WO2018142653A1 - Radial gap rotary electric machine - Google Patents

Radial gap rotary electric machine Download PDF

Info

Publication number
WO2018142653A1
WO2018142653A1 PCT/JP2017/030712 JP2017030712W WO2018142653A1 WO 2018142653 A1 WO2018142653 A1 WO 2018142653A1 JP 2017030712 W JP2017030712 W JP 2017030712W WO 2018142653 A1 WO2018142653 A1 WO 2018142653A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
core
stator
coil
radial gap
Prior art date
Application number
PCT/JP2017/030712
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正一
Original Assignee
田中 正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中 正一 filed Critical 田中 正一
Publication of WO2018142653A1 publication Critical patent/WO2018142653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a radial gap type rotating electrical machine including a motor or a generator, and more particularly to a tandem radial gap type rotating electrical machine.
  • FIG. 1 shows an example of a conventional concentrated winding synchronous motor.
  • the stator core has 1.5 stator poles 10 per pole of the rotor 11.
  • the phase current IU flowing through the phase coil 1 U forms a phase magnetic field U in the stator pole 10.
  • the phase current IV flowing through the phase coil 1 V forms a phase magnetic field V in the stator pole 10.
  • the phase current IW flowing through the phase coil 1 W forms a phase magnetic field W in the stator pole 10.
  • FIG. 2 shows the vectors of the phase magnetic fields U, V, W.
  • a concentrated winding having only three phase magnetic field vectors per 360 degrees of electrical angle has the problem of increasing torque ripple and vibration.
  • FIG. 3 shows an example of a conventional distributed winding.
  • the stator core has six teeth 10 per 360 electrical degrees.
  • the phase currents IU, IV, and IW form the six phase magnetic field vectors U, -V, W, -U, V, and W shown in FIG. 4 in the electric angle range of 360 degrees.
  • Distributed winding with long coil ends increases copper loss.
  • FIG. 5 shows another example of conventional distributed winding.
  • the stator core has six teeth 10 per 180 electrical degrees.
  • FIG. 6 shows an arrangement example of the phase coils 1U, 1V, and 1W.
  • Phase current IU flows through phase coil 1U
  • phase current IV flows through phase coil 1V
  • phase current IW flows through phase coil 1W.
  • the stator coil is wound at a short pitch.
  • FIG. 7 shows twelve slot current vectors formed in the electrical angle range of 360 degrees. This slot current means a vector sum of a plurality of phase currents flowing through one slot.
  • Patent Documents 1 and 2 disclose a tandem motor in which two motors are arranged in the axial direction.
  • two stator coils wound separately on different stator cores are generally connected to DC power supplies having different voltages.
  • a traction motor provided under the floor for an electric vehicle tends to adopt a long motor shape having a long axial length.
  • long motors have the disadvantage of increased copper loss.
  • stator coil cooling problems When the long motor is driven in the low speed and large torque region, the stator coil causes a serious temperature rise in the central portion of the stator core far from the coil end. Therefore, in the long motor type traction motor, cooling of the central portion of the stator coil in the axial direction becomes an important problem.
  • the reduction in the magnetic pole cross-sectional area of the stator pole reduces the distance of one turn of the stator coil called the turn length.
  • this reduction in the cross-sectional area of the stator pole reduces the motor torque.
  • the increase in the stator current for maintaining the torque increases the copper loss.
  • copper loss reduction needs to be realized without reducing the cross-sectional area of the stator pole.
  • the important indexes related to the copper loss reduction are the magnetic path cross-sectional area (Sfe) of the stator pole, the turn length (Lc) of the coil conductor, and the cross-sectional area (Scu) of the coil conductor.
  • reduction of the ratio (Lc / (Scu ⁇ Sfe)) is important in reducing copper loss.
  • this ratio is called the resistance ratio. For example, in an operating condition where copper loss accounts for 50% of motor loss, a 10% reduction in resistance ratio results in a 5% efficiency improvement.
  • induction motor is more advantageous than a permanent magnet motor in terms of suppression of counter electromotive force in a high speed region and manufacturing cost.
  • induction motors have inherently higher copper losses than permanent magnet motors.
  • an increase in copper loss in the large current region causes overheating problems of the stator coil.
  • One object of the present invention is to provide a radial gap type rotating electrical machine capable of reducing copper loss and vibration. Another object of the present invention is to provide a radial gap type rotating electrical machine capable of suppressing a temperature rise of a stator coil.
  • the tandem motor has two concentrated winding three-phase coils.
  • the stator pole arrangement of the tandem motor called tandem concentrated winding
  • at least one of a double pole arrangement capable of doubling the number of poles and a double phase arrangement capable of doubling the number of phases is employed.
  • the electrical angle of 360 degrees corresponds to 1.5 times the front salient pole pitch, and the stator coil generates a three-phase electromotive force.
  • the electrical angle of 360 degrees corresponds to three times the front salient pole pitch, and the stator coil generates a symmetrical six-phase electromotive force.
  • torque ripple and vibration are reduced.
  • this tandem concentrated winding has a copper loss reducing effect and a temperature rise suppressing effect which are superior to conventional distributed winding or conventional concentrated winding having the same output.
  • the magnetic pole surface of the front salient pole and the magnetic pole surface of the rear salient pole overlap in the circumferential direction. This reduces torque ripple and improves magnet utilization.
  • the front salient pole is shifted by a half salient pole pitch in the circumferential direction compared to the rear salient pole. Thereby, torque ripple is reduced.
  • an induction motor employing tandem concentrated winding has a common conductor bar that passes through the front rotor core and the rear rotor core in turn. According to this tandem induction motor, harmonics are reduced.
  • the two three-phase coils are connected to a common three-phase AC power source.
  • This three-phase AC power supply can be constituted by one three-phase inverter or a commercial three-phase power supply.
  • the two three-phase coils are separately connected to the two three-phase inverters.
  • the two three-phase inverters switch between the double phase arrangement and the double pole arrangement by changing the phase of the six-phase voltage applied to the two three-phase coils. This switching technique is called a pole number switching technique.
  • two three-phase inverters fix two phase voltages having opposite phases to an intermediate voltage, and add a predetermined bias voltage to the remaining four phase voltages. Thereby, the number of turns of the stator coil is switched equivalently.
  • This switching technique is called a winding number switching technique.
  • the two three-phase inverters perform a four-phase mode. According to this four-phase mode, two three-phase inverters perform two-phase modulation with opposite phases. Thereby, inverter loss can be reduced while suppressing leakage current.
  • the polarity of either of the two rotor cores is inverted by a polarity inversion circuit.
  • the polarity inversion circuit switches only the direction of the field current supplied to one of the two field coils.
  • the polarity reversing circuit provides a reversible field current to a diode circuit for fixing the direction of the field current flowing through one of the two field coils.
  • the stator coil has an independent three-phase coil consisting of three phase coils that are separately connected in series to each phase coil of the star-connected three-phase coil.
  • the star-connected three-phase coil and the independent three-phase coil are connected in series to the first power converter and connected in parallel to the second power converter.
  • the first power converter comprises a three-phase inverter
  • the second power converter comprises a three-phase rectifier.
  • the independent three-phase coil has more turns than the star connected three-phase coil.
  • the distributed winding stator coil of the tandem motor has insulated conductors that alternately pass through the in-phase slots of the front stator core and the out-of-phase slots of the rear stator core. Further, the insulated conductor is bent in the circumferential direction in an idle space between the front stator core and the rear stator core. According to the tandem distributed winding, the coil end is simplified and the stator coil can be easily cooled. Preferably, the rear stator core has a longer axial length than the front stator core. Thereby, torque ripple is reduced.
  • This tandem distributed winding can use the technique of each aspect of the tandem concentrated winding described above.
  • the front motor of the tandem motor mainly generates magnet torque
  • the rear motor mainly generates synchronous reluctance torque.
  • This tandem motor is called a tandem composite synchronous motor.
  • the relative angle between the front rotor core and the rear rotor core is set to a value at which the front motor and the rear motor can respectively generate substantially maximum torque.
  • This tandem composite synchronous motor can realize low copper loss by increasing electromotive force.
  • this tandem composite synchronous motor can employ the technology of each aspect of the tandem concentrated winding described above.
  • the tandem concentrated winding stator core consists of aligned core segments.
  • Each core segment has a linear yoke portion projecting substantially tangentially from the stator pole.
  • a stator core of an inner rotor radial gap motor including a tandem motor is composed of a number of core segments arranged in an annular shape.
  • Each core segment has a yoke portion extending linearly from the stator pole in the tangential direction.
  • the slot cross-sectional area can be enlarged.
  • each core segment has a wedge for housing fitting.
  • the housing has a die-cast fitting portion that is in close contact with the wedge portion. Thereby, the housing can suppress the relative vibration between core segments satisfactorily. Further, relative vibration between the front rotor core and the rear stator core is also suppressed in the tandem concentrated winding.
  • FIG. 1 is a developed view showing a conventional concentrated winding.
  • FIG. 2 is a vector diagram showing three phase magnetic field vectors of concentrated winding.
  • FIG. 3 is a development view showing one conventional distributed winding.
  • FIG. 4 is a vector diagram showing the six phase magnetic field vectors of the distributed winding shown in FIG.
  • FIG. 5 is a developed view showing another conventional distributed winding.
  • FIG. 6 is a wiring diagram of the distributed winding shown in FIG.
  • FIG. 7 is a vector diagram showing 12 phase magnetic field vectors of the distributed winding shown in FIG.
  • FIG. 8 is an axial sectional view showing the tandem concentrated winding induction motor of the first embodiment.
  • FIG. 9 is a block circuit diagram showing a double inverter type tandem motor drive circuit.
  • FIG. 9 is a block circuit diagram showing a double inverter type tandem motor drive circuit.
  • FIG. 10 is an axial sectional view showing a saddle-shaped rotor of the tandem motor.
  • FIG. 11 is a side view of the saddle type rotor.
  • FIG. 12 is an axial cross-sectional view showing another saddle coil.
  • FIG. 13 is a side view showing the saddle coil shown in FIG.
  • FIG. 14 is a side view showing the three-phase inverter shown in FIG. 15 is an axial sectional view of the three-phase inverter shown in FIG.
  • FIG. 16 is a side view showing the front stator in the double pole.
  • FIG. 17 is a side view showing the rear stator in the double pole arrangement.
  • FIG. 18 is a development view showing the phase current distribution in the double pole arrangement.
  • FIG. 19 is a vector diagram showing phase magnetic field vectors in a double pole arrangement.
  • FIG. 20 is a side view showing the front stator in the double phase arrangement.
  • FIG. 21 is a side view showing the rear stator in the double phase arrangement.
  • FIG. 22 is a development view showing the phase current distribution in the double phase arrangement.
  • FIG. 23 is a vector diagram showing phase magnetic field vectors in the double phase arrangement.
  • FIG. 24 is a timing chart showing intermediate potential leg switching timing in the series mode.
  • FIG. 25 is a vector diagram showing a correction phase voltage vector in one phase period of the series mode.
  • FIG. 26 is a vector diagram showing a corrected phase voltage vector in another phase period of the series mode.
  • FIG. 27 is a vector diagram showing a correction phase voltage vector in another phase period of the series mode.
  • FIG. 28 is a sectional view in the axial direction showing the tandem concentrated winding synchronous motor of the second embodiment.
  • FIG. 29 is a block circuit diagram showing a single inverter type tandem motor drive circuit.
  • FIG. 30 is a development view showing a tandem stator in a double pole arrangement.
  • FIG. 31 is a development view showing the tandem stator in the double phase arrangement.
  • FIG. 32 is an axial sectional view showing a tandem concentrated winding starter generator according to a third embodiment.
  • FIG. 33 is a schematic diagram showing the rotor magnetic pole arrangement of this tandem starter generator.
  • FIG. 34 is a wiring diagram showing the rotor circuit.
  • FIG. 35 is a side view showing a terminal ring in which a diode is built.
  • FIG. 35 is a side view showing a terminal ring in which a diode is built.
  • FIG. 36 is a developed view showing the back electromotive force of each phase in the engine start mode.
  • FIG. 37 is a development view showing the generated voltage of each phase in the power generation mode.
  • FIG. 38 is a wiring diagram showing a power converter of the tandem starter generator.
  • FIG. 39 is a vector diagram showing the generated voltage in the power generation mode.
  • FIG. 40 is a vector diagram showing the back electromotive force in the engine start mode.
  • FIG. 41 is a schematic diagram showing an alignment process of the split core type stator core of the fourth embodiment.
  • FIG. 42 is a radial sectional view showing a die-casting process of the split core type stator core.
  • FIG. 43 is an axial cross-sectional view showing this die casting process.
  • FIG. 44 is a side view showing a core segment of a split core type stator core.
  • FIG. 45 is a side view showing a split-core stator core according to a modified embodiment.
  • 46 is an axial sectional view of the stator core shown in FIG.
  • FIG. 47 is a side view showing a concentrated winding core segment as a comparative example.
  • FIG. 48 is an axial cross-sectional view showing a tandem distributed winding of the fifth embodiment.
  • 49 is a developed view showing the front stator shown in FIG.
  • FIG. 50 is a development view showing the rear stator shown in FIG.
  • FIG. 51 is a vector diagram showing phase current vectors of this tandem motor.
  • FIG. 52 is a wiring diagram showing a stator coil of the tandem motor.
  • FIG. 53 is another wiring diagram showing this stator coil.
  • FIG. 54 is a schematic diagram showing a stator pole arrangement of tandem distributed winding.
  • FIG. 55 is a schematic diagram showing a conventional distributed winding stator pole arrangement as a comparative example.
  • FIG. 56 is an axial sectional view showing a tandem composite synchronous motor of the sixth embodiment.
  • FIG. 57 is a vector diagram showing one phase difference between two rotor cores.
  • FIG. 58 is a vector diagram showing another phase difference between two rotor cores.
  • FIG. 1 A preferred embodiment of an inner rotor radial gap rotating electrical machine according to the present invention will be described with reference to the drawings.
  • This rotating electric machine consisting of two motors substantially arranged in tandem is abbreviated as a tandem motor.
  • the first embodiment relates to a tandem concentrated winding induction motor.
  • the second embodiment relates to a tandem concentrated winding synchronous motor.
  • the third embodiment relates to a tandem concentrated winding starter generator.
  • the fourth embodiment relates to a split core type tandem concentrated winding motor.
  • the fifth embodiment relates to a tandem distributed winding motor.
  • the sixth embodiment relates to a tandem composite synchronous motor.
  • FIG. 8 shows a tandem concentrated winding induction motor.
  • the front motor 7 and the rear motor 8 housed in the housing 5 are arranged in tandem in the axial direction of the common rotary shaft 12.
  • the front motor 7 has a front stator core 71, a three-phase coil 1, a front rotor core 73, and a common saddle coil 9.
  • the front stator core 71 is fixed to the housing 5.
  • the three-phase coil 1 is wound around the front stator core 71.
  • the front rotor core 73 is fixed to the rotating shaft 12.
  • the rear motor 8 has a rear stator core 81, a three-phase coil 2, a rear rotor core 83, and a common saddle coil 9.
  • the rear stator core 81 is fixed to the housing 5.
  • Three-phase coil 2 is wound around rear stator core 81.
  • the rear rotor core 83 is fixed to the rotating shaft 12.
  • the stator cores 71 and 81 sandwich a nonmagnetic spacer 15 fixed to the housing 5.
  • the rotor cores 73 and 83 sandwich a nonmagnetic spacer 16 fixed to the rotating shaft 12.
  • the annular spacers 15 and 16 can be omitted.
  • Each one coil end of the three-phase coils 1 and 2 is accommodated in an idle space formed by the spacers 15 and 16.
  • the three-phase coil 1 is connected to a three-phase inverter 3 fixed to the front end wall of the housing 5.
  • the three-phase coil 2 is connected to a three-phase inverter 4 fixed to the rear end wall of the housing 5.
  • FIG. 9 shows a drive circuit for this tandem induction motor.
  • This circuit with two three-phase inverters 3 and 4 is called a double inverter circuit.
  • Inverter 3 consists of three legs 3U, 3V, and 3W.
  • the inverter 4 is composed of three legs 4U, 4V, and 4W.
  • the controller 100 controls the inverters 3 and 4.
  • the three-phase coil 1 comprises three phase coils 1U, 1V, and 1W connected in a star shape (Wye).
  • the three-phase coil 2 comprises three phase coils 2U, 2V, and 2W connected in a star shape (Wye).
  • the leg 3U applies a phase voltage V1 to the phase coil 1U and supplies a phase current I1.
  • the leg 3V applies a phase voltage V2 to the phase coil 1V and supplies a phase current I2.
  • the leg 3W applies the phase voltage V3 to the phase coil 1W and supplies the phase current I3.
  • the leg 4U applies a phase voltage V4 to the phase coil 2U and supplies a phase current I4.
  • the leg 4V applies the phase voltage V5 to the phase coil 2V and supplies the phase current I5.
  • the leg 4W applies a phase voltage V6 to the phase coil 2W and supplies a phase current I6.
  • the electrical angle between any two of the three phase currents I1-I3 is 120 degrees.
  • the electrical angle between any two of the three phase currents I4-I6 is 120 degrees.
  • FIG. 10 is an axial sectional view showing a saddle rotor
  • FIG. 11 is a side view of the saddle rotor.
  • the saddle-shaped coil 9 formed by die casting is composed of a large number of conductor bars 91 and two end rings 92.
  • Each conductor bar 91 extending substantially in the axial direction is separately accommodated in each slot of the rotor cores 73 and 83.
  • Each conductor bar 91 passes through one slot of each of the rotor cores 73 and 83 in order.
  • One end of the annular end ring 92 is connected to the front end of the conductor bar 91, and the other is connected to the rear end of the conductor bar 91.
  • Each end ring 92 has wings 93 formed radially.
  • the rotating wing part 93 forms an air flow indicated by an arrow.
  • FIG. 12 is an axial sectional view showing a part of the saddle coil 9.
  • the saddle-shaped coil 9 includes a coil portion 9A fixed to the front rotor core 73 by die casting and a coil portion 9B fixed to the rear rotor core 83 by another die casting.
  • the coil portion 9A includes a conductor bar 91A and a connection end portion 95A.
  • the conductor bar 91A is inserted into the slot of the rotor core 73.
  • FIG. 13 is a side view showing the connecting end portion 95A.
  • Each connection end 95A extends radially inward from the conductor bar 91A along the rear end surface of the rotor core 73.
  • the coil portion 9B includes a conductor bar 91B and a connection end portion 95B.
  • the conductor bar 91B is inserted into the slot of the rotor core 83.
  • the connecting end portion 95B extends radially inward from the conductor bar 91B along the front end surface of the rotor core 83.
  • Each pair of connection end portions 95A and 95B having the same shape is in close contact with each other in the idle space between the rotor cores 73 and 83.
  • the joint 96 of the connection ends 95A and 95B is welded. Thereby, manufacture of the saddle-shaped coil 9 becomes easy.
  • FIG. 14 is a side view showing the three-phase inverter 3 fixed to the front end wall of the housing 5.
  • FIG. 15 is an axial sectional view showing the leg 3U of the three-phase inverter 3.
  • the three legs 3U, 3V, and 3W of the inverter 3 are arranged radially around the rotating shaft 12. The illustration of the free wheel diode is omitted.
  • the upper arm transistors 3UU, 3VU, and 3WU are disposed outside the lower arm transistors 3UL, 3VL, and 3WL in the radial direction.
  • the upper arm transistors 3UU, 3VU, and 3WU are sandwiched between an annular copper plate 501 and an L-shaped output terminal 503-505.
  • the lower arm transistors 3UL, 3VL, and 3WL are sandwiched between an annular copper plate 502 and output terminals 503-505.
  • the output terminals 503-505 extend into the housing 5 through holes in the housing 5.
  • the copper plates 501 and 502 are fixed to the front end wall of the housing 5 through an insulating sheet.
  • the copper plate 501 is connected to the positive electrode of the DC power source, and the copper plate 502 is connected to the negative electrode of the DC power source.
  • the three-phase inverter 4 has the same structure as the three-phase inverter 3.
  • This tandem induction motor employs a pole number switching technique for switching the number of stator poles.
  • This pole number switching technique includes a double pole mode in which the number of stator poles is doubled and a double phase mode in which the number of stator phases is doubled.
  • the double pole mode is described with reference to FIGS.
  • FIG. 16 is a side view showing the front stator core 71.
  • the front stator core 71 has six stator poles 72 projecting radially inward from an annular yoke 75.
  • the stator pole 72 is called a front salient pole.
  • Each stator pole 72 has a magnetic pole surface 74 that faces the front rotor core 73.
  • Three phase coils 1U, 1V, and 1W of the three-phase coil 1 are concentrated and wound around six stator poles 72 in order.
  • the mechanical angle between the two stator poles 72 adjacent to each other is 60 degrees.
  • FIG. 17 is a side view showing the rear stator core 81.
  • the rear stator core 81 has six stator poles 82 projecting radially inward from an annular yoke 85.
  • the stator pole 82 is called a rear salient pole.
  • Each stator pole 82 has a magnetic pole surface 84 that faces the rear rotor core 83.
  • Three phase coils 2U, 2V, and 2W of the three-phase coil 2 are concentrated and wound around six stator poles 82 in order.
  • the mechanical angle between the two stator poles 82 adjacent to each other is 60 degrees.
  • the stator pole 82 is shifted in the circumferential direction by a mechanical angle of 30 degrees corresponding to a half pole pitch with respect to the stator pole 72.
  • the skew angle of each conductor bar 91 is zero.
  • the stator pole 72 can be shifted in the circumferential direction compared to the stator pole 82.
  • FIG. 18 is a circumferential development showing the arrangement of the magnetic pole surfaces 74 and 84 in the double pole mode. This arrangement is called a double pole arrangement.
  • the dashed lines shown in the pole faces 74 and 84 indicate the minimum circumferential width of the stator poles 72 and 82.
  • the phase coil 2V is arranged at an intermediate position between the phase coils 1U and 1W in the circumferential direction.
  • the phase coil 2U is arranged at an intermediate position between the phase coils 1W and 1V in the circumferential direction.
  • the phase coil 2W is arranged at an intermediate position between the phase coils 1V and 1U in the circumferential direction.
  • the circumferential distance between the two phase coils of the three-phase coils 1 and 2 that are in phase with each other is equal to 1.5 times the stator pole pitch.
  • phase magnetic fields U, V, W formed by the three-phase coils 1 and 2 on the magnetic pole surfaces 74 and 84 form a rotating magnetic field. Therefore, the electrical angle of this rotating magnetic field of 360 degrees corresponds to 1.5 times the stator pole pitch.
  • Each of the magnetic pole surfaces 74 and 84 has a circumferential width substantially corresponding to an electrical angle of 180 degrees.
  • a slot between two magnetic pole faces 74 adjacent to each other has a circumferential width substantially corresponding to an electrical angle of 60 degrees.
  • the current IU flowing through the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74.
  • the phase current IW flowing through the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74.
  • the phase current IV flowing through the phase coil 1 ⁇ / b> V forms a phase magnetic field V on the magnetic pole surface 74.
  • the phase current IU flowing through the phase coil 2 ⁇ / b> U forms a phase magnetic field U on the magnetic pole surface 84.
  • the phase current IW flowing through the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84.
  • the phase current IV flowing through the phase coil 2V forms a phase magnetic field V on the magnetic pole surface 84.
  • the pole faces 74 and 84 have angular positions P1-P6.
  • the electrical angle between two angular positions adjacent to each other is 60 degrees.
  • the phase magnetic field -V is synthesized in the first region (P1-P2), the phase magnetic field U is formed in the second region (P2-P3), and the phase magnetic field -W is synthesized in the third region (P3-P4). .
  • the phase magnetic field V is formed in the fourth region (P4-P5), the phase magnetic field -W is combined with the fifth region (P5-P6), and the phase magnetic field W is formed in the sixth region (P6-P1).
  • FIG. 19 is a vector diagram showing six phase magnetic fields -V, U, -W, V, -U, and W. Six phase magnetic field vectors separated from each other by an electrical angle of 60 degrees are formed within an electrical angle of 360 degrees.
  • FIG. 20 is a side view showing the front stator core 71.
  • FIG. 21 is a side view showing the rear stator core 81.
  • 20 is essentially the same as FIG. 16, and
  • FIG. 21 is essentially the same as FIG.
  • the phase of each phase current supplied to each phase coil 1U-2W is changed.
  • -U phase current -IU has opposite phase to U phase current IU
  • -V phase current -IV has opposite phase to V phase current IV
  • -W phase current -IW has opposite phase to W phase current IW .
  • FIG. 22 is a circumferential development view showing the arrangement of the magnetic pole surfaces 74 and 84 in the double phase mode.
  • This arrangement is called a double phase arrangement.
  • Phase current IU is supplied to phase coil 1U
  • phase current IV is supplied to phase coil 1W
  • phase current IW is supplied to phase coil 1V.
  • the phase current -IU is supplied to the phase coil 2U
  • the -phase current -IW is supplied to the phase coil 2V
  • the phase current -IV is supplied to the phase coil 2W.
  • the three magnetic pole surfaces 74 form the phase magnetic fields U, V, and W in order
  • the three magnetic pole surfaces 84 form the phase magnetic fields -U, -V, and -W in order.
  • the pole faces 74 and 84 have angular positions P1-P12.
  • the electrical angle between two adjacent ones of the angular positions P1 to P12 is 30 degrees.
  • a phase magnetic field (U-V) is synthesized in the first region (P1-P2).
  • a phase magnetic field U is formed in the second region (P2-P3).
  • the phase magnetic field (U-W) is synthesized in the third region (P3-P4).
  • a phase magnetic field -W is formed in the fourth region (P4-P5).
  • the phase magnetic field (V-W) is synthesized in the fifth region (P5-P6).
  • a phase magnetic field V is formed in the sixth region (P6-P7).
  • phase magnetic field (V-U) is synthesized in the seventh region (P7-P8).
  • the phase magnetic field -U is formed in the eighth region (P8-P9).
  • the phase magnetic field (W-U) is synthesized in the ninth region (P9-P10).
  • a phase magnetic field W is formed in the tenth region (P10-P11).
  • the phase magnetic field (W-V) is synthesized in the eleventh region (P11-P12).
  • the phase magnetic field -V is formed in the twelfth region (P12-P1).
  • twelve phase magnetic field vectors are formed within an electrical angle of 360 degrees.
  • FIG. 23 is a vector diagram showing these phase magnetic field vectors.
  • the double pole stator shown in FIG. 18 is compared with the conventional distributed winding stator shown in FIG.
  • Each of the double pole stator and the distributed winding stator has six phase magnetic field vectors per 360 electrical degrees.
  • the double pole stator has a shorter coil end than the distributed winding stator. Therefore, the double pole stator can have a lower resistance ratio than the conventional distributed winding stator.
  • the double phase stator shown in FIG. 22 is compared with the conventional distributed winding stator shown in FIG.
  • Each of the double phase stator and the distributed winding stator has 12 phase magnetic field vectors per 360 electrical degrees.
  • double phase stators have much shorter coil ends than distributed winding stators. Therefore, the double phase stator can have a lower resistance ratio than the distributed winding stator.
  • the tandem induction motor of this embodiment can realize suppression of harmonic magnetic field and reduction of copper loss.
  • the controller 100 executes switching control between the double pole mode and the double phase mode.
  • This switching technique called the pole number switching technique, is executed by adjusting the phase of each phase current supplied to the six phase coils 1U-2W, as can be understood from FIGS.
  • a double pole array is selected in the low speed region and a double phase array is selected in the high speed region.
  • the winding number switching technique will be described with reference to FIGS.
  • This winding number switching technique includes a serial mode and a parallel mode. The number of turns in the serial mode is equivalently doubled compared to that in the parallel mode.
  • FIG. 24 is a timing chart showing a waveform example of the six phase currents I1-I6 shown in FIG.
  • Phase current I1 and phase current 14 have opposite phases.
  • Phase current I2 and phase current 15 have opposite phases.
  • the phase current I3 and the phase current 16 have opposite phases.
  • the parallel mode is essentially the same as the operation mode of a conventional symmetrical 6-phase motor.
  • the three-phase inverter 3 outputs three phase voltages V 1 -V 3 to the three-phase coil 1
  • the three-phase inverter 4 outputs three phase voltages V 4 -V 6 to the three-phase coil 2.
  • the two three-phase inverters 3 and 4 are controlled independently.
  • Three-phase coils 1 and 2 are connected in parallel to a DC power supply (not shown) through three-phase inverters 3 and 4.
  • each one leg of the three-phase inverters 3 and 4 is fixed to the intermediate voltage VM.
  • this intermediate voltage is approximately equal to half the value of the DC power supply voltage Vd (0.5 Vd).
  • the leg that outputs the intermediate voltage VM is referred to as an intermediate potential leg.
  • the PWM duty ratio of the intermediate potential leg is almost 50%.
  • the upper arm transistors of the two intermediate potential legs have the same on period and the lower arm transistors have the same on period. Thereby, the ripple of the current supplied from the DC power source to the three-phase inverters 3 and 4 is reduced.
  • each leg of the three-phase inverters 3 and 4 outputs the same intermediate voltage VM means that two phase coils connected to each one of these intermediate potential legs are equivalently connected in series. To do.
  • the leg 3U becomes an intermediate potential leg the leg 4U becomes an intermediate potential leg.
  • the leg 3V becomes the intermediate potential leg the leg 4V becomes the intermediate potential leg.
  • the leg 3W becomes the intermediate potential leg the leg 4W becomes the intermediate potential leg.
  • the DC power supply can supply phase currents only to the four legs excluding the two intermediate potential legs.
  • the leg supplying the phase current with the maximum amplitude is selected as the intermediate potential leg.
  • the reduction rate of the current supplied from the DC power source to the three-phase inverters 3 and 4 is maximized.
  • the leg that supplies the phase current with the maximum amplitude is called the maximum current leg. Therefore, this winding number switching method is called a maximum current leg selection method.
  • the electrical angle between any two of the six points in time t1-t6 is 60 degrees.
  • the phase current I3 becomes zero at time points t1 and t4.
  • the phase current I2 becomes zero at time points t2 and t5.
  • the phase current I1 becomes zero at time points t3 and t6.
  • the legs 3U and 4U are intermediate potential legs.
  • the legs 3W and 4W are intermediate potential legs.
  • the legs 3V and 4V are intermediate potential legs.
  • the legs 3U and 4U are intermediate potential legs.
  • the legs 3W and 4W are intermediate potential legs.
  • the legs 3V and 4V are intermediate potential legs.
  • Phase voltages V1-V6 are regarded as phase voltage command values in the parallel mode.
  • the vectors of the correction phase voltages V1C, V3C, V4C, and V6C in the third phase period and the sixth phase period are indicated by broken lines.
  • vectors of the correction voltages V2C, V3C, V5C, and V6C in the first phase period and the fourth phase period are indicated by broken lines.
  • vectors of the correction voltages V1C, V2C, V4C, and V5C in the second phase period and the fifth phase period are indicated by broken lines.
  • the controller 100 executes either or both of the above-described pole number switching and winding number switching based on the speed and torque command value.
  • the series mode and the double pole mode are preferably selected in the low speed and high torque region.
