIG. 5 shows an example of a period during which the lower arm transistors of the legs 4U, 4V, and 4W are turned on.
  • a part of the U-phase current IU flowing from the phase coil 1U to the leg 4U becomes a V-phase current IV flowing to the phase coil 1V through the leg 4V.
  • the other part of the U-phase current IU is a W-phase current IW that flows to the phase coil 1W through the leg 4W.
  • this star mode has substantially the same circuit configuration as a conventional star-connected three-phase coil.
  • the inverter 4 preferably outputs the neutral point voltage Vn shown in FIG. 3, but it is also possible to output an intermediate DC voltage having an amplitude such as 0.5 Vd. .
  • the H-bridge mode According to the H bridge mode, one of the two legs connected to each phase coil is PWM-controlled. This leg is called the PWM leg. The other one of the two legs is fixed at DC link voltage Vd or 0V. This leg is called a potential fixing leg. In other words, the potential fixing leg outputs a high potential (Vd) or a low potential (0 V) of the DC power supply.
  • Each PWM cycle period is equal to the sum of the current supply period Ts and the freewheeling period Tf.
  • the PWM duty ratio is (Ts / (Ts + Tf)).
  • FIGS. 10 to 13 are wiring diagrams showing the operation of the legs 3U and 4U connected to the U-phase coil 1U.
  • 6 to 9 are wiring diagrams showing a positive half-wave period in which a U-phase current flows from the leg 3U to the U-phase coil 1U.
  • FIGS. 10 to 13 are wiring diagrams showing a negative half-wave period in which a U-phase current flows from the leg 4U to the U-phase coil 1U.
  • Leg 3V and 4V operation and leg 3W and 4W operation are essentially the same as leg 3U and 4U.
  • the leg 3U has an upper arm transistor 3UU and a lower arm transistor 3UL.
  • the leg 4U has an upper arm transistor 4UU and a lower arm transistor 4UL.
  • the leg 3U is a PWM leg
  • the leg 4U is a potential fixing leg.
  • the lower arm transistor 4UL of the leg 4U is always turned on. 6 shows a current supply period Ts in which the upper arm transistor 3UU is turned on, and FIG. 7 shows a freewheeling period Tf in which the lower arm transistor 3UL is turned on.
  • FIG. 8 shows a current supply period Ts in which the lower arm transistor 4UL is turned on
  • FIG. 9 shows a freewheeling period Tf in which the upper arm transistor 4UU is turned on.
  • FIG. 10 shows a current supply period Ts in which the upper arm transistor 4UU is turned on
  • FIG. 11 shows a freewheeling period Tf in which the lower arm transistor 4UL is turned on.
  • FIG. 12 and 13 showing the PWM mode P4, the leg 3U is a PWM leg, and the leg 4U is a potential fixing leg.
  • the upper arm transistor 4UU of the leg 4U is always turned on.
  • 12 shows a current supply period Ts in which the lower arm transistor 3UL is turned on
  • FIG. 13 shows a freewheeling period Tf in which the upper arm transistor 3UU is turned on.
  • FIG. 14 is a timing chart showing the states of the six legs 3U-4W.
  • the six legs 3U-4W become PWM legs in one PWM cycle period equal to an electrical angle of 360 degrees, and become potential fixing legs in the next PWM cycle period.
  • the upper arm transistor of the potential fixing leg is turned on in half of the PWM cycle period in which the potential fixing leg is formed. In the remaining half of the PWM cycle period in which the potential fixing leg is formed, the lower arm transistor of the potential fixing leg is turned on.
  • FIG. 15 is a schematic wiring diagram showing a three-phase inverter 30 for driving a conventional star-connected three-phase coil 37.
  • the three-phase inverter 30 includes a U-phase leg 31, a V-phase leg 32, and a W-phase leg 33.
  • the three-phase coil 37 includes a U-phase coil 34, a V-phase coil 35, and a W-phase coil 36.
  • Each of the phase coils 34-36 includes two coils 200 connected in parallel.
  • Each of the coils 200 has a predetermined winding value N.
  • Each arm switch of the three legs 31-33 has two transistors 300 connected in parallel.
  • FIG. 16 is a schematic wiring diagram showing the H-bridge mode.
  • Each of the phase coils 1U-1W includes two coils 200 connected in series.
  • the utilization factor of the power supply voltage is doubled as compared with the conventional three-phase inverter shown in FIG. Therefore, the current flowing through each coil 200 shown in FIG. 15 is equal to the current flowing through each coil 200 shown in FIG.
  • the H-bridge mode can have twice as many turns as a conventional star-connected three-phase coil.
  • the double-ended three-phase coil shown in FIG. 16 requires two three-phase inverters 3 and 4.
  • each of the three-phase inverters 3 and 4 can have half the current capacity of the three-phase inverter 30 shown in FIG.
  • the two inverters 3 and 4 that drive the double-ended three-phase coil have the same circuit scale as the conventional three-phase inverter that drives the star-connected three-phase coil.
  • the inverter loss in the H-bridge mode is greatly reduced as compared with the conventional three-phase inverter. This is because one of the two three-phase inverters 3 and 4 is a potential fixing leg, and only the other of the two three-phase inverters 3 and 4 is PWM-switched.
  • the winding value of the stator coil 1 in the star mode is 173% as compared with the H bridge mode.
  • the torque can be greatly increased without increasing the current of the DC power supply.
  • the star mode is selected in the low speed and high torque region of the traction motor.
  • FIGS. 17 and 18 are wiring diagrams showing a double-ended three-phase coil motor device used as a traction motor.
  • the second stator coil 2 is added to the motor device of the first embodiment shown in FIG.
  • This second stator coil is composed of three phase coils 2U, 2V and 2W connected in a star shape.
  • Phase coil 2U is connected to the AC terminal of leg 4U.
  • the phase coil 2V is connected to the AC terminal of the leg 4V.
  • Phase coil 2W is connected to the AC terminal of leg 4W.
  • the neutral point of the second stator coil 2 has a neutral point potential Vn.
  • the controller 100 has a serial mode and a parallel mode.
  • the serial mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U phase coil 1U has the same direction as the counter electromotive force VU2 of the U phase coil 2U.
  • the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W.
  • the inverter 4 is stopped and the inverter 3 applies a three-phase voltage to the stator coils 1 and 2.
  • the six phase coils 1U-2W have the same number of turns. Therefore, according to this series mode, inverter 3 is connected to a star-connected three-phase coil having twice the number of turns as compared with stator coil 1.
  • the parallel mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U.
  • the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W.
  • the inverter 3 is driven by the star mode shown in FIGS. Thereby, each leg 3U, 3V, and 3W of the inverter 3 outputs the neutral point voltage Vn, respectively. Therefore, the stator coil 1 is a star-connected three-phase coil.
  • the inverter 4 can supply a three-phase current to the stator coils 1 and 2 connected in parallel.
  • the parallel mode can halve the number of turns compared to the series mode.
  • Reversing the counter electromotive force of the stator coil 1 means that the first three-phase current supplied to the stator coil 1 has an opposite phase compared to the second three-phase current supplied to the stator coil 2. means. Thereby, the effective speed range or low-speed torque of a motor apparatus can be improved.
  • FIGS. 19 and 20 are wiring diagrams showing a double-ended three-phase coil motor device used as a traction motor.
  • the third three-phase inverter 5 is added to the motor device of the second embodiment shown in FIGS. 17 and 18.
  • the stator coil 2 is a double-ended three-phase coil.
  • the third inverter 5 includes a U-phase leg 5U, a V-phase leg 5V, and a W-phase leg 5W.
  • Leg 5U is connected to U-phase coil 2U
  • leg 5V is connected to V-phase coil 2V
  • leg 5W is connected to W-phase coil 2W.
  • stator coil 1 composed of a double-ended three-phase coil is connected to the three-phase inverters 3 and 4.
  • a stator coil 2 composed of a double-ended three-phase coil is connected to three-phase inverters 4 and 5.
  • the controller 100 has a serial star mode, a serial H bridge mode, a parallel star mode, and a parallel H bridge mode.
  • the serial star mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U phase coil 1U has the same direction as the counter electromotive force VU2 of the U phase coil 2U.
  • the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W.
  • the inverter 4 is stopped and the inverter 3 applies a three-phase voltage to the stator coils 1 and 2. Further, the inverter 5 is driven in the star mode shown in FIGS.
  • each leg 5U, 5V, and 5W of the inverter 5 outputs the neutral point voltage Vn.
  • the stator coil 2 is a star-connected three-phase coil.
  • the inverter 3 can supply a three-phase current to the stator coils 1 and 2 connected in series for each phase.
  • the inverter 3 is connected to a star-connected three-phase coil having a winding value of 2N for the phase coil.
  • the serial H-bridge mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U-phase coil 1U has the same direction as the counter electromotive force VU2 of the U-phase coil 2U.
  • the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W.
  • the inverter 4 is stopped, and the inverters 3 and 5 are operated in the H-bridge mode shown in FIGS.
  • the parallel star mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U.
  • the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W.
  • the inverters 3 and 5 are driven in the star mode shown in FIGS. 4 and 5, respectively.
  • the legs 3U, 3V, and 3W of the inverter 3 each output the neutral point voltage Vn.
  • the legs 5U, 5V, and 5W of the inverter 5 each output a neutral point voltage Vn.
  • Stator coils 1 and 2 are each a star-connected three-phase coil.
  • the inverter 4 applies a three-phase voltage to the stator coils 1 and 2 connected in parallel for each phase.
  • the inverter 4 is connected to a star-connected three-phase coil whose phase coil winding value is N.
  • the parallel H-bridge mode is described with reference to FIG.
  • the counter electromotive force VU1 of the U phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U phase coil 2U.
  • the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W.
  • the inverters 3 and 4 are operated in the H-bridge mode shown in FIGS.
  • the inverters 4 and 5 are also operated in the H-bridge mode shown in FIGS. Inverters 3 and 5 operate synchronously.
  • the equivalent winding value of the motor can be changed in four stages according to the counter electromotive force of the phase coil.
  • FIG. 23 is a cross-sectional view showing a tandem concentrated winding induction motor.
  • the front motor 7 and the rear motor 8 housed in the housing 50 are tandemly arranged in the axial direction of the common rotary shaft 12.
  • the front motor 7 has a front stator core 71, a stator coil 1, a front rotor core 73, and a common saddle coil 9.
  • the front stator core 71 is fixed to the housing 50.
  • the stator coil 1 is wound around the front stator core 71.
  • the front rotor core 73 is fixed to the rotating shaft 12.
  • the rear motor 8 has a rear stator core 81, a stator coil 2, a rear rotor core 83, and a common saddle coil 9.
  • the rear stator core 81 is fixed to the housing 500.
  • the stator coil 2 is wound around the rear stator core 81.
  • the rear rotor core 83 is fixed to the rotating shaft 12.
  • the stator cores 71 and 81 sandwich a nonmagnetic spacer 15 fixed to the housing 50.
  • the rotor cores 73 and 83 sandwich a nonmagnetic spacer 16 fixed to the rotating shaft 12.
  • the annular spacers 15 and 16 can be omitted. Each one coil end of the stator coils 1 and 2 is accommodated in an idle space formed by the spacers 15 and 16.
  • FIG. 24 is an axial sectional view showing a saddle-shaped rotor.
  • the saddle-shaped coil 9 formed by die casting is composed of a large number of conductor bars 91 and two end rings 92.
  • Each conductor bar 91 extending substantially in the axial direction is separately accommodated in each slot of the rotor cores 73 and 83.
  • Each conductor bar 91 passes through one slot of each of the rotor cores 73 and 83 in order.
  • One end of the annular end ring 92 is connected to the front end of the conductor bar 91, and the other is connected to the rear end of the conductor bar 91.
  • Each end ring 92 has wings 93 formed radially.
  • the rotating wing part 93 forms an air flow indicated by an arrow.
  • This tandem induction motor employs a pole number switching technique for switching the number of stator poles.
  • This pole number switching technique includes a double pole mode in which the number of stator poles is doubled and a double phase mode in which the number of stator phases is doubled.
  • the double pole mode is described with reference to FIGS.
  • FIG. 25 is a side view showing the front stator core 71.
  • the front stator core 71 has six stator poles 72 projecting radially inward from an annular yoke 75.
  • the stator pole 72 is called a front salient pole.
  • Each stator pole 72 has a magnetic pole surface 74 that faces the front rotor core 73.
  • the three phase coils 1U, 1V, and 1W of the stator coil 1 are concentrated and wound around the six stator poles 72 in order.
  • the mechanical angle between the two stator poles 72 adjacent to each other is 60 degrees.
  • FIG. 26 is a side view showing the rear stator core 81.
  • the rear stator core 81 has six stator poles 82 projecting radially inward from an annular yoke 85.
  • the stator pole 82 is called a rear salient pole.
  • Each stator pole 82 has a magnetic pole surface 84 that faces the rear rotor core 83.
  • Three phase coils 2U, 2V and 2W of the stator coil 2 are concentrated and wound around the six stator poles 82 in order.
  • the mechanical angle between the two stator poles 82 adjacent to each other is 60 degrees.
  • the stator pole 82 is shifted in the circumferential direction by a mechanical angle of 30 degrees corresponding to a half pole pitch with respect to the stator pole 72.
  • the skew angle of each conductor bar 91 is zero.
  • the stator pole 72 can be shifted in the circumferential direction compared to the stator pole 82.
  • FIG. 27 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces 74 and 84 in the double pole mode. This arrangement is called a double pole arrangement.
  • the dashed lines shown in the pole faces 74 and 84 indicate the minimum circumferential width of the stator poles 72 and 82.
  • the phase coil 2V is arranged at an intermediate position between the phase coils 1U and 1W in the circumferential direction.
  • the phase coil 2U is arranged at an intermediate position between the phase coils 1W and 1V in the circumferential direction.
  • the phase coil 2W is arranged at an intermediate position between the phase coils 1V and 1U in the circumferential direction.
  • the circumferential distance between the two in-phase coils of the stator coils 1 and 2 is equal to 1.5 times the stator pole pitch.
  • phase magnetic fields U, V, W formed by the stator coils 1 and 2 on the magnetic pole surfaces 74 and 84 form a rotating magnetic field. Therefore, the electrical angle of this rotating magnetic field of 360 degrees corresponds to 1.5 times the stator pole pitch.
  • Each of the magnetic pole surfaces 74 and 84 has a circumferential width substantially corresponding to an electrical angle of 180 degrees.
  • a slot between two magnetic pole faces 74 adjacent to each other has a circumferential width substantially corresponding to an electrical angle of 60 degrees.
  • the current IU flowing through the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74.
  • the phase current IW flowing through the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74.
  • the phase current IV flowing through the phase coil 1 ⁇ / b> V forms a phase magnetic field V on the magnetic pole surface 74.
  • the phase current IU flowing through the phase coil 2 ⁇ / b> U forms a phase magnetic field U on the magnetic pole surface 84.
  • the phase current IW flowing through the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84.
  • the phase current IV flowing through the phase coil 2V forms a phase magnetic field V on the magnetic pole surface 84.
  • the electrical angle of 360 degrees is divided into six angular regions by the angular positions P1-P6.
  • the electrical angle between two angular positions adjacent to each other is 60 degrees.
  • the phase magnetic field -V is synthesized in the first region (P1-P2), the phase magnetic field U is formed in the second region (P2-P3), and the phase magnetic field -W is synthesized in the third region (P3-P4).
  • the phase magnetic field V is formed in the fourth region (P4-P5), the phase magnetic field -U is combined with the fifth region (P5-P6), and the phase magnetic field W is formed in the sixth region (P6-P1).
  • FIG. 28 is a vector diagram showing six phase magnetic fields -V, U, -W, V, -U, and W.
  • Six phase magnetic field vectors separated from each other by an electrical angle of 60 degrees are formed within an electrical angle of 360 degrees.
  • FIG. 29 is a side view showing the front stator core 71.
  • FIG. 30 is a side view showing the rear stator core 81.
  • FIG. 29 is essentially the same as FIG. 25, and
  • FIG. 30 is essentially the same as FIG.
  • the phase of each phase current supplied to each phase coil 1U-2W is changed.
  • -U phase current -IU has opposite phase to U phase current IU
  • -V phase current -IV has opposite phase to V phase current IV
  • -W phase current -IW has opposite phase to W phase current IW .
  • FIG. 31 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces 74 and 84 in the double phase mode.
  • This arrangement is called a double phase arrangement.
  • Phase current IU is supplied to phase coil 1U
  • phase current IV is supplied to phase coil 1W
  • phase current IW is supplied to phase coil 1V.
  • the phase current -IU is supplied to the phase coil 2U
  • the -phase current -IW is supplied to the phase coil 2V
  • the phase current -IV is supplied to the phase coil 2W.
  • the three magnetic pole surfaces 74 form the phase magnetic fields U, V, and W in order
  • the three magnetic pole surfaces 84 form the phase magnetic fields -U, -V, and -W in order.
  • the electrical angle of 360 degrees is divided into 12 angular regions by the angular positions P1 to P12.
  • the electrical angle between two adjacent ones of the angular positions P1 to P12 is 30 degrees.
  • a phase magnetic field (U-V) is synthesized in the first region (P1-P2).
  • a phase magnetic field U is formed in the second region (P2-P3).
  • the phase magnetic field (U-W) is synthesized in the third region (P3-P4).
  • a phase magnetic field -W is formed in the fourth region (P4-P5).
  • the phase magnetic field (V-W) is synthesized in the fifth region (P5-P6).
  • a phase magnetic field V is formed in the sixth region (P6-P7).
  • phase magnetic field (V-U) is synthesized in the seventh region (P7-P8).
  • the phase magnetic field -U is formed in the eighth region (P8-P9).
  • the phase magnetic field (W-U) is synthesized in the ninth region (P9-P10).
  • a phase magnetic field W is formed in the tenth region (P10-P11).
  • the phase magnetic field (W-V) is synthesized in the eleventh region (P11-P12).
  • the phase magnetic field -V is formed in the twelfth region (P12-P1).
  • twelve phase magnetic field vectors are formed within an electrical angle of 360 degrees.
  • FIG. 32 is a vector diagram showing these phase magnetic field vectors.
  • the controller 100 executes switching control between the double pole mode and the double phase mode.
  • This switching control called pole number switching technique is executed by adjusting the phase of each phase current supplied to the six phase coils 1U-2W.
  • the double pole mode is selected in the low speed and high torque region.
  • the series mode of the second embodiment and the series star mode and the series H-bridge mode of the third embodiment are preferably executed together with the double pole mode.
  • the parallel mode of the second embodiment and the parallel star mode and the parallel H-bridge mode of the third embodiment are preferably executed together with the double phase mode.
  • the number of poles and the number of turns of the stator coil can be doubled as compared with the double phase mode.
  • the W-phase current IW is supplied to the phase coils 1W and 2W, and the V-phase current IV is supplied to the phase coils 1V and 2V.
  • the V phase current IV is supplied to the phase coil 1W, and the -V phase current -IV is supplied to the phase coil 2W.
  • the W-phase current IW is supplied to the phase coil 1V, and the -W-phase current -IW is supplied to the phase coil 2V. This prevents reversal of the rotating direction of the rotating magnetic field.
  • FIG. 33 is a wiring diagram showing a double-ended three-phase coil motor device used as a starter generator.
  • a short-circuit rectifier 4A is employed instead of the three-phase inverter 3 shown in FIG.
  • the short-circuit rectifier 4A includes a three-phase rectifier 40, a backflow prevention diode 41-42, and a short-circuit transistor 43.
  • This motor device has a motor mode and a power generation mode.
  • the battery 300 applies a battery voltage of 48V to the inverter 3.
  • the three-phase rectifier 40 includes a U-phase diode leg 4U, a V-phase diode leg 4V, and a W-phase diode leg 4W.
  • the three-phase rectifier 40 has a circuit configuration in which the six transistors of the inverter 3 shown in FIG. 1 are omitted.
  • the anode electrode of the backflow prevention diode 41 is connected to the high potential side DC terminal of the three-phase rectifier 40, and the cathode electrode thereof is connected to the high potential side DC terminal of the inverter 3.
  • the cathode electrode of the backflow prevention diode 42 is connected to the DC terminal on the low potential side of the three-phase rectifier 40, and the anode electrode thereof is connected to the DC terminal on the low potential side of the inverter 3.
  • the short circuit transistor 43 shorts the two DC terminals of the three-phase rectifier 40.
  • the motor mode employed for starting the engine will be described with reference to FIG. According to this motor mode, the short-circuit transistor 43 is turned on, and the inverter 3 applies a three-phase voltage to the stator coil 1. Since the short-circuit transistor 43 is turned on, the three-phase rectifier 40 and the short-circuit transistor 43 change the stator coil 1 that is a double-ended three-phase coil to a star-connected three-phase coil. In other words, the short-circuit rectifier 4A forms the neutral point of the star-connected three-phase coil.
  • the potential of the short-circuit rectifier 4A becomes the neutral point potential Vn of the star-connected three-phase coil. Since the neutral point potential Vn is lower than the positive voltage (48V) of the battery 300, the backflow prevention diode 41 is turned off. Since the neutral point potential Vn is higher than the negative voltage (0 V) of the battery 300, the backflow prevention diode 42 is turned off. Eventually, the short-circuit rectifier 4A performs the same operation as the neutral point forming operation of the inverter 4 shown in FIGS. Since the stator coil 1 is star-connected, the engine starting torque can be improved without increasing the current.
  • the power generation mode will be described with reference to FIG. According to this power generation mode, the short-circuit transistor 43 is turned off. As a result, the three-phase voltage generated by the stator coil 1 is rectified in the H-bridge mode by the three-phase inverter 3 and the three-phase rectifier 40.
  • FIG. 34 shows the generated current IG in the phase period in which the amplitude of the generated voltage of the U-phase coil 1U is maximum. The generated current IG is supplied to the battery 300 through the leg 3U, the phase coil 1U, and the leg 4U.
  • the copper loss of the stator coil 1 in the power generation mode is greatly reduced by the reduction in the number of turns in the H bridge mode described above.
  • a feature of this embodiment is that the three-phase rectifier 40 that performs the rectification operation in the power generation mode that adopts the H-bridge mode is one of the short-circuit rectifiers 4A for changing the double-ended three-phase coil to a star-connected three-phase coil. It is in the point which makes a part. By using the motor mode using the star connection coil in the low speed region, the power generation operation can be executed.
  • FIG. 35 is a wiring diagram showing another double-ended three-phase coil motor device used as a starter generator.
  • the second stator coil 2 is added to the motor device of the fourth embodiment shown in FIG.
  • the second stator coil 2 includes three phase coils 2U, 2V, and 2W connected in a star shape.
  • Phase coil 2U is connected to the AC terminal of leg 4U.
  • the phase coil 2V is connected to the AC terminal of the leg 4V.
  • Phase coil 2W is connected to the AC terminal of leg 4W.
  • the neutral point of the second stator coil 2 has a neutral point potential Vn.
  • the short-circuit transistor 43 and the backflow prevention diode 41-42 shown in FIG. 33 are omitted.
  • the controller 100 has a motor mode and a power generation mode.
  • the inverter 3 applies a three-phase voltage to the stator coils 1 and 2.
  • the six phase coils 1U-2W have the same number of turns. Therefore, according to this motor mode, it is understood that the inverter 3 is connected to a star-connected three-phase coil having twice the number of turns as the stator coil 1.
  • the power generation mode will be described with reference to FIG.
  • the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U.
  • the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V.
  • Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W.
  • the inverter 3 is driven in the star mode shown in FIGS. Thereby, each leg 3U, 3V, and 3W of the inverter 3 outputs the neutral point voltage Vn, respectively.
  • Stator coil 1 is a star-connected three-phase coil.
  • the three-phase rectifier 4 rectifies the three-phase generated voltage of the stator coils 1 and 2 connected in parallel.
  • the copper loss in the power generation mode is 1/4 compared with the copper loss in the motor mode.
  • FIG. 37 is an axial sectional view showing this starter generator.
  • the stator coil 1 is concentrated around the stator core 71, and the stator coil 2 is concentrated around the stator core 81.
  • the front motor 7 has a Landel type rotor core 73 around which a field coil 730 is wound.
  • the rear motor 8 has a Landel type rotor core 83 around which a field coil 830 is wound.
  • Each of the Landel rotor cores 73 and 83 is essentially the same as a conventional Landel rotor core.
  • the rotor core 73 includes a core 731 and a core 732. Each of the cores 731 and 732 has an L-shaped rotor pole 733 extending from the boss portion.
  • the rotor core 83 includes a core 831 and a core 832. Each of the cores 831 and 832 has an L-shaped rotor pole 833 extending from the boss portion.
  • the cores 732 and 831 can be made integrally.
  • the field coil 730 magnetizes the rotor pole 733, and the field coil 830 magnetizes the rotor pole 833.
  • FIG. 38 is a development view showing the arrangement of the rotor poles 733 and 833.
  • the rotor pole 733 of the core 731 and the rotor pole 833 of the core 832 are arranged at odd-numbered positions in the circumferential direction.
  • the rotor pole 733 of the core 732 and the rotor pole 833 of the core 831 are arranged at even-numbered positions in the circumferential direction.
  • the rotor pole 733 of the core 731 has an N pole
  • the rotor pole 733 of the core 732 has an S pole.
  • the rotor pole 833 of the core 831 has an S pole in the engine start mode and an N pole in the power generation mode.
  • the rotor pole 833 of the core 832 has an N pole in the engine start mode and an S pole in the power generation mode.
  • FIG. 39 is a wiring diagram showing a rotor circuit for supplying a field current to the field coils 730 and 830.
  • This rotor circuit includes a single-phase full bridge (H bridge) 11 and a diode circuit 13.
  • the H bridge 11 fixed to the housing 50 includes two switch legs 111 and 112.
  • the diode circuit 13 includes a diode pair 130 for voltage drop, two parallel diodes 131 and 132, and a series diode 133.
  • the diode pair 130 composed of two diodes connected in reverse parallel can be omitted.
  • One end of the field coil 830 is connected to the output terminal of the switch leg 111 through the diode pair 130 and the slip ring 17.
  • the slip ring 17 is connected to the anode electrode of the parallel diode 131.
  • the other end of the field coil 830 is connected to the anode electrode of the parallel diode 132 and one end of the field coil 730.
  • the other end of the field coil 730 is connected to the cathode electrode of the parallel diode 131 and the cathode electrode of the series diode 133.
  • the anode electrode of the series diode 133 and the cathode electrode of the parallel diode 132 are connected to the output terminal of the switch leg 112 through the slip ring 18.
  • FIG. 40 is a side view showing the terminal ring 19 incorporating the diode circuit 13.
  • This terminal ring 19 fixed to the rotary shaft 12 has two terminals 134 to which one ends of the field coils 730 and 830 are separately connected. Further, the terminal ring 19 has two terminals (not shown) that are separately connected to the slip rings 17 and 18.
  • the H bridge 11 is fixed to the housing 5.
  • the field current flows from the switch leg 111 to the switch leg 112.
  • the field coils 830 and 730 are connected in parallel. For this reason, the field current can rise rapidly in the early stage of engine start.
  • the field current flows from the switch leg 112 to the switch leg 111 in the power generation mode.
  • the two field coils 830 and 730 are connected in series.
  • the direction of the field current flowing through the field coil 730 is unchanged, and the direction of the field current flowing through the field coil 830 is opposite. Therefore, when mode switching between the engine start mode and the power generation mode is commanded, the polarity of the rotor pole 833 is reversed.
  • the stator coil 1 is composed of phase coils 1U, 1V, and 1W separated from each other by an electrical angle of 120 degrees.
  • the stator coil 2 is composed of phase coils 2U, 2V, and 2W separated from each other by an electrical angle of 120 degrees.
  • the phase coils 1U-1W are wound around the stator pole 74 in order.
  • the phase coils 2U-2W are wound around the stator pole 84 in order.
  • Phase coils 1U and 2U have the same circumferential position
  • phase coils 1V and 2V have the same circumferential position
  • phase coils 1W and 2W have the same circumferential position.
  • Phase coil 1U generates back electromotive force VU1
  • phase coil 1V generates back electromotive force VV1
  • phase coil 1W generates back electromotive force VW1.
  • phase coil 2U generates counter electromotive force VU2
  • phase coil 2V generates counter electromotive force VV2
  • phase coil 2W generates counter electromotive force VW2.
  • the rotor poles 733 and 833 of the cores 731 and 832 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 831 have an S pole.
  • the counter electromotive forces VU1 and VU2 are in phase with each other
  • the counter electromotive forces VV1 and VV2 are in phase with each other
  • the counter electromotive forces VW1 and VW2 are in phase with each other.
  • this engine start mode in which the stator coils 1 and 2 generate the same three-phase counter electromotive force, generates the same three-phase counter electromotive force as that of the conventional three-phase concentrated winding motor.
  • the counter electromotive force in the power generation mode will be described with reference to FIG.
  • these back electromotive forces mean the generated voltage of each phase.
  • the rotor poles 733 and 833 of the cores 731 and 831 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 832 have an S pole.
  • the counter electromotive forces VU1 and VU2 are in opposite phases
  • the counter electromotive forces VV1 and VV2 are in opposite phases
  • VW1 and VW2 are in opposite phases. Therefore, according to this power generation mode, six back electromotive force vectors are formed within an electrical angle of 360 degrees.
  • the tandem stator has a double phase arrangement.
  • the inverter 3 supplies a three-phase current to the stator coils 1 and 2.
  • the inverter 3 preferably outputs a three-phase rectangular wave voltage.
  • the stator coils 1 and 2 substantially constitute one synthetic star coil.
  • the U-phase coil of this synthetic star coil is composed of phase coils 1U and 2U connected in series.
  • the counter electromotive forces of the phase coils 1U and 2U are in the same direction in the engine start mode.
  • the V-phase coil of this synthetic star coil consists of phase coils 1V and 2V connected in series.
  • the counter electromotive forces of the phase coils 1V and 2V are in the same direction in the engine start mode.
  • the W-phase coil of this synthetic star coil is composed of phase coils 1W and 2W connected in series.
  • the counter electromotive forces of the phase coils 1W and 2W are in the same direction in the engine start mode.
  • Each feature of the above described embodiment is further described.
  • Each embodiment employs a two-level voltage source three-phase inverter with a simple structure and low loss.
  • the two three-phase inverters of the first embodiment shown in FIG. 1 execute an H-bridge mode and a star mode. Either of the two three-phase inverters is substantially the neutral point of the star-connected three-phase coil in the star mode. Thereby, the number of turns of the stator coil can be substantially switched.
  • the first embodiment discloses an H-bridge mode in which one of two three-phase inverters is PWM-driven and the other upper arm transistor and lower arm transistor are alternately turned on every electrical angle of 180 degrees.
  • the second embodiment shown in FIG. 17 has a second stator coil composed of a star-connected three-phase coil connected to one of two three-phase inverters.
  • the direction of the counter electromotive force of the two stator coils is the same for each phase in the series mode and opposite for each phase in the parallel mode.
  • the direction switching of the counter electromotive force is performed by switching the number of poles of the motor.
  • a second double-ended three-phase coil and a third three-phase inverter are added to the first embodiment.
  • the switching of the number of stator poles suitable for the second and third embodiments requires switching of the number of rotor poles.
  • the tandem concentrated winding motor shown in FIG. 23 solves this problem without increasing copper loss.
  • the third embodiment shown in FIG. 33 discloses a double-ended three-phase coil connected to a three-phase inverter and a three-phase rectifier.
  • the three-phase rectifier executes the H-bridge mode together with the three-phase inverter.
  • the three-phase rectifier consists of a part of a short circuit.
  • a star-connected three-phase coil is added to the fourth embodiment.
  • the two stator coils are substantially connected in series.
  • the two stator coils are substantially connected in parallel.
  • the fifth embodiment requires reversal of the direction of one counter electromotive force of two stator coils.
  • the direction reversal of the counter electromotive force can be easily realized by a Landel tandem motor shown in FIG.
  • the three-phase converter composed of the three-phase inverter and the three-phase rectifier described in each embodiment can execute the H-bridge mode and can be a neutral point in the star mode. It has.

