JP2007074858A - Inverter device and refrigeration cycle device - Google Patents

Inverter device and refrigeration cycle device Download PDF

Info

Publication number
JP2007074858A
JP2007074858A JP2005260902A JP2005260902A JP2007074858A JP 2007074858 A JP2007074858 A JP 2007074858A JP 2005260902 A JP2005260902 A JP 2005260902A JP 2005260902 A JP2005260902 A JP 2005260902A JP 2007074858 A JP2007074858 A JP 2007074858A
Authority
JP
Japan
Prior art keywords
igbt
mosfet
load
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005260902A
Other languages
Japanese (ja)
Other versions
JP4942967B2 (en
Inventor
Naoyoshi Uesugi
通可 植杉
Koji Noda
浩二 野田
Takahisa Endo
隆久 遠藤
Hiroshi Mochikawa
宏 餅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2005260902A priority Critical patent/JP4942967B2/en
Priority to CN2006800278468A priority patent/CN101233675B/en
Priority to PCT/JP2006/316886 priority patent/WO2007029544A1/en
Publication of JP2007074858A publication Critical patent/JP2007074858A/en
Application granted granted Critical
Publication of JP4942967B2 publication Critical patent/JP4942967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter device that can reduce loss all over a wide range from a high load to a low load by employing a switching circuit formed by properly combining an IGBT and an MOSFET, and can thereby improve efficiency; and to provide a refrigeration cycle device. <P>SOLUTION: The inverter device comprises a plurality of series circuits each composed of the IGBT serving as the upstream side along the application direction of a voltage, and the MOSFET serving as the downstream side; and the switching circuit 2 in which a mutual connecting point between the IGBT and the MOSFET in the series circuit is connected to a load. By turning on/off the IGBT of at least one series circuit among the series circuits, multi-phase energization that turns on the MOSFET of at least another series circuit is sequentially switched. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、負荷たとえばモータへの駆動電力を出力するインバータ装置及び冷凍サイクル装置に関する。   The present invention relates to an inverter device and a refrigeration cycle device that output driving power to a load, for example, a motor.

誘導成分を含む負荷たとえばモータを駆動するための電力を出力するインバータ装置は、電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子の直列回路を複数有するスイッチング回路を備え、これら直列回路における各スイッチング素子の相互接続点が負荷たとえばブラシレスDCモータの各相巻線に接続される。   An inverter device that outputs electric power for driving a load including an inductive component, for example, a motor, includes a switching circuit having a plurality of series circuits of two switching elements on the upstream side and the downstream side along the voltage application direction. An interconnection point of each switching element in the series circuit is connected to each phase winding of a load, for example, a brushless DC motor.

スイッチング素子としては、最近、IGBTやMOSFETが多く採用されるようになっている。   Recently, many IGBTs and MOSFETs have been adopted as switching elements.

IGBTを用いたDC−DCコンバータの場合(例えば、特許文献1)、IGBTのオン時の両端間電圧が一定となるため、高電圧出力時のロスが小さく、トランジスタを用いる場合に比べて駆動回路が簡単となる。   In the case of a DC-DC converter using an IGBT (for example, Patent Document 1), since the voltage between both ends when the IGBT is on is constant, the loss at the time of high voltage output is small, and the driving circuit is compared with the case where a transistor is used. Becomes easy.

MOSFETを用いたインバータ装置の場合(例えば、特許文献2)、MOSFETのオン,オフ速度が速いため高周波スイッチングが可能というメリットがあり、また低電圧出力時のロスが小さいことからファンモータ等の出力の小さいモータを駆動する場合に多用される。   In the case of an inverter device using a MOSFET (for example, Patent Document 2), there is a merit that high-frequency switching is possible because the on / off speed of the MOSFET is fast, and an output from a fan motor or the like is low because loss at low voltage output is small. Often used when driving a small motor.

なお、MOSFETの場合、大きな負荷を駆動する際に、MOSFETに逆並列接続されている還流ダイオード(寄生ダイオード)に逆回復電流が流れて損失が発生するという問題がある。この損失を低減するために、逆電圧印加回路を設け、所定のタイミングで還流ダイオードに逆電圧を印加してダイオードの逆回復を引き起こし、これにより損失を低減するようにした電力変換装置が考えられている(例えば、特許文献3)。   In the case of a MOSFET, there is a problem that when a large load is driven, a reverse recovery current flows through a freewheeling diode (parasitic diode) connected in reverse parallel to the MOSFET, causing a loss. In order to reduce this loss, there is a power conversion device that is provided with a reverse voltage application circuit and applies reverse voltage to the freewheeling diode at a predetermined timing to cause reverse recovery of the diode, thereby reducing the loss. (For example, Patent Document 3).

一方、近年、MOSFETのオン抵抗特性をさらに改善した低損失パワーMOSFETが開発され、この素子を用いたインバータ装置も開発が進められている。
特開2004−254452号公報 特開平7−170752号公報 特開平10−327585号公報
On the other hand, in recent years, low-loss power MOSFETs with further improved on-resistance characteristics of MOSFETs have been developed, and inverter devices using this element have also been developed.
Japanese Patent Laid-Open No. 2004-245452 Japanese Patent Application Laid-Open No. 7-170752 Japanese Patent Laid-Open No. 10-327585

上記のように、インバータ装置のスイッチング素子として様々な素子が用いられるが、空気調和機等の冷凍サイクル装置に搭載される圧縮機を駆動する場合には、その負荷特性に応じた最適なスイッチング素子を選定する必要がある。すなわち、空気調和機等の冷凍サイクル装置では圧縮機の高回転(高出力)は、運転開始時や特に空調・冷凍負荷が重いときに限られ、安定時や春・秋の負荷が軽い季節等では圧縮機は低回転(低出力)で長時間運転されることになる。   As described above, various elements are used as the switching elements of the inverter device. When driving a compressor mounted on a refrigeration cycle apparatus such as an air conditioner, an optimum switching element corresponding to the load characteristics is used. Must be selected. In other words, in a refrigeration cycle device such as an air conditioner, the high rotation (high output) of the compressor is limited to the start of operation, particularly when the air conditioning / refrigeration load is heavy, and when the load is stable or the spring / autumn load is light. Then, the compressor is operated for a long time at a low rotation (low output).