  • the parallel mode and the double phase mode are preferably selected in the high speed region. According to this series mode, the power source current supplied from the DC power source to the three-phase inverters 3 and 4 is halved compared to the conventional parallel mode. This means that the three-phase coils 1 and 2 are equivalently connected in series.
  • the bipolar mode can be performed simultaneously with the serial mode.
  • the three-phase inverters 3 and 4 need to output three-phase currents having opposite phases to each other in the series mode.
  • the phase coils 1U and 2U need to form an in-phase magnetic field. This problem is solved by making the winding directions of the phase coils 2U, 2V, and 2W opposite to those of the phase coils 1U, 1V, and 1W.
  • the three-phase coils 1 and 2 connected in series or in parallel can be connected to one three-phase inverter.
  • This drive circuit having one three-phase inverter is called a single inverter circuit.
  • the three-phase coils 1 and 2 connected in series or in parallel can be directly connected to a commercial three-phase AC power source.
  • the three-phase inverters 3 and 4 can execute a new four-phase mode.
  • the three-phase inverters 3 and 4 are each driven by a known two-phase modulation method.
  • the three-phase voltage output by the three-phase inverter 3 has the opposite phase to the three-phase voltage output by the three-phase inverter 4.
  • one leg of the three-phase inverter 3 is fixed at the highest potential
  • one leg of the three-phase inverter 4 having the opposite phase to this leg is fixed at the lowest potential. Accordingly, the two leakage currents formed by the harmonic voltages output from the three-phase inverters 3 and 4 are canceled out from each other.
  • the switching between the four-phase mode and the series mode is smoothly performed by gradually changing the bias voltage VB. This four-phase mode reduces inverter loss.
  • the tandem motor can flow the cooling fluid in the radial direction through the gap 400 shown in FIG.
  • the cylindrical portion of the housing 5 can have a hole communicating with the gap 400. Thereby, the cooling of the three-phase coils 1 and 2 is improved.
  • FIG. 28 is an axial sectional view showing the tandem motor.
  • Each of the front motor 7 and the rear motor 8 is a permanent magnet synchronous motor (PMSM).
  • the rotor cores 73 and 83 each have a permanent magnet.
  • FIG. 29 is a wiring diagram showing a single inverter drive type drive circuit for driving the tandem synchronous motor.
  • the three-phase inverter 3 is connected to three-phase coils 1 and 2 connected in series for each phase.
  • the three-phase inverter 3 can also be connected to the three-phase coils 1 and 2 connected in parallel to each other.
  • the phase leg 3U supplies a U-phase current IU to the phase coils 1U and 2U.
  • the phase leg 3V supplies the V-phase current IV to the phase coils 1V and 2V.
  • Phase leg 3V supplies W phase current IW to phase coils 1W and 2W.
  • FIG. 30 is a schematic development view showing a double pole arrangement.
  • This double pole arrangement is essentially the same as the tandem stator shown in FIG.
  • Each of the rotor cores 73 and 83 has four rotor poles per three adjacent phase coils.
  • each of the front motor 7 and the rear motor 8 is a three-slot four-pole type concentrated winding synchronous motor. Therefore, the electrical angle of 360 degrees corresponds to 1.5 times the phase slot pitch.
  • the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74
  • the phase coil 1 V forms a phase magnetic field V on the magnetic pole surface 74
  • the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74
  • the phase coil 2 U forms a phase magnetic field U on the magnetic pole surface 84
  • the phase coil 2 V forms a phase magnetic field V on the magnetic pole surface 84
  • the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84.
  • This tandem motor can be driven by a square wave instead of a sine wave.
  • the tandem motor can be driven as a brushless DC motor. Since the circumferential lengths of the magnetic pole surfaces 74 and 84 substantially coincide with the circumferential length of the rotor magnetic poles, it is preferable that this brushless DC motor adopts the 180 degree energization method rather than the 120 degree energization method.
  • FIG. 31 is a development view showing the double phase arrangement.
  • This double phase arrangement is essentially the same as the tandem stator shown in FIG. Similar to FIG. 30, the rotor cores 73 and 83 each have four rotor poles per three phase coils.
  • the three-phase current supplied to the front coil 1 consisting of the phase coils 1U, 1V and 1W is 180 degrees in electrical angle compared to the three-phase current supplied to the rear coil 2 consisting of the phase coils 2U, 2V and 2W.
  • the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74
  • the phase coil 1 V forms a phase magnetic field V on the magnetic pole surface 74
  • the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74.
  • the phase coil 2U forms a phase magnetic field -U on the magnetic pole surface 84
  • the phase coil 2V forms a phase magnetic field -V on the magnetic pole surface 84
  • the phase coil 2W forms a phase magnetic field -W on the magnetic pole surface 84.
  • One cycle of the six-phase current shown in FIG. 31 is twice the one cycle of the three-phase current shown in FIG. Therefore, the number of stator poles in FIG. 31 is half the number of stator poles in FIG.
  • Six phase magnetic fields U, V, W, -U, -V, and -W are formed within a circumferential distance equal to three times the circumferential width of the phase coil.
  • the double phase array shown in FIG. 31 has a double phase magnetic field vector in the range of an electrical angle of 360 degrees corresponding to one cycle of the phase current, compared to the double pole array shown in FIG. Therefore, the double phase arrangement realizes concentrated winding with low torque ripple.
  • a double inverter drive circuit is employed in which the three-phase inverter 3 drives the three-phase coil 1 and the three-phase inverter 4 drives the three-phase coil 2.
  • the front rotor core 73 generates mainly magnet torque
  • the rear rotor core 83 generates mainly synchronous reluctance torque
  • the front motor 7 is a permanent magnet motor (PMSM)
  • the rear motor 8 is a synchronous reluctance motor (SynRM).
  • the rotor core 73 has a plurality of permanent magnets
  • the rotor core 83 has a plurality of flux barriers.
  • the front rotor core 73 can generate both permanent magnet torque and synchronous reluctance torque.
  • the three-phase inverter 4 adjusts the reluctance torque of the rear motor 8. It is preferable that the relative angle between the front rotor core 73 and the rear rotor core 83 is set to a value at which both the motors 7 and 8 simultaneously generate the maximum torque.
  • FIG. 32 is an axial sectional view showing this starter generator.
  • the three-phase coil 1 is concentrated around the stator core 71, and the three-phase coil 2 is concentrated around the stator core 81.
  • the front motor 7 has a Landel type rotor core 73 around which a field coil 730 is wound.
  • the rear motor 8 has a Landel type rotor core 83 around which a field coil 830 is wound.
  • Each of the Landel rotor cores 73 and 83 is essentially the same as a conventional Landel rotor core.
  • the rotor core 73 includes a core 731 and a core 732. Each of the cores 731 and 732 has an L-shaped rotor pole 733 extending from the boss portion.
  • the rotor core 83 includes a core 831 and a core 832. Each of the cores 831 and 832 has an L-shaped rotor pole 833 extending from the boss portion.
  • the cores 732 and 831 can be made integrally.
  • the field coil 730 magnetizes the rotor pole 733, and the field coil 830 magnetizes the rotor pole 833.
  • FIG. 33 is a development view showing the arrangement of the rotor poles 733 and 833.
  • the rotor pole 733 of the core 731 and the rotor pole 833 of the core 832 are arranged at odd-numbered positions in the circumferential direction.
  • the rotor pole 733 of the core 732 and the rotor pole 833 of the core 831 are arranged at even-numbered positions in the circumferential direction.
  • the rotor pole 733 of the core 731 has an N pole
  • the rotor pole 733 of the core 732 has an S pole.
  • the rotor pole 833 of the core 831 has an S pole in the engine start mode and an N pole in the power generation mode.
  • the rotor pole 833 of the core 832 has an N pole in the engine start mode and an S pole in the power generation mode.
  • FIG. 34 is a wiring diagram showing a rotor circuit for supplying a field current to the field coils 730 and 830.
  • This rotor circuit includes a single-phase full bridge (H bridge) 11 and a diode circuit 13.
  • the H bridge 11 fixed to the housing 5 includes two switch legs 111 and 112.
  • the diode circuit 13 includes a diode pair 130 for voltage drop, two parallel diodes 131 and 132, and a series diode 133.
  • the diode pair 130 composed of two diodes connected in reverse parallel can be omitted.
  • One end of the field coil 830 is connected to the output terminal of the switch leg 111 through the diode pair 130 and the slip ring 17.
  • the slip ring 17 is connected to the anode electrode of the parallel diode 131.
  • the other end of the field coil 830 is connected to the anode electrode of the parallel diode 132 and one end of the field coil 730.
  • the other end of the field coil 730 is connected to the cathode electrode of the parallel diode 131 and the cathode electrode of the series diode 133.
  • the anode electrode of the series diode 133 and the cathode electrode of the parallel diode 132 are connected to the output terminal of the switch leg 112 through the slip ring 18.
  • FIG. 35 is a side view showing the terminal ring 19 incorporating the diode circuit 13.
  • This terminal ring 19 fixed to the rotary shaft 12 has two terminals 134 to which one ends of the field coils 730 and 830 are separately connected. Further, the terminal ring 19 has two terminals (not shown) that are separately connected to the slip rings 17 and 18.
  • the H bridge 11 is fixed to the housing 5.
  • the field current flows from the switch leg 111 to the switch leg 112.
  • the field coils 830 and 730 are connected in parallel. For this reason, the field current can rise rapidly in the early stage of engine start.
  • the field current flows from the switch leg 112 to the switch leg 111 in the power generation mode.
  • the two field coils 830 and 730 are connected in series.
  • the direction of the field current flowing through the field coil 730 is unchanged, and the direction of the field current flowing through the field coil 830 is opposite. Therefore, when mode switching between the engine start mode and the power generation mode is commanded, the polarity of the rotor pole 833 is reversed.
  • the three-phase coil 1 includes phase coils 1U, 1V, and 1W separated from each other by an electrical angle of 120 degrees.
  • the three-phase coil 2 includes phase coils 2U, 2V, and 2W that are 120 degrees apart from each other.
  • the phase coils 1U-1W are wound around the stator pole 74 in order.
  • the phase coils 2U-2W are wound around the stator pole 84 in order.
  • Phase coils 1U and 2U have the same circumferential position
  • phase coils 1V and 2V have the same circumferential position
  • phase coils 1W and 2W have the same circumferential position.
  • Phase coil 1U generates back electromotive force VU1
  • phase coil 1V generates back electromotive force VV1
  • phase coil 1W generates back electromotive force VW1.
  • phase coil 2U generates counter electromotive force VU2
  • phase coil 2V generates counter electromotive force VV2
  • phase coil 2W generates counter electromotive force VW2.
  • the rotor poles 733 and 833 of the cores 731 and 832 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 831 have an S pole.
  • the counter electromotive forces VU1 and VU2 are in phase with each other
  • the counter electromotive forces VV1 and VV2 are in phase with each other
  • the counter electromotive forces VW1 and VW2 are in phase with each other.
  • this engine start mode in which the three-phase coils 1 and 2 generate a three-phase counter electromotive force in phase with each other generates the same three-phase counter electromotive force as that of a conventional three-phase concentrated winding motor.
  • the counter electromotive force in the power generation mode will be described with reference to FIG.
  • these back electromotive forces mean the generated voltage of each phase.
  • the rotor poles 733 and 833 of the cores 731 and 831 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 832 have an S pole.
  • the counter electromotive forces VU1 and VU2 are in opposite phases
  • the counter electromotive forces VV1 and VV2 are in opposite phases
  • VW1 and VW2 are in opposite phases. Therefore, according to this power generation mode, six back electromotive force vectors are formed within an electrical angle of 360 degrees.
  • the tandem stator has a double phase arrangement.
  • FIG. 38 is a wiring diagram showing a power converter connected to the three-phase coils 1 and 2.
  • This power converter includes a three-phase full-bridge rectifier 3 and a three-phase inverter 4.
  • the three-phase coil 1 is a star-shaped (Wye) coil having a neutral point N.
  • the three-phase coil 2 is an independent three-phase coil.
  • Phase coil 2U is connected in series with phase coil 1U
  • phase coil 2V is connected in series with phase coil 1V
  • phase coil 2W is connected in series with phase coil 1W.
  • the rectifier 3 consists of legs 3U, 3V, and 3W.
  • the leg 3U is connected to the connection point of the phase coils 1U and 2U, the leg 3V is connected to the connection point of the phase coils 1V and 2V, and the leg 3W is connected to the connection point of the phase coils 1W and 2W.
  • the three-phase inverter 4 includes legs 4U, 4V, and 4W. The leg 4U is connected to the phase coil 2U, the leg 4V is connected to the phase coil 2V, and the leg 4W is connected to the phase coil 2W.
  • the rectifier 3 performs full-wave rectification on the three-phase voltage output from the star-connected three-phase coil 1.
  • the rectifier 3 full-wave rectifies the highest terminal voltage among the three terminal voltages Ve, Vf, and Vg.
  • the terminal voltage Ve is the higher of the interphase voltage VU1-VV1 and the interphase voltage VU1-VW1.
  • the terminal voltage Vf is the higher of the interphase voltage VV1-VU1 and the interphase voltage VV1-VW1.
  • the terminal voltage Vg is the higher of the interphase voltage VW1-VU1 and the interphase voltage VW1-VV1.
  • the rectifier 3 and the three-phase inverter 4 constitute three single-phase full-bridge rectifiers that rectify the generated voltage of the three-phase coil 2.
  • Legs 3U and 4U full-wave rectify phase voltage VU2 legs 3V and 4V full-wave rectify phase voltage VV2, and legs 3W and 4W full-wave rectify phase voltage VW2.
  • the phase coils 2U, 2V and 2W of the three-phase coil 2 are increased over the phase coils 1U, 1V and 1W of the three-phase coil 1.
  • a value close to about 1.73 times the winding value of the three-phase coil 1 is selected as the winding value of the three-phase coil 2.
  • the three-phase coil 2 has 5/3 times the number of turns of the three-phase coil 1.
  • the three phase voltages of the three-phase coil 2 have substantially the same amplitude as the three terminal voltages Ve, Vf and Vg of the three-phase coil 1.
  • FIG. 39 is a vector diagram showing the generated voltage applied to the three-phase rectifier 3 and the three-phase inverter 4.
  • the three-phase rectifier 3 and the three-phase inverter 4 substantially full-wave rectify the six-phase voltage. The ripple of generated current is greatly reduced.
  • the three-phase inverter 4 supplies a three-phase current to the three-phase coils 1 and 2.
  • the three-phase inverter 4 preferably outputs a three-phase rectangular wave voltage.
  • the tandem starter generator operates as a so-called brushless DC motor.
  • the three-phase coils 1 and 2 substantially constitute one synthetic star coil.
  • the U-phase coil of this synthetic star coil is composed of phase coils 1U and 2U connected in series.
  • the counter electromotive forces of the phase coils 1U and 2U are in the same direction in the engine start mode.
  • the V-phase coil of this synthetic star coil consists of phase coils 1V and 2V connected in series.
  • the counter electromotive forces of the phase coils 1V and 2V are in the same direction in the engine start mode.
  • the W-phase coil of this synthetic star coil is composed of phase coils 1W and 2W connected in series.
  • the counter electromotive forces of the phase coils 1W and 2W are in the same direction in the engine start mode.
  • FIG. 40 is a vector diagram showing three combined counter electromotive forces Va, Vb, and Vc applied to the legs 4U-4W in the engine start mode.
  • the electromotive force Vc is a vector sum of the counter electromotive forces VW1 and VW2.
  • a three-phase diode rectifier may be employed instead of the three-phase inverter 4. This motor is a two-voltage type alternator. A three-phase inverter may be employed instead of the three-phase rectifier 3.
  • the so-called divided core is effective in improving the slot space factor.
  • the split core increases motor vibration.
  • the stator core manufacturing method described in this embodiment includes an alignment process and a die casting process.
  • FIG. 41 is a schematic diagram showing an alignment process for aligning the six core segments 70.
  • Each core segment 70 made of laminated steel sheets has an arcuate yoke 75 extending from the stator pole 72 to both sides in the circumferential direction.
  • the end surface 76 of the arcuate yoke 75 extends in the radial direction.
  • the phase coils 1U-1W are separately concentrated and wound around the six stator poles 72.
  • Each core segment 70 is arranged around a cylindrical mold 60.
  • Each core segment 70 urged toward the radially inner side F is brought into close contact with the outer peripheral surface of the mold 60.
  • the six core segments 70 form the front stator core 71.
  • FIG. 42 is a radial cross-sectional view showing the die casting process.
  • the die casting molds 61 and 62 have a cylindrical cavity 50.
  • a stator assembly comprising aligned core segments 70 is disposed in the cavity 50 along with the cylindrical mold 60. Thereafter, molten aluminum is injected into the cavity 50. The cooled aluminum forms the cylindrical part of the housing 5. Thereafter, the molds 60, 61, and 62 are removed. Thereby, each core segment 70 is firmly fixed to the cylindrical portion of the housing 5.
  • FIG. 43 is a sectional view in the axial direction of a die casting mold.
  • Annular molds 63 and 64 are arranged on both sides of the cavity 50 in the axial direction.
  • the mold 63 is in close contact with the front end face of each core segment 70, and the mold 64 is in close contact with the rear end face of each core segment 70. Thereby, the cavity 50 is completely sealed.
  • the molds 63 and 64 have holes through which the mold 60 passes. After the cylindrical portion of the housing 5 is formed, the mold 63 slides forward and the mold 64 slides backward.
  • FIG. 44 is a radial sectional view showing a part of the front motor 7.
  • FIG. 46 is an axial sectional view of the front motor 7.
  • Each core segment 70 has five wedge portions 77 projecting radially outward from the arcuate yoke 75. Thereby, each core segment 70 is firmly fixed to the housing 5. After the rotor core 73 is inserted into the stator, both end wall portions of the housing 5 are fastened to the cylindrical portion of the housing 5.
  • the cylindrical portion of the housing 5 has a large number of annular flanges 51.
  • Each annular flange 51 is provided on the outer peripheral surface of the cylindrical portion of the housing 5.
  • a resin water jacket 52 is placed on the cylindrical portion of the housing 5.
  • the annular water cooling passage 53 is formed between the two annular flanges 51 adjacent in the axial direction. It is also possible to supply oil to the water cooling passage 53 instead of the cooling water.
  • the water jacket 52 has a water supply pipe and a drain pipe for flowing water through each water cooling passage 53. Thereby, the stator 71 is cooled well through the housing 5.
  • the annular flange 51 reduces the thermal resistance between the cooling water flowing through each water cooling passage 53 and the housing 5.
  • Each annular flange 51 improves the rigidity of the housing 5.
  • the rear stator core 81 is formed of six core segments in the same manner as the front stator core 71.
  • the aligned core segments for the stator cores 71 and 81 together with the spacers 15 constitute a stator assembly.
  • the cylindrical portion of the housing 5 is manufactured by a die casting method. Thereby, the stator core 71, the spacer 15, and the stator core 81 are fixed to the housing 5.
  • At least the outer peripheral portion of the spacer 15 is made of a nonmagnetic metal having a melting point higher than that of the housing 5.
  • the spacer 15 includes a copper outer sleeve and an aluminum inner sleeve. The outer peripheral surface of the outer sleeve can have a recess or a protrusion.
  • a third variation will be described with reference to FIG.
  • the even-numbered core segment 70 out of the six core segments 70 is in contact with the outer peripheral surface of the cylindrical mold 60 in advance. Thereafter, only the odd-numbered core segment 70 is moved radially inward. Thereby, the mold moving device becomes compact.
  • the cylindrical mold 60 has a tapered shape.
  • the diameter of the long cylindrical mold 60 continuously increases in the axial direction.
  • each core segment 70 is urged toward the outer peripheral surface of the large-diameter portion of the mold 60. Further, the mold 60 is moved in the axial direction. As a result, each core segment 70 is in close contact with the outer peripheral surface of the small diameter portion of the mold 60. Thereby, each core segment 70 can move smoothly in the radially inward direction.
  • each core segment 70 of the split core has a T-shape.
  • the core segment 70 has a yoke portion 75 extending in the tangential direction from the stator pole 72 extending in the radially inward direction.
  • the yoke portions 75 connected in a ring form a so-called back core.
  • the end surface 76 of the yoke portion 75 extends in the radial direction.
  • the flange 79 extends the magnetic pole surface 74 in the circumferential direction.
  • the front stator core 71 formed by the six core segments 70 has a hexagonal cylindrical shape.
  • a yoke portion 75 extending perpendicularly from the stator pole 72 enlarges the cross-sectional area of the slot 78 and facilitates the automatic winding operation of the phase coil 1U.
  • FIG. FIG. 47 shows one core segment 70 as a comparative example.
  • the core segment in FIG. 46 occupies 60 degrees, and the core segment in FIG. 47 occupies 30 degrees.
  • FIG. 47 shows a core segment of a fifth modification that forms a conventional concentrated winding stator core. 46, when the stator pole half of the conventional concentrated winding stator core occupies 30 degrees, the core segment 70 in FIG. 46 occupies 60 degrees in the core segment 70 in FIG.
  • the stator pole 72 of the core segment 70 in FIG. 46 is called a tandem pole
  • the stator pole 72 of the core segment 70 in FIG. 47 is called a comparison pole.
  • the tandem pole has a circumferential width that is twice the circumferential width W of the comparison pole.
  • the tandem pole has an axial length that is six times the width W of the comparison pole.
  • the axial length of the comparison pole has an axial length 12 times the width W of the comparison pole. Therefore, the tandem pole and the comparison pole have the same magnetic pole area.
  • the tandem pole has an average turn length of about 70% compared to the comparison pole. Furthermore, the comparative pole has a slot cross-sectional area of about 60% compared to the tandem pole. Eventually, a double pole array stator coil has a copper loss of less than 45% compared to a conventional concentrated winding stator coil.
  • the tandem concentrated winding motor has an increased weight over the concentrated winding motor with the comparison pole. This increase in weight results from an increase in the axial length of the housing and the rotating shaft, the width of the yoke portion, and the cross-sectional area of the stator coil. However, both the permanent magnets, the rotor core and the stator pole have the same weight. Furthermore, since two tandem poles adjacent in the axial direction overlap in the circumferential direction, the tandem concentrated winding motor has an effect of improving the magnet utilization rate and a torque ripple as compared with the conventional concentrated winding motor.
  • FIG. 48 shows the tandem distributed winding motor shown in FIG. 48 .
  • the tandem distributed winding motor shown in FIG. 48 is essentially the same except for the tandem motor and the stator coil shown in FIG.
  • the front rotor core 73 and the rear rotor core 83 have any of the rotor structures of the first to third embodiments.
  • FIG. 48 shows the rotor structure of the second embodiment.
  • FIG. 49 is a development view of the stator core 71 of the front motor 7
  • FIG. 50 is a development view of the stator core 81 of the rear motor 8.
  • the stator core 71 has six slots S1-S6 within an electric angle range of 360 degrees.
  • the stator core 81 has six slots S7 to S12 within an electric angle of 360 degrees. In other words, each of the front motor 7 and the rear motor 8 has three teeth 10 per rotor pole.
  • the three-phase coil 1 includes phase coils 1U, 1V, and 1W connected in a star shape.
  • the three-phase coil 2 includes phase coils 2U, 2V, and 2W connected in a star shape.
  • Phase current IU and -U phase current -IU flow through phase coils 1U and 2U.
  • the phase current -IU means a phase current IU that flows in the reverse direction.
  • Phase currents IV and -IV flow through phase coils 1V and 2V.
  • the phase current -IV means the phase current IV flowing in the reverse direction.
  • Phase currents IW and -IW flow through phase coils 1W and 2W.
  • the phase current -IW means the phase current IW that flows in the reverse direction.
  • U-phase coils 1U and 2U can be connected in parallel or in series.
  • the phase coils 1V and 2V can be connected in parallel or in series.
  • the phase coils 1W and 2W can be connected in parallel or in series.
  • Slots S1 and S4 accommodate phase coils 1U and 2U.
  • Slots S2 and S5 accommodate phase coils 1W and 2W.
  • Slots S3 and S6 accommodate phase coils 1V and 2V.
  • Slots S1-S6 are called in-phase slots.
  • Slots S7 and S10 house phase coils 2W and 2U.
  • Slots S8 and S11 accommodate phase coils 1V and 1W.
  • Slots S9 and S12 accommodate phase coils 2U and 2V.
  • Slots S7-S12 are called out-of-phase slots.
  • FIG. 51 is a vector diagram showing twelve slot currents flowing separately through slots S1-S12. This slot current means a vector sum of all phase currents flowing through one slot.
  • the slots S7 to S12 are separated from the slots S1 to S6 by an electrical angle of 30 degrees in the circumferential direction.
  • the slot current flowing through the slots S1 to S6 is equal to the odd-numbered slot current shown in FIG.
  • the slot current flowing through the slots S7 to S12 is equal to the even-numbered slot current shown in FIG.
  • the tandem distributed winding shown in FIG. 48 can form a rotating magnetic field equal to the conventional distributed winding shown in FIG.
  • the stator core 81 has an axial length 2 / 1.73 times that of the stator core 71. Therefore, the slot current flowing through the slots S7 to S12 forms a magnetic field 2 / 1.73 times as large as the slot current flowing through the slots S1 to S6.
  • the twelve slot currents shown in FIG. 53 form twelve phase magnetic field vectors having the same amplitude. This distributed winding tandem motor with very low torque ripple is suitable for machine tool motors and submarine motors.
  • FIG. 52 shows an arrangement of six phase coils 1U-2W.
  • the six phase coils 1U-2W are distributedly wound around the stator core 71 at a full pitch and distributedly wound around the stator core 81 at a short pitch. Further, each of the six phase coils 1U-2W is bent by a half slot pitch in the circumferential direction in an idle space between the stator core 71 and the stator core 81. Thereby, the coil ends of the three-phase coils 1 and 2 shown in FIG. 52 are more compact than the coil ends of the distributed winding coils shown in FIG. Thereby, copper loss and manufacturing cost are reduced.
  • FIG. 53 shows another arrangement of six phase coils 1U-2W.
  • the six phase coils 1U-2W accommodated in the upper portions of the slots S1-S12 are bent by a one-slot pitch in the circumferential direction in the idle space between the two stator cores 71 and 81.
  • the six phase coils 1U-2W housed under the slots S1-S12 are not bent in this idle space.
  • the north pole of the front rotor core 73 is shifted by a half slot pitch in the circumferential direction as compared with the north pole of the rear rotor core 83. Accordingly, FIG. 53 is electromagnetically equivalent to FIG.
  • the tandem distributed winding shown in FIG. 53 can be manufactured by a so-called segment conductor insertion method.
  • the winding process by this segment conductor insertion method will be described.
  • an I-shaped conductor indicated by a solid line is inserted above the slots S1-S12.
  • only the stator core 81 is rotated by one slot pitch.
  • the I-shaped conductor indicated by the solid line is bent by one slot pitch in the circumferential direction in the idle space.
  • the remaining I-shaped conductors indicated by broken lines are inserted below the slots S1-S12.
  • the coil end portions of all the I-shaped conductors are bent in the circumferential direction.
  • the end of the upper I-shaped conductor and the end of the lower I-shaped conductor that are adjacent to each other in the radial direction are welded at a welding point WP. Thereby, a stator coil is completed.
  • the tandem distributed winding shown in FIG. 52 is compared with the conventional distributed winding shown in FIG.
  • FIG. 54 shows a part of the tandem distributed winding stator shown in FIG.
  • FIG. 55 shows a part of the conventional distributed winding stator shown in FIG.
  • a conventional distributed winding stator has 48 stator poles (teeth) 10, and each stator pole 10 has a circumferential width W and an axial length 2L.
  • Each of the front stator core 71 and the rear rotor core 81 in tandem distributed winding has 24 stator poles (teeth) 10, and each stator pole 10 has a circumferential width 2 W and an axial length L.
  • each slot S1-S12 in FIG. 54 has a circumferential width 2W and an axial length L.
  • Each slot S1-S12 in FIG. 55 has a circumferential width W and an axial length 23L. It is assumed that the radial heights of the slots S1 to S12 in FIGS. 54 and 55 are equal. As a result, FIGS. 54 and 55 each have 12 slots S1-S12 in the range of 360 electrical degrees.
  • each slot in FIG. 54 is 1/4 of the resistance loss generated in each slot in FIG.
  • each phase coil in FIG. 54 has about twice as many turns as each phase coil in FIG. Have.
  • the slot conductor portions of these two stator coils have approximately equal resistance losses.
  • the tandem distributed winding is wound around the front stator core 71 at a full pitch and wound around the rear stator core 81 at a short pitch.
  • a portion of the stator coil 1 wound around the front stator core 71 may have an inductance different from that of the portion wound around the rear stator core 81. This difference in inductance can be eliminated by adjusting the axial length of the rear stator core 81.
  • the tandem distributed winding stator coil of this embodiment has two in-phase coils accommodated in two layers in the same slot as shown in FIG. This means that the stator coil can be constituted by two three-phase coils. Therefore, by driving these two three-phase coils by separate three-phase inverters, it means that the above-described winding number switching technique and four-phase mode technique can be adopted.
  • the axial width of the idle space between the front stator core 71 and the rear stator core 81 is short.
  • this width is shorter than one slot pitch of the front motor 7. Therefore, it is possible to form the front rotor core 73 and the rear rotor core 83 with one rotor core.
  • This common rotor core can have permanent magnets or flux barriers or saddle coils.
  • This tandem distributed winding induction motor can be driven by a commercial power source in the same manner as the tandem concentrated winding induction motor of the first embodiment. Further, the magnetic flux of each stator pole 10 of the front stator core 71 and the rear stator core 81 generates motor torque.
  • the stator pole 10 of the front stator core 71 is shifted by a half stator pole pitch in the circumferential direction compared to the stator pole 10 of the rear stator core 81. Further, the stator pole 10 of the front stator core 71 overlaps the stator pole 10 of the rear stator core 81 in the circumferential direction. As a result, the harmonic component of the counter electromotive force generated in the stator coil is reduced.
  • tandem synchronous motor according to a sixth embodiment will be described with reference to FIGS.
  • the tandem synchronous motor shown in FIG. 56 has essentially the same structure as the other tandem motors already described.
  • the front stator core 71 and the rear stator core 81 substantially constitute one common stator core.
  • a common stator coil 1 ⁇ / b> C is wound around the front stator core 71 and the rear stator core 81.
  • the axial gap between the front rotor core 73 and the rear rotor core 83 is shortened. In one example, this axial gap to reduce leakage flux between the two rotor cores is 10 millimeters.
  • the front rotor core 73 having a predetermined number of permanent magnets generates magnet torque
  • the rear rotor core 83 having a predetermined number of flux barriers generates synchronous reluctance torque.
  • the front motor 7 is a permanent magnet motor (PMSM)
  • the rear motor 8 is a synchronous reluctance motor (SynRM).
  • FIG. 57 is a vector diagram showing the d-axis current and the q-axis current in the case where this offset value is an electrical angle of 45 degrees.
  • the front rotor core 73 generates almost only magnet torque, and the rear rotor core 83 generates only reluctance torque.
  • the current Iq1 flowing through the rear motor 8 is decomposed into a d-axis current Id2 and a q-axis current Iq2 having the same amplitude.
  • FIG. 58 is a vector diagram showing how the front motor 7 generates magnet torque and reluctance torque.
  • the rear rotor core 83 generates only reluctance torque.
  • the stator current I1 composed of the q-axis current Iq1 and the d-axis current Id1 to flow through the front motor 7
  • the front motor 7 generates a maximum torque value.
  • the stator current I1 flowing through the rear motor 8 is decomposed into a d-axis current Id2 and a q-axis current Iq2 having the same amplitude. Therefore, when the front rotor core 73 generates the maximum torque, the rear motor 8 generates the maximum torque.