Abstract

In the present invention, two three-phase inverters impose a H-bridge mode and a star mode on a double-ended three-phase coil. One of the two inverters outputs a neutral point voltage in the star mode. In the H-bridge mode, each of the phase coils is connected to a PWM leg and a potential-fixed leg to which the connection is alternately switched. In another example, a three-phase inverter and a three-phase rectifier impose a motor mode and a power generation mode on a double-ended three-phase coil. If a short-circuit transistor short-circuits the three-phase rectifier, the three-phase rectifier reaches the neutral point. In another example, a three-phase rectifier is also connected to a star-type connection three-phase coil.

Description

可変速モータ装置Variable speed motor device
本発明は、可変速モータ装置に関し、特に、ダブルエンデッド3相コイルをもつ車両用の可変速電気機械に関する。 The present invention relates to a variable speed motor device, and more particularly to a variable speed electric machine for a vehicle having a double-ended three-phase coil.
ダブルエンデッド3相コイルが2個の3相インバータにより駆動されるダブルインバータ式モータ装置が知られている。しかし、このダブルインバータ式モータ装置は複雑な配線及び3相インバータの追加を必要とする。このため、現状のダブルインバータ式モータ装置が標準の3相インバータ駆動モータ装置と競争することは容易ではない。 There is known a double inverter type motor device in which a double-ended three-phase coil is driven by two three-phase inverters. However, this double inverter type motor apparatus requires complicated wiring and the addition of a three-phase inverter. For this reason, it is not easy for the current double inverter motor device to compete with a standard three-phase inverter drive motor device.
特許文献1は、ダブルインバータ式モータ装置を提案している。1つの相コイルに接続される2個のレグは、互いに反対位相でPWM駆動される。特許文献2は、ダブルインバータ式モータ装置のステータコイルに第3高調波電流を注入することを提案している。 Patent Document 1 proposes a double inverter type motor device. The two legs connected to one phase coil are PWM driven in opposite phases. Patent Document 2 proposes injecting a third harmonic current into a stator coil of a double inverter type motor apparatus.
特許文献3は、3相整流器及び短絡トランジスタがさらに追加されたダブルインバータ式モータ装置を提案する。このモータ装置によれば、3つの相コイルの各第1端子は第1の3相インバータに接続され、3つの相コイルの各第2端子は第2の3相インバータ及び3相全波整流器に並列に接続される。短絡トランジスタは3相整流器の一対の直流端子を短絡する。 Patent Document 3 proposes a double inverter type motor device in which a three-phase rectifier and a short-circuit transistor are further added. According to this motor device, each first terminal of the three-phase coil is connected to the first three-phase inverter, and each second terminal of the three-phase coil is connected to the second three-phase inverter and the three-phase full-wave rectifier. Connected in parallel. The short circuit transistor shorts a pair of DC terminals of the three-phase rectifier.
スターモードにおいて、第2の3相インバータはオフされ、短絡トランジスタがオンされる。これにより、3つの相コイルの各第2端子は、星形接続3相コイルの中性点をなす。デルタモードにおいて、短絡トランジスタはオフされる。2つの3相インバータは、互いに電気角120度異なる2つの3相電圧を出力する。これにより、3つの相コイルはデルタ形接続をなす。結局、このモータ装置は星形接続とデルタ形接続とを切り替えることができる。 In the star mode, the second three-phase inverter is turned off and the short-circuit transistor is turned on. Thereby, each 2nd terminal of a three phase coil makes the neutral point of a star-shaped connection three phase coil. In delta mode, the short circuit transistor is turned off. The two three-phase inverters output two three-phase voltages that are 120 degrees different from each other in electrical angle. Thus, the three phase coils form a delta connection. Eventually, the motor device can switch between a star connection and a delta connection.
しかし、このモータ装置は、標準の3相モータ装置と比べて、3相整流器、短絡トランジスタ、及びもう1つの3相インバータの追加を必要とする。このモータ装置の欠点は製造コスト及び電力損失の増加である。 However, this motor device requires the addition of a three-phase rectifier, a short-circuit transistor, and another three-phase inverter compared to a standard three-phase motor device. The disadvantage of this motor device is an increase in manufacturing cost and power loss.
本出願人により出願された特許文献4及び5は、第2の3相コイルがさらに追加されたダブルインバータ式極数倍増モータ装置を提案する。極数倍増可能なこのモータ装置によれば、第1の3相コイルの各第1端子は第1の3相インバータに接続され、第1の3相コイルの各第2端子は第2の3相インバータに接続される。さらに、第2の3相コイルは、第2の3相インバータに接続される。 Patent Documents 4 and 5 filed by the present applicant propose a double inverter type pole doubling motor device in which a second three-phase coil is further added. According to this motor device capable of multiplying the number of poles, each first terminal of the first three-phase coil is connected to the first three-phase inverter, and each second terminal of the first three-phase coil is the second 3 Connected to phase inverter. Further, the second three-phase coil is connected to the second three-phase inverter.
このモータ装置は、極数が倍増される倍極モードと、それらが倍増されない標準モードをもつ。第1の3相コイルは倍極モードにおいて標準モードと比べて反対の起電力を発生する。このモータ装置によれば、2つの3相コイルは倍極モードにおいて直列接続され、標準モードにおいて並列接続される。このモータ装置は倍極モードにおいて極数及び巻数の両方を倍増することができる。 This motor device has a double pole mode in which the number of poles is doubled and a standard mode in which they are not doubled. The first three-phase coil generates an electromotive force opposite to that in the standard mode in the double pole mode. According to this motor device, two three-phase coils are connected in series in the double pole mode and connected in parallel in the standard mode. This motor device can double both the number of poles and the number of turns in the double pole mode.
しかし、このモータ装置によれば、2つの3相コイルを並列接続する時、1つの3相コイルの巻数を他の1つの3相コイルの巻数と一致させることが困難となる。さらに、ステータ及びロータは極数切替のための複雑な構造を必要とする。 However, according to this motor device, when two three-phase coils are connected in parallel, it is difficult to match the number of turns of one three-phase coil with the number of turns of another one three-phase coil. Furthermore, the stator and the rotor require a complicated structure for switching the number of poles.
特開2009-303298号公報JP 2009-303298 A 特開2015-122950号公報JP2015-122950A 特開2014-54094号公報JP 2014-54094 A WO2017/081900号公報WO2017 / 081900 特開2018-26995号公報JP-A-2018-26995
本発明の一つの目的は、電力損失の低減が可能なダブルエンデッド3相コイル式モータ装置を提供する事である。本発明のもう1つの目的は、車両用モータ装置の分野において標準的な3相モータ装置と競争可能なダブルエンデッド3相コイル式モータ装置を提供する事である。 One object of the present invention is to provide a double-ended three-phase coil motor device capable of reducing power loss. Another object of the present invention is to provide a double-ended three-phase coil motor device that can compete with a standard three-phase motor device in the field of vehicle motor devices.
本発明の第1の様相によれば、2つの3相インバータはダブルエンデッド3相コイルに接続される。コントローラは、ダブルエンデッド3相コイルの3つの相コイルを互いに独立に駆動するHブリッジモードを有する。コントローラはさらに、2つの3相インバータの一方が本質的に中性点電圧を出力するスターモードを有する。これにより、低速トルク及び有効速度範囲を改善することができる。さらに、インバータの電力損失を低減することができる。 According to the first aspect of the invention, the two three-phase inverters are connected to a double-ended three-phase coil. The controller has an H-bridge mode that drives the three phase coils of the double-ended three-phase coil independently of each other. The controller further has a star mode in which one of the two three-phase inverters essentially outputs a neutral voltage. Thereby, the low speed torque and the effective speed range can be improved. Furthermore, the power loss of the inverter can be reduced.
好適な1つの態様において、中性点電圧を出力する3相インバータの3つのレグは、本質的に同じ制御信号により同期制御される。これにより、電流リップルを低減することができる。好適なもう1つの態様において、2つの3相インバータの各レグは、PWM期間と及び電位固定期間を所定のインタバルで切り替える。これにより、2つの3相インバータの間の温度差を低減することができる。 In one preferred embodiment, the three legs of the three-phase inverter that outputs the neutral point voltage are synchronously controlled by essentially the same control signal. Thereby, current ripple can be reduced. In another preferred embodiment, each leg of the two three-phase inverters switches between the PWM period and the potential fixing period at a predetermined interval. Thereby, the temperature difference between two three-phase inverters can be reduced.
好適なもう1つの態様において、ステータコイルは、前記2つの3相インバータの一方に接続される第2の3相コイルを有する。この第2の3相コイルは、星形接続3相コイル又は第2のダブルエンデッド3相コイルからなる。この第2のダブルエンデッド3相コイルは、第3の3相インバータに接続される。コントローラは、これら2つの3相コイルを本質的に直列接続する直列モードと、これら2つの3相コイルを本質的に並列接続する並列モードとをもつ。これにより、低速トルク及び有効速度範囲が改善される。 In another preferred aspect, the stator coil has a second three-phase coil connected to one of the two three-phase inverters. The second three-phase coil is a star-connected three-phase coil or a second double-ended three-phase coil. This second double-ended three-phase coil is connected to a third three-phase inverter. The controller has a series mode that essentially connects these two three-phase coils in series and a parallel mode that essentially connects these two three-phase coils in parallel. This improves the low speed torque and the effective speed range.
好適なもう1つの態様において、ステータコイルはさらに第2の3相コイルをもつ。ダブルエンデッド3相コイル及び第2の3相コイルは、タンデムモータの2つのステータコアに別々に集中巻きで巻かれる。2つのステータコアのステータポールは周方向において互いに半ステータポールピッチシフトしている。2つのステータコアは、共通の籠形コイルに対面する。 In another preferred embodiment, the stator coil further has a second three-phase coil. The double-ended three-phase coil and the second three-phase coil are separately concentrated and wound around the two stator cores of the tandem motor. The stator poles of the two stator cores are shifted from each other by a half stator pole pitch in the circumferential direction. The two stator cores face a common saddle coil.
本発明の第2の様相によれば、2つの3相インバータはダブルエンデッド3相コイルに接続される。コントローラは、ダブルエンデッド3相コイルの3つの相コイルを互いに独立に駆動するHブリッジモードを有する。このHブリッジモードにおいて、ダブルエンデッド3相コイルの各相コイルは、PWMレグ及び電位固定レグに接続される。PWMレグはパルス幅変調法によりスイッチングされる。電位固定レグの2つのアームトランジスタのどちらかは、オン状態を常に持続する。 According to the second aspect of the invention, the two three-phase inverters are connected to a double-ended three-phase coil. The controller has an H-bridge mode that drives the three phase coils of the double-ended three-phase coil independently of each other. In this H-bridge mode, each phase coil of the double-ended three-phase coil is connected to the PWM leg and the potential fixing leg. The PWM leg is switched by a pulse width modulation method. Either of the two arm transistors of the potential fixing leg always maintains the on state.
本発明の第3の様相によれば、ダブルエンデッド3相コイルは、3相インバータと3相整流器に接続される。3相整流器の一対の直流端子は、逆流防止ダイオードを通じて3相インバータの一対の直流端子に接続される。3相整流器の一対の直流端子は、短絡トランジスタにより短絡される。短絡トランジスタがオンされるモータモードにおいて、3相インバータはダブルエンデッド3相コイルに3相電流を供給する。短絡トランジスタがオフされる発電モードにおいて、3相インバータ及び3相整流器は、ダブルエンデッド3相コイルにより発電された3相電圧を整流する。 According to the third aspect of the present invention, the double-ended three-phase coil is connected to a three-phase inverter and a three-phase rectifier. The pair of DC terminals of the three-phase rectifier is connected to the pair of DC terminals of the three-phase inverter through a backflow prevention diode. A pair of DC terminals of the three-phase rectifier are short-circuited by a short-circuit transistor. In the motor mode in which the short circuit transistor is turned on, the three-phase inverter supplies a three-phase current to the double-ended three-phase coil. In the power generation mode in which the short-circuit transistor is turned off, the three-phase inverter and the three-phase rectifier rectify the three-phase voltage generated by the double-ended three-phase coil.
本発明の第4の様相によれば、ダブルエンデッド3相コイルは、3相インバータと3相整流器に接続される。さらに、3相整流器は星形接続3相コイルに接続される。モータモードにおいて、3相インバータは、本質的に直列接続されたダブルエンデッド3相コイル及び星形接続3相コイルに3相電流を供給する。発電モードにおいて、3相インバータは中性点電圧を出力する。これにより、ダブルエンデッド3相コイル及び星形接続3相コイルは、本質的に並列接続される。 According to a fourth aspect of the present invention, the double-ended three-phase coil is connected to a three-phase inverter and a three-phase rectifier. In addition, the three-phase rectifier is connected to a star-connected three-phase coil. In the motor mode, the three-phase inverter supplies a three-phase current to a double-ended three-phase coil and a star-connected three-phase coil that are essentially connected in series. In the power generation mode, the three-phase inverter outputs a neutral point voltage. As a result, the double-ended three-phase coil and the star-connected three-phase coil are essentially connected in parallel.
好適な態様において、ダブルエンデッド3相コイル及び星形接続3相コイルは、タンデム配置された2つのステータコアに別々に巻かれる。2つのステータコアは、互いに異なるランデル型ロータコアに別々に対面する。2つのランデル型ロータコアの一方に巻かれた界磁コイルに供給される界磁電流の方向はモード切替時に反転される。 In a preferred embodiment, the double-ended three-phase coil and the star-connected three-phase coil are wound separately on two stator cores arranged in tandem. The two stator cores separately face different Landel rotor cores. The direction of the field current supplied to the field coil wound around one of the two Randell rotor cores is reversed when the mode is switched.
図1は第1実施例のモータ装置を示す配線図である。FIG. 1 is a wiring diagram showing the motor device of the first embodiment. 図2はモード選択ルーチンを示すフローチャートである。FIG. 2 is a flowchart showing a mode selection routine. 図3はスターモードにおける3相電圧の平均波形を示すタイミングチャートである。FIG. 3 is a timing chart showing an average waveform of three-phase voltages in the star mode. 図4はスターモードを示す模式配線図である。FIG. 4 is a schematic wiring diagram showing the star mode. 図5はスターモードを示す模式配線図である。FIG. 5 is a schematic wiring diagram showing the star mode. 図6はHブリッジモードを示す模式配線図である。FIG. 6 is a schematic wiring diagram showing the H-bridge mode. 図7はHブリッジモードを示す模式配線図である。FIG. 7 is a schematic wiring diagram showing the H-bridge mode. 図8はHブリッジモードを示す模式配線図である。FIG. 8 is a schematic wiring diagram showing the H-bridge mode. 図9はHブリッジモードを示す模式配線図である。FIG. 9 is a schematic wiring diagram showing the H-bridge mode. 図10はHブリッジモードを示す模式配線図である。FIG. 10 is a schematic wiring diagram showing the H-bridge mode. 図11はHブリッジモードを示す模式配線図である。FIG. 11 is a schematic wiring diagram showing the H-bridge mode. 図12はHブリッジモードを示す模式配線図である。FIG. 12 is a schematic wiring diagram showing the H-bridge mode. 図13はHブリッジモードを示す模式配線図である。FIG. 13 is a schematic wiring diagram showing the H-bridge mode. 図14は6個のレグの状態を示すタイミングチャートである。FIG. 14 is a timing chart showing the states of the six legs. 図15は従来の3相モータ装置を示す模式配線図である。FIG. 15 is a schematic wiring diagram showing a conventional three-phase motor device. 図16はHブリッジモードを示す模式配線図である。FIG. 16 is a schematic wiring diagram showing the H-bridge mode. 図17は第2実施例の直列モードを示す配線図である。FIG. 17 is a wiring diagram showing the serial mode of the second embodiment. 図18は第2実施例の並列モードを示す配線図である。FIG. 18 is a wiring diagram showing the parallel mode of the second embodiment. 図19は第3実施例の直列スターモードを示す配線図である。FIG. 19 is a wiring diagram showing the series star mode of the third embodiment. 図20は第3実施例の直列Hブリッジモードを示す配線図である。FIG. 20 is a wiring diagram showing the series H-bridge mode of the third embodiment. 図21は第3実施例の並列スターモードを示す配線図である。FIG. 21 is a wiring diagram showing the parallel star mode of the third embodiment. 図22は第3実施例の並列Hブリッジモードを示す配線図である。FIG. 22 is a wiring diagram showing the parallel H-bridge mode of the third embodiment. 図23はタンデム集中巻き誘導モータを示す断面図である。FIG. 23 is a cross-sectional view showing a tandem concentrated winding induction motor. 図24は籠形ロータを示す軸方向断面図である。FIG. 24 is an axial sectional view showing a saddle-shaped rotor. 図25は前ステータコアを示す側面図である。FIG. 25 is a side view showing the front stator core. 図26は後ステータコアを示す側面図である。FIG. 26 is a side view showing the rear stator core. 図27は倍極モードにおける磁極面の配置を示す周方向展開図である。FIG. 27 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces in the double pole mode. 図28は6つの相磁界を示すベクトル図である。FIG. 28 is a vector diagram showing six phase magnetic fields. 図29は前ステータコアを示す側面図である。FIG. 29 is a side view showing the front stator core. 図30は後ステータコアを示す側面図である。FIG. 30 is a side view showing the rear stator core. 図31は倍相モードにおける磁極面の配置を示す周方向展開図である。FIG. 31 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces in the double phase mode. 図32は相磁界ベクトルを示すベクトル図である。FIG. 32 is a vector diagram showing phase magnetic field vectors. 図33は第4実施例のモータモードを示す配線図である。FIG. 33 is a wiring diagram showing the motor mode of the fourth embodiment. 図34は第4実施例の発電モードを示す配線図である。FIG. 34 is a wiring diagram showing the power generation mode of the fourth embodiment. 図35は第5実施例のモータモードを示す配線図である。FIG. 35 is a wiring diagram showing the motor mode of the fifth embodiment. 図36は第5実施例の発電モードを示す配線図である。FIG. 36 is a wiring diagram showing the power generation mode of the fifth embodiment. 図37はスタータジエネレータを示す軸方向断面図である。FIG. 37 is an axial sectional view showing a starter generator. 図38はロータポールの配置を示す展開図である。FIG. 38 is a development view showing the arrangement of the rotor poles. 図39はロータ回路を示す配線図である。FIG. 39 is a wiring diagram showing the rotor circuit. 図40は端子リングを示す側面図である。FIG. 40 is a side view showing the terminal ring. 図41はモータモードにおけるステータコイルの配置を示す展開図である。FIG. 41 is a development view showing the arrangement of the stator coils in the motor mode. 図42は発電モードにおけるステータコイルの配置を示す展開図である。FIG. 42 is a development view showing the arrangement of the stator coils in the power generation mode.