仮に、スイッチング素子としてIGBTが用いられた場合、IGBTのオン時の電圧が一定となるため、高出力の大電流時は損失が少なるものの、低出力の低電流時の損失低減効果が小さくなる。このため、空気調和機等の冷凍サイクル装置に搭載される圧縮機を駆動する場合、その低出力時の損失低減効果の小さい導通特性は好ましくない。一方、MOSFETを用いた場合は、抵抗特性の導通チャンネルのため、高電流時に電圧降下が増加し、高負荷時の損失が大きくなるという問題がある。   If an IGBT is used as a switching element, the voltage when the IGBT is turned on is constant, so that the loss is reduced when the output current is high, but the loss reduction effect is reduced when the output current is low. . For this reason, when driving the compressor mounted in refrigeration cycle apparatuses, such as an air conditioner, the conduction | electrical_connection characteristic with a small loss reduction effect at the time of the low output is unpreferable. On the other hand, when a MOSFET is used, there is a problem that a voltage drop increases at a high current and a loss at a high load increases because of a conductive channel having a resistance characteristic.

この発明は、上記の事情を考慮したもので、IGBTとMOSFETを適切に組合わせたスイッチング回路の採用により、高負荷から低負荷の広範囲にわたって損失の低減を図ることができ、これにより効率の向上が図れるインバータ装置及び冷凍サイクル装置を提供することを目的とする。   The present invention takes the above circumstances into consideration, and by adopting a switching circuit appropriately combining IGBT and MOSFET, loss can be reduced over a wide range from high load to low load, thereby improving efficiency. An object of the present invention is to provide an inverter device and a refrigeration cycle device that can achieve the above.

請求項1に係る発明のインバータ装置は、電圧の印加方向に沿って上流側となるIGBTおよび下流側となるMOSFETの直列回路を複数有し、これら直列回路におけるIGBTとMOSFETの相互接続点が負荷に接続されるスイッチング回路と、上記各直列回路のうち少なくとも1つの直列回路のIGBTをオン,オフして別の少なくとも1つの直列回路のMOSFETをオンする複数相通電を順次に切換える制御手段と、を備えている。   The inverter device of the invention according to claim 1 has a plurality of series circuits of an IGBT on the upstream side and a MOSFET on the downstream side along the voltage application direction, and an interconnection point between the IGBT and the MOSFET in the series circuit is a load. A switching circuit connected to the control circuit, and a control means for sequentially switching a plurality of phases of energization for turning on and off the IGBT of at least one series circuit among the series circuits and turning on the MOSFET of at least one other series circuit; It has.

この発明のインバータ装置及び冷凍サイクル装置によれば、高負荷から低負荷の広範囲にわたって損失の低減を図ることができ、これにより効率の向上が図れる。   According to the inverter device and the refrigeration cycle device of the present invention, loss can be reduced over a wide range from high load to low load, thereby improving efficiency.

以下、この発明の一実施形態について図面を参照して説明する。
図1において、Mは空気調和機のコンプレッサモータとして使用されるブラシレスDCモータ(負荷)で、中性点Cを中心に星形結線された3つの相巻線Lu,Lv,Lwを有する固定子、および永久磁石を有する回転子により構成されている。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と永久磁石が作る磁界との相互作用により、回転子が回転する。このブラシレスDCモータMに、本発明のインバータ装置1が接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, M is a brushless DC motor (load) used as a compressor motor of an air conditioner, and has a stator having three phase windings Lu, Lv, and Lw that are star-connected around a neutral point C. , And a rotor having permanent magnets. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field created by the permanent magnet. The brushless DC motor M is connected with the inverter device 1 of the present invention.

インバータ装置1は、直流電圧Vdが印加される入力端子P,N、この入力端子P,N間の直流電圧Vdを受けて上記相巻線Lu,Lv,Lwに対する通電およびその通電切換を行うスイッチング回路2、このスイッチング回路2を駆動制御する制御部10を備えている。   The inverter device 1 is a switching device that receives the direct current voltage Vd between the input terminals P and N to which the direct current voltage Vd is applied, and applies current to the phase windings Lu, Lv, and Lw and switches the current flow. The circuit 2 includes a control unit 10 that drives and controls the switching circuit 2.

上記スイッチング回路2は、直流電圧Vdの印加方向に沿って上流側となるIGBT(Insulated Gate Bipolar Transistor)および下流側となる低損失パワーMOSFETの直列回路をU,V,Wの三相分有するもので、U相の上流側にIGBT3u、下流側にMOSFET4uを備え、V相の上流側にIGBT3v、下流側にMOSFET4vを備え、W相の上流側にIGBT3w、下流側にMOSFET4wを備えている。そして、IGBT3u,3v,3wに対し還流ダイオードDu+,Dv+,Dw+がそれぞれ逆並列接続され、MOSFET4u,4v,4wに対し還流(寄生)ダイオードDu−,Dv−,Dw−がそれぞれ逆並列接続されている。   The switching circuit 2 has a series circuit of an IGBT (Insulated Gate Bipolar Transistor) on the upstream side and a low-loss power MOSFET on the downstream side for three phases U, V, and W along the application direction of the DC voltage Vd. Thus, an IGBT 3u is provided on the upstream side of the U phase, a MOSFET 4u is provided on the downstream side, an IGBT 3v is provided on the upstream side of the V phase, a MOSFET 4v is provided on the downstream side, an IGBT 3w is provided on the upstream side of the W phase, and a MOSFET 4w is provided on the downstream side. The free-wheeling diodes Du +, Dv +, and Dw + are connected in reverse parallel to the IGBTs 3u, 3v, and 3w, and the free-wheeling (parasitic) diodes Du−, Dv−, and Dw− are connected in reverse parallel to the MOSFETs 4u, 4v, and 4w, respectively. Yes.