Abstract

The present invention according to one aspect has a configuration, in which six phase coils in two concentratedly wound three-phase coils in a tandem motor are arranged in the circumferential direction by at least either a pole number-doubling arrangement that doubles the number of poles or a phase number-doubling arrangement that doubles the number of phases. The present invention according to another aspect has a configuration, in which an insulating conductor of a distributedly wound stator coil in a tandem motor alternately penetrates a slot of a front stator core and a slot of a rear stator core. This insulating conductor is bent in the circumferential direction between the front stator core and the rear stator core. The present invention according to still another aspect has a configuration, in which a front motor mainly generates a magnetic torque and a rear rotor core mainly generates a reluctance torque. The present invention according to a further aspect has a configuration, in which a front stator core and a rear stator core each are composed of a T-shaped core segment. Preferably, a housing has a diecast fitting part that mechanically joins to a wedge part of the core segment.

Description

ラジアルギャップ型回転電機Radial gap type rotating electrical machine
本発明は、モータ又は発電機を含むラジアルギャップ型回転電機に関し、特にタンデム型ラジアルギャップ型回転電機に関する。 The present invention relates to a radial gap type rotating electrical machine including a motor or a generator, and more particularly to a tandem radial gap type rotating electrical machine.
図1は従来の集中巻き同期モータの一例を示す。ステータコアはロータ11の1極当たり1.5個のステータポール10をもつ。相コイル1Uを流れる相電流IUはステータポール10に相磁界Uを形成する。相コイル1Vを流れる相電流IVはステータポール10に相磁界Vを形成する。相コイル1Wを流れる相電流IWはステータポール10に相磁界Wを形成する。図2は相磁界U、V、Wのベクトルを示す。けれども、電気角360度当たり3個の相磁界ベクトルだけをもつ集中巻きはトルクリップル及び振動が増加する問題をもつ。 FIG. 1 shows an example of a conventional concentrated winding synchronous motor. The stator core has 1.5 stator poles 10 per pole of the rotor 11. The phase current IU flowing through the phase coil 1 U forms a phase magnetic field U in the stator pole 10. The phase current IV flowing through the phase coil 1 V forms a phase magnetic field V in the stator pole 10. The phase current IW flowing through the phase coil 1 W forms a phase magnetic field W in the stator pole 10. FIG. 2 shows the vectors of the phase magnetic fields U, V, W. However, a concentrated winding having only three phase magnetic field vectors per 360 degrees of electrical angle has the problem of increasing torque ripple and vibration.
図3は従来の分布巻きの一例を示す。ステータコアは電気角360度当たり6個のティース10をもつ。相電流IU、IV、及びIWは、図4に示される6個の相磁界ベクトルU、-V、W、-U、V、及びWを電気角360度の範囲に形成する。長いコイルエンドをもつ分布巻きは銅損を増加させる。 FIG. 3 shows an example of a conventional distributed winding. The stator core has six teeth 10 per 360 electrical degrees. The phase currents IU, IV, and IW form the six phase magnetic field vectors U, -V, W, -U, V, and W shown in FIG. 4 in the electric angle range of 360 degrees. Distributed winding with long coil ends increases copper loss.
図5は従来の分布巻きのもう一つの例を示す。ステータコアは電気角180度当たり6個のティース10をもつ。図6は相コイル1U、1V、及び1Wの配置例を示す。相電流IUは相コイル1Uを流れ、相電流IVは相コイル1Vを流れ、相電流IWは相コイル1Wを流れる。ステータコイルはショートピッチで巻かれている。図7は、電気角360度の範囲に形成された12個のスロット電流のベクトルを示す。このスロット電流は、一つのスロットを流れる複数の相電流のベクトル和を意味する。 FIG. 5 shows another example of conventional distributed winding. The stator core has six teeth 10 per 180 electrical degrees. FIG. 6 shows an arrangement example of the phase coils 1U, 1V, and 1W. Phase current IU flows through phase coil 1U, phase current IV flows through phase coil 1V, and phase current IW flows through phase coil 1W. The stator coil is wound at a short pitch. FIG. 7 shows twelve slot current vectors formed in the electrical angle range of 360 degrees. This slot current means a vector sum of a plurality of phase currents flowing through one slot.
特許文献1及び2は、2つのモータが軸方向に配置されるタンデムモータを開示する。従来のタンデムモータにおいて、異なるステータコアに別々に巻かれた2つのステータコイルは互いに異なる電圧をもつ直流電源に接続されるのが一般的である。 Patent Documents 1 and 2 disclose a tandem motor in which two motors are arranged in the axial direction. In a conventional tandem motor, two stator coils wound separately on different stator cores are generally connected to DC power supplies having different voltages.
U.S.Patent No.5,592,039U.S.Patent No.5,592,039 U.S.Patent No.7,397,157U.S.Patent No.7,397,157
電気自動車用の床下に設けられるトラクションモータは、長い軸長をもつロングモータ形状を採用する傾向をもつ。しかしながら、ロングモータは銅損が増加する欠点をもつ。 A traction motor provided under the floor for an electric vehicle tends to adopt a long motor shape having a long axial length. However, long motors have the disadvantage of increased copper loss.
さらに、ロングモータはステータコイルの冷却問題をもつ。ロングモータが低速大トルク領域で駆動される時、ステータコイルはコイルエンドから遠いステータコアの中央部において深刻な温度上昇を引き起こす。したがって、ロングモータ形のトラクションモータにおいて、ステータコイルの軸方向中央部の冷却は重要な問題となる。 In addition, long motors have stator coil cooling problems. When the long motor is driven in the low speed and large torque region, the stator coil causes a serious temperature rise in the central portion of the stator core far from the coil end. Therefore, in the long motor type traction motor, cooling of the central portion of the stator coil in the axial direction becomes an important problem.
ステータポールの磁路断面積の縮小は、ターン長と呼ばれるステータコイルの1ターンの距離を低減する。しかし、ステータポールのこの断面積縮小はモータトルクを減少させる。このため、トルク維持のためのステータ電流の増加が銅損を増加させる。結局、銅損低減はステータポールの断面積縮小無しに実現される必要がある。 The reduction in the magnetic pole cross-sectional area of the stator pole reduces the distance of one turn of the stator coil called the turn length. However, this reduction in the cross-sectional area of the stator pole reduces the motor torque. For this reason, the increase in the stator current for maintaining the torque increases the copper loss. Eventually, copper loss reduction needs to be realized without reducing the cross-sectional area of the stator pole.
結局、銅損低減に関連する重要指標は、ステータポールの磁路断面積(Sfe)と、コイル導体のターン長(Lc)と、コイル導体の断面積(Scu)である。結局、比率(Lc/(Scu×Sfe))の低減が銅損低減において重要である。以下において、この比率は抵抗比率と呼ばれる。たとえば、銅損がモータ損失の50%を占める運転状態において、10%の抵抗比率の低減は5%の効率改善をもたらす。 After all, the important indexes related to the copper loss reduction are the magnetic path cross-sectional area (Sfe) of the stator pole, the turn length (Lc) of the coil conductor, and the cross-sectional area (Scu) of the coil conductor. After all, reduction of the ratio (Lc / (Scu × Sfe)) is important in reducing copper loss. In the following, this ratio is called the resistance ratio. For example, in an operating condition where copper loss accounts for 50% of motor loss, a 10% reduction in resistance ratio results in a 5% efficiency improvement.
製造コストの低減は、電気自動車用トラクションモータのもう一つの重要問題である。電気自動車の莫大な普及は永久磁石モータの価格上昇に帰結する。誘導モータは高速領域における逆起電力抑制及び製造コストの点で永久磁石モータより有利である。しかし、誘導モータは永久磁石モータと比べて本質的に高い銅損をもつ。さらに、大電流領域における銅損増加は、ステータコイルの過熱問題を引き起こす。 Reducing manufacturing costs is another important issue for traction motors for electric vehicles. The huge spread of electric vehicles results in an increase in the price of permanent magnet motors. An induction motor is more advantageous than a permanent magnet motor in terms of suppression of counter electromotive force in a high speed region and manufacturing cost. However, induction motors have inherently higher copper losses than permanent magnet motors. Furthermore, an increase in copper loss in the large current region causes overheating problems of the stator coil.
本発明の一つの目的は、銅損及び振動を低減可能なラジアルギャップ型回転電機を提供することである。本発明のもう一つの目的はステータコイルの温度上昇を抑制可能なラジアルギャップ型回転電機を提供することである。 One object of the present invention is to provide a radial gap type rotating electrical machine capable of reducing copper loss and vibration. Another object of the present invention is to provide a radial gap type rotating electrical machine capable of suppressing a temperature rise of a stator coil.
本発明の一つの様相によれば、タンデムモータは2つの集中巻き3相コイルをもつ。タンデム集中巻きと呼ばれるこのタンデムモータのステータポール配列によれば、極数倍増が可能な倍極配列、及び、相数倍増が可能な倍相配列の少なくともどちかが採用される。倍極配列において、電気角360度は前突極ピッチの1.5倍に相当し、ステータコイルは3相起電力を発生する。倍相配列において、電気角360度は前突極ピッチの3倍に相当し、ステータコイルは対称6相起電力を発生する。これにより、トルクリップル及び振動が低減される。さらに、このタンデム集中巻きは、出力が等しい従来の分布巻き又は従来の集中巻きと比べて優れた銅損低減効果及び温度上昇抑制効果をもつ。 According to one aspect of the present invention, the tandem motor has two concentrated winding three-phase coils. According to the stator pole arrangement of the tandem motor called tandem concentrated winding, at least one of a double pole arrangement capable of doubling the number of poles and a double phase arrangement capable of doubling the number of phases is employed. In the double pole arrangement, the electrical angle of 360 degrees corresponds to 1.5 times the front salient pole pitch, and the stator coil generates a three-phase electromotive force. In the double phase arrangement, the electrical angle of 360 degrees corresponds to three times the front salient pole pitch, and the stator coil generates a symmetrical six-phase electromotive force. Thereby, torque ripple and vibration are reduced. Further, this tandem concentrated winding has a copper loss reducing effect and a temperature rise suppressing effect which are superior to conventional distributed winding or conventional concentrated winding having the same output.
一つの態様において、前突極の磁極面及び後突極の磁極面は周方向においてオーバーラップしている。これにより、これにより、トルクリップルが低減され、磁石利用率が改善される。もう一つの態様において、前突極は後突極と比べて周方向へ半突極ピッチだけシフトされている。これにより、トルクリップルが低減される。もう一つの態様において、タンデム集中巻きを採用する誘導モータは、前ロータコア及び後ロータコアを順番に貫通する共通の導体バーをもつ。このタンデム誘導モータによれば、高調波が低減される。 In one aspect, the magnetic pole surface of the front salient pole and the magnetic pole surface of the rear salient pole overlap in the circumferential direction. This reduces torque ripple and improves magnet utilization. In another aspect, the front salient pole is shifted by a half salient pole pitch in the circumferential direction compared to the rear salient pole. Thereby, torque ripple is reduced. In another aspect, an induction motor employing tandem concentrated winding has a common conductor bar that passes through the front rotor core and the rear rotor core in turn. According to this tandem induction motor, harmonics are reduced.
もう一つの態様において、2つの3相コイルは共通の3相交流電源に接続される。この3相交流電源は、一つの3相インバータ又は商用3相電源により構成されることができる。もう一つの態様において、2つの3相コイルは2つの3相インバータに別々に接続される。もう一つの態様において、2つの3相インバータは、2つの3相コイルに印加する6相電圧の位相変更により倍相配列と倍極配列とを切り替える。この切替技術は極数切替技術と呼ばれる。 In another embodiment, the two three-phase coils are connected to a common three-phase AC power source. This three-phase AC power supply can be constituted by one three-phase inverter or a commercial three-phase power supply. In another embodiment, the two three-phase coils are separately connected to the two three-phase inverters. In another embodiment, the two three-phase inverters switch between the double phase arrangement and the double pole arrangement by changing the phase of the six-phase voltage applied to the two three-phase coils. This switching technique is called a pole number switching technique.
もう一つの態様において、2つの3相インバータは、反対位相をもつ2つの相電圧を中間電圧に固定し、かつ、所定のバイアス電圧を残りの4つの相電圧に加算する。これにより、ステータコイルの巻数が等価的に切り替えられる。この切替技術は巻数切替技術と呼ばれる。もう一つの態様において、2つの3相インバータは4相モードを実行する。この4相モードによれば、2つの3相インバータは互いに反対位相で2相変調を実行する。これにより、漏れ電流を抑制しつつインバータ損失を低減することができる。 In another embodiment, two three-phase inverters fix two phase voltages having opposite phases to an intermediate voltage, and add a predetermined bias voltage to the remaining four phase voltages. Thereby, the number of turns of the stator coil is switched equivalently. This switching technique is called a winding number switching technique. In another aspect, the two three-phase inverters perform a four-phase mode. According to this four-phase mode, two three-phase inverters perform two-phase modulation with opposite phases. Thereby, inverter loss can be reduced while suppressing leakage current.
もう一つの態様において、2つのロータコアのどちらかの極性が極性反転回路により反転される。もう一つの態様において、極性反転回路は、2つの界磁コイルの一方に供給される界磁電流の方向だけを切り替える。もう一つの態様において、極性反転回路は、2つの界磁コイルの一方を流れる界磁電流の方向を固定するためのダイオード回路に反転可能な界磁電流を供給する。 In another embodiment, the polarity of either of the two rotor cores is inverted by a polarity inversion circuit. In another aspect, the polarity inversion circuit switches only the direction of the field current supplied to one of the two field coils. In another aspect, the polarity reversing circuit provides a reversible field current to a diode circuit for fixing the direction of the field current flowing through one of the two field coils.
もう一つの態様において、ステータコイルは、星形接続3相コイルの各相コイルに別々に直列接続される3つの相コイルからなる独立3相コイルをもつ。もう一つの態様において、星形接続3相コイル及び独立3相コイルは第1のパワーコンバータに直列接続され、第2のパワーコンバータに並列接続される。好適には、第1のパワーコンバータは3相インバータからなり、第2のパワーコンバータは3相整流器からなる。好適には、独立3相コイルは星形接続3相コイルよりも多い巻数をもつ。 In another aspect, the stator coil has an independent three-phase coil consisting of three phase coils that are separately connected in series to each phase coil of the star-connected three-phase coil. In another aspect, the star-connected three-phase coil and the independent three-phase coil are connected in series to the first power converter and connected in parallel to the second power converter. Preferably, the first power converter comprises a three-phase inverter, and the second power converter comprises a three-phase rectifier. Preferably, the independent three-phase coil has more turns than the star connected three-phase coil.
本発明のもう一つの様相によれば、タンデムモータの分布巻きステータコイルは、前ステータコアの同相スロット及び後ステータコアの異相スロットを交互に貫通する絶縁導体をもつ。さらに、この絶縁導体は、前ステータコアと後ステータコアとの間のアイドルスペースにおいて周方向へ曲げられる。このタンデム分布巻きによれば、コイルエンドが簡素となり、ステータコイルの冷却も容易となる。好適には、後ステータコアは前ステータコアよりも長い軸長をもつ。これにより、トルクリップルが低減される。このタンデム分布巻きは、上記されたタンデム集中巻きの各態様の技術を利用することができる。 According to another aspect of the present invention, the distributed winding stator coil of the tandem motor has insulated conductors that alternately pass through the in-phase slots of the front stator core and the out-of-phase slots of the rear stator core. Further, the insulated conductor is bent in the circumferential direction in an idle space between the front stator core and the rear stator core. According to the tandem distributed winding, the coil end is simplified and the stator coil can be easily cooled. Preferably, the rear stator core has a longer axial length than the front stator core. Thereby, torque ripple is reduced. This tandem distributed winding can use the technique of each aspect of the tandem concentrated winding described above.
本発明のもう一つの様相によれば、タンデムモータの前モータは主としてマグネットトルクを発生し、後モータは主として同期リラクタンストルクを発生する。このタンデムモータはタンデム複合同期モータと呼ばれる。好適には、前ロータコア及び後ロータコアの間の相対角度は、前モータ及び後モータがそれぞれほぼ最大トルクを発生可能な値に設定される。このタンデム複合同期モータは、起電力の増加により低銅損を実現することができる。さらに、このタンデム複合同期モータは、上記されたタンデム集中巻きの各態様の技術を採用することができる。 According to another aspect of the present invention, the front motor of the tandem motor mainly generates magnet torque, and the rear motor mainly generates synchronous reluctance torque. This tandem motor is called a tandem composite synchronous motor. Preferably, the relative angle between the front rotor core and the rear rotor core is set to a value at which the front motor and the rear motor can respectively generate substantially maximum torque. This tandem composite synchronous motor can realize low copper loss by increasing electromotive force. Furthermore, this tandem composite synchronous motor can employ the technology of each aspect of the tandem concentrated winding described above.
本発明のもう一つの様相によれば、上記タンデム集中巻きのステータコアは、整列されたコアセグメントからなる。各コアセグメントはステータポールからほぼ接線方向へ突出する直線状のヨーク部をもつ。これにより、銅損は低減される。さらに、巻線作業の自動化が容易となる。 According to another aspect of the invention, the tandem concentrated winding stator core consists of aligned core segments. Each core segment has a linear yoke portion projecting substantially tangentially from the stator pole. Thereby, copper loss is reduced. Further, automation of the winding work is facilitated.
本発明のもう一つの様相によれば、タンデムモータを含むインナーロータラジアルギャップモータのステータコアは、環状に整列された多数のコアセグメントからなる。各コアセグメントはステータポールから接線方向へ直線的に延在するヨーク部をもつ。これにより、スロット断面積の拡大が可能となる。好適には、各コアセグメントはハウジング嵌合用の楔部をもつ。ハウジングは、この楔部に密着するダイキャスト製の嵌合部をもつ。これにより、ハウジングは、コアセグメント間の相対振動を良好に抑制することができる。さらに、タンデム集中巻きにおいて、前ロータコアと後ステータコアとの間の相対振動も抑制される。 According to another aspect of the present invention, a stator core of an inner rotor radial gap motor including a tandem motor is composed of a number of core segments arranged in an annular shape. Each core segment has a yoke portion extending linearly from the stator pole in the tangential direction. Thereby, the slot cross-sectional area can be enlarged. Preferably, each core segment has a wedge for housing fitting. The housing has a die-cast fitting portion that is in close contact with the wedge portion. Thereby, the housing can suppress the relative vibration between core segments satisfactorily. Further, relative vibration between the front rotor core and the rear stator core is also suppressed in the tandem concentrated winding.
図1は従来の集中巻きを示す展開図である。FIG. 1 is a developed view showing a conventional concentrated winding. 図2は集中巻きの3つの相磁界ベクトルを示すベクトル図である。FIG. 2 is a vector diagram showing three phase magnetic field vectors of concentrated winding. 図3は従来の一つの分布巻きを示す展開図である。FIG. 3 is a development view showing one conventional distributed winding. 図4は図3に示される分布巻きの6つの相磁界ベクトルを示すベクトル図である。FIG. 4 is a vector diagram showing the six phase magnetic field vectors of the distributed winding shown in FIG. 図5は従来のもう一つの分布巻きを示す展開図である。FIG. 5 is a developed view showing another conventional distributed winding. 図6は図5に示される分布巻きの配線図である。FIG. 6 is a wiring diagram of the distributed winding shown in FIG. 図7は図5に示される分布巻きの12個の相磁界ベクトルを示すベクトル図である。FIG. 7 is a vector diagram showing 12 phase magnetic field vectors of the distributed winding shown in FIG. 図8は第1実施例のタンデム集中巻き誘導モータを示す軸方向断面図である。FIG. 8 is an axial sectional view showing the tandem concentrated winding induction motor of the first embodiment. 図9はダブルインバータ形式のタンデムモータ駆動回路を示すブロック回路図である。FIG. 9 is a block circuit diagram showing a double inverter type tandem motor drive circuit. 図10はこのタンデムモータの籠形ロータを示す軸方向断面図である。FIG. 10 is an axial sectional view showing a saddle-shaped rotor of the tandem motor. 図11はこの籠形ロータの側面図である。FIG. 11 is a side view of the saddle type rotor. 図12はもう一つの籠形コイルを示す軸方向断面図である。FIG. 12 is an axial cross-sectional view showing another saddle coil. 図13は図12に示される籠形コイルを示す側面図である。FIG. 13 is a side view showing the saddle coil shown in FIG. 図14は図9に示される3相インバータを示す側面図でる。FIG. 14 is a side view showing the three-phase inverter shown in FIG. 図15は図12に示される3相インバータの軸方向断面図である。15 is an axial sectional view of the three-phase inverter shown in FIG. 図16は倍極における前側ステータを示す側面図である。FIG. 16 is a side view showing the front stator in the double pole. 図17は倍極配列における後側ステータを示す側面図である。FIG. 17 is a side view showing the rear stator in the double pole arrangement. 図18は倍極配列における相電流分布を示す展開図である。FIG. 18 is a development view showing the phase current distribution in the double pole arrangement. 図19は倍極配列における相磁界ベクトルを示すベクトル図である。FIG. 19 is a vector diagram showing phase magnetic field vectors in a double pole arrangement. 図20は倍相配列における前側ステータを示す側面図である。FIG. 20 is a side view showing the front stator in the double phase arrangement. 図21は倍相配列における後側ステータを示す側面図である。FIG. 21 is a side view showing the rear stator in the double phase arrangement. 図22は倍相配列における相電流分布を示す展開図である。FIG. 22 is a development view showing the phase current distribution in the double phase arrangement. 図23は倍相配列における相磁界ベクトルを示すベクトル図である。FIG. 23 is a vector diagram showing phase magnetic field vectors in the double phase arrangement. 図24は直列モードにおける中間電位レグ切替タイミングを示すタイミングチャートである。FIG. 24 is a timing chart showing intermediate potential leg switching timing in the series mode. 図25は直列モードの一つの位相期間における補正相電圧ベクトルを示すベクトル図である。FIG. 25 is a vector diagram showing a correction phase voltage vector in one phase period of the series mode. 図26は直列モードのもう一つの位相期間における補正相電圧ベクトルを示すベクトル図である。FIG. 26 is a vector diagram showing a corrected phase voltage vector in another phase period of the series mode. 図27は直列モードのもう一つの位相期間における補正相電圧ベクトルを示すベクトル図である。FIG. 27 is a vector diagram showing a correction phase voltage vector in another phase period of the series mode. 図28は第2実施例のタンデム集中巻き同期モータを示す軸方向断面図である。FIG. 28 is a sectional view in the axial direction showing the tandem concentrated winding synchronous motor of the second embodiment. 図29はシングルインバータ形式のタンデムモータ駆動回路を示すブロック回路図である。FIG. 29 is a block circuit diagram showing a single inverter type tandem motor drive circuit. 図30は倍極配列におけるタンデムステータを示す展開図である。FIG. 30 is a development view showing a tandem stator in a double pole arrangement. 図31は倍相配列におけるタンデムステータを示す展開図である。FIG. 31 is a development view showing the tandem stator in the double phase arrangement. 図32は第3実施例のタンデム集中巻きスタータジエネレータを示す軸方向断面図である。FIG. 32 is an axial sectional view showing a tandem concentrated winding starter generator according to a third embodiment. 図33はこのタンデムスタータジエネレータのロータ磁極配置を示す模式図である。FIG. 33 is a schematic diagram showing the rotor magnetic pole arrangement of this tandem starter generator. 図34はロータ回路を示す配線図である。FIG. 34 is a wiring diagram showing the rotor circuit. 図35はダイオードが内蔵される端子リングを示す側面図である。FIG. 35 is a side view showing a terminal ring in which a diode is built. 図36はエンジン始動モードにおける各相の逆起電力を示す展開図である。FIG. 36 is a developed view showing the back electromotive force of each phase in the engine start mode. 図37は発電モードにおける各相の発電電圧を示す展開図である。FIG. 37 is a development view showing the generated voltage of each phase in the power generation mode. 図38はこのタンデムスタータジエネレータのパワーコンバータを示す配線図である。FIG. 38 is a wiring diagram showing a power converter of the tandem starter generator. 図39は発電モードにおける発電電圧を示すベクトル図である。FIG. 39 is a vector diagram showing the generated voltage in the power generation mode. 図40はエンジン始動モードにおける逆起電力を示すベクトル図である。FIG. 40 is a vector diagram showing the back electromotive force in the engine start mode. 図41は第4実施例の分割コア型ステータコアの整列工程を示す模式図である。FIG. 41 is a schematic diagram showing an alignment process of the split core type stator core of the fourth embodiment. 図42は分割コア型ステータコアのダイキャスト工程を示す径方向断面図である。FIG. 42 is a radial sectional view showing a die-casting process of the split core type stator core. 図43はこのダイキャスト工程を示す軸方向断面図図である。FIG. 43 is an axial cross-sectional view showing this die casting process. 図44は分割コア型ステータコアのコアセグメントを示す側面図である。FIG. 44 is a side view showing a core segment of a split core type stator core. 図45は変形態様の分割コア型ステータコアを示す側面図であるFIG. 45 is a side view showing a split-core stator core according to a modified embodiment. 図46は図45に示されるステータコアの軸方向断面図である。46 is an axial sectional view of the stator core shown in FIG. 図47は比較例としての集中巻きコアセグメントを示す側面図である。FIG. 47 is a side view showing a concentrated winding core segment as a comparative example. 図48は第5実施例のタンデム分布巻きを示す軸方向断面図である。FIG. 48 is an axial cross-sectional view showing a tandem distributed winding of the fifth embodiment. 図49は図48に示される前側ステータを示す展開図である。49 is a developed view showing the front stator shown in FIG. 図50は図48に示される後側ステータを示す展開図である。FIG. 50 is a development view showing the rear stator shown in FIG. 図51はこのタンデムモータの相電流ベクトルを示すベクトル図である。FIG. 51 is a vector diagram showing phase current vectors of this tandem motor. 図52はこのタンデムモータのステータコイルを示す一つの配線図である。FIG. 52 is a wiring diagram showing a stator coil of the tandem motor. 図53はこのステータコイルを示すもう一つの配線図である。FIG. 53 is another wiring diagram showing this stator coil. 図54はタンデム分布巻きのステータポール配置を示す模式図である。FIG. 54 is a schematic diagram showing a stator pole arrangement of tandem distributed winding. 図55は比較例としての従来の分布巻きのステータポール配置を示す模式図である。FIG. 55 is a schematic diagram showing a conventional distributed winding stator pole arrangement as a comparative example. 図56は第6実施例のタンデム複合同期モータを示す軸方向断面図である。FIG. 56 is an axial sectional view showing a tandem composite synchronous motor of the sixth embodiment. 図57は2つのロータコアの間の一つの位相差を示すベクトル図である。FIG. 57 is a vector diagram showing one phase difference between two rotor cores. 図58は2つのロータコアの間のもう一つの位相差を示すベクトル図である。FIG. 58 is a vector diagram showing another phase difference between two rotor cores.
本発明に関するインナーロータラジアルギャップ回転電機の好適な実施形態が図面を参照して説明される。実質的にタンデム配置された2つのモータからなるこの回転電機はタンデムモータと略称される。第1実施例はタンデム集中巻き誘導モータに関する。第2実施例はタンデム集中巻き同期モータに関する。第3実施例はタンデム集中巻きスタータジエネレータに関する。第4実施例は分割コア型タンデム集中巻きモータに関する。第5実施例はタンデム分布巻きモータに関する。第6実施例はタンデム複合同期モータに関する。 A preferred embodiment of an inner rotor radial gap rotating electrical machine according to the present invention will be described with reference to the drawings. This rotating electric machine consisting of two motors substantially arranged in tandem is abbreviated as a tandem motor. The first embodiment relates to a tandem concentrated winding induction motor. The second embodiment relates to a tandem concentrated winding synchronous motor. The third embodiment relates to a tandem concentrated winding starter generator. The fourth embodiment relates to a split core type tandem concentrated winding motor. The fifth embodiment relates to a tandem distributed winding motor. The sixth embodiment relates to a tandem composite synchronous motor.
     第1実施例
図8はタンデム集中巻き誘導モータを示す。ハウジング5に収容された前モータ7及び後モータ8が共通の回転軸12の軸方向にタンデム配置されている。前モータ7は前ステータコア71、3相コイル1、前ロータコア73、及び共通の籠形コイル9を有する。前ステータコア71はハウジング5に固定されている。3相コイル1は前ステータコア71に巻かれている。前ロータコア73は回転軸12に固定されている。後モータ8は後ステータコア81、3相コイル2、後ロータコア83、及び共通の籠形コイル9を有する。後ステータコア81はハウジング5に固定されている。3相コイル2が後ステータコア81に巻かれている。後ロータコア83は回転軸12に固定されている。
First Embodiment FIG. 8 shows a tandem concentrated winding induction motor. The front motor 7 and the rear motor 8 housed in the housing 5 are arranged in tandem in the axial direction of the common rotary shaft 12. The front motor 7 has a front stator core 71, a three-phase coil 1, a front rotor core 73, and a common saddle coil 9. The front stator core 71 is fixed to the housing 5. The three-phase coil 1 is wound around the front stator core 71. The front rotor core 73 is fixed to the rotating shaft 12. The rear motor 8 has a rear stator core 81, a three-phase coil 2, a rear rotor core 83, and a common saddle coil 9. The rear stator core 81 is fixed to the housing 5. Three-phase coil 2 is wound around rear stator core 81. The rear rotor core 83 is fixed to the rotating shaft 12.
ステータコア71及び81は、ハウジング5に固定された非磁性のスペーサ15を挟んでいる。ロータコア73及び83は、回転軸12に固定された非磁性のスペーサ16を挟んでいる。環状のスペーサ15及び16は省略可能である。3相コイル1及び2の各一つのコイルエンドは、スペーサ15及び16により形成されたアイドルスペースに収容されている。3相コイル1は、ハウジング5の前端壁に固定された3相インバータ3に接続されている。3相コイル2は、ハウジング5の後端壁に固定された3相インバータ4に接続されている。 The stator cores 71 and 81 sandwich a nonmagnetic spacer 15 fixed to the housing 5. The rotor cores 73 and 83 sandwich a nonmagnetic spacer 16 fixed to the rotating shaft 12. The annular spacers 15 and 16 can be omitted. Each one coil end of the three- phase coils 1 and 2 is accommodated in an idle space formed by the spacers 15 and 16. The three-phase coil 1 is connected to a three-phase inverter 3 fixed to the front end wall of the housing 5. The three-phase coil 2 is connected to a three-phase inverter 4 fixed to the rear end wall of the housing 5.
図9はこのタンデム誘導モータの駆動回路を示す。2つの3相インバータ3及び4をもつこの回路はダブルインバータ回路と呼ばれる。インバータ3は3つのレグ3U、3V、及び3Wからなる。インバータ4は3つのレグ4U、4V、及び4Wからなる。コントローラ100はインバータ3及び4を制御する。3相コイル1は星形(Wye)接続された3つの相コイル1U、1V、及び1Wからなる。3相コイル2は星形(Wye)接続された3つの相コイル2U、2V、及び2Wからなる。レグ3Uは相コイル1Uに相電圧V1を印加し、相電流I1を供給する。レグ3Vは相コイル1Vに相電圧V2を印加し、相電流I2を供給する。レグ3Wは相コイル1Wに相電圧V3を印加し、相電流I3を供給する。同様に、レグ4Uは相コイル2Uに相電圧V4を印加し、相電流I4を供給する。レグ4Vは相コイル2Vに相電圧V5を印加し、相電流I5を供給する。レグ4Wは相コイル2Wに相電圧V6を印加し、相電流I6を供給する。3つの相電流I1-I3のうちの任意の2つの間の電気角は120度である。3つの相電流I4-I6のうちの任意の2つの間の電気角は120度である。 FIG. 9 shows a drive circuit for this tandem induction motor. This circuit with two three- phase inverters 3 and 4 is called a double inverter circuit. Inverter 3 consists of three legs 3U, 3V, and 3W. The inverter 4 is composed of three legs 4U, 4V, and 4W. The controller 100 controls the inverters 3 and 4. The three-phase coil 1 comprises three phase coils 1U, 1V, and 1W connected in a star shape (Wye). The three-phase coil 2 comprises three phase coils 2U, 2V, and 2W connected in a star shape (Wye). The leg 3U applies a phase voltage V1 to the phase coil 1U and supplies a phase current I1. The leg 3V applies a phase voltage V2 to the phase coil 1V and supplies a phase current I2. The leg 3W applies the phase voltage V3 to the phase coil 1W and supplies the phase current I3. Similarly, the leg 4U applies a phase voltage V4 to the phase coil 2U and supplies a phase current I4. The leg 4V applies the phase voltage V5 to the phase coil 2V and supplies the phase current I5. The leg 4W applies a phase voltage V6 to the phase coil 2W and supplies a phase current I6. The electrical angle between any two of the three phase currents I1-I3 is 120 degrees. The electrical angle between any two of the three phase currents I4-I6 is 120 degrees.