          第1実施例
第1実施例のダブルエンデッド3相コイル式モータ装置が図1-図16を参照して説明される。図1は、トラクションモータとして用いられるダブルエンデッド3相コイル式モータ装置を示す配線図である。3相同期モータ又は3相誘導モータからなるトラクションモータはステータコイル1をもつ。ダブルエンデッド3相コイルからなるステータコイル1は、U相コイル1U、V相コイル1V、及びW相コイル1Wからなる。ステータコイル1は、2つの3相インバータ3及び4に接続される。
First Embodiment A double-ended three-phase coil motor apparatus according to a first embodiment will be described with reference to FIGS. FIG. 1 is a wiring diagram showing a double-ended three-phase coil motor device used as a traction motor. A traction motor including a three-phase synchronous motor or a three-phase induction motor has a stator coil 1. The stator coil 1 composed of a double-ended three-phase coil is composed of a U-phase coil 1U, a V-phase coil 1V, and a W-phase coil 1W. Stator coil 1 is connected to two three- phase inverters 3 and 4.
インバータ3はレグ3U、3V及び3Wからなる。インバータ4はレグ4U、4V及び4Wからなる。良く知られているように、6個のレグ3U-4Wはそれぞれ、直列接続された上アームスイッチおよび下アームスイッチからなる。アームスイッチはそれぞれ、逆並列ダイオードをもつIGBTからなる。U相コイル1Uはレグ3U及び4Uの交流端子を接続する。V相コイル1Vはレグ3V及び4Vの交流端子を接続する。W相コイル1Wはレグ3W及び4Wの交流端子を接続する。 The inverter 3 consists of legs 3U, 3V and 3W. The inverter 4 consists of legs 4U, 4V and 4W. As is well known, each of the six legs 3U-4W comprises an upper arm switch and a lower arm switch connected in series. Each arm switch consists of an IGBT with an anti-parallel diode. The U-phase coil 1U connects the AC terminals of the legs 3U and 4U. The V-phase coil 1V connects the leg 3V and 4V AC terminals. The W-phase coil 1W connects the leg 3W and 4W AC terminals.
DCリンク電圧Vdがインバータ3及び4に印加されている。レグ3Uは相電圧VUを出力し、レグ3Vは相電圧VVを出力し、レグ3Wは相電圧VWを出力する。レグ4Uは相電圧VU2を出力し、レグ4Vは相電圧VV2を出力し、レグ4Wは相電圧VW2を出力する。コントローラ100はインバータ3及び4をパルス幅変調(PWM)制御する。 A DC link voltage Vd is applied to the inverters 3 and 4. Leg 3U outputs phase voltage VU, leg 3V outputs phase voltage VV, and leg 3W outputs phase voltage VW. Leg 4U outputs phase voltage VU2, leg 4V outputs phase voltage VV2, and leg 4W outputs phase voltage VW2. The controller 100 performs pulse width modulation (PWM) control on the inverters 3 and 4.
コントローラ100は、スターモード及びHブリッジモードをもつ。図2はコントローラ100のモード選択ルーチンを示すフローチャートである。ステップS100は、所定値を超える高トルク値が要求されるか否かを判定する。高トルク値が要求される時、スターモードが実行され(S102)、そうでなければ、Hブリッジモードが実行される(S104)。 The controller 100 has a star mode and an H bridge mode. FIG. 2 is a flowchart showing a mode selection routine of the controller 100. Step S100 determines whether a high torque value exceeding a predetermined value is required. When a high torque value is required, the star mode is executed (S102), otherwise the H bridge mode is executed (S104).
スターモードが図3-図5を参照して説明される。図3は、スターモードにおける3相電圧VU、VV、及びVWの平均波形を示すタイミングチャートである。中性点として動作するインバータ4の3つのレグ4U、4V、及び4Wは中性点電圧Vnを出力する。この中性点電圧Vnは、従来の星形(Wye)接続3相コイルの中性点電圧を意味する。共通のPWMデユーティ比がレグ4U、4V、及び4Wに与えられる。これにより、レグ4U、4V、及び4Wは、互いに等しい平均出力電圧Vnを出力する。 The star mode is described with reference to FIGS. FIG. 3 is a timing chart showing average waveforms of the three-phase voltages VU, VV, and VW in the star mode. The three legs 4U, 4V, and 4W of the inverter 4 operating as a neutral point output a neutral point voltage Vn. The neutral point voltage Vn means a neutral point voltage of a conventional Wye-connected three-phase coil. A common PWM duty ratio is applied to legs 4U, 4V, and 4W. As a result, the legs 4U, 4V, and 4W output the average output voltage Vn that is equal to each other.
レグ4U、4V、及び4Wの各上アームトランジスタは同期してスイッチングされる。同様に、レグ4U、4V、及び4Wの各下アームトランジスタは同期してスイッチングされる。図4は、レグ4U、4V、及び4Wの各上アームトランジスタがオンされている期間の一例を示す。図4において、相コイル1Uからレグ4Uに流れるU相電流IUの一部は、レグ4Vを通じて相コイル1Vに流れるV相電流IVとなる。このU相電流IUの他部は、レグ4Wを通じて相コイル1Wに流れるW相電流IWとなる。 The upper arm transistors of the legs 4U, 4V, and 4W are switched synchronously. Similarly, the lower arm transistors of legs 4U, 4V, and 4W are switched synchronously. FIG. 4 shows an example of a period during which the upper arm transistors of the legs 4U, 4V, and 4W are turned on. In FIG. 4, a part of the U-phase current IU flowing from the phase coil 1U to the leg 4U becomes a V-phase current IV flowing to the phase coil 1V through the leg 4V. The other part of the U-phase current IU is a W-phase current IW that flows to the phase coil 1W through the leg 4W.
図5は、レグ4U、4V、及び4Wの各下アームトランジスタがオンされている期間の一例を示す。図5において、相コイル1Uからレグ4Uに流れるU相電流IUの一部は、レグ4Vを通じて相コイル1Vに流れるV相電流IVとなる。このU相電流IUの他部は、レグ4Wを通じて相コイル1Wに流れるW相電流IWとなる。 FIG. 5 shows an example of a period during which the lower arm transistors of the legs 4U, 4V, and 4W are turned on. In FIG. 5, a part of the U-phase current IU flowing from the phase coil 1U to the leg 4U becomes a V-phase current IV flowing to the phase coil 1V through the leg 4V. The other part of the U-phase current IU is a W-phase current IW that flows to the phase coil 1W through the leg 4W.
結局、レグ4U、4V、4Wが互いに等しいPWMデユーティ比で同期スイッチングされる時、相電圧VU2、VV2、及びVW2は平均出力電圧Vnとなる。相電圧VU2、VV2、及びVW2が等しいことは、インバータ4がいわゆる中性点を形成することを意味する。したがって、このスターモードは、従来の星形接続3相コイルと実質的に同じ回路構成となる。このスターモードにおいて、インバータ4は、図3に示される中性点電圧Vnを出力することが好適であるが、たとえば0.5Vdのような振幅をもつ中間直流電圧を出力することも可能である。 Eventually, when the legs 4U, 4V, 4W are synchronously switched with the same PWM duty ratio, the phase voltages VU2, VV2, and VW2 become the average output voltage Vn. The equal phase voltages VU2, VV2, and VW2 mean that the inverter 4 forms a so-called neutral point. Therefore, this star mode has substantially the same circuit configuration as a conventional star-connected three-phase coil. In this star mode, the inverter 4 preferably outputs the neutral point voltage Vn shown in FIG. 3, but it is also possible to output an intermediate DC voltage having an amplitude such as 0.5 Vd. .
次に、Hブリッジモードが、図6-図14を参照して説明される。このHブリッジモードによれば、各相コイルのそれぞれに接続される2つのレグの1つがPWM制御される。このレグはPWMレグと呼ばれる。この2つのレグの他の1つはDCリンク電圧Vd又は0Vに固定される。このレグは電位固定レグと呼ばれる。言い換えれば、電位固定レグは、直流電源の高電位(Vd)又は低電位(0V)を出力する。各PWMサイクル期間は電流供給期間Tsとフリーホィーリング期間Tfとの和に等しい。PWMデユーティ比は(Ts/(Ts+Tf))となる。 Next, the H-bridge mode will be described with reference to FIGS. According to the H bridge mode, one of the two legs connected to each phase coil is PWM-controlled. This leg is called the PWM leg. The other one of the two legs is fixed at DC link voltage Vd or 0V. This leg is called a potential fixing leg. In other words, the potential fixing leg outputs a high potential (Vd) or a low potential (0 V) of the DC power supply. Each PWM cycle period is equal to the sum of the current supply period Ts and the freewheeling period Tf. The PWM duty ratio is (Ts / (Ts + Tf)).
図6-図13は、U相コイル1Uに接続されるレグ3U及び4Uの動作を示す配線図である。図6-図9は、レグ3UからU相コイル1UへU相電流を流す正半波期間を示す配線図である。図10-図13は、レグ4UからU相コイル1UへU相電流を流す負半波期間を示す配線図である。レグ3V及び4Vの動作及びレグ3W及び4Wの動作は本質的にレグ3U及び4Uと同じである。レグ3Uは上アームトランジスタ3UU及び下アームトランジスタ3ULをもつ。レグ4Uは上アームトランジスタ4UU及び下アームトランジスタ4ULをもつ。 6 to 13 are wiring diagrams showing the operation of the legs 3U and 4U connected to the U-phase coil 1U. 6 to 9 are wiring diagrams showing a positive half-wave period in which a U-phase current flows from the leg 3U to the U-phase coil 1U. FIGS. 10 to 13 are wiring diagrams showing a negative half-wave period in which a U-phase current flows from the leg 4U to the U-phase coil 1U. Leg 3V and 4V operation and leg 3W and 4W operation are essentially the same as leg 3U and 4U. The leg 3U has an upper arm transistor 3UU and a lower arm transistor 3UL. The leg 4U has an upper arm transistor 4UU and a lower arm transistor 4UL.
PWMモードP1を示す図6及び図7において、レグ3UはPWMレグとなり、レグ4Uは電位固定レグとなる。レグ4Uの下アームトランジスタ4ULが常にオンされる。図6は上アームトランジスタ3UUがオンされる電流供給期間Tsを示し、図7は下アームトランジスタ3ULがオンされるフリーホィーリング期間Tfを示す。 6 and 7 showing the PWM mode P1, the leg 3U is a PWM leg, and the leg 4U is a potential fixing leg. The lower arm transistor 4UL of the leg 4U is always turned on. 6 shows a current supply period Ts in which the upper arm transistor 3UU is turned on, and FIG. 7 shows a freewheeling period Tf in which the lower arm transistor 3UL is turned on.
PWMモードP2を示す図8及び図9において、レグ4UはPWMレグとなり、レグ3Uは電位固定レグとなる。レグ3Uの上アームトランジスタ3UUが常にオンされる。図8は下アームトランジスタ4ULがオンされる電流供給期間Tsを示し、図9は上アームトランジスタ4UUがオンされるフリーホィーリング期間Tfを示す。 8 and 9 showing the PWM mode P2, the leg 4U is a PWM leg, and the leg 3U is a potential fixing leg. The upper arm transistor 3UU of the leg 3U is always turned on. FIG. 8 shows a current supply period Ts in which the lower arm transistor 4UL is turned on, and FIG. 9 shows a freewheeling period Tf in which the upper arm transistor 4UU is turned on.
PWMモードP3を示す図10及び図11において、レグ4UはPWMレグとなり、レグ3Uは電位固定レグとなる。レグ3Uの下アームトランジスタ3ULが常にオンされる。図10は上アームトランジスタ4UUがオンされる電流供給期間Tsを示し、図11は下アームトランジスタ4ULがオンされるフリーホィーリング期間Tfを示す。 10 and 11 showing the PWM mode P3, the leg 4U is a PWM leg, and the leg 3U is a potential fixing leg. The lower arm transistor 3UL of the leg 3U is always turned on. FIG. 10 shows a current supply period Ts in which the upper arm transistor 4UU is turned on, and FIG. 11 shows a freewheeling period Tf in which the lower arm transistor 4UL is turned on.
PWMモードP4を示す図12及び図13において、レグ3UはPWMレグとなり、レグ4Uは電位固定レグとなる。レグ4Uの上アームトランジスタ4UUが常にオンされる。図12は下アームトランジスタ3ULがオンされる電流供給期間Tsを示し、図13は上アームトランジスタ3UUがオンされるフリーホィーリング期間Tfを示す。 12 and 13 showing the PWM mode P4, the leg 3U is a PWM leg, and the leg 4U is a potential fixing leg. The upper arm transistor 4UU of the leg 4U is always turned on. 12 shows a current supply period Ts in which the lower arm transistor 3UL is turned on, and FIG. 13 shows a freewheeling period Tf in which the upper arm transistor 3UU is turned on.
図14は、6個のレグ3U-4Wの状態を示すタイミングチャートである。6個のレグ3U-4Wは、電気角360度に等しい1つのPWMサイクル期間においてPWMレグとなり、次のPWMサイクル期間において電位固定レグとなる。電位固定レグが形成されるPWMサイクル期間の半分において電位固定レグの上アームトランジスタがオンされる。電位固定レグが形成されるPWMサイクル期間の残りの半分において電位固定レグの下アームトランジスタがオンされる。 FIG. 14 is a timing chart showing the states of the six legs 3U-4W. The six legs 3U-4W become PWM legs in one PWM cycle period equal to an electrical angle of 360 degrees, and become potential fixing legs in the next PWM cycle period. The upper arm transistor of the potential fixing leg is turned on in half of the PWM cycle period in which the potential fixing leg is formed. In the remaining half of the PWM cycle period in which the potential fixing leg is formed, the lower arm transistor of the potential fixing leg is turned on.
Hブリッジモードの効果が図15及び図16を参照して説明される。図15は従来の星形接続3相コイル37を駆動する3相インバータ30を示す模式配線図である。3相インバータ30は、U相レグ31、V相レグ32、及びW相レグ33からなる。3相コイル37は、U相コイル34、V相コイル35、及びW相コイル36からなる。相コイル34-36はそれぞれ、並列接続された2つのコイル200からなる。コイル200はそれぞれ、所定の巻数値Nをもつ。3つのレグ31-33の各アームスイッチは、並列接続された2つのトランジスタ300をもつ。 The effect of the H-bridge mode will be described with reference to FIGS. FIG. 15 is a schematic wiring diagram showing a three-phase inverter 30 for driving a conventional star-connected three-phase coil 37. The three-phase inverter 30 includes a U-phase leg 31, a V-phase leg 32, and a W-phase leg 33. The three-phase coil 37 includes a U-phase coil 34, a V-phase coil 35, and a W-phase coil 36. Each of the phase coils 34-36 includes two coils 200 connected in parallel. Each of the coils 200 has a predetermined winding value N. Each arm switch of the three legs 31-33 has two transistors 300 connected in parallel.
図16は、Hブリッジモードを示す模式配線図である。相コイル1U-1Wはそれぞれは、直列接続された2つのコイル200からなる。図16に示されるHブリッジモードは、図15に示される従来の3相インバータと比べて電源電圧の利用率が2倍となる。したがって、図15に示される各コイル200に流れる電流は、図16に示される各コイル200に流れる電流と等しくなる。 FIG. 16 is a schematic wiring diagram showing the H-bridge mode. Each of the phase coils 1U-1W includes two coils 200 connected in series. In the H-bridge mode shown in FIG. 16, the utilization factor of the power supply voltage is doubled as compared with the conventional three-phase inverter shown in FIG. Therefore, the current flowing through each coil 200 shown in FIG. 15 is equal to the current flowing through each coil 200 shown in FIG.
言い換えれば、Hブリッジモードは、従来の星形接続3相コイルと比べて2倍の巻数をもつことができる。図16に示されるダブルエンデッド3相コイルは、2つの3相インバータ3及び4を必要とする。しかし、3相インバータ3及び4はそれぞれ、図15に示される3相インバータ30の半分の電流容量をもつことができる。結局、ダブルエンデッド3相コイルを駆動する2つのインバータ3及び4は、星形接続3相コイルを駆動する従来の3相インバータと等しい回路規模をもつことが理解される。 In other words, the H-bridge mode can have twice as many turns as a conventional star-connected three-phase coil. The double-ended three-phase coil shown in FIG. 16 requires two three- phase inverters 3 and 4. However, each of the three- phase inverters 3 and 4 can have half the current capacity of the three-phase inverter 30 shown in FIG. Eventually, it is understood that the two inverters 3 and 4 that drive the double-ended three-phase coil have the same circuit scale as the conventional three-phase inverter that drives the star-connected three-phase coil.
このHブリッジモードのインバータ損失は、従来の3相インバータと比べて大幅に低減される。これは、2つの3相インバータ3及び4のどちらかが電位固定レグとなり、2つの3相インバータ3及び4の他方だけがPWMスイッチングされるからである。 The inverter loss in the H-bridge mode is greatly reduced as compared with the conventional three-phase inverter. This is because one of the two three- phase inverters 3 and 4 is a potential fixing leg, and only the other of the two three- phase inverters 3 and 4 is PWM-switched.
次に、スターモードの効果が説明される。スターモードにおけるステータコイル1の巻数値はHブリッジモードと比べて173%となる。これにより、直流電源の電流を増加することなく、トルクを大幅に増加することができる。好適には、スターモードは、トラクションモータの低速高トルク領域において選択される。 Next, the effect of the star mode will be described. The winding value of the stator coil 1 in the star mode is 173% as compared with the H bridge mode. As a result, the torque can be greatly increased without increasing the current of the DC power supply. Preferably, the star mode is selected in the low speed and high torque region of the traction motor.
          第2実施例
第2実施例のダブルエンデッド3相コイル式モータ装置が図17及び図18を参照して説明される。図17及び図18は、トラクションモータとして用いられるダブルエンデッド3相コイル式モータ装置を示す配線図である。このモータ装置よれば、第2ステータコイル2が、図1に示される第1実施例のモータ装置に追加される。この第2ステータコイルは、星形接続された3つの相コイル2U、2V、及び2Wからなる。相コイル2Uはレグ4Uの交流端子に接続される。相コイル2Vはレグ4Vの交流端子に接続される。相コイル2Wはレグ4Wの交流端子に接続される。第2ステータコイル2の中性点は中性点電位Vnをもつ。コントローラ100は直列モード及び並列モードをもつ。
Second Embodiment A double-ended three-phase coil motor apparatus according to a second embodiment will be described with reference to FIGS. 17 and 18 are wiring diagrams showing a double-ended three-phase coil motor device used as a traction motor. According to this motor device, the second stator coil 2 is added to the motor device of the first embodiment shown in FIG. This second stator coil is composed of three phase coils 2U, 2V and 2W connected in a star shape. Phase coil 2U is connected to the AC terminal of leg 4U. The phase coil 2V is connected to the AC terminal of the leg 4V. Phase coil 2W is connected to the AC terminal of leg 4W. The neutral point of the second stator coil 2 has a neutral point potential Vn. The controller 100 has a serial mode and a parallel mode.
直列モードが図17を参照して説明される。この直列モードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と同じ方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と同じ方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と同じ方向をもつ。この直列モードにおいて、インバータ4は停止され、インバータ3は3相電圧をステータコイル1及び2に印加する。6個の相コイル1U-2Wは互いに等しい巻数をもつ。したがって、この直列モードによれば、インバータ3は、ステータコイル1と比べて2倍の巻数をもつ星形接続3相コイルに接続される。 The serial mode is described with reference to FIG. In this series mode, the counter electromotive force VU1 of the U phase coil 1U has the same direction as the counter electromotive force VU2 of the U phase coil 2U. Similarly, the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W. In this series mode, the inverter 4 is stopped and the inverter 3 applies a three-phase voltage to the stator coils 1 and 2. The six phase coils 1U-2W have the same number of turns. Therefore, according to this series mode, inverter 3 is connected to a star-connected three-phase coil having twice the number of turns as compared with stator coil 1.