IGBT3uとMOSFET4uの相互接続点が出力端子Quとなり、IGBT3vとMOSFET4vの相互接続点が出力端子Qvとなり、IGBT3wとMOSFET4wの相互接続点が出力端子Qwとなる。そして、出力端子Quに上記相巻線Luの非結線端が接続され、出力端子Qvに上記相巻線Lvの非結線端が接続され、出力端子Qwに上記相巻線Lwの非結線端が接続されている。   The interconnection point between the IGBT 3u and the MOSFET 4u becomes the output terminal Qu, the interconnection point between the IGBT 3v and the MOSFET 4v becomes the output terminal Qv, and the interconnection point between the IGBT 3w and the MOSFET 4w becomes the output terminal Qw. Then, the non-connection end of the phase winding Lu is connected to the output terminal Qu, the non-connection end of the phase winding Lv is connected to the output terminal Qv, and the non-connection end of the phase winding Lw is connected to the output terminal Qw. It is connected.

また、スイッチング回路2は、相巻線Lu,Lv,Lwに蓄えられたエネルギによって還流ダイオードDu−,Dv−,Dw−に順方向電流が流れた場合に、IGBT3u,3v,3wのそれぞれのオンに伴って還流ダイオードDu−,Dv−,Dw−に逆方向電流が流れないよう、還流ダイオードDu−,Dv−,Dw−に逆電圧を印加する逆電圧印加回路(リカバリーアシスト回路ともいう)5u,5v,5wを備えている。この逆電圧印加回路5u,5v,5wについては、特開平10−327585号公報に示されているものと同じであり、その説明は省略する。   The switching circuit 2 also turns on the IGBTs 3u, 3v, and 3w when the forward current flows through the free-wheeling diodes Du−, Dv−, and Dw− due to the energy stored in the phase windings Lu, Lv, and Lw. Accordingly, a reverse voltage application circuit (also referred to as a recovery assist circuit) 5u for applying a reverse voltage to the free-wheeling diodes Du-, Dv-, Dw- so that no reverse current flows through the free-wheeling diodes Du-, Dv-, Dw-. , 5v, 5w. The reverse voltage application circuits 5u, 5v, and 5w are the same as those disclosed in Japanese Patent Laid-Open No. 10-327585, and a description thereof is omitted.

上記制御部10は、主要な機能として、次の(1)〜(3)を有している。
(1)所定期間がスイッチング休止期間として一定レベルに固定される電圧波形を有し且つ互いに位相角が異なる複数の変調信号を発する変調信号発生手段。
The control unit 10 has the following (1) to (3) as main functions.
(1) Modulation signal generation means for generating a plurality of modulation signals having a voltage waveform fixed at a certain level as a switching pause period and having different phase angles.

(2)上記各変調信号と三角波信号との電圧比較により、上記スイッチング休止期間に相当する期間の電位が零レベルで、残りの期間の電位が高レベルと零レベルを繰返す波形の複数の駆動信号を作成する駆動信号作成手段。   (2) A plurality of drive signals having a waveform in which the potential in the period corresponding to the switching pause period is zero level and the potential in the remaining period repeats high level and zero level by voltage comparison between each modulation signal and the triangular wave signal. Drive signal creating means for creating

(3)上記各駆動信号に応じてスイッチング回路2における各直列回路のうち少なくとも1つの直列回路のIGBTがオン,オフして別の少なくとも1つの直列回路のMOSFETがオンする複数相通電を、順次に切換える制御手段。   (3) In accordance with each of the drive signals, a plurality of phases of energization are sequentially performed in which at least one of the series circuits in the switching circuit 2 is turned on and off and at least one other series circuit MOSFET is turned on. Control means to switch to.

つぎに、上記の構成の作用を説明する。
図2に示すように、互いに位相角が120度ずれた三相正弦波電圧Eu,Ev,Ewが用意されている。この三相正弦波電圧Eu,Ev,Ewは、ブラシレスDCモータMの速度に比例して周波数が変化する。そして、この三相正弦波電圧波形Eu,Ev,Ewが波形整形されることにより、三相正弦波電圧Eu,Ev,Ewの周期(=2π)の1/3(=2π/3)に相当する期間がスイッチング休止期間として負の一定レベルに固定される電圧波形を有し、かつ互いに位相角が120度ずれた複数の変調信号Eu´,Ev´,Ew´が、生成される。
Next, the operation of the above configuration will be described.
As shown in FIG. 2, three-phase sine wave voltages Eu, Ev, Ew having a phase angle shifted by 120 degrees are prepared. The three-phase sine wave voltages Eu, Ev, Ew change in frequency in proportion to the speed of the brushless DC motor M. The three-phase sine wave voltage waveforms Eu, Ev, and Ew are shaped to correspond to 1/3 (= 2π / 3) of the period (= 2π) of the three-phase sine wave voltages Eu, Ev, and Ew. A plurality of modulation signals Eu ′, Ev ′, Ew ′ having a voltage waveform that is fixed at a negative constant level as a switching pause period and having a phase angle shifted by 120 degrees are generated.

この変調信号Eu´,Ev´,Ew´と三角波信号Eoとが電圧比較されることにより、上記スイッチング休止期間に相当する期間の電位が零レベル(下ベタ)で、残りの期間の電位が高レベルと零レベルを繰返す下ベタ通電波形の駆動信号(パルス幅変調信号;PWM信号)Vu,Vv,Vwが作成される。この駆動信号Vu,Vv,Vwに応じてスイッチング回路2における少なくとも1つの直列回路のIGBTがオン,オフして別の少なくとも1つの直列回路のMOSFETがオンする複数相通電が、順次に切換えられる。IGBT3u,3v,3wおよびMOSFET4u,4v,4wの動作パターンを図3に示している。○がオン,オフ、△がオン、×がオフを示している。   The modulation signals Eu ′, Ev ′, Ew ′ and the triangular wave signal Eo are compared in voltage, so that the potential in the period corresponding to the switching pause period is zero level (lower solid) and the potential in the remaining period is high. A drive signal (pulse width modulation signal; PWM signal) Vu, Vv, Vw having a lower solid energization waveform that repeats a level and a zero level is created. In response to the drive signals Vu, Vv, and Vw, multiple-phase energization in which at least one series circuit IGBT in the switching circuit 2 is turned on and off and another at least one series circuit MOSFET is turned on is sequentially switched. FIG. 3 shows operation patterns of the IGBTs 3u, 3v, 3w and the MOSFETs 4u, 4v, 4w. ○ indicates on, off, Δ indicates on, and x indicates off.