図10は籠形ロータを示す軸方向断面図であり、図11は籠形ロータの側面図である。ダイキャスト成形により形成された籠形コイル9は多数の導体バー91及び2個のエンドリング92からなる。ほぼ軸方向に延在する各導体バー91はロータコア73及び83の各スロットに別々に収容されている。各導体バー91はそれぞれ、ロータコア73及び83の各一つのスロットを順番に貫通している。環状のエンドリング92の一方は導体バー91の前端に接続され、他方は導体バー91の後端に接続されている。各エンドリング92は、放射状に形成された翼部93をもつ。回転する翼部93は、矢印により示される空気流を形成する。 FIG. 10 is an axial sectional view showing a saddle rotor, and FIG. 11 is a side view of the saddle rotor. The saddle-shaped coil 9 formed by die casting is composed of a large number of conductor bars 91 and two end rings 92. Each conductor bar 91 extending substantially in the axial direction is separately accommodated in each slot of the rotor cores 73 and 83. Each conductor bar 91 passes through one slot of each of the rotor cores 73 and 83 in order. One end of the annular end ring 92 is connected to the front end of the conductor bar 91, and the other is connected to the rear end of the conductor bar 91. Each end ring 92 has wings 93 formed radially. The rotating wing part 93 forms an air flow indicated by an arrow.
籠形コイル9のもう一つの態様が図12及び図13を参照して説明される。図12は籠形コイル9の一部を示す軸方向断面図である。籠形コイル9は、ダイキャスト成形により前ロータコア73に固定されたコイル部9Aと、別のダイキャスト成形により後ロータコア83に固定されたコイル部9Bとからなる。コイル部9Aは、導体バー91Aと接続端部95Aとからなる。導体バー91Aはロータコア73のスロットに挿入されている。図13は接続端部95Aを示す側面図である。各接続端部95Aはそれぞれ、各導体バー91Aからロータコア73の後端面に沿って径方向内側へ延在している。同様に、コイル部9Bは、導体バー91Bと接続端部95Bとからなる。導体バー91Bはロータコア83のスロットに挿入されている。接続端部95Bは、導体バー91Bからロータコア83の前端面に沿って径方向内側へ延在している。互いに同一形状をもつ接続端部95A及び95Bの各ペアは、ロータコア73及び83の間のアイドルスペースにおいて互いに密着している。接続端部95A及び95Bの接合部96は溶接されている。これにより、籠形コイル9の製造が容易となる。 Another embodiment of the saddle coil 9 will be described with reference to FIGS. FIG. 12 is an axial sectional view showing a part of the saddle coil 9. The saddle-shaped coil 9 includes a coil portion 9A fixed to the front rotor core 73 by die casting and a coil portion 9B fixed to the rear rotor core 83 by another die casting. The coil portion 9A includes a conductor bar 91A and a connection end portion 95A. The conductor bar 91A is inserted into the slot of the rotor core 73. FIG. 13 is a side view showing the connecting end portion 95A. Each connection end 95A extends radially inward from the conductor bar 91A along the rear end surface of the rotor core 73. Similarly, the coil portion 9B includes a conductor bar 91B and a connection end portion 95B. The conductor bar 91B is inserted into the slot of the rotor core 83. The connecting end portion 95B extends radially inward from the conductor bar 91B along the front end surface of the rotor core 83. Each pair of connection end portions 95A and 95B having the same shape is in close contact with each other in the idle space between the rotor cores 73 and 83. The joint 96 of the connection ends 95A and 95B is welded. Thereby, manufacture of the saddle-shaped coil 9 becomes easy.
図14はハウジング5の前端壁に固定された3相インバータ3を示す側面図である。図15は3相インバータ3のレグ3Uを示す軸方向断面図である。インバータ3の3個のレグ3U、3V、及び3Wは回転軸12の周囲に放射状に配置されている。フリーホィールダイオードの図示は省略されている。上アームトランジスタ3UU、3VU、及び3WUは下アームトランジスタ3UL、3VL、及び3WLの径方向外側に配置されている。上アームトランジスタ3UU、3VU、及び3WUは環状の銅板501とL字状の出力端子503-505に挟まれている。同様に、下アームトランジスタ3UL、3VL、及び3WLは環状の銅板502と出力端子503-505に挟まれている。出力端子503-505はハウジング5の孔を通じてハウジング5の内部に延在している。銅板501及び502は絶縁シートを通じてハウジング5の前端壁に固定されている。銅板501は直流電源の正極に接続され、銅板502は直流電源の負極に接続されている。3相インバータ4も3相インバータ3と同じ構造をもつ。 FIG. 14 is a side view showing the three-phase inverter 3 fixed to the front end wall of the housing 5. FIG. 15 is an axial sectional view showing the leg 3U of the three-phase inverter 3. As shown in FIG. The three legs 3U, 3V, and 3W of the inverter 3 are arranged radially around the rotating shaft 12. The illustration of the free wheel diode is omitted. The upper arm transistors 3UU, 3VU, and 3WU are disposed outside the lower arm transistors 3UL, 3VL, and 3WL in the radial direction. The upper arm transistors 3UU, 3VU, and 3WU are sandwiched between an annular copper plate 501 and an L-shaped output terminal 503-505. Similarly, the lower arm transistors 3UL, 3VL, and 3WL are sandwiched between an annular copper plate 502 and output terminals 503-505. The output terminals 503-505 extend into the housing 5 through holes in the housing 5. The copper plates 501 and 502 are fixed to the front end wall of the housing 5 through an insulating sheet. The copper plate 501 is connected to the positive electrode of the DC power source, and the copper plate 502 is connected to the negative electrode of the DC power source. The three-phase inverter 4 has the same structure as the three-phase inverter 3.
このタンデム誘導モータは、ステータ極数を切替える極数切替技術を採用する。この極数切替技術は、ステータ極数を倍増する倍極モードと、ステータ相数を倍増する倍相モードとからなる。倍極モードが図16-図19を参照して説明される。図16は前ステータコア71を示す側面図である。前ステータコア71は環状のヨーク75から径方向内側へ突出する6個のステータポール72をもつ。ステータポール72は前突極と呼ばれる。各ステータポール72はそれぞれ、前ロータコア73に対面する磁極面74をもつ。3相コイル1の3つの相コイル1U、1V、及び1Wが6個のステータポール72に順番に集中巻きされている。互いに隣接する2つのステータポール72の間の機械角は60度である。 This tandem induction motor employs a pole number switching technique for switching the number of stator poles. This pole number switching technique includes a double pole mode in which the number of stator poles is doubled and a double phase mode in which the number of stator phases is doubled. The double pole mode is described with reference to FIGS. FIG. 16 is a side view showing the front stator core 71. The front stator core 71 has six stator poles 72 projecting radially inward from an annular yoke 75. The stator pole 72 is called a front salient pole. Each stator pole 72 has a magnetic pole surface 74 that faces the front rotor core 73. Three phase coils 1U, 1V, and 1W of the three-phase coil 1 are concentrated and wound around six stator poles 72 in order. The mechanical angle between the two stator poles 72 adjacent to each other is 60 degrees.
図17は後ステータコア81を示す側面図である。後ステータコア81は環状のヨーク85から径方向内側へ突出する6個のステータポール82をもつ。ステータポール82は後突極と呼ばれる。各ステータポール82はそれぞれ、後ロータコア83に対面する磁極面84をもつ。3相コイル2の3つの相コイル2U、2V、及び2Wが6個のステータポール82に順番に集中巻きされている。互いに隣接する2つのステータポール82の間の機械角は60度である。 FIG. 17 is a side view showing the rear stator core 81. The rear stator core 81 has six stator poles 82 projecting radially inward from an annular yoke 85. The stator pole 82 is called a rear salient pole. Each stator pole 82 has a magnetic pole surface 84 that faces the rear rotor core 83. Three phase coils 2U, 2V, and 2W of the three-phase coil 2 are concentrated and wound around six stator poles 82 in order. The mechanical angle between the two stator poles 82 adjacent to each other is 60 degrees.
ステータポール82はステータポール72に対して半ポールピッチに相当する機械角30度だけ周方向へシフトされている。各導体バー91のスキュー角はゼロである。導体バー91が所定のスキュー角をもつ時、ステータポール72はステータポール82と比べて周方向へシフトされることができる。 The stator pole 82 is shifted in the circumferential direction by a mechanical angle of 30 degrees corresponding to a half pole pitch with respect to the stator pole 72. The skew angle of each conductor bar 91 is zero. When the conductor bar 91 has a predetermined skew angle, the stator pole 72 can be shifted in the circumferential direction compared to the stator pole 82.
図18は倍極モードにおける磁極面74及び84の配置を示す周方向展開図である。この配置は倍極配列と呼ばれる。磁極面74及び84内に図示される破線はステータポール72及び82の最小の周方向幅を示す。相コイル2Vは周方向において相コイル1U及び1Wの中間位置に配置されている。相コイル2Uは周方向において相コイル1W及び1Vの中間位置に配置されている。相コイル2Wは周方向において相コイル1V及び1Uの中間位置に配置されている。言い換えれば、3相コイル1及び2の互いに同相の2つの相コイルの間の周方向距離はステータポールピッチの1.5倍に等しい。 FIG. 18 is a circumferential development showing the arrangement of the magnetic pole surfaces 74 and 84 in the double pole mode. This arrangement is called a double pole arrangement. The dashed lines shown in the pole faces 74 and 84 indicate the minimum circumferential width of the stator poles 72 and 82. The phase coil 2V is arranged at an intermediate position between the phase coils 1U and 1W in the circumferential direction. The phase coil 2U is arranged at an intermediate position between the phase coils 1W and 1V in the circumferential direction. The phase coil 2W is arranged at an intermediate position between the phase coils 1V and 1U in the circumferential direction. In other words, the circumferential distance between the two phase coils of the three- phase coils 1 and 2 that are in phase with each other is equal to 1.5 times the stator pole pitch.
3相コイル1及び2が磁極面74及び84に形成する相磁界U、V、Wは回転磁界を形成する。したがって、この回転磁界の電気角360度はステータポールピッチの1.5倍に相当する。磁極面74及び84はそれぞれ、電気角180度にほぼ相当する周方向幅をもつ。互いに隣接する2つの磁極面74の間のスロットはほぼ電気角60度に相当する周方向幅をもつ。 The phase magnetic fields U, V, W formed by the three- phase coils 1 and 2 on the magnetic pole surfaces 74 and 84 form a rotating magnetic field. Therefore, the electrical angle of this rotating magnetic field of 360 degrees corresponds to 1.5 times the stator pole pitch. Each of the magnetic pole surfaces 74 and 84 has a circumferential width substantially corresponding to an electrical angle of 180 degrees. A slot between two magnetic pole faces 74 adjacent to each other has a circumferential width substantially corresponding to an electrical angle of 60 degrees.
相コイル1Uを流れる電流IUは磁極面74に相磁界Uを形成する。相コイル1Wを流れる相電流IWは磁極面74に相磁界Wを形成する。相コイル1Vを流れる相電流IVは磁極面74に相磁界Vを形成する。同様に、相コイル2Uを流れる相電流IUは磁極面84に相磁界Uを形成する。相コイル2Wを流れる相電流IWは磁極面84に相磁界Wを形成する。相コイル2Vを流れる相電流IVは磁極面84に相磁界Vを形成する。 The current IU flowing through the phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74. The phase current IW flowing through the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74. The phase current IV flowing through the phase coil 1 </ b> V forms a phase magnetic field V on the magnetic pole surface 74. Similarly, the phase current IU flowing through the phase coil 2 </ b> U forms a phase magnetic field U on the magnetic pole surface 84. The phase current IW flowing through the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84. The phase current IV flowing through the phase coil 2V forms a phase magnetic field V on the magnetic pole surface 84.
磁極面74及び84は角度位置P1-P6をもつ。互いに隣接する2つの角度位置の間の電気角は60度である。相磁界-Vが第1領域(P1-P2)に合成され、相磁界Uが第2領域(P2-P3)に形成され、相磁界-Wが第3領域(P3-P4)に合成される。相磁界Vが第4領域(P4-P5)に形成され、相磁界-Wが第5領域(P5-P6)に合成され、相磁界Wが第6領域(P6-P1)に形成される。図19は6つの相磁界-V、U、-W、V、-U、及びWを示すベクトル図である。互いに電気角60度だけ離れた6個の相磁界ベクトルが電気角360度の範囲内に形成される。 The pole faces 74 and 84 have angular positions P1-P6. The electrical angle between two angular positions adjacent to each other is 60 degrees. The phase magnetic field -V is synthesized in the first region (P1-P2), the phase magnetic field U is formed in the second region (P2-P3), and the phase magnetic field -W is synthesized in the third region (P3-P4). . The phase magnetic field V is formed in the fourth region (P4-P5), the phase magnetic field -W is combined with the fifth region (P5-P6), and the phase magnetic field W is formed in the sixth region (P6-P1). FIG. 19 is a vector diagram showing six phase magnetic fields -V, U, -W, V, -U, and W. Six phase magnetic field vectors separated from each other by an electrical angle of 60 degrees are formed within an electrical angle of 360 degrees.
倍相モードが図20-図23を参照して説明される。図20は前ステータコア71を示す側面図である。図21は後ステータコア81を示す側面図である。図20は図16と本質的に同じであり、図21は図17と本質的に同じである。しかし、各相コイル1U-2Wに供給される各相電流の位相が変更される。-U相電流-IUはU相電流IUと反対位相をもち、-V相電流-IVはV相電流IVと反対位相をもち、-W相電流-IWはW相電流IWと反対位相をもつ。 The double phase mode will be described with reference to FIGS. FIG. 20 is a side view showing the front stator core 71. FIG. 21 is a side view showing the rear stator core 81. 20 is essentially the same as FIG. 16, and FIG. 21 is essentially the same as FIG. However, the phase of each phase current supplied to each phase coil 1U-2W is changed. -U phase current -IU has opposite phase to U phase current IU, -V phase current -IV has opposite phase to V phase current IV, -W phase current -IW has opposite phase to W phase current IW .
図22は倍相モードにおける磁極面74及び84の配置を示す周方向展開図である。この配置は倍相配列と呼ばれる。相電流IUが相コイル1Uに供給され、相電流IVが相コイル1Wに供給され、相電流IWが相コイル1Vに供給される。さらに、相電流-IUが相コイル2Uに供給され、-相電流-IWが相コイル2Vに供給され、相電流-IVが相コイル2Wに供給される。その結果、3つの磁極面74は相磁界U、V、及びWを順番に形成し、3つの磁極面84は相磁界-U、ーV、及び-Wを順番に形成する。 FIG. 22 is a circumferential development view showing the arrangement of the magnetic pole surfaces 74 and 84 in the double phase mode. This arrangement is called a double phase arrangement. Phase current IU is supplied to phase coil 1U, phase current IV is supplied to phase coil 1W, and phase current IW is supplied to phase coil 1V. Further, the phase current -IU is supplied to the phase coil 2U, the -phase current -IW is supplied to the phase coil 2V, and the phase current -IV is supplied to the phase coil 2W. As a result, the three magnetic pole surfaces 74 form the phase magnetic fields U, V, and W in order, and the three magnetic pole surfaces 84 form the phase magnetic fields -U, -V, and -W in order.
磁極面74及び84は角度位置P1-P12をもつ。角度位置P1-P12のうち互いに隣接する2つの間の電気角は30度である。相磁界(U-V)が第1領域(P1-P2)に合成される。相磁界Uが第2領域(P2-P3)に形成される。相磁界(U-W)が第3領域(P3-P4)に合成される。相磁界-Wが第4領域(P4-P5)に形成される。相磁界(V-W)が第5領域(P5-P6)に合成される。相磁界Vが第6領域(P6-P7)に形成される。同様に、相磁界(V-U)が第7領域(P7-P8)に合成される。相磁界-Uが第8領域(P8-P9)に形成される。相磁界(W-U)が第9領域(P9-P10)に合成される。相磁界Wが第10領域(P10-P11)に形成される。相磁界(W-V)が第11領域(P11-P12)に合成される。相磁界-Vが第12領域(P12-P1)に形成される。結局、この倍相モードによれば、12個の相磁界ベクトルが電気角360度内に形成される。図23はこれらの相磁界ベクトルを示すベクトル図である。 The pole faces 74 and 84 have angular positions P1-P12. The electrical angle between two adjacent ones of the angular positions P1 to P12 is 30 degrees. A phase magnetic field (U-V) is synthesized in the first region (P1-P2). A phase magnetic field U is formed in the second region (P2-P3). The phase magnetic field (U-W) is synthesized in the third region (P3-P4). A phase magnetic field -W is formed in the fourth region (P4-P5). The phase magnetic field (V-W) is synthesized in the fifth region (P5-P6). A phase magnetic field V is formed in the sixth region (P6-P7). Similarly, the phase magnetic field (V-U) is synthesized in the seventh region (P7-P8). The phase magnetic field -U is formed in the eighth region (P8-P9). The phase magnetic field (W-U) is synthesized in the ninth region (P9-P10). A phase magnetic field W is formed in the tenth region (P10-P11). The phase magnetic field (W-V) is synthesized in the eleventh region (P11-P12). The phase magnetic field -V is formed in the twelfth region (P12-P1). Eventually, according to this double phase mode, twelve phase magnetic field vectors are formed within an electrical angle of 360 degrees. FIG. 23 is a vector diagram showing these phase magnetic field vectors.
図18に示される倍極ステータが、図3に示される従来の分布巻きステータと比較される。倍極ステータ及び分布巻きステータはそれぞれ、電気角360度当たり6個の相磁界ベクトルをもつ。しかし、倍極ステータは分布巻きステータと比べて短いコイルエンドをもつ。したがって、倍極ステータは従来の分布巻きステータよりも低い抵抗比率をもつことができる。 The double pole stator shown in FIG. 18 is compared with the conventional distributed winding stator shown in FIG. Each of the double pole stator and the distributed winding stator has six phase magnetic field vectors per 360 electrical degrees. However, the double pole stator has a shorter coil end than the distributed winding stator. Therefore, the double pole stator can have a lower resistance ratio than the conventional distributed winding stator.
図22に示される倍相ステータが、図5に示される従来の分布巻きステータと比較される。倍相ステータ及び分布巻きステータはそれぞれ、電気角360度当たり12個の相磁界ベクトルをもつ。しかし、倍相ステータは分布巻きステータと比べて遙かに短いコイルエンドをもつ。したがって、倍相ステータは分布巻きステータよりも低い抵抗比率をもつことができる。結局、この実施例のタンデム誘導モータは高調波磁界の抑制及び銅損の低減を実現することができる。 The double phase stator shown in FIG. 22 is compared with the conventional distributed winding stator shown in FIG. Each of the double phase stator and the distributed winding stator has 12 phase magnetic field vectors per 360 electrical degrees. However, double phase stators have much shorter coil ends than distributed winding stators. Therefore, the double phase stator can have a lower resistance ratio than the distributed winding stator. Eventually, the tandem induction motor of this embodiment can realize suppression of harmonic magnetic field and reduction of copper loss.
コントローラ100は倍極モードと倍相モードの切替制御を実行する。極数切替技術と呼ばれるこの切替技術は、図18及び図22から理解されるように、6個の相コイル1U-2Wに供給する各相電流の位相を調節することにより実行される。倍極配列が低速領域で選択され、倍相配列が高速領域で選択される。次に、巻数切替技術が図24-図27を参照して説明される。この巻数切替技術は直列モード及び並列モードからなる。直列モードの巻数は、並列モードのそれと比べて等価的に倍増される。 The controller 100 executes switching control between the double pole mode and the double phase mode. This switching technique, called the pole number switching technique, is executed by adjusting the phase of each phase current supplied to the six phase coils 1U-2W, as can be understood from FIGS. A double pole array is selected in the low speed region and a double phase array is selected in the high speed region. Next, the winding number switching technique will be described with reference to FIGS. This winding number switching technique includes a serial mode and a parallel mode. The number of turns in the serial mode is equivalently doubled compared to that in the parallel mode.
図24は、図9に示される6個の相電流I1-I6の波形例を示すタイミングチャートである。対称6相電流である相電流I1-I6はそれぞれほぼ正弦波形をもつ。相電流I1及び相電流14は反対位相をもつ。相電流I2及び相電流15は反対位相をもつ。相電流I3及び相電流16は反対位相をもつ。 FIG. 24 is a timing chart showing a waveform example of the six phase currents I1-I6 shown in FIG. The phase currents I1 to I6, which are symmetrical six-phase currents, each have a substantially sinusoidal waveform. Phase current I1 and phase current 14 have opposite phases. Phase current I2 and phase current 15 have opposite phases. The phase current I3 and the phase current 16 have opposite phases.
並列モードは従来の対称6相モータの動作モードと本質的に等しい。この並列モードにおいて、3相インバータ3は3相コイル1に3つの相電圧V1-V3を出力し、3相インバータ4は3相コイル2に3つの相電圧V4-V6を出力する。2つの3相インバータ3及び4は独立に制御される。3相コイル1及び2は、3相インバータ3及び4を通じて図略の直流電源に並列に接続される。 The parallel mode is essentially the same as the operation mode of a conventional symmetrical 6-phase motor. In this parallel mode, the three-phase inverter 3 outputs three phase voltages V 1 -V 3 to the three-phase coil 1, and the three-phase inverter 4 outputs three phase voltages V 4 -V 6 to the three-phase coil 2. The two three- phase inverters 3 and 4 are controlled independently. Three- phase coils 1 and 2 are connected in parallel to a DC power supply (not shown) through three- phase inverters 3 and 4.
直列モードが説明される。この直列モードによれば、3相インバータ3及び4の各一つのレグは中間電圧VMに固定される。好適には、この中間電圧は直流電源電圧Vdの半分の値(0.5Vd)にほぼ等しい。以下において、中間電圧VMを出力するレグは中間電位レグと呼ばれる。中間電位レグのPWMデユーティ比はほぼ50%である。好適には、2つの中間電位レグの上アームトランジスタは同じオン期間をもち、それらの下アームトランジスタは同じオン期間をもつ。これにより、直流電源から3相インバータ3及び4に供給される電流のリップルが低減される。この中間電位固定が6相電流I1-I6へ与える悪影響を回避するために、中間電位レグ以外の4つのレグの出力電圧に所定のバイアス電圧が重畳される。これにより、6相電流はこの中間電位固定により変化されない。 The serial mode is described. According to this series mode, each one leg of the three- phase inverters 3 and 4 is fixed to the intermediate voltage VM. Preferably, this intermediate voltage is approximately equal to half the value of the DC power supply voltage Vd (0.5 Vd). Hereinafter, the leg that outputs the intermediate voltage VM is referred to as an intermediate potential leg. The PWM duty ratio of the intermediate potential leg is almost 50%. Preferably, the upper arm transistors of the two intermediate potential legs have the same on period and the lower arm transistors have the same on period. Thereby, the ripple of the current supplied from the DC power source to the three- phase inverters 3 and 4 is reduced. In order to avoid the adverse effect of the intermediate potential fixing on the six-phase currents I1-I6, a predetermined bias voltage is superimposed on the output voltages of the four legs other than the intermediate potential leg. Thereby, the six-phase current is not changed by this intermediate potential fixation.
3相インバータ3及び4の各一つのレグが互いに等しい中間電圧VMを出力するということは、これら各一つの中間電位レグに接続される2つの相コイルが等価的に直列接続されることを意味する。レグ3Uが中間電位レグとなる時、レグ4Uが中間電位レグとなる。レグ3Vが中間電位レグとなる時、レグ4Vが中間電位レグとなる。レグ3Wが中間電位レグとなる時、レグ4Wが中間電位レグとなる。言い換えれば、互いに反対位相の相電圧を出力する2つのレグが中間電位レグとして選択される。したがって、直流電源は2つの中間電位レグを除く4つのレグにだけ相電流を供給することができる。この実施例によれば、最大振幅の相電流を供給するレグが中間電位レグとして選択される。これにより、直流電源が3相インバータ3及び4に供給する電流の低減率が最大となる。振幅が最大の相電流を供給するレグは最大電流レグと呼ばれる。したがって、この巻数切替方式は最大電流レグ選択方式と呼ばれる。 The fact that each leg of the three- phase inverters 3 and 4 outputs the same intermediate voltage VM means that two phase coils connected to each one of these intermediate potential legs are equivalently connected in series. To do. When the leg 3U becomes an intermediate potential leg, the leg 4U becomes an intermediate potential leg. When the leg 3V becomes the intermediate potential leg, the leg 4V becomes the intermediate potential leg. When the leg 3W becomes the intermediate potential leg, the leg 4W becomes the intermediate potential leg. In other words, two legs that output phase voltages in opposite phases are selected as intermediate potential legs. Therefore, the DC power supply can supply phase currents only to the four legs excluding the two intermediate potential legs. According to this embodiment, the leg supplying the phase current with the maximum amplitude is selected as the intermediate potential leg. As a result, the reduction rate of the current supplied from the DC power source to the three- phase inverters 3 and 4 is maximized. The leg that supplies the phase current with the maximum amplitude is called the maximum current leg. Therefore, this winding number switching method is called a maximum current leg selection method.
この最大電流レグ選択方式が図24を参照して説明される。図24において、1サイクル期間TC(=電気角360度)は6個の切替時点t1-t6をもつ。6個の時点t1-t6のうちの任意の2つの間の電気角は60度である。相電流I3は時点t1、t4にて零となる。相電流I2は時点t2、t5ににて零となる。相電流I1は時点t3、t6にて零となる。 This maximum current leg selection method will be described with reference to FIG. In FIG. 24, one cycle period TC (= electrical angle 360 degrees) has six switching time points t1 to t6. The electrical angle between any two of the six points in time t1-t6 is 60 degrees. The phase current I3 becomes zero at time points t1 and t4. The phase current I2 becomes zero at time points t2 and t5. The phase current I1 becomes zero at time points t3 and t6.
相電流I1及びI4の振幅が最大となる第1位相期間(t1-t2)において、レグ3U及び4Uが中間電位レグとなる。相電流I3及びI6の振幅が最大となる第2位相期間(t2-t3)において、レグ3W及び4Wが中間電位レグとなる。相電流I2及びI5の振幅が最大となる第3位相期間(t3-t4)において、レグ3V及び4Vが中間電位レグとなる。 In the first phase period (t1-t2) in which the amplitudes of the phase currents I1 and I4 are maximum, the legs 3U and 4U are intermediate potential legs. In the second phase period (t2-t3) in which the amplitudes of the phase currents I3 and I6 are maximum, the legs 3W and 4W are intermediate potential legs. In the third phase period (t3-t4) in which the amplitudes of the phase currents I2 and I5 are maximum, the legs 3V and 4V are intermediate potential legs.
同様に、相電流I1及びI4の振幅が最大となる第4位相期間(t4-t5)において、レグ3U及び4Uが中間電位レグとなる。相電流I3及びI6の振幅が最大となる第5位相期間(t5-t6)において、レグ3W及び4Wが中間電位レグとなる。相電流I2及びI5の振幅が最大となる第6位相期間(t6-t1)において、レグ3V及び4Vが中間電位レグとなる。結局、この最大電流レグ選択方式によれば、一つの相の電流指令値がゼロとなる時点において、中間電位レグが他の2相の間で切り替えられる。 Similarly, in the fourth phase period (t4-t5) in which the amplitudes of the phase currents I1 and I4 are maximum, the legs 3U and 4U are intermediate potential legs. In the fifth phase period (t5-t6) in which the amplitudes of the phase currents I3 and I6 are maximum, the legs 3W and 4W are intermediate potential legs. In the sixth phase period (t6-t1) in which the amplitudes of the phase currents I2 and I5 are maximum, the legs 3V and 4V are intermediate potential legs. Eventually, according to this maximum current leg selection method, the intermediate potential leg is switched between the other two phases when the current command value of one phase becomes zero.
次に、バイアス電圧が説明される。相電圧V1-V6は並列モードにおける相電圧指令値とみなされる。レグ3U及び4Uが中間電位レグとなる第1位相期間及び第4位相期間において、バイアス電圧VB3(=VM-V1)が相電圧V2及びV3にそれぞれ加算される。これにより、レグ3Vは補正相電圧V2C(=V2+VM-V1)を出力し、レグ3Wは補正相電圧V3C(=V3+VM-V1)を出力する。同様に、バイアス電圧VB4(=VM-V4)が相電圧V5及びV6にそれぞれ加算される。これにより、レグ4Vは補正相電圧V5C(=V5+VM-V4)を出力し、レグ4Wは補正相電圧V6C(=V6+VM-V4)を出力する。 Next, the bias voltage will be described. Phase voltages V1-V6 are regarded as phase voltage command values in the parallel mode. In the first phase period and the fourth phase period in which the legs 3U and 4U are the intermediate potential legs, the bias voltage VB3 (= VM-V1) is added to the phase voltages V2 and V3, respectively. Thereby, the leg 3V outputs the correction phase voltage V2C (= V2 + VM-V1), and the leg 3W outputs the correction phase voltage V3C (= V3 + VM-V1). Similarly, the bias voltage VB4 (= VM−V4) is added to the phase voltages V5 and V6, respectively. Accordingly, the leg 4V outputs the correction phase voltage V5C (= V5 + VM-V4), and the leg 4W outputs the correction phase voltage V6C (= V6 + VM-V4).
レグ3W及び4Wが中間電位レグとなる第2位相期間及び第5位相期間において、バイアス電圧VB3(=VM-V3)が相電圧V1及びV2にそれぞれ加算される。これにより、レグ3Uは補正相電圧V1C(=V1+VM-V3)を出力し、レグ3Vは補正相電圧V2C(=V2+VM-V3)を出力する。同様に、バイアス電圧VB6(=VM-V6)が相電圧V4及びV5にそれぞれ加算される。これにより、レグ4Uは補正相電圧V4C(=V4+VM-V6)を出力し、レグ4Vは補正相電圧V5C(=V5+VM-V6)を出力する。 In the second phase period and the fifth phase period in which the legs 3W and 4W are the intermediate potential legs, the bias voltage VB3 (= VM−V3) is added to the phase voltages V1 and V2, respectively. Accordingly, the leg 3U outputs the correction phase voltage V1C (= V1 + VM-V3), and the leg 3V outputs the correction phase voltage V2C (= V2 + VM-V3). Similarly, the bias voltage VB6 (= VM−V6) is added to the phase voltages V4 and V5, respectively. Thereby, the leg 4U outputs the correction phase voltage V4C (= V4 + VM−V6), and the leg 4V outputs the correction phase voltage V5C (= V5 + VM−V6).
レグ3V及び4Vが中間電位レグとなる第3位相期間及び第6位相期間において、バイアス電圧VB2(=VM-V2)が相電圧V1及びV3にそれぞれ加算される。これにより、レグ3Uは補正相電圧V1C(=V1+VM-V2)を出力し、レグ3Wは補正相電圧V3C(=V3+VM-V2)を出力する。同様に、バイアス電圧VB5(=VM-V5)が相電圧V4及びV6にそれぞれ加算される。これにより、レグ4Uは補正相電圧V4C(=V4+VM-V5)を出力し、レグ4Wは補正相電圧V6C(=V6+VM-V5)を出力する。 In the third phase period and the sixth phase period in which the legs 3V and 4V are the intermediate potential legs, the bias voltage VB2 (= VM−V2) is added to the phase voltages V1 and V3, respectively. Thereby, the leg 3U outputs the correction phase voltage V1C (= V1 + VM-V2), and the leg 3W outputs the correction phase voltage V3C (= V3 + VM-V2). Similarly, the bias voltage VB5 (= VM−V5) is added to the phase voltages V4 and V6, respectively. Accordingly, the leg 4U outputs the correction phase voltage V4C (= V4 + VM−V5), and the leg 4W outputs the correction phase voltage V6C (= V6 + VM−V5).
図25において、第3位相期間及び第6位相期間における補正相電圧V1C、V3C、V4C、及びV6Cのベクトルが破線で示される。図26において、第1位相期間及び第4位相期間における補正電圧V2C、V3C、V5C、及びV6Cのベクトルが破線で示される。図27において、第2位相期間及び第5位相期間における補正電圧V1C、V2C、V4C、及びV5Cのベクトルが破線で示される。 In FIG. 25, the vectors of the correction phase voltages V1C, V3C, V4C, and V6C in the third phase period and the sixth phase period are indicated by broken lines. In FIG. 26, vectors of the correction voltages V2C, V3C, V5C, and V6C in the first phase period and the fourth phase period are indicated by broken lines. In FIG. 27, vectors of the correction voltages V1C, V2C, V4C, and V5C in the second phase period and the fifth phase period are indicated by broken lines.
コントローラ100は、速度及びトルク指令値に基づいて、上記された極数切替及び巻数切替のどちらか又は両方を実行する。直列モード及び倍極モードが低速高トルク領域において選択されることが好適である。並列モード及び倍相モードが高速領域において選択されることが好適である。この直列モードによれば、直流電源から3相インバータ3及び4に供給される電源電流は従来の並列モードと比べて半分となる。これは、3相コイル1及び2が等価的に直列接続されたことを意味する。 The controller 100 executes either or both of the above-described pole number switching and winding number switching based on the speed and torque command value. The series mode and the double pole mode are preferably selected in the low speed and high torque region. The parallel mode and the double phase mode are preferably selected in the high speed region. According to this series mode, the power source current supplied from the DC power source to the three- phase inverters 3 and 4 is halved compared to the conventional parallel mode. This means that the three- phase coils 1 and 2 are equivalently connected in series.