並列モードが図18を参照して説明される。この並列モードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と反対の方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と反対の方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と反対の方向をもつ。この並列モードにおいて、インバータ3は、図4及び図5に示されるスターモードにより駆動される。これにより、インバータ3の各レグ3U、3V、及び3Wはそれぞれ、中性点電圧Vnを出力する。したがって、ステータコイル1は、星形接続3相コイルとなる。その結果、インバータ4は、並列接続されたステータコイル1及び2に3相電流を供給することができる。 The parallel mode is described with reference to FIG. In this parallel mode, the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U. Similarly, the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W. In this parallel mode, the inverter 3 is driven by the star mode shown in FIGS. Thereby, each leg 3U, 3V, and 3W of the inverter 3 outputs the neutral point voltage Vn, respectively. Therefore, the stator coil 1 is a star-connected three-phase coil. As a result, the inverter 4 can supply a three-phase current to the stator coils 1 and 2 connected in parallel.
結局、ステータコイル1の逆起電力を反転することにより、並列モードは直列モードと比べて巻数を半減することができる。ステータコイル1の逆起電力を反転することは、ステータコイル1に供給される第1の3相電流が、ステータコイル2に供給される第2の3相電流と比べて反対位相をもつことを意味する。これにより、モータ装置の有効速度範囲又は低速トルクを改善することができる。 Eventually, by inverting the counter electromotive force of the stator coil 1, the parallel mode can halve the number of turns compared to the series mode. Reversing the counter electromotive force of the stator coil 1 means that the first three-phase current supplied to the stator coil 1 has an opposite phase compared to the second three-phase current supplied to the stator coil 2. means. Thereby, the effective speed range or low-speed torque of a motor apparatus can be improved.
          第3実施例
第3実施例のダブルエンデッド3相コイル式モータ装置が図19及び図20を参照して説明される。図19及び図20は、トラクションモータとして用いられるダブルエンデッド3相コイル式モータ装置を示す配線図である。このモータ装置によれば、第3の3相インバータ5が、図17及び図18に示される第2実施例のモータ装置に追加される。ステータコイル2はダブルエンデッド3相コイルからなる。第3インバータ5は、U相レグ5U、V相レグ5V、及びW相レグ5Wからなる。レグ5UはU相コイル2Uに接続され、レグ5VはV相コイル2Vに接続され、レグ5WはW相コイル2Wに接続される。すなわち、ダブルエンデッド3相コイルからなるステータコイル1は3相インバータ3及び4に接続される。同様に、ダブルエンデッド3相コイルからなるステータコイル2は3相インバータ4及び5に接続される。コントローラ100は直列スターモード、直列Hブリッジモード、並列スターモード、及び並列Hブリッジモードをもつ。
Third Embodiment A double-ended three-phase coil motor apparatus according to a third embodiment will be described with reference to FIGS. 19 and 20 are wiring diagrams showing a double-ended three-phase coil motor device used as a traction motor. According to this motor device, the third three-phase inverter 5 is added to the motor device of the second embodiment shown in FIGS. 17 and 18. The stator coil 2 is a double-ended three-phase coil. The third inverter 5 includes a U-phase leg 5U, a V-phase leg 5V, and a W-phase leg 5W. Leg 5U is connected to U-phase coil 2U, leg 5V is connected to V-phase coil 2V, and leg 5W is connected to W-phase coil 2W. That is, the stator coil 1 composed of a double-ended three-phase coil is connected to the three- phase inverters 3 and 4. Similarly, a stator coil 2 composed of a double-ended three-phase coil is connected to three- phase inverters 4 and 5. The controller 100 has a serial star mode, a serial H bridge mode, a parallel star mode, and a parallel H bridge mode.
直列スターモードが図19を参照して説明される。この直列スターモードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と同じ方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と同じ方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と同じ方向をもつ。この直列スターモードにおいて、インバータ4は停止され、インバータ3は3相電圧をステータコイル1及び2に印加する。さらに、インバータ5は、図4及び図5に示されるスターモードにより駆動される。これにより、インバータ5の各レグ5U、5V、及び5Wはそれぞれ、中性点電圧Vnを出力する。ステータコイル2は、星形接続3相コイルとなる。その結果、インバータ3は、相毎に直列接続されたステータコイル1及び2に3相電流を供給することができる。結局、各相コイル1U-2Wがそれぞれ、巻数値Nをもつ時、インバータ3は、相コイルの巻数値が2Nである星形接続3相コイルに接続される。 The serial star mode is described with reference to FIG. In this series star mode, the counter electromotive force VU1 of the U phase coil 1U has the same direction as the counter electromotive force VU2 of the U phase coil 2U. Similarly, the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W. In this series star mode, the inverter 4 is stopped and the inverter 3 applies a three-phase voltage to the stator coils 1 and 2. Further, the inverter 5 is driven in the star mode shown in FIGS. Thereby, each leg 5U, 5V, and 5W of the inverter 5 outputs the neutral point voltage Vn. The stator coil 2 is a star-connected three-phase coil. As a result, the inverter 3 can supply a three-phase current to the stator coils 1 and 2 connected in series for each phase. Eventually, when each phase coil 1U-2W has a winding value N, the inverter 3 is connected to a star-connected three-phase coil having a winding value of 2N for the phase coil.
直列Hブリッジモードが図20を参照して説明される。この直列Hブリッジモードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と同じ方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と同じ方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と同じ方向をもつ。この直列Hブリッジモードにおいて、インバータ4は停止され、インバータ3及び5は、図6-図14に示されるHブリッジモードで運転される。 The serial H-bridge mode is described with reference to FIG. In this series H-bridge mode, the counter electromotive force VU1 of the U-phase coil 1U has the same direction as the counter electromotive force VU2 of the U-phase coil 2U. Similarly, the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W. In this series H-bridge mode, the inverter 4 is stopped, and the inverters 3 and 5 are operated in the H-bridge mode shown in FIGS.
並列スターモードが図21を参照して説明される。この並列スターモードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と反対の方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と反対の方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と反対の方向をもつ。この並列スターモードにおいて、インバータ3及び5はそれぞれ、図4及び図5に示されるスターモードにより駆動される。これにより、インバータ3のレグ3U、3V、及び3Wはそれぞれ、中性点電圧Vnを出力する。さらに、インバータ5のレグ5U、5V、及び5Wはそれぞれ、中性点電圧Vnを出力する。ステータコイル1及び2はそれぞれ、星形接続3相コイルとなる。インバータ4は、相毎に並列接続されたステータコイル1及び2に3相電圧を印加する。結局、各相コイル1U-2Wがそれぞれ、巻数値Nをもつ時、インバータ4は、相コイルの巻数値がNである星形接続3相コイルに接続される。 The parallel star mode is described with reference to FIG. In this parallel star mode, the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U. Similarly, the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W. In this parallel star mode, the inverters 3 and 5 are driven in the star mode shown in FIGS. 4 and 5, respectively. Thus, the legs 3U, 3V, and 3W of the inverter 3 each output the neutral point voltage Vn. Further, the legs 5U, 5V, and 5W of the inverter 5 each output a neutral point voltage Vn. Stator coils 1 and 2 are each a star-connected three-phase coil. The inverter 4 applies a three-phase voltage to the stator coils 1 and 2 connected in parallel for each phase. Eventually, when each phase coil 1U-2W has a winding value N, the inverter 4 is connected to a star-connected three-phase coil whose phase coil winding value is N.
並列Hブリッジモードが図22を参照して説明される。この並列Hブリッジモードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と反対の方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と反対の方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と反対の方向をもつ。この並列Hブリッジモードにおいて、インバータ3及び4は図6-図14に示されるHブリッジモードで運転される。さらに、インバータ4及び5も図6-図14に示されるHブリッジモードで運転される。インバータ3及び5は同期動作する。結局、この実施例によれば、相コイルの逆起電力に応じてモータの等価的な巻数値を4段階に変更することができる。 The parallel H-bridge mode is described with reference to FIG. In this parallel H-bridge mode, the counter electromotive force VU1 of the U phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U phase coil 2U. Similarly, the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W. In this parallel H-bridge mode, the inverters 3 and 4 are operated in the H-bridge mode shown in FIGS. Furthermore, the inverters 4 and 5 are also operated in the H-bridge mode shown in FIGS. Inverters 3 and 5 operate synchronously. After all, according to this embodiment, the equivalent winding value of the motor can be changed in four stages according to the counter electromotive force of the phase coil.
第2実施例及び第3実施例に好適なモータが図23-図32を参照して説明される。図23は、タンデム集中巻き誘導モータを示す断面図である。ハウジング50に収容された前モータ7及び後モータ8が共通の回転軸12の軸方向にタンデム配置されている。前モータ7は前ステータコア71、ステータコイル1、前ロータコア73、及び共通の籠形コイル9を有する。前ステータコア71はハウジング50に固定されている。ステータコイル1は前ステータコア71に巻かれている。前ロータコア73は回転軸12に固定されている。後モータ8は後ステータコア81、ステータコイル2、後ロータコア83、及び共通の籠形コイル9を有する。後ステータコア81はハウジング500に固定されている。ステータコイル2が後ステータコア81に巻かれている。後ロータコア83は回転軸12に固定されている。 A motor suitable for the second and third embodiments will be described with reference to FIGS. FIG. 23 is a cross-sectional view showing a tandem concentrated winding induction motor. The front motor 7 and the rear motor 8 housed in the housing 50 are tandemly arranged in the axial direction of the common rotary shaft 12. The front motor 7 has a front stator core 71, a stator coil 1, a front rotor core 73, and a common saddle coil 9. The front stator core 71 is fixed to the housing 50. The stator coil 1 is wound around the front stator core 71. The front rotor core 73 is fixed to the rotating shaft 12. The rear motor 8 has a rear stator core 81, a stator coil 2, a rear rotor core 83, and a common saddle coil 9. The rear stator core 81 is fixed to the housing 500. The stator coil 2 is wound around the rear stator core 81. The rear rotor core 83 is fixed to the rotating shaft 12.
ステータコア71及び81は、ハウジング50に固定された非磁性のスペーサ15を挟んでいる。ロータコア73及び83は、回転軸12に固定された非磁性のスペーサ16を挟んでいる。環状のスペーサ15及び16は省略可能である。ステータコイル1及び2の各一つのコイルエンドは、スペーサ15及び16により形成されたアイドルスペースに収容されている。 The stator cores 71 and 81 sandwich a nonmagnetic spacer 15 fixed to the housing 50. The rotor cores 73 and 83 sandwich a nonmagnetic spacer 16 fixed to the rotating shaft 12. The annular spacers 15 and 16 can be omitted. Each one coil end of the stator coils 1 and 2 is accommodated in an idle space formed by the spacers 15 and 16.
図24は籠形ロータを示す軸方向断面図である。ダイキャスト成形により形成された籠形コイル9は多数の導体バー91及び2個のエンドリング92からなる。ほぼ軸方向に延在する各導体バー91はロータコア73及び83の各スロットに別々に収容されている。各導体バー91はそれぞれ、ロータコア73及び83の各一つのスロットを順番に貫通している。環状のエンドリング92の一方は導体バー91の前端に接続され、他方は導体バー91の後端に接続されている。各エンドリング92は、放射状に形成された翼部93をもつ。回転する翼部93は、矢印により示される空気流を形成する。 FIG. 24 is an axial sectional view showing a saddle-shaped rotor. The saddle-shaped coil 9 formed by die casting is composed of a large number of conductor bars 91 and two end rings 92. Each conductor bar 91 extending substantially in the axial direction is separately accommodated in each slot of the rotor cores 73 and 83. Each conductor bar 91 passes through one slot of each of the rotor cores 73 and 83 in order. One end of the annular end ring 92 is connected to the front end of the conductor bar 91, and the other is connected to the rear end of the conductor bar 91. Each end ring 92 has wings 93 formed radially. The rotating wing part 93 forms an air flow indicated by an arrow.
このタンデム誘導モータは、ステータ極数を切替える極数切替技術を採用する。この極数切替技術は、ステータ極数を倍増する倍極モードと、ステータ相数を倍増する倍相モードとからなる。倍極モードが図25-図28を参照して説明される。図25は前ステータコア71を示す側面図である。前ステータコア71は環状のヨーク75から径方向内側へ突出する6個のステータポール72をもつ。ステータポール72は前突極と呼ばれる。各ステータポール72はそれぞれ、前ロータコア73に対面する磁極面74をもつ。ステータコイル1の3つの相コイル1U、1V、及び1Wが6個のステータポール72に順番に集中巻きされている。互いに隣接する2つのステータポール72の間の機械角は60度である。 This tandem induction motor employs a pole number switching technique for switching the number of stator poles. This pole number switching technique includes a double pole mode in which the number of stator poles is doubled and a double phase mode in which the number of stator phases is doubled. The double pole mode is described with reference to FIGS. FIG. 25 is a side view showing the front stator core 71. The front stator core 71 has six stator poles 72 projecting radially inward from an annular yoke 75. The stator pole 72 is called a front salient pole. Each stator pole 72 has a magnetic pole surface 74 that faces the front rotor core 73. The three phase coils 1U, 1V, and 1W of the stator coil 1 are concentrated and wound around the six stator poles 72 in order. The mechanical angle between the two stator poles 72 adjacent to each other is 60 degrees.
図26は後ステータコア81を示す側面図である。後ステータコア81は環状のヨーク85から径方向内側へ突出する6個のステータポール82をもつ。ステータポール82は後突極と呼ばれる。各ステータポール82はそれぞれ、後ロータコア83に対面する磁極面84をもつ。ステータコイル2の3つの相コイル2U、2V、及び2Wが6個のステータポール82に順番に集中巻きされている。互いに隣接する2つのステータポール82の間の機械角は60度である。 FIG. 26 is a side view showing the rear stator core 81. The rear stator core 81 has six stator poles 82 projecting radially inward from an annular yoke 85. The stator pole 82 is called a rear salient pole. Each stator pole 82 has a magnetic pole surface 84 that faces the rear rotor core 83. Three phase coils 2U, 2V and 2W of the stator coil 2 are concentrated and wound around the six stator poles 82 in order. The mechanical angle between the two stator poles 82 adjacent to each other is 60 degrees.
ステータポール82はステータポール72に対して半ポールピッチに相当する機械角30度だけ周方向へシフトされている。各導体バー91のスキュー角はゼロである。導体バー91が所定のスキュー角をもつ時、ステータポール72はステータポール82と比べて周方向へシフトされることができる。 The stator pole 82 is shifted in the circumferential direction by a mechanical angle of 30 degrees corresponding to a half pole pitch with respect to the stator pole 72. The skew angle of each conductor bar 91 is zero. When the conductor bar 91 has a predetermined skew angle, the stator pole 72 can be shifted in the circumferential direction compared to the stator pole 82.
図27は倍極モードにおける磁極面74及び84の配置を示す周方向展開図である。この配置は倍極配列と呼ばれる。磁極面74及び84内に図示される破線はステータポール72及び82の最小の周方向幅を示す。相コイル2Vは周方向において相コイル1U及び1Wの中間位置に配置されている。相コイル2Uは周方向において相コイル1W及び1Vの中間位置に配置されている。相コイル2Wは周方向において相コイル1V及び1Uの中間位置に配置されている。言い換えれば、ステータコイル1及び2の互いに同相の2つの相コイルの間の周方向距離はステータポールピッチの1.5倍に等しい。 FIG. 27 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces 74 and 84 in the double pole mode. This arrangement is called a double pole arrangement. The dashed lines shown in the pole faces 74 and 84 indicate the minimum circumferential width of the stator poles 72 and 82. The phase coil 2V is arranged at an intermediate position between the phase coils 1U and 1W in the circumferential direction. The phase coil 2U is arranged at an intermediate position between the phase coils 1W and 1V in the circumferential direction. The phase coil 2W is arranged at an intermediate position between the phase coils 1V and 1U in the circumferential direction. In other words, the circumferential distance between the two in-phase coils of the stator coils 1 and 2 is equal to 1.5 times the stator pole pitch.
ステータコイル1及び2が磁極面74及び84に形成するこれらの相磁界U、V、Wは回転磁界を形成する。したがって、この回転磁界の電気角360度はステータポールピッチの1.5倍に相当する。磁極面74及び84はそれぞれ、電気角180度にほぼ相当する周方向幅をもつ。互いに隣接する2つの磁極面74の間のスロットはほぼ電気角60度に相当する周方向幅をもつ。 These phase magnetic fields U, V, W formed by the stator coils 1 and 2 on the magnetic pole surfaces 74 and 84 form a rotating magnetic field. Therefore, the electrical angle of this rotating magnetic field of 360 degrees corresponds to 1.5 times the stator pole pitch. Each of the magnetic pole surfaces 74 and 84 has a circumferential width substantially corresponding to an electrical angle of 180 degrees. A slot between two magnetic pole faces 74 adjacent to each other has a circumferential width substantially corresponding to an electrical angle of 60 degrees.
相コイル1Uを流れる電流IUは磁極面74に相磁界Uを形成する。相コイル1Wを流れる相電流IWは磁極面74に相磁界Wを形成する。相コイル1Vを流れる相電流IVは磁極面74に相磁界Vを形成する。同様に、相コイル2Uを流れる相電流IUは磁極面84に相磁界Uを形成する。相コイル2Wを流れる相電流IWは磁極面84に相磁界Wを形成する。相コイル2Vを流れる相電流IVは磁極面84に相磁界Vを形成する。 The current IU flowing through the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74. The phase current IW flowing through the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74. The phase current IV flowing through the phase coil 1 </ b> V forms a phase magnetic field V on the magnetic pole surface 74. Similarly, the phase current IU flowing through the phase coil 2 </ b> U forms a phase magnetic field U on the magnetic pole surface 84. The phase current IW flowing through the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84. The phase current IV flowing through the phase coil 2V forms a phase magnetic field V on the magnetic pole surface 84.