この複数相通電の切換えにより、IGBTのオン,オフデューティに対応するレベルの相間電圧Vuv,Vvw,Vwuが出力端子Qu,Qv,Qwの相互間に生じ、その相間電圧Vuv,Vvw,Vwuが相巻線Lu,Lv,Lwに印加される。これにより、Lu,Lv,Lwに正弦波状の電流が流れ、ブラシレスDCモータMが動作する。   By switching the multi-phase energization, inter-phase voltages Vuv, Vvw, Vwu corresponding to the on / off duty of the IGBT are generated between the output terminals Qu, Qv, Qw, and the inter-phase voltages Vuv, Vvw, Vwu are the phases. Applied to the windings Lu, Lv, Lw. Thereby, a sinusoidal current flows through Lu, Lv, and Lw, and the brushless DC motor M operates.

相間電圧Vuv,Vvw,Vwuと相巻線電流との関係を図4に示している。すなわち、空調負荷が大きくてIGBTのオン,オフデューティが大きく設定される運転条件では(オン期間が長くてオフ期間が短い)、相間電圧Vuv,Vvw,Vwuのレベルおよび周波数が高くなって、相巻線電流が増大する。IGBTのオン,オフデューティは、変調信号Eu´,Ev´,Ew´のレベル調節により可変設定することができる。   FIG. 4 shows the relationship between the interphase voltages Vuv, Vvw, Vwu and the phase winding current. That is, under the operating conditions in which the air conditioning load is large and the IGBT on / off duty is set large (the on period is long and the off period is short), the levels and frequencies of the interphase voltages Vuv, Vvw, Vwu become high. Winding current increases. The on / off duty of the IGBT can be variably set by adjusting the level of the modulation signals Eu ′, Ev ′, Ew ′.

以上のように、スイッチング回路2における各直列回路の上流側スイッチング素子としてIGBT3u,3v,3wを用いるとともに、各直列回路の下流側スイッチング素子としてMOSFET4u,4v,4wを用い、少なくとも1つの直列回路のIGBTをパルス幅変調によりオン,オフして別の少なくとも1つの直列回路のMOSFETをオンする複数相通電を順次に切換えることにより、空調負荷が小さくてブラシレスDCモータMの回転数が低くてよい低負荷時において、MOSFETのオン期間が長くなり、IGBTのオン期間が短くなる。したがって、損失についてはMOSFETの損失が支配的になり、IGBTの損失の影響を小さくできる。このため、空気調和機等のもっとも運転時間の比率の高い低能力運転においてMOSFETの低損失な運転を活用できる。   As described above, the IGBTs 3u, 3v, 3w are used as the upstream side switching elements of the series circuits in the switching circuit 2, and the MOSFETs 4u, 4v, 4w are used as the downstream side switching elements of the series circuits. The IGBT is turned on and off by pulse width modulation, and multiple phase energization for turning on at least one other series circuit MOSFET is sequentially switched, so that the air conditioning load is small and the rotational speed of the brushless DC motor M may be low. At the time of load, the ON period of the MOSFET becomes longer and the ON period of the IGBT becomes shorter. Therefore, the loss of the MOSFET becomes dominant with respect to the loss, and the influence of the loss of the IGBT can be reduced. For this reason, the low-loss operation of the MOSFET can be utilized in the low-capacity operation having the highest operation time ratio such as an air conditioner.

高負荷時(高電流時)には、MOSFETの損失が増加するが、上流側IGBTのオン時間比率も長くなるため、全てのスイッチング素子をMOSFETとする場合よりも、少なくとも上流側スイッチング素子としてIGBTを使用した分だけ、損失が低減できる。   At the time of high load (at the time of high current), the loss of the MOSFET increases, but the on-time ratio of the upstream side IGBT also becomes longer, so that at least the upstream side switching element is IGBT than the case where all the switching elements are MOSFETs. Loss can be reduced by the amount used.

一方、MOSFETを使用すると、運転状態によって一対のスイッチング素子の一方がオンするときに、対となっているMOSFETの還流ダイオードに大きな逆回復電流が流れ、損失が増大してしまう。これを抑制するために、逆電圧印加回路5u,5v,5wにより、対となるスイッチング素子のオン前後にわたって還流ダイオードに対して逆電圧が印加される。この結果、MOSFETの還流(寄生)ダイオードにおいて生じる大きな逆回復電流が抑制され、逆回復電流によるロスを大幅に低減できる。とくに、MOSFETの使用は下流側のみであり、この下流側のMOSFET4u,4v,4wに対してのみ逆電圧印加回路5u,5v,5wを設ければよいので、回路の簡素化およびコストダウンが図れる。   On the other hand, when the MOSFET is used, when one of the pair of switching elements is turned on depending on the operating state, a large reverse recovery current flows through the freewheeling diode of the paired MOSFET, and the loss increases. In order to suppress this, a reverse voltage is applied to the freewheeling diode by the reverse voltage application circuits 5u, 5v, and 5w before and after the paired switching elements are turned on. As a result, a large reverse recovery current generated in the freewheeling (parasitic) diode of the MOSFET is suppressed, and loss due to the reverse recovery current can be greatly reduced. In particular, the MOSFET is used only on the downstream side, and the reverse voltage application circuits 5u, 5v, and 5w need only be provided for the downstream side MOSFETs 4u, 4v, and 4w, thereby simplifying the circuit and reducing the cost. .

このように、IGBTとMOSFETを適切に組合わせたスイッチング回路2の採用により、高負荷から低負荷の広範囲にわたって損失の低減を図ることができ、これによりインバータ装置1の効率の向上が図れる。   Thus, by adopting the switching circuit 2 in which the IGBT and the MOSFET are appropriately combined, the loss can be reduced over a wide range from a high load to a low load, thereby improving the efficiency of the inverter device 1.

ところで、図2に示している変調信号Eu´,Ev´,Ew´と三角波信号Eoの電圧比較では、比較結果が分かりやすいよう、実際よりも低い周波数の三角波信号Eoを採用している。実際の三角波信号Eoは、周波数がもっと高い。この実際の三角波信号Eoと変調信号Eu´,Ev´,Ew´との関係を位相の60°区間において時間的に拡大して示したのが図5である。   By the way, in the voltage comparison of the modulation signals Eu ′, Ev ′, Ew ′ and the triangular wave signal Eo shown in FIG. 2, the triangular wave signal Eo having a frequency lower than the actual frequency is adopted so that the comparison result can be easily understood. The actual triangular wave signal Eo has a higher frequency. FIG. 5 shows the relationship between the actual triangular wave signal Eo and the modulation signals Eu ′, Ev ′, Ew ′, which is enlarged in time in the 60 ° section of the phase.

図5において、相巻線の電流経路として60°区間の前半ではT1で示す、高電位の変調信号Eu´と下ベタ電位(零電位)の変調信号Ev´との電位差に基づく通電経路と、T2で示す、中電位の変調信号Ew´と下ベタ電位(零電位)の変調信号Ev´との電位差に基づく通電経路が生じる。60°区間の後半では、T3に示す、高電位の変調信号Eu´と中電位の変調信号Ew´との電位差に基づく通電経路とT4に示す高電位の変調信号Eu´と下ベタ電位(零電位)の変調信号Ev´との電位差に基づく通電経路が生じる。これら通電経路におけるIGBTのオン,オフ動作、オン,オフデューティ、相巻線電流、インバータ装置1の電流経路の関係を図6にまとめて示している。なお、中電位の変調信号Ew´のレベルは、前半のT2では正電圧、後半のT3では負電圧となっており、電流の方向及び経路が変化する。   In FIG. 5, the current path of the phase winding is indicated by T1 in the first half of the 60 ° section, and the energization path based on the potential difference between the high potential modulation signal Eu ′ and the lower solid potential (zero potential) modulation signal Ev ′; An energization path is generated based on a potential difference between the modulation signal Ew ′ having a medium potential and the modulation signal Ev ′ having a lower solid potential (zero potential) indicated by T2. In the latter half of the 60 ° interval, the energization path based on the potential difference between the high potential modulation signal Eu ′ and the medium potential modulation signal Ew ′ shown in T3, and the high potential modulation signal Eu ′ and the lower solid potential (zero) shown in T4. An energization path is generated based on the potential difference between the (potential) and the modulation signal Ev ′. FIG. 6 summarizes the relationship between the on / off operation of the IGBT, the on / off duty, the phase winding current, and the current path of the inverter device 1 in these energization paths. The level of the modulation signal Ew ′ of the medium potential is a positive voltage in the first half T2, and a negative voltage in the second half T3, and the current direction and path change.

T1の通電経路は、IGBT3uのオン(オン,オフデューティの代表値をA)により、図7の実線のように、入力端子P、IGBT3u、相巻線Lu,Lv、MOSFET4v、入力端子Nの経路で電流が流れる。IGBT3uがオフすると、図7の破線のように、相巻線Lu,Lvに蓄えられたエネルギに基づく電流が、相巻線Lu,LvからMOSFET4vを経てMOSFET4u側の還流ダイオードDu−を順方向に流れる。   The energization path of T1 is the path of the input terminal P, IGBT 3u, phase windings Lu and Lv, MOSFET 4v, and input terminal N as shown by the solid line in FIG. 7 when the IGBT 3u is turned on (the representative value of on and off duty is A). Current flows. When the IGBT 3u is turned off, the current based on the energy stored in the phase windings Lu and Lv passes through the MOSFET 4v from the phase windings Lu and Lv in the forward direction through the freewheeling diode Du− on the MOSFET 4u side, as indicated by the broken line in FIG. Flowing.

T2の通電経路では、IGBT3wのオン(オン,オフデューティの代表値をB)により、図8の実線のように、入力端子P、IGBT3w、相巻線Lw,Lv、MOSFET4v、入力端子Nの経路で電流が流れる。IGBT3wがオフすると、図8の破線のように、相巻線Lw,Lvに蓄えられたエネルギに基づく電流が、相巻線Lw,LvからMOSFET4vを経てMOSFET4w側の還流ダイオードDw−を順方向に流れる。   In the energization path of T2, the path of the input terminal P, the IGBT 3w, the phase windings Lw and Lv, the MOSFET 4v, and the input terminal N as shown by the solid line in FIG. Current flows. When the IGBT 3w is turned off, the current based on the energy stored in the phase windings Lw and Lv passes through the MOSFET 4v from the phase windings Lw and Lv in the forward direction through the freewheeling diode Dw− on the MOSFET 4w side as indicated by the broken line in FIG. Flowing.

T3の通電経路では、IGBT3u,3wのオン時(オン,オフデューティの代表値をC)、図9の実線のように、相巻線Lw,Lvに蓄えられたエネルギに基づく電流が、相巻線Lu,LwからIGBT3wの還流ダイオードDw+、IGBT3uの経路で電流が流れる。IGBT3uがオンしてIGBT3wがオフすると(オン,オフデューティの代表値がA−C)、図9の破線のように、入力端子PからIGBT3uおよび相巻線Lu,Lwを経た電流が、MOSFET4wを経て入力端子N側に流れる。そして、IGBT3u,3wがオフすると、図9の一点鎖線のように、IGBT3uおよび相巻線Lu,Lwを経た電流が、MOSFET4wを経てMOSFET4u側の還流ダイオードDu−を順方向に流れる。   In the energization path of T3, when the IGBTs 3u and 3w are on (on, the representative value of off-duty is C), the current based on the energy stored in the phase windings Lw and Lv, as shown by the solid line in FIG. Current flows from the lines Lu and Lw through the path of the freewheeling diode Dw + and IGBT 3u of the IGBT 3w. When the IGBT 3u is turned on and the IGBT 3w is turned off (on and the representative value of the off duty is AC), as shown by the broken line in FIG. 9, the current passing through the IGBT 3u and the phase windings Lu and Lw from the input terminal P is applied to the MOSFET 4w. Then, it flows to the input terminal N side. Then, when the IGBTs 3u and 3w are turned off, the current passing through the IGBT 3u and the phase windings Lu and Lw flows in the forward direction through the MOSFET 4w and the free-wheeling diode Du− on the MOSFET 4u side, as indicated by the one-dot chain line in FIG.

T4の通電経路では、IGBT3uのオンにより、図10の実線のように、入力端子P、IGBT3u、相巻線Lu,Lv、MOSFET4v、入力端子Nの経路で電流が流れる。IGBT3uがオフすると、図10の破線のように、相巻線Lu,Lvに蓄えられたエネルギに基づく電流が、相巻線Lu,LvからMOSFET4vを経てMOSFET4u側の還流ダイオードDu−を順方向に流れる。   In the energization path of T4, when the IGBT 3u is turned on, a current flows through the path of the input terminal P, the IGBT 3u, the phase windings Lu and Lv, the MOSFET 4v, and the input terminal N as indicated by the solid line in FIG. When the IGBT 3u is turned off, the current based on the energy stored in the phase windings Lu and Lv passes through the MOSFET 4v from the phase windings Lu and Lv in the forward direction through the freewheeling diode Du− on the MOSFET 4u side as indicated by the broken line in FIG. Flowing.

この60°区間のT1,T2,T3,T4の4つの通電経路の電流について、IGBTのオン,オフ動作に応じた電流経路と損失を解析することで、その解析結果を360°の全区間に展開することができる。   By analyzing the current path and loss corresponding to the on / off operation of the IGBT, the analysis results are obtained for all sections of 360 ° for the currents in the four energization paths T1, T2, T3, and T4 in the 60 ° section. Can be deployed.

すなわち、T1,T2,T3,T4の4つの通電経路において、電流に伴って変化する損失要因を無視し、IGBTおよびMOSFETの各々の順方向電流・逆方向電流の損失を等しいと仮定してIGBTの損失をIR、MOSFETの損失をMRで表し、かつ変調率をaとして通電時間を加味して60°区間の損失を算出する。   That is, in the four energization paths T1, T2, T3, and T4, the loss factor that changes with the current is ignored, and it is assumed that the losses of the forward current and the reverse current of the IGBT and the MOSFET are equal. Loss is represented by IR, MOSFET loss is represented by MR, and the modulation factor is a.

T1では、IGBT3uのオン時はA・a・(IR+MR)、IGBT3uのオフ時は(1−A)・a・(MR+MR)=2・(1−A)・a・MRとなる。続いてT2では、IGBT3wのオン時はB・a・(IR+MR)、IGBT3wのオフ時は2(1−B)・a・MRとなる。T3ではIGBT3uオン,3wオン時に2・C・a・IR、IGBT3uオン,3wのオフ時は(A−C)・a・(IR+MR)、IGBT3u,3w共にオフ時は2・(1−A)・a・MRとなる。最後にT4ではT1と同じで、A・a・(IR+MR)と2・(1−A)・a・MRとなる。   At T1, when the IGBT 3u is on, A · a · (IR + MR), and when the IGBT 3u is off, (1−A) · a · (MR + MR) = 2 · (1−A) · a · MR. Subsequently, at T2, when the IGBT 3w is on, B · a · (IR + MR), and when the IGBT 3w is off, 2 (1−B) · a · MR. In T3, when IGBT3u is on and 3w is on, 2 · C · a · IR, when IGBT3u is on and 3w is off, (AC) · a · (IR + MR), and when both IGBT3u and 3w are off, 2 · (1-A)・ A ・ MR. Finally, T4 is the same as T1, and A · a · (IR + MR) and 2 · (1−A) · a · MR.

これらを合算すると、下式が得られる。
3・A・aIR+B・IR+C・IR+(8−3A−B−C)MR
ここで、オン,オフデューティの代表値として用いたA(0°から30°区間)、B(30°から60°区間)、C(60°から90°区間)を平均値として各区間の中間角での値を用いるとAは15°におけるデューティ(オン時間)、Bは45°におけるデューティ、Cは75°におけるデューティとなる。こうすると、A+B=Cとなるため、これを代入すると、以下の式となる。
4・A・a・IR+(8−4・A・a)・MR
=4・MR+4・[A・a・IR+(1−A・a)・MR]
この式から分かるように、変調率aの低い低出力電圧領域(低電流領域)では大部分の電流がMOSFETを流れ、損失の大きさはMOSFETの損失に支配される。したがって、上側スイッチング素子にIGBTを使用していても、この領域では全てのスイッチング素子がMOSFETの場合に近い損失低減効果が得られる。
When these are added together, the following equation is obtained.
3 ・ A ・ aIR + B ・ IR + C ・ IR + (8-3A-B-C) MR
Here, A (0 ° to 30 ° interval), B (30 ° to 60 ° interval), and C (60 ° to 90 ° interval), which are used as representative values of on and off duty, are average values. When the value at the corner is used, A is a duty at 15 ° (on time), B is a duty at 45 °, and C is a duty at 75 °. In this case, since A + B = C, if this is substituted, the following equation is obtained.
4 ・ A ・ a ・ IR + (8-4 ・ A ・ a) ・ MR
= 4.MR + 4. [A.a.IR + (1-A.a) .MR]
As can be seen from this equation, in the low output voltage region (low current region) where the modulation factor a is low, most of the current flows through the MOSFET, and the magnitude of the loss is governed by the loss of the MOSFET. Therefore, even if an IGBT is used for the upper switching element, a loss reduction effect close to that in the case where all the switching elements are MOSFETs can be obtained in this region.

また、図4で説明したように、負荷が大きくてIGBTのオン,オフデューティが大きく設定される運転条件では、相間電圧Vuv,Vvw,Vwuのレベルおよび周波数が高くなって相巻線電流が増大するが、この場合にはIGBTの損失割合が大きくなり、この領域では全てのスイッチング素子がMOSFETの場合に比べ、損失が低減できる。実使用条件では、冷凍サイクル装置の運転時間の大半は低電流の安定運転条件であり、この安定運転条件での損失低減効果は大きい。逆に、MOSFETは導通が抵抗特性のため電流が大きくなるとIGBTより損失が増加するがこのような場合には、電流経路の片側がIGBTとなっているため、その悪影響を軽減できる。   In addition, as described with reference to FIG. 4, under the operating conditions where the load is large and the on / off duty of the IGBT is set to be large, the level and frequency of the interphase voltages Vuv, Vvw, Vwu are increased and the phase winding current is increased. However, in this case, the loss ratio of the IGBT is increased, and the loss can be reduced in this region as compared with the case where all the switching elements are MOSFETs. Under actual use conditions, most of the operation time of the refrigeration cycle apparatus is a stable operation condition with a low current, and the loss reduction effect under this stable operation condition is great. On the contrary, since the MOSFET has a resistance characteristic, the loss increases as compared with the IGBT when the current increases. In such a case, since one side of the current path is the IGBT, the adverse effect can be reduced.

すなわち、スイッチング回路として上側にIGBTを下側にMOSFETを用い、下ベタ通電(2相変調)を行なうことで高負荷から低負荷の広範囲にわたって損失の低減を図ることができ、これにより効率の向上が図れる。また、逆電圧印加回路を設けることで、MOSFETを使用しても還流(寄生)ダイオードにおいて生じる大きな逆回復電流が抑制され、ロスを大幅に低減できる
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。
In other words, using a IGBT on the upper side as a switching circuit and a MOSFET on the lower side, and performing lower solid energization (two-phase modulation), loss can be reduced over a wide range from high load to low load, thereby improving efficiency. Can be planned. Also, by providing a reverse voltage application circuit, a large reverse recovery current generated in the freewheeling (parasitic) diode can be suppressed even if a MOSFET is used, and the loss can be greatly reduced. However, in the implementation stage, the constituent elements can be modified and embodied without departing from the spirit of the invention. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.

この発明の一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of this invention. 一実施形態における各変調信号、各駆動信号、各相間電圧の波形を示す図。The figure which shows the waveform of each modulation signal, each drive signal, and each phase voltage in one Embodiment. 一実施形態における各IGBTおよび各MOSFETの動作パターンを示す図。The figure which shows the operation | movement pattern of each IGBT and each MOSFET in one Embodiment. 一実施形態における各相間電圧と相巻線電流との関係を示す図。The figure which shows the relationship between each phase voltage and phase winding current in one Embodiment. 一実施形態における三角波信号と各変調信号との関係を時間的に拡大して示す図。The figure which expands temporally and shows the relationship between the triangular wave signal and each modulation signal in one Embodiment. 一実施形態の各通電パターンにおけるIGBTのオン,オフ動作、オン,オフデューティ、相巻線電流、電流経路の関係をまとめて示す図。The figure which shows collectively the ON / OFF operation | movement of IGBT, the on / off duty, the phase winding current, and the current path in each energization pattern of one embodiment. 図6における電流経路を具体的に示す図。The figure which shows the electric current path | route in FIG. 6 concretely. 図6における他の電流経路を具体的に示す図。FIG. 7 is a diagram specifically showing another current path in FIG. 6. 図6における別の電流経路を具体的に示す図。FIG. 7 is a diagram specifically showing another current path in FIG. 6. 図6におけるさらに別の電流経路を具体的に示す図。FIG. 7 is a diagram specifically showing still another current path in FIG. 6.

符号の説明Explanation of symbols

1…インバータ装置、2…スイッチング回路、3u,3v,3w…IGBT、4u,4v,4w…MOSFET、5u,5v,5w…逆電圧印加回路、Du,Dv,Dw…還流ダイオード、P,N…入力端子、Qu,Qv,Qw…出力端子、10…制御部、M…ブラシレスDCモータ、Lu,Lv,Lw…相巻線   DESCRIPTION OF SYMBOLS 1 ... Inverter apparatus, 2 ... Switching circuit, 3u, 3v, 3w ... IGBT, 4u, 4v, 4w ... MOSFET, 5u, 5v, 5w ... Reverse voltage application circuit, Du, Dv, Dw ... Freewheeling diode, P, N ... Input terminal, Qu, Qv, Qw ... output terminal, 10 ... control unit, M ... brushless DC motor, Lu, Lv, Lw ... phase winding

Claims (3)

電圧の印加方向に沿って上流側となるIGBTおよび下流側となるMOSFET及び各IGBTとFETに対し逆並列に接続された還流ダイオードを備えた直列回路を複数有し、これら直列回路におけるIGBTとMOSFETの相互接続点が誘導成分を含む負荷に接続されるスイッチング回路と、
前記各直列回路のうち少なくとも1つの直列回路のIGBTをオン,オフして別の少なくとも1つの直列回路のMOSFETをオンする複数相通電を順次に切換える制御手段と、
を備えていることを特徴とするインバータ装置。
There are a plurality of series circuits each including an IGBT on the upstream side, a MOSFET on the downstream side, and a free-wheeling diode connected in antiparallel to each IGBT and FET along the voltage application direction, and the IGBT and MOSFET in these series circuits A switching circuit in which the interconnection point is connected to a load containing an inductive component;
Control means for sequentially switching a plurality of phases of energization for turning on / off the IGBT of at least one series circuit among the series circuits and turning on the MOSFET of at least one other series circuit;
An inverter device comprising:
前記負荷に蓄えられたエネルギにより前記各MOSFETの還流ダイオードに順方向電流が流れた場合に、前記各IGBTのオンに伴って発生する前記各還流ダイオードの逆方向電流を抑制するよう、前記各IGBTのオンに先立って前記各還流ダイオードに逆電圧を印加する逆電圧印加回路と、
をさらに備えていることを特徴とする請求項1に記載のインバータ装置。
Each of the IGBTs is controlled so as to suppress a reverse current of each of the freewheeling diodes generated when the IGBTs are turned on when a forward current flows through the freewheeling diodes of the respective MOSFETs due to the energy stored in the load. A reverse voltage application circuit for applying a reverse voltage to each of the freewheeling diodes prior to turning on,
The inverter device according to claim 1, further comprising:
冷媒を圧縮する圧縮機を有し、請求項1または2のいずれかに記載したインバータ装置によって前記圧縮機を駆動したことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus having a compressor for compressing a refrigerant, wherein the compressor is driven by the inverter apparatus according to claim 1.
JP2005260902A 2005-09-08 2005-09-08 Inverter device and refrigeration cycle device Active JP4942967B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005260902A JP4942967B2 (en) 2005-09-08 2005-09-08 Inverter device and refrigeration cycle device
CN2006800278468A CN101233675B (en) 2005-09-08 2006-08-28 Inverter device and refrigeration cycle device
PCT/JP2006/316886 WO2007029544A1 (en) 2005-09-08 2006-08-28 Inverter device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260902A JP4942967B2 (en) 2005-09-08 2005-09-08 Inverter device and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2007074858A true JP2007074858A (en) 2007-03-22
JP4942967B2 JP4942967B2 (en) 2012-05-30

Family

ID=37835665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260902A Active JP4942967B2 (en) 2005-09-08 2005-09-08 Inverter device and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP4942967B2 (en)
CN (1) CN101233675B (en)
WO (1) WO2007029544A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045214A (en) * 2009-08-24 2011-03-03 Daikin Industries Ltd Inverter
JP2011066954A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Method of controlling inverter
JP2011120330A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Inverter device and air conditioner with the same
WO2012153368A1 (en) * 2011-05-11 2012-11-15 日立アプライアンス株式会社 Grid-connected inverter device, and distributed power source system provided with grid-connected inverter device
DE102011102126A1 (en) * 2011-05-20 2012-11-22 Diehl Ako Stiftung & Co. Kg Inverter circuitry
US8896365B2 (en) 2011-02-15 2014-11-25 Kabushiki Kaisha Toshiba Semiconductor switch having reverse voltage application circuit and power supply device including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130622A (en) * 2011-04-07 2011-07-20 上海威特力焊接设备制造股份有限公司 High-efficiency photovoltaic inverter
EP2722613B1 (en) * 2011-06-17 2016-08-17 Mitsubishi Electric Corporation Heat pump device, air conditioner, and refrigerator
CN102324866A (en) * 2011-10-09 2012-01-18 郑州朗睿科技有限公司 H-bridge inverter circuit
CN103051222A (en) * 2011-10-13 2013-04-17 台达电子工业股份有限公司 Effectively controlled integrated inverter device and operation method thereof
JP5857189B2 (en) * 2011-12-27 2016-02-10 パナソニックIpマネジメント株式会社 Inverter device
JP5997567B2 (en) * 2012-10-03 2016-09-28 日立アプライアンス株式会社 Motor control device and air conditioner
CN104967374B (en) * 2015-07-13 2018-02-09 江苏元凯电气科技有限公司 A kind of brushless direct current motor driver topological structure and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
JP2003219687A (en) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp Motor drive unit, blower, compressor, and refrigerating air conditioner
JP2005229714A (en) * 2004-02-12 2005-08-25 Denso Corp Two-phase modulation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287975A (en) * 1988-09-22 1990-03-28 Toshiba Corp Single-phase inverter
US5107151A (en) * 1989-08-22 1992-04-21 Unique Mobility, Inc. Switching circuit employing electronic devices in series with an inductor to avoid commutation breakdown and extending the current range of switching circuits by using igbt devices in place of mosfets
JPH09215375A (en) * 1996-01-31 1997-08-15 Toshiba Corp Inverter
JP3680544B2 (en) * 1997-04-03 2005-08-10 富士電機デバイステクノロジー株式会社 High voltage power IC output stage circuit
JP4428017B2 (en) * 2002-12-09 2010-03-10 パナソニック株式会社 Inverter device
JP4269770B2 (en) * 2003-05-07 2009-05-27 株式会社デンソー Three-phase voltage source inverter device
JP4212546B2 (en) * 2004-11-15 2009-01-21 株式会社東芝 Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
JP2003219687A (en) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp Motor drive unit, blower, compressor, and refrigerating air conditioner
JP2005229714A (en) * 2004-02-12 2005-08-25 Denso Corp Two-phase modulation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045214A (en) * 2009-08-24 2011-03-03 Daikin Industries Ltd Inverter
JP2011066954A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Method of controlling inverter
JP2011120330A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Inverter device and air conditioner with the same
US8896365B2 (en) 2011-02-15 2014-11-25 Kabushiki Kaisha Toshiba Semiconductor switch having reverse voltage application circuit and power supply device including the same
WO2012153368A1 (en) * 2011-05-11 2012-11-15 日立アプライアンス株式会社 Grid-connected inverter device, and distributed power source system provided with grid-connected inverter device
JPWO2012153368A1 (en) * 2011-05-11 2014-07-28 日立アプライアンス株式会社 Grid-connected inverter device and distributed power supply system including grid-connected inverter device
JP5646053B2 (en) * 2011-05-11 2014-12-24 日立アプライアンス株式会社 Grid-connected inverter device and distributed power supply system including grid-connected inverter device
DE102011102126A1 (en) * 2011-05-20 2012-11-22 Diehl Ako Stiftung & Co. Kg Inverter circuitry

Also Published As

Publication number Publication date
JP4942967B2 (en) 2012-05-30
CN101233675B (en) 2010-12-08
WO2007029544A1 (en) 2007-03-15
CN101233675A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4942967B2 (en) Inverter device and refrigeration cycle device
US7321210B2 (en) Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
JP5047582B2 (en) Inverter device
JP5438004B2 (en) Power converter
US9300209B2 (en) Bidirectional converter with preferential direction and reactive power-capable inverter having said converter
WO2017086310A1 (en) Electric power conversion device
JP4302470B2 (en) Circuits used with switched reluctance machines
CN112997398A (en) Drive device for rotating electric machine
JP2002272125A (en) Controller of power converter
JP7218460B2 (en) 3-phase motor drive
CN114142787A (en) Motor driving device
JP4300209B2 (en) Inverter device
JP5003173B2 (en) AC motor winding switching device and winding switching system thereof
JP2004242418A (en) Motor drive unit
KR101654755B1 (en) Elective control of an alternating current motor or direct current motor
JP2009106098A (en) Power conversion system
JP5101001B2 (en) Inverter device
JP7338071B2 (en) motor drive
WO2018142635A1 (en) Inverter-driven six-phase motor device
JP2015201940A (en) inverter device
JP2008099508A (en) Power converter and air conditioner using the same
JP2006158001A (en) Inverter device
JP2018121475A (en) Power conversion device
US6888328B2 (en) Quasi bipolar topology for brushless motors
JP2007163012A (en) Outdoor unit of refrigerating cycle device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4942967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250