倍極モードは直列モードの同時に実行されることができる。直列モードにおいて、3相インバータ3及び4は直列モードにおいて互いに反対位相の3相電流を出力する必要がある。しかし、倍極モードにおいて、たとえば相コイル1U及び2Uは同相の磁界を形成する必要がある。この問題は、相コイル2U、2V、及び2Wの巻き方向を相コイル1U、1V、及び1Wの巻き方向を反対とすることにより解決される。 The bipolar mode can be performed simultaneously with the serial mode. In the series mode, the three- phase inverters 3 and 4 need to output three-phase currents having opposite phases to each other in the series mode. However, in the double pole mode, for example, the phase coils 1U and 2U need to form an in-phase magnetic field. This problem is solved by making the winding directions of the phase coils 2U, 2V, and 2W opposite to those of the phase coils 1U, 1V, and 1W.
一つの変形態様が説明される。極数切替技術及び巻数切替技術が採用されないケースにおいて、直列又は並列に接続された3相コイル1及び2は一つの3相インバータに接続されることができる。一つの3相インバータをもつこの駆動回路はシングルインバータ回路と呼ばれる。もう一つの変形態様が説明される。極数切替技術及び巻数切替技術が採用されない定速用途において、直列又は並列に接続された3相コイル1及び2は商用3相交流電源に直接に接続されることができる。 One variation is described. In the case where the pole number switching technique and the winding number switching technique are not adopted, the three- phase coils 1 and 2 connected in series or in parallel can be connected to one three-phase inverter. This drive circuit having one three-phase inverter is called a single inverter circuit. Another variation is described. In constant speed applications where the pole number switching technique and the winding number switching technique are not employed, the three- phase coils 1 and 2 connected in series or in parallel can be directly connected to a commercial three-phase AC power source.
もう一つの変形態様が説明される。3相インバータ3及び4は新規な4相モードを実行することができる。この4相モードにおいて、3相インバータ3及び4はそれぞれ、公知の2相変調法により駆動される。倍相配列において使用されることが好適なこの4相モードにおいて、3相インバータ3が出力する3相電圧は、3相インバータ4が出力する3相電圧と反対の位相をもつ。3相インバータ3の一つレグが最高電位に固定される時、このレグと反対位相をもつ3相インバータ4の一つのレグは最低電位に固定される。したがって、3相インバータ3の及び4がそれぞれ出力する高調波電圧により形成される2つの漏れ電流は互いにキャンセルされる。好適には、バイアス電圧VBを徐々に変更することにより、4相モードと直列モードとの切替は円滑に実行される。この4相モードはインバータ損失を低減する。 Another variation is described. The three- phase inverters 3 and 4 can execute a new four-phase mode. In this four-phase mode, the three- phase inverters 3 and 4 are each driven by a known two-phase modulation method. In this four-phase mode that is preferably used in a double phase arrangement, the three-phase voltage output by the three-phase inverter 3 has the opposite phase to the three-phase voltage output by the three-phase inverter 4. When one leg of the three-phase inverter 3 is fixed at the highest potential, one leg of the three-phase inverter 4 having the opposite phase to this leg is fixed at the lowest potential. Accordingly, the two leakage currents formed by the harmonic voltages output from the three- phase inverters 3 and 4 are canceled out from each other. Preferably, the switching between the four-phase mode and the series mode is smoothly performed by gradually changing the bias voltage VB. This four-phase mode reduces inverter loss.
もう一つの変形態様が説明される。タンデムモータは、図18に示されるギャップ400を通じて冷却流体を径方向へ流すことができる。ハウジング5の筒部は、ギャップ400に連通する孔部をもつことができる。これにより、3相コイル1及び2の冷却が改善される。 Another variation is described. The tandem motor can flow the cooling fluid in the radial direction through the gap 400 shown in FIG. The cylindrical portion of the housing 5 can have a hole communicating with the gap 400. Thereby, the cooling of the three- phase coils 1 and 2 is improved.
     第2実施例
第2実施例のタンデム同期モータが図28-図33を参照して説明される。図28は、このタンデムモータを示す軸方向断面図である。前モータ7及び後モータ8はそれぞれ、永久磁石同期モータ(PMSM)である。ロータコア73及び83はそれぞれ永久磁石をもつ。
Second Embodiment A tandem synchronous motor according to a second embodiment will be described with reference to FIGS. FIG. 28 is an axial sectional view showing the tandem motor. Each of the front motor 7 and the rear motor 8 is a permanent magnet synchronous motor (PMSM). The rotor cores 73 and 83 each have a permanent magnet.
図29は、このタンデム同期モータを駆動するシングルインバータ駆動形式の駆動回路を示す配線図である。3相インバータ3は、相毎に直列接続された3相コイル1及び2に接続されている。3相インバータ3は、互いに並列接続された3相コイル1及び2に接続されることも可能である。相レグ3Uは相コイル1U及び2UにU相電流IUを供給する。相レグ3Vは相コイル1V及び2VにV相電流IVを供給する。相レグ3Vは相コイル1W及び2WにW相電流IWを供給する。 FIG. 29 is a wiring diagram showing a single inverter drive type drive circuit for driving the tandem synchronous motor. The three-phase inverter 3 is connected to three- phase coils 1 and 2 connected in series for each phase. The three-phase inverter 3 can also be connected to the three- phase coils 1 and 2 connected in parallel to each other. The phase leg 3U supplies a U-phase current IU to the phase coils 1U and 2U. The phase leg 3V supplies the V-phase current IV to the phase coils 1V and 2V. Phase leg 3V supplies W phase current IW to phase coils 1W and 2W.
図30は倍極配列を示す模式展開図である。この倍極配列は、図18に示されるタンデムステータと本質的に同じである。ロータコア73及び83はそれぞれ、隣接する3つの相コイル当たり4極のロータ磁極をもつ。言い換えれば、前モータ7及び後モータ8はそれぞれ、3スロット4極形式の集中巻き同期モータからなる。したがって、電気角360度は相スロットピッチの1.5倍に相当する。 FIG. 30 is a schematic development view showing a double pole arrangement. This double pole arrangement is essentially the same as the tandem stator shown in FIG. Each of the rotor cores 73 and 83 has four rotor poles per three adjacent phase coils. In other words, each of the front motor 7 and the rear motor 8 is a three-slot four-pole type concentrated winding synchronous motor. Therefore, the electrical angle of 360 degrees corresponds to 1.5 times the phase slot pitch.
相コイル1Uは磁極面74に相磁界Uを形成し、相コイル1Vは磁極面74に相磁界Vを形成し、相コイル1Wは磁極面74に相磁界Wを形成する。同様に、相コイル2Uは磁極面84に相磁界Uを形成し、相コイル2Vは磁極面84に相磁界Vを形成し、相コイル2Wは磁極面84に相磁界Wを形成する。 The phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74, the phase coil 1 V forms a phase magnetic field V on the magnetic pole surface 74, and the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74. Similarly, the phase coil 2 U forms a phase magnetic field U on the magnetic pole surface 84, the phase coil 2 V forms a phase magnetic field V on the magnetic pole surface 84, and the phase coil 2 W forms a phase magnetic field W on the magnetic pole surface 84.
このタンデムモータは正弦波の代わりに矩形波により駆動されることができる。言い換えれば、このタンデムモータはブラシレスDCモータとして駆動されることができる。磁極面74、84の周方向長がロータ磁極の周方向長とほぼ一致するので、このブラシレスDCモータは120度通電方式よりも180度通電方式を採用することが好適である。 This tandem motor can be driven by a square wave instead of a sine wave. In other words, the tandem motor can be driven as a brushless DC motor. Since the circumferential lengths of the magnetic pole surfaces 74 and 84 substantially coincide with the circumferential length of the rotor magnetic poles, it is preferable that this brushless DC motor adopts the 180 degree energization method rather than the 120 degree energization method.
図31は倍相配列を示す展開図である。この倍相配列は、図22に示されるタンデムステータと本質的に同じである。図30と同様に、ロータコア73及び83はそれぞれ、3つの相コイル当たり4極のロータ磁極をもつ。相コイル1U、1V、及び1Wからなる前コイル1に供給される3相電流は、相コイル2U、2V、及び2Wからなる後コイル2に供給される3相電流と比べて、電気角180度異なる位相をもつ。相コイル1Uは磁極面74に相磁界Uを形成し、相コイル1Vは磁極面74に相磁界Vを形成し、相コイル1Wは磁極面74に相磁界Wを形成する。相コイル2Uは磁極面84に相磁界-Uを形成し、相コイル2Vは磁極面84に相磁界-Vを形成し、相コイル2Wは磁極面84に相磁界-Wを形成する。 FIG. 31 is a development view showing the double phase arrangement. This double phase arrangement is essentially the same as the tandem stator shown in FIG. Similar to FIG. 30, the rotor cores 73 and 83 each have four rotor poles per three phase coils. The three-phase current supplied to the front coil 1 consisting of the phase coils 1U, 1V and 1W is 180 degrees in electrical angle compared to the three-phase current supplied to the rear coil 2 consisting of the phase coils 2U, 2V and 2W. Has a different phase. The phase coil 1 U forms a phase magnetic field U on the magnetic pole surface 74, the phase coil 1 V forms a phase magnetic field V on the magnetic pole surface 74, and the phase coil 1 W forms a phase magnetic field W on the magnetic pole surface 74. The phase coil 2U forms a phase magnetic field -U on the magnetic pole surface 84, the phase coil 2V forms a phase magnetic field -V on the magnetic pole surface 84, and the phase coil 2W forms a phase magnetic field -W on the magnetic pole surface 84.
図31に示される6相電流の1周期は、図30に示される3相電流の1周期の2倍となる。したがって、図31のステータ極数は図30のステータ極数の半分となる。6個の相磁界U、V、W、-U、-V、及び-Wが相コイルの周方向幅の3倍に等しい周方向距離の範囲内に形成される。言い換えば、図31に示される倍相配列は、図30に示される倍極配列と比べて、相電流の1周期に相当する電気角360度の範囲内に2倍の相磁界ベクトルをもつ。したがって、倍相配列は低トルクリップルの集中巻きを実現する。 One cycle of the six-phase current shown in FIG. 31 is twice the one cycle of the three-phase current shown in FIG. Therefore, the number of stator poles in FIG. 31 is half the number of stator poles in FIG. Six phase magnetic fields U, V, W, -U, -V, and -W are formed within a circumferential distance equal to three times the circumferential width of the phase coil. In other words, the double phase array shown in FIG. 31 has a double phase magnetic field vector in the range of an electrical angle of 360 degrees corresponding to one cycle of the phase current, compared to the double pole array shown in FIG. Therefore, the double phase arrangement realizes concentrated winding with low torque ripple.
一つの変形態様において、3相インバータ3が3相コイル1を駆動し、3相インバータ4が3相コイル2を駆動するダブルインバータ駆動回路が採用される。これにより、図24に示される巻数切替技術及び4相モード技術を実行することができる。 In one modification, a double inverter drive circuit is employed in which the three-phase inverter 3 drives the three-phase coil 1 and the three-phase inverter 4 drives the three-phase coil 2. Thereby, the number-of-turns switching technique and the four-phase mode technique shown in FIG. 24 can be executed.
もう一つの変形態様において、前ロータコア73は主として磁石トルクを発生し、後ロータコア83は主として同期リラクタンストルクを発生する。前モータ7は永久磁石モータ(PMSM)であり、後モータ8は同期リラクタンスモータ(SynRM)である。ロータコア73は複数の永久磁石をもち、ロータコア83は複数のフラックスバリアをもつ。前ロータコア73は永久磁石トルク及び同期リラクタンストルクの両方を発生することができる。 In another variation, the front rotor core 73 generates mainly magnet torque, and the rear rotor core 83 generates mainly synchronous reluctance torque. The front motor 7 is a permanent magnet motor (PMSM), and the rear motor 8 is a synchronous reluctance motor (SynRM). The rotor core 73 has a plurality of permanent magnets, and the rotor core 83 has a plurality of flux barriers. The front rotor core 73 can generate both permanent magnet torque and synchronous reluctance torque.
永久磁石同期モータの一つの欠点は、高速領域における逆起電力の上昇である。この問題を改善するために、3相インバータ4は後モータ8のリラクタンストルクを調節する。前ロータコア73及び後ロータコア83の間の相対角度は、両モータ7及び8がそれぞれ最大トルクを同時に発生する値に設定されることが好適である。 One drawback of permanent magnet synchronous motors is an increase in counter electromotive force in the high speed region. In order to improve this problem, the three-phase inverter 4 adjusts the reluctance torque of the rear motor 8. It is preferable that the relative angle between the front rotor core 73 and the rear rotor core 83 is set to a value at which both the motors 7 and 8 simultaneously generate the maximum torque.
     第3実施例
第3実施例のタンデムスタータジエネレータが図32-図40を参照して説明される。このスタータジエネレータはエンジン始動モード及び発電モードをもつ。図32はこのスタータジエネレータを示す軸方向断面図である。3相コイル1はステータコア71に集中巻きされ、3相コイル2はステータコア81に集中巻きされている。前モータ7は、界磁コイル730が巻かれたランデル型ロータコア73をもつ。後モータ8は、界磁コイル830が巻かれたランデル型ロータコア83をもつ。ランデル型ロータコア73及び83はそれぞれ、従来のランデル型ロータコアと本質的に同じである。
Third Embodiment A tandem starter generator according to a third embodiment will be described with reference to FIGS. This starter generator has an engine start mode and a power generation mode. FIG. 32 is an axial sectional view showing this starter generator. The three-phase coil 1 is concentrated around the stator core 71, and the three-phase coil 2 is concentrated around the stator core 81. The front motor 7 has a Landel type rotor core 73 around which a field coil 730 is wound. The rear motor 8 has a Landel type rotor core 83 around which a field coil 830 is wound. Each of the Landel rotor cores 73 and 83 is essentially the same as a conventional Landel rotor core.
ロータコア73はコア731及びコア732からなる。コア731及び732はそれぞれ、ボス部から延在するL字状のロータポール733をもつ。ロータコア83はコア831及びコア832からなる。コア831及び832はそれぞれ、ボス部から延在するL字状のロータポール833をもつ。コア732及び831は一体に作製されることができる。界磁コイル730はロータポール733を磁化し、界磁コイル830はロータポール833を磁化する。 The rotor core 73 includes a core 731 and a core 732. Each of the cores 731 and 732 has an L-shaped rotor pole 733 extending from the boss portion. The rotor core 83 includes a core 831 and a core 832. Each of the cores 831 and 832 has an L-shaped rotor pole 833 extending from the boss portion. The cores 732 and 831 can be made integrally. The field coil 730 magnetizes the rotor pole 733, and the field coil 830 magnetizes the rotor pole 833.
図33はロータポール733及び833の配置を示す展開図である。コア731のロータポール733及びコア832のロータポール833は、周方向において奇数番目の位置に配置される。コア732のロータポール733及びコア831のロータポール833は周方向において偶数番目の位置に配置される。コア731のロータポール733はN極をもち、コア732のロータポール733はS極をもつ。コア831のロータポール833は、エンジン始動モードにおいてS極をもち、発電モードにおいてN極をもつ。コア832のロータポール833は、エンジン始動モードにおいてN極をもち、発電モードにおいてS極をもつ。 FIG. 33 is a development view showing the arrangement of the rotor poles 733 and 833. The rotor pole 733 of the core 731 and the rotor pole 833 of the core 832 are arranged at odd-numbered positions in the circumferential direction. The rotor pole 733 of the core 732 and the rotor pole 833 of the core 831 are arranged at even-numbered positions in the circumferential direction. The rotor pole 733 of the core 731 has an N pole, and the rotor pole 733 of the core 732 has an S pole. The rotor pole 833 of the core 831 has an S pole in the engine start mode and an N pole in the power generation mode. The rotor pole 833 of the core 832 has an N pole in the engine start mode and an S pole in the power generation mode.
図34は界磁コイル730及び830に界磁電流を供給するロータ回路を示す配線図である。このロータ回路は単相フルブリッジ(Hブリッジ)11およびダイオード回路13からなる。ハウジング5に固定されたHブリッジ11は2つのスイッチレグ111および112からなる。ダイオード回路13は、電圧降下用のダイオードペア130、2つの並列ダイオード131および132、及び直列ダイオード133からなる。逆並列接続された2個のダイオードからなるダイオードペア130は省略されることができる。 FIG. 34 is a wiring diagram showing a rotor circuit for supplying a field current to the field coils 730 and 830. This rotor circuit includes a single-phase full bridge (H bridge) 11 and a diode circuit 13. The H bridge 11 fixed to the housing 5 includes two switch legs 111 and 112. The diode circuit 13 includes a diode pair 130 for voltage drop, two parallel diodes 131 and 132, and a series diode 133. The diode pair 130 composed of two diodes connected in reverse parallel can be omitted.
界磁コイル830の一端はダイオードペア130およびスリップリング17を通じてスイッチレグ111の出力端子に接続されている。スリップリング17は並列ダイオード131のアノード電極に接続されている。界磁コイル830の他端は並列ダイオード132のアノード電極及び界磁コイル730の一端に接続されている。界磁コイル730の他端は、並列ダイオード131のカソード電極及び直列ダイオード133のカソード電極に接続されている。直列ダイオード133のアノード電極及び並列ダイオード132のカソード電極はスリップリング18を通じてスイッチレグ112の出力端子に接続されている。 One end of the field coil 830 is connected to the output terminal of the switch leg 111 through the diode pair 130 and the slip ring 17. The slip ring 17 is connected to the anode electrode of the parallel diode 131. The other end of the field coil 830 is connected to the anode electrode of the parallel diode 132 and one end of the field coil 730. The other end of the field coil 730 is connected to the cathode electrode of the parallel diode 131 and the cathode electrode of the series diode 133. The anode electrode of the series diode 133 and the cathode electrode of the parallel diode 132 are connected to the output terminal of the switch leg 112 through the slip ring 18.
図35はダイオード回路13を内蔵する端子リング19を示す側面図である。回転軸12に固定されたこの端子リング19は、界磁コイル730及び830の各一端が別々に接続される2つの端子134をもつ。さらに、端子リング19は、スリップリング17及び18に別々に接続される2つの端子(図示せず)をもつ。Hブリッジ11はハウジング5に固定されている。 FIG. 35 is a side view showing the terminal ring 19 incorporating the diode circuit 13. This terminal ring 19 fixed to the rotary shaft 12 has two terminals 134 to which one ends of the field coils 730 and 830 are separately connected. Further, the terminal ring 19 has two terminals (not shown) that are separately connected to the slip rings 17 and 18. The H bridge 11 is fixed to the housing 5.
エンジン始動モードにおいて、界磁電流はスイッチレグ111からスイッチレグ112へ流れる。これにより、界磁コイル830及び730は並列接続される。このため、界磁電流はエンジン始動初期において急速に立ち上がることができる。界磁電流は発電モードにおいてスイッチレグ112からスイッチレグ111へ流れる。これにより、2つの界磁コイル830及び730は直列接続される。エンジン始動モード及び発電モードにおいて、界磁コイル730を流れる界磁電流の方向は不変であり、界磁コイル830を流れる界磁電流の方向は反対となる。したがって、エンジン始動モード及び発電モードの間のモード切替が指令される時、ロータポール833の極性は反転される。 In the engine start mode, the field current flows from the switch leg 111 to the switch leg 112. Thereby, the field coils 830 and 730 are connected in parallel. For this reason, the field current can rise rapidly in the early stage of engine start. The field current flows from the switch leg 112 to the switch leg 111 in the power generation mode. Thereby, the two field coils 830 and 730 are connected in series. In the engine start mode and the power generation mode, the direction of the field current flowing through the field coil 730 is unchanged, and the direction of the field current flowing through the field coil 830 is opposite. Therefore, when mode switching between the engine start mode and the power generation mode is commanded, the polarity of the rotor pole 833 is reversed.
図36及び図37は3相コイル1及び2の配置を示す展開図である。3相コイル1は互いに電気角120度離れた相コイル1U、1V、及び1Wからなる。3相コイル2は互いに電気角120度離れた相コイル2U、2V、及び2Wからなる。相コイル1U-1Wはステータポール74に順番に巻かれている。相コイル2U-2Wはステータポール84に順番に巻かれている。相コイル1U及び2Uは同じ周方向位置をもち、相コイル1V及び2Vは同じ周方向位置をもち、相コイル1W及び2Wは同じ周方向位置をもつ。相コイル1Uは逆起電力VU1を発生し、相コイル1Vは逆起電力VV1を発生し、相コイル1Wは逆起電力VW1を発生する。同様に、相コイル2Uは逆起電力VU2を発生し、相コイル2Vは逆起電力VV2を発生し、相コイル2Wは逆起電力VW2を発生する。 36 and 37 are developed views showing the arrangement of the three- phase coils 1 and 2. FIG. The three-phase coil 1 includes phase coils 1U, 1V, and 1W separated from each other by an electrical angle of 120 degrees. The three-phase coil 2 includes phase coils 2U, 2V, and 2W that are 120 degrees apart from each other. The phase coils 1U-1W are wound around the stator pole 74 in order. The phase coils 2U-2W are wound around the stator pole 84 in order. Phase coils 1U and 2U have the same circumferential position, phase coils 1V and 2V have the same circumferential position, and phase coils 1W and 2W have the same circumferential position. Phase coil 1U generates back electromotive force VU1, phase coil 1V generates back electromotive force VV1, and phase coil 1W generates back electromotive force VW1. Similarly, phase coil 2U generates counter electromotive force VU2, phase coil 2V generates counter electromotive force VV2, and phase coil 2W generates counter electromotive force VW2.
エンジン始動モードにおける各逆起電力が図36を参照して説明される。コア731及び832のロータポール733及び833はN極をもち、コア732及び831のロータポール733及び833はS極をもつ。これにより、逆起電力VU1及びVU2は互いに同相となり、逆起電力VV1及びVV2は互いに同相となり、逆起電力VW1及びVW2は互いに同相となる。結局、3相コイル1及び2が互いに同相の3相逆起電力を発生するこのエンジン始動モードは、従来の3相集中巻きモータと同じ3相逆起電力を発生する。 Each back electromotive force in the engine start mode will be described with reference to FIG. The rotor poles 733 and 833 of the cores 731 and 832 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 831 have an S pole. Thereby, the counter electromotive forces VU1 and VU2 are in phase with each other, the counter electromotive forces VV1 and VV2 are in phase with each other, and the counter electromotive forces VW1 and VW2 are in phase with each other. Eventually, this engine start mode in which the three- phase coils 1 and 2 generate a three-phase counter electromotive force in phase with each other generates the same three-phase counter electromotive force as that of a conventional three-phase concentrated winding motor.
発電モードにおける逆起電力が図37を参照して説明される。この発電モードにおいて、これらの逆起電力は各相の発電電圧を意味する。コア731及び831のロータポール733及び833はN極をもち、コア732及び832のロータポール733及び833はS極をもつ。これにより、逆起電力VU1及びVU2は互いに反対相となり、逆起電力VV1及びVV2は互いに反対相となり、VW1及びVW2は互いに反対相となる。したがって、この発電モードによれば、6つの逆起電力ベクトルが電気角360度の範囲内に形成される。言い換えれば、この発電モードにおいて、タンデムステータは倍相配列をもつ。 The counter electromotive force in the power generation mode will be described with reference to FIG. In this power generation mode, these back electromotive forces mean the generated voltage of each phase. The rotor poles 733 and 833 of the cores 731 and 831 have an N pole, and the rotor poles 733 and 833 of the cores 732 and 832 have an S pole. Thus, the counter electromotive forces VU1 and VU2 are in opposite phases, the counter electromotive forces VV1 and VV2 are in opposite phases, and VW1 and VW2 are in opposite phases. Therefore, according to this power generation mode, six back electromotive force vectors are formed within an electrical angle of 360 degrees. In other words, in this power generation mode, the tandem stator has a double phase arrangement.
図38は3相コイル1及び2に接続されるパワーコンバータを示す配線図である。このパワーコンバータは3相フルブリッジ整流器3及び3相インバータ4からなる。3相コイル1は、中性点Nをもつ星形(Wye)コイルからなる。3相コイル2は独立3相コイルからなる。相コイル2Uは相コイル1Uと直列に接続され、相コイル2Vは相コイル1Vと直列に接続され、相コイル2Wは相コイル1Wと直列に接続されている。整流器3はレグ3U、3V、及び3Wからなる。レグ3Uは相コイル1U及び2Uの接続点に接続され、レグ3Vは相コイル1V及び2Vの接続点に接続され、レグ3Wは相コイル1W及び2Wの接続点に接続されている。3相インバータ4はレグ4U、4V、及び4Wからなる。レグ4Uは相コイル2Uに接続され、レグ4Vは相コイル2Vに接続され、レグ4Wは相コイル2Wに接続されている。 FIG. 38 is a wiring diagram showing a power converter connected to the three- phase coils 1 and 2. This power converter includes a three-phase full-bridge rectifier 3 and a three-phase inverter 4. The three-phase coil 1 is a star-shaped (Wye) coil having a neutral point N. The three-phase coil 2 is an independent three-phase coil. Phase coil 2U is connected in series with phase coil 1U, phase coil 2V is connected in series with phase coil 1V, and phase coil 2W is connected in series with phase coil 1W. The rectifier 3 consists of legs 3U, 3V, and 3W. The leg 3U is connected to the connection point of the phase coils 1U and 2U, the leg 3V is connected to the connection point of the phase coils 1V and 2V, and the leg 3W is connected to the connection point of the phase coils 1W and 2W. The three-phase inverter 4 includes legs 4U, 4V, and 4W. The leg 4U is connected to the phase coil 2U, the leg 4V is connected to the phase coil 2V, and the leg 4W is connected to the phase coil 2W.
発電モードにおいて、整流器3は星形接続3相コイル1から出力される3相電圧を全波整流する。整流器3は、3つの端子電圧Ve、Vf、及びVgのうちの最高電圧の端子電圧を全波整流する。端子電圧Veは相間電圧VU1-VV1及び相間電圧VU1-VW1のうちの高い方からなる。端子電圧Vfは相間電圧VV1-VU1及び相間電圧VV1-VW1のうちの高い方からなる。端子電圧Vgは相間電圧VW1-VU1及び相間電圧VW1-VV1のうちの高い方からなる。さらに、この発電モードにおいて、整流器3及び3相インバータ4は3相コイル2の発電電圧を整流する3つの単相フルブリッジ整流器を構成する。レグ3U及び4Uは相電圧VU2を全波整流し、レグ3V及び4Vは相電圧VV2を全波整流し、レグ3W及び4Wは相電圧VW2を全波整流する。 In the power generation mode, the rectifier 3 performs full-wave rectification on the three-phase voltage output from the star-connected three-phase coil 1. The rectifier 3 full-wave rectifies the highest terminal voltage among the three terminal voltages Ve, Vf, and Vg. The terminal voltage Ve is the higher of the interphase voltage VU1-VV1 and the interphase voltage VU1-VW1. The terminal voltage Vf is the higher of the interphase voltage VV1-VU1 and the interphase voltage VV1-VW1. The terminal voltage Vg is the higher of the interphase voltage VW1-VU1 and the interphase voltage VW1-VV1. Further, in this power generation mode, the rectifier 3 and the three-phase inverter 4 constitute three single-phase full-bridge rectifiers that rectify the generated voltage of the three-phase coil 2. Legs 3U and 4U full-wave rectify phase voltage VU2, legs 3V and 4V full-wave rectify phase voltage VV2, and legs 3W and 4W full-wave rectify phase voltage VW2.
2つの3相コイル1及び2の電流不均衡を低減するために、3相コイル2の相コイル2U、2V、及び2Wは、3相コイル1の相コイル1U、1V、及び1Wよりも増加された巻数をもつ。好適には、3相コイル1の巻数値の約1.73倍に近い値が3相コイル2の巻数値として選択される。たとえば、3相コイル2は3相コイル1の5/3倍の巻数をもつ。これにより、3相コイル2の3つの相電圧は3相コイル1の3つの端子電圧Ve、Vf、及びVgとほぼ等しい振幅をもつ。 In order to reduce the current imbalance of the two three- phase coils 1 and 2, the phase coils 2U, 2V and 2W of the three-phase coil 2 are increased over the phase coils 1U, 1V and 1W of the three-phase coil 1. Has the number of turns. Preferably, a value close to about 1.73 times the winding value of the three-phase coil 1 is selected as the winding value of the three-phase coil 2. For example, the three-phase coil 2 has 5/3 times the number of turns of the three-phase coil 1. Thereby, the three phase voltages of the three-phase coil 2 have substantially the same amplitude as the three terminal voltages Ve, Vf and Vg of the three-phase coil 1.
図39は、3相整流器3及び3相インバータ4に印加される発電電圧を示すベクトル図である。3相整流器3及び3相インバータ4は実質的に6相電圧を全波整流する。発電電流のリップルは大幅に低減される。 FIG. 39 is a vector diagram showing the generated voltage applied to the three-phase rectifier 3 and the three-phase inverter 4. The three-phase rectifier 3 and the three-phase inverter 4 substantially full-wave rectify the six-phase voltage. The ripple of generated current is greatly reduced.
エンジン始動モードにおいて、3相インバータ4は3相コイル1及び2に3相電流を供給する。3相インバータ4は3相矩形波電圧を出力することが好適である。言い換えれば、タンデムスタータジエネレータはいわゆるブラシレスDCモータとして動作する。3相コイル1及び2は実質的に一つの合成星形コイルを構成する。この合成星形コイルのU相コイルは、直列接続された相コイル1U及び2Uからなる。相コイル1U及び2Uの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。この合成星形コイルのV相コイルは、直列接続された相コイル1V及び2Vからなる。相コイル1V及び2Vの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。この合成星形コイルのW相コイルは、直列接続された相コイル1W及び2Wからなる。相コイル1W及び2Wの逆起電力はエンジン始動モードにおいて互いに同じ方向となる。 In the engine start mode, the three-phase inverter 4 supplies a three-phase current to the three- phase coils 1 and 2. The three-phase inverter 4 preferably outputs a three-phase rectangular wave voltage. In other words, the tandem starter generator operates as a so-called brushless DC motor. The three- phase coils 1 and 2 substantially constitute one synthetic star coil. The U-phase coil of this synthetic star coil is composed of phase coils 1U and 2U connected in series. The counter electromotive forces of the phase coils 1U and 2U are in the same direction in the engine start mode. The V-phase coil of this synthetic star coil consists of phase coils 1V and 2V connected in series. The counter electromotive forces of the phase coils 1V and 2V are in the same direction in the engine start mode. The W-phase coil of this synthetic star coil is composed of phase coils 1W and 2W connected in series. The counter electromotive forces of the phase coils 1W and 2W are in the same direction in the engine start mode.
3相コイル2が3相コイル1の約1.73倍の巻数をもつ時、この合成星形コイルは3相コイル1と比べて約2.73倍の巻数をもつ。したがって、このスタータジエネレータは強力なエンジン始動トルクを発生することができる。図40はエンジン始動モードにおいてレグ4U-4Wに印加される3つの合成逆起電力Va、Vb、及びVcを示すベクトル図である。中性点Nが中性点電位Vnをもつ時、合成逆起電力Vaは逆起電力VU1及びVU2のベクトル和となり、合成逆起電力Vbは逆起電力VV1及びVV2のベクトル和となり、合成逆起電力Vcは逆起電力VW1及びVW2のベクトル和となる。3相インバータ4の代わりに3相ダイオード整流器を採用することもできる。このモータは、2電圧型のオルタネータとなる。3相整流器3の代わりに3相インバータを採用することもできる。 When the three-phase coil 2 has about 1.73 times the number of turns of the three-phase coil 1, the composite star coil has about 2.73 times the number of turns compared to the three-phase coil 1. Therefore, this starter generator can generate a powerful engine starting torque. FIG. 40 is a vector diagram showing three combined counter electromotive forces Va, Vb, and Vc applied to the legs 4U-4W in the engine start mode. When the neutral point N has the neutral point potential Vn, the combined counter electromotive force Va becomes the vector sum of the counter electromotive forces VU1 and VU2, and the combined counter electromotive force Vb becomes the vector sum of the counter electromotive forces VV1 and VV2, and the combined inverse The electromotive force Vc is a vector sum of the counter electromotive forces VW1 and VW2. Instead of the three-phase inverter 4, a three-phase diode rectifier may be employed. This motor is a two-voltage type alternator. A three-phase inverter may be employed instead of the three-phase rectifier 3.
     第4実施例
銅損はスロット占積率の改善により低減される。いわゆる分割コアはスロット占積率の改善に有効である。しかし、分割コアはモータ振動を増加させる。特に、2つのステータコアが別々に振動するタンデムモータがこの分割コアを採用する時、ステータコア間の相対振動が増加する。この問題は、この実施例で説明されるステータコア製造方法により解決される。この製造方法は、整列工程とダイキャスト工程を含む。
Fourth Embodiment Copper loss is reduced by improving the slot space factor. The so-called divided core is effective in improving the slot space factor. However, the split core increases motor vibration. In particular, when a tandem motor in which two stator cores vibrate separately adopt this split core, the relative vibration between the stator cores increases. This problem is solved by the stator core manufacturing method described in this embodiment. This manufacturing method includes an alignment process and a die casting process.