電気角360度は角度位置P1-P6により6個の角度領域に分割される。互いに隣接する2つの角度位置の間の電気角は60度である。相磁界-Vが第1領域(P1-P2)に合成され、相磁界Uが第2領域(P2-P3)に形成され、相磁界-Wが第3領域(P3-P4)に合成される。相磁界Vが第4領域(P4-P5)に形成され、相磁界-Uが第5領域(P5-P6)に合成され、相磁界Wが第6領域(P6-P1)に形成される。図28は6つの相磁界-V、U、-W、V、-U、及びWを示すベクトル図である。互いに電気角60度だけ離れた6個の相磁界ベクトルが電気角360度の範囲内に形成される。 The electrical angle of 360 degrees is divided into six angular regions by the angular positions P1-P6. The electrical angle between two angular positions adjacent to each other is 60 degrees. The phase magnetic field -V is synthesized in the first region (P1-P2), the phase magnetic field U is formed in the second region (P2-P3), and the phase magnetic field -W is synthesized in the third region (P3-P4). . The phase magnetic field V is formed in the fourth region (P4-P5), the phase magnetic field -U is combined with the fifth region (P5-P6), and the phase magnetic field W is formed in the sixth region (P6-P1). FIG. 28 is a vector diagram showing six phase magnetic fields -V, U, -W, V, -U, and W. Six phase magnetic field vectors separated from each other by an electrical angle of 60 degrees are formed within an electrical angle of 360 degrees.
倍相モードが図29-図32を参照して説明される。図29は前ステータコア71を示す側面図である。図30は後ステータコア81を示す側面図である。図29は図25と本質的に同じであり、図30は図26と本質的に同じである。しかし、各相コイル1U-2Wに供給される各相電流の位相が変更される。-U相電流-IUはU相電流IUと反対位相をもち、-V相電流-IVはV相電流IVと反対位相をもち、-W相電流-IWはW相電流IWと反対位相をもつ。 The double phase mode will be described with reference to FIGS. FIG. 29 is a side view showing the front stator core 71. FIG. 30 is a side view showing the rear stator core 81. FIG. 29 is essentially the same as FIG. 25, and FIG. 30 is essentially the same as FIG. However, the phase of each phase current supplied to each phase coil 1U-2W is changed. -U phase current -IU has opposite phase to U phase current IU, -V phase current -IV has opposite phase to V phase current IV, -W phase current -IW has opposite phase to W phase current IW .
図31は倍相モードにおける磁極面74及び84の配置を示す周方向展開図である。この配置は倍相配列と呼ばれる。相電流IUが相コイル1Uに供給され、相電流IVが相コイル1Wに供給され、相電流IWが相コイル1Vに供給される。さらに、相電流-IUが相コイル2Uに供給され、-相電流-IWが相コイル2Vに供給され、相電流-IVが相コイル2Wに供給される。その結果、3つの磁極面74は相磁界U、V、及びWを順番に形成し、3つの磁極面84は相磁界-U、ーV、及び-Wを順番に形成する。 FIG. 31 is a development in the circumferential direction showing the arrangement of the magnetic pole surfaces 74 and 84 in the double phase mode. This arrangement is called a double phase arrangement. Phase current IU is supplied to phase coil 1U, phase current IV is supplied to phase coil 1W, and phase current IW is supplied to phase coil 1V. Further, the phase current -IU is supplied to the phase coil 2U, the -phase current -IW is supplied to the phase coil 2V, and the phase current -IV is supplied to the phase coil 2W. As a result, the three magnetic pole surfaces 74 form the phase magnetic fields U, V, and W in order, and the three magnetic pole surfaces 84 form the phase magnetic fields -U, -V, and -W in order.
電気角360度は角度位置P1-P12により12個の角度領域に分割される。角度位置P1-P12のうち互いに隣接する2つの間の電気角は30度である。相磁界(U-V)が第1領域(P1-P2)に合成される。相磁界Uが第2領域(P2-P3)に形成される。相磁界(U-W)が第3領域(P3-P4)に合成される。相磁界-Wが第4領域(P4-P5)に形成される。相磁界(V-W)が第5領域(P5-P6)に合成される。相磁界Vが第6領域(P6-P7)に形成される。同様に、相磁界(V-U)が第7領域(P7-P8)に合成される。相磁界-Uが第8領域(P8-P9)に形成される。相磁界(W-U)が第9領域(P9-P10)に合成される。相磁界Wが第10領域(P10-P11)に形成される。相磁界(W-V)が第11領域(P11-P12)に合成される。相磁界-Vが第12領域(P12-P1)に形成される。結局、この倍相モードによれば、12個の相磁界ベクトルが電気角360度内に形成される。図32はこれらの相磁界ベクトルを示すベクトル図である。 The electrical angle of 360 degrees is divided into 12 angular regions by the angular positions P1 to P12. The electrical angle between two adjacent ones of the angular positions P1 to P12 is 30 degrees. A phase magnetic field (U-V) is synthesized in the first region (P1-P2). A phase magnetic field U is formed in the second region (P2-P3). The phase magnetic field (U-W) is synthesized in the third region (P3-P4). A phase magnetic field -W is formed in the fourth region (P4-P5). The phase magnetic field (V-W) is synthesized in the fifth region (P5-P6). A phase magnetic field V is formed in the sixth region (P6-P7). Similarly, the phase magnetic field (V-U) is synthesized in the seventh region (P7-P8). The phase magnetic field -U is formed in the eighth region (P8-P9). The phase magnetic field (W-U) is synthesized in the ninth region (P9-P10). A phase magnetic field W is formed in the tenth region (P10-P11). The phase magnetic field (W-V) is synthesized in the eleventh region (P11-P12). The phase magnetic field -V is formed in the twelfth region (P12-P1). Eventually, according to this double phase mode, twelve phase magnetic field vectors are formed within an electrical angle of 360 degrees. FIG. 32 is a vector diagram showing these phase magnetic field vectors.
コントローラ100は倍極モードと倍相モードの切替制御を実行する。極数切替技術と呼ばれるこの切替制御は、6個の相コイル1U-2Wに供給する各相電流の位相を調節することにより実行される。倍極モードは低速高トルク領域で選択される。第2実施例の直列モード及び第3実施例の直列スターモード及び直列Hブリッジモードは、倍極モードとともに実行されることが好適である。同様に、第2実施例の並列モード及び第3実施例の並列スターモード及び並列Hブリッジモードは、倍相モードとともに実行されることが好適である。倍極モードは、倍相モードと比べて、ステータコイルの極数及び巻数をそれぞれ倍増することができる。 The controller 100 executes switching control between the double pole mode and the double phase mode. This switching control called pole number switching technique is executed by adjusting the phase of each phase current supplied to the six phase coils 1U-2W. The double pole mode is selected in the low speed and high torque region. The series mode of the second embodiment and the series star mode and the series H-bridge mode of the third embodiment are preferably executed together with the double pole mode. Similarly, the parallel mode of the second embodiment and the parallel star mode and the parallel H-bridge mode of the third embodiment are preferably executed together with the double phase mode. In the double pole mode, the number of poles and the number of turns of the stator coil can be doubled as compared with the double phase mode.
この切替制御がさらに説明される。図27及び図31に示されるこの切替制御において、相コイル2U、2V、及び2Wを流れる相電流が反転される。言い換えれば、図27及び図31に示される相コイル2U、2V、及び2Wからなるステータコイル2は、図17及び図18に示されるステータコイル1に相当する。したがって、図27及び図31に示される相コイル1U、1V、及び1Wからなるステータコイル1は、図17及び図18に示されるステータコイル2に相当する。 This switching control will be further described. In this switching control shown in FIGS. 27 and 31, the phase currents flowing through the phase coils 2U, 2V, and 2W are reversed. In other words, the stator coil 2 including the phase coils 2U, 2V, and 2W shown in FIGS. 27 and 31 corresponds to the stator coil 1 shown in FIGS. Therefore, the stator coil 1 including the phase coils 1U, 1V, and 1W shown in FIGS. 27 and 31 corresponds to the stator coil 2 shown in FIGS.
さらに、倍極モードを示す図27において、W相電流IWが相コイル1W及び2Wに供給され、V相電流IVが相コイル1V及び2Vに供給される。倍相モードを示す図31において、V相電流IVが相コイル1Wに供給され、-V相電流-IVが相コイル2Wに供給される。さらに、W相電流IWが相コイル1Vに供給され、-W相電流-IWが相コイル2Vに供給される。これにより、回転磁界の回転方向の反転が防止される。 Further, in FIG. 27 showing the double pole mode, the W-phase current IW is supplied to the phase coils 1W and 2W, and the V-phase current IV is supplied to the phase coils 1V and 2V. In FIG. 31 showing the double phase mode, the V phase current IV is supplied to the phase coil 1W, and the -V phase current -IV is supplied to the phase coil 2W. Further, the W-phase current IW is supplied to the phase coil 1V, and the -W-phase current -IW is supplied to the phase coil 2V. This prevents reversal of the rotating direction of the rotating magnetic field.
          第4実施例
第4実施例のダブルエンデッド3相コイル式モータ装置が図33及び図34を参照して説明される。図33は、スタータジエネレータとして用いられるダブルエンデッド3相コイル式モータ装置を示す配線図である。このモータ装置よれば、図1に示される3相インバータ3の代わりに短絡整流器4Aが採用される。この短絡整流器4Aは、3相整流器40、逆流防止ダイオード41-42、及び短絡トランジスタ43からなる。このモータ装置はモータモード及び発電モードとをもつ。バッテリ300は48Vのバッテリ電圧をインバータ3に印加する。
Fourth Embodiment A double-ended three-phase coil motor apparatus according to a fourth embodiment will be described with reference to FIGS. FIG. 33 is a wiring diagram showing a double-ended three-phase coil motor device used as a starter generator. According to this motor device, a short-circuit rectifier 4A is employed instead of the three-phase inverter 3 shown in FIG. The short-circuit rectifier 4A includes a three-phase rectifier 40, a backflow prevention diode 41-42, and a short-circuit transistor 43. This motor device has a motor mode and a power generation mode. The battery 300 applies a battery voltage of 48V to the inverter 3.
3相整流器40は、U相ダイオードレグ4U、V相ダイオードレグ4V、及びW相ダイオードレグ4Wからなる。この3相整流器40は、図1に示されるインバータ3の6個のトランジスタを省略した回路構成をもつ。逆流防止ダイオード41のアノード電極は3相整流器40の高電位側の直流端子に接続され、そのカソード電極はインバータ3の高電位側の直流端子に接続されている。逆流防止ダイオード42のカソード電極は3相整流器40の低電位側の直流端子に接続され、そのアノード電極はインバータ3の低電位側の直流端子に接続されている。短絡トランジスタ43は、3相整流器40の2つの直流端子を短絡する。 The three-phase rectifier 40 includes a U-phase diode leg 4U, a V-phase diode leg 4V, and a W-phase diode leg 4W. The three-phase rectifier 40 has a circuit configuration in which the six transistors of the inverter 3 shown in FIG. 1 are omitted. The anode electrode of the backflow prevention diode 41 is connected to the high potential side DC terminal of the three-phase rectifier 40, and the cathode electrode thereof is connected to the high potential side DC terminal of the inverter 3. The cathode electrode of the backflow prevention diode 42 is connected to the DC terminal on the low potential side of the three-phase rectifier 40, and the anode electrode thereof is connected to the DC terminal on the low potential side of the inverter 3. The short circuit transistor 43 shorts the two DC terminals of the three-phase rectifier 40.
エンジン始動のために採用されるモータモードが図33を参照して説明される。このモータモードによれば、短絡トランジスタ43がオンされ、インバータ3は3相電圧をステータコイル1に印加する。短絡トランジスタ43がオンされているため、3相整流器40及び短絡トランジスタ43は、ダブルエンデッド3相コイルであるステータコイル1を星形接続3相コイルに変更する。言い換えれば、短絡整流器4Aは、星形接続3相コイルの中性点を形成する。 The motor mode employed for starting the engine will be described with reference to FIG. According to this motor mode, the short-circuit transistor 43 is turned on, and the inverter 3 applies a three-phase voltage to the stator coil 1. Since the short-circuit transistor 43 is turned on, the three-phase rectifier 40 and the short-circuit transistor 43 change the stator coil 1 that is a double-ended three-phase coil to a star-connected three-phase coil. In other words, the short-circuit rectifier 4A forms the neutral point of the star-connected three-phase coil.
3相整流器40及び短絡トランジスタ43の電圧降下が無視される時、短絡整流器4Aの電位は、星形接続3相コイルの中性点電位Vnとなる。中性点電位Vnはバッテリ300の正極電圧(48V)よりも低いため、逆流防止ダイオード41はオフされる。中性点電位Vnはバッテリ300の負極電圧(0V)よりも高いため、逆流防止ダイオード42はオフされる。結局、短絡整流器4Aは、図4及び図5に示されるインバータ4の中性点形成動作と同じ動作を実行する。ステータコイル1が星形接続されるため、電流増加無しにエンジン始動トルクを向上することができる。 When the voltage drop of the three-phase rectifier 40 and the short-circuit transistor 43 is ignored, the potential of the short-circuit rectifier 4A becomes the neutral point potential Vn of the star-connected three-phase coil. Since the neutral point potential Vn is lower than the positive voltage (48V) of the battery 300, the backflow prevention diode 41 is turned off. Since the neutral point potential Vn is higher than the negative voltage (0 V) of the battery 300, the backflow prevention diode 42 is turned off. Eventually, the short-circuit rectifier 4A performs the same operation as the neutral point forming operation of the inverter 4 shown in FIGS. Since the stator coil 1 is star-connected, the engine starting torque can be improved without increasing the current.
発電モードが図34を参照して説明される。この発電モードによれば、短絡トランジスタ43がオフされる。その結果、ステータコイル1が発生する3相電圧は、3相インバータ3及び3相整流器40によりHブリッジモードで整流される。図34は、U相コイル1Uの発電電圧の振幅が最大となる位相期間の発電電流IGを示す。発電電流IGはレグ3U、相コイル1U、レグ4Uを通じてバッテリ300に供給される。 The power generation mode will be described with reference to FIG. According to this power generation mode, the short-circuit transistor 43 is turned off. As a result, the three-phase voltage generated by the stator coil 1 is rectified in the H-bridge mode by the three-phase inverter 3 and the three-phase rectifier 40. FIG. 34 shows the generated current IG in the phase period in which the amplitude of the generated voltage of the U-phase coil 1U is maximum. The generated current IG is supplied to the battery 300 through the leg 3U, the phase coil 1U, and the leg 4U.
このスタータジエネレータによれば、発電モードにおけるステータコイル1の銅損は、上記されたHブリッジモードによる巻数低減により大幅に低減される。この実施例の特徴は、Hブリッジモードを採用する発電モードにおいて整流動作を実行する3相整流器40が、ダブルエンデッド3相コイルを星形接続3相コイルに変更するための短絡整流器4Aの一部を成す点にある。低速領域において星形接続コイルを使用するモータモードを使用することにより、発電動作を実行することができる。 According to this starter generator, the copper loss of the stator coil 1 in the power generation mode is greatly reduced by the reduction in the number of turns in the H bridge mode described above. A feature of this embodiment is that the three-phase rectifier 40 that performs the rectification operation in the power generation mode that adopts the H-bridge mode is one of the short-circuit rectifiers 4A for changing the double-ended three-phase coil to a star-connected three-phase coil. It is in the point which makes a part. By using the motor mode using the star connection coil in the low speed region, the power generation operation can be executed.
          第5実施例
第5実施例のダブルエンデッド3相コイル式モータ装置が図35及び図36を参照して説明される。図35は、スタータジエネレータとして用いられるもう一つのダブルエンデッド3相コイル式モータ装置を示す配線図である。このモータ装置よれば、第2ステータコイル2が、図33に示される第4実施例のモータ装置に追加される。この第2ステータコイル2は、星形接続された3つの相コイル2U、2V、及び2Wからなる。相コイル2Uはレグ4Uの交流端子に接続される。相コイル2Vはレグ4Vの交流端子に接続される。相コイル2Wはレグ4Wの交流端子に接続される。第2ステータコイル2の中性点は中性点電位Vnをもつ。図33に示される短絡トランジスタ43及び逆流防止ダイオード41-42は省略される。コントローラ100はモータモード及び発電モードをもつ。
Fifth Embodiment A double-ended three-phase coil motor apparatus according to a fifth embodiment will be described with reference to FIGS. FIG. 35 is a wiring diagram showing another double-ended three-phase coil motor device used as a starter generator. According to this motor device, the second stator coil 2 is added to the motor device of the fourth embodiment shown in FIG. The second stator coil 2 includes three phase coils 2U, 2V, and 2W connected in a star shape. Phase coil 2U is connected to the AC terminal of leg 4U. The phase coil 2V is connected to the AC terminal of the leg 4V. Phase coil 2W is connected to the AC terminal of leg 4W. The neutral point of the second stator coil 2 has a neutral point potential Vn. The short-circuit transistor 43 and the backflow prevention diode 41-42 shown in FIG. 33 are omitted. The controller 100 has a motor mode and a power generation mode.
モータモードが図35を参照して説明される。このモータモードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と同じ方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と同じ方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と同じ方向をもつ。このモータモードにおいて、インバータ3は3相電圧をステータコイル1及び2に印加する。6個の相コイル1U-2Wは互いに等しい巻数をもつ。したがって、このモータモードによれば、インバータ3は、ステータコイル1と比べて2倍の巻数をもつ星形接続3相コイルに接続されることが理解される。 The motor mode will be described with reference to FIG. In this motor mode, the counter electromotive force VU1 of the U phase coil 1U has the same direction as the counter electromotive force VU2 of the U phase coil 2U. Similarly, the counter electromotive force VV1 of the V-phase coil 1V has the same direction as the counter electromotive force VV2 of the V-phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the same direction as back electromotive force VW2 of W phase coil 2W. In this motor mode, the inverter 3 applies a three-phase voltage to the stator coils 1 and 2. The six phase coils 1U-2W have the same number of turns. Therefore, according to this motor mode, it is understood that the inverter 3 is connected to a star-connected three-phase coil having twice the number of turns as the stator coil 1.