図41は、6個のコアセグメント70を整列させる整列工程を示す模式図である。積層鋼板からなる各コアセグメント70はそれぞれ、ステータポール72から周方向両側に延在する円弧状ヨーク75をもつ。円弧状ヨーク75の端面76は径方向に延在している。相コイル1U-1Wは6個のステータポール72に別々に集中巻きされている。各コアセグメント70は円柱状の金型60の周囲に配置されている。径方向内側Fへ向けて付勢された各コアセグメント70は金型60の外周面に密着される。その結果、6個のコアセグメント70は前ステータコア71を形成する。 FIG. 41 is a schematic diagram showing an alignment process for aligning the six core segments 70. Each core segment 70 made of laminated steel sheets has an arcuate yoke 75 extending from the stator pole 72 to both sides in the circumferential direction. The end surface 76 of the arcuate yoke 75 extends in the radial direction. The phase coils 1U-1W are separately concentrated and wound around the six stator poles 72. Each core segment 70 is arranged around a cylindrical mold 60. Each core segment 70 urged toward the radially inner side F is brought into close contact with the outer peripheral surface of the mold 60. As a result, the six core segments 70 form the front stator core 71.
図42はダイキャスト工程を示す径方向断面図である。ダイキャスト用の金型61及び62はシリンダー状キャビティ50をもつ。整列されたコアセグメント70からなるステータアセンブリが円柱状の金型60とともにキャビティ50内に配置される。その後、溶けたアルミニウムがキャビティ50内に注入される。冷却されたアルミニウムはハウジング5の筒部を形成する。その後、金型60、61、及び62が外される。これにより、各コアセグメント70はハウジング5の筒部に強力に固定される。 FIG. 42 is a radial cross-sectional view showing the die casting process. The die casting molds 61 and 62 have a cylindrical cavity 50. A stator assembly comprising aligned core segments 70 is disposed in the cavity 50 along with the cylindrical mold 60. Thereafter, molten aluminum is injected into the cavity 50. The cooled aluminum forms the cylindrical part of the housing 5. Thereafter, the molds 60, 61, and 62 are removed. Thereby, each core segment 70 is firmly fixed to the cylindrical portion of the housing 5.
図43はダイキャスト用金型の軸方向断面図である。環状の金型63及び64がキャビティ50の軸方向両側に配置されている。金型63は各コアセグメント70の前端面に密着し、金型64は各コアセグメント70の後端面に密着している。これにより、キャビティ50は完全に密閉される。金型63及び64は金型60が貫通する孔部を有する。ハウジング5の筒部が形成された後、金型63は前方向へスライドし、金型64は後方向へスライドする。 FIG. 43 is a sectional view in the axial direction of a die casting mold. Annular molds 63 and 64 are arranged on both sides of the cavity 50 in the axial direction. The mold 63 is in close contact with the front end face of each core segment 70, and the mold 64 is in close contact with the rear end face of each core segment 70. Thereby, the cavity 50 is completely sealed. The molds 63 and 64 have holes through which the mold 60 passes. After the cylindrical portion of the housing 5 is formed, the mold 63 slides forward and the mold 64 slides backward.
第1変形態様が図44及び図45を参照して説明される。図44は前モータ7の一部を示す径方向断面図である。図46は前モータ7の軸方向断面図である。各コアセグメント70はそれぞれ、円弧状ヨーク75から径方向外側へ突出する5個の楔部77をもつ。これにより、各コアセグメント70はハウジング5に強力に固定される。ロータコア73がステータ内に挿入された後、ハウジング5の両端壁部がハウジング5の筒部に締結される。 A first modification will be described with reference to FIGS. 44 and 45. FIG. 44 is a radial sectional view showing a part of the front motor 7. FIG. 46 is an axial sectional view of the front motor 7. Each core segment 70 has five wedge portions 77 projecting radially outward from the arcuate yoke 75. Thereby, each core segment 70 is firmly fixed to the housing 5. After the rotor core 73 is inserted into the stator, both end wall portions of the housing 5 are fastened to the cylindrical portion of the housing 5.
ハウジング5の筒部は多数の環状鍔部51をもつ。各環状鍔部51はそれぞれ、ハウジング5の筒部の外周面に設けられている。樹脂製のウオータージャケット52がハウジング5の筒部に被せられている。これにより、環状の水冷通路53が軸方向に隣接する2つの環状鍔部51の間に形成される。冷却水の代わりにオイルを水冷通路53に供給することも可能である。ウオータージャケット52は、各水冷通路53に水を流すための送水パイプ及び排水パイプをもつ。これにより、ステータ71はハウジング5を通じて良好に冷却される。環状鍔部51は、各水冷通路53を流れる冷却水とハウジング5との間の熱抵抗を低減する。各環状鍔部51はハウジング5の剛性を改善する。 The cylindrical portion of the housing 5 has a large number of annular flanges 51. Each annular flange 51 is provided on the outer peripheral surface of the cylindrical portion of the housing 5. A resin water jacket 52 is placed on the cylindrical portion of the housing 5. Thereby, the annular water cooling passage 53 is formed between the two annular flanges 51 adjacent in the axial direction. It is also possible to supply oil to the water cooling passage 53 instead of the cooling water. The water jacket 52 has a water supply pipe and a drain pipe for flowing water through each water cooling passage 53. Thereby, the stator 71 is cooled well through the housing 5. The annular flange 51 reduces the thermal resistance between the cooling water flowing through each water cooling passage 53 and the housing 5. Each annular flange 51 improves the rigidity of the housing 5.
第2変形態様が説明される。この変形態様によれば、後ステータコア81が、前ステータコア71と同様に6個のコアセグメントにより形成される。整列されたステータコア71及び81用のコアセグメントがスペーサ15とともにステータアセンブリを構成する。このステータアセンブリを金型内に収容した後、ハウジング5の筒部がダイキャスト法により製造される。これにより、ステータコア71、スペーサ15及びステータコア81はハウジング5に固定される。スペーサ15の少なくとも外周部はハウジング5よりも高融点の非磁性金属で作製される。たとえば、スペ-サ15は銅製のアウタースリーブ及びアルミ製のインナースリーブからなる。このアウタースリーブの外周面は凹部又は突部をもつことができる。 A second variation will be described. According to this modification, the rear stator core 81 is formed of six core segments in the same manner as the front stator core 71. The aligned core segments for the stator cores 71 and 81 together with the spacers 15 constitute a stator assembly. After the stator assembly is accommodated in the mold, the cylindrical portion of the housing 5 is manufactured by a die casting method. Thereby, the stator core 71, the spacer 15, and the stator core 81 are fixed to the housing 5. At least the outer peripheral portion of the spacer 15 is made of a nonmagnetic metal having a melting point higher than that of the housing 5. For example, the spacer 15 includes a copper outer sleeve and an aluminum inner sleeve. The outer peripheral surface of the outer sleeve can have a recess or a protrusion.
第3変形態様が図41を参照して説明される。6個のコアセグメント70のうち偶数番目のコアセグメント70は円柱状の金型60の外周面に予め接している。その後、奇数番目のコアセグメント70だけが径方向内側へ移動される。これにより、金型移動装置がコンパクトとなる。 A third variation will be described with reference to FIG. The even-numbered core segment 70 out of the six core segments 70 is in contact with the outer peripheral surface of the cylindrical mold 60 in advance. Thereafter, only the odd-numbered core segment 70 is moved radially inward. Thereby, the mold moving device becomes compact.
第4変形態様が図41を参照して説明される。円柱状の金型60はテーパー形状をもつ。言い換えれば、長い円柱状の金型60の直径は軸方向において連続的に増加している。整列工程の初期段階において、各コアセグメント70は金型60の大径部の外周面に向けて付勢される。さらに、金型60は軸方向へ移動される。その結果、各コアセグメント70は、金型60の小径部の外周面に密着する。これにより、各コアセグメント70は円滑に径内方向へ移動することができる。結局、この実施例の製造方法によれば、ステータコア71及び81の相対振動及び各セグメント間の相対振動が抑制される。 A fourth modification will be described with reference to FIG. The cylindrical mold 60 has a tapered shape. In other words, the diameter of the long cylindrical mold 60 continuously increases in the axial direction. In the initial stage of the alignment process, each core segment 70 is urged toward the outer peripheral surface of the large-diameter portion of the mold 60. Further, the mold 60 is moved in the axial direction. As a result, each core segment 70 is in close contact with the outer peripheral surface of the small diameter portion of the mold 60. Thereby, each core segment 70 can move smoothly in the radially inward direction. After all, according to the manufacturing method of this embodiment, the relative vibration of the stator cores 71 and 81 and the relative vibration between the segments are suppressed.
第5変形態様が図46を参照して説明される。この変形態様において、分割コアの各コアセグメント70はそれぞれ、T字形状を有する。言い換えれば、コアセグメント70は、径内方向へ延在するステータポール72から接線方向へ延在するヨーク部75をもつ。環状に結合された各ヨーク部75はいわゆるバックコアを形成する。ヨーク部75の端面76は径方向へ延在している。鍔部79は磁極面74を周方向へ延長する。6個のコアセグメント70により形成される前ステータコア71は6角形の筒形形状をもつ。ステータポール72から直角方向へ延在するヨーク部75はスロット78の断面積を拡大し、相コイル1Uの自動巻線作業を容易化する。 A fifth modification will be described with reference to FIG. In this variation, each core segment 70 of the split core has a T-shape. In other words, the core segment 70 has a yoke portion 75 extending in the tangential direction from the stator pole 72 extending in the radially inward direction. The yoke portions 75 connected in a ring form a so-called back core. The end surface 76 of the yoke portion 75 extends in the radial direction. The flange 79 extends the magnetic pole surface 74 in the circumferential direction. The front stator core 71 formed by the six core segments 70 has a hexagonal cylindrical shape. A yoke portion 75 extending perpendicularly from the stator pole 72 enlarges the cross-sectional area of the slot 78 and facilitates the automatic winding operation of the phase coil 1U.
上記各実施例で説明されたタンデム集中巻きモータの銅損低減効果が図46及び図47を参照して説明される。図47は比較例としての一つのコアセグメント70を示す。図46のコアセグメントは60度を占め、図47のコアセグメントは30度を占める。言い換えれば、図47は、従来の集中巻きステータコアを形成する第5変形態様のコアセグメントを示す。倍極配列のタンデム集中巻きの前ステータコアは、従来の集中巻きステータコアの半分のステータポールが30度を占める時、図46のコアセグメント70は図47のコアセグメント70は60度を占める。以下において、図46のコアセグメン70のステータポール72はタンデムポールと呼ばれ、図47のコアセグメント70のステータポール72は比較ポールと呼ばれる。 The copper loss reduction effect of the tandem concentrated winding motor described in the above embodiments will be described with reference to FIGS. 46 and 47. FIG. FIG. 47 shows one core segment 70 as a comparative example. The core segment in FIG. 46 occupies 60 degrees, and the core segment in FIG. 47 occupies 30 degrees. In other words, FIG. 47 shows a core segment of a fifth modification that forms a conventional concentrated winding stator core. 46, when the stator pole half of the conventional concentrated winding stator core occupies 30 degrees, the core segment 70 in FIG. 46 occupies 60 degrees in the core segment 70 in FIG. In the following, the stator pole 72 of the core segment 70 in FIG. 46 is called a tandem pole, and the stator pole 72 of the core segment 70 in FIG. 47 is called a comparison pole.
両者は等しい磁極面直径R及び等しい外径Hをもつ。タンデムポールは比較ポールの周方向幅Wの2倍の周方向幅をもつ。タンデムポールは比較ポールの幅Wの6倍の軸長をもつ。比較ポールの軸長は比較ポールの幅Wの12倍の軸長をもつ。したがって、タンデムポール及び比較ポールは、互いに等しい磁極面積をもつ。 Both have equal pole face diameter R and equal outer diameter H. The tandem pole has a circumferential width that is twice the circumferential width W of the comparison pole. The tandem pole has an axial length that is six times the width W of the comparison pole. The axial length of the comparison pole has an axial length 12 times the width W of the comparison pole. Therefore, the tandem pole and the comparison pole have the same magnetic pole area.
タンデムポールは比較ポールと比べて約70%の平均ターン長をもつ。さらに、比較ポールはタンデムポールと比べて約60%のスロット断面積をもつ。結局、倍極配列のステータコイルは従来の集中巻きステータコイルと比べて45%未満の銅損をもつ。 The tandem pole has an average turn length of about 70% compared to the comparison pole. Furthermore, the comparative pole has a slot cross-sectional area of about 60% compared to the tandem pole. Eventually, a double pole array stator coil has a copper loss of less than 45% compared to a conventional concentrated winding stator coil.
ただし、タンデム集中巻きモータは、比較ポールをもつ集中巻きモータよりも増加された重量をもつ。この重量増加は、ハウジング及び回転軸の軸長、ヨーク部の幅、及びステータコイルの断面積の増加に起因する。しかし、両者の永久磁石、ロータコア及びステータポールは互いに等しい重量をもつ。さらに、軸方向に隣接する2つのタンデムポールが周方向に重なるため、タンデム集中巻きモータは従来の集中巻きモータと比べて磁石利用率の改善効果及びトルクリップルの低減効果をもつ。 However, the tandem concentrated winding motor has an increased weight over the concentrated winding motor with the comparison pole. This increase in weight results from an increase in the axial length of the housing and the rotating shaft, the width of the yoke portion, and the cross-sectional area of the stator coil. However, both the permanent magnets, the rotor core and the stator pole have the same weight. Furthermore, since two tandem poles adjacent in the axial direction overlap in the circumferential direction, the tandem concentrated winding motor has an effect of improving the magnet utilization rate and a torque ripple as compared with the conventional concentrated winding motor.
     第5実施例
タンデム分布巻きモータが図48-図53を参照して説明される。図48に示されるタンデム分布巻きモータは、図28に示されるタンデムモータとステータコイルを除いて本質的に同じである。前ロータコア73及び後ロータコア83は、第1-第3実施例のロータ構造のいずれかをもつ。図48は第2実施例のロータ構造を示す。
A fifth embodiment tandem distributed winding motor will be described with reference to FIGS. The tandem distributed winding motor shown in FIG. 48 is essentially the same except for the tandem motor and the stator coil shown in FIG. The front rotor core 73 and the rear rotor core 83 have any of the rotor structures of the first to third embodiments. FIG. 48 shows the rotor structure of the second embodiment.
図49は前モータ7のステータコア71の展開図であり、図50は後モータ8のステータコア81の展開図である。ステータコア71は電気角360度の範囲内に6個のスロットS1-S6をもつ。ステータコア81は電気角360度の範囲内に6個のスロットS7-S12をもつ。言い換えれば、前モータ7及び後モータ8はそれぞれ、1個のロータ極当たり3個のティース10をもつ。 49 is a development view of the stator core 71 of the front motor 7, and FIG. 50 is a development view of the stator core 81 of the rear motor 8. The stator core 71 has six slots S1-S6 within an electric angle range of 360 degrees. The stator core 81 has six slots S7 to S12 within an electric angle of 360 degrees. In other words, each of the front motor 7 and the rear motor 8 has three teeth 10 per rotor pole.
3相コイル1は、星形接続された相コイル1U、1V、及び1Wからなる。3相コイル2は、星形接続された相コイル2U、2V、及び2Wからなる。相電流IU及び-U相電流-IUが相コイル1U及び2Uを流れる。相電流-IUは逆方向に流れる相電流IUを意味する。相電流IV及び-IVが相コイル1V及び2Vを流れる。相電流-IVは逆方向に流れる相電流IVを意味する。相電流IW及び-IWが相コイル1W及び2Wを流れる。相電流-IWは逆方向に流れる相電流IWを意味する。U相コイル1U及び2Uは並列又は直列に接続されることができる。相コイル1V及び2Vは並列又は直列に接続されることができる。相コイル1W及び2Wは並列又は直列に接続されることができる。 The three-phase coil 1 includes phase coils 1U, 1V, and 1W connected in a star shape. The three-phase coil 2 includes phase coils 2U, 2V, and 2W connected in a star shape. Phase current IU and -U phase current -IU flow through phase coils 1U and 2U. The phase current -IU means a phase current IU that flows in the reverse direction. Phase currents IV and -IV flow through phase coils 1V and 2V. The phase current -IV means the phase current IV flowing in the reverse direction. Phase currents IW and -IW flow through phase coils 1W and 2W. The phase current -IW means the phase current IW that flows in the reverse direction. U-phase coils 1U and 2U can be connected in parallel or in series. The phase coils 1V and 2V can be connected in parallel or in series. The phase coils 1W and 2W can be connected in parallel or in series.
スロットS1及びS4は相コイル1U及び2Uを収容する。スロットS2及びS5は相コイル1W及び2Wを収容する。スロットS3及びS6は相コイル1V及び2Vを収容する。スロットS1-S6は同相スロットと呼ばれる。スロットS7及びS10は相コイル2W及び2Uを収容する。スロットS8及びS11は相コイル1V及び1Wを収容する。スロットS9及びS12は相コイル2U及び2Vを収容する。スロットS7-S12は異相スロットと呼ばれる。 Slots S1 and S4 accommodate phase coils 1U and 2U. Slots S2 and S5 accommodate phase coils 1W and 2W. Slots S3 and S6 accommodate phase coils 1V and 2V. Slots S1-S6 are called in-phase slots. Slots S7 and S10 house phase coils 2W and 2U. Slots S8 and S11 accommodate phase coils 1V and 1W. Slots S9 and S12 accommodate phase coils 2U and 2V. Slots S7-S12 are called out-of-phase slots.
図51は、スロットS1-S12を別々に流れる12個のスロット電流を示すベクトル図である。このスロット電流は、一つのスロットを流れる全ての相電流のベクトル和を意味する。スロットS7-S12はスロットS1-S6と比べて周方向へ電気角30度離れている。スロットS1-S6を流れるスロット電流は、図6に示される奇数番目のスロット電流に等しい。スロットS7-S12を流れるスロット電流は、図6に示される偶数番目のスロット電流に等しい。言い換えれば、図48に示されるタンデム分布巻きは、図6に示される従来の分布巻きと等しい回転磁界を形成することができる。 FIG. 51 is a vector diagram showing twelve slot currents flowing separately through slots S1-S12. This slot current means a vector sum of all phase currents flowing through one slot. The slots S7 to S12 are separated from the slots S1 to S6 by an electrical angle of 30 degrees in the circumferential direction. The slot current flowing through the slots S1 to S6 is equal to the odd-numbered slot current shown in FIG. The slot current flowing through the slots S7 to S12 is equal to the even-numbered slot current shown in FIG. In other words, the tandem distributed winding shown in FIG. 48 can form a rotating magnetic field equal to the conventional distributed winding shown in FIG.
この実施例によれば、ステータコア81はステータコア71と比べて2/1.73倍の軸長をもつ。したがって、スロットS7-S12を流れるスロット電流は、スロットS1-S6を流れるスロット電流と比べて2/1.73倍の磁界を形成する。図53に示される12個のスロット電流は、互いに等しい振幅をもつ12個の相磁界ベクトルを形成する。非常に低いトルクリップルをもつこの分布巻きタンデムモータは工作機械用モータや潜水艦用モータに好適である。 According to this embodiment, the stator core 81 has an axial length 2 / 1.73 times that of the stator core 71. Therefore, the slot current flowing through the slots S7 to S12 forms a magnetic field 2 / 1.73 times as large as the slot current flowing through the slots S1 to S6. The twelve slot currents shown in FIG. 53 form twelve phase magnetic field vectors having the same amplitude. This distributed winding tandem motor with very low torque ripple is suitable for machine tool motors and submarine motors.
図52は6個の相コイル1U-2Wの配置を示す。6個の相コイル1U-2Wは、ステータコア71にフルピッチで分布巻きされ、かつ、ステータコア81にショートピッチで分布巻きされている。さらに、6個の相コイル1U-2Wはそれぞれ、ステータコア71とステータコア81との間のアイドルスペースにおいて周方向へ半スロットピッチだけ曲げられている。これにより、図52に示される3相コイル1及び2のコイルエンドは、図6に示される分布巻きコイルのコイルエンドと比べてコンパクトとなる。これにより、銅損及び製造コストが低減される。 FIG. 52 shows an arrangement of six phase coils 1U-2W. The six phase coils 1U-2W are distributedly wound around the stator core 71 at a full pitch and distributedly wound around the stator core 81 at a short pitch. Further, each of the six phase coils 1U-2W is bent by a half slot pitch in the circumferential direction in an idle space between the stator core 71 and the stator core 81. Thereby, the coil ends of the three- phase coils 1 and 2 shown in FIG. 52 are more compact than the coil ends of the distributed winding coils shown in FIG. Thereby, copper loss and manufacturing cost are reduced.
図53は6個の相コイル1U-2Wのもう一つの配置を示す。スロットS1-S12の上部に収容される6個の相コイル1U-2Wは2つのステータコア71及び81の間のアイドルスペースにおいて周方向へ1スロットピッチだけ曲げられている。しかし、スロットS1-S12の下部に収容される6個の相コイル1U-2Wはこのアイドルスペースにおいて曲げられない。前ロータコア73のN極は後ロータコア83のN極と比べて周方向へ半スロットピッチだけシフトされている。これにより、図53は図52と電磁的に等しくなる。 FIG. 53 shows another arrangement of six phase coils 1U-2W. The six phase coils 1U-2W accommodated in the upper portions of the slots S1-S12 are bent by a one-slot pitch in the circumferential direction in the idle space between the two stator cores 71 and 81. However, the six phase coils 1U-2W housed under the slots S1-S12 are not bent in this idle space. The north pole of the front rotor core 73 is shifted by a half slot pitch in the circumferential direction as compared with the north pole of the rear rotor core 83. Accordingly, FIG. 53 is electromagnetically equivalent to FIG.
図53に示されるタンデム分布巻きはいわゆるセグメント導体挿入方式により製造されることができる。このセグメント導体挿入方式による巻線工程が説明される。最初に、実線で示されるI形導体がスロットS1-S12の上部に挿入される。次に、ステータコア81だけが1スロットピッチ回転される。これにより、実線で示されるI形導体は、アイドルスペースにおいて周方向へ1スロットピッチだけ曲げられる。この時、ステータコア81の回転とともにステータコア71と81との間の距離を縮小することが好適である。これにより、スリップによるI形導体の絶縁皮膜の損傷が低減される。次に、破線で示される残りのI形導体がスロットS1-S12の下部に挿入される。次に、全てのI形導体のコイルエンド部分が周方向へ曲げられる。次に、互いに径方向に隣接する上側のI形導体の端部及び下側のI形導体の端部が溶接点WPにて溶接される。これにより、ステータコイルが完成する。 The tandem distributed winding shown in FIG. 53 can be manufactured by a so-called segment conductor insertion method. The winding process by this segment conductor insertion method will be described. First, an I-shaped conductor indicated by a solid line is inserted above the slots S1-S12. Next, only the stator core 81 is rotated by one slot pitch. As a result, the I-shaped conductor indicated by the solid line is bent by one slot pitch in the circumferential direction in the idle space. At this time, it is preferable to reduce the distance between the stator cores 71 and 81 as the stator core 81 rotates. Thereby, damage to the insulating film of the I-shaped conductor due to slip is reduced. Next, the remaining I-shaped conductors indicated by broken lines are inserted below the slots S1-S12. Next, the coil end portions of all the I-shaped conductors are bent in the circumferential direction. Next, the end of the upper I-shaped conductor and the end of the lower I-shaped conductor that are adjacent to each other in the radial direction are welded at a welding point WP. Thereby, a stator coil is completed.
図52に示されるタンデム分布巻きが、図6に示される従来の分布巻きと比較される。図54は、図52に示されるタンデム分布巻きステータの一部を示す。図55は、図6に示される従来の分布巻きステータの一部を示す。従来の分布巻きステータは48個のステータポール(ティース)10をもち、各ステータポール10はそれぞれ、周方向幅W及び軸方向長2Lをもつ。タンデム分布巻きの前ステータコア71及び後ロータコア81はそれぞれ24個のステータポール(ティース)10をもち、各ステータポール10はそれぞれ、周方向幅2Wと及び軸方向長Lをもつ。 The tandem distributed winding shown in FIG. 52 is compared with the conventional distributed winding shown in FIG. FIG. 54 shows a part of the tandem distributed winding stator shown in FIG. FIG. 55 shows a part of the conventional distributed winding stator shown in FIG. A conventional distributed winding stator has 48 stator poles (teeth) 10, and each stator pole 10 has a circumferential width W and an axial length 2L. Each of the front stator core 71 and the rear rotor core 81 in tandem distributed winding has 24 stator poles (teeth) 10, and each stator pole 10 has a circumferential width 2 W and an axial length L.
したがって、両者の各ステータポールはそれぞれ、等しい磁路断面積をもつ。スロット幅は、隣接するステータポール10の幅に等しい。したがって、図54の各スロットS1-S12は周方向幅2W及び軸方向長Lをもつ。図55の各スロットS1-S12は周方向幅W及び軸方向長23Lをもつ。図54及び図55の各スロットS1-S12の径方向高さは等しいことが仮定される。結局、図54及び図55はそれぞれ、電気角360度の範囲に12個のスロットS1-S12をもつ。 Therefore, both stator poles have the same magnetic path cross-sectional area. The slot width is equal to the width of the adjacent stator pole 10. Therefore, each slot S1-S12 in FIG. 54 has a circumferential width 2W and an axial length L. Each slot S1-S12 in FIG. 55 has a circumferential width W and an axial length 23L. It is assumed that the radial heights of the slots S1 to S12 in FIGS. 54 and 55 are equal. As a result, FIGS. 54 and 55 each have 12 slots S1-S12 in the range of 360 electrical degrees.
図54の各スロットで発生する抵抗損失は、図55の各スロットで発生する抵抗損失の1/4となる。しかし、図54のステータコイルのインダクタンスは図55のステータコイルのインダクタンスの約半分となるため、図54の各相コイルは図55の各相コイルの各相コイルと比べて約2倍の巻数をもつ。その結果、これら2つのステータコイルのスロット導体部分はほぼ等しい抵抗損失をもつ。ただし、図52に示されるように、このタンデム分布巻きは、前ステータコア71にフルピッチで巻かれ、後ステータコア81にショートピッチで巻かれる。その結果、ステータコイル1のうち、前ステータコア71に巻かれる部分は、後ステータコア81に巻かれる部分と異なるインダクタンスをもつ可能性がある。このインダクタンスの差は後ステータコア81の軸長を調節することにより解消されることができる。 The resistance loss generated in each slot in FIG. 54 is 1/4 of the resistance loss generated in each slot in FIG. However, since the inductance of the stator coil in FIG. 54 is about half of the inductance of the stator coil in FIG. 55, each phase coil in FIG. 54 has about twice as many turns as each phase coil in FIG. Have. As a result, the slot conductor portions of these two stator coils have approximately equal resistance losses. However, as shown in FIG. 52, the tandem distributed winding is wound around the front stator core 71 at a full pitch and wound around the rear stator core 81 at a short pitch. As a result, a portion of the stator coil 1 wound around the front stator core 71 may have an inductance different from that of the portion wound around the rear stator core 81. This difference in inductance can be eliminated by adjusting the axial length of the rear stator core 81.
この実施例のタンデム分布巻きステータコイルは、図49に示されるように同じスロットに2層に収容された2つの同相コイルをもつ。これは、ステータコイルを2つの3相コイルにより構成できることを意味する。したがって、この2つの3相コイルを別々の3相インバータにより駆動することにより、既述された巻数切替技術及び4相モード技術を採用できることを意味する。 The tandem distributed winding stator coil of this embodiment has two in-phase coils accommodated in two layers in the same slot as shown in FIG. This means that the stator coil can be constituted by two three-phase coils. Therefore, by driving these two three-phase coils by separate three-phase inverters, it means that the above-described winding number switching technique and four-phase mode technique can be adopted.
この実施例のタンデム分布巻きモータにおいて、前ステータコア71と後ステータコア81との間のアイドルスペースの軸方向幅が短い。たとえば、この幅は前モータ7の1スロットピッチより短い。したがって、一つのロータコアにより前ロータコア73及び後ロータコア83を形成することが可能である。この共通のロータコアは永久磁石又はフラックスバリア又は籠形コイルをもつことができる。このタンデム分布巻き誘導モータは、第1実施例のタンデム集中巻き誘導モータと同様に商用電源により駆動されることができる。さらに、前ステータコア71及び後ステータコア81の各ステータポール10の磁束がモータトルクを発生する。この実施例によれば、前ステータコア71のステータポール10が後ステータコア81のステータポール10と比べて周方向へ半ステータポールピッチだけシフトしている。さらに、前ステータコア71のステータポール10は後ステータコア81のステータポール10と周方向においてオーバーラップしている。その結果、ステータコイルに生じる逆起電力の高調波成分が低減される。 In the tandem distributed winding motor of this embodiment, the axial width of the idle space between the front stator core 71 and the rear stator core 81 is short. For example, this width is shorter than one slot pitch of the front motor 7. Therefore, it is possible to form the front rotor core 73 and the rear rotor core 83 with one rotor core. This common rotor core can have permanent magnets or flux barriers or saddle coils. This tandem distributed winding induction motor can be driven by a commercial power source in the same manner as the tandem concentrated winding induction motor of the first embodiment. Further, the magnetic flux of each stator pole 10 of the front stator core 71 and the rear stator core 81 generates motor torque. According to this embodiment, the stator pole 10 of the front stator core 71 is shifted by a half stator pole pitch in the circumferential direction compared to the stator pole 10 of the rear stator core 81. Further, the stator pole 10 of the front stator core 71 overlaps the stator pole 10 of the rear stator core 81 in the circumferential direction. As a result, the harmonic component of the counter electromotive force generated in the stator coil is reduced.
     第6実施例
第6実施例のタンデム同期モータが図56-図58を参照して説明される。図56に示されるこのタンデム同期モータは、既に説明された他のタンデムモータと本質的に同じ構造をもつ。しかし、図56のタンデムモータにおいて、前ステータコア71及び後ステータコア81は実質的に一つの共通ステータコアを構成している。共通のステータコイル1Cが前ステータコア71及び後ステータコア81に巻かれている。前ロータコア73及び後ロータコア83の間の軸方向ギャップは短縮される。一例において、2つのロータコア間の漏れ磁束を低減するためのこの軸方向ギャップは10ミリメートルである。所定個数の永久磁石を有する前ロータコア73は磁石トルクを発生し、所定個数のフラックスバリアを有する後ロータコア83は同期リラクタンストルクを発生する。言い換えれば、前モータ7は永久磁石モータ(PMSM)であり、後モータ8は同期リラクタンスモータ(SynRM)である。
Sixth Embodiment A tandem synchronous motor according to a sixth embodiment will be described with reference to FIGS. The tandem synchronous motor shown in FIG. 56 has essentially the same structure as the other tandem motors already described. However, in the tandem motor shown in FIG. 56, the front stator core 71 and the rear stator core 81 substantially constitute one common stator core. A common stator coil 1 </ b> C is wound around the front stator core 71 and the rear stator core 81. The axial gap between the front rotor core 73 and the rear rotor core 83 is shortened. In one example, this axial gap to reduce leakage flux between the two rotor cores is 10 millimeters. The front rotor core 73 having a predetermined number of permanent magnets generates magnet torque, and the rear rotor core 83 having a predetermined number of flux barriers generates synchronous reluctance torque. In other words, the front motor 7 is a permanent magnet motor (PMSM), and the rear motor 8 is a synchronous reluctance motor (SynRM).
このタンデム同期モータにおいて、前ロータコア73のd軸と後ロータコア83のd軸との間の相対角度は所定のオフセット値をもつ。図57は、このオフセット値が電気角45度であるケースにおけるd軸電流及びq軸電流を示すベクトル図である。前ロータコア73はほぼ磁石トルクのみを発生し、後ロータコア83はリラクタンストルクだけを発生する。q軸電流Iq1が供給される前モータ7が最大トルク値を発生する時、後モータ8に流れる電流Iq1は、互いに等しい振幅をもつd軸電流Id2とq軸電流Iq2に分解される。これにより、前ロータコア73が最大トルクを発生する時、後モータ8は最大トルクを発生することができる。 In this tandem synchronous motor, the relative angle between the d-axis of the front rotor core 73 and the d-axis of the rear rotor core 83 has a predetermined offset value. FIG. 57 is a vector diagram showing the d-axis current and the q-axis current in the case where this offset value is an electrical angle of 45 degrees. The front rotor core 73 generates almost only magnet torque, and the rear rotor core 83 generates only reluctance torque. When the front motor 7 to which the q-axis current Iq1 is supplied generates the maximum torque value, the current Iq1 flowing through the rear motor 8 is decomposed into a d-axis current Id2 and a q-axis current Iq2 having the same amplitude. Thereby, when the front rotor core 73 generates the maximum torque, the rear motor 8 can generate the maximum torque.
図58は、前モータ7が磁石トルク及びリラクタンストルクを発生する態様を示すベクトル図である。後ロータコア83はリラクタンストルクだけを発生する。q軸電流Iq1及びd軸電流Id1からなるステータ電流I1を前モータ7に流すことにより、前モータ7が最大トルク値を発生する。後モータ8に流れるステータ電流I1は、互いに等しい振幅をもつd軸電流Id2及びq軸電流Iq2に分解される。したがって、前ロータコア73が最大トルクを発生する時、後モータ8は最大トルクを発生する。 FIG. 58 is a vector diagram showing how the front motor 7 generates magnet torque and reluctance torque. The rear rotor core 83 generates only reluctance torque. By causing the stator current I1 composed of the q-axis current Iq1 and the d-axis current Id1 to flow through the front motor 7, the front motor 7 generates a maximum torque value. The stator current I1 flowing through the rear motor 8 is decomposed into a d-axis current Id2 and a q-axis current Iq2 having the same amplitude. Therefore, when the front rotor core 73 generates the maximum torque, the rear motor 8 generates the maximum torque.