発電モードが図36を参照して説明される。この発電モードにおいて、U相コイル1Uの逆起電力VU1は、U相コイル2Uの逆起電力VU2と反対の方向をもつ。同様に、V相コイル1Vの逆起電力VV1は、V相コイル2Vの逆起電力VV2と反対の方向をもつ。W相コイル1Wの逆起電力VW1は、W相コイル2Wの逆起電力VW2と反対の方向をもつ。この発電モードにおいて、インバータ3は、図4及び図5に示されるスターモードにより駆動される。これにより、インバータ3の各レグ3U、3V、及び3Wはそれぞれ、中性点電圧Vnを出力する。ステータコイル1は、星形接続3相コイルとなる。その結果、3相整流器4は、並列接続されたステータコイル1及び2の3相発電電圧を整流する。この実施例によれば、発電モードの銅損は、モータモードの銅損と比べて1/4となる。低速領域において星形接続コイルを使用するモータモードを使用することにより、発電動作を実行することができる。 The power generation mode will be described with reference to FIG. In this power generation mode, the counter electromotive force VU1 of the U-phase coil 1U has the opposite direction to the counter electromotive force VU2 of the U-phase coil 2U. Similarly, the counter electromotive force VV1 of the V phase coil 1V has the opposite direction to the counter electromotive force VV2 of the V phase coil 2V. Back electromotive force VW1 of W phase coil 1W has the opposite direction to back electromotive force VW2 of W phase coil 2W. In this power generation mode, the inverter 3 is driven in the star mode shown in FIGS. Thereby, each leg 3U, 3V, and 3W of the inverter 3 outputs the neutral point voltage Vn, respectively. Stator coil 1 is a star-connected three-phase coil. As a result, the three-phase rectifier 4 rectifies the three-phase generated voltage of the stator coils 1 and 2 connected in parallel. According to this embodiment, the copper loss in the power generation mode is 1/4 compared with the copper loss in the motor mode. By using the motor mode using the star connection coil in the low speed region, the power generation operation can be executed.
第5実施例に好適なスタータジエネレータが図37-図42を参照して説明される。このスタータジエネレータはエンジン始動モード(モータモード)及び発電モードをもつ。図37はこのスタータジエネレータを示す軸方向断面図である。ステータコイル1はステータコア71に集中巻きされ、ステータコイル2はステータコア81に集中巻きされている。前モータ7は、界磁コイル730が巻かれたランデル型ロータコア73をもつ。後モータ8は、界磁コイル830が巻かれたランデル型ロータコア83をもつ。ランデル型ロータコア73及び83はそれぞれ、従来のランデル型ロータコアと本質的に同じである。 A starter generator suitable for the fifth embodiment will be described with reference to FIGS. This starter generator has an engine start mode (motor mode) and a power generation mode. FIG. 37 is an axial sectional view showing this starter generator. The stator coil 1 is concentrated around the stator core 71, and the stator coil 2 is concentrated around the stator core 81. The front motor 7 has a Landel type rotor core 73 around which a field coil 730 is wound. The rear motor 8 has a Landel type rotor core 83 around which a field coil 830 is wound. Each of the Landel rotor cores 73 and 83 is essentially the same as a conventional Landel rotor core.
ロータコア73はコア731及びコア732からなる。コア731及び732はそれぞれ、ボス部から延在するL字状のロータポール733をもつ。ロータコア83はコア831及びコア832からなる。コア831及び832はそれぞれ、ボス部から延在するL字状のロータポール833をもつ。コア732及び831は一体に作製されることができる。界磁コイル730はロータポール733を磁化し、界磁コイル830はロータポール833を磁化する。 The rotor core 73 includes a core 731 and a core 732. Each of the cores 731 and 732 has an L-shaped rotor pole 733 extending from the boss portion. The rotor core 83 includes a core 831 and a core 832. Each of the cores 831 and 832 has an L-shaped rotor pole 833 extending from the boss portion. The cores 732 and 831 can be made integrally. The field coil 730 magnetizes the rotor pole 733, and the field coil 830 magnetizes the rotor pole 833.
図38はロータポール733及び833の配置を示す展開図である。コア731のロータポール733及びコア832のロータポール833は、周方向において奇数番目の位置に配置される。コア732のロータポール733及びコア831のロータポール833は周方向において偶数番目の位置に配置される。コア731のロータポール733はN極をもち、コア732のロータポール733はS極をもつ。コア831のロータポール833は、エンジン始動モードにおいてS極をもち、発電モードにおいてN極をもつ。コア832のロータポール833は、エンジン始動モードにおいてN極をもち、発電モードにおいてS極をもつ。 FIG. 38 is a development view showing the arrangement of the rotor poles 733 and 833. The rotor pole 733 of the core 731 and the rotor pole 833 of the core 832 are arranged at odd-numbered positions in the circumferential direction. The rotor pole 733 of the core 732 and the rotor pole 833 of the core 831 are arranged at even-numbered positions in the circumferential direction. The rotor pole 733 of the core 731 has an N pole, and the rotor pole 733 of the core 732 has an S pole. The rotor pole 833 of the core 831 has an S pole in the engine start mode and an N pole in the power generation mode. The rotor pole 833 of the core 832 has an N pole in the engine start mode and an S pole in the power generation mode.
図39は界磁コイル730及び830に界磁電流を供給するロータ回路を示す配線図である。このロータ回路は単相フルブリッジ(Hブリッジ)11およびダイオード回路13からなる。ハウジング50に固定されたHブリッジ11は2つのスイッチレグ111および112からなる。ダイオード回路13は、電圧降下用のダイオードペア130、2つの並列ダイオード131および132、及び直列ダイオード133からなる。逆並列接続された2個のダイオードからなるダイオードペア130は省略されることができる。 FIG. 39 is a wiring diagram showing a rotor circuit for supplying a field current to the field coils 730 and 830. This rotor circuit includes a single-phase full bridge (H bridge) 11 and a diode circuit 13. The H bridge 11 fixed to the housing 50 includes two switch legs 111 and 112. The diode circuit 13 includes a diode pair 130 for voltage drop, two parallel diodes 131 and 132, and a series diode 133. The diode pair 130 composed of two diodes connected in reverse parallel can be omitted.
界磁コイル830の一端はダイオードペア130およびスリップリング17を通じてスイッチレグ111の出力端子に接続されている。スリップリング17は並列ダイオード131のアノード電極に接続されている。界磁コイル830の他端は並列ダイオード132のアノード電極及び界磁コイル730の一端に接続されている。界磁コイル730の他端は、並列ダイオード131のカソード電極及び直列ダイオード133のカソード電極に接続されている。直列ダイオード133のアノード電極及び並列ダイオード132のカソード電極はスリップリング18を通じてスイッチレグ112の出力端子に接続されている。 One end of the field coil 830 is connected to the output terminal of the switch leg 111 through the diode pair 130 and the slip ring 17. The slip ring 17 is connected to the anode electrode of the parallel diode 131. The other end of the field coil 830 is connected to the anode electrode of the parallel diode 132 and one end of the field coil 730. The other end of the field coil 730 is connected to the cathode electrode of the parallel diode 131 and the cathode electrode of the series diode 133. The anode electrode of the series diode 133 and the cathode electrode of the parallel diode 132 are connected to the output terminal of the switch leg 112 through the slip ring 18.
図40はダイオード回路13を内蔵する端子リング19を示す側面図である。回転軸12に固定されたこの端子リング19は、界磁コイル730及び830の各一端が別々に接続される2つの端子134をもつ。さらに、端子リング19は、スリップリング17及び18に別々に接続される2つの端子(図示せず)をもつ。Hブリッジ11はハウジング5に固定されている。 FIG. 40 is a side view showing the terminal ring 19 incorporating the diode circuit 13. This terminal ring 19 fixed to the rotary shaft 12 has two terminals 134 to which one ends of the field coils 730 and 830 are separately connected. Further, the terminal ring 19 has two terminals (not shown) that are separately connected to the slip rings 17 and 18. The H bridge 11 is fixed to the housing 5.
エンジン始動モード(モータモード)において、界磁電流はスイッチレグ111からスイッチレグ112へ流れる。これにより、界磁コイル830及び730は並列接続される。このため、界磁電流はエンジン始動初期において急速に立ち上がることができる。界磁電流は発電モードにおいてスイッチレグ112からスイッチレグ111へ流れる。これにより、2つの界磁コイル830及び730は直列接続される。エンジン始動モード及び発電モードにおいて、界磁コイル730を流れる界磁電流の方向は不変であり、界磁コイル830を流れる界磁電流の方向は反対となる。したがって、エンジン始動モード及び発電モードの間のモード切替が指令される時、ロータポール833の極性は反転される。 In the engine start mode (motor mode), the field current flows from the switch leg 111 to the switch leg 112. Thereby, the field coils 830 and 730 are connected in parallel. For this reason, the field current can rise rapidly in the early stage of engine start. The field current flows from the switch leg 112 to the switch leg 111 in the power generation mode. Thereby, the two field coils 830 and 730 are connected in series. In the engine start mode and the power generation mode, the direction of the field current flowing through the field coil 730 is unchanged, and the direction of the field current flowing through the field coil 830 is opposite. Therefore, when mode switching between the engine start mode and the power generation mode is commanded, the polarity of the rotor pole 833 is reversed.
図41及び図42はステータコイル1及び2の配置を示す展開図である。ステータコイル1は互いに電気角120度離れた相コイル1U、1V、及び1Wからなる。ステータコイル2は互いに電気角120度離れた相コイル2U、2V、及び2Wからなる。相コイル1U-1Wはステータポール74に順番に巻かれている。相コイル2U-2Wはステータポール84に順番に巻かれている。相コイル1U及び2Uは同じ周方向位置をもち、相コイル1V及び2Vは同じ周方向位置をもち、相コイル1W及び2Wは同じ周方向位置をもつ。相コイル1Uは逆起電力VU1を発生し、相コイル1Vは逆起電力VV1を発生し、相コイル1Wは逆起電力VW1を発生する。同様に、相コイル2Uは逆起電力VU2を発生し、相コイル2Vは逆起電力VV2を発生し、相コイル2Wは逆起電力VW2を発生する。 41 and 42 are development views showing the arrangement of the stator coils 1 and 2. The stator coil 1 is composed of phase coils 1U, 1V, and 1W separated from each other by an electrical angle of 120 degrees. The stator coil 2 is composed of phase coils 2U, 2V, and 2W separated from each other by an electrical angle of 120 degrees. The phase coils 1U-1W are wound around the stator pole 74 in order. The phase coils 2U-2W are wound around the stator pole 84 in order. Phase coils 1U and 2U have the same circumferential position, phase coils 1V and 2V have the same circumferential position, and phase coils 1W and 2W have the same circumferential position. Phase coil 1U generates back electromotive force VU1, phase coil 1V generates back electromotive force VV1, and phase coil 1W generates back electromotive force VW1. Similarly, phase coil 2U generates counter electromotive force VU2, phase coil 2V generates counter electromotive force VV2, and phase coil 2W generates counter electromotive force VW2.
エンジン始動モード(モータモード)における各逆起電力が図41を参照して説明される。コア731及び832のロータポール733及び833はN極をもち、コア732及び831のロータポール733及び833はS極をもつ。これにより、逆起電力VU1及びVU2は互いに同相となり、逆起電力VV1及びVV2は互いに同相となり、逆起電力VW1及びVW2は互いに同相となる。結局、ステータコイル1及び2が互いに同相の3相逆起電力を発生するこのエンジン始動モードは、従来の3相集中巻きモータと同じ3相逆起電力を発生する。 Each back electromotive force in the engine start mode (motor mode) will be described with reference to FIG. The rotor poles 733 and 833 of the cores 731 and 832 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 831 have an S pole. Thereby, the counter electromotive forces VU1 and VU2 are in phase with each other, the counter electromotive forces VV1 and VV2 are in phase with each other, and the counter electromotive forces VW1 and VW2 are in phase with each other. Eventually, this engine start mode, in which the stator coils 1 and 2 generate the same three-phase counter electromotive force, generates the same three-phase counter electromotive force as that of the conventional three-phase concentrated winding motor.
発電モードにおける逆起電力が図42を参照して説明される。この発電モードにおいて、これらの逆起電力は各相の発電電圧を意味する。コア731及び831のロータポール733及び833はN極をもち、コア732及び832のロータポール733及び833はS極をもつ。これにより、逆起電力VU1及びVU2は互いに反対相となり、逆起電力VV1及びVV2は互いに反対相となり、VW1及びVW2は互いに反対相となる。したがって、この発電モードによれば、6つの逆起電力ベクトルが電気角360度の範囲内に形成される。言い換えれば、この発電モードにおいて、タンデムステータは倍相配列をもつ。 The counter electromotive force in the power generation mode will be described with reference to FIG. In this power generation mode, these back electromotive forces mean the generated voltage of each phase. The rotor poles 733 and 833 of the cores 731 and 831 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 832 have an S pole. Thus, the counter electromotive forces VU1 and VU2 are in opposite phases, the counter electromotive forces VV1 and VV2 are in opposite phases, and VW1 and VW2 are in opposite phases. Therefore, according to this power generation mode, six back electromotive force vectors are formed within an electrical angle of 360 degrees. In other words, in this power generation mode, the tandem stator has a double phase arrangement.
エンジン始動モードにおいて、インバータ3はステータコイル1及び2に3相電流を供給する。インバータ3は3相矩形波電圧を出力することが好適である。ステータコイル1及び2は実質的に一つの合成星形コイルを構成する。この合成星形コイルのU相コイルは、直列接続された相コイル1U及び2Uからなる。相コイル1U及び2Uの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。この合成星形コイルのV相コイルは、直列接続された相コイル1V及び2Vからなる。相コイル1V及び2Vの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。この合成星形コイルのW相コイルは、直列接続された相コイル1W及び2Wからなる。相コイル1W及び2Wの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。 In the engine start mode, the inverter 3 supplies a three-phase current to the stator coils 1 and 2. The inverter 3 preferably outputs a three-phase rectangular wave voltage. The stator coils 1 and 2 substantially constitute one synthetic star coil. The U-phase coil of this synthetic star coil is composed of phase coils 1U and 2U connected in series. The counter electromotive forces of the phase coils 1U and 2U are in the same direction in the engine start mode. The V-phase coil of this synthetic star coil consists of phase coils 1V and 2V connected in series. The counter electromotive forces of the phase coils 1V and 2V are in the same direction in the engine start mode. The W-phase coil of this synthetic star coil is composed of phase coils 1W and 2W connected in series. The counter electromotive forces of the phase coils 1W and 2W are in the same direction in the engine start mode.
上記説明された実施例の各特徴が更に説明される。各実施例は、簡素な構造及び低損失をもつ2レベル電圧源3相インバータを採用する。図1に示される第1実施例の2つの3相インバータはHブリッジモード及びスターモードを実行する。2つの3相インバータのどちらかは、スターモードにおいて実質的に星形接続3相コイルの中性点となる。これにより、ステータコイルの巻数を実質的に切替えることができる。 Each feature of the above described embodiment is further described. Each embodiment employs a two-level voltage source three-phase inverter with a simple structure and low loss. The two three-phase inverters of the first embodiment shown in FIG. 1 execute an H-bridge mode and a star mode. Either of the two three-phase inverters is substantially the neutral point of the star-connected three-phase coil in the star mode. Thereby, the number of turns of the stator coil can be substantially switched.
さらに、第1実施例は、2つの3相インバータの一方をPWM駆動し、その他方の上アームトランジスタと下アームトランジスタとを電気角180度毎に交代にオンするHブリッジモードを開示する。 Further, the first embodiment discloses an H-bridge mode in which one of two three-phase inverters is PWM-driven and the other upper arm transistor and lower arm transistor are alternately turned on every electrical angle of 180 degrees.
図17に示される第2実施例は、2つの3相インバータの一方に接続される星形接続3相コイルからなる第2のステータコイルをもつ。2つのステータコイルの逆起電力の方向は直列モードにおいて相毎に同じであり、並列モードにおいて相毎に反対である。好適には、この逆起電力の方向切替は、モータの極数切替により実行される。これにより、極数及び巻数の倍増が可能な可変速モータ装置を実現することができる。図19に示される第3実施例よれば、 The second embodiment shown in FIG. 17 has a second stator coil composed of a star-connected three-phase coil connected to one of two three-phase inverters. The direction of the counter electromotive force of the two stator coils is the same for each phase in the series mode and opposite for each phase in the parallel mode. Preferably, the direction switching of the counter electromotive force is performed by switching the number of poles of the motor. Thereby, a variable speed motor device capable of doubling the number of poles and the number of turns can be realized. According to the third embodiment shown in FIG.
第2のダブルエンデッド3相コイル及び第3の3相インバータが第1実施例に追加される。第2実施例及び第3実施例に好適なステータ極数の切替は、ロータ極数の切替を要求する。図23に示されるタンデム集中巻きモータは銅損の増加無しにこの問題を解決する。 A second double-ended three-phase coil and a third three-phase inverter are added to the first embodiment. The switching of the number of stator poles suitable for the second and third embodiments requires switching of the number of rotor poles. The tandem concentrated winding motor shown in FIG. 23 solves this problem without increasing copper loss.
図33に示される第3実施例は、3相インバータおよび3相整流器に接続されるダブルエンデッド3相コイルを開示する。3相整流器は、3相インバータとともにHブリッジモードを実行する。更に、3相整流器は短絡回路の一部からなる。 The third embodiment shown in FIG. 33 discloses a double-ended three-phase coil connected to a three-phase inverter and a three-phase rectifier. The three-phase rectifier executes the H-bridge mode together with the three-phase inverter. Furthermore, the three-phase rectifier consists of a part of a short circuit.
図35に示される第5実施例によれば、星形接続3相コイルが第4実施例に追加される。直列モードにおいて、2つのステータコイルは実質的に直列接続される。3相インバータは中性点として動作する並列モードにおいて、2つのステータコイルは実質的に並列接続される。 According to the fifth embodiment shown in FIG. 35, a star-connected three-phase coil is added to the fourth embodiment. In the series mode, the two stator coils are substantially connected in series. In the parallel mode in which the three-phase inverter operates as a neutral point, the two stator coils are substantially connected in parallel.
第5実施例は、2つのステータコイルの1つの逆起電力の方向反転を要求する。この逆起電力の方向反転は、図37に示されるランデル式タンデムモータにより簡単に実現することができる。 The fifth embodiment requires reversal of the direction of one counter electromotive force of two stator coils. The direction reversal of the counter electromotive force can be easily realized by a Landel tandem motor shown in FIG.
結局、各実施例に記載される3相インバータおよび3相整流器からなる3相コンバータは、Hブリッジモードを実行することができ、かつ、スターモードにおいて中性点となることができるという共通の特徴をもつ。 After all, the three-phase converter composed of the three-phase inverter and the three-phase rectifier described in each embodiment can execute the H-bridge mode and can be a neutral point in the star mode. It has.

Claims (23)

  1.  ダブルエンデッド3相コイルを含むステータコイルを駆動する2つの3相インバータと、前記3相インバータをパルス幅変調で制御するコントローラとを備える可変速モータ装置において、
     前記コントローラは、Hブリッジモード及びスターモードを有し、
     前記ダブルエンデッド3相コイルの3つの相コイルは、前記Hブリッジモードにおいて互いに独立に駆動され、
     前記2つの3相インバータの一方は、前記スターモードにおいて互いに本質的に等しい中間電圧を前記3つの相コイルに個別に印加することを特徴とする可変速モータ装置。
    In a variable speed motor device comprising two three-phase inverters for driving a stator coil including a double-ended three-phase coil, and a controller for controlling the three-phase inverter by pulse width modulation,
    The controller has an H-bridge mode and a star mode,
    The three phase coils of the double-ended three-phase coil are driven independently of each other in the H-bridge mode,
    One of the two three-phase inverters individually applies an intermediate voltage substantially equal to each other in the star mode to the three phase coils.
  2.  前記中間電圧は、星形接続3相コイルの中性点電圧に本質的に等しい請求項1記載の可変速モータ装置。 The variable speed motor device according to claim 1, wherein the intermediate voltage is essentially equal to a neutral point voltage of a star-connected three-phase coil.
  3.  前記中間電圧を出力する前記3相インバータの3つのレグは、本質的に同じ制御信号により同期制御される請求項1記載の可変速モータ装置。 The variable speed motor device according to claim 1, wherein the three legs of the three-phase inverter that outputs the intermediate voltage are synchronously controlled by essentially the same control signal.
  4.  前記ダブルエンデッド3相コイルの各相コイルは、前記Hブリッジモードにおいて前記2つの3相インバータのPWMレグ及び電位固定レグに接続され、
     前記PWMレグは、パルス幅変調(PWM)で制御され、
     前記電位固定レグは、高電位DCリンク電圧にほぼ等しい電圧及び低電位DCリンク電圧のどちらかにほぼ等しい電圧を交互に出力する請求項1記載の可変速モータ装置。
    Each phase coil of the double-ended three-phase coil is connected to the PWM leg and the potential fixing leg of the two three-phase inverters in the H-bridge mode,
    The PWM leg is controlled by pulse width modulation (PWM),
    2. The variable speed motor device according to claim 1, wherein the potential fixing leg alternately outputs a voltage substantially equal to either the high potential DC link voltage or the low potential DC link voltage. 3.
  5.  前記2つの3相インバータの6個のレグはそれぞれ、PWMレグ電圧を出力するPWMモード、前記高電位DCリンク電圧を実質的に出力する高電位固定モード、及び前記低電位DCリンク電圧を実質的に出力する低電位固定モードを順番に前記Hブリッジモードにおいて実行する請求項4記載の可変速モータ装置。 Each of the six legs of the two three-phase inverters has a PWM mode for outputting a PWM leg voltage, a high potential fixed mode for substantially outputting the high potential DC link voltage, and a substantially low potential DC link voltage. The variable speed motor device according to claim 4, wherein the low potential fixed mode to be output to is sequentially executed in the H bridge mode.
  6.  前記ステータコイルは、前記2つの3相インバータの一方に接続される第2の3相コイルをさらに有する請求項1記載の可変速モータ装置。 2. The variable speed motor device according to claim 1, wherein the stator coil further includes a second three-phase coil connected to one of the two three-phase inverters.
  7.  前記第2の3相コイルは、星形接続3相コイルからなる請求項6記載の可変速モータ装置。 The variable speed motor device according to claim 6, wherein the second three-phase coil is a star-connected three-phase coil.
  8.  前記コントローラは、直列モード及び並列モードを有し、前記直列モードは、前記ダブルエンデッド3相コイル及び前記第2の3相コイルを本質的に直列接続し、前記並列モードは、前記スターモードを採用することにより前記ダブルエンデッド3相コイル及び前記第2の3相コイルを本質的に並列接続する請求項7記載の可変速モータ装置。 The controller has a series mode and a parallel mode, wherein the series mode essentially connects the double-ended three-phase coil and the second three-phase coil in series, and the parallel mode is the star mode. 8. The variable speed motor device according to claim 7, wherein the double-ended three-phase coil and the second three-phase coil are essentially connected in parallel.
  9.  前記第2の3相コイルは、第3の3相インバータに接続される第2のダブルエンデッド3相コイルからなる請求項6記載の可変速モータ装置。 The variable speed motor device according to claim 6, wherein the second three-phase coil is a second double-ended three-phase coil connected to a third three-phase inverter.
  10.  前記コントローラは、直列モード及び並列モードを有し、前記直列モードは、前記2つのダブルエンデッド3相コイルを本質的に直列接続し、前記並列モードは、前記2つのダブルエンデッド3相コイルを本質的に並列接続する請求項9記載の可変速モータ装置。 The controller has a series mode and a parallel mode, wherein the series mode essentially connects the two double-ended three-phase coils in series, and the parallel mode includes the two double-ended three-phase coils. 10. The variable speed motor device according to claim 9, which is essentially connected in parallel.
  11.  前記ダブルエンデッド3相コイル及び前記第2の3相コイルは、共通の回転軸に沿って隣接配置された2つのステータコアに別々に巻かれている請求項6記載の可変速モータ装置。 The variable speed motor device according to claim 6, wherein the double-ended three-phase coil and the second three-phase coil are separately wound around two stator cores arranged adjacent to each other along a common rotation axis.
  12.  前記ダブルエンデッド3相コイル及び前記第2の3相コイルは、集中巻きにより前記2つのステータコアのステータポールに巻かれ、
     前記2つのステータコアの前記ステータポールは、前記回転軸の周方向において互いに半ステータポールピッチだけシフトされている請求項11記載の可変速モータ装置。
    The double-ended three-phase coil and the second three-phase coil are wound around the stator poles of the two stator cores by concentrated winding,
    The variable speed motor apparatus according to claim 11, wherein the stator poles of the two stator cores are shifted from each other by a half stator pole pitch in a circumferential direction of the rotating shaft.
  13.  前記2つのステータコアは、共通の籠形コイルに対面する請求項11記載の可変速モータ装置。 12. The variable speed motor device according to claim 11, wherein the two stator cores face a common saddle coil.
  14.  ダブルエンデッド3相コイルを駆動する3相インバータ及び3相整流器と、前記3相インバータを制御するコントローラとを備える可変速モータ装置において、
     前記3相整流器の2つの直流端子は、逆流防止ダイオードを通じて前記3相インバータの2つの直流端子に個別に接続され、かつ、短絡トランジスタにより短絡可能であることを特徴とする可変速モータ装置。
    In a variable speed motor device comprising a three-phase inverter and a three-phase rectifier for driving a double-ended three-phase coil, and a controller for controlling the three-phase inverter,
    2. The variable speed motor device according to claim 2, wherein the two DC terminals of the three-phase rectifier are individually connected to the two DC terminals of the three-phase inverter through backflow prevention diodes and can be short-circuited by a short-circuit transistor.
  15.  前記コントローラは、モータモード及び発電モードを有し、
     前記モータモードは、前記短絡トランジスタをオンし、かつ、前記3相インバータから前記ダブルエンデッド3相コイルに3相電流を供給し、
     前記発電モードは、前記短絡トランジスタをオフし、かつ、前記3相インバータ及び前記3相整流器により前記ダブルエンデッド3相コイルの3相発電電圧を整流する請求項14記載の可変速モータ装置。
    The controller has a motor mode and a power generation mode,
    In the motor mode, the short-circuit transistor is turned on, and a three-phase current is supplied from the three-phase inverter to the double-ended three-phase coil,
    The variable speed motor device according to claim 14, wherein in the power generation mode, the short-circuit transistor is turned off and the three-phase generated voltage of the double-ended three-phase coil is rectified by the three-phase inverter and the three-phase rectifier.
  16.  ダブルエンデッド3相コイルを含むステータコイルを駆動する3相インバータ及び3相整流器と、前記3相インバータを制御するコントローラとを備える可変速モータ装置において、
     前記ステータコイルは、前記3相整流器に接続される星形接続3相コイルをさらに有することを特徴とする可変速モータ装置。
    In a variable speed motor device comprising a three-phase inverter and a three-phase rectifier for driving a stator coil including a double-ended three-phase coil, and a controller for controlling the three-phase inverter,
    The variable-speed motor apparatus according to claim 1, wherein the stator coil further includes a star-connected three-phase coil connected to the three-phase rectifier.
  17.  前記コントローラは、モータモード及び発電モードを有し、
     前記モータモードは、前記ダブルエンデッド3相コイル及び前記星形接続3相コイルを本質的に直列接続し、
     前記発電モードは、前記ダブルエンデッド3相コイル及び前記星形接続3相コイルを本質的に並列接続し、
     前記3相インバータは、前記発電モードにおいて本質的に中性点電圧を出力する請求項16記載の可変速モータ装置。
    The controller has a motor mode and a power generation mode,
    The motor mode essentially connects the double-ended three-phase coil and the star-connected three-phase coil in series,
    The power generation mode essentially connects the double-ended three-phase coil and the star-connected three-phase coil in parallel,
    The variable speed motor device according to claim 16, wherein the three-phase inverter essentially outputs a neutral point voltage in the power generation mode.
  18.  前記ダブルエンデッド3相コイル及び前記星形接続3相コイルは、共通の回転軸に沿って隣接配置された2つのステータコアに別々に巻かれている請求項17記載の可変速モータ装置。 The variable speed motor device according to claim 17, wherein the double-ended three-phase coil and the star-connected three-phase coil are separately wound around two stator cores arranged adjacent to each other along a common rotation axis.
  19.  前記2つのステータコアは、互いに異なるランデル型ロータコアに対面する請求項18記載の可変速モータ装置。 19. The variable speed motor device according to claim 18, wherein the two stator cores face different Landell type rotor cores.
  20.  ダブルエンデッド3相コイルを含むステータコイルを駆動する2つの3相インバータと、前記3相インバータをパルス幅変調で制御するコントローラとを備える可変速モータ装置において、
     前記コントローラは、前記ダブルエンデッド3相コイルの3つの相コイルを互いに独立に駆動するHブリッジモードを有し、
     前記ダブルエンデッド3相コイルの各相コイルは、前記Hブリッジモードにおいて前記2つの3相インバータのPWMレグ及び電位固定レグに接続され、
     前記PWMレグは、パルス幅変調(PWM)で制御され、
     前記電位固定レグは、ほぼ高電位DCリンク電圧及びほぼ低電位DCリンク電圧のどちらかを出力することを特徴とする可変速モータ装置。
    In a variable speed motor device comprising two three-phase inverters for driving a stator coil including a double-ended three-phase coil, and a controller for controlling the three-phase inverter by pulse width modulation,
    The controller has an H-bridge mode for driving the three phase coils of the double-ended three-phase coil independently of each other;
    Each phase coil of the double-ended three-phase coil is connected to the PWM leg and the potential fixing leg of the two three-phase inverters in the H-bridge mode,
    The PWM leg is controlled by pulse width modulation (PWM),
    The variable speed motor device, wherein the potential fixing leg outputs either a substantially high potential DC link voltage or a substantially low potential DC link voltage.
  21.  前記2つの3相インバータの6個のレグはそれぞれ、PWMレグ電圧を出力するPWMモード、前記高電位DCリンク電圧を実質的に出力する高電位固定モード、及び前記低電位DCリンク電圧を実質的に出力する低電位固定モードを順番に前記Hブリッジモードにおいて実行する請求項21記載の可変速モータ装置。 Each of the six legs of the two three-phase inverters has a PWM mode for outputting a PWM leg voltage, a high potential fixed mode for substantially outputting the high potential DC link voltage, and a substantially low potential DC link voltage. The variable-speed motor device according to claim 21, wherein the low-potential fixed mode to be output to is sequentially executed in the H-bridge mode.
  22.  前記ステータコイルは、前記2つの3相インバータの一方に接続される第2の3相コイルをさらに有する請求項20記載の可変速モータ装置。 The variable speed motor apparatus according to claim 20, wherein the stator coil further includes a second three-phase coil connected to one of the two three-phase inverters.
  23.  前記第2の3相コイルは、星形接続3相コイルからなる請求項22記載の可変速モータ装置。 The variable speed motor device according to claim 22, wherein the second three-phase coil is a star-connected three-phase coil.
PCT/JP2018/017591 2017-05-09 2018-05-07 Variable speed motor device WO2018207719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517604A JPWO2018207719A1 (en) 2017-05-09 2018-05-07 Variable speed motor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-093032 2017-05-09
JP2017093032 2017-05-09
PCT/JP2017/022502 WO2018029989A1 (en) 2015-11-12 2017-06-19 Variable speed motor device
JPPCT/JP2017/022502 2017-06-19
PCT/JP2017/027702 WO2018142649A1 (en) 2017-02-04 2017-07-31 Multiplexed three-phase inverter-type motor device
JPPCT/JP2017/027702 2017-07-31