Claims (24)

  1.  共通の回転軸にタンデム固定された前ロータコア及び後ロータコアと、前記前ロータの周囲に環状に配列された前突極を有する前ステータコアと、前記後ロータコアの周囲に環状に配列された後突極を有する後ステータコアと、個数が互いに等しい前記前突極の間の前スロット及び前記後突極の間の後スロットに巻かれたステータコイルと、前記前ステータコア及び前記後ステータコアを囲む環状のハウジングとを備えるラジアルギャップ型回転電機において、
     前記ステータコイルは、前記前突極及び前記後突極に別々にに集中巻きされた2つの3相コイルからなり、
     前記2つの3相コイルは、電気角360度がステータポールピッチの1.5倍に相当する倍極配列、並びに、対称6相起電力を発生する倍相配列の少なくともどちらかにより配列されていることを特徴とするラジアルギャップ型回転電機。
    A front rotor core and a rear rotor core fixed in tandem to a common rotating shaft, a front stator core having a front salient pole arranged annularly around the front rotor, and a rear salient pole arranged annularly around the rear rotor core A rear stator core having an equal number of front slots between the front salient poles and a rear slot between the rear salient poles, and an annular housing surrounding the front stator core and the rear stator core. In a radial gap type rotating electrical machine comprising:
    The stator coil is composed of two three-phase coils separately and concentratedly wound around the front salient pole and the rear salient pole,
    The two three-phase coils are arranged in at least one of a double pole arrangement in which an electrical angle of 360 degrees corresponds to 1.5 times the stator pole pitch and a double phase arrangement that generates a symmetrical six-phase electromotive force. A radial gap type rotating electrical machine characterized by that.
  2.  前記前突極の磁極面及び前記後突極の磁極面は、周方向において互いにオーバーラップしている請求項1記載のラジアルギャップ型回転電機。 The radial gap type rotating electric machine according to claim 1, wherein the magnetic pole surface of the front salient pole and the magnetic pole surface of the rear salient pole overlap each other in the circumferential direction.
  3.  前記後突極は、前記前突極の周方向ピッチの半分だけ前記前突極と比べて周方向にシフトされている請求項1記載のラジアルギャップ型回転電機。 The radial gap type rotating electric machine according to claim 1, wherein the rear salient pole is shifted in the circumferential direction by a half of the circumferential pitch of the front salient pole as compared to the front salient pole.
  4.  前記前ロータコア及び前記後ロータコアは、前記前ロータコア及び前記後ロータコアを順番に貫通する導体バーを含む共通籠形コイルを有する請求項1記載のラジアルギャップ型回転電機。 2. The radial gap type rotating electric machine according to claim 1, wherein the front rotor core and the rear rotor core have a common saddle coil including a conductor bar passing through the front rotor core and the rear rotor core in order.
  5.  前記2つの3相コイルは、共通の3相交流電源に接続される請求項1記載のラジアルギャップ型回転電機。 The radial gap rotating electric machine according to claim 1, wherein the two three-phase coils are connected to a common three-phase AC power source.
  6.  前記2つの3相コイルは、2つの3相インバータに別々に接続される請求項1記載のラジアルギャップ型回転電機。 The radial gap rotating electric machine according to claim 1, wherein the two three-phase coils are separately connected to two three-phase inverters.
  7.  前記2つの3相インバータは、前記2つの3相コイルに印加する6相電圧の位相変更により前記倍相配列と前記倍極配列との間の切り替えを実行する請求項6記載のラジアルギャップ型回転電機。 The radial gap type rotation according to claim 6, wherein the two three-phase inverters perform switching between the double phase arrangement and the double pole arrangement by changing a phase of a six-phase voltage applied to the two three-phase coils. Electric.
  8.  前記2つの3相インバータは、前記2つの3相コイルに印加する6相電圧のうちの互いに反対位相をもつ2つの相電圧を中間電圧に固定し、かつ、残りの4つの相電圧に所定のバイアス電圧を加算することにより、等価的な巻数切替を実行する請求項6記載のラジアルギャップ型回転電機。 The two three-phase inverters fix two phase voltages having opposite phases among the six phase voltages applied to the two three-phase coils to an intermediate voltage, and set the remaining four phase voltages to a predetermined value. The radial gap type rotating electric machine according to claim 6, wherein equivalent winding number switching is executed by adding a bias voltage.
  9.  前記後ロータコア及び前記後ロータコアのどちらか一方の極性を反転する極性反転回路を有する請求項1記載のラジアルギャップ型回転電機。 The radial gap type rotating electrical machine according to claim 1, further comprising a polarity inversion circuit that inverts the polarity of one of the rear rotor core and the rear rotor core.
  10.  前記極性反転回路は、前記前ロータコア及び後ロータコアに別々に巻かれた2つの界磁コイルの一方に供給される界磁電流の方向だけを切り替える請求項9記載のラジアルギャップ型回転電機。 The radial gap rotating electric machine according to claim 9, wherein the polarity inversion circuit switches only the direction of a field current supplied to one of two field coils separately wound around the front rotor core and the rear rotor core.
  11.  前記極性反転回路は、前記2つの界磁コイルの一方を流れる界磁電流の方向を固定するためのダイオード回路と、前記ダイオード回路を通じて前記2つの界磁コイルに前記界磁電流を供給する単相フルブリッジとを有する請求項10記載のラジアルギャップ型回転電機。 The polarity inversion circuit includes a diode circuit for fixing a direction of a field current flowing through one of the two field coils, and a single phase for supplying the field current to the two field coils through the diode circuit. The radial gap type rotating electrical machine according to claim 10, comprising a full bridge.
  12.  前記2つの3相コイルは、星形接続3相コイルと、前記星形接続3相コイルの各相コイルに別々に直列接続される3つの相コイルをもつ独立3相コイルからなる請求億9記載のラジアルギャップ型回転電機。 The two three-phase coils include a star-connected three-phase coil and an independent three-phase coil having three phase coils separately connected in series to each phase coil of the star-connected three-phase coil. Radial gap type rotating electric machine.
  13.  前記独立3相コイルは、前記星形接続3相コイルよりも多い巻数をもつ請求項12記載のラジアルギャップ型回転電機。 The radial gap rotating electric machine according to claim 12, wherein the independent three-phase coil has a larger number of turns than the star-connected three-phase coil.
  14.  相毎に直列接続された前記独立3相コイル及び前記星形接続3相コイルは、第1の3相パワーコンバータに接続され、
     相毎に並列接続された前記独立3相コイル及び前記星形接続3相コイルは、第2の3相パワーコンバータに接続される請求項12記載のラジアルギャップ型回転電機。
    The independent three-phase coil and the star-connected three-phase coil connected in series for each phase are connected to a first three-phase power converter,
    The radial gap type rotating electrical machine according to claim 12, wherein the independent three-phase coil and the star-connected three-phase coil connected in parallel for each phase are connected to a second three-phase power converter.
  15.  前記前突極及び前記後突極はそれぞれ、それぞれ分割されたバックコアとともにコアセグメントを形成し、
     前記コアセグメントはそれぞれ、前記ハウジングの嵌合部に嵌合する楔部を有する請求項1記載のラジアルギャップ型回転電機。
    The front salient pole and the rear salient pole each form a core segment together with a divided back core,
    The radial gap rotating electrical machine according to claim 1, wherein each of the core segments has a wedge portion that fits into a fitting portion of the housing.
  16.  前記ハウジングの嵌合部は、ダイキャスト製の部材からなる請求項15記載のラジアルギャップ型回転電機。 The radial gap type rotating electric machine according to claim 15, wherein the fitting portion of the housing is made of a die-cast member.
  17.  共通の回転軸にタンデム固定された前ロータコア及び後ロータコアと、前記前ロータの周囲に環状に配列された前突極を有する前ステータコアと、前記後ロータコアの周囲に環状に配列された後突極を有する後ステータコアと、個数が互いに等しい前記前突極の間の前スロット及び前記後突極の間の後スロットに巻かれたステータコイルと、前記前ステータコア及び前記後ステータコアを囲む環状のハウジングとを備えるラジアルギャップ型回転電機において、
     前記ステータコイルは、前記前突極の間の前スロット及び前記後突極の間の後スロットに交互に巻かれた絶縁導体により分布巻きされ、
     前記絶縁導体は、前記前側ステータコア及び前記後側ステータコアの間において周方向へ曲げられていることを特徴とするラジアルギャップ型回転電機。
    A front rotor core and a rear rotor core fixed in tandem to a common rotating shaft, a front stator core having a front salient pole arranged annularly around the front rotor, and a rear salient pole arranged annularly around the rear rotor core A rear stator core having an equal number of front slots between the front salient poles and a rear slot between the rear salient poles, and an annular housing surrounding the front stator core and the rear stator core. In a radial gap type rotating electrical machine comprising:
    The stator coil is distributedly wound by insulated conductors alternately wound around a front slot between the front salient poles and a rear slot between the rear salient poles,
    The radial gap type rotating electrical machine, wherein the insulated conductor is bent in a circumferential direction between the front stator core and the rear stator core.
  18.  前記前スロットは、互いに同相の相電流が流れる少なくとも2つの絶縁導体を収容し、
     前記後スロットは、互いに異相の相電流が流れる少なくとも2つの絶縁導体を収容する請求項17記載のラジアルギャップ型回転電機。
    The front slot accommodates at least two insulated conductors through which phase currents in phase with each other flow;
    The radial gap rotating electric machine according to claim 17, wherein the rear slot accommodates at least two insulated conductors through which phase currents having different phases flow.
  19.  前記後突極は、前記前突極よりも長い軸長をもつ請求項18記載のラジアルギャップ型回転電機。 The radial gap type rotating electrical machine according to claim 18, wherein the rear salient pole has a longer axial length than the front salient pole.
  20.  共通の回転軸にタンデム固定された前ロータコア及び後ロータコアと、前記前ロータの周囲に環状に配列された前突極を有する前ステータコアと、前記後ロータコアの周囲に環状に配列された後突極を有する後ステータコアと、個数が互いに等しい前記前突極の間の前スロット及び前記後突極の間の後スロットに巻かれたステータコイルと、前記前ステータコア及び前記後ステータコアを囲む環状のハウジングとを備えるラジアルギャップ型回転電機において、
     前記前ロータコアは主としてマグネットトルクを発生し、前記後ロータコアは主として同期リラクタンストルクを発生することを特徴とするラジアルギャップ型回転電機。
    A front rotor core and a rear rotor core fixed in tandem to a common rotating shaft, a front stator core having a front salient pole arranged annularly around the front rotor, and a rear salient pole arranged annularly around the rear rotor core A rear stator core having an equal number of front slots between the front salient poles and a rear slot between the rear salient poles, and an annular housing surrounding the front stator core and the rear stator core. In a radial gap type rotating electrical machine comprising:
    The radial gap rotating electric machine according to claim 1, wherein the front rotor core mainly generates magnet torque, and the rear rotor core mainly generates synchronous reluctance torque.
  21.  前記ステータコイルは、前記前スロット及び前記後スロットに交互に巻かれた絶縁導体からなり、
     前記前ロータコア及び前記後ロータコアの間の相対角度は、前記前ロータコア及び前記後ロータコアのそれぞれが最大トルクを発生可能な角度値である請求項25記載のラジアルギャップ型回転電機。
    The stator coil is composed of insulated conductors alternately wound around the front slot and the rear slot,
    26. The radial gap rotating electric machine according to claim 25, wherein a relative angle between the front rotor core and the rear rotor core is an angle value at which each of the front rotor core and the rear rotor core can generate a maximum torque.
  22.  共通の回転軸にタンデム固定された前ロータコア及び後ロータコアと、前記前ロータの周囲に環状に配列された前突極を有する前ステータコアと、前記後ロータコアの周囲に環状に配列された後突極を有する後ステータコアと、個数が互いに等しい前記前突極の間の前スロット及び前記後突極の間の後スロットに巻かれたステータコイルと、前記前ステータコア及び前記後ステータコアを囲む環状のハウジングとを備えるラジアルギャップ型回転電機において、
     前記前ステータコア及び前記後ステータコアはそれぞれ、T字形状のコアセグメントからなることを特徴とするラジアルギャップ型回転電機。
    A front rotor core and a rear rotor core fixed in tandem to a common rotating shaft, a front stator core having a front salient pole arranged annularly around the front rotor, and a rear salient pole arranged annularly around the rear rotor core A rear stator core having an equal number of front slots between the front salient poles and a rear slot between the rear salient poles, and an annular housing surrounding the front stator core and the rear stator core. In a radial gap type rotating electrical machine comprising:
    Each of the front stator core and the rear stator core is composed of a T-shaped core segment.
  23.  前記コアセグメントは、前記ハウジングの内周面に嵌合する楔部を有する請求項22記載のラジアルギャップ型回転電機。 23. The radial gap type rotating electric machine according to claim 22, wherein the core segment has a wedge portion fitted to an inner peripheral surface of the housing.
  24.  前記ハウジングは、前記楔部に密着するダイキャスト製の嵌合部を有する請求項23記載のラジアルギャップ型回転電機。 24. The radial gap type rotating electrical machine according to claim 23, wherein the housing has a die-cast fitting portion that is in close contact with the wedge portion.
PCT/JP2017/030712 2017-02-04 2017-08-28 Radial gap rotary electric machine WO2018142653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-030483 2017-02-04
JP2017030483 2017-02-04