Publications (1)

Publication Number Publication Date
WO2018207719A1 true WO2018207719A1 (en) 2018-11-15

Family

ID=64104761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017591 WO2018207719A1 (en) 2017-05-09 2018-05-07 Variable speed motor device

Country Status (2)

Country Link
JP (1) JPWO2018207719A1 (en)
WO (1) WO2018207719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010469A1 (en) * 2019-07-18 2021-01-21

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177848A (en) * 1988-01-08 1989-07-14 Satake Eng Co Ltd Plural stator induction motor
JP2003111492A (en) * 2001-10-03 2003-04-11 Yaskawa Electric Corp Coil switching device for three-phase ac motor
JP2006149145A (en) * 2004-11-24 2006-06-08 Nsk Ltd Drive controller of connectionless motor and electric power steering system employing it
JP2014054094A (en) * 2012-09-07 2014-03-20 Denso Corp Motor drive system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525025B2 (en) * 2003-08-07 2010-08-18 三菱電機株式会社 Rotating electric machine
WO2012098585A1 (en) * 2011-01-21 2012-07-26 Three Eye Co., Ltd. Three-phase inverter for driving variable-speed electric machine
JP2013165628A (en) * 2011-07-13 2013-08-22 Suri-Ai:Kk Transverse magnetic flux machine
WO2017081900A1 (en) * 2015-11-12 2017-05-18 田中 正一 Winding count switchable electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177848A (en) * 1988-01-08 1989-07-14 Satake Eng Co Ltd Plural stator induction motor
JP2003111492A (en) * 2001-10-03 2003-04-11 Yaskawa Electric Corp Coil switching device for three-phase ac motor
JP2006149145A (en) * 2004-11-24 2006-06-08 Nsk Ltd Drive controller of connectionless motor and electric power steering system employing it
JP2014054094A (en) * 2012-09-07 2014-03-20 Denso Corp Motor drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021010469A1 (en) * 2019-07-18 2021-01-21
JP7274135B2 (en) 2019-07-18 2023-05-16 学校法人法政大学 rotating machine system

Also Published As

Publication number Publication date
JPWO2018207719A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
EP2412091B1 (en) Electric motor system
US8228020B2 (en) Apparatus and method for controlling hybrid motor
WO2011043118A1 (en) Motor system
CN108258945B (en) Nine-switch inverter of double-permanent-magnet synchronous motor and control method thereof
US20150097505A1 (en) Current source inverter device
WO2018029989A1 (en) Variable speed motor device
JP7218460B2 (en) 3-phase motor drive
JP2015164385A (en) Variable-speed electric machine
WO2018207719A1 (en) Variable speed motor device
Lin et al. An innovative multiphase PWM control strategy for a PMSM with segmented stator windings
JP2014039446A (en) Pole change motor device
US20140070750A1 (en) Hybrid Motor
Su et al. Design of a PM brushless motor drive for hybrid electrical vehicle application
CN107155393B (en) Power conversion device, control method thereof, and electric power steering control device
JP2017112819A (en) Source resultant pulse number switching electrical machine
US7388347B2 (en) Method and inverter for controlling a direct current motor
WO2019244212A1 (en) Variable-speed motor device
Su et al. Modular PM motor drives for automotive traction applications
JP2011130525A (en) Electric motor drive system
WO2018142653A1 (en) Radial gap rotary electric machine
JP2018026995A (en) Electric machine for changing pole
JP2019037124A (en) Tandem type electric rotating machine
JP2017112817A (en) Variable speed ac electrical machine
JP7391130B2 (en) Inverter drive method
AU2017204670A1 (en) Three phase permanent magnet motor driving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019517604

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18798027

Country of ref document: EP

Kind code of ref document: A1