Publications (1)

Publication Number Publication Date
WO2018142653A1 true WO2018142653A1 (en) 2018-08-09

Family

ID=63039547

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/010245 WO2018142635A1 (en) 2017-02-04 2017-03-14 Inverter-driven six-phase motor device
PCT/JP2017/027702 WO2018142649A1 (en) 2017-02-04 2017-07-31 Multiplexed three-phase inverter-type motor device
PCT/JP2017/030712 WO2018142653A1 (en) 2017-02-04 2017-08-28 Radial gap rotary electric machine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/010245 WO2018142635A1 (en) 2017-02-04 2017-03-14 Inverter-driven six-phase motor device
PCT/JP2017/027702 WO2018142649A1 (en) 2017-02-04 2017-07-31 Multiplexed three-phase inverter-type motor device

Country Status (1)

Country Link
WO (3) WO2018142635A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756173A (en) * 2019-03-29 2020-10-09 湖南中车时代电动汽车股份有限公司 Double-winding six-phase motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322413A (en) * 1994-05-24 1995-12-08 Hitachi Ltd Rotary electric machine controller and electric car
JP2007049885A (en) * 2005-07-11 2007-02-22 Denso Corp Vehicle-use tandem rotary electric machine
JP2017017912A (en) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 Electric motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736402Y2 (en) * 1987-11-26 1995-08-16 トヨタ自動車株式会社 Induction motor pole number switching device
JPH01264593A (en) * 1988-04-13 1989-10-20 Satake Eng Co Ltd Variable speed induction motor
JPH1118382A (en) * 1997-06-24 1999-01-22 Meidensha Corp Pole-number changing electric rotating machine system
JP2001045795A (en) * 1999-08-04 2001-02-16 Meidensha Corp Variable speed drive device
JP2005192355A (en) * 2003-12-26 2005-07-14 Fujitsu General Ltd Motor
JP2013039020A (en) * 2011-07-13 2013-02-21 Suri-Ai:Kk Transverse flux machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322413A (en) * 1994-05-24 1995-12-08 Hitachi Ltd Rotary electric machine controller and electric car
JP2007049885A (en) * 2005-07-11 2007-02-22 Denso Corp Vehicle-use tandem rotary electric machine
JP2017017912A (en) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 Electric motor

Also Published As

Publication number Publication date
WO2018142649A1 (en) 2018-08-09
WO2018142635A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
EP2412091B1 (en) Electric motor system
CN101043197B (en) Drive circuit
US10090742B2 (en) Rotating electric machine
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
US9083276B2 (en) Rotary electric machine driving system
US20080197739A1 (en) Motor And Control Unit Thereof
US20130334937A1 (en) Rotary electric machine driving system
JP2012222941A (en) Rotating electric machine
JP2013236413A (en) Power converter for driving switched reluctance machine
JP2008005603A (en) Synchronous machine and power generating system using it as generator
WO2012073388A1 (en) Transverse flux machine
WO2018029989A1 (en) Variable speed motor device
JP2015164385A (en) Variable-speed electric machine
WO2018142653A1 (en) Radial gap rotary electric machine
JP2014039446A (en) Pole change motor device
JP2013042574A (en) Permanent magnet type rotating electrical machine
JP2017112819A (en) Source resultant pulse number switching electrical machine
Kiyota et al. Principle of a novel dual-mode reluctance motor for electric vehicle applications
CN114665625A (en) Variable-operation-condition stator permanent magnetic field enhanced hybrid excitation motor and drive control method thereof
JP2009142130A (en) Rotating electric machine and drive device for rotating electric machine
WO2018207719A1 (en) Variable speed motor device
Noguchi et al. Combined winding structure of a consequent-pole bearingless motor with parallel motor winding topology
Su et al. Modular PM motor drives for automotive traction applications
JP2011147258A (en) Motor drive system
JPH08182280A (en) Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP