WO2024070967A1 - 信号伝達装置 - Google Patents

信号伝達装置 Download PDF

Info

Publication number
WO2024070967A1
WO2024070967A1 PCT/JP2023/034562 JP2023034562W WO2024070967A1 WO 2024070967 A1 WO2024070967 A1 WO 2024070967A1 JP 2023034562 W JP2023034562 W JP 2023034562W WO 2024070967 A1 WO2024070967 A1 WO 2024070967A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
chip
die pad
wire
coil
Prior art date
Application number
PCT/JP2023/034562
Other languages
English (en)
French (fr)
Inventor
隆宏 根来
太郎 西岡
弘招 松原
嘉蔵 大角
登茂平 菊地
萌 山口
遼平 梅野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024070967A1 publication Critical patent/WO2024070967A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • This disclosure relates to a signal transmission device.
  • a signal transmission device that includes a first die pad, a second die pad arranged at a distance from the first die pad, a first chip and a transformer chip mounted on the first die pad, a second chip mounted on the second die pad, and a sealing resin that seals the die pads and chips (see, for example, Patent Document 1).
  • the first chip and the transformer chip are electrically connected by a wire
  • the transformer chip and the second chip are electrically connected by another wire.
  • a signal transmission device includes a first chip including an isolation transformer, a second chip that receives a signal from the first chip and/or transmits a signal to the first chip, a first die pad on which the first chip is mounted, a second die pad that is disposed at a distance from the first die pad in a first direction and on which the second chip is mounted, a plurality of first lead terminals that are disposed at a distance from the second die pad on the opposite side of the first die pad in the first direction in a planar view and are arranged in a second direction perpendicular to the first direction in a planar view, a plurality of second lead terminals that are disposed at a distance from the second die pad on the opposite side of the first die pad in the first direction in a planar view and are arranged in the second direction in a planar view, an inter-chip wire that electrically connects the first chip and the second chip, and a first lead wire that individually connects the first chip and the plurality of first lead terminals
  • the second end lead terminals which are second lead terminals arranged at both ends in the second direction among the plurality of second lead terminals, include a fourth lead portion extending in the first direction, a fifth lead portion connected to the fourth lead portion and extending obliquely toward the second die pad in the second direction as it approaches the first die pad in the first direction, and a sixth lead portion extending in the second direction to connect the fifth lead portion and the second die pad.
  • the inter-chip wire is formed of a material containing gold
  • the first lead wire is formed of a material containing copper or aluminum.
  • the signal transmission device described above allows the wire height of the inter-chip wires to be inspected with greater precision.
  • FIG. 1 is a perspective view of a signal transmission device according to a first embodiment.
  • FIG. 2 is a side view of the signal transmission device of FIG.
  • FIG. 3 is a side view of the signal transmission device of FIG. 1, seen from a different direction than that of FIG.
  • FIG. 4 is an enlarged view of the second lead terminal and its periphery in FIG.
  • FIG. 5 is an enlarged view of an end surface of an outer lead of the second lead terminal of FIG.
  • FIG. 6 is a side view of the signal transmission device mounted on a circuit board.
  • FIG. 7 is a schematic plan view showing the internal configuration of the signal transmission device of FIG.
  • FIG. 8 is an enlarged view of the first die pad and its periphery in FIG.
  • FIG. 9 is an enlarged view of the first frame and its surroundings in FIG.
  • FIG. 10 is a schematic cross-sectional view of a wire connection portion of the first lead terminal.
  • FIG. 11 is an enlarged view of the second die pad and its periphery in FIG.
  • FIG. 12 is an enlarged view of the second frame and its periphery in FIG.
  • FIG. 13 is a schematic cross-sectional view of a wire connection portion of the second lead terminal.
  • FIG. 14 is an enlarged view of the inter-chip wires and their surroundings in FIG.
  • FIG. 15 is an enlarged perspective view of the second bond portion of the first die pad wire and its surroundings.
  • FIG. 16 is a circuit diagram of the signal transmission device of the first embodiment.
  • FIG. 17 is a schematic plan view illustrating an example of the internal structure of the first chip in the signal transmission device according to the first embodiment.
  • FIG. 18 is a schematic plan view showing an example of the internal structure of the first chip at a position different from that in FIG. 17 in the thickness direction of the first chip.
  • FIG. 19 is a cross-sectional view showing the cross-sectional structure of the first transformer of the first chip and its periphery.
  • FIG. 20 is an enlarged view of a part of the first chip in FIG.
  • FIG. 21 is an enlarged view of the conductor of the first surface side coil in the first chip of FIG.
  • FIG. 22 is an enlarged view of the conductor wire of the first back side coil in the first chip of FIG. 20 .
  • FIG. 23 is a cross-sectional view showing a cross-sectional structure of a part of the circuit region of the first chip.
  • FIG. 24 is an enlarged view of the first via and its periphery in FIG.
  • FIG. 25 is a schematic plan view illustrating an example of the internal structure of the second chip in the signal transmission device of the first embodiment.
  • FIG. 26 is a schematic plan view showing an example of the internal structure of the second chip at a position different from that in FIG. 25 in the thickness direction of the second chip.
  • FIG. 27 is an enlarged plan view of the first frame and its periphery in the signal transmission device of the second embodiment.
  • FIG. 28 is an enlarged plan view of the second frame and its periphery in the signal transmission device of the second embodiment.
  • FIG. 29 is an enlarged plan view of the first frame and its periphery in the signal transmission device of the third embodiment.
  • FIG. 30 is an enlarged plan view of the second frame and its periphery in the signal transmission device of the third embodiment.
  • FIG. 31 is an enlarged plan view of the first die pad, the second die pad, and the periphery thereof in the signal transmission device of the fourth embodiment.
  • FIG. 32 is a schematic cross-sectional view of a first chip and a first die pad in a signal transmission device according to the fifth embodiment.
  • FIG. 33 is a schematic cross-sectional view of the first chip and the first die pad taken in a direction different from that of FIG.
  • FIG. 34 is a schematic cross-sectional view of the second chip and the second die pad.
  • FIG. 35 is a schematic cross-sectional view of the second chip and the second die pad taken in a direction different from that of FIG. FIG.
  • FIG. 36 is a cross-sectional view illustrating an example of a manufacturing process for the signal transmission device according to the fifth embodiment.
  • FIG. 37 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device subsequent to FIG.
  • FIG. 38 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 37.
  • FIG. 39 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device subsequent to FIG.
  • FIG. 40 is a plan view illustrating a schematic internal structure of the signal transmission device according to the sixth embodiment.
  • FIG. 41 is a perspective view of a signal transmission device according to the seventh embodiment.
  • FIG. 42 is a schematic plan view showing the internal configuration of the signal transmission device of FIG. 41.
  • FIG. 43 is an enlarged plan view of the first frame and its periphery in the signal transmission device of FIG. 42.
  • FIG. 44 is an enlarged plan view of the second frame and its periphery in the signal transmission device of FIG. 42.
  • FIG. FIG. 45 is a circuit diagram of a signal transmission device according to the seventh embodiment.
  • FIG. 46 is an enlarged plan view of the first frame and its periphery in the signal transmission device of the eighth embodiment.
  • FIG. 47 is an enlarged plan view of the second frame and its periphery in the signal transmission device of the eighth embodiment.
  • FIG. 48 is an enlarged plan view of the first frame and its periphery in the signal transmission device of the ninth embodiment.
  • FIG. 49 is an enlarged plan view of the second frame and its periphery in the signal transmission device of the ninth embodiment.
  • FIG. 50 is a plan view illustrating the internal structure of the signal transmission device according to the tenth embodiment.
  • FIG. 51 is a cross-sectional view showing a schematic example of a cross-sectional structure of a first transformer of a first chip and its periphery in a signal transmission device according to the eleventh embodiment.
  • FIG. 52 is an enlarged cross-sectional view of a part of the first transformer and its periphery in FIG. 51.
  • FIG. 53 is a cross-sectional view illustrating an example of a manufacturing process for the signal transmission device of the eleventh embodiment.
  • FIG. 54 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device subsequent to FIG. 53.
  • 55 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device subsequent to FIG. 54.
  • FIG. 56 is a cross-sectional view showing the cross-sectional structure of the first transformer of the first chip and part of its periphery in the signal transmission device of the twelfth embodiment.
  • FIG. 57 is an enlarged cross-sectional view of a portion of the first front surface coil of the first transformer of the first chip and its surrounding area in the signal transmission device of the thirteenth embodiment.
  • FIG. 58 is a cross-sectional view illustrating an example of a manufacturing process for the signal transmission device of the thirteenth embodiment.
  • FIG. 59 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 58.
  • FIG. 60 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device subsequent to FIG. 59.
  • 61 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 60.
  • FIG. 62 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 61.
  • FIG. 63 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 62.
  • FIG. FIG. 60 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 62.
  • FIG. 64 is an enlarged cross-sectional view of a portion of the first front surface side coil of the first transformer of the first chip and its surrounding area in the signal transmission device of the fourteenth embodiment.
  • FIG. 65 is a cross-sectional view illustrating an example of a manufacturing process for the signal transmission device of the fourteenth embodiment.
  • 66 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 65.
  • FIG. 67 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 66.
  • FIG. 68 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 67.
  • FIG. 69 is a cross-sectional view showing a schematic example of a manufacturing process for the signal transmission device following FIG. 68.
  • FIG. 70 is a schematic plan view showing an example of the internal structure of the first chip in the signal transmission device according to the fifteenth embodiment.
  • FIG. 71 is a schematic plan view showing an example of the internal structure of the first chip at a position different from that in FIG. 70 in the thickness direction of the first chip.
  • FIG. 72 is a plan view illustrating a schematic internal structure of the first chip in the signal transmission device according to the sixteenth embodiment.
  • FIG. 73 is an enlarged view of the transformer insulating region in the first chip of FIG.
  • FIG. 74 is a schematic plan view showing an example of the internal structure of the first chip at a position different from that in FIG.
  • FIG. 75 is an enlarged view of the transformer insulating region in the first chip of FIG.
  • FIG. 76 is a plan view showing an example of the internal structure of the first chip in a signal transmission device according to a modified example.
  • FIG. 77 is a schematic plan view showing the internal structure of the first chip at a position different from that in FIG. 76 in the thickness direction of the first chip.
  • FIG. 78 is a plan view showing a schematic internal structure of a signal transmission device according to a modified example.
  • FIG. 1 to 6 show the external structure of the signal transmission device 10.
  • Figures 7 to 15 show the internal structure of the signal transmission device 10.
  • Figure 16 shows the circuit configuration of the signal transmission device 10.
  • Figures 17 to 24 show the internal structure of a first chip 60 of the signal transmission device 10, which will be described later.
  • Figures 25 and 26 show the internal structure of a second chip 70 of the signal transmission device 10, which will be described later.
  • FIG. 1 shows a perspective view of the signal transmission device 10.
  • Figs. 2 and 3 show a side view of the signal transmission device 10.
  • Fig. 4 shows an enlarged view of a portion of a second lead terminal 48 of the signal transmission device 10, which will be described later.
  • the package structure of the signal transmission device 10 is a small outline package (SOP).
  • SOP small outline package
  • the package structure of the signal transmission device 10 can be changed as desired, and may be a quad for non-lead package (QFN), dual flat package (DFP), dual inline package (DIP), quad flat package (QFP), single inline package (SIP), or small outline J-leaded package (SOJ), or various similar package structures.
  • QFN quad for non-lead package
  • DFP dual flat package
  • DIP dual inline package
  • QFP quad flat package
  • SIP single inline package
  • SOJ small outline J-leaded package
  • the signal transmission device 10 includes a sealing resin 90, a plurality of first lead terminals 11-18 (eight in the first embodiment) protruding from the sealing resin 90, and a plurality of second lead terminals 41-48 (eight in the first embodiment) protruding from the sealing resin 90.
  • the sealing resin 90 is formed in a rectangular plate shape.
  • the thickness direction of the sealing resin 90 is the "Z direction", and two mutually perpendicular directions among the directions perpendicular to the Z direction are the "X direction” and the "Y direction”.
  • the upper side of the Z direction is the "+Z direction", and the lower side is the "-Z direction”.
  • the front side of the X direction is the "-X direction”
  • the rear side is the "+X direction”.
  • the right side of the Y direction is the "+Y direction”
  • the left side is the "-Y direction”.
  • planar view refers to viewing the signal transmission device 10 from the thickness direction of the sealing resin 90. Unless otherwise specified, planar view refers to viewing the signal transmission device 10 from the +Z direction.
  • the shape of the sealing resin 90 in plan view is rectangular with the Y direction being the long side and the X direction being the short side.
  • the dimension of the sealing resin 90 in the X direction is about 7.52 mm
  • the dimension of the sealing resin 90 in the Y direction is about 10.34 mm
  • the dimension (thickness) of the sealing resin 90 in the Z direction is about 2.34 mm.
  • the sealing resin 90 has a sealing surface 91, a sealing back surface 92 opposite the sealing surface 91, and first to fourth sealing side surfaces 93 to 96 connecting the sealing surface 91 and the sealing back surface 92.
  • the sealing surface 91 is a surface facing the +Z direction
  • the sealing back surface 92 is a surface facing the -Z direction.
  • the first sealing side surface 93 and the second sealing side surface 94 form both end surfaces of the sealing resin 90 in the X direction
  • the third sealing side surface 95 and the fourth sealing side surface 96 form both end surfaces of the sealing resin 90 in the Y direction.
  • the first sealing side surface 93 is a surface facing the +X direction
  • the second sealing side surface 94 is a surface facing the -X direction.
  • the third sealing side surface 95 is a surface facing the +Y direction
  • the fourth sealing side surface 96 is a surface facing the -Y direction.
  • a recess 91A is formed in the sealing surface 91.
  • the recess 91A is circular in a plan view.
  • the recess 91A is recessed in a curved concave shape from the sealing surface 91.
  • the recess 91A is formed in a portion of the sealing surface 91 that is closer to the first sealing side surface 93 and the fourth sealing side surface 96.
  • the recess 91A serves as a marker for distinguishing the first lead terminals 11-18 from the second lead terminals 41-48.
  • the first sealing side 93 includes a first front side 93A that is continuous with the sealing surface 91, a first back side 93B that is continuous with the sealing back surface 92, and a first central side 93C.
  • the second sealing side 94 includes a second front side 94A that is continuous with the sealing surface 91, a second back side 94B that is continuous with the sealing back surface 92, and a second central side 94C.
  • the first front side 93A and the second front side 94A are inclined in a direction away from each other as they move from the sealing surface 91 toward the sealing back surface 92.
  • the connection portion between the first front side 93A and the sealing surface 91 is formed in a curved shape.
  • connection portion between the second front side 94A and the sealing surface 91 is formed with an inclined surface 94AA.
  • the angle formed by the inclined surface 94AA and the Z direction is greater than the angle formed by the second front side 94A and the Z direction.
  • the angle between the inclined surface 94AA and the Z direction is, for example, 45°.
  • the first back side surface 93B and the second back side surface 94B are inclined in a direction away from each other as they move from the sealing back surface 92 toward the sealing front surface 91.
  • the connection portion between the first back side surface 93B and the second back side surface 94B and the sealing back surface 92 is formed in a curved shape.
  • the first central side surface 93C is formed between the first front side surface 93A and the first back side surface 93B in the Z direction.
  • the first central side surface 93C is connected to both the first front side surface 93A and the first back side surface 93B.
  • the first central side surface 93C is formed as a flat surface along, for example, the YZ plane.
  • the second central side surface 94C is formed between the second front side surface 94A and the second back side surface 94B in the Z direction.
  • the second central side surface 94C is connected to both the second front side surface 94A and the second back side surface 94B.
  • the second central side surface 94C is formed as a flat surface along the YZ plane, for example.
  • the third sealing side 95 includes a third front side 95A that is continuous with the sealing surface 91, a third back side 95B that is continuous with the sealing back surface 92, and a third central side 95C.
  • the fourth sealing side 96 includes a fourth front side 96A that is continuous with the sealing surface 91, a fourth back side 96B that is continuous with the sealing back surface 92, and a fourth central side 96C.
  • the third front side 95A and the fourth front side 96A are inclined in directions away from each other as they move from the sealing surface 91 to the sealing back surface 92.
  • the connection portions between the third front side 95A and the fourth front side 96A and the sealing surface 91 are formed in a curved shape.
  • the third back side 95B and the fourth back side 96B are inclined in directions away from each other as they move from the sealing back surface 92 to the sealing surface 91.
  • the connection portions between the third back side 95B and the fourth back side 96B and the sealing back surface 92 are formed in a curved shape.
  • the third central side surface 95C is connected to both the third front surface side surface 95A and the third back surface side surface 95B.
  • the third central side surface 95C is formed, for example, as a flat surface along the XZ plane.
  • the fourth central side surface 96C is formed between the fourth front surface side surface 96A and the fourth back surface side surface 96B in the Z direction.
  • the fourth central side surface 96C is connected to both the fourth front surface side surface 96A and the fourth back surface side surface 96B.
  • the fourth central side surface 96C is formed, for example, as a flat surface along the XZ plane.
  • the sealing resin 90 is formed, for example, by transfer molding.
  • the third sealing side surface 95 is provided with a trace (not shown) of the gate of the molding die. This trace is formed when the resin portion located at the gate of the molding die is separated from the sealing resin 90.
  • the trace is formed, for example, on the third central side surface 95C of the third sealing side surface 95.
  • the third central side surface 95C is partitioned into three regions R1 to R3 in the X direction.
  • the regions R1 to R3 are regions of the same size.
  • the region R1 is a region of the third central side surface 95C closer to the first sealing side surface 93
  • the region R3 is a region of the third central side surface 95C closer to the second sealing side surface 94
  • the region R2 is a region between the regions R1 and R3 in the X direction.
  • the above-mentioned trace may be provided in the region R1.
  • the above-mentioned trace may also be provided in the region R2.
  • the above-mentioned trace may also be provided in the region R3.
  • the gate trace of the molding die may be formed on the fourth sealing side surface 96 instead of the third sealing side surface 95. Even in this case, the trace is formed, for example, on the fourth central side surface 96C of the fourth sealing side surface 96.
  • the surface roughness Rz of each of the sealing surface 91, sealing back surface 92, and first to fourth sealing side surfaces 93 to 96 of the sealing resin 90 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the surface roughness Rz over the entire surface of each of the sealing surface 91 and sealing back surface 92 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the surface roughness Rz over the entire surface of each of the first to fourth front side surfaces 93A to 96A and the first to fourth back side surfaces 93B to 96B of the first to fourth sealing side surfaces 93 to 96 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the surface roughness Rz can be expressed as the sum of the height of the highest peak and the depth of the deepest valley among the contour curves at the reference length.
  • the sealing surface 91, sealing back surface 92, and first to fourth sealing side surfaces 93 to 96 are roughened to have each surface roughness Rz of, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • An example of surface roughening is shot blasting.
  • the surface roughness Rz of each of the sealing surface 91, the sealing back surface 92, and the first to fourth sealing side surfaces 93 to 96 is, for example, 8 ⁇ m or more. In one example, the surface roughness Rz of each of the sealing surface 91, the sealing back surface 92, and the first to fourth sealing side surfaces 93 to 96 is, for example, 8 ⁇ m or more and 20 ⁇ m or less.
  • the surface roughness Rz of the sealing surface 91 and the sealing back surface 92, and the first to fourth front side surfaces 93A to 96A and the first to fourth back side surfaces 93B to 96B may be greater than that of the first to fourth central side surfaces 93C to 95C. In one example, the surface roughness Rz of the sealing surface 91 and the sealing back surface 92, and the first to fourth front side surfaces 93A to 96A and the first to fourth back side surfaces 93B to 96B may be greater than the surface roughness Rz of the surfaces that make up the recess 91A.
  • the surface roughness Rz of the sealing surface 91, the sealing back surface 92, and the first to fourth sealing side surfaces 93 to 96 was 5 ⁇ m or more and 20 ⁇ m or less, but this is not limited to this.
  • the surface roughness Rz of each of the third sealing side surface 95 and the fourth sealing side surface 96 may be less than 5 ⁇ m or greater than 20 ⁇ m.
  • the surface roughness Rz of each of the first sealing side surface 93 and the second sealing side surface 94 may be less than 5 ⁇ m or greater than 20 ⁇ m.
  • the surface roughness Rz of each of the first to fourth sealing side surfaces 93 to 96 may be less than 5 ⁇ m or greater than 20 ⁇ m.
  • the surface roughness Rz of the sealing surface 91 may be less than 5 ⁇ m or greater than 20 ⁇ m. In short, it is sufficient that the surface roughness Rz of at least one of the sealing surface 91, the sealing back surface 92, and the first to fourth sealing side surfaces 93 to 96 is 5 ⁇ m or more and 20 ⁇ m or less.
  • the sealing resin 90 is made of an insulating material.
  • One example of the insulating material is black epoxy resin.
  • the sealing resin 90 contains sulfur (S) as an additive. By containing sulfur, the sealing resin 90 can increase the adhesive strength with the first frame 10A and the second frame 10B described below. On the other hand, by containing sulfur, the sealing resin 90 may cause sulfide corrosion of the copper-based components in the signal transmission device 10.
  • the concentration of sulfur added to the sealing resin 90 is set in consideration of the balance between improving the adhesive strength between the first frame 10A and the second frame 10B and the sealing resin 90 and suppressing sulfide corrosion. In one example, the concentration of sulfur added to the sealing resin 90 is set to 300 ⁇ g/g or less.
  • the first lead terminals 11-18 include first outer lead portions 11B-18B protruding outward from the sealing resin 90.
  • the first outer lead portions 11B-18B protrude from the first sealing side surface 93 toward the +X direction.
  • the first outer lead portions 11B-18B are arranged at a distance from each other in the Y direction. It can be said that the first outer lead portions 11B-18B are arranged in the longitudinal direction of the sealing resin 90.
  • the first outer lead portions 11B-18B are arranged in the order of the first outer lead portions 11B, 12B, 13B, 14B, 15B, 16B, 17B, and 18B from the third sealing side surface 95 toward the fourth sealing side surface 96.
  • the Y direction can be said to be the arrangement direction of the first outer lead portions 11B-18B.
  • the Y direction can be said to be the arrangement direction of the first lead terminals 11-18.
  • the first outer lead portions 11B to 18B have the same shape.
  • the second lead terminals 41 to 48 include second outer lead portions 41B to 48B that protrude from the sealing resin 90 to the outside.
  • the second outer lead portions 41B to 48B protrude from the second sealing side surface 94 toward the -X direction.
  • the second outer lead portions 41B to 48B are arranged at a distance from each other in the Y direction. It can be said that the second outer lead portions 41B to 48B are arranged in the longitudinal direction of the sealing resin 90.
  • the second outer lead portions 41B to 48B are arranged in the order of the second outer lead portions 41B, 42B, 43B, 44B, 45B, 46B, 47B, and 48B from the fourth sealing side surface 96 toward the third sealing side surface 95.
  • the Y direction can be said to be the arrangement direction of the second outer lead portions 41B to 48B.
  • the Y direction can be said to be the arrangement direction of the second lead terminals 41 to 48.
  • the second outer lead portions 41B to 48B have the same shape.
  • the width dimension (size in the Y direction) of the first outer lead portions 11B to 18B and the width dimension (size in the Y direction) of the second outer lead portions 41B to 48B are equal to each other.
  • the width dimension of the first outer lead portions 11B to 18B and the width dimension of the second outer lead portions 41B to 48B are, for example, about 0.4 mm.
  • the pitch of the first outer lead portions 11B to 18B and the pitch of the second outer lead portions 41B to 48B are equal to each other.
  • the pitch of the first outer lead portions 11B to 18B can be defined by the center-to-center distance between two outer lead portions adjacent in the Y direction among the first outer lead portions 11B to 18B.
  • the pitch of the second outer lead portions 41B to 48B can be defined by the center-to-center distance between two outer lead portions adjacent in the Y direction among the second outer lead portions 41B to 48B.
  • the pitch of the first outer lead portions 11B to 18B and the pitch of the second outer lead portions 41B to 48B are each, for example, approximately 1.27 mm.
  • the shape of the first outer lead portion 11B and the shape of the second outer lead portion 48B when viewed from the X direction are the same. Therefore, it can be said that the shapes of the first outer lead portions 11B to 18B and the shapes of the second outer lead portions 41B to 48B are the same.
  • the configuration of the second outer lead portions 41B to 48B will be described. Below, the detailed configuration of the second outer lead portion 48B will be described, and the detailed configuration of the second outer lead portions 41B to 47B will be omitted.
  • the second outer lead portion 48B includes a protruding portion 48P extending in the -X direction from the second sealing side surface 94, an intermediate portion 48Q extending in the -Z direction from the protruding portion 48P, and a connecting portion 48R extending in the -X direction from the intermediate portion 48Q.
  • a curved first bend is formed between the protruding portion 48P and the intermediate portion 48Q
  • a curved second bend is formed between the intermediate portion 48Q and the connecting portion 48R.
  • the connecting portion 48R may be inclined toward the -Z direction as it approaches the -X direction.
  • the acute angle formed by the connecting portion 48R and the X direction is, for example, greater than 0° and equal to or less than 8°.
  • the second outer lead portion 48B includes an outer lead body 20A made of a metal material.
  • metal materials include copper and aluminum.
  • the outer lead body 20A has an outer lead surface 21A, an outer lead back surface 22A opposite the outer lead surface 21A, a pair of outer lead side surfaces 23A (see FIG. 5) connecting the outer lead surface 21A and the outer lead back surface 22A, and an outer lead end surface 24A.
  • the outer lead end surface 24A forms the tip surface of the connection portion 48R.
  • the pair of outer lead side surfaces 23A are formed in a curved concave shape.
  • the deepest position of the curved concave outer lead side surface 23A (the position where the pair of outer lead side surfaces 23A are closest in the Y direction) is closer to the outer lead back surface 22A than the center in the Z direction of the outer lead end surface 24A.
  • the outer lead body 20A has a backside curved portion 25 formed at the connection between the outer lead backside 22A and the outer lead side surface 23A.
  • the backside curved portion 25 curves upward (+Z direction) as it moves outward in the width direction (Y direction) of the outer lead body 20A. Therefore, both ends of the outer lead backside 22A in the Y direction are curved upward (+Z direction) as they move toward the pair of outer lead side surfaces 23A.
  • the second outer lead portion 48B includes a plating layer 26 that covers the outer lead body 20A. More specifically, the plating layer 26 covers the entire surfaces of the outer lead surface 21A, the outer lead back surface 22A, and the outer lead side surface 23A, as well as a portion of the outer lead end surface 24A.
  • the plating layer 26 includes an end surface plating layer 27 that covers the outer lead end surface 24A continuously from the outer lead back surface 22A toward the outer lead surface 21A.
  • the end surface plating layer 27 is located away in the Z direction from the edge of the outer lead end surface 24A on the outer lead surface 21A side. Therefore, the outer lead end surface 24A is divided into an area covered by the end surface plating layer 27 and a main body exposed area 28 that is not covered by the end surface plating layer 27. In the main body exposed area 28, the outer lead main body 20A is exposed.
  • the end surface plating layer 27 extends from the outer lead back surface 22A to a position closer to the outer lead surface 21A than the center of the outer lead end surface 24A in the Z direction. In one example, the end surface plating layer 27 covers approximately 2/3 of the outer lead end surface 24A in the Z direction.
  • the tip edge 27A of the end surface plating layer 27 includes a shape that becomes uneven in the Z direction as it approaches the Y direction. In one example, the tip edge 27A of the end surface plating layer 27 includes a recess 27B near the center in the Y direction.
  • leading edge 27A of the end surface plating layer 27 can be changed as desired.
  • the leading edge 27A of the end surface plating layer 27 may include a plurality of recesses 27B.
  • the recesses 27B may be omitted from the leading edge 27A of the end surface plating layer 27.
  • the position of the tip edge 27A of the end surface plating layer 27 in the Z direction can be changed as desired.
  • the end surface plating layer 27 may cover approximately 1/2 of the outer lead end surface 24A in the Z direction.
  • the end surface plating layer 27 may cover approximately 1/4 of the outer lead end surface 24A in the Z direction.
  • the end surface plating layer 27 may cover approximately 3/4 of the outer lead end surface 24A in the Z direction. In this way, the end surface plating layer 27 may cover a range of 1/4 to 3/4 of the outer lead end surface 24A in the Z direction.
  • first outer lead portions 11B to 18B The configuration of the first outer lead portions 11B to 18B will be described. Below, the detailed configuration of the first outer lead portion 11B will be described, and the detailed configuration of the first outer lead portions 12B to 18B will be omitted.
  • the first outer lead portion 11B includes a protruding portion 11P extending in the +X direction from the first sealing side surface 93, an intermediate portion 11Q extending in the -Z direction from the protruding portion 11P, and a connecting portion 11R extending in the +X direction from the intermediate portion 11Q.
  • a curved first bend is formed between the protruding portion 11P and the intermediate portion 11Q
  • a curved second bend is formed between the intermediate portion 11Q and the connecting portion 11R.
  • the connecting portion 11R may be inclined toward the -Z direction as it approaches the +X direction.
  • the acute angle formed by the connecting portion 11R and the X direction is, for example, greater than 0° and equal to or less than 8°.
  • the first outer lead portion 11B like the second outer lead portion 48B, includes an outer lead body 20A and a plating layer 26 that covers the outer lead body 20A (see FIG. 4 for both).
  • the plating layer 26 of the first outer lead portion 11B like the second outer lead portion 48B, also includes an end face plating layer 27 (see FIG. 4).
  • a method for forming such an end surface plating layer 27 will be described below.
  • a first lead frame (not shown) constituting the first outer lead portion 11B and a second lead frame (not shown) constituting the second outer lead portion 48B are cut by a die (punch).
  • the cutting by the die can be performed, for example, on the first lead frame and the second lead frame connected to the frame.
  • the outer leads 11B to 18B, 41B to 48B formed by cutting are formed.
  • both the first lead frame and the second lead frame before being cut by the mold include an outer lead body 20A and a plating layer 26 that covers the outer lead surface 21A, the outer lead back surface 22A, and the pair of outer lead side surfaces 23A.
  • the mold cuts the first lead frame and the second lead frame in the +Z direction for both the first lead frame and the second lead frame. This forms the first outer lead portion 11B and the second outer lead portion 48B, each of which includes the outer lead end surface 24A.
  • the corners of the cut portion in the mold are rounded and curved. In other words, the corners are chamfered.
  • the plating layer 26 on the back surface 22A of the outer lead is pulled toward the outer lead surface 21A, forming an end surface plating layer 27 on the outer lead end surface 24A.
  • the end surface plating layer 27 is formed on both the first outer lead portion 11B and the second outer lead portion 48B, when the signal transmission device 10 is mounted on the circuit board PCB by a conductive bonding material SD such as solder paste or silver (Ag) paste, as shown in Fig. 6, the bonding area between the first outer lead portion 11B and the second outer lead portion 48B and the conductive bonding material SD can be increased. More specifically, the outer lead back surface 22A of the connection portion 11R of the first outer lead portion 11B, the pair of outer lead side surfaces 23A (see Fig. 5), and the outer lead back surface 22A of the end of the intermediate portion 11Q on the connection portion 11R side are each bonded to the conductive bonding material SD.
  • a conductive bonding material SD such as solder paste or silver (Ag) paste
  • the end surface plating layer 27 of the first outer lead portion 11B bonds the outer lead end surface 24A (see Fig. 5) of the first outer lead portion 11B to the conductive bonding material SD.
  • the bonding area between the first outer lead portion 11B and the conductive bonding material SD is increased by the bonding area between the end surface plating layer 27 and the conductive bonding material SD.
  • the outer lead back surface 22A of the connection portion 48R of the second outer lead portion 48B, the pair of outer lead side surfaces 23A, and the outer lead back surface 22A of the end of the intermediate portion 48Q on the connection portion 48R side are each bonded to the conductive bonding material SD.
  • the end surface plating layer 27 of the second outer lead portion 48B bonds the outer lead end surface 24A of the second outer lead portion 48B to the conductive bonding material SD.
  • the bonding area between the second outer lead portion 48B and the conductive bonding material SD is increased by the bonding area between the end surface plating layer 27 and the conductive bonding material SD.
  • a fillet is formed by the conductive bonding material SD bonded to each end surface plating layer 27 of the first outer lead portion 11B and the second outer lead portion 48B.
  • the bonding area with the conductive bonding material SD is also increased and fillets are formed for the first outer lead portions 11B-17B and the second outer lead portions 42B-48B (both see FIG. 1).
  • FIG. 7 shows the entire internal structure of the signal transmission device 10.
  • the sealing resin 90 is indicated by a two-dot chain line in order to facilitate understanding of the drawings.
  • a recess 39 of the first die pad 30 and a recess 59 of the second die pad 50, which will be described later, are omitted in order to facilitate understanding of the drawings.
  • the first chip 60 is indicated by a two-dot chain line
  • the second chip 70 is indicated by a two-dot chain line in order to facilitate understanding of the drawings.
  • the signal transmission device 10 includes a first frame 10A, a second frame 10B, a first chip 60 mounted on the first frame 10A, and a second chip 70 mounted on the second frame 10B.
  • the sealing resin 90 seals the first chip 60 and the second chip 70, and also partially seals the first frame 10A and the second frame 10B.
  • the first frame 10A includes first lead terminals 11-18.
  • the first frame 10A further includes a first die pad 30.
  • the first lead terminals 11-18 and the first die pad 30 are formed from the same metal material. Examples of metal materials include copper and aluminum.
  • the first lead terminals 11 and 18 arranged at both ends in the Y direction are connected to the first die pad 30.
  • the first lead terminals 11 and 18 and the first die pad 30 are integrated.
  • the first lead terminals 12 to 17 arranged between the first lead terminal 11 and the first lead terminal 18 in the Y direction are arranged at a distance from the first die pad 30.
  • the first lead terminals 12 and 17 are distributed and arranged on both sides of the first die pad 30 in the Y direction.
  • the first lead terminals 12 and 17 include a portion that overlaps with the first die pad 30 when viewed from the Y direction.
  • the first lead terminals 13 to 16 are arranged closer to the first sealing side surface 93 with respect to the first die pad 30 and at a distance from the first die pad 30 in the X direction.
  • the first lead terminals 13 to 16 include a portion that overlaps with the first die pad 30 when viewed from the X direction.
  • the first die pad 30 is disposed closer to the first sealing side surface 93 than the center of the sealing resin 90 in the X direction.
  • the shape of the first die pad 30 in a plan view is rectangular with the Y direction as the long side and the X direction as the short side.
  • the first chip 60 mounted on the first die pad 30 is formed in a flat plate shape.
  • the shape of the first chip 60 in a plan view is a rectangle with the X direction as the short side direction and the Y direction as the long side direction.
  • the first chip 60 is mounted on the first die pad 30 by the first conductive bonding material SD1. More specifically, the first chip 60 is die-bonded to the first die pad 30.
  • the first chip 60 is disposed in the center of the first die pad 30 in the X direction.
  • the first chip 60 is disposed closer to the fourth sealing side surface 96 than the center of the first die pad 30 in the Y direction.
  • the position of the first chip 60 relative to the first die pad 30 can be changed as desired.
  • the second frame 10B is disposed at a distance from the first frame 10A in the X direction. That is, in the first embodiment, the X direction is the arrangement direction of the first frame 10A and the second frame 10B.
  • the second frame 10B includes second lead terminals 41-48.
  • the second frame 10B further includes a second die pad 50.
  • the second lead terminals 41-48 and the second die pad 50 are formed of the same metal material. Examples of metal materials include copper and aluminum.
  • the second lead terminals 41-48 and the second die pad 50 are formed of the same metal material as the first lead terminals 11-18 and the first die pad 30.
  • the second lead terminals 41, 48 arranged at both ends in the Y direction are connected to the second die pad 50.
  • the second lead terminals 41, 48 and the second die pad 50 are integrated.
  • the second lead terminals 42 to 47 arranged between the second lead terminal 41 and the second lead terminal 48 in the Y direction are arranged at a distance from the second die pad 50.
  • the second lead terminals 42, 47 are distributed and arranged on both sides of the second die pad 50 in the Y direction.
  • the second lead terminals 42, 47 include a portion that overlaps with the second die pad 50 when viewed from the Y direction.
  • the second lead terminals 43 to 46 are arranged closer to the second sealing side surface 94 with respect to the second die pad 50 and at a distance from the second die pad 50 in the X direction.
  • the second lead terminals 43 to 46 include a portion that overlaps with the second die pad 50 when viewed from the X direction. As shown in FIG. 7, in the first embodiment, the shapes of the first lead terminals 11-18 and the second lead terminals 41-48 are symmetrical with respect to an imaginary line along the Y direction at the center of the sealing resin 90 in the X direction.
  • the second die pad 50 is disposed in the X direction away from the first die pad 30 and closer to the second sealing side surface 94.
  • the X direction can be said to be the arrangement direction of the first die pad 30 and the second die pad 50.
  • the first die pad 30 and the second die pad 50 can also be said to be arranged in the short direction of the sealing resin 90.
  • the second die pad 50 is disposed in the X direction closer to the second sealing side surface 94 than the center of the sealing resin 90.
  • the shape of the second die pad 50 in a plan view is a rectangle with the Y direction as the long direction and the X direction as the short direction.
  • the size of the second die pad 50 in the Y direction is equal to the size of the first die pad 30 in the Y direction.
  • the size of the second die pad 50 in the X direction is larger than the size of the first die pad 30 in the X direction.
  • the sizes of the first die pad 30 and the second die pad 50 can be changed arbitrarily.
  • the second chip 70 mounted on the second die pad 50 is formed in a flat plate shape.
  • the shape of the second chip 70 in a plan view is a rectangle with the X direction being the short side direction and the Y direction being the long side direction.
  • the size of the second chip 70 in the X direction is larger than the size of the first chip 60 in the X direction.
  • the size of the second chip 70 in the Y direction is larger than the size of the first chip 60 in the Y direction.
  • the second chip 70 is mounted on the second die pad 50 by the second conductive bonding material SD2. More specifically, the second chip 70 is die-bonded to the second die pad 50. Note that, for example, solder paste or silver paste is used as both the first conductive bonding material SD1 and the second conductive bonding material SD2.
  • the second chip 70 is disposed at the center of the second die pad 50 in the X direction and the center in the Y direction. When viewed from the X direction, the second chip 70 is disposed at a position overlapping the first chip 60. Note that the position of the second chip 70 relative to the second die pad 50 can be changed as desired.
  • the signal transmission device 10 further includes conductive members 10D and 10E.
  • the conductive members 10D and 10E are formed, for example, from the same metal material as the first frame 10A and the second frame 10B.
  • the conductive members 10D and 10E are disposed at a distance from each other. Furthermore, the conductive members 10D and 10E are disposed at a distance from both the first frame 10A and the second frame 10B. Therefore, both conductive members 10D and 10E are in an electrically floating state.
  • the conductive members 10D and 10E are disposed in positions overlapping each other when viewed from the Y direction.
  • the conductive members 10D and 10E are disposed in the center of the sealing resin 90 in the Y direction.
  • the conductive member 10D is disposed closer to the third sealing side surface 95 than the first frame 10A and the second frame 10B.
  • the conductive member 10D is exposed from the third sealing side surface 95. More specifically, a recess 95D is formed in a portion of the third sealing side surface 95 where the conductive member 10D is exposed.
  • the recess 95D is formed in the center of the third sealing side surface 95 in the Z direction. That is, the recess 95D is provided in the third central side surface 95C (see FIG. 2).
  • the recess 95D is recessed from the third sealing side surface 95 toward the fourth sealing side surface 96.
  • the recess 95D is open toward the +Y direction.
  • the conductive member 10D constitutes the bottom surface of the recess 95D.
  • the conductive member 10D is a generally rectangular shape with the X direction being the longitudinal direction and the Y direction being the lateral direction.
  • the size of the conductive member 10D in the X direction is greater than the distance between the first die pad 30 and the second die pad 50 in the X direction. Therefore, when viewed from the Y direction, the conductive member 10D includes portions that overlap with both the first die pad 30 and the second die pad 50.
  • the conductive member 10D has two through holes 10D1. Each through hole 10D1 penetrates the conductive member 10D in the thickness direction (Z direction) of the conductive member 10D. Each through hole 10D1 is filled with sealing resin 90. The two through holes 10D1 are arranged at the same position in the Y direction and spaced apart from each other in the X direction.
  • the conductive member 10E is disposed closer to the fourth sealing side surface 96 than the first frame 10A and the second frame 10B.
  • the conductive member 10E is exposed from the fourth sealing side surface 96. More specifically, a recess 96D is formed in the portion of the fourth sealing side surface 96 where the conductive member 10E is exposed.
  • the recess 96D is formed in the center of the fourth sealing side surface 96 in the Z direction. In other words, the recess 96D is provided in the fourth central side surface 96C (see FIG. 2).
  • the recess 96D is recessed from the fourth sealing side surface 96 toward the third sealing side surface 95.
  • the recess 96D is open toward the -Y direction.
  • the conductive member 10E forms the bottom surface of the recess 96D.
  • the conductive member 10E is a generally rectangular shape with the X direction being the longitudinal direction and the Y direction being the lateral direction.
  • the size of the conductive member 10E in the X direction is greater than the distance between the first die pad 30 and the second die pad 50 in the X direction. Therefore, when viewed from the Y direction, the conductive member 10E includes portions that overlap with both the first die pad 30 and the second die pad 50.
  • the conductive member 10E has two through holes 10E1. Each through hole 10E1 penetrates the conductive member 10D in the thickness direction (Z direction) of the conductive member 10E. Each through hole 10E1 is filled with sealing resin 90. The two through holes 10E1 are arranged at the same position in the Y direction and spaced apart from each other in the X direction.
  • both end surfaces in the Y direction of the first die pad 30 is an end surface closer to the fourth sealing side surface 96 (see FIG. 7) among both end surfaces in the Y direction of the first die pad 30.
  • Both the first tip surface 31 and the first base end surface 32 are surfaces extending along the Y direction in a plan view.
  • Both the first side surface 33 and the second side surface 34 are surfaces that extend along the X direction in a plan view.
  • the first die pad 30 further has a first distal curved surface 35 , a second distal curved surface 36 , a first proximal curved surface 37 , and a second proximal curved surface 38 .
  • the first distal curved surface 35 is formed between the first distal surface 31 and the first side surface 33.
  • the first distal curved surface 35 is a portion where the portion between the first distal surface 31 and the first side surface 33 is R-chamfered.
  • the second distal curved surface 36 is formed between the first distal surface 31 and the second side surface 34.
  • the second distal curved surface 36 is a portion where the portion between the first distal surface 31 and the second side surface 34 is R-chamfered.
  • the first proximal curved surface 37 is formed between the first proximal surface 32 and the first side surface 33.
  • the first proximal curved surface 37 is a shape where the portion between the first proximal surface 32 and the first side surface 33 is R-chamfered.
  • the second proximal curved surface 38 is formed between the first proximal surface 32 and the second side surface 34.
  • the second proximal curved surface 38 is a shape where the portion between the first proximal surface 32 and the second side surface 34 is R-chamfered.
  • the arc length of the first distal curved surface 35 in plan view is equal to the arc length of the first proximal curved surface 37 and the arc length of the second proximal curved surface 38 in plan view.
  • the arc length of the second distal curved surface 36 in plan view is equal to the arc length of the first distal curved surface 35 in plan view.
  • the radius of curvature of the first distal curved surface 35 in plan view is equal to the radius of curvature of the first proximal curved surface 37 and the radius of curvature of the second proximal curved surface 38 in plan view.
  • the radius of curvature of the second distal curved surface 36 in plan view is equal to the radius of curvature of the first distal curved surface 35 in plan view.
  • the first die pad 30 has multiple recesses 39 (28 in the first embodiment). Each recess 39 is recessed from the front surface of the first die pad 30 toward the back surface.
  • the front surface of the first die pad 30 is the surface on which the first chip 60 is mounted.
  • the back surface of the first die pad 30 is the surface facing the opposite side to the front surface of the first die pad 30.
  • the number of recesses 39 can be changed as desired.
  • the shape of the recesses 39 in plan view is circular.
  • the multiple recesses 39 are arranged at a distance from each other in both the X direction and the Y direction.
  • the multiple recesses 39 are arranged in a lattice pattern.
  • the number of recesses 39 arranged in the Y direction is greater than the number of recesses 39 arranged in the X direction.
  • the shape of each recess 39 in plan view can be changed as desired.
  • the arrangement of the multiple recesses 39 can be changed as desired.
  • the first conductive bonding material SD1 (see FIG. 7) fills the recesses 39 that overlap with the first conductive bonding material SD1 in a plan view.
  • the recesses 39 that do not overlap with the first conductive bonding material SD1 are filled with sealing resin 90 (see FIG. 7).
  • first lead terminals 11, 12 are disposed closer to the third sealing side surface 95 than the first die pad 30 when viewed from the X direction.
  • the first lead terminals 17, 18 are disposed closer to the fourth sealing side surface 96 than the first die pad 30 when viewed from the X direction.
  • the first lead terminals 11, 18 correspond to "first end lead terminals" which are first lead terminals disposed at both ends in the Y direction (second direction) among the first lead terminals 11 to 18.
  • the first lead terminals 11-18 include first inner lead portions 11A-18A provided within the sealing resin 90 and the first outer lead portions 11B-18B described above.
  • the configuration of the first inner lead portions 11A-18A is described below.
  • the first inner lead portions 11A, 18A are connected to the first die pad 30. More specifically, the first inner lead portion 11A is connected to the first side surface 33 of the first die pad 30. The first inner lead portion 18A is connected to the second side surface 34 of the first die pad 30. The first inner lead portions 12A to 17A are disposed at a distance from the first die pad 30.
  • the first inner lead portion 11A includes a first lead portion 11AA, a second lead portion 11AB, and a third lead portion 11AC.
  • the first lead portion 11AA is a portion connected to the first outer lead portion 11B and extends in the X-direction in a plan view.
  • the first lead portion 11AA includes a narrow portion 11AA1 and a wide portion 11AA2.
  • the side surface closer to the first lead terminal 12 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 11AA1 and the side surface of the wide portion 11AA2, and is curved away from the first inner lead portion 12A.
  • the narrow width portion 11AA1 constitutes a portion of the first lead portion 11AA that is closer to the first sealing side surface 93.
  • the narrow width portion 11AA1 is connected to the first outer lead portion 11B.
  • the wide portion 11AA2 constitutes a portion of the first lead portion 11AA closer to the second lead portion 11AB.
  • the wide portion 11AA2 is connected to the second lead portion 11AB.
  • the wide portion 11AA2 is formed so as to be wider than the narrow portion 11AA1 by extending in the Y direction toward the first lead terminal 12.
  • the width dimension (size in the Y direction) of the wide portion 11AA2 is about 1.5 times the width dimension (size in the Y direction) of the narrow portion 11AA1. Note that the width dimensions of the narrow portion 11AA1 and the wide portion 11AA2 can be changed as desired.
  • the second lead portion 11AB is connected to the first lead portion 11AA.
  • the second lead portion 11AB extends obliquely in the Y direction toward the first die pad 30 as it approaches the second die pad 50 in the X direction.
  • the width dimension of the second lead portion 11AB is larger than the width dimension of the narrow portion 11AA1 of the first lead portion 11AA and smaller than the width dimension of the wide portion 11AA2.
  • the width dimension of the second lead portion 11AB can be defined by the size in a direction perpendicular to the direction in which the second lead portion 11AB extends in a plan view.
  • the third lead portion 11AC extends in the Y direction in plan view.
  • the third lead portion 11AC connects the first die pad 30 and the second lead portion 11AB.
  • the width dimension (size in the X direction) of the third lead portion 11AC is smaller than the width dimension of the second lead portion 11AB.
  • the width dimension of the third lead portion 11AC is equal to or smaller than the width dimension of the narrow portion 11AA1 of the first lead portion 11AA.
  • curved surfaces are formed on both side surfaces of the third lead portion 11AC at the connection portions with the first die pad 30.
  • the third lead portion 11AC is connected to a portion of the first side surface 33 closer to the first base end surface 32.
  • the distance in the X direction between the third lead portion 11AC and the first base end surface 32 is smaller than the distance in the X direction between the third lead portion 11AC and the first tip end surface 31.
  • the width dimensions of the narrow portion 11AA1, the wide portion 11AA2, the second lead portion 11AB, and the third lead portion 11AC can each be changed as desired.
  • the width dimension of the third lead portion 11AC may be equal to or greater than the width dimension of the second lead portion 11AB.
  • the first inner lead portion 18A includes a first lead portion 18AA, a second lead portion 18AB, and a third lead portion 18AC.
  • the first inner lead portion 18A has a shape that is linearly symmetrical with respect to the first inner lead portion 11A with respect to an imaginary line that extends along the X direction at the center of the first die pad 30 in the Y direction. For this reason, only an overview of the first inner lead portion 18A will be described, and a detailed description thereof will be omitted.
  • the first lead portion 18AA includes a narrow portion 18AA1 and a wide portion 18AA2.
  • the wide portion 18AA2 extends from the narrow portion 18AA1 toward the first lead terminal 17.
  • the side surface between the narrow portion 18AA1 and the wide portion 18AA2, which is closer to the first lead terminal 17, includes a curved surface.
  • the second lead portion 18AB extends obliquely in the Y direction toward the first die pad 30 as it approaches the second die pad 50 in the X direction.
  • the third lead portion 18AC extends in the Y direction in a plan view, and is connected to the first die pad 30.
  • the first inner lead portion 12A includes a wire connection portion 12AA and a lead connection portion 12AB extending from the wire connection portion 12AA toward the first sealing side surface 93 .
  • the wire connection portion 12AA When viewed from the Y direction, the wire connection portion 12AA is disposed at a position overlapping the first die pad 30. When viewed from the Y direction, the wire connection portion 12AA is disposed in the X direction between the third lead portion 11AC of the first inner lead portion 11A and the first base end surface 32 of the first die pad 30.
  • the tip surface of the wire connection portion 12AA faces the first side surface 33 of the first die pad 30 in the Y direction.
  • the tip surface of the wire connection portion 12AA extends along the X direction in a plan view.
  • the wire connection portion 12AA extends obliquely in the Y direction from the tip surface of the wire connection portion 12AA toward the lead connection portion 12AB toward the first sealing side surface 93.
  • the lead connection portion 12AB extends in the X direction in a plan view.
  • the lead connection portion 12AB includes a narrow portion 12AB1 and a wide portion 12AB2.
  • the side surface closer to the first lead terminal 11 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 12AB1 and the side surface of the wide portion 12AB2, and is curved away from the first inner lead portion 11A.
  • the narrow portion 12AB1 constitutes the portion of the lead connection portion 12AB that is closer to the first sealing side surface 93.
  • the narrow portion 12AB1 is connected to the first outer lead portion 12B.
  • the width dimension (size in the Y direction) of the narrow portion 12AB1 is equal to the width dimension of the narrow portion 11AA1 of the first lead portion 11AA of the first inner lead portion 11A.
  • the wide portion 12AB2 constitutes the portion of the lead connection portion 12AB closer to the wire connection portion 12AA.
  • the wide portion 12AB2 is connected to the wire connection portion 12AA.
  • the wide portion 12AB2 is formed so as to be wider than the narrow portion 12AB1 by extending in the Y direction toward the first lead portion 11AA of the first inner lead portion 11A.
  • the maximum value of the width dimension (size in the Y direction) of the wide portion 12AB2 is approximately twice the width dimension (size in the Y direction) of the narrow portion 12AB1.
  • the maximum value of the width dimension of the wide portion 12AB2 is larger than the width dimension of the wide portion 11AA2 of the first lead portion 11AA of the first inner lead portion 11A.
  • the width dimensions of the narrow portion 12AB1 and the wide portion 12AB2 can be changed as desired.
  • the inner lead portion 12A has an inclined surface 12AC.
  • the inclined surface 12AC is formed on the wide portion 12AB2. More specifically, the inclined surface 12AC is formed on one of the two side surfaces of the wide portion 12AB2 that is closer to the first lead portion 11AA of the first inner lead portion 11A.
  • the inclined surface 12AC inclines toward the first die pad 30 as it approaches the wire connection portion 12AA.
  • the inclination angle of the inclined surface 12AC in the X direction is equal to the inclination angle of the second lead portion 11AB of the first inner lead portion 11A in the X direction.
  • the first inner lead portion 17A includes a wire connection portion 17AA, a lead connection portion 17AB, and an inclined surface 17AC.
  • the first inner lead portion 17A has a shape that is linearly symmetrical with respect to the first inner lead portion 12A with respect to an imaginary line that extends along the X direction at the center of the first die pad 30 in the Y direction. For this reason, only an overview of the first inner lead portion 17A will be described, and a detailed description thereof will be omitted.
  • the wire connection portion 17AA When viewed from the Y direction, the wire connection portion 17AA is positioned so as to overlap the first die pad 30. When viewed from the Y direction, the wire connection portion 17AA is positioned in the X direction between the third lead portion 18AC of the first inner lead portion 18A and the first base end surface 32 of the first die pad 30.
  • the tip surface of the wire connection portion 17AA faces the second side surface 34 of the first die pad 30 in the Y direction.
  • the wire connection portion 17AA extends obliquely toward the first sealing side surface 93 in the Y direction from the tip surface of the wire connection portion 17AA toward the lead connection portion 17AB.
  • the lead connection portion 17AB extends in the X direction in a plan view.
  • the lead connection portion 17AB includes a narrow portion 17AB1 and a wide portion 17AB2.
  • the side surface closer to the first lead terminal 18 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 17AB1 and the side surface of the wide portion 17AB2, and is curved away from the first inner lead portion 18A.
  • the inclined surface 17AC is formed on the side of the wide portion 17AB2 that is closer to the first lead portion 18AA of the first inner lead portion 18A.
  • the inclined surface 17AC is inclined toward the first die pad 30 as it approaches the wire connection portion 17AA.
  • the inclination angle of the inclined surface 17AC in the X direction is equal to the inclination angle of the second lead portion 18AB of the first inner lead portion 18A in the X direction.
  • the first inner lead portions 13A to 16A are positioned closer to the first sealing side surface 93 than the first die pad 30.
  • the first inner lead portions 13A to 16A have the same shape. For this reason, the configuration of the first inner lead portion 13A will be described in detail, and a detailed description of the first inner lead portions 14A to 16A will be omitted.
  • the first inner lead portion 13A extends along the X direction.
  • the first inner lead portion 13A includes a wire connection portion 13AA and a lead connection portion 13AB that extends from the wire connection portion 13AA toward the first sealing side surface 93.
  • the lead connection portion 13AB is connected to the first outer lead portion 13B.
  • the shape of the wire connection portion 13AA in plan view is a substantially rectangular shape with the Y direction as the long side and the X direction as the short side.
  • the portion of the wire connection portion 13AA closer to the lead connection portion 13AB is curved so that the width dimension (size in the Y direction) of the wire connection portion 13AA decreases toward the lead connection portion 13AB.
  • the tip and both ends in the Y direction of the wire connection portion 13AA are tapered so that the width dimension (size in the Y direction) of the wire connection portion 13AA decreases toward the tip surface of the wire connection portion 13AA.
  • the tip surface of the wire connection portion 13AA faces the first die pad 30 in the X direction in plan view, and extends along the Y direction.
  • the first inner lead portion 14A includes a wire connection portion 14AA and a lead connection portion 14AB that extends from the wire connection portion 14AA toward the first sealing side surface 93.
  • the lead connection portion 14AB is connected to the first outer lead portion 14B.
  • the first inner lead portion 15A includes a wire connection portion 15AA and a lead connection portion 15AB that extends from the wire connection portion 15AA toward the first sealing side surface 93.
  • the lead connection portion 15AB is connected to the first outer lead portion 15B.
  • the first inner lead portion 16A includes a wire connection portion 16AA and a lead connection portion 16AB that extends from the wire connection portion 16AA toward the first sealing side surface 93.
  • the lead connection portion 16AB is connected to the first outer lead portion 16B.
  • wire connection portions 12AA to 17AA of the first inner lead portions 12A to 17A correspond to the "second portion.”
  • the lead connection portions 12AB to 17AB of the first inner lead portions 12A to 17A correspond to the "first portion.”
  • Figure 10 shows the cross-sectional structure of the wire connection portion 13AA of the first inner lead portion 13A. Note that the cross-sectional structures of the wire connection portions 12AA, 14AA to 17AA of the first inner lead portions 12A, 14A to 17A are similar to the cross-sectional structure of the wire connection portion 13AA, so a detailed description thereof will be omitted.
  • the inner lead body 20B of the wire connection portion 13AA has an inner lead surface 21B, an inner lead back surface 22B opposite the inner lead surface 21B, and an inner lead side surface 23B connecting the inner lead surface 21B and the inner lead back surface 22B.
  • the inner lead side surface 23B includes a tip surface 24B facing the first base end surface 32 (see FIG. 9) of the first die pad 30.
  • the inner lead surface 21B is the surface to which the first lead wire WB described below is bonded, and faces the same side as the sealing surface 91 (see FIG. 1).
  • the tip surface 24B is formed in a concave shape that is recessed away from the first die pad 30.
  • the tip surface 24B is recessed from both the end on the inner lead surface 21B side and the end on the inner lead back surface 22B side toward the center of the tip surface 24B in the Z direction.
  • the deepest position of the concave tip surface 24B is a position about 1/3 of the thickness of the wire connection portion 12AA from the inner lead back surface 22B.
  • the shape of the tip surface 24B in the cross-sectional view of FIG. 10 can be changed as desired.
  • a plating layer 29 is formed on the inner lead surface 21B.
  • the plating layer 29 is formed of a material containing silver, for example.
  • the plating layer 29 is formed over substantially the entire inner lead surface 21B in the wire connection portion 13AA.
  • the thickness of the plating layer 29 is thinner than the thickness of the inner lead body 20B in the wire connection portion 13AA.
  • End surface 29A of plating layer 29 closer to tip surface 24B is formed at a position closer to lead connection portion 13AB (see FIG. 9) than the edge of inner lead surface 21B closer to tip surface 24B.
  • plating layer 29 does not cover the end surface of inner lead surface 21B closer to tip surface 24B.
  • the end of inner lead surface 21B, including the edge closer to tip surface 24B, is in contact with sealing resin 90 (see FIG. 1).
  • End surface 29A of plating layer 29 is inclined away from the edge of inner lead surface 21B closer to tip surface 24B as it moves from the front surface to the back surface of plating layer 29.
  • the distance in the X direction between the back surface of plating layer 29 and the edge of inner lead surface 21B closer to tip surface 24B is, for example, equal to or greater than the thickness of plating layer 29. Note that the distance in the X direction between the back surface of plating layer 29 and the edge of inner lead surface 21B closer to tip surface 24B can be changed as desired.
  • the plating layer 29 does not cover the tip surface 24B of the wire connection portion 13AA. Therefore, the tip surface 24B is in contact with the sealing resin 90. Furthermore, although not shown, the plating layer 29 does not cover the inner lead side surface 23B other than the tip surface 24B. Therefore, the inner lead side surface 23B is in contact with the sealing resin 90.
  • the second die pad 50 has a second tip surface 51, a second base end surface 52, a third side surface 53, and a fourth side surface 54.
  • the second tip surface 51 is an end surface closer to the first sealing side surface 93 (see FIG. 7) among both end surfaces in the X direction of the second die pad 50
  • the second base end surface 52 is an end surface closer to the second sealing side surface 94 (see FIG. 7) among both end surfaces in the X direction of the second die pad 50.
  • the third side surface 53 is an end surface closer to the third sealing side surface 95 (see FIG.
  • both end surfaces in the Y direction of the second die pad 50 and the fourth side surface 54 is an end surface closer to the fourth sealing side surface 96 (see FIG. 7) among both end surfaces in the Y direction of the second die pad 50.
  • Both the second tip surface 51 and the second base end surface 52 are surfaces extending along the Y direction in a plan view.
  • Both the third side surface 53 and the fourth side surface 54 are surfaces extending along the X direction in a plan view.
  • the second die pad 50 further has a third distal curved surface 55 , a fourth distal curved surface 56 , a third proximal curved surface 57 , and a fourth proximal curved surface 58 .
  • the third distal curved surface 55 is formed between the second distal surface 51 and the third side surface 53.
  • the third distal curved surface 55 is a portion where the portion between the second distal surface 51 and the third side surface 53 is R-chamfered.
  • the fourth distal curved surface 56 is formed between the second distal surface 51 and the fourth side surface 54.
  • the fourth distal curved surface 56 is a portion where the portion between the second distal surface 51 and the fourth side surface 54 is R-chamfered.
  • the third proximal curved surface 57 is formed between the second proximal surface 52 and the third side surface 53.
  • the third proximal curved surface 57 is a shape where the portion between the second proximal surface 52 and the third side surface 53 is R-chamfered.
  • the fourth proximal curved surface 58 is formed between the second proximal surface 52 and the fourth side surface 54.
  • the fourth proximal curved surface 58 is a shape where the portion between the second proximal surface 52 and the fourth side surface 54 is R-chamfered.
  • the arc length of the third distal curved surface 55 in plan view is equal to the arc length of the third proximal curved surface 57 and the arc length of the fourth proximal curved surface 58 in plan view.
  • the arc length of the fourth distal curved surface 56 in plan view is equal to the arc length of the third distal curved surface 55 in plan view.
  • the radius of curvature of the third distal curved surface 55 in plan view is equal to the radius of curvature of the third proximal curved surface 57 and the radius of curvature of the fourth proximal curved surface 58 in plan view.
  • the radius of curvature of the fourth distal curved surface 56 in plan view is equal to the radius of curvature of the third distal curved surface 55 in plan view.
  • the second die pad 50 has multiple recesses 59 (28 in the first embodiment). Each recess 59 is recessed from the front surface of the second die pad 50 toward the back surface.
  • the front surface of the second die pad 50 is the surface on which the second chip 70 is mounted.
  • the back surface of the second die pad 50 is the surface facing the opposite side to the front surface of the second die pad 50.
  • the number of recesses 59 can be changed as desired.
  • the shape of the recess 59 is circular in plan view.
  • the recesses 59 are arranged at a distance from each other in both the X direction and the Y direction.
  • the recesses 59 are arranged in a lattice pattern.
  • the number of recesses 59 arranged in the Y direction is greater than the number of recesses 59 arranged in the X direction.
  • the size of the recess 59 is equal to the size of the recess 39 of the first die pad 30.
  • the shape of each recess 59 in plan view can be changed arbitrarily.
  • the arrangement of the recesses 59 can be changed arbitrarily.
  • the size of the recess 59 can be changed arbitrarily.
  • the size of the recess 59 may be different from the size of the recess 39.
  • the recess 59 that overlaps with the second conductive bonding material SD2 (see FIG. 7) in plan view is filled with the second conductive bonding material SD2.
  • each of the second lead terminals 41 to 48 will now be described. 12, of the second lead terminals 41 to 48, the second lead terminals 41, 42 are disposed closer to the fourth sealing side surface 96 than the second die pad 50 when viewed from the X direction.
  • the second lead terminals 47, 48 are disposed closer to the third sealing side surface 95 than the second die pad 50 when viewed from the X direction.
  • the second lead terminals 43 to 46 are disposed at positions overlapping with the second die pad 50 when viewed from the X direction.
  • the second lead terminals 41, 48 correspond to "second end lead terminals" which are second lead terminals disposed at both ends in the Y direction (second direction) among the second lead terminals 41 to 48.
  • the second lead terminals 41-48 include second inner lead portions 41A-48A provided in the sealing resin 90 and the second outer lead portions 41B-48B described above.
  • the configuration of the second inner lead portions 41A-48A is described below.
  • the second inner lead portions 41A, 48A are connected to the second die pad 50. More specifically, the second inner lead portion 41A is connected to the third side surface 53 of the second die pad 50. The second inner lead portion 48A is connected to the fourth side surface 54 of the second die pad 50. The second inner lead portions 42A to 47A are disposed at a distance from the second die pad 50.
  • the second inner lead portion 41A includes a fourth lead portion 41AA, a fifth lead portion 41AB, and a sixth lead portion 41AC.
  • the fourth lead portion 41AA is a portion connected to the second outer lead portion 41B and extends in the X direction in a plan view.
  • the fourth lead portion 41AA includes a narrow portion 41AA1 and a wide portion 41AA2.
  • the side surface closer to the second lead terminal 42 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 41AA1 and the side surface of the wide portion 41AA2, and is curved away from the second inner lead portion 42A.
  • the narrow width portion 41AA1 constitutes a portion of the fourth lead portion 41AA that is closer to the second sealing side surface 94.
  • the narrow width portion 41AA1 is connected to the second outer lead portion 41B.
  • the wide portion 41AA2 constitutes a portion of the fourth lead portion 41AA closer to the fifth lead portion 41AB.
  • the wide portion 41AA2 is connected to the fifth lead portion 41AB.
  • the wide portion 41AA2 is formed so as to be wider than the narrow portion 41AA1 by extending in the Y direction toward the second lead terminal 42.
  • the width dimension (size in the Y direction) of the wide portion 41AA2 is about 1.5 times the width dimension (size in the Y direction) of the narrow portion 41AA1.
  • the width dimensions of the narrow portion 41AA1 and the wide portion 41AA2 can be changed as desired.
  • the fifth lead portion 41AB is connected to the fourth lead portion 41AA.
  • the fifth lead portion 41AB extends obliquely in the Y direction toward the second die pad 50 as it approaches the first die pad 30 in the X direction.
  • the width dimension of the fifth lead portion 41AB is larger than the width dimension of the narrow portion 41AA1 of the fourth lead portion 41AA and smaller than the width dimension of the wide portion 41AA2.
  • the width dimension of the fifth lead portion 41AB can be defined by the size in a direction perpendicular to the direction in which the fifth lead portion 41AB extends in a plan view.
  • the sixth lead portion 41AC extends in the Y direction in plan view.
  • the sixth lead portion 41AC connects the second die pad 50 and the sixth lead portion 41AC.
  • the width dimension (size in the X direction) of the sixth lead portion 41AC is smaller than the width dimension of the fifth lead portion 41AB.
  • the width dimension of the sixth lead portion 41AC is equal to or smaller than the width dimension of the narrow portion 41AA1 of the fourth lead portion 41AA.
  • curved surfaces are formed on both side surfaces of the sixth lead portion 41AC at the connection portions with the second die pad 50.
  • the sixth lead portion 41AC is connected to a portion of the third side surface 53 closer to the second base end surface 52.
  • the distance in the X direction between the sixth lead portion 41AC and the second base end surface 52 is smaller than the distance in the X direction between the sixth lead portion 41AC and the second tip surface 51.
  • the second inner lead portion 48A includes a fourth lead portion 48AA, a fifth lead portion 48AB, and a sixth lead portion 48AC.
  • the second inner lead portion 48A has a shape that is linearly symmetrical with respect to the second inner lead portion 41A with respect to an imaginary line that extends along the X direction at the center of the Y direction of the second die pad 50. For this reason, only an overview of the second inner lead portion 48A will be described, and a detailed description thereof will be omitted.
  • the fourth lead portion 48AA includes a narrow portion 48AA1 and a wide portion 48AA2.
  • the wide portion 48AA2 extends from the narrow portion 48AA1 toward the second lead terminal 47.
  • the side surface between the narrow portion 48AA1 and the wide portion 48AA2, which is closer to the second lead terminal 47, includes a curved surface.
  • the fifth lead portion 48AB extends obliquely toward the second die pad 50 in the Y direction as it approaches the first die pad 30 in the X direction.
  • the sixth lead portion 48AC extends in the Y direction in a plan view and is connected to the second die pad 50.
  • the second inner lead portion 42A includes a wire connection portion 42AA and a lead connection portion 42AB extending from the wire connection portion 42AA toward the second sealing side surface 94.
  • the wire connection portion 42AA When viewed from the Y direction, the wire connection portion 42AA is disposed at a position overlapping the second die pad 50. When viewed from the Y direction, the wire connection portion 42AA is disposed in the X direction between the sixth lead portion 41AC of the second inner lead portion 41A and the second base end surface 52 of the second die pad 50.
  • the tip surface of the wire connection portion 42AA faces the third side surface 53 of the second die pad 50 in the Y direction.
  • the tip surface of the wire connection portion 42AA extends along the X direction in a plan view.
  • the wire connection portion 42AA extends obliquely in the Y direction from the tip surface of the wire connection portion 42AA toward the lead connection portion 42AB toward the second sealing side surface 94.
  • the lead connection portion 42AB extends in the X direction in a plan view.
  • the lead connection portion 42AB includes a narrow portion 42AB1 and a wide portion 42AB2.
  • the side surface closer to the second lead terminal 41 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 42AB1 and the side surface of the wide portion 42AB2, and is curved away from the second inner lead portion 41A.
  • the narrow portion 42AB1 constitutes the portion of the lead connection portion 42AB that is closer to the second sealing side surface 94.
  • the narrow portion 42AB1 is connected to the second outer lead portion 42B.
  • the width dimension (size in the Y direction) of the narrow portion 42AB1 is equal to the width dimension of the narrow portion 41AA1 of the fourth lead portion 41AA of the second inner lead portion 41A.
  • the wide portion 42AB2 constitutes the portion of the lead connection portion 42AB closer to the wire connection portion 42AA.
  • the wide portion 42AB2 is connected to the wire connection portion 42AA.
  • the wide portion 42AB2 is formed so as to be wider than the narrow portion 42AB1 by extending in the Y direction toward the fourth lead portion 41AA of the second inner lead portion 41A.
  • the width dimension (size in the Y direction) of the wide portion 42AB2 is approximately twice the width dimension (size in the Y direction) of the narrow portion 42AB1.
  • the width dimension of the wide portion 42AB2 is larger than the width dimension of the wide portion 41AA2 of the fourth lead portion 41AA of the second inner lead portion 41A.
  • the width dimensions of the narrow portion 42AB1 and the wide portion 42AB2 can be changed as desired.
  • the inner lead portion 42A has an inclined surface 42AC.
  • the inclined surface 42AC is formed on the wide portion 42AB2. More specifically, the inclined surface 42AC is formed on one of the two side surfaces of the wide portion 42AB2 that is closer to the fourth lead portion 41AA of the second inner lead portion 41A.
  • the inclined surface 42AC is inclined toward the second die pad 50 as it approaches the wire connection portion 42AA.
  • the inclination angle of the inclined surface 42AC in the X direction is equal to the inclination angle of the fifth lead portion 41AB of the second inner lead portion 41A in the X direction.
  • the second inner lead portion 47A includes a wire connection portion 47AA, a lead connection portion 47AB, and an inclined surface 47AC.
  • the second inner lead portion 47A has a shape that is linearly symmetrical with respect to the second inner lead portion 42A with respect to an imaginary line that extends along the X direction at the center of the second die pad 50 in the Y direction. For this reason, only an overview of the second inner lead portion 47A will be described, and a detailed description thereof will be omitted.
  • the wire connection portion 47AA When viewed from the Y direction, the wire connection portion 47AA is disposed at a position overlapping the second die pad 50. When viewed from the Y direction, the wire connection portion 47AA is disposed in the X direction between the sixth lead portion 48AC of the second inner lead portion 48A and the second base end surface 52 of the second die pad 50.
  • the tip surface of the wire connection portion 47AA faces the fourth side surface 54 of the second die pad 50 in the Y direction.
  • the wire connection portion 47AA extends obliquely toward the second sealing side surface 94 in the Y direction from the tip surface of the wire connection portion 47AA toward the lead connection portion 47AB.
  • the lead connection portion 47AB extends in the X direction in a plan view.
  • the lead connection portion 47AB includes a narrow portion 47AB1 and a wide portion 47AB2.
  • the side surface closer to the second lead terminal 48 includes a curved surface.
  • the curved surface is a surface that connects the side surface of the narrow portion 47AB1 and the side surface of the wide portion 47AB2, and is curved away from the second inner lead portion 48A.
  • the inclined surface 47AC is formed on one of the two side surfaces of the wide portion 47AB2, closer to the fourth lead portion 48AA of the second inner lead portion 48A.
  • the inclined surface 47AC is inclined toward the second die pad 50 as it approaches the wire connection portion 47AA.
  • the inclination angle of the inclined surface 47AC in the X direction is equal to the inclination angle of the fifth lead portion 48AB of the second inner lead portion 48A in the X direction.
  • the second inner lead portions 43A to 46A are disposed closer to the second sealing side surface 94 than the second die pad 50.
  • the second inner lead portions 43A to 46A have the same shape. For this reason, the configuration of the second inner lead portion 43A will be described in detail, and a detailed description of the second inner lead portions 44A to 46A will be omitted.
  • the second inner lead portion 43A extends along the X direction.
  • the second inner lead portion 43A includes a wire connection portion 43AA and a lead connection portion 43AB that extends from the wire connection portion 43AA toward the second sealing side surface 94.
  • the lead connection portion 43AB is connected to the second outer lead portion 43B.
  • the shape of the wire connection portion 43AA in plan view is a substantially rectangular shape with the Y direction as the long side and the X direction as the short side.
  • the portion of the wire connection portion 43AA closer to the lead connection portion 43AB is curved so that the width dimension (size in the Y direction) of the wire connection portion 43AA decreases toward the lead connection portion 43AB.
  • the tip and both ends in the Y direction of the wire connection portion 43AA are tapered so that the width dimension (size in the Y direction) of the wire connection portion 43AA decreases toward the tip surface of the wire connection portion 43AA.
  • the tip surface of the wire connection portion 43AA faces the second die pad 50 in the X direction in plan view, and extends along the Y direction.
  • the second inner lead portion 44A includes a wire connection portion 44AA and a lead connection portion 44AB that extends from the wire connection portion 44AA toward the second sealing side surface 94.
  • the lead connection portion 44AB is connected to the second outer lead portion 44B.
  • the second inner lead portion 45A includes a wire connection portion 45AA and a lead connection portion 45AB that extends from the wire connection portion 45AA toward the second sealing side surface 94.
  • the lead connection portion 45AB is connected to the second outer lead portion 45B.
  • the second inner lead portion 46A includes a wire connection portion 46AA and a lead connection portion 46AB that extends from the wire connection portion 46AA toward the second sealing side surface 94.
  • the lead connection portion 46AB is connected to the second outer lead portion 46B.
  • wire connection portions 42AA to 47AA of the second inner lead portions 42A to 47A correspond to the "fourth portion.”
  • the lead connection portions 42AB to 47AB of the second inner lead portions 42A to 47A correspond to the "third portion.”
  • Figure 13 shows the cross-sectional structure of the wire connection portion 43AA of the second inner lead portion 43A.
  • the cross-sectional structures of the wire connection portions 42AA, 44AA to 47AA of the second inner lead portions 42A, 44A to 47A are similar to the cross-sectional structure of the wire connection portion 43AA, so detailed descriptions thereof will be omitted.
  • the reference numerals relating to the second inner lead portion 43A are the same as those relating to the first inner lead portion 13A.
  • the inner lead body 20B of the wire connection portion 43AA has an inner lead surface 21B, an inner lead back surface 22B opposite the inner lead surface 21B, and an inner lead side surface 23B connecting the inner lead surface 21B and the inner lead back surface 22B.
  • the inner lead surface 21B of the wire connection portion 43AA faces the same side as the inner lead surface 21B of the wire connection portion 13AA (see Figure 10)
  • the inner lead back surface 22B of the wire connection portion 43AA faces the same side as the inner lead back surface 22B of the wire connection portion 13AA (see Figure 10).
  • the tip surface 24B is formed in a concave shape that is recessed away from the second die pad 50 (see FIG. 11).
  • the tip surface 24B is recessed from both the end on the inner lead front surface 21B side and the end on the inner lead back surface 22B side toward the center of the tip surface 24B in the Z direction.
  • the deepest position of the concave tip surface 24B is approximately 1/3 of the thickness of the wire connection portion 43AA from the inner lead back surface 22B.
  • the shape of the tip surface 24B in the cross-sectional view of FIG. 13 can be changed as desired.
  • a plating layer 29 is formed on the inner lead surface 21B.
  • the plating layer 29 is formed of a material containing silver, for example.
  • the plating layer 29 is formed of the same material as the plating layer 29 of the wire connection portion 12AA (see FIG. 10).
  • the plating layer 29 is formed over almost the entire inner lead surface 21B.
  • the thickness of the plating layer 29 is thinner than the thickness of the inner lead body 20B of the wire connection portion 43AA.
  • the thickness of the plating layer 29 of the wire connection portion 43AA is equal to the thickness of the plating layer 29 of the wire connection portion 13AA.
  • the thickness of the plating layer 29 of the wire connection portion 43AA is within 20% of the thickness of the plating layer 29 of the wire connection portion 43AA, for example, it can be said that the thickness of the plating layer 29 of the wire connection portion 43AA is equal to the thickness of the plating layer 29 of the wire connection portion 13AA.
  • End surface 29A of plating layer 29 near tip surface 24B of wire connection portion 43AA is formed at a position closer to lead connection portion 43AB (see FIG. 12) than the edge of inner lead surface 21B near tip surface 24B.
  • plating layer 29 does not cover the edge of inner lead surface 21B near tip surface 24B.
  • the end of inner lead surface 21B, including the edge near tip surface 24B, is in contact with sealing resin 90 (see FIG. 1).
  • end surface 29A of plating layer 29 is inclined away from the end surface of inner lead surface 21B closer to tip surface 24B as it moves from the front surface to the back surface of plating layer 29.
  • the distance in the X direction between the back surface of plating layer 29 and the edge of inner lead surface 21B closer to tip surface 24B is, for example, equal to or greater than the thickness of plating layer 29. Note that the distance in the X direction between the back surface of plating layer 29 and the edge of inner lead surface 21B closer to tip surface 24B can be changed as desired.
  • the plating layer 29 does not cover the tip surface 24B of the wire connection portion 43AA. Therefore, the tip surface 24B is in contact with the sealing resin 90. Furthermore, although not shown, the plating layer 29 does not cover the inner lead side surface 23B other than the tip surface 24B. Therefore, the inner lead side surface 23B is in contact with the sealing resin 90.
  • the first chip 60 mounted on the first die pad 30 has a chip surface 61, a chip back surface 62 (see FIG. 19) facing the opposite side to the chip surface 61 in the Z direction, and first to fourth chip side surfaces 63 to 66 connecting the chip surface 61 and the chip back surface 62.
  • a chip front surface 61 faces the side opposite to the first die pad 30 side with respect to the first chip 60
  • a chip back surface 62 faces the side facing the first die pad 30
  • the first chip side surface 63 and the second chip side surface 64 constitute both end surfaces in the X direction of the first chip 60 in a plan view.
  • the first chip side surface 63 is the chip side surface on the side of the first chip 60 on which the first lead terminals 11 to 18 are arranged
  • the second chip side surface 64 is the chip side surface on the side of the first chip 60 on which the second chip 70 is arranged.
  • the third chip side surface 65 and the fourth chip side surface 66 constitute both end surfaces in the Y direction of the first chip 60 in a plan view.
  • the third chip side surface 65 is the chip side surface closer to the third sealing side surface 95 of the sealing resin 90
  • the fourth chip side surface 66 is the chip side surface closer to the fourth sealing side surface 96.
  • the first chip 60 has a plurality of first electrode pads 67 (six in the first embodiment), a plurality of second electrode pads 68 (seven in the first embodiment), and a plurality of third electrode pads 69 (two in the first embodiment).
  • Each of the first electrode pads 67, each of the second electrode pads 68, and each of the third electrode pads 69 are provided so as to be exposed from the chip surface 61.
  • Each of the first electrode pads 67, second electrode pads 68, and third electrode pads 69 may include at least one of titanium (Ti), titanium nitride (TiN), copper (Cu), aluminum (Al), and tungsten (W).
  • each of the first electrode pads 67, second electrode pads 68, and third electrode pads 69 has a laminated structure of titanium and copper.
  • the material constituting one or two types of electrode pads among each of the first electrode pads 67, second electrode pads 68, and third electrode pads 69 may be different from the material constituting the remaining types of electrode pads.
  • each of the first electrode pads 67, each of the second electrode pads 68, and each of the third electrode pads 69 includes aluminum.
  • each of the first electrode pads 67, each of the second electrode pads 68, and each of the third electrode pads 69 exposed from the chip surface 61 has a thickness of 2 ⁇ m or more. Note that the thickness of each of the first electrode pads 67, each of the second electrode pads 68, and each of the third electrode pads 69 can be changed as desired.
  • the first electrode pads 67 are electrode pads electrically connected to the second chip 70.
  • the first electrode pads 67 are provided at a position closer to the second chip side surface 64 than the center of the X direction of the chip surface 61 in a plan view.
  • the first electrode pads 67 can be divided into three first electrode pads 67 closer to the third chip side surface 65 and three first electrode pads 67 closer to the fourth chip side surface 66.
  • the three first electrode pads 67 closer to the third chip side surface 65 are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the three first electrode pads 67 closer to the fourth chip side surface 66 are arranged closer to the second chip side surface 64 than the three first electrode pads 67 closer to the third chip side surface 65.
  • the three first electrode pads 67 closer to the fourth chip side surface 66 are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the second electrode pads 68 are electrode pads that are individually and electrically connected to the first lead terminals 12 to 17.
  • the second electrode pads 68 are provided at positions closer to the first chip side surface 63 than the center in the X direction of the chip surface 61 in a plan view.
  • the second electrode pads 68, except for the second electrode pads 68 at both ends in the Y direction, are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the second electrode pads 68 at both ends in the Y direction are shifted toward the second chip side surface 64 in the X direction relative to the other second electrode pads 68.
  • the multiple third electrode pads 69 are electrode pads electrically connected to the first die pad 30. Each third electrode pad 69 has the same potential as the first die pad 30, i.e., the first ground potential.
  • the multiple third electrode pads 69 are provided at both ends in the Y direction of the chip surface 61 in a plan view.
  • the multiple third electrode pads 69 are arranged between the multiple first electrode pads 67 and the multiple second electrode pads 68 in the X direction when viewed from the Y direction.
  • the multiple third electrode pads 69 are arranged in positions that overlap each other when viewed from the Y direction.
  • the second chip 70 mounted on the second die pad 50 has a chip surface 71, a chip back surface (not shown) facing the opposite side to the chip surface 71 in the Z direction, and first to fourth chip side surfaces 73 to 76 connecting the chip surface 71 and the chip back surface.
  • the chip front surface 71 faces the side opposite to the second die pad 50 side with respect to the second chip 70
  • the chip back surface faces the side facing the second die pad 50
  • the first chip side surface 73 and the second chip side surface 74 constitute both end surfaces in the X direction of the second chip 70 in a plan view.
  • the first chip side surface 73 is the chip side surface of the second chip 70 on the side where the first chip 60 is arranged
  • the second chip side surface 74 is the chip side surface of the second chip 70 on the side where the second lead terminals 41 to 48 are arranged.
  • the third chip side surface 75 and the fourth chip side surface 76 constitute both end surfaces in the Y direction of the second chip 70 in a plan view.
  • the third chip side surface 75 is the chip side surface closer to the third sealing side surface 95 of the sealing resin 90
  • the fourth chip side surface 76 is the chip side surface closer to the fourth sealing side surface 96.
  • the second chip 70 has a plurality of first electrode pads 77 (six in the first embodiment), a plurality of second electrode pads 78 (seven in the first embodiment), and a plurality of third electrode pads 79 (three in the first embodiment).
  • Each of the first electrode pads 77, each of the second electrode pads 78, and each of the third electrode pads 79 are provided so as to be exposed from the chip surface 71.
  • Each of the first electrode pads 77, second electrode pads 78, and third electrode pads 79 may include at least one of titanium, titanium nitride, copper, aluminum, and tungsten.
  • each of the first electrode pads 77, second electrode pads 78, and third electrode pads 79 has a laminated structure of titanium and copper. Note that the material constituting one or two types of electrode pads among each of the first electrode pads 77, second electrode pads 78, and third electrode pads 79 may be different from the material constituting the remaining types of electrode pads.
  • each of the first electrode pads 77, each of the second electrode pads 78, and each of the third electrode pads 79 includes aluminum.
  • each of the first electrode pads 77, each of the second electrode pads 78, and each of the third electrode pads 79 exposed from the chip surface 71 has a thickness of 2 ⁇ m or more. Note that the thickness of each of the first electrode pads 77, each of the second electrode pads 78, and each of the third electrode pads 79 can be changed as desired.
  • the first electrode pads 77 are electrode pads that are individually and electrically connected to the first electrode pads 67 of the first chip 60.
  • the first electrode pads 77 are provided at a position closer to the first chip side surface 73 than the center of the X direction of the chip surface 71 in a plan view.
  • the first electrode pads 77 can be divided into three first electrode pads 77 closer to the third chip side surface 75 and three first electrode pads 77 closer to the fourth chip side surface 76.
  • the three first electrode pads 77 closer to the third chip side surface 75 are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the three first electrode pads 77 closer to the fourth chip side surface 76 are arranged closer to the second chip side surface 74 than the three first electrode pads 77 closer to the third chip side surface 75.
  • the three first electrode pads 77 closer to the fourth chip side surface 76 are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the second electrode pads 78 are electrode pads that are individually and electrically connected to the second lead terminals 42 to 47.
  • the second electrode pads 78 are provided at positions closer to the second chip side surface 74 than the center of the chip surface 71 in the X direction in a plan view.
  • the multiple third electrode pads 79 are electrode pads electrically connected to the second die pad 50. Each third electrode pad 79 has the same potential as the second die pad 50, i.e., the second ground potential. The multiple third electrode pads 79 are provided at both ends of the chip surface 71 in the Y direction when viewed in a plan view.
  • the electrical connection configuration between the first chip 60 and the second chip 70 will be described. 14, the first electrode pads 67 of the first chip 60 and the first electrode pads 77 of the second chip 70 are individually connected by a plurality of (six in the first embodiment) inter-chip wires WA, whereby the first electrode pads 67 and the first electrode pads 77 are individually and electrically connected.
  • the multiple first electrode pads 67 in the first chip 60 include first electrode pads 67A to 67F.
  • the first electrode pads 67A to 67F are arranged in the order of first electrode pads 67A, 67B, 67C, 67D, 67E, and 67F from the third chip side surface 65 to the fourth chip side surface 66.
  • the multiple first electrode pads 77 in the second chip 70 include first electrode pads 77A to 77F.
  • the first electrode pads 77A to 77F are arranged in the order of first electrode pads 77A, 77B, 77C, 77D, 77E, and 77F from the fourth chip side surface 76 to the third chip side surface 75.
  • the first electrode pads 67A to 67F of the first chip 60 and the first electrode pads 77A to 77F of the second chip 70 are individually electrically connected by inter-chip wires WA1 to WA6.
  • the inter-chip wire WA1 connects the first electrode pad 67A of the first chip 60 and the first electrode pad 77F of the second chip 70. In other words, the inter-chip wire WA1 electrically connects the first electrode pad 67A and the first electrode pad 77F.
  • the inter-chip wire WA2 connects the first electrode pad 67B of the first chip 60 and the first electrode pad 77E of the second chip 70. In other words, the inter-chip wire WA2 electrically connects the first electrode pad 67B and the first electrode pad 77E.
  • the inter-chip wire WA3 connects the first electrode pad 67C of the first chip 60 and the first electrode pad 77D of the second chip 70. In other words, the inter-chip wire WA3 electrically connects the first electrode pad 67C and the first electrode pad 77D.
  • the inter-chip wire WA4 connects the first electrode pad 67D of the first chip 60 and the first electrode pad 77C of the second chip 70. In other words, the inter-chip wire WA4 electrically connects the first electrode pad 67D and the first electrode pad 77C.
  • the inter-chip wire WA5 connects the first electrode pad 67E of the first chip 60 and the first electrode pad 77B of the second chip 70. In other words, the inter-chip wire WA5 electrically connects the first electrode pad 67E and the first electrode pad 77B.
  • the inter-chip wire WA6 connects the first electrode pad 67F of the first chip 60 and the first electrode pad 77A of the second chip 70. In other words, the inter-chip wire WA6 electrically connects the first electrode pad 67F and the first electrode pad 77A.
  • the distance in the Y direction between the first electrode pad 67A and the first electrode pad 67B of the first chip 60 is equal to the distance in the Y direction between the first electrode pad 67B and the first electrode pad 67C.
  • the distance in the Y direction between the first electrode pad 67D and the first electrode pad 67E is equal to the distance in the Y direction between the first electrode pad 67E and the first electrode pad 67F.
  • the distance in the Y direction between the first electrode pad 67A and the first electrode pad 67B is equal to the distance in the Y direction between the first electrode pad 67D and the first electrode pad 67E.
  • the distance in the Y direction between the first electrode pad 77A and the first electrode pad 77B of the second chip 70 is equal to the distance in the Y direction between the first electrode pad 77B and the first electrode pad 77C.
  • the distance in the Y direction between the first electrode pad 77D and the first electrode pad 77E is equal to the distance in the Y direction between the first electrode pad 77E and the first electrode pad 77F.
  • the distance in the Y direction between the first electrode pad 77A and the first electrode pad 77B is equal to the distance in the Y direction between the first electrode pad 77D and the first electrode pad 77E.
  • the distance in the Y direction between the first electrode pad 67A and the first electrode pad 67B of the first chip 60 is equal to the distance in the Y direction between the first electrode pad 77D and the first electrode pad 77E of the second chip 70.
  • the distance in the Y direction between the first electrode pad 67B and the first electrode pad 67C of the first chip 60 is equal to the distance in the Y direction between the first electrode pad 77E and the first electrode pad 77F of the second chip 70.
  • the distance in the Y direction between the first electrode pad 77A and the first electrode pad 77B of the second chip 70 is equal to the distance in the Y direction between the first electrode pad 67D and the first electrode pad 67E of the first chip 60.
  • the distance in the Y direction between the first electrode pad 77B and the first electrode pad 77C of the second chip 70 is equal to the distance in the Y direction between the first electrode pad 67E and the first electrode pad 67F of the first chip 60.
  • the inter-chip wire WA1 connecting the first electrode pad 67A and the first electrode pad 77F and the inter-chip wire WA2 connecting the first electrode pad 67B and the first electrode pad 77E are parallel in a planar view.
  • the inter-chip wire WA2 and the inter-chip wire WA3 connecting the first electrode pad 67C and the first electrode pad 77D are parallel in a planar view.
  • the inter-chip wire WA4 and the inter-chip wire WA5 connecting the first electrode pad 67E and the first electrode pad 77B are parallel in a planar view.
  • the inter-chip wire WA5 and the inter-chip wire WA6 connecting the first electrode pad 67F and the first electrode pad 77A are parallel in a planar view.
  • the acute angle between inter-chip wire WA1 and inter-chip wire WA2 in a planar view is 5° or less, it can be said that inter-chip wire WA1 and inter-chip wire WA2 are parallel in a planar view. Therefore, the acute angle between inter-chip wire WA1 and inter-chip wire WA2 is 0° or more and 5° or less. In one example, the acute angle between inter-chip wire WA1 and inter-chip wire WA2 is 0° or more and 3° or less. In one example, the acute angle between inter-chip wire WA1 and inter-chip wire WA2 is greater than 3° and 5° or less.
  • the acute angle between inter-chip wire WA2 and inter-chip wire WA3 in a planar view is 5° or less, it can be said that inter-chip wire WA2 and inter-chip wire WA3 are parallel in a planar view. Therefore, the acute angle between inter-chip wire WA2 and inter-chip wire WA3 is 0° or more and 5° or less. In one example, the acute angle between inter-chip wire WA2 and inter-chip wire WA3 is 0° or more and 3° or less. In one example, the acute angle between inter-chip wire WA2 and inter-chip wire WA3 is more than 3° and 5° or less.
  • the acute angle between inter-chip wire WA4 and inter-chip wire WA5 in a plan view is 5° or less, it can be said that inter-chip wire WA4 and inter-chip wire WA5 are parallel in a plan view. Therefore, the acute angle between inter-chip wire WA4 and inter-chip wire WA5 is 0° or more and 5° or less. In one example, the acute angle between inter-chip wire WA4 and inter-chip wire WA5 is 0° or more and 3° or less. In one example, the acute angle between inter-chip wire WA4 and inter-chip wire WA5 is more than 3° and 5° or less.
  • the acute angle between inter-chip wire WA5 and inter-chip wire WA6 in a planar view is 5° or less, it can be said that inter-chip wire WA5 and inter-chip wire WA6 are parallel in a planar view. Therefore, the acute angle between inter-chip wire WA5 and inter-chip wire WA6 is 0° or more and 5° or less. In one example, the acute angle between inter-chip wire WA5 and inter-chip wire WA6 is 0° or more and 3° or less. In one example, the acute angle between inter-chip wire WA5 and inter-chip wire WA6 is more than 3° and 5° or less.
  • each of the inter-chip wires WA1 to WA3 extends along the X direction in a plan view.
  • each of the inter-chip wires WA4 to WA6 extends along the X direction in a plan view.
  • the acute angle between inter-chip wire WA1 and the X direction in a planar view is 5° or less, it can be said that inter-chip wire WA1 extends along the X direction in a planar view. Therefore, the acute angle between inter-chip wire WA1 and the X direction in a planar view is 0° or more and 5° or less. In one example, the acute angle between inter-chip wire WA1 and the X direction in a planar view is 0° or more and 3° or less. In one example, the acute angle between inter-chip wire WA1 and the X direction in a planar view is greater than 3° and 5° or less. The same applies to each of inter-chip wires WA2 to WA6.
  • the multiple second electrode pads 68 of the first chip 60 and the first lead terminals 12 to 17 are individually connected by multiple (six in the first embodiment) first lead wires WB. This electrically connects the first chip 60 and the first lead terminals 12 to 17 individually. Each of the first lead terminals 12 to 17 is individually connected to the multiple second electrode pads 68 by one first lead wire WB.
  • the first lead wire WB is a bonding wire formed by a wire bonding device.
  • the bonded portion of the first lead wire WB with the second electrode pad 68 is a first bond portion
  • the bonded portion with the first lead terminals 12 to 17 is a second bond portion.
  • the first lead wire WB is connected to the wire connection portions 12AA to 17AA of the first inner lead portions 12A to 17A of the first lead terminals 12 to 17.
  • the wire connection portion 12AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 12AA in a planar view. This side surface faces the first die pad 30 in a planar view.
  • the side surface of the wire connection portion 12AA forms the tip surface of the wire connection portion 12AA, and faces the first side surface 33 of the first die pad 30 in the Y direction.
  • the wire connection portion 13AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 13AA in a planar view. This side surface faces the first die pad 30 in a planar view.
  • the side surface of the wire connection portion 13AA is an inclined surface formed at the end of the wire connection portion 13AA closer to the wire connection portion 14AA in the Y direction. This inclined surface is inclined toward the first sealing side surface 93 as it approaches the wire connection portion 14AA.
  • the wire connection portion 14AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 14AA in a planar view. This side surface faces the first die pad 30 in a planar view. In the first embodiment, the side surface of the wire connection portion 14AA forms the tip surface of the wire connection portion 14AA, and faces the first base end surface 32 of the first die pad 30 in the X direction.
  • the wire connection portion 15AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 15AA in a planar view. This side surface faces the first die pad 30 in a planar view. In the first embodiment, the side surface of the wire connection portion 15AA forms the tip surface of the wire connection portion 15AA, and faces the first base end surface 32 of the first die pad 30 in the X direction.
  • the wire connection portion 16AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 16AA in a planar view. This side surface faces the first die pad 30 in a planar view. In the first embodiment, the side surface of the wire connection portion 16AA forms the tip surface of the wire connection portion 16AA, and faces the first base end surface 32 of the first die pad 30 in the X direction.
  • the wire connection portion 17AA includes a side surface that intersects with the first lead wire WB that connects to the wire connection portion 17AA in a planar view. This side surface faces the first die pad 30 in a planar view. In the first embodiment, the side surface of the wire connection portion 17AA forms the tip surface of the wire connection portion 17AA, and faces the second side surface 34 of the first die pad 30 in the Y direction.
  • the multiple third electrode pads 69 of the first chip 60 and the first die pad 30 are individually connected by multiple (two in the first embodiment) first die pad wires WC. As a result, the multiple third electrode pads 69 are electrically connected to the first die pad 30. In other words, the multiple third electrode pads 69 are at the first ground potential. It can also be said that the multiple third electrode pads 69 are electrically connected to the first lead terminals 11, 18.
  • the wire WC for the first die pad connected to the third electrode pad 69 near the third chip side surface 65 of the first chip 60 is connected to the end of the first die pad 30 near the first side surface 33 of both ends in the Y direction.
  • the wire WC for the first die pad connected to the third electrode pad 69 near the fourth chip side surface 66 of the first chip 60 is connected to the end of the first die pad 30 near the second side surface 34 of both ends in the Y direction.
  • the wire WC for the first die pad is a bonding wire formed by a wire bonding device.
  • the bond portion of the wire WC for the first die pad with the third electrode pad 69 is a first bond portion
  • the bond portion of the wire WC for the first die pad with the first die pad 30 is a second bond portion.
  • the second electrode pads 78 of the second chip 70 and the second lead terminals 42 to 47 are individually connected by a plurality of second lead wires WD (six in the first embodiment). This electrically connects the second chip 70 and the second lead terminals 42 to 47 individually. Each of the second lead terminals 42 to 47 is individually connected to the second electrode pads 78 by one second lead wire WD.
  • the second lead wire WD is a bonding wire formed by a wire bonding device.
  • the bonded portion of the second lead wire WD with the second electrode pad 78 is a first bond portion
  • the bonded portion with the second lead terminals 42 to 47 is a second bond portion.
  • the second lead wire WD is connected to the wire connection portions 42AA to 47AA of the second inner lead portions 42A to 47A of the second lead terminals 42 to 47.
  • the wire connection portion 42AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 42AA in a planar view. This side surface faces the second die pad 50 in a planar view.
  • the side surface of the wire connection portion 42AA forms the tip surface of the wire connection portion 42AA, and faces the fourth side surface 54 of the second die pad 50 in the Y direction.
  • the wire connection portion 43AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 43AA in a planar view. This side surface faces the second die pad 50 in a planar view.
  • the side surface of the wire connection portion 43AA is an inclined surface formed on the end of the wire connection portion 43AA closer to the wire connection portion 44AA in the Y direction. This inclined surface is inclined toward the first sealing side surface 93 as it approaches the wire connection portion 44AA.
  • the wire connection portion 44AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 44AA in a planar view. This side surface faces the second die pad 50 in a planar view. In the first embodiment, the side surface of the wire connection portion 44AA forms the tip surface of the wire connection portion 44AA, and faces the second base end surface 52 of the second die pad 50 in the X direction.
  • the wire connection portion 45AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 45AA in a planar view. This side surface faces the second die pad 50 in a planar view. In the first embodiment, the side surface of the wire connection portion 45AA forms the tip surface of the wire connection portion 45AA, and faces the second base end surface 52 of the second die pad 50 in the X direction.
  • the wire connection portion 46AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 46AA in a planar view. This side surface faces the second die pad 50 in a planar view. In the first embodiment, the side surface of the wire connection portion 46AA forms the tip surface of the wire connection portion 46AA, and faces the second base end surface 52 of the second die pad 50 in the X direction.
  • the wire connection portion 47AA includes a side surface that intersects with the second lead wire WD that connects to the wire connection portion 47AA in a planar view. This side surface faces the second die pad 50 in a planar view. In the first embodiment, the side surface of the wire connection portion 47AA forms the tip surface of the wire connection portion 47AA, and faces the third side surface 53 of the second die pad 50 in the Y direction.
  • the multiple third electrode pads 79 of the second chip 70 and the second die pad 50 are individually connected by multiple (two in the first embodiment) second die pad wires WE. This electrically connects the second chip 70 and the second die pad 50. Therefore, the third electrode pads 79 of the second chip 70 are at the second ground potential. It can also be said that the third electrode pads 79 are electrically connected to the second lead terminals 41, 48.
  • the second die pad wire WE connected to the third electrode pad 79 of the second chip 70 near the third chip side surface 75 is connected to the end of the second die pad 50 near the third side surface 53 in the Y direction.
  • the second die pad wire WE connected to the third electrode pad 69 of the second chip 70 near the fourth chip side surface 76 is connected to the end of the second die pad 50 near the fourth side surface 54 in the Y direction.
  • the wire WE for the second die pad is a bonding wire formed by a wire bonding device.
  • the bond portion of the wire WE for the second die pad with the third electrode pad 79 is a first bond portion
  • the bond portion of the wire WE with the second die pad 50 is a second bond portion.
  • the material constituting the inter-chip wires WA1 to WA6 is different from the material constituting each of the first lead wire WB, the first die pad wire WC, the second lead wire WD, and the second die pad wire WE.
  • the first lead wire WB, the first die pad wire WC, the second lead wire WD, and the second die pad wire WE are each made of the same material.
  • the inter-chip wires WA1 to WA6 are formed from a material containing gold.
  • the first lead wire WB, the first die pad wire WC, the second lead wire WD, and the second die pad wire WE are each formed from a material containing copper.
  • the first lead wire WB, the first die pad wire WC, the second lead wire WD, and the second die pad wire WE are each configured with a copper wire surface coated with palladium (Pd). This can improve oxidation resistance and corrosion resistance compared to a copper wire surface not coated with palladium.
  • each of the first lead wire WB, the first die pad wire WC, the second lead wire WD, and the second die pad wire WE may be made of a material containing aluminum.
  • a security bond WC1 is formed on the second bond portion of each first die pad wire WC.
  • a security bond WE1 is formed on the second bond portion of each second die pad wire WE.
  • FIG. 15 shows an oblique view of the second bond portion of the wire WC for the first die pad and its surroundings. Note that since the configuration of the second bond portion of the wire WC for the first die pad and the configuration of the second bond portion of the wire WE for the second die pad are the same, the configuration of the second bond portion of the wire WC for the first die pad will be described in detail, and a detailed description of the configuration of the second bond portion of the wire WE for the second die pad will be omitted.
  • the second bond portion of the wire WC for the first die pad includes a joint WCP that is bonded to the first die pad 30.
  • the joint WCP is a portion that is crushed by being pressed against the first die pad 30 by the wire bonding device.
  • the thickness of the joint WCP is smaller than the diameter of the wire WC for the first die pad.
  • the security bond WC1 is formed, for example, by providing a stud bump SB on the joint WCP.
  • the stud bump SB is formed by ball bonding using a wire bonding device.
  • the joint WCP is sandwiched between the first die pad 30 and the stud bump SB.
  • the configuration of the security bond WB1 formed on the second bond portion of the first lead wire WB and the security bond WD1 formed on the second bond portion of the second lead wire WD is the same as that of the security bond WC1 of the first die pad wire WC, for example.
  • the circuit configuration of the signal transmission device 10 of the first embodiment will be described with reference to FIG.
  • the signal transmission device 10 includes a first circuit 500, a second circuit 520, a first transformer 111, and a second transformer 112.
  • the first chip 60 includes the first circuit 500 and the first transformer 111
  • the second chip 70 includes the second circuit 520 and the second transformer 112.
  • the first transformer 111 and the second transformer 112 are configured to insulate the first circuit 500 and the second circuit 520 from each other and to enable signal exchange between the first circuit 500 and the second circuit 520.
  • the signal transmission device 10 also includes first terminals P1 to P8, which are external terminals electrically connected to the first circuit 500, and second terminals Q1 to Q8, which are external terminals electrically connected to the second circuit 520.
  • the first terminal P1 is a ground terminal (GND1)
  • the first terminal P2 is a positive input terminal (IN+)
  • the first terminal P3 is a negative input terminal (IN-)
  • the first terminal P4 is an input/output terminal (RDYC)
  • the first terminal P5 is a detection terminal (/FLT)
  • the first terminal P6 is a reset terminal (/RST)
  • the first terminal P7 is a power supply terminal (VCC1)
  • the first terminal P8 is a ground terminal (GND1).
  • the first terminal P1 and the first terminal P8 are electrically connected to each other.
  • the first terminal P1 corresponds to the first lead terminal 11
  • the first terminal P2 corresponds to the first lead terminal 12
  • the first terminal P3 corresponds to the first lead terminal 13
  • the first terminal P4 corresponds to the first lead terminal 14
  • the first terminal P5 corresponds to the first lead terminal 15
  • the first terminal P6 corresponds to the first lead terminal 16
  • the first terminal P7 corresponds to the first lead terminal 17
  • the first terminal P8 corresponds to the first lead terminal 18.
  • the second terminal Q1 is a negative power supply terminal (VEE2)
  • the second terminal Q2 is a voltage detection terminal (DESAT)
  • the second terminal Q3 is a ground terminal (GND2)
  • the second terminal Q4 is a set terminal (TLSET)
  • the second terminal Q5 is a positive power supply terminal (VCC2)
  • the second terminal Q6 is an output terminal (OUT)
  • the second terminal Q7 is a clamp terminal (CLAMP)
  • the second terminal Q8 is a negative power supply terminal (VEE2).
  • the second terminal Q1 and the second terminal Q8 are electrically connected to each other.
  • the second terminal Q1 corresponds to the second lead terminal 41
  • the second terminal Q2 corresponds to the second lead terminal 42
  • the second terminal Q3 corresponds to the second lead terminal 43
  • the second terminal Q4 corresponds to the second lead terminal 44
  • the second terminal Q5 corresponds to the second lead terminal 45
  • the second terminal Q6 corresponds to the second lead terminal 46
  • the second terminal Q7 corresponds to the second lead terminal 47
  • the second terminal Q8 corresponds to the second lead terminal 48.
  • the first circuit 500 includes a transmitter 501, a receiver 502, a logic unit 503, and a UVLO unit 504 as a first functional unit, and resistors 505, 506, 507, 509, and 511 and switching elements 508 and 510 as circuit elements.
  • the first terminals P2 to P6 are electrically connected to the logic unit 503, and the first terminal P7 is electrically connected to the UVLO unit 504.
  • the logic unit 503 is electrically connected to the transmission unit 501, the reception unit 502, and the UVLO unit 504 individually.
  • the transmitting unit 501 is electrically connected to the first transformer 111.
  • the transmitting unit 501 is configured to transmit the control signal input from the logic unit 503 to the second circuit 520 using the first transformer 111.
  • the receiving unit 502 is electrically connected to the second transformer 112.
  • the receiving unit 502 is configured to receive a signal from the second circuit 520 via the second transformer 112 and output the received signal to the logic unit 503.
  • the logic unit 503 is configured to exchange various signals with an external control device (not shown) of the signal transmission device 10 via the first terminals P2 to P6, and to exchange various signals with the second circuit 520 using the transmission unit 501 and reception unit 502.
  • the logic unit 503 includes, for example, a decoder electrically connected to the receiving unit 502, a first AND circuit electrically connected to the transmitting unit 501, a flip-flop circuit and a second AND circuit for generating a gate signal for the switching element 510, and a third AND circuit for generating a gate signal for the switching element 508.
  • the logic unit 503 includes, for example, a first delay circuit provided between the first AND circuit and the first terminal P2, a second delay circuit provided between the first AND circuit and the first terminal P3, and a third delay circuit provided between the flip-flop circuit and the first terminal P6.
  • the resistor 505 is electrically connected to the conductive path between the first terminal P2 and the logic unit 503.
  • the first terminal of the resistor 505 is electrically connected to the conductive path, and the second terminal is electrically connected to the first terminal P1 (P8). Therefore, the resistor 505 is a pull-down resistor.
  • Resistor 506 is electrically connected to the conductive path between first terminal P3 and logic unit 503.
  • the first terminal of resistor 506 is electrically connected to first terminal P7, and the second terminal is electrically connected to the conductive path. Therefore, resistor 506 is a pull-up resistor.
  • a switching element 508 and a resistor 507 are provided between the first terminal P4 and the logic unit 503.
  • an n-channel MOSFET is used as the switching element 508.
  • a first terminal of the resistor 506 is electrically connected to the first terminal P7, and a second terminal of the resistor 506 is electrically connected to the drain of the switching element 508.
  • the first terminal P4 is electrically connected to the connection point between the second terminal of the resistor 506 and the drain of the switching element 508.
  • the source of the switching element 508 is electrically connected to the first terminal P1 (P8).
  • the gate of the switching element 508 is electrically connected to the logic unit 503.
  • a switching element 510 and a resistor 509 are provided between the first terminal P5 and the logic unit 503.
  • an n-channel MOSFET is used as the switching element 510.
  • a first terminal of the resistor 509 is electrically connected to the first terminal P7, and a second terminal of the resistor 509 is electrically connected to the drain of the switching element 510.
  • the first terminal P5 is electrically connected to the connection point between the second terminal of the resistor 509 and the drain of the switching element 510.
  • the source of the switching element 510 is electrically connected to the first terminal P1 (P8).
  • the gate of the switching element 510 is electrically connected to the logic unit 503.
  • Resistor 511 is electrically connected to the conductive path between first terminal P6 and logic unit 503.
  • the first terminal of resistor 511 is electrically connected to first terminal P7, and the second terminal is electrically connected to the conductive path. Therefore, resistor 511 is a pull-up resistor.
  • the logic unit 503 changes the voltage at the first terminals P4 and P5 by turning on and off the switching elements 508 and 510.
  • the control device can grasp the state of the signal transmission device 10 by monitoring the first terminals P4 and P5.
  • the UVLO unit 504 stops the operation of the logic unit 503 when the voltage of the control power supply electrically connected to the first terminal P7 falls below a threshold voltage, thereby suppressing the occurrence of a malfunction.
  • the second circuit 520 includes a receiving unit 521, a transmitting unit 522, a logic unit 523, a UVLO unit 524, a clamp control unit 525, an output control unit 526, and a desaturation fault detection unit 527 as second functional units, and a switching element 528, a first output switching element 529, a second output switching element 530, a third output switching element 531, resistors 532, 534, 539, current sources 533, 537, switching elements 535, 538, and a comparator 536 as circuit elements.
  • the second terminal Q2 is electrically connected to the desaturation fault detection unit 527
  • the second terminal Q4 is electrically connected to the comparator 536
  • the second terminal Q5 is electrically connected to the UVLO unit 524
  • the second terminal Q6 is electrically connected to the output control unit 526
  • the second terminal Q7 is electrically connected to the clamp control unit 525.
  • the logic unit 523 is individually electrically connected to the receiving unit 521, the transmitting unit 522, the UVLO unit 524, the clamp control unit 525, the output control unit 526, the desaturation fault detection unit 527, and the comparator 536.
  • the receiving unit 521 is electrically connected to the first transformer 111.
  • the receiving unit 521 is configured to receive a control signal from the transmitting unit 501 via the first transformer 111 and output the received control signal to the logic unit 523.
  • the transmitter 522 is electrically connected to the second transformer 112.
  • the transmitter 522 transmits the signal input from the logic unit 523 to the receiver 521 using the second transformer 112.
  • the logic unit 523 individually controls the clamp control unit 525, the output control unit 526, and the desaturation fault detection unit 527.
  • the logic unit 523 is configured to output signals from the clamp control unit 525, the output control unit 526, and the desaturation fault detection unit 527 to the transmission unit 522.
  • the UVLO unit 524 stops the operation of the logic unit 523 when the voltage of the control power supply electrically connected to the second terminal Q5 falls below a threshold voltage, thereby suppressing the occurrence of a malfunction.
  • the clamp control unit 525 is a circuit that controls the operation of the switching element 528.
  • an n-channel MOSFET is used as the switching element 528.
  • the drain of the switching element 528 is electrically connected to the second terminal Q7, and the source of the switching element 528 is electrically connected to the second terminal Q1 (Q8).
  • the gate of the switching element 528 is electrically connected to the clamp control unit 525.
  • the clamp control unit 525 includes an AND circuit and a buffer circuit that control the switching element 528, and a comparator that compares the voltage at the second terminal Q7 with a preset voltage and outputs the comparison result to the AND circuit.
  • the output control section 526 is a circuit that controls the operation of each of the first output switching element 529, the second output switching element 530, and the third output switching element 531.
  • a p-channel MOSFET is used as the first output switching element 529
  • an n-channel MOSFET is used as the second output switching element 530 and the third output switching element 531.
  • An output signal is output from the second terminal Q6 as the voltage at the second terminal Q6 changes based on the on/off operation of the first output switching element 529, the second output switching element 530, and the third output switching element 531.
  • the gates of the first output switching element 529, the second output switching element 530, and the third output switching element 531 are electrically connected to the output control unit 526.
  • the drain of the first output switching element 529 is electrically connected to the drain of the third output switching element 531.
  • the connection point between the drain of the first output switching element 529 and the drain of the third output switching element 531 is electrically connected to the second terminal Q6.
  • the source of the first output switching element 529 and the drain of the second output switching element 530 are electrically connected to the second terminal Q5.
  • the source of the second output switching element 530 is electrically connected to both the second terminal Q6 and the output control unit 526.
  • a resistor 532 is electrically connected between the source of the second output switching element 530 and the gate of the third output switching element 531.
  • the fault signal input to the second terminal Q2 is input to the non-saturation fault detection unit 527.
  • the non-saturation fault detection unit 527 outputs the input fault signal to the logic unit 523.
  • the non-saturation fault detection unit 527 is electrically connected to the current source 533 and the switching element 535.
  • the current source 533 is electrically connected to the second terminal Q5 and the second terminal Q2.
  • the current source 533 supplies a current to the desaturation fault detection unit 527.
  • An n-channel MOSFET is used as the switching element 535.
  • the drain of the switching element 535 is electrically connected to the second terminal Q2 via the resistor 534, and the source of the switching element 535 is electrically connected to the second terminal Q2.
  • the gate of the switching element 535 is electrically connected to the desaturation fault detection unit 527. Therefore, the desaturation fault detection unit 527 controls the operation of the switching element 535.
  • the desaturation fault detection unit 527 includes a comparator electrically connected to the second terminal Q2, a flip-flop circuit to which the output signal of the comparator is input, and an AND circuit that controls the switching element 535.
  • a current source 537, a switching element 538, and a resistor 539 are provided between the second terminal Q4 and the comparator 536.
  • the current source 537 is electrically connected to the second terminal Q5 and the second terminal Q4.
  • An n-channel MOSFET is used as the switching element 538.
  • the drain of the switching element 538 is electrically connected to the second terminal Q4, and the source of the switching element 538 is electrically connected to the second terminal Q1 (Q8).
  • the drain of the switching element 538 is electrically connected to the comparator 536.
  • the resistor 539 is provided between the current source 537 and the second terminal Q4.
  • the first terminal of the resistor 539 is electrically connected to the second terminal Q4, and the second terminal of the resistor 539 is electrically connected to the connection point between the current source 537 and the drain of the switching element 538.
  • FIGS. 17 and 18 show a schematic planar structure of an example of the internal configuration of the first chip 60.
  • FIGS. 19 to 24 show a schematic cross-sectional structure of an example of the internal configuration of the first chip 60. Note that to make the drawings easier to understand, some of the hatched lines have been omitted from the schematic cross-sectional structures of the first chip 60 in FIGS. 19 to 24.
  • Fig. 17 shows a schematic planar structure of an example of an internal configuration close to a chip front surface 61 of the first chip 60.
  • Fig. 18 shows a schematic planar structure of an example of an internal structure close to a chip back surface 62 of the first chip 60.
  • the first chip 60 has an insulating transformer region 110 and a circuit region 120 , and a peripheral guard ring 100 that is connected to the insulating transformer region 110 and surrounds the circuit region 120 .
  • the insulating transformer region 110 is a region that electrically insulates the circuit region 120 and the second chip 70 while allowing transmission of signals between the circuit region 120 and the second chip 70.
  • the insulating transformer region 110 is formed closer to the second chip side surface 64 with respect to the center of the first chip 60 in the X direction in a plan view. In other words, the insulating transformer region 110 is formed in a region of the first chip 60 that is closer to the second chip 70 (see FIG. 7 ) in a plan view.
  • the insulating transformer region 110 is formed closer to the third chip side surface 65 of the first chip 60.
  • the components of the first circuit 500 in FIG. 16 other than the first transformer 111 are formed. These components include the transmitter 501, receiver 502, logic unit 503, UVLO unit 504, resistors 505, 506, 507, 509, 511, and switching elements 508, 510 in FIG. 16.
  • the components of the first circuit 500 other than the first transformer 111 may be referred to as the "plurality of first functional units” and the “plurality of circuit elements.”
  • a first transformer 111 is formed in the insulating transformer region 110. As shown in Figs. 17 and 18, the first transformer 111 includes a first front side coil 111A and a first back side coil 111B, and a second front side coil 112A and a second back side coil 112B.
  • the first surface side coil 111A and the second surface side coil 112A are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the first surface side coil 111A is arranged closer to the third chip side surface 65 than the second surface side coil 112A.
  • the first back surface side coil 111B and the second back surface side coil 112B are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the first back surface side coil 111B is arranged closer to the third chip side surface 65 than the second back surface side coil 112B.
  • first front surface side coil 111A and the second front surface side coil 112A are arranged at the same position in the Z direction.
  • the first back surface side coil 111B and the second back surface side coil 112B are arranged at the same position in the Z direction.
  • Each of the first surface side coil 111A, the second surface side coil 112A, the first back side coil 111B, and the second back side coil 112B may contain at least one of titanium, titanium nitride, copper, aluminum, and tungsten.
  • the first surface side coil 111A and the second surface side coil 112A contain copper
  • the first back side coil 111B and the second back side coil 112B contain aluminum.
  • the first surface side coil 111A and the second surface side coil 112A have a laminated structure of titanium and copper
  • the first back side coil 111B and the second back side coil 112B have a laminated structure of titanium nitride and aluminum.
  • a plurality of first electrode pads 67A to 67C are formed in the insulating transformer region 110.
  • the plurality of first electrode pads 67A to 67C are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • a plurality of first electrode pads 67D to 67F are formed in the circuit region 120.
  • the plurality of first electrode pads 67D to 67F are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the first electrode pads 67D to 67F are arranged closer to the second chip side surface 64 than the first electrode pads 67A to 67C.
  • the first surface side coil 111A includes a first coil portion 111A1 that is spiral-shaped in a plan view, a first outer coil end portion 111A2, and a first inner coil end portion 111A3.
  • the first outer coil end portion 111A2 constitutes the end portion in the winding direction of the outermost periphery of the first coil portion 111A1
  • the first inner coil end portion 111A3 constitutes the end portion in the winding direction of the innermost periphery of the first coil portion 111A1.
  • the second surface side coil 112A includes a second coil portion 112A1 that is spiral-shaped in a plan view, a second outer coil end portion 112A2, and a second inner coil end portion 112A3.
  • the second outer coil end portion 112A2 constitutes the end portion in the winding direction at the outermost periphery of the second coil portion 112A1
  • the second inner coil end portion 112A3 constitutes the end portion in the winding direction at the innermost periphery of the second coil portion 112A1.
  • the first electrode pad 67A is disposed in an inner space including the winding center of the first coil portion 111A1 in a plan view. It can be said that the first electrode pad 67A is located more inward than the first coil portion 111A1.
  • the first electrode pad 67A is connected to the first inner coil end 111A3. Therefore, it can be said that the first electrode pad 67A is electrically connected to the first end of the first surface side coil 111A.
  • the first electrode pad 67B is disposed between the first surface side coil 111A and the second surface side coil 112A in the Y direction in a plan view.
  • the first electrode pad 67B is connected to the first outer coil end 111A2 of the first surface side coil 111A.
  • the first electrode pad 67B is also connected to the second outer coil end 112A2 of the second surface side coil 112A. Therefore, it can be said that the first electrode pad 67B is electrically connected to the second end of the first surface side coil 111A and the second end of the second surface side coil 112A.
  • the first electrode pad 67C is disposed in an inner space including the winding center of the second coil portion 112A1 in a plan view. It can be said that the first electrode pad 67C is located more inward than the second coil portion 112A1.
  • the first electrode pad 67C is connected to the second inner coil end portion 112A3. Therefore, it can be said that the first electrode pad 67C is electrically connected to the first end portion of the second surface side coil 112A.
  • the number of turns of the first surface side coil 111A and the number of turns of the second surface side coil 112A are equal to each other.
  • the winding direction of the first surface side coil 111A and the winding direction of the second surface side coil 112A are opposite to each other.
  • the first back side coil 111B is arranged opposite the first front side coil 111A (see FIG. 17) in the Z direction.
  • the first back side coil 111B includes a first coil portion 111B1 that is spiral in plan view, a first outer coil end 111B2, and a first inner coil end 111B3.
  • the first outer coil end 111B2 constitutes the end of the first coil portion 111B1 in the winding direction at the outermost periphery
  • the first inner coil end 111B3 constitutes the end of the first coil portion 111B1 in the winding direction at the innermost periphery.
  • the first outer coil end 111B2 is connected to a first connection wiring 118A that extends in the X direction.
  • the first connection wiring 118A is electrically connected to the transmitting unit 501 (see FIG. 16) of the circuit area 120 (see FIG. 17).
  • the first inner coil end 111B3 is connected to a first wiring not shown.
  • the first wiring is electrically connected to the transmitter 501 of the circuit area 120.
  • the second back side coil 112B is arranged opposite the second front side coil 112A (see FIG. 17) in the Z direction.
  • the second back side coil 112B includes a second coil portion 112B1 that is spiral in plan view, a second outer coil end 112B2, and a second inner coil end 112B3.
  • the second outer coil end 112B2 constitutes the end of the second coil portion 112B1 in the winding direction at the outermost periphery
  • the second inner coil end 112B3 constitutes the end of the second coil portion 112B1 in the winding direction at the innermost periphery.
  • the second outer coil end 112B2 is connected to the second connection wiring 118B that extends in the X direction.
  • the second connection wiring 118B is arranged in a position adjacent to the first connection wiring 118A in the Y direction.
  • the second connection wiring 118B is arranged closer to the second back side coil 112B than the first connection wiring 118A.
  • the second connection wiring 118B is electrically connected to the transmitting section 501 of the circuit area 120.
  • the second inner coil end 112B3 is connected to a second wiring (not shown).
  • the second wiring is electrically connected to the transmitting section 501 of the circuit area 120.
  • the number of turns of the first back side coil 111B and the number of turns of the second back side coil 112B are equal to each other.
  • the winding direction of the first back side coil 111B and the winding direction of the second back side coil 112B are opposite to each other.
  • the number of turns of the first back side coil 111B and the second back side coil 112B are equal to the number of turns of the first surface side coil 111A and the second surface side coil 112A.
  • the insulating transformer region 110 is formed with a surface side guard ring 115 that surrounds the first surface side coil 111A, the second surface side coil 112A, and the first electrode pads 67A to 67C in a plan view.
  • the shape of the surface side guard ring 115 in a plan view is a track shape.
  • a back side guard ring 116 is formed in the insulating transformer region 110 to surround the first back side coil 111B and the second back side coil 112B in a plan view.
  • the shape of the back side guard ring 116 in a plan view is a track shape.
  • the shape and size of the back side guard ring 116 are the same as those of the front side guard ring 115.
  • the back side guard ring 116 is formed at a position overlapping the front side guard ring 115.
  • Vias 117 are formed to connect front-side guard ring 115 and back-side guard ring 116. Vias 117 are positioned so as to overlap both front-side guard ring 115 and back-side guard ring 116 in plan view.
  • the circuit region 120 is provided with a plurality of second electrode pads 68, a plurality of third electrode pads 69, and a plurality of wiring layers 121.
  • the plurality of wiring layers 121 include a wiring layer that electrically connects the plurality of first functional units, and a wiring layer that electrically connects the plurality of first functional units and the first transformer 111 of the insulating transformer region 110.
  • the plurality of first functional units are formed in a position in the circuit region 120 closer to the chip back surface 62 (see FIG. 19) in the Z direction than the plurality of wiring layers 121. In one example, although not shown in FIG.
  • the plurality of first functional units are formed in the same position in the Z direction as the first back surface side coil 111B and the second back surface side coil 112B. Note that the position in the Z direction at which the plurality of first functional units are formed can be changed arbitrarily.
  • the peripheral guard ring 100 includes a front-side peripheral guard ring 101 and a back-side peripheral guard ring 102 .
  • the front-side outer periphery guard ring 101 is connected to the front-side guard ring 115. More specifically, the front-side outer periphery guard ring 101 is connected to a straight portion of the front-side guard ring 115 closer to the second chip side surface 64. In this way, the front-side outer periphery guard ring 101 is electrically connected to the front-side guard ring 115.
  • the back-side outer peripheral guard ring 102 is connected to the back-side guard ring 116. More specifically, the back-side outer peripheral guard ring 102 is connected to a straight portion of the back-side guard ring 116 closer to the second chip side surface 64. This allows the back-side outer peripheral guard ring 102 to be electrically connected to the back-side guard ring 116.
  • the shape and size of the back-side outer peripheral guard ring 102 in a plan view are the same as those of the front-side outer peripheral guard ring 101.
  • the back-side outer peripheral guard ring 102 is positioned so as to overlap with the front-side outer peripheral guard ring 101 in a plan view.
  • the first chip 60 has multiple peripheral vias that connect the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102.
  • the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102 are electrically connected by the multiple peripheral vias.
  • Each peripheral via extends in the Z direction.
  • FIG. 19 shows a cross-sectional structure with a portion of the first transformer 111 cut away.
  • FIG. 20 is an enlarged view of a portion of the first transformer 111 in FIG. 19.
  • FIG. 21 is an enlarged view of the F21 portion of the first front surface side coil 111A of the first transformer 111 in FIG. 20, and
  • FIG. 22 is an enlarged view of the F22 portion of the first rear surface side coil 111B of the first transformer 111 in FIG. 20. Note that hatched lines have been omitted in FIG. 19 to make the drawing easier to understand.
  • the first chip 60 has the above-mentioned substrate 130 and an element insulating layer 150 formed on the substrate 130 .
  • the substrate 130 is formed of, for example, a semiconductor substrate.
  • the substrate 130 is a semiconductor substrate formed of a material containing silicon (Si).
  • the substrate 130 may use a wide band gap semiconductor or a compound semiconductor as a semiconductor substrate.
  • the substrate 130 may use an insulating substrate formed of a material containing glass, or an insulating substrate formed of a material containing ceramics such as alumina.
  • the wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more.
  • the wide band gap semiconductor may be any one of silicon carbide (SiC), gallium nitride (GaN), and gallium oxide (Ga 2 O 3 ).
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may include at least one of aluminum nitride (AlN), indium nitride (InN), gallium nitride, and gallium arsenide (GaAs).
  • the substrate 130 is formed in a flat plate shape.
  • the substrate 130 has a substrate front surface 131 and a substrate back surface 132 opposite the substrate front surface 131.
  • the substrate back surface 132 constitutes the chip back surface 62 of the first chip 60.
  • the element insulating layer 150 is in contact with the substrate surface 131. In one example, the element insulating layer 150 is formed over the entire surface of the substrate surface 131. In one example, the element insulating layer 150 is an oxide film formed from a material containing silicon oxide (SiO 2 ). The element insulating layer 150 may be formed by stacking a plurality of such oxide films. Note that the material forming the element insulating layer 150 can be changed as desired.
  • the element insulating layer 150 has a layer surface 151 and a layer back surface 152 opposite the layer surface 151.
  • the layer surface 151 faces the same side as the substrate surface 131, and the layer back surface 152 faces the same side as the substrate back surface 132.
  • the layer back surface 152 is in contact with the substrate surface 131.
  • first electrode pads 67A to 67F are formed on the element insulating layer 150.
  • a passivation film 161 is formed on the element insulating layer 150.
  • a protective film 162 is formed on the element insulating layer 150.
  • the first electrode pads 67A to 67F are in contact with the layer surface 151 of the element insulating layer 150.
  • the first electrode pads 67A to 67F are formed at the same positions as each other in the Z direction.
  • the passivation film 161 is a film that protects the element insulating layer 150, and is formed to cover the layer surface 151.
  • the passivation film 161 is formed to cover the first electrode pads 67A to 67F.
  • the passivation film 161 has openings (not shown) that expose a part of the first electrode pads 67A to 67F in the Z direction.
  • the protective film 162 is formed on the passivation film 161.
  • the passivation film 161 is formed of a single layer of a silicon nitride (SiN) film or a silicon oxynitride (SiON) film.
  • the passivation film 161 is formed of a laminated structure of a silicon oxide film and a silicon nitride film. In this case, the silicon nitride film may be formed on the silicon oxide film. In another example, the passivation film 161 is formed of a laminated structure of a silicon oxide film and a silicon oxynitride film. In this case, the silicon oxynitride film may be formed on the silicon oxide film.
  • the thickness of the passivation film 161 (the size of the passivation film 161 in the Z direction) is thinner than the thickness of the protective film 162 (the size of the protective film 162 in the Z direction). In one example, the thickness of the passivation film 161 is 1 ⁇ 3 or less of the thickness of the protective film 162. In one example, the thickness of the passivation film 161 is 1 ⁇ 4 or less of the thickness of the protective film 162. In one example, the thickness of the passivation film 161 is 1 ⁇ 5 or more of the thickness of the protective film 162. In the example shown in FIG. 20, the thickness of the passivation film 161 is about 1.3 ⁇ m.
  • the protective film 162 is formed on the passivation film 161.
  • the protective film 162 is a film that protects the first chip 60, and is formed of a material that contains, for example, polyimide (PI).
  • the protective film 162 can also be said to be a layer that relieves stress between the sealing resin 90 and the element insulating layer 150 and between the sealing resin 90 and the substrate 130.
  • the protective film 162 constitutes the chip surface 61 of the first chip 60.
  • the first surface side coil 111A and the first back side coil 111B of the first transformer 111 are arranged opposite each other with a gap in the Z direction.
  • An element insulating layer 150 is interposed between the first surface side coil 111A and the first back side coil 111B in the Z direction.
  • the first surface side coil 111A and the first back side coil 111B are provided in the element insulating layer 150. It can also be said that the first back side coil 111B is embedded in the element insulating layer 150.
  • the first surface side coil 111A is arranged closer to the layer surface 151 of the element insulating layer 150 than the first back side coil 111B.
  • the first back side coil 111B is arranged closer to the layer back surface 152 of the element insulating layer 150 (closer to the substrate 130) than the first surface side coil 111A.
  • the first surface side coil 111A is exposed from the layer surface 151 of the element insulating layer 150 in the Z direction.
  • the first front surface side coil 111A is covered with a passivation film 161.
  • the first rear surface side coil 111B is disposed at a distance in the Z direction from the layer rear surface 152 of the element insulating layer 150. In other words, the first rear surface side coil 111B is disposed at a distance in the Z direction from the substrate 130.
  • the element insulating layer 150 is interposed between the first rear surface side coil 111B and the substrate 130.
  • the first surface side coil 111A is embedded in a recess 153 recessed from the layer front surface 151 of the element insulating layer 150 toward the layer back surface 152 (see FIG. 20).
  • the recess 153 is formed in a spiral shape in a plan view.
  • the first surface side coil 111A is formed by a single conductor 170 embedded in the recess 153. In other words, the first surface side coil 111A is configured by a single conductor 170 formed in a spiral shape in a plan view.
  • the conductor 170 has a coil surface 171, a coil back surface 172 opposite the coil surface 171, and a pair of coil side surfaces 173 connecting the coil surface 171 and the coil back surface 172.
  • the coil surface 171 faces the same side as the layer surface 151 of the element insulating layer 150, and the coil back surface 172 faces the same side as the layer back surface 152.
  • the pair of coil side surfaces 173 are formed in a tapered shape whose size in the X direction decreases from the coil surface 171 toward the coil back surface 172.
  • the coil back surface 172 and the pair of coil side surfaces 173 are in contact with the recess 153. In other words, the coil back surface 172 and the pair of coil side surfaces 173 are in contact with the element insulating layer 150.
  • the coil surface 171 is covered with a passivation film 161.
  • the conductive line 170 includes a barrier layer 174 and a metal layer 175 formed on the barrier layer 174 .
  • the barrier layer 174 is formed so as to be in contact with the recess 153.
  • the barrier layer 174 can be said to be a thin film interposed between the metal layer 175 and the element insulating layer 150.
  • the metal layer 175 is formed so as to fill the recess 153.
  • the metal layer 175 is formed of a material containing, for example, copper.
  • the barrier layer 174 has a function of suppressing the diffusion of copper, for example.
  • the barrier layer 174 may contain at least one of titanium, titanium nitride, tantalum (Ta), and tantalum nitride (TaN).
  • the metal layer 175 may contain at least one of aluminum, gold (Au), silver, and tungsten (W).
  • the thickness of the conductor 170 of the first front side coil 111A is thicker than the thickness of the passivation film 161 and thinner than the thickness of the protective film 162.
  • the thickness of the conductor 170 is thicker than the thickness of the first back side coil 111B (see FIG. 20).
  • the thickness of the conductor 170 is between two and three times the thickness of the passivation film 161.
  • the thickness of the conductor 170 is 1 ⁇ 2 or less the thickness of the protective film 162.
  • the thickness of the conductor 170 is 1 ⁇ 3 or more the thickness of the protective film 162.
  • the thickness of the conductor 170 can be defined by the distance between the coil front surface 171 and the coil back surface 172 in the Z direction.
  • the width dimension of the coil surface 171 of the conductor 170 (the length in the X direction in FIG. 21) is longer than the thickness of the conductor 170. In one example, the width dimension of the coil surface 171 is more than twice the thickness of the conductor 170. In one example, the width dimension of the coil surface 171 is less than three times the thickness of the conductor 170. In the example of FIG. 21, the width dimension of the coil surface 171 is approximately 6.8 ⁇ m.
  • an element insulating layer 150 is interposed between adjacent conductors 170 in the X direction.
  • the conductors 170 are spaced apart from each other in the X direction. The distance between adjacent conductors 170 in the X direction gradually increases from the coil surface 171 toward the coil back surface 172.
  • the distance between adjacent conductors 170 in the X direction is defined as the distance between the coil surfaces 171 of adjacent conductors 170 in the X direction. This distance between conductors refers to the minimum distance between adjacent conductors 170 in the X direction. The distance between conductors is smaller than the length of the coil surface 171 in the X direction. In one example, the distance between conductors is 1 ⁇ 2 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 3 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 4 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 5 or less of the width dimension of the coil surface 171.
  • the distance between conductors is 1 ⁇ 6 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 6 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 6 or less of the width dimension of the coil surface 171. In one example, the distance between conductors is 1 ⁇ 6 or more of the width dimension of the coil surface 171. The distance between conductors is smaller than the thickness of the conductors 170. In one example, the distance between the conductors is 1/2 or less of the thickness of the conductor 170. In another example, the distance between the conductors is 1/3 or more of the thickness of the conductor 170. In the example of FIG. 21, the distance between the conductors is about 1 ⁇ m.
  • the first back side coil 111B is composed of two coil layers 111BA and 111BB.
  • the coil layer 111BA constitutes a conductor closer to the layer front surface 151 of the element insulation layer 150
  • the coil layer 111BB constitutes a conductor closer to the layer back surface 152.
  • the coil layers 111BA and 111BB are arranged apart in the Z direction.
  • the element insulation layer 150 is interposed between the coil layers 111BA and 111BB in the Z direction.
  • Each of the coil layers 111BA and 111BB includes a conductor 180.
  • the coil layer 111BA is constituted by the conductor 180 being formed in a spiral shape in a planar view
  • the coil layer 111BB is constituted by another conductor 180 being formed in a spiral shape in a planar view.
  • the number of turns of the first back side coil 111B can be defined as the sum of the number of turns of the coil layer 111BA and the number of turns of the coil layer 111BB.
  • coil layer 111BA and coil layer 111BB are arranged to be offset from each other in the X direction.
  • coil layer 111BA and coil layer 111BB are arranged to be partially overlapping.
  • coil layer 111BA and coil layer 111BB are arranged to have portions that do not partially overlap.
  • coil layer 111BA is arranged to be offset in the X direction from coil layer 111BB by 1/2 the width dimension of conductor 180 (length in the X direction in FIG. 22).
  • Each of the coil layers 111BA, 111BB is arranged offset in the X direction with respect to the first surface side coil 111A.
  • the coil layers 111BA, 111BB are arranged so as to partially overlap with the first surface side coil 111A.
  • the coil layer 111BA is offset toward the first chip side surface 63 (see FIG. 17) with respect to the first surface side coil 111A (see FIG. 20).
  • the coil layer 111BB is offset toward the second chip side surface 64 (see FIG. 17) with respect to the first surface side coil 111A.
  • the number of turns of coil layer 111BA and the number of turns of coil layer 111BB are the same.
  • the number of turns of coil layers 111BA and 111BB is less than the number of turns of first surface side coil 111A.
  • the number of turns of coil layer 111BA is 1/2 the number of turns of first surface side coil 111A
  • the number of turns of coil layer 111BB is 1/2 the number of turns of first surface side coil 111A.
  • the sum of the number of turns of coil layer 111BA and the number of turns of coil layer 111BB is the same as the number of turns of first surface side coil 111A. Therefore, the number of turns of first back surface side coil 111B is the same as the number of turns of first surface side coil 111A.
  • the coil layers 111BA and 111BB are formed by conductors 180 of the same shape formed into a spiral shape in a planar view.
  • the conductor 180 has a coil front surface 181, a coil back surface 182 opposite the coil front surface 181, and a pair of coil side surfaces 183 connecting the coil front surface 181 and the coil back surface 182.
  • the coil front surface 181 faces the same side as the layer front surface 151 of the element insulating layer 150
  • the coil back surface 172 faces the same side as the layer back surface 152.
  • the pair of coil side surfaces 183 extend along the Z direction.
  • the coil front surface 181, the coil back surface 182, and the pair of coil side surfaces 183 each contact the element insulating layer 150.
  • the conductive wire 180 includes a back-side barrier layer 184 , a metal layer 185 formed on the back-side barrier layer 184 , and a front-side barrier layer 186 formed on the metal layer 185 .
  • the rear surface-side barrier layer 184 constitutes the coil rear surface 182 of the conductive wire 180.
  • the rear surface-side barrier layer 184 can be considered to be a thin film interposed between the rear surface of the metal layer 185 and the element insulating layer 150 in the Z direction.
  • the surface-side barrier layer 186 constitutes the coil surface 181 of the conductor 180.
  • the surface-side barrier layer 186 can be considered a thin film interposed between the surface of the metal layer 185 and the element insulating layer 150 in the Z direction.
  • the metal layer 185 has a thickness greater than that of the back-side barrier layer 184 and the front-side barrier layer 186.
  • a pair of side surfaces of the metal layer 185 are not covered by either the back-side barrier layer 184 or the front-side barrier layer 186, and are in contact with the element insulating layer 150.
  • the pair of side surfaces of the metal layer 185 form part of the Z direction of the pair of coil side surfaces 183.
  • the metal layer 185 is formed of a material containing, for example, aluminum. Both the back side barrier layer 184 and the front side barrier layer 186 may contain titanium or titanium nitride. In this way, the material constituting the first back side coil 111B is different from the material constituting the first front side coil 111A.
  • the material constituting the first front side coil 111A and the material constituting the first back side coil 111B can each be changed as desired.
  • the material constituting the first front side coil 111A and the material constituting the first back side coil 111B may be the same.
  • the thickness of the conductor 180 of the first back side coil 111B is thinner than the thickness of the protective film 162.
  • the thickness of the conductor 180 is thinner than the thickness of the conductor 170.
  • the thickness of the conductor 180 is 1 ⁇ 2 or less than the thickness of the conductor 170.
  • the thickness of the conductor 180 is about 1 ⁇ 3 of the thickness of the conductor 170.
  • the thickness of the conductor 180 is thinner than the thickness of the passivation film 161.
  • the thickness of the conductor 180 is 1 ⁇ 2 or more than the thickness of the passivation film 161.
  • the thickness of the conductor 180 can be defined by the distance in the Z direction between the coil front surface 181 and the coil back surface 182.
  • the width dimension of the conductor 180 (the length in the X direction in FIG. 20) is longer than the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than twice the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than five times the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than ten times the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than twelve times the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than fifteen times the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is more than sixteen times the thickness of the conductor 180. In one example, the width dimension of the conductor 180 is about seventeen times the thickness of the conductor 180.
  • the width dimension of conductor 180 is longer than the width dimension of conductor 170.
  • the width dimension of conductor 180 is more than twice the width dimension of conductor 170.
  • the width dimension of conductor 180 is less than three times the width dimension of conductor 170.
  • the width dimension of conductor 180 is approximately 15.8 ⁇ m.
  • the width dimension of conductor 170 can be defined as the size in a direction perpendicular to the direction in which conductor 170 extends in a planar view.
  • the width dimension of conductor 180 can be defined as the size in a direction perpendicular to the direction in which conductor 180 extends in a planar view.
  • an element insulating layer 150 is interposed between adjacent conductors 180 in the X direction.
  • the conductors 180 are spaced apart from each other in the X direction.
  • the distance between adjacent conductors 180 in the X direction (hereinafter, "inter-conductor distance") is the same from the coil surface 181 to the coil back surface 182.
  • the inter-conductor distance is smaller than the width dimension of the conductors 180. In one example, the inter-conductor distance is 1/2 or less of the width dimension of the conductors 180. In one example, the inter-conductor distance is 1/5 or less of the width dimension of the conductors 180.
  • the inter-conductor distance is 1/10 or less of the width dimension of the conductors 180. In one example, the inter-conductor distance is 1/15 or less of the width dimension of the conductors 180. In one example, the inter-conductor distance is 1/16 or less of the width dimension of the conductors 180. In one example, the distance between the conductors is 1/17 or less of the width dimension of the conductor 180. In one example, the distance between the conductors is 1/18 or less of the width dimension of the conductor 180. In one example, the distance between the conductors is 1/19 or less of the width dimension of the conductor 180. In one example, the distance between the conductors is 1/20 or more of the width dimension of the conductor 180.
  • the distance between the conductors is smaller than the thickness of the conductor 180.
  • the distance between the conductors is 1/2 or more of the thickness of the conductor 180.
  • the distance between the conductors of the coil layers 111BA and 111BB is smaller than the distance between the conductors of the first surface side coil 111A. In the example of FIG. 20, the distance between the conductors is about 0.8 ⁇ m.
  • the distance in the Z direction between the first surface side coil 111A and the first back side coil 111B is greater than the distance in the Z direction between the layer back surface 152 of the element insulating layer 150 and the first back side coil 111B. In one example, the distance in the Z direction between the first surface side coil 111A and the first back side coil 111B is smaller than the width dimension of the conductor 180. The distance in the Z direction between the first surface side coil 111A and the first back side coil 111B is, for example, about 12.8 ⁇ m.
  • the distance in the Z direction between the first surface side coil 111A and the first back side coil 111B can be defined by the distance in the Z direction between the coil back surface 172 of the conductor 170 and the coil front surface 181 of the conductor 180 of the coil layer 111BA.
  • the distance in the Z direction between the first front side coil 111A and the first back side coil 111B is set according to the desired dielectric strength and the electric field strength of each of the first front side coil 111A and the first back side coil 111B.
  • the conductor 170 of the first surface side coil 111A is formed so that its coil surface 171 is exposed in the Z direction from the element insulating layer 150, but this is not limited to the above.
  • the conductor 170 of the first surface side coil 111A may be embedded in the element insulating layer 150. In other words, the coil surface 171 of the conductor 170 may be in contact with the element insulating layer 150. In other words, the conductor 170 may be disposed closer to the layer back surface 152 than the layer surface 151 of the element insulating layer 150.
  • the circuit region 120 includes a wiring layer 121 shown in FIG. 17 and a substrate-side wiring layer 122 disposed closer to the substrate 130 than the wiring layer 121 .
  • the wiring layer 121 is formed at the same position in the Z direction as the first surface side coil 111A of the first transformer 111. In other words, the surface of the wiring layer 121 is exposed from the layer surface 151 of the element insulating layer 150 and is covered by the passivation film 161. In the example shown in FIG. 23, the thickness of the wiring layer 121 is 2.8 ⁇ m.
  • the substrate side wiring layer 122 is embedded in the element insulating layer 150.
  • the substrate side wiring layer 122 includes a first wiring layer 122A, a second wiring layer 122B, and a third wiring layer 122C.
  • the first wiring layer 122A is disposed closer to the substrate 130 in the Z direction than the second wiring layer 122B and the third wiring layer 122C.
  • the first wiring layer 122A is disposed spaced apart in the Z direction from the layer back surface 152 of the element insulating layer 150. In other words, the first wiring layer 122A is disposed spaced apart in the Z direction from the substrate 130.
  • the element insulating layer 150 is interposed between the first wiring layer 122A and the substrate 130 in the Z direction.
  • the circuit region 120 includes a first via 123 that connects the wiring layer 121 and the substrate-side wiring layer 122.
  • the first via 123 connects the wiring layer 121 and the first wiring layer 122A.
  • the first via 123 is formed, for example, from the same material as the wiring layer 121.
  • the first via 123 includes a barrier layer 123A and a metal layer 123B, similar to, for example, the conductor 170.
  • the materials constituting the barrier layer 123A and the metal layer 123B are, for example, the same as the barrier layer 174 and the metal layer 175 of the conductor 170 (both see FIG. 21).
  • the circuit region 120 includes a second via 124 that connects the first wiring layer 122A to the substrate 130, a third via 125 that connects the first wiring layer 122A to the second wiring layer 122B, and a fourth via 126 that connects the second wiring layer 122B to the third wiring layer 122C.
  • the substrate-side wiring layer 122 is electrically connected to the substrate 130.
  • the first to fourth vias 123 to 126 are formed of a material that contains, for example, tungsten.
  • the first wiring layer 122A, the second wiring layer 122B, and the third wiring layer 122C have different thicknesses.
  • the thickness of the first wiring layer 122A is thinner than both the thickness of the second wiring layer 122B and the thickness of the third wiring layer 122C.
  • the thickness of the second wiring layer 122B is the same as the thickness of the third wiring layer 122C.
  • the first to third wiring layers 122A to 122C are thinner in the Z direction near the substrate 130.
  • the first to third wiring layers 122A to 122C are thicker as they move away from the substrate 130 in the Z direction.
  • the thickness of the second wiring layer 122B and the third wiring layer 122C is less than twice the thickness of the first wiring layer 122A.
  • the thickness of the first wiring layer 122A is, for example, 0.52 ⁇ m
  • the thicknesses of the second wiring layer 122B and the third wiring layer 122C are, for example, 0.93 ⁇ m.
  • the second wiring layer 122B is formed at the same position in the Z direction as the coil layer 111BB of the first back side coil 111B
  • the third wiring layer 122C is formed at the same position in the Z direction as the coil layer 111BA.
  • FIGS. Fig. 25 shows a schematic planar structure of an example of an internal configuration close to the chip front surface 71 of the second chip 70.
  • Fig. 26 shows a schematic planar structure of an example of an internal structure close to the chip back surface (not shown) of the second chip 70.
  • the second chip 70 has an insulating transformer region 210, a circuit region 220, and a peripheral guard ring 200 that surrounds the insulating transformer region 210 and the circuit region 220.
  • the circuit region 220 can be defined as the region surrounded by the peripheral guard ring 200 in a plan view other than the insulating transformer region 210.
  • the insulating transformer region 210 is a region that electrically insulates the multiple second functional units of the circuit region 220 from the first chip 60, while allowing the transmission of signals between the multiple second functional units of the circuit region 220 and the first chip 60.
  • the insulating transformer region 210 is formed closer to the second chip side surface 74 with respect to the center of the X direction of the second chip 70 in a plan view. That is, the distance between the insulating transformer region 210 and the second chip side surface 74 in the X direction is smaller than the distance between the insulating transformer region 210 and the first chip side surface 73 in the X direction.
  • the insulating transformer region 210 is formed closer to the third chip side surface 75 with respect to the center of the Y direction of the second chip 70 in a plan view. That is, the distance between the insulating transformer region 210 and the third chip side surface 75 in the Y direction is smaller than the distance between the insulating transformer region 210 and the fourth chip side surface 76 in the Y direction. In this way, the insulating transformer region 210 is formed in a region of the second chip 70 that is closer to the first chip 60 in a plan view.
  • a first transformer 211 is formed in the insulating transformer region 210.
  • one transformer is formed in the insulating transformer region 210.
  • first electrode pads 77A to 77C are formed in the insulating transformer region 210.
  • three first electrode pads 77 are formed in the insulating transformer region 210.
  • the first electrode pads 77A to 77C are arranged at the same positions in the Y direction and spaced apart from each other in the X direction.
  • the circuit area 220 includes the components of the second circuit 520 in FIG. 16 other than the first transformer 211. These components include the receiver 521, transmitter 522, logic unit 523, UVLO unit 524, clamp control unit 525, output control unit 526, desaturation fault detection unit 527, switching element 528, first output switching element 529, second output switching element 530, third output switching element 531, resistors 532, 534, 539, current sources 533, 537, switching elements 535, 538, and comparator 536 in FIG. 16.
  • the components of the second circuit 520 other than the first transformer 211 may be referred to as “multiple second function units" and “multiple circuit elements.”
  • a first transformer 211 is formed in the insulating transformer region 210. As shown in Figs. 25 and 26, the first transformer 211 includes a first front side coil 211A and a first back side coil 211B, and a second front side coil 212A and a second back side coil 212B.
  • the first surface side coil 211A and the second surface side coil 212A are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the first surface side coil 211A is arranged closer to the fourth chip side surface 76 than the second surface side coil 212A.
  • the first back surface side coil 211B and the second back surface side coil 212B are arranged at the same position in the X direction and spaced apart from each other in the Y direction.
  • the first back surface side coil 211B is arranged closer to the fourth chip side surface 76 than the second back surface side coil 212B.
  • first front surface side coil 211A and the second front surface side coil 212A are arranged at the same position in the Z direction.
  • the first back surface side coil 211B and the second back surface side coil 212B are arranged at the same position in the Z direction.
  • Each of the first surface side coil 211A, the second surface side coil 212A, the first back side coil 211B, and the second back side coil 212B may contain at least one of titanium, titanium nitride, copper, aluminum, and tungsten.
  • the first surface side coil 211A and the second surface side coil 212A contain copper
  • the first back side coil 211B and the second back side coil 212B contain aluminum.
  • the first surface side coil 211A and the second surface side coil 212A have a laminated structure of titanium and copper
  • the first back side coil 211B and the second back side coil 212B have a laminated structure of titanium nitride and aluminum.
  • a plurality of first electrode pads 77A to 77C are formed in the insulating transformer region 210.
  • the plurality of first electrode pads 77A to 77C are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • a plurality of first electrode pads 77D to 77F are formed in the circuit region 220.
  • the plurality of first electrode pads 77D to 77F are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the first electrode pads 77D to 77F are arranged closer to the second chip side surface 74 than the first electrode pads 77A to 77C.
  • the first surface side coil 211A includes a first coil portion 211A1 that is spiral-shaped in a plan view, a first outer coil end portion 211A2, and a first inner coil end portion 211A3.
  • the first outer coil end portion 211A2 constitutes the end portion in the winding direction of the outermost periphery of the first coil portion 211A1
  • the first inner coil end portion 211A3 constitutes the end portion in the winding direction of the innermost periphery of the first coil portion 211A1.
  • the second surface side coil 212A includes a second coil portion 212A1 that is spiral-shaped in a plan view, a second outer coil end portion 212A2, and a second inner coil end portion 212A3.
  • the second outer coil end portion 212A2 constitutes the end portion in the winding direction at the outermost periphery of the second coil portion 212A1
  • the second inner coil end portion 212A3 constitutes the end portion in the winding direction at the innermost periphery of the second coil portion 212A1.
  • the first electrode pad 77A is disposed in an inner space including the winding center of the first coil portion 211A1 in a plan view. It can be said that the first electrode pad 77A is located more inward than the first coil portion 211A1. The first electrode pad 77A is connected to the first inner coil end 211A3. Therefore, it can be said that the first electrode pad 77A is electrically connected to the first end of the first surface side coil 211A.
  • the first electrode pad 77B is disposed between the first surface side coil 211A and the second surface side coil 212A in the Y direction in a plan view.
  • the first electrode pad 77B is connected to the first outer coil end 211A2 of the first surface side coil 211A.
  • the first electrode pad 77B is also connected to the second outer coil end 212A2 of the second surface side coil 212A. Therefore, it can be said that the first electrode pad 77B is electrically connected to the second end of the first surface side coil 211A and the second end of the second surface side coil 212A.
  • the first electrode pad 77C is disposed in an inner space including the winding center of the second coil portion 212A1 in a plan view. It can be said that the first electrode pad 77C is located more inward than the second coil portion 212A1. The first electrode pad 77C is connected to the second inner coil end portion 212A3. Therefore, it can be said that the first electrode pad 77C is electrically connected to the first end portion of the second surface side coil 212A.
  • the number of turns of the first surface side coil 211A and the number of turns of the second surface side coil 212A are equal to each other.
  • the winding direction of the first surface side coil 211A and the winding direction of the second surface side coil 212A are opposite to each other.
  • the first rear side coil 211B is disposed opposite the first front side coil 211A (see FIG. 25) in the Z direction.
  • the first rear side coil 211B includes a first coil portion 211B1 having a spiral shape in a plan view, a first outer coil end 211B2, and a first inner coil end 211B3.
  • the first outer coil end 211B2 constitutes an end in the winding direction at the outermost part of the first coil portion 211B1
  • the first inner coil end 211B3 constitutes an end in the winding direction at the innermost part of the first coil portion 211B1.
  • the first outer coil end 211B2 is connected to a third connection wiring (not shown) extending in the X direction.
  • the third connection wiring is electrically connected to the transmitting unit 522 (see FIG. 16) of the circuit area 220 (see FIG. 25).
  • the first inner coil end 211B3 is connected to a first wiring (not shown).
  • the first wiring is electrically connected to the transmitter 522 of the circuit area 220.
  • the second rear coil 212B is disposed opposite the second front coil 212A (see FIG. 25) in the Z direction.
  • the second rear coil 212B includes a second coil portion 212B1 that is spiral in plan view, a second outer coil end 212B2, and a second inner coil end 212B3.
  • the second outer coil end 212B2 constitutes the end of the second coil portion 212B1 in the winding direction at the outermost periphery
  • the second inner coil end 212B3 constitutes the end of the second coil portion 212B1 in the winding direction at the innermost periphery.
  • the second outer coil end 212B2 is connected to a fourth connection wiring (not shown) that extends in the X direction.
  • the fourth connection wiring is electrically connected to the transmitting unit 522 of the circuit area 220.
  • the second inner coil end 212B3 is connected to a second wiring (not shown).
  • the second wiring is electrically connected to the transmitting unit 522 of the circuit area 220.
  • the number of turns of the first back side coil 211B and the number of turns of the second back side coil 212B are equal to each other.
  • the winding direction of the first back side coil 211B and the winding direction of the second back side coil 212B are opposite to each other.
  • the number of turns of the first back side coil 211B and the second back side coil 212B are equal to the number of turns of the first surface side coil 211A and the second surface side coil 212A.
  • the insulating transformer region 210 is formed with a surface side guard ring 215 that surrounds the first surface side coil 211A, the second surface side coil 212A, and the first electrode pads 77A to 77C in a plan view.
  • the shape of the surface side guard ring 215 in a plan view is a track shape.
  • a back side guard ring 216 is formed in the insulating transformer region 210, surrounding the first back side coil 211B and the second back side coil 212B in a plan view.
  • the shape of the back side guard ring 216 in a plan view is a track shape.
  • the shape and size of the back side guard ring 216 are the same as those of the front side guard ring 215.
  • the back side guard ring 216 is formed at a position overlapping with the front side guard ring 215.
  • Vias 217 are positioned so as to overlap both front-side guard ring 215 and back-side guard ring 216 in plan view.
  • the circuit region 220 is provided with a plurality of second electrode pads 78, a plurality of third electrode pads 79, and a plurality of wiring layers (not shown).
  • the plurality of wiring layers include a wiring layer that electrically connects the plurality of second functional units, and a wiring layer that electrically connects the plurality of second functional units and the second transformer 112 of the insulating transformer region 210.
  • the plurality of second functional units are formed in a position in the circuit region 220 closer to the chip back surface in the Z direction than the plurality of wiring layers.
  • the plurality of second functional units are formed in the same position in the Z direction as the first back surface side coil 211B and the second back surface side coil 212B. Note that the position in the Z direction at which the plurality of second functional units are formed can be changed arbitrarily.
  • the peripheral guard ring 200 includes a front surface side peripheral guard ring 201 and a back surface side peripheral guard ring 202 .
  • the front-side outer periphery guard ring 201 is connected to the front-side guard ring 215. More specifically, the front-side outer periphery guard ring 201 is connected to a straight portion of the front-side guard ring 215 closer to the second chip side surface 74. In this way, the front-side outer periphery guard ring 201 is electrically connected to the front-side guard ring 215.
  • the rear-side outer peripheral guard ring 202 is connected to the rear-side guard ring 216. More specifically, the rear-side outer peripheral guard ring 202 is connected to a straight portion of the rear-side guard ring 216 closer to the second chip side surface 74. This allows the rear-side outer peripheral guard ring 202 to be electrically connected to the rear-side guard ring 216.
  • the shape and size of the rear-side outer peripheral guard ring 202 in a plan view are the same as those of the front-side outer peripheral guard ring 201.
  • the rear-side outer peripheral guard ring 202 is positioned so as to overlap the front-side outer peripheral guard ring 201 in a plan view.
  • the second chip 70 has multiple peripheral vias that connect the front-side peripheral guard ring 201 and the back-side peripheral guard ring 202.
  • the front-side peripheral guard ring 201 and the back-side peripheral guard ring 202 are electrically connected by the multiple peripheral vias.
  • Each peripheral via extends in the Z direction.
  • Signal transmission device 10 includes inter-chip wires WA that electrically connect first chip 60 and second chip 70, and first lead wires WB that individually connect first chip 60 and first lead terminals 11.
  • Inter-chip wires WA are made of a material containing gold.
  • First lead wires WB are made of a material containing copper or aluminum.
  • the inter-chip wire WA is relatively important from the standpoint of the insulation reliability of the signal transmission device 10, and the height and shape of the wire must be inspected with high precision.
  • the inter-chip wire WA is formed from a material containing gold, and therefore when the height of the inter-chip wire WA is inspected, for example, using X-ray inspection, the inter-chip wire WA is displayed more clearly than when the inter-chip wire WA is formed from a material containing copper or aluminum. Therefore, the height of the inter-chip wire WA can be inspected accurately. Furthermore, the shape of the inter-chip wire WA can also be inspected accurately.
  • the first lead wire WB is less important than the inter-chip wire WA in terms of the insulation reliability of the signal transmission device 10.
  • the first lead wire WB is made of a material containing copper or aluminum, costs can be reduced compared to when the first lead wire WB is made of a material containing gold. In this way, it is possible to achieve both improved quality and reduced costs for the signal transmission device 10.
  • the first lead wire WB is a copper wire whose surface is coated with palladium. According to this configuration, the palladium coated on the surface of the copper wire can increase the bonding area of the bonding portion between the first lead wire WB, which serves as the second bond portion of the first lead wire WB, and the first lead terminals 11 to 18. This can increase the bonding strength between the first lead wire WB and the first lead terminals 11 to 18, thereby suppressing the occurrence of cracks in the bonding portions between the first lead wire WB and the first lead terminals 11 to 18.
  • the signal transmission device 10 further includes a plurality of second lead wires WD that individually connect the second chip 70 to the second lead terminals 42 to 47.
  • the second lead wires WD are formed from a material containing copper or aluminum.
  • the second lead wire WD which is less important than the inter-chip wire WA from the standpoint of insulation reliability of the signal transmission device 10, is made of a material containing copper or aluminum, which allows for cost reduction compared to when the second lead wire WD is made of a material containing gold.
  • the second lead wire WD is a copper wire whose surface is coated with palladium. According to this configuration, the same effect as that of (1-2) above can be obtained.
  • the signal transmission device 10 further includes a first die pad wire WC that connects the first chip 60 and the first die pad 30.
  • the first die pad wire WC is made of a material containing copper or aluminum.
  • the first die pad wire WC is a copper wire whose surface is coated with palladium. According to this configuration, the same effect as that of (1-2) above can be obtained.
  • a security bond WC1 is formed at the joint between the first die pad wire WC, which is the second bond portion of the first die pad wire WC, and the first die pad 30.
  • the security bond WC1 can thicken the second bond portion of the wire WC for the first die pad. This can prevent cracks from occurring in the second bond portion of the wire WC for the first die pad.
  • the signal transmission device 10 further includes a second die pad wire WE that connects the second chip 70 and the second die pad 50.
  • the second die pad wire WE is made of a material containing copper or aluminum. This configuration provides the same effect as that of (1-3) above.
  • a security bond WE1 is formed at the joint between the second die pad wire WE, which is the second bond portion of the second die pad wire WE, and the second die pad 50. This configuration provides the same effect as (1-7) above.
  • Each of the first electrode pads 67, each of the second electrode pads 68, and each of the third electrode pads 69 of the first chip 60 has a thickness of 2 ⁇ m or more. According to this configuration, even if an inter-chip wire WA is bonded to each first electrode pad 67, it is possible to suppress the occurrence of cracks in the element insulating layer 150 directly below each first electrode pad 67. Even if a first lead wire WB is bonded to each second electrode pad 68, it is possible to similarly suppress the occurrence of cracks in the element insulating layer 150. Even if a first die pad wire WC is bonded to each third electrode pad 69, it is possible to similarly suppress the occurrence of cracks in the element insulating layer 150.
  • the sealing resin 90 contains sulfur as an additive.
  • the concentration of the sulfur added is 300 ⁇ g/g or less. This configuration can reduce sulfide corrosion of copper wires such as the first lead wire WB, the second lead wire WD, the first die pad wire WC, and the second die pad wire WE, whose surfaces are coated with palladium.
  • a plating layer 29 is formed on the inner lead surface 21B of the wire connection portion 12AA of the first inner lead portion 12A of the first lead terminal 12.
  • the plating layer 29 is not formed on the end of the inner lead surface 21B of the wire connection portion 12AA on the tip surface 24B side, and the end is in contact with the sealing resin 90.
  • the wire connection portions 13AA to 17AA of the first lead terminals 13 to 17 also have a similar configuration, and therefore the same effect can be obtained.
  • a plating layer 29 is formed on the inner lead surface 21B of the wire connection portion 42AA of the second inner lead portion 42A of the second lead terminal 42.
  • the plating layer 29 is not formed on the end of the inner lead surface 21B of the wire connection portion 42AA on the tip surface 24B side, and the end is in contact with the sealing resin 90.
  • This configuration can prevent peeling between the plating layer 29 at the end of the inner lead surface 21B of the wire connection portion 42AA near the tip surface 24B and the sealing resin 90.
  • the wire connection portions 43AA to 47AA of the second lead terminals 43 to 47 also have a similar configuration, and therefore the same effect can be obtained.
  • a plating layer 26 is formed on the outer lead surface 21A, outer lead back surface 22A, and outer lead side surface 23A of the outer lead body 20A of the first outer lead portions 11B to 18B.
  • the plating layer 26 is formed continuously from the outer lead back surface 22A to the outer lead surface 21A on the outer lead end surface 24A.
  • the plating layer 26 is separated from the outer lead surface 21A.
  • the conductive bonding material SD comes into contact with the plating layer 26 formed on the outer lead end surface 24A. This causes a fillet to be formed by the conductive bonding material SD in contact with the outer lead end surface 24A. Therefore, the mounting state of the signal transmission device 10 on the circuit board PCB can be easily confirmed.
  • the outer surface of the sealing resin 90 is formed so as to have a surface roughness Rz of 8 ⁇ m or more. According to this configuration, the creepage distance between the first lead terminals 11-18 and the second lead terminals 41-48 via the sealing resin 90 is increased. Therefore, the dielectric strength between the first lead terminals 11-18 and the second lead terminals 41-48 can be improved.
  • Inter-chip wires WA1 to WA3 connecting first chip 60 and second chip 70 are parallel to each other in a plan view. According to this configuration, when inspecting the wire heights of the inter-chip wires WA1 to WA3, variations in the wire heights of the inter-chip wires WA1 to WA3 are less likely to occur, and therefore the wire heights of the inter-chip wires WA1 to WA3 can be inspected with high accuracy.
  • inter-chip wires WA4 to WA6 connecting first chip 60 and second chip 70 are parallel to each other in a plan view. According to this configuration, when inspecting the wire heights of the inter-chip wires WA4 to WA6, variations in the wire heights of the inter-chip wires WA4 to WA6 are less likely to occur, and therefore the wire heights of the inter-chip wires WA4 to WA6 can be inspected with high accuracy.
  • the first die pad 30 has a plurality of recesses 39 formed therein. According to this configuration, the first conductive bonding material SD1 fills the recesses 39, thereby improving the adhesion between the first die pad 30 and the first conductive bonding material SD1. Moreover, the sealing resin 90 fills the recesses 39 that are not filled with the first conductive bonding material SD1. Therefore, the adhesion between the first die pad 30 and the sealing resin 90 can be improved.
  • the second die pad 50 has a plurality of recesses 59 formed therein. According to this configuration, the second conductive bonding material SD2 enters into the recess 59, thereby improving the adhesion between the second die pad 50 and the second conductive bonding material SD2.
  • a signal transmission device 10 of the second embodiment will be described with reference to Fig. 27 and Fig. 28.
  • the signal transmission device 10 of the second embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first frame 10A and the second frame 10B.
  • the configuration different from the first embodiment will be described in detail, and the components common to the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the configuration of the first lead terminals 12 to 17 among the first lead terminals 11 to 18 is different from that of the first embodiment. More specifically, as shown in FIG. 27, the first inner lead portions 12A to 17A of the first lead terminals 12 to 17 have through holes 12AD to 17AD that penetrate the first inner lead portions 12A to 17A in their thickness direction (Z direction). Also, the first inner lead portions 12A, 17A have through holes 12AE, 17AE that are separate from the through holes 12AD, 17AD. In other words, the first inner lead portions 12A, 17A have two through holes. In one example, the shapes of the through holes 12AD to 17AD, 12AE, 17AE in a plan view are circular. In the second embodiment, the diameters of the through holes 12AD to 17AD, 12AE, 17AE are equal to each other. The shape and size of the through holes 12AD-17AD, 12AE, and 17AE in plan view can be changed as desired.
  • the through holes 12AD-17AD, 12AE, and 17AE are filled with sealing resin 90.
  • the sealing resin 90 filled in the through holes 12AD-17AD, 12AE, and 17AE connects the sealing resin 90 provided closer to the sealing surface 91 (see FIG. 2) than the first inner lead portions 12A-17A with the sealing resin 90 provided closer to the sealing back surface 92 (see FIG. 2) than the first inner lead portions 12A-17A.
  • the first lead terminals 11 and 18 are integrated with the first die pad 30, and therefore correspond to the "first connection terminals.”
  • the first lead terminals 12-17 are disposed away from the first die pad 30, and therefore correspond to the "first remote terminals.” Because the through holes 12AD-17AD are formed in the first lead terminals 12-17, it can be said that the first remote terminals have through holes that penetrate in the thickness direction of the first remote terminals. On the other hand, the first connection terminals do not have through holes.
  • the through hole 12AD is formed in the wide portion 12AB2 of the lead connection portion 12AB. More specifically, the through hole 12AD is formed in a portion of the wide portion 12AB2 closer to the narrow portion 12AB1 than the inclined surface 12AC.
  • the through hole 12AE is formed in the wire connection portion 12AA. More specifically, the through hole 12AE is formed in a portion of the wire connection portion 12AA closer to the lead connection portion 12AB.
  • the first lead wire WB corresponding to the wire connection portion 12AA is bonded to a portion of the wire connection portion 12AA closer to the first chip 60 than the through hole 12AD.
  • the second bond portion of the first lead wire WB is disposed away from the through hole 12AD in the Y direction in a plan view. This second bond portion can also be said to be formed in a portion closer to the tip surface of the wire connection portion 12AA than the through hole 12AD in a plan view.
  • the through hole 13AD is formed in a portion of the wire connection portion 13AA of the first inner lead portion 13A that is closer to the lead connection portion 13AB.
  • the first lead wire WB that corresponds to the wire connection portion 13AA is bonded to a portion of the wire connection portion 13AA that is closer to the first chip 60 than the through hole 13AD.
  • the second bond portion of the first lead wire WB is positioned away from the through hole 13AD in the X direction in a plan view.
  • the through hole 14AD is formed in a portion of the wire connection portion 14AA of the first inner lead portion 14A that is closer to the lead connection portion 14AB.
  • the first lead wire WB that corresponds to the wire connection portion 14AA is bonded to a portion of the wire connection portion 14AA that is closer to the first chip 60 than the through hole 14AD.
  • the second bond portion of the first lead wire WB is positioned away from the through hole 14AD in the X direction in a plan view.
  • the through hole 15AD is formed in a portion of the wire connection portion 15AA of the first inner lead portion 15A that is closer to the lead connection portion 15AB.
  • the first lead wire WB that corresponds to the wire connection portion 15AA is bonded to a portion of the wire connection portion 15AA that is closer to the first chip 60 than the through hole 15AD.
  • the second bond portion of the first lead wire WB is positioned away from the through hole 15AD in the X direction in a plan view.
  • the through hole 16AD is formed in a portion of the wire connection portion 16AA of the first inner lead portion 16A that is closer to the lead connection portion 16AB.
  • the first lead wire WB that corresponds to the wire connection portion 16AA is bonded to a portion of the wire connection portion 16AA that is closer to the first chip 60 than the through hole 16AD.
  • the second bond portion of the first lead wire WB is positioned away from the through hole 16AD in the X direction in a plan view.
  • through hole 17AD is formed in wide portion 17AB2 of lead connection portion 17AB. More specifically, through hole 17AD is formed in a portion of wide portion 17AB2 closer to narrow portion 17AB1 than inclined surface 17AC.
  • Through hole 17AE is formed in wire connection portion 17AA. More specifically, through hole 17AE is formed in a portion of wire connection portion 17AA closer to lead connection portion 17AB.
  • the first lead wire WB corresponding to the wire connection portion 17AA is bonded to a portion of the wire connection portion 17AA closer to the first chip 60 than the through hole 17AD.
  • the second bond portion of the first lead wire WB is disposed away from the through hole 17AD in the Y direction in a plan view. This second bond portion can also be said to be formed in a portion closer to the tip surface of the wire connection portion 17AA than the through hole 17AD in a plan view.
  • the positions of the through holes 12AD-17AD, 12AE, and 17AE can be changed as desired.
  • the through holes 12AD-17AD may be formed in the lead connection portions 12AB-17AB.
  • the through holes 12AD-17AD may be formed across the wire connection portions 12AA-17AA and the lead connection portions 12AB-17AB.
  • the through holes 12AE and 17AE may be formed in the portions of the wide portions 12AB2 and 17AB2 that are closer to the wire connection portions 12AA and 17AA.
  • One of the through holes 12AD and 12AE may be omitted from the first inner lead portion 12A.
  • One of the through holes 17AD and 17AE may be omitted from the first inner lead portion 17A.
  • the second frame 10B of the second embodiment differs from the first embodiment in the configuration of the second lead terminals 42-47 among the second lead terminals 41-48. More specifically, the second inner lead portions 42A-47A of the second lead terminals 42-47 have through holes 42AD-47AD that penetrate the second inner lead portions 42A-47A in their thickness direction (Z direction). In addition, the second inner lead portions 42A, 47A have through holes 42AE, 47AE formed in addition to the through holes 42AD, 47AD. In other words, the second inner lead portions 42A, 47A have two through holes. In one example, the shapes of the through holes 42AD-47AD, 42AE, 47AE in a plan view are circular.
  • the diameters of the through holes 42AD-47AD, 42AE, 47AE are equal to each other.
  • the diameters of the through holes 42AD-47AD, 42AE, and 47AE are equal to the diameters of the through holes 12AD-17AD, 12AE, and 17AE. Note that the shape and size of the through holes 42AD-47AD, 42AE, and 47AE in a plan view can be changed as desired.
  • the through holes 42AD-47AD, 42AE, and 47AE are filled with sealing resin 90.
  • the sealing resin 90 filled in the through holes 42AD-47AD, 42AE, and 47AE connects the sealing resin 90 provided closer to the sealing surface 91 (see FIG. 2) than the second inner lead portions 42A-47A with the sealing resin 90 provided closer to the sealing back surface 92 (see FIG. 2) than the second inner lead portions 42A-47A.
  • the second lead terminals 41, 48 are integrated with the second die pad 50, and therefore correspond to the "second connection terminals.”
  • the second lead terminals 42-47 are disposed away from the second die pad 50, and therefore correspond to the "second remote terminals.” Because the through holes 42AD-47AD are formed in the second lead terminals 42-47, it can be said that the second remote terminals have through holes that penetrate in the thickness direction of the second remote terminals. On the other hand, the second connection terminals do not have through holes.
  • the through hole 42AD is formed in the wide portion 42AB2 of the lead connection portion 42AB. More specifically, the through hole 42AD is formed in a portion of the wide portion 42AB2 closer to the narrow portion 42AB1 than the inclined surface 42AC.
  • the through hole 42AE is formed in the wire connection portion 42AA. More specifically, the through hole 42AE is formed in a portion of the wire connection portion 42AA closer to the lead connection portion 42AB.
  • the second lead wire WD corresponding to the wire connection portion 42AA is bonded to a portion of the wire connection portion 42AA closer to the second chip 70 than the through hole 42AD.
  • the second bond portion of the second lead wire WD is disposed away from the through hole 42AD in the Y direction in a plan view.
  • This second bond portion can also be said to be formed in a portion closer to the tip surface of the wire connection portion 42AA than the through hole 42AD in a plan view.
  • the through hole 43AD is formed in a portion of the wire connection portion 43AA of the second inner lead portion 43A that is closer to the lead connection portion 43AB.
  • the second lead wire WD that corresponds to the wire connection portion 43AA is bonded to a portion of the wire connection portion 43AA that is closer to the second chip 70 than the through hole 43AD.
  • the second bond portion of the second lead wire WD is positioned away from the through hole 43AD in the X direction in a plan view.
  • the through hole 44AD is formed in a portion of the wire connection portion 44AA of the second inner lead portion 44A that is closer to the lead connection portion 44AB.
  • the second lead wire WD that corresponds to the wire connection portion 44AA is bonded to a portion of the wire connection portion 44AA that is closer to the second chip 70 than the through hole 44AD.
  • the second bond portion of the second lead wire WD is positioned away from the through hole 44AD in the X direction in a plan view.
  • the through hole 45AD is formed in a portion of the wire connection portion 45AA of the second inner lead portion 45A that is closer to the lead connection portion 45AB.
  • the second lead wire WD that corresponds to the wire connection portion 45AA is bonded to a portion of the wire connection portion 45AA that is closer to the second chip 70 than the through hole 45AD.
  • the second bond portion of the second lead wire WD is positioned away from the through hole 45AD in the X direction in a plan view.
  • the through hole 46AD is formed in a portion of the wire connection portion 46AA of the second inner lead portion 46A that is closer to the lead connection portion 46AB.
  • the second lead wire WD that corresponds to the wire connection portion 46AA is bonded to a portion of the wire connection portion 46AA that is closer to the second chip 70 than the through hole 46AD.
  • the second bond portion of the second lead wire WD is positioned away from the through hole 46AD in the X direction in a plan view.
  • the through hole 47AD is formed in the wide portion 47AB2 of the lead connection portion 47AB. More specifically, the through hole 47AD is formed in a portion of the wide portion 47AB2 closer to the narrow portion 47AB1 than the inclined surface 47AC.
  • the through hole 47AE is formed in the wire connection portion 47AA. More specifically, the through hole 47AE is formed in a portion of the wire connection portion 47AA closer to the lead connection portion 47AB.
  • the second lead wire WD corresponding to the wire connection portion 47AA is bonded to a portion of the wire connection portion 47AA closer to the second chip 70 than the through hole 47AD.
  • the second bond portion of the second lead wire WD is disposed away from the through hole 47AD in the Y direction in a plan view. This second bond portion can also be said to be formed in a portion closer to the tip surface of the wire connection portion 47AA than the through hole 47AD in a plan view.
  • the positions of the through holes 42AD-47AD, 42AE, and 47AE can be changed as desired.
  • the through holes 42AD-47AD may be formed in the lead connection portions 42AB-47AB.
  • the through holes 42AD-47AD may be formed across the wire connection portions 42AA-47AA and the lead connection portions 42AB-47AB.
  • the through holes 42AE and 47AE may be formed in the wide portions 42AB2 and 47AB2 closer to the wire connection portions 42AA and 47AA.
  • One of the through holes 42AD and 42AE may be omitted from the second inner lead portion 42A.
  • One of the through holes 47AD and 47AE may be omitted from the second inner lead portion 47A.
  • the first lead terminals 12 to 17 have through holes 12AD to 17AD, 12AE, and 17AE.
  • the through holes 12AD to 17AD, 12AE, and 17AE are filled with a sealing resin 90.
  • the sealing resin 90 filled in the through holes 12AD-17AD, 12AE, and 17AE can prevent the first lead terminals 12-17 from moving when an external force is applied to the first lead terminals 12-17. Therefore, it is possible to prevent force from being applied to the first lead wires WB due to the movement of the first lead terminals 12-17.
  • the second lead terminals 42 to 47 have through holes 42AD to 47AD, 42AE, and 47AE.
  • the through holes 42AD to 47AD, 42AE, and 47AE are filled with sealing resin 90.
  • the sealing resin 90 filled in the through holes 42AD-47AD, 42AE, and 47AE can prevent the second lead terminals 42-47 from moving when an external force is applied to the second lead terminals 42-47. Therefore, it is possible to prevent force from being applied to the second lead wires WD due to the movement of the second lead terminals 42-47.
  • a signal transmission device 10 of the third embodiment will be described with reference to Figures 29 and 30.
  • the signal transmission device 10 of the third embodiment differs from the signal transmission device 10 of the second embodiment in the configuration of the first frame 10A and the second frame 10B and the configuration of the wires.
  • the configuration different from the second embodiment will be described in detail, and the components common to the second embodiment will be denoted by the same reference numerals and their description will be omitted.
  • the first frame 10A of the third embodiment is different from the second embodiment in the configuration of the first lead terminals 13, 16 among the first lead terminals 11 to 18. More specifically, as shown in FIG. 29, the through holes 13AD, 16AD (see FIG. 27) are omitted from the first inner lead portions 13A, 16A of the first lead terminals 13, 16.
  • the first frame 10A includes two types of first lead terminals: first specific terminals (first lead terminals 12, 14, 15, 17 in the third embodiment) that have through holes formed in the first inner lead portions 12A-17A of the first lead terminals 12-17, and second specific terminals (first lead terminals 13, 16 in the third embodiment) that do not have through holes formed.
  • first specific terminals first lead terminals 12, 14, 15, 17 in the third embodiment
  • second specific terminals first lead terminals 13, 16 in the third embodiment
  • the configuration of the second bond portion of the first lead wire WB differs depending on the first specific terminal and the second specific terminal. More specifically, a security bond WB1 is formed on the second bond portion of the first lead wire WB connected to the wire connection portion 13AA, 16AA of the first inner lead portion 13A, 16A of the first lead terminal 13, 16 as the second specific terminal. On the other hand, a security bond WB1 is not formed on the second bond portion of the first lead wire WB connected to the wire connection portion 13AA, 14AA, 15AA, 17AA of the first inner lead portion 13A, 14A, 15A, 17A of the first lead terminal 12, 14, 15, 17 as the first specific terminal.
  • the configuration of the security bond WB1 is the same as the configuration of the security bond WC1 of the first embodiment shown in FIG. 15.
  • the multiple first lead wires WB include a first specific wire joined to a first specific terminal (in the third embodiment, the first lead terminals 12, 14, 15, and 17) and a second specific wire joined to a second specific terminal (in the third embodiment, the first lead terminals 13 and 16).
  • a security bond is formed at the joint (second bond portion) of the second specific wire joined to the second specific terminal.
  • the second frame 10B of the third embodiment is different from the second embodiment in the configuration of the second lead terminals 43, 46 among the second lead terminals 41 to 48. More specifically, as shown in FIG. 30, the through holes 43AD, 46AD (see FIG. 28) are omitted from the second inner lead portions 43A, 46A of the second lead terminals 43, 46.
  • the second frame 10B includes two types of second lead terminals: third specific terminals (second lead terminals 42, 44, 45, 47 in the third embodiment) that have through holes formed in the second inner lead portions 42A-47A of the second lead terminals 42-47, and fourth specific terminals (second lead terminals 43, 46 in the third embodiment) that do not have through holes formed.
  • third specific terminals second lead terminals 42, 44, 45, 47 in the third embodiment
  • fourth specific terminals second lead terminals 43, 46 in the third embodiment
  • the configuration of the second bond portion of the second lead wire WD differs depending on the third specific terminal and the fourth specific terminal. More specifically, a security bond WD1 is formed on the second bond portion of the second lead wire WD connected to the wire connection portion 43AA, 46AA of the second inner lead portion 43A, 46A of the second lead terminal 43, 46 as the fourth specific terminal. On the other hand, a security bond WD1 is not formed on the second bond portion of the second lead wire WD connected to the wire connection portion 43AA, 44AA, 45AA, 47AA of the second inner lead portion 43A, 44A, 45A, 47A of the second lead terminal 42, 44, 45, 47 as the third specific terminal.
  • the configuration of the security bond WD1 is the same as the configuration of the security bond WC1 of the first embodiment shown in FIG. 15.
  • the multiple second lead wires WD include a third specific wire joined to a third specific terminal (second lead terminals 42, 44, 45, 47 in the third embodiment) and a fourth specific wire joined to a fourth specific terminal (second lead terminals 43, 46 in the third embodiment).
  • a security bond is formed at the joint (second bond portion) of the fourth specific wire joined to the fourth specific terminal.
  • the security bond WB1 can prevent the first lead wire WB from peeling off from the wire connection portions 13AA, 16AA.
  • the sealing resin 90 filled in the through holes 12AD, 12AE, 14AD, 15AD, 17AD, 17AE suppresses movement of the first lead terminals 12, 14, 15, 17, making it difficult for force to be applied to the first lead wires WB joined to the first lead terminals 12, 14, 15, 17.
  • a security bond WD1 is formed in the second bond portion of the second lead wire WD joined to the wire connection portions 43AA and 46AA of the second lead terminals 43 and 46.
  • the security bond WD1 can prevent the second lead wire WD from peeling off from the wire connection portions 43AA, 46AA.
  • the sealing resin 90 filled in the through holes 42AD, 42AE, 44AD, 45AD, 47AD, 47AE suppresses movement of the second lead terminals 42, 44, 45, 47, making it difficult for force to be applied to the second lead wires WD joined to the second lead terminals 42, 44, 45, 47.
  • a signal transmission device 10 of the fourth embodiment will be described with reference to Fig. 31.
  • the signal transmission device 10 of the fourth embodiment differs from the signal transmission device 10 of the first embodiment in the configuration of the first frame 10A and the second frame 10B.
  • the configuration different from the first embodiment will be described in detail, and the same reference numerals will be used to designate the same components as the first embodiment, and the description thereof will be omitted.
  • a first frame 10A and a second frame 10B of the fourth embodiment are different from those of the first embodiment in that the shapes of a first die pad 30 and a second die pad 50 are different.
  • the arc length of the first tip side curved surface 35 of the first die pad 30 is longer than the arc length of the first base side curved surface 37.
  • the arc length of the first tip side curved surface 35 is longer than the arc length of the second base side curved surface 38.
  • the radius of curvature of the first tip side curved surface 35 is larger than the radius of curvature of the first base side curved surface 37.
  • the radius of curvature of the first tip side curved surface 35 is larger than the radius of curvature of the second base side curved surface 38.
  • the arc length of the first tip side curved surface 35 is more than twice the arc length of the first base side curved surface 37.
  • the arc length of the first tip side curved surface 35 is more than three times the arc length of the first base side curved surface 37.
  • the arc length of the first distal curved surface 35 is four times or less than the arc length of the first proximal curved surface 37.
  • the arc length of the first distal curved surface 35 is two times or more than the arc length of the second proximal curved surface 38. In one example, in a plan view, the arc length of the first distal curved surface 35 is three times or more than the arc length of the second proximal curved surface 38. In one example, in a plan view, the arc length of the first distal curved surface 35 is four times or less than the arc length of the second proximal curved surface 38.
  • the arc length of the first distal curved surface 35 can be changed arbitrarily. In one example, in a plan view, the arc length of the first distal curved surface 35 may be greater than four times the arc length of the first proximal curved surface 37. In another example, in a plan view, the arc length of the first distal curved surface 35 may be greater than the arc length of the first proximal curved surface 37 and less than twice the arc length of the first proximal curved surface 37. In another example, in a plan view, the arc length of the first distal curved surface 35 may be greater than four times the arc length of the second proximal curved surface 38. In another example, in a plan view, the arc length of the first distal curved surface 35 may be greater than the arc length of the second proximal curved surface 38 and less than twice the arc length of the second proximal curved surface 38.
  • the arc length of the second tip side curved surface 36 of the first die pad 30 is longer than the arc length of the first base side curved surface 37.
  • the arc length of the second tip side curved surface 36 is longer than the arc length of the second base side curved surface 38.
  • the radius of curvature of the second tip side curved surface 36 is greater than the radius of curvature of the first base side curved surface 37.
  • the radius of curvature of the second tip side curved surface 36 is greater than the radius of curvature of the second base side curved surface 38.
  • the arc length of the second tip side curved surface 36 is more than twice the arc length of the first base side curved surface 37. In one example, in a plan view, the arc length of the second tip side curved surface 36 is more than three times the arc length of the first base side curved surface 37. In one example, in a plan view, the arc length of the second distal curved surface 36 is four times or less than the arc length of the first proximal curved surface 37. In one example, in a plan view, the arc length of the second distal curved surface 36 is two times or more than the arc length of the second proximal curved surface 38.
  • the arc length of the second distal curved surface 36 is three times or more than the arc length of the second proximal curved surface 38. In one example, in a plan view, the arc length of the second distal curved surface 36 is four times or less than the arc length of the second proximal curved surface 38.
  • the arc length of the second distal curved surface 36 can be changed arbitrarily. In one example, in a plan view, the arc length of the second distal curved surface 36 may be greater than four times the arc length of the first proximal curved surface 37. In another example, in a plan view, the arc length of the second distal curved surface 36 may be greater than the arc length of the first proximal curved surface 37 and less than twice the arc length of the first proximal curved surface 37. In another example, in a plan view, the arc length of the second distal curved surface 36 may be greater than four times the arc length of the second proximal curved surface 38. In another example, in a plan view, the arc length of the second distal curved surface 36 may be greater than the arc length of the second proximal curved surface 38 and less than twice the arc length of the second proximal curved surface 38.
  • the arc length of the first distal curved surface 35 is equal to the arc length of the second distal curved surface 36.
  • the difference between the arc length of the first distal curved surface 35 and the arc length of the second distal curved surface 36 is, for example, 10% or less of the arc length of the first distal curved surface 35, then it can be said that the arc length of the first distal curved surface 35 is equal to the arc length of the second distal curved surface 36.
  • the arc length of the third tip side curved surface 55 of the second die pad 50 is longer than the arc length of the third base side curved surface 57.
  • the arc length of the third tip side curved surface 55 is longer than the arc length of the fourth base side curved surface 58.
  • the radius of curvature of the third tip side curved surface 55 is greater than the radius of curvature of the third base side curved surface 57.
  • the radius of curvature of the third tip side curved surface 55 is greater than the radius of curvature of the fourth base side curved surface 58.
  • the arc length of the third tip side curved surface 55 is more than twice the arc length of the third base side curved surface 57. In one example, in a plan view, the arc length of the third tip side curved surface 55 is more than three times the arc length of the third base side curved surface 57. In one example, in a plan view, the arc length of the third distal curved surface 55 is four times or less than the arc length of the third proximal curved surface 57. In one example, in a plan view, the arc length of the third distal curved surface 55 is two times or more than the arc length of the fourth proximal curved surface 58.
  • the arc length of the third distal curved surface 55 is three times or more than the arc length of the fourth proximal curved surface 58. In one example, in a plan view, the arc length of the third distal curved surface 55 is four times or less than the arc length of the fourth proximal curved surface 58.
  • the arc length of the third distal curved surface 55 can be changed arbitrarily. In one example, in a plan view, the arc length of the third distal curved surface 55 may be greater than four times the arc length of the third proximal curved surface 57. In another example, in a plan view, the arc length of the third distal curved surface 55 may be greater than the arc length of the third proximal curved surface 57 and less than twice the arc length of the third proximal curved surface 57. In another example, in a plan view, the arc length of the third distal curved surface 55 may be greater than four times the arc length of the fourth proximal curved surface 58.
  • the arc length of the third distal curved surface 55 may be greater than the arc length of the fourth proximal curved surface 58 and less than twice the arc length of the fourth proximal curved surface 58.
  • the arc length of the fourth tip side curved surface 56 of the second die pad 50 is longer than the arc length of the third base side curved surface 57.
  • the arc length of the fourth tip side curved surface 56 is longer than the arc length of the fourth base side curved surface 58.
  • the radius of curvature of the fourth tip side curved surface 56 is greater than the radius of curvature of the third base side curved surface 57.
  • the radius of curvature of the fourth tip side curved surface 56 is greater than the radius of curvature of the fourth base side curved surface 58.
  • the arc length of the fourth tip side curved surface 56 is more than twice the arc length of the third base side curved surface 57. In one example, in a plan view, the arc length of the fourth tip side curved surface 56 is more than three times the arc length of the third base side curved surface 57. In one example, in a plan view, the arc length of the fourth distal curved surface 56 is four times or less than the arc length of the third proximal curved surface 57. In one example, in a plan view, the arc length of the fourth distal curved surface 56 is two times or more than the arc length of the fourth proximal curved surface 58.
  • the arc length of the fourth distal curved surface 56 is three times or more than the arc length of the fourth proximal curved surface 58. In one example, in a plan view, the arc length of the fourth distal curved surface 56 is four times or less than the arc length of the fourth proximal curved surface 58.
  • the arc length of the fourth distal curved surface 56 can be changed arbitrarily. In one example, in a plan view, the arc length of the fourth distal curved surface 56 may be greater than four times the arc length of the third proximal curved surface 57. In another example, in a plan view, the arc length of the fourth distal curved surface 56 may be greater than the arc length of the third proximal curved surface 57 and less than twice the arc length of the third proximal curved surface 57. In another example, in a plan view, the arc length of the fourth distal curved surface 56 may be greater than four times the arc length of the fourth proximal curved surface 58.
  • the arc length of the fourth distal curved surface 56 may be greater than the arc length of the fourth proximal curved surface 58 and less than twice the arc length of the fourth proximal curved surface 58.
  • the arc length of the third tip side curved surface 55 is equal to the arc length of the fourth tip side curved surface 56.
  • the difference between the arc length of the third tip side curved surface 55 and the arc length of the fourth tip side curved surface 56 is, for example, 10% or less of the arc length of the third tip side curved surface 55, then it can be said that the arc length of the third tip side curved surface 55 is equal to the arc length of the fourth tip side curved surface 56.
  • the arc length of the third tip side curved surface 55 is equal to the arc length of the first tip side curved surface 35 of the first die pad 30.
  • the difference between the arc length of the third tip side curved surface 55 and the arc length of the first tip side curved surface 35 is, for example, 10% or less of the arc length of the third tip side curved surface 55, it can be said that the arc length of the third tip side curved surface 55 is equal to the arc length of the first tip side curved surface 35.
  • the arc length of the fourth tip side curved surface 56 is equal to the arc length of the second tip side curved surface 36 of the first die pad 30.
  • the difference between the arc length of the fourth tip side curved surface 56 and the arc length of the second tip side curved surface 36 is, for example, 10% or less of the arc length of the fourth tip side curved surface 56, it can be said that the arc length of the fourth tip side curved surface 56 is equal to the arc length of the second tip side curved surface 36.
  • the first tip curved surface 35 and the second tip curved surface 36 can reduce electric field concentration at the corner portion of the tip of the first die pad 30 that is closest to the second die pad 50. This makes it possible to avoid dielectric breakdown between the first die pad 30 and the second die pad 50, thereby improving the dielectric strength of the signal transmission device 10.
  • the arc length of both the third tip side curved surface 55 and the fourth tip side curved surface 56 is longer than the arc length of both the third base side curved surface 57 and the fourth base side curved surface 58 in a plan view.
  • the third tip curved surface 55 and the fourth tip curved surface 56 can reduce electric field concentration at the corner portion of the tip of the second die pad 50 that is closest to the first die pad 30. This makes it possible to avoid dielectric breakdown between the first die pad 30 and the second die pad 50, thereby improving the dielectric strength of the signal transmission device 10.
  • the signal transmission device 10 of the fifth embodiment will be described with reference to Figures 32 to 39.
  • the signal transmission device 10 of the fifth embodiment differs from the signal transmission device 10 of the first embodiment mainly in the configurations of the first chip 60 and the second chip 70.
  • configurations different from the first embodiment will be described in detail, and components common to the first embodiment will be denoted by the same reference numerals and descriptions thereof will be omitted.
  • FIG. 32 shows a schematic cross-sectional structure of the first die pad 30 and the first chip 60 cut in the XZ plane
  • FIG. 33 shows a schematic cross-sectional structure of the first die pad 30 and the first chip 60 cut in the YZ plane.
  • the wires WA-WC and the sealing resin 90 are omitted from the cross-sectional structures of FIG. 32 and FIG. 33.
  • the substrate 130 of the first chip 60 has first to fourth substrate side surfaces 133 to 136 that connect the substrate front surface 131 and the substrate back surface 132.
  • the first substrate side surface 133 constitutes a part of the first chip side surface 63 of the first chip 60
  • the second substrate side surface 134 constitutes a part of the second chip side surface 64
  • the third substrate side surface 135 constitutes a part of the third chip side surface 65
  • the fourth substrate side surface 136 constitutes a part of the fourth chip side surface 66.
  • the substrate 130 can be divided into a first portion 137 and a second portion 138 by a step portion 139.
  • the first portion 137 is a portion of the substrate 130 that is closer to the first die pad 30.
  • the second portion 138 is a portion that is provided on the first portion 137.
  • the step portion 139 is formed around the entire periphery of the substrate 130.
  • the thickness dimension (size in the Z direction) of the first portion 137 is greater than the thickness dimension (size in the Z direction) of the second portion 138. In one example, the thickness dimension of the first portion 137 is more than twice the thickness dimension of the second portion 138. In one example, the thickness dimension of the first portion 137 is more than three times the thickness dimension of the second portion 138. In one example, the thickness dimension of the first portion 137 is less than four times the thickness dimension of the second portion 138.
  • the first conductive bonding material SD1 is interposed between the first portion 137 and the first die pad 30 in the Z direction, and has a portion that protrudes from the first chip 60 in a direction perpendicular to the Z direction.
  • This protruding portion forms a first fillet SDA between the first portion 137.
  • the first fillet SDA is not formed in the second portion 138 due to the step portion 139.
  • the first fillet SDA is formed over the entire first portion 137 in the Z direction.
  • the height dimension (size in the Z direction) of the first fillet SDA can be changed as desired within a range lower than the step portion 139.
  • the height dimension of the first fillet SDA may be approximately 1/2 the thickness dimension of the first portion 137.
  • the position of the step portion 139 in the first chip 60 in the Z direction can be changed arbitrarily.
  • the relationship between the thickness dimension of the first portion 137 and the thickness dimension of the second portion 138 can be changed arbitrarily.
  • the thickness dimension of the first portion 137 may be equal to the thickness dimension of the second portion 138.
  • the thickness dimension of the first portion 137 is 1/2 or less of the thickness dimension of the second portion 138.
  • the thickness dimension of the first portion 137 is 1/3 or less of the thickness dimension of the second portion 138.
  • the thickness dimension of the first portion 137 is 1/4 or more of the thickness dimension of the second portion 138.
  • the thickness dimension of the first portion 137 is 1/4 or more and 3/4 or less of the thickness dimension (size in the Z direction) of the first chip 60.
  • the width H1 of the step portion 139 is equal on the first to fourth substrate sides 133 to 136.
  • the width H1 of the step portion 139 is, for example, about 3 ⁇ m.
  • the width H1 of the step portion 139 can be defined, for example, by the distance between the portion of the first substrate side 133 that corresponds to the first portion 137 and the portion that corresponds to the second portion 138.
  • FIG. 34 shows a schematic cross-sectional structure of the second die pad 50 and the second chip 70 cut in the XZ plane
  • FIG. 35 shows a schematic cross-sectional structure of the second die pad 50 and the second chip 70 cut in the YZ plane.
  • the wires WD, WE and the sealing resin 90 are omitted in the cross-sectional structures of FIG. 34 and FIG. 35.
  • the second chip 70 mounted on the second die pad 50 includes a substrate 230 .
  • the substrate 230 is formed of, for example, a semiconductor substrate.
  • the substrate 230 is a semiconductor substrate formed of a material containing silicon. Note that the substrate 230 may use a wide band gap semiconductor or a compound semiconductor as a semiconductor substrate. Also, instead of a semiconductor substrate, the substrate 230 may use an insulating substrate formed of a material containing glass, or an insulating substrate formed of a material containing ceramics such as alumina.
  • the wide bandgap semiconductor is a semiconductor substrate having a bandgap of 2.0 eV or more.
  • the wide bandgap semiconductor may be any one of silicon carbide, gallium nitride, and gallium oxide.
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may include at least one of aluminum nitride, indium nitride, gallium nitride, and gallium arsenide.
  • the substrate 230 of the second chip 70 has first to fourth substrate side surfaces 233 to 236 that connect the substrate front surface 231 and substrate back surface 232.
  • the first substrate side surface 233 constitutes part of the first chip side surface 73 of the second chip 70
  • the second substrate side surface 234 constitutes part of the second chip side surface 74
  • the third substrate side surface 235 constitutes part of the third chip side surface 75
  • the fourth substrate side surface 236 constitutes part of the fourth chip side surface 76.
  • the substrate 230 can be divided into a first portion 237 and a second portion 238 by a step portion 239.
  • the first portion 237 is a portion of the substrate 230 that is closer to the second die pad 50.
  • the second portion 238 is a portion that is provided on the first portion 237.
  • the step portion 239 is formed around the entire periphery of the substrate 230.
  • the thickness dimension (size in the Z direction) of the first portion 237 is greater than the thickness dimension (size in the Z direction) of the second portion 238. In one example, the thickness dimension of the first portion 237 is more than twice the thickness dimension of the second portion 238. In one example, the thickness dimension of the first portion 237 is more than three times the thickness dimension of the second portion 238. In one example, the thickness dimension of the first portion 237 is less than four times the thickness dimension of the second portion 238.
  • the second conductive bonding material SD2 is interposed between the first portion 237 and the second die pad 50 in the Z direction, and has a portion that protrudes from the second chip 70 in a direction perpendicular to the Z direction.
  • This protruding portion forms a second fillet SDB between the first portion 237.
  • the second fillet SDB is not formed in the second portion 238 due to the step portion 239.
  • the second fillet SDB is formed over the entire first portion 237 in the Z direction.
  • the height dimension (size in the Z direction) of the second fillet SDB can be changed as desired within a range lower than the step portion 239.
  • the height dimension of the second fillet SDB may be approximately 1/2 the thickness dimension of the first portion 237.
  • the position of the step portion 239 in the second chip 70 in the Z direction can be changed arbitrarily.
  • the relationship between the thickness dimension of the first portion 237 and the thickness dimension of the second portion 238 can be changed arbitrarily.
  • the thickness dimension of the first portion 237 may be equal to the thickness dimension of the second portion 238.
  • the thickness dimension of the first portion 237 is 1/2 or less of the thickness dimension of the second portion 238.
  • the thickness dimension of the first portion 237 is 1/3 or less of the thickness dimension of the second portion 238.
  • the thickness dimension of the first portion 237 is 1/4 or more of the thickness dimension of the second portion 238.
  • the thickness dimension of the first portion 237 is 1/4 or more and 3/4 or less of the thickness dimension (size in the Z direction) of the second chip 70.
  • the width H2 of the step portion 239 is equal to each other on the first to fourth substrate side surfaces 233 to 236.
  • the width H2 of the step portion 239 is, for example, about 3 ⁇ m.
  • the width H2 of the step portion 239 can be defined, for example, by the distance between the portion of the first substrate side surface 233 that corresponds to the first portion 237 and the portion that corresponds to the second portion 238.
  • the manufacturing method of the first chip 60 includes the steps of preparing a substrate 830, forming an element insulating layer 850 on the substrate 830, forming a passivation film 861, forming a protective film 862, and singulating. An overview of each step will be described below. Note that Figs. 36 to 39 show a schematic cross-sectional structure of the first chip 60. In Figs. 37 to 39, the hatching lines of the passivation film 861 and the protective film 862 are omitted to make the drawings easier to understand.
  • a substrate 830 including a plurality of substrates 130 is prepared.
  • the transmitting unit 501, the receiving unit 502, the logic unit 503, the UVLO unit 504, the resistors 505, 506, 507, 509, 511, and the switching elements 508, 510 shown in FIG. 16 are formed.
  • a SiO 2 film is laminated on a substrate surface 831 of the substrate 830 by, for example, a CVD method.
  • the SiO 2 film is a film that constitutes the element insulating layer 850.
  • the element insulating layer 850 is constituted by, for example, a laminated structure of a plurality of SiO 2 films.
  • a process of forming the first back surface side coil 111B and the second back surface side coil 112B is carried out, for example, by sputtering and etching. Then, after the process of forming the first back surface side coil 111B and the second back surface side coil 112B is carried out, the process of forming the element insulating layer 850 on the substrate 830 is carried out again.
  • the element insulating layer 850 is formed, a process is carried out to form the first surface side coil 111A, the second surface side coil 112A and the first to third electrode pads 67 to 69 by sputtering and etching.
  • the passivation film 861 is formed on the element insulating layer 850 by, for example, a CVD method.
  • the passivation film 861 also covers the second surface side coil 112A and the first to third electrode pads 67 to 69.
  • the protective film 862 is formed on the passivation film 861, for example, by a CVD method.
  • the protective film 862 is formed, for example, over the entire surface of the passivation film 861.
  • openings are formed, for example by etching, in both the protective film 862 and the passivation film 861 at positions that overlap with portions of each of the first to third electrode pads 67 to 69. As a result, portions of the first to third electrode pads 67 to 69 are exposed in the Z direction from both the protective film 862 and the passivation film 861.
  • the step of dividing into individual pieces includes a first dicing step and a second dicing step.
  • the first dicing step first, the substrate 830 is placed on the dicing tape DT. The back surface 832 of the substrate 830 is in contact with the dicing tape DT.
  • the protective film 862, the passivation film 861, and the element insulating layer 850 are cut by the first dicing blade DB1, and a part of the substrate 830 in the Z direction is cut. As a result, a recess 833 is formed in the substrate 830.
  • the substrate 830 is cut by the second dicing blade DB2.
  • the second dicing blade DB2 is a blade that is narrower than the first dicing blade DB1.
  • the second dicing blade DB2 cuts the substrate 830 from the recess 833 of the substrate 830. As a result, a step portion 839 is formed in the substrate 830.
  • the dicing tape DT is then removed. Through the above processes, the first chip 60 is manufactured.
  • Substrate 130 of first chip 60 has a first portion 137 including a back surface 132 of the substrate, a second portion 138 provided on first portion 137, and a step portion 139 formed so that second portion 138 is positioned inside substrate 130 relative to first portion 137.
  • the step portion 139 can prevent the first conductive bonding material SD1 from creeping up onto the chip surface 61 of the first chip 60.
  • the substrate 230 of the second chip 70 has a first portion 237 including the rear surface 232 of the substrate, a second portion 238 provided on the first portion 237, and a step portion 239 formed so that the second portion 238 is positioned inside the substrate 230 relative to the first portion 237.
  • the step portion 239 can prevent the second conductive bonding material SD2 from creeping up onto the chip surface 71 of the second chip 70.
  • a signal transmission device 10 of the sixth embodiment will be described with reference to Fig. 40.
  • the signal transmission device 10 of the sixth embodiment differs from the signal transmission device 10 of the first embodiment in that the conductive members 10D and 10E are omitted.
  • the configuration different from the first embodiment will be described in detail, and the components common to the first embodiment will be denoted by the same reference numerals and their description will be omitted.
  • the signal transmission device 10 does not include conductive members 10D, 10E (see FIG. 7). Therefore, conductive member 10D is not exposed from the third sealing side surface 95 of the sealing resin 90. Furthermore, conductive member 10E is not exposed from the fourth sealing side surface 96 of the sealing resin 90. In this way, both the third sealing side surface 95 and the fourth sealing side surface 96 are made only of the resin material that constitutes the sealing resin 90.
  • the recess 95D (see FIG. 7) is omitted from the third sealing side surface 95
  • the recess 96D (see FIG. 7) is omitted from the fourth sealing side surface 96.
  • the portion of the third sealing side surface 95 between the third front side surface 95A and the third back side surface 95B forms a flat surface along the XZ plane over the entire X direction.
  • the portion of the fourth sealing side surface 96 between the fourth front side surface 96A and the fourth back side surface 96B forms a flat surface along the XZ plane over the entire X direction.
  • this configuration can prevent static electricity and the like from entering the sealing resin 90 via the conductive member.
  • the insulation distance between the first lead terminals 11-18 and the second lead terminals 41-48 can be made large. This can improve the dielectric strength of the signal transmission device 10.
  • a signal transmission device 10 of the seventh embodiment will be described with reference to Figures 41 to 45.
  • the signal transmission device 10 of the seventh embodiment differs from the signal transmission device 10 of the first embodiment mainly in the configurations of the first frame 10A, the second frame 10B, the first chip 60, and the second chip 70.
  • configurations different from the first embodiment will be described in detail, and components common to the first embodiment will be denoted by the same reference numerals and descriptions thereof will be omitted.
  • the signal transmission device 10 includes ten first lead terminals 11M, 11N, 12 to 17, 18M, and 18N protruding from a first sealing side surface 93 of the sealing resin 90, and ten second lead terminals 41M, 41N, 42 to 47, 48M, and 48N protruding from a second sealing side surface 94. That is, in the seventh embodiment, the numbers of first lead terminals and second lead terminals are greater than in the first embodiment.
  • the configuration of the first outer lead portion 11MB, 11NB, 12B-17B, 18MB, 18NB of the first lead terminals 11M, 11N, 12-17, 18M, 18N outside the sealing resin 90 is the same as the configuration of the first outer lead portion 11B-18B of the first embodiment.
  • the configuration of the second outer lead portion 41MB, 41NB, 42B-47B, 48MB, 48NB of the second lead terminals 41M, 41N, 42-47, 48M, 48N outside the sealing resin 90 is the same as the configuration of the second outer lead portion 41B-48B of the first embodiment.
  • first outer lead portion 11MB, 11NB, 12B-17B, 18MB, 18NB and the second outer lead portion 41MB, 41NB, 42B-47B, 48MB, 48NB will be omitted.
  • the configuration of the sealing resin 90 is the same as that of the sealing resin 90 in the first embodiment, so a detailed description thereof will be omitted.
  • the first frame 10A includes ten first lead terminals 11M, 11N, 12 to 17, 18M, and 18N.
  • the first lead terminals 11M, 11N, 12 to 17, 18M, and 18N are arranged at a distance from one another in the Y direction.
  • the first lead terminals 11M, 11N, 12 to 17, 18M, and 18N are arranged in the following order from the third sealing side surface 95 toward the fourth sealing side surface 96: first lead terminals 11M, 11N, 12, 13, 14, 15, 16, 17, 18N, and 18M.
  • the first lead terminals 11M, 11N, 18M, 18N include first inner lead portions 11MA, 11NA, 18MA, 18NA. Each of the first inner lead portions 11MA, 11NA, 18MA, 18NA is connected to the first die pad 30. In one example, the first inner lead portions 11MA, 11NA, 18MA, 18NA are integrated with the first die pad 30.
  • the first lead terminals 12 to 17 are arranged at a distance from the first die pad 30, similar to the first embodiment.
  • the configuration of each of the first inner lead portions 11MA, 11NA of the first lead terminals 11M, 11N includes configurations common to the configuration of the first inner lead portion 11A of the first lead terminal 11 of the first embodiment. For this reason, the configurations of each of the first inner lead portions 11MA, 11NA that are common to the configuration of the first inner lead portion 11A of the first embodiment are given the same reference numerals as the first inner lead portion 11A of the first embodiment, and detailed descriptions thereof will be omitted.
  • each of the first inner lead portions 18MA, 18NA of the first lead terminals 18M, 18N includes configurations in common with the configuration of the first inner lead portion 18A of the first lead terminal 18 of the first embodiment. For this reason, the configurations of each of the first inner lead portions 18MA, 18NA that are in common with the configuration of the first inner lead portion 18A of the first embodiment are given the same reference numerals as the first inner lead portion 18A of the first embodiment, and detailed descriptions thereof will be omitted.
  • the first die pad 30 includes a first protruding portion 33A protruding from the first side surface 33 toward the third sealing side surface 95, and a second protruding portion 34A protruding from the second side surface 34 toward the fourth sealing side surface 96.
  • the size in the X direction of the first protruding portion 33A and the size in the X direction of the second protruding portion 34A are equal to each other and smaller than the size in the X direction of the first die pad 30.
  • Both the first protrusion 33A and the second protrusion 34A are disposed closer to the first tip surface 31 of the first die pad 30.
  • the distance in the X direction between the first protrusion 33A and the second protrusion 34A and the first tip surface 31 is smaller than the distance in the X direction between the first protrusion 33A and the second protrusion 34A and the first base end surface 32.
  • both the first protrusion 33A and the second protrusion 34A are formed at positions overlapping the first chip 60.
  • the first inner lead portions 11MA, 11NA are connected to the first protrusion 33A. More specifically, the third lead portion 11AC of each of the first inner lead portions 11MA, 11NA is connected to the first protrusion 33A. Since the first inner lead portion 11MA is positioned closer to the third sealing side surface 95 than the first inner lead portion 11NA, the third lead portion 11AC of the first inner lead portion 11MA is positioned closer to the second frame 10B than the third lead portion 11AC of the first inner lead portion 11NA.
  • the first inner lead portions 18MA, 18NA are connected to the second protrusion portion 34A. More specifically, the third lead portion 18AC of each of the first inner lead portions 18MA, 18NA is connected to the second protrusion portion 34A. Since the first inner lead portion 18MA is positioned closer to the fourth sealing side surface 96 than the first inner lead portion 18NA, the third lead portion 18AC of the first inner lead portion 18NA is positioned closer to the second frame 10B than the third lead portion 18AC of the first inner lead portion 18NA.
  • the second bond portion of the wire WC for the first die pad which is connected to the third electrode pad 69 closer to the third chip side surface 65 of the first chip 60, is formed on the first protrusion 33A.
  • the second bond portion of the wire WC for the first die pad has a security bond WC1 formed on the first protrusion 33A.
  • the second bond portion of the wire WC for the first die pad which is connected to the third electrode pad 69 closer to the fourth chip side surface 66 of the first chip 60, is formed on the second protrusion 34A.
  • the second bond portion of the wire WC for the first die pad has a security bond WC1 formed on the second protrusion 34A.
  • the second frame 10B includes ten second lead terminals 41M, 41N, 42 to 47, 48M, and 48N.
  • the second lead terminals 41M, 41N, 42 to 47, 48M, and 48N are arranged at a distance from one another in the Y direction.
  • the second lead terminals 41M, 41N, 42 to 47, 48M, and 48N are arranged in the following order from the fourth sealing side surface 96 toward the third sealing side surface 95: second lead terminals 41M, 41N, 42, 43, 44, 45, 46, 47, 48N, and 48M.
  • the second lead terminals 41M, 41N, 48M, 48N include second inner lead portions 41MA, 41NA, 48MA, 48NA. Each of the second inner lead portions 41MA, 41NA, 48MA, 48NA is connected to the second die pad 50. In one example, the second inner lead portions 41MA, 41NA, 48MA, 48NA are integrated with the second die pad 50.
  • the second lead terminals 42 to 47 are arranged at a distance from the second die pad 50, similar to the first embodiment.
  • each of the second inner lead portions 41MA, 41NA of the second lead terminals 41M, 41N includes configurations common to the configuration of the second inner lead portion 41A of the second lead terminal 41 of the first embodiment.
  • the configurations of each of the second inner lead portions 41MA, 41NA that are common to the configuration of the second inner lead portion 41A of the first embodiment are given the same reference numerals as the second inner lead portion 41A of the first embodiment, and detailed descriptions thereof will be omitted.
  • the second die pad 50 includes a third protrusion 53A protruding from the third side surface 53 toward the third sealing side surface 95, and a fourth protrusion 54A protruding from the fourth side surface 54 toward the fourth sealing side surface 96.
  • the size in the X direction of the third protrusion 53A and the size in the X direction of the fourth protrusion 54A are equal to each other and smaller than the size in the X direction of the second die pad 50.
  • Both the third protrusion 53A and the fourth protrusion 54A are disposed closer to the second tip surface 51 of the second die pad 50.
  • the distance in the X direction between the third protrusion 53A and the fourth protrusion 54A and the second tip surface 51 is smaller than the distance in the X direction between the third protrusion 53A and the fourth protrusion 54A and the second base end surface 52.
  • both the third protrusion 53A and the fourth protrusion 54A are formed at positions overlapping the second chip 70.
  • the second inner lead portions 41MA, 41NA are connected to the third protrusion portion 53A. More specifically, the sixth lead portion 41AC of each of the second inner lead portions 41MA, 41NA is connected to the third protrusion portion 53A. Since the second inner lead portion 41MA is positioned closer to the third sealing side surface 95 than the second inner lead portion 41NA, the sixth lead portion 41AC of the second inner lead portion 41MA is positioned closer to the first frame 10A than the sixth lead portion 41AC of the second inner lead portion 41NA.
  • the second inner lead portions 48MA, 48NA are connected to the fourth protrusion portion 54A. More specifically, the sixth lead portion 48AC of each of the second inner lead portions 48MA, 48NA is connected to the fourth protrusion portion 54A. Since the second inner lead portion 48MA is positioned closer to the fourth sealing side surface 96 than the second inner lead portion 48NA, the sixth lead portion 48AC of the second inner lead portion 48NA is positioned closer to the first frame 10A than the sixth lead portion 48AC of the second inner lead portion 48NA.
  • the second bond portion of the wire WE for the second die pad which is connected to the third electrode pad 79 closer to the third chip side surface 75 of the second chip 70, is formed on the third protrusion 53A.
  • the second bond portion of the wire WE for the second die pad has a security bond WE1 formed on the third protrusion 53A.
  • the second bond portion of the wire WE for the second die pad which is connected to the third electrode pad 79 closer to the fourth chip side surface 76 of the second chip 70, is formed on the fourth protrusion 54A.
  • the second bond portion of the wire WE for the second die pad has a security bond WE1 formed on the fourth protrusion 54A.
  • circuit configuration of signal transmission device The circuit configuration of the signal transmission device 10 of the seventh embodiment will be described with reference to Fig. 45.
  • the circuit configuration of the signal transmission device 10 of the seventh embodiment is different from the circuit configuration of the signal transmission device 10 of the first embodiment in the configurations of the first terminal and the second terminal.
  • the configurations of the first terminal and the second terminal will be described below.
  • the seventh embodiment of the signal transmission device 10 includes first terminals PM1, PN1, P2 to P7, PM8, and PN8, which are external terminals electrically connected to the first circuit 500, and second terminals QM1, QN2, Q2 to Q7, QM8, and QN8, which are electrically connected to the second circuit 520.
  • the first terminals PM1 and PN1 form a ground terminal (GND1) similar to the first terminal P1 in the first embodiment.
  • the first terminals PM8 and PN8 form a ground terminal (GND1) similar to the first terminal P8 in the first embodiment.
  • the first terminals PM1, PN1, PM8, and PN8 are electrically connected to each other.
  • the second terminals QM1 and QN1 form a negative power supply terminal (VEE2) similar to the second terminal Q1 in the first embodiment.
  • the second terminals QM8 and QN8 form a negative power supply terminal (VEE2) similar to the second terminal Q8 in the first embodiment.
  • the second terminals QM1, QN1, QM8, and QN8 are electrically connected to each other.
  • the signal transmission device 10 of the seventh embodiment provides the same effects as the first embodiment.
  • a signal transmission device 10 of the eighth embodiment will be described with reference to Fig. 46 and Fig. 47.
  • the signal transmission device 10 of the eighth embodiment is different from the signal transmission device 10 of the second embodiment in the configuration of the first frame 10A and the second frame 10B.
  • the configuration different from the first embodiment will be described in detail, and the same reference numerals will be used to designate the same components as the first embodiment, and the description thereof will be omitted.
  • the first frame 10A of the eighth embodiment is different from the second embodiment in the configuration of the first lead terminals corresponding to the first lead terminals 11, 18 of the second embodiment. More specifically, as shown in FIG. 46, the first frame 10A of the eighth embodiment has first lead terminals 11M, 11N, 18M, 18N, as in the seventh embodiment.
  • the configuration of the first lead terminals 12-17 is similar to that of the first lead terminals 12-17 of the second embodiment. That is, the first inner lead portions 12A-17A of the first lead terminals 12-17 have through holes 12AD-17AD that penetrate the first inner lead portions 12A-17A in the thickness direction (Z direction) thereof.
  • first inner lead portions 12A, 17A have through holes 12AE, 17AE that are separate from the through holes 12AD, 17AD. That is, the first inner lead portions 12A, 17A have two through holes.
  • the positions, shapes, and sizes of the through holes 12AD-17AD, 12AE, and 17AE are the same as those in the second embodiment.
  • the position of the second bond portion of the first lead wire WB is also the same as that in the second embodiment. Therefore, detailed descriptions of the through holes 12AD-17AD, 12AE, and 17AE and the first lead wire WB are omitted.
  • the security bond WB1 (see FIG. 42) is not formed in the second bond portion of the first lead wire WB.
  • the through holes 12AD-17AD, 12AE, and 17AE are filled with sealing resin 90.
  • the sealing resin 90 filled in the through holes 12AD-17AD, 12AE, and 17AE connects the sealing resin 90 provided closer to the sealing surface 91 (see FIG. 2) than the first inner lead portions 12A-17A with the sealing resin 90 provided closer to the sealing back surface 92 (see FIG. 2) than the first inner lead portions 12A-17A.
  • the first lead terminals 11M, 11N, 18M, and 18N are integrated with the first die pad 30, and therefore correspond to the "first connection terminals.”
  • the first lead terminals 12-17 are disposed away from the first die pad 30, and therefore correspond to the "first remote terminals.” Because the through holes 12AD-17AD are formed in the first lead terminals 12-17, it can be said that the first remote terminals have through holes that penetrate in the thickness direction of the first remote terminals. On the other hand, the first connection terminals do not have through holes.
  • the second frame 10B of the eighth embodiment is different from the second embodiment in the configuration of the second lead terminals corresponding to the second lead terminals 41, 48 of the second embodiment. More specifically, the second frame 10B of the eighth embodiment has second lead terminals 41M, 41N, 48M, 48N, as in the seventh embodiment.
  • the configuration of the second lead terminals 42-47 is similar to that of the second lead terminals 42-47 of the second embodiment. That is, the second inner lead portions 42A-47A of the second lead terminals 42-47 have through holes 42AD-47AD that penetrate the second inner lead portions 42A-47A in the thickness direction (Z direction) thereof.
  • the second inner lead portions 42A, 47A have through holes 42AE, 47AE formed in addition to the through holes 42AD, 47AD. That is, the second inner lead portions 42A, 47A have two through holes.
  • the formation positions, shapes, and sizes of the through holes 42AD-47AD, 42AE, and 47AE are the same as those in the second embodiment.
  • the position of the second bond portion of the second lead wire WD is the same as that in the second embodiment. Therefore, detailed descriptions of the through holes 42AD-47AD, 42AE, and 47AE and the second lead wire WD are omitted.
  • the security bond WD1 (see FIG. 42) is not formed in the second bond portion of the second lead wire WD.
  • the through holes 42AD-47AD, 42AE, and 47AE are filled with sealing resin 90.
  • the sealing resin 90 filled in the through holes 42AD-47AD, 42AE, and 47AE connects the sealing resin 90 provided closer to the sealing surface 91 (see FIG. 2) than the second inner lead portions 42A-47A with the sealing resin 90 provided closer to the sealing back surface 92 (see FIG. 2) than the second inner lead portions 42A-47A.
  • the second lead terminals 41M, 41N, 48M, 48N are integrated with the second die pad 50, and therefore correspond to the "second connection terminals.”
  • the second lead terminals 42-47 are disposed away from the second die pad 50, and therefore correspond to the "second remote terminals.” Since the through holes 42AD-47AD are formed in the second lead terminals 42-47, it can be said that the second remote terminals have through holes that penetrate in the thickness direction of the second remote terminals. On the other hand, the second connection terminals do not have through holes. Note that according to the signal transmission device 10 of the eighth embodiment, the same effects as those of the second embodiment can be obtained.
  • Ninth embodiment A signal transmission device 10 of the ninth embodiment will be described with reference to Fig. 48 and Fig. 49.
  • the signal transmission device 10 of the ninth embodiment differs from the signal transmission device 10 of the third embodiment in the configuration of the first frame 10A and the second frame 10B.
  • the configuration different from the third embodiment will be described in detail, and the same reference numerals will be used to designate the same components as the third embodiment, and the description thereof will be omitted.
  • the first frame 10A of the ninth embodiment is different from the third embodiment in the configuration of the first lead terminals corresponding to the first lead terminals 11, 18 of the third embodiment. More specifically, as shown in FIG. 48, the first frame 10A of the ninth embodiment includes first lead terminals 11M, 11N, 18M, 18N, as in the seventh embodiment. Meanwhile, the configuration of the first lead terminals 12-17 is the same as that of the first lead terminals 12-17 of the third embodiment.
  • the first frame 10A includes two types of first lead terminals: first specific terminals (first lead terminals 12, 14, 15, 17 in the ninth embodiment) in which a through hole is formed among the first inner lead portions 12A-17A of the first lead terminals 12-17, and second specific terminals (first lead terminals 13, 16 in the ninth embodiment) in which a through hole is not formed.
  • first specific terminals first lead terminals 12, 14, 15, 17 in the ninth embodiment
  • second specific terminals first lead terminals 13, 16 in the ninth embodiment
  • the configuration of the second bond portion of the first lead wire WB differs depending on the first specific terminal and the second specific terminal. More specifically, a security bond WB1 is formed on the second bond portion of the first lead wire WB connected to the wire connection portion 13AA, 16AA of the first inner lead portion 13A, 16A of the first lead terminal 13, 16 as the second specific terminal. On the other hand, a security bond WB1 is not formed on the second bond portion of the first lead wire WB connected to the wire connection portion 12AA, 14AA, 15AA, 17AA of the first inner lead portion 12A, 14A, 15A, 17A of the first lead terminal 12, 14, 15, 17 as the first specific terminal.
  • the configuration of the security bond WB1 is the same as the configuration of the security bond WC1 of the first embodiment shown in FIG. 15.
  • the multiple first lead wires WB include a first specific wire joined to a first specific terminal (in the ninth embodiment, the first lead terminals 12, 14, 15, and 17) and a second specific wire joined to a second specific terminal (in the ninth embodiment, the first lead terminals 13 and 16).
  • a security bond is formed at the joint (second bond portion) of the second specific wire joined to the second specific terminal.
  • the second frame 10B of the ninth embodiment is different from the third embodiment in the configuration of the second lead terminals corresponding to the second lead terminals 41, 48 of the third embodiment. More specifically, as shown in FIG. 49, the second frame 10B of the ninth embodiment includes the second lead terminals 41M, 41N, 48M, 48N, as in the seventh embodiment. Meanwhile, the configuration of the second lead terminals 42-47 is the same as that of the second lead terminals 42-47 of the third embodiment.
  • the second frame 10B includes two types of second lead terminals: a third specific terminal (second lead terminals 42, 44, 45, 47 in the ninth embodiment) in which a through hole is formed among the second inner lead portions 42A-47A of the second lead terminals 42-47, and a fourth specific terminal (second lead terminals 43, 46 in the ninth embodiment) in which a through hole is not formed.
  • a third specific terminal second lead terminals 42, 44, 45, 47 in the ninth embodiment
  • a through hole is formed among the second inner lead portions 42A-47A of the second lead terminals 42-47
  • fourth specific terminal second lead terminals 43, 46 in the ninth embodiment
  • the configuration of the second bond portion of the second lead wire WD differs depending on the third specific terminal and the fourth specific terminal. More specifically, a security bond WD1 is formed on the second bond portion of the second lead wire WD connected to the wire connection portions 43AA, 46AA of the second inner lead portions 43A, 46A of the second lead terminals 43, 46 as the fourth specific terminals. On the other hand, a security bond WD1 is not formed on the second bond portion of the second lead wire WD connected to the wire connection portions 42AA, 44AA, 45AA, 47AA of the second inner lead portions 42A, 44A, 45A, 47A of the second lead terminals 42, 44, 45, 47 as the third specific terminals.
  • the configuration of the security bond WD1 is the same as the configuration of the security bond WC1 of the first embodiment shown in FIG. 15.
  • the multiple second lead wires WD include a third specific wire joined to a third specific terminal (second lead terminals 42, 44, 45, 47 in the ninth embodiment) and a fourth specific wire joined to a fourth specific terminal (second lead terminals 43, 46 in the ninth embodiment).
  • a security bond is formed at the joint (second bond portion) of the fourth specific wire joined to the fourth specific terminal.
  • the signal transmission device 10 of the tenth embodiment will be described with reference to Fig. 50.
  • the signal transmission device 10 of the tenth embodiment differs from the signal transmission device 10 of the sixth embodiment in the configuration of the first frame 10A and the second frame 10B.
  • the configuration different from the sixth embodiment will be described in detail, and the same reference numerals will be used to designate the same components as the sixth embodiment, and the description thereof will be omitted.
  • the first frame 10A of the tenth embodiment is different from the sixth embodiment in the configuration of the first lead terminals corresponding to the first lead terminals 11, 18 of the sixth embodiment. More specifically, as shown in FIG. 50, the first frame 10A of the tenth embodiment includes first lead terminals 11M, 11N, 18M, and 18N, similar to the seventh embodiment.
  • the second frame 10B of the tenth embodiment is different from the sixth embodiment in the configuration of the first lead terminals corresponding to the second lead terminals 41, 48 of the sixth embodiment. More specifically, as shown in FIG. 50, the second frame 10B of the tenth embodiment includes second lead terminals 41M, 41N, 48M, 48N, similar to the seventh embodiment.
  • the signal transmission device 10 of the tenth embodiment provides the same effects as the sixth embodiment.
  • a signal transmission device 10 of an eleventh embodiment will be described with reference to Figures 51 to 55.
  • the signal transmission device 10 of the eleventh embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the first embodiment will be described in detail.
  • the same reference numerals are used for the components common to the first embodiment, and the description thereof will be omitted.
  • a passivation film 161 is formed on the layer surface 151 of the element insulating layer 150, while a plurality of first electrode pads 67 are not formed on the layer surface 151.
  • the passivation film 161 is in contact with the layer surface 151, and the plurality of first electrode pads 67 are disposed at a distance from the layer surface 151 in the Z direction.
  • the passivation film 161 is formed over the entire layer surface 151 of the element insulating layer 150.
  • the first chip 60 further includes a first organic insulating layer 191 formed on the passivation film 161, and a second organic insulating layer 192 formed on the first organic insulating layer 191.
  • the first organic insulating layer 191 corresponds to the "first resin layer”
  • the second organic insulating layer 192 corresponds to the "second resin layer.”
  • Both the first organic insulating layer 191 and the second organic insulating layer 192 are formed of an insulating material having a relative dielectric constant different from that of the element insulating layer 150.
  • Both the first organic insulating layer 191 and the second organic insulating layer 192 may contain at least one of polyimide, phenolic resin, and epoxy resin.
  • the first organic insulating layer 191 and the second organic insulating layer 192 may be formed of the same resin material or different resin materials.
  • the first organic insulating layer 191 is provided for the purpose of improving surge voltage resistance.
  • the thickness of the first organic insulating layer 191 is thinner than the thickness of the element insulating layer 150.
  • the thickness of the first organic insulating layer 191 is thinner than the distance in the Z direction between the coil surface 181 of the conductor 180 in the coil layer 111BA of the first back side coil 111B and the layer surface 151 of the element insulating layer 150.
  • the thickness of the first organic insulating layer 191 is thicker than the thickness of the conductor 180.
  • the thickness of the first organic insulating layer 191 is thicker than the thickness of the conductor 170 of the first front side coil 111A.
  • the thickness of the first organic insulating layer 191 is set according to, for example, a desired dielectric strength voltage (dielectric breakdown resistance).
  • the first surface side coil 111A and the first electrode pads 67 are formed on the first organic insulating layer 191. In other words, both the first surface side coil 111A and the first electrode pads 67 are provided outside the element insulating layer 150. It can also be said that both the first surface side coil 111A and the first electrode pads 67 are arranged at a distance from the element insulating layer 150 in the Z direction. The first surface side coil 111A and the first electrode pads 67 are provided at the same positions as each other in the Z direction.
  • the second to fourth surface side coils 112A to 114A are also formed on the first organic insulating layer 191. In this way, the first to fourth surface side coils 111A to 114A correspond to "surface side coils".
  • the first surface side coil 111A and the multiple first electrode pads 67 are covered by a second organic insulating layer 192.
  • the second organic insulating layer 192 has an opening 192A that exposes a portion of the surface of each first electrode pad 67 in the Z direction.
  • the second organic insulating layer 192 is a protective film that protects the first chip 60 and constitutes the chip surface 61.
  • the coil back surface 172 of the conductor 170 of the first surface side coil 111A is in contact with the first organic insulating layer 191.
  • the first surface side coil 111A is covered with the first organic insulating layer 191 and the second organic insulating layer 192.
  • the second organic insulating layer 192 is in contact with the coil front surface 171 and a pair of coil side surfaces 173 of the conductor 170.
  • the second organic insulating layer 192 is interposed between adjacent conductors 170 in the Y direction of the first surface side coil 111A.
  • the thickness of the second organic insulating layer 192 is thinner than the thickness of the element insulating layer 150.
  • the thickness of the second organic insulating layer 192 is thinner than the distance in the Z direction between the coil surface 181 of the conductor 180 in the coil layer 111BA of the first back side coil 111B and the layer surface 151 of the element insulating layer 150.
  • the thickness of the second organic insulating layer 192 is thicker than the thickness of the conductor 180.
  • the thickness of the second organic insulating layer 192 is thicker than the thickness of the conductor 170.
  • the thickness of the second organic insulating layer 192 is thicker than the thickness of the first electrode pad 67A (the size of the first electrode pad 67A in the Z direction).
  • the first back side coil 111B is embedded in the element insulating layer 150, as in the first embodiment.
  • the first back side coil 111B is disposed closer to the layer back surface 152 of the element insulating layer 150.
  • the second to fourth back side coils 112B to 114B are also embedded in the element insulating layer 150.
  • the first to fourth back side coils 111B to 114B correspond to "back side coils”.
  • both the element insulating layer 150 and the first organic insulating layer 191 are interposed between the first front side coil 111A and the first back side coil 111B in the Z direction.
  • both an inorganic insulating layer and an organic insulating layer are interposed between the first front side coil 111A and the first back side coil 111B in the Z direction.
  • three different layers, the element insulating layer 150, the passivation film 161, and the first organic insulating layer 191 are interposed between the first front side coil 111A and the first back side coil 111B in the Z direction.
  • the front-side guard ring 115 (see FIG. 17) is formed on the first organic insulating layer 191. That is, the front-side guard ring 115 is provided at the same position in the Z direction as the first front-side coil 111A and the first electrode pad 67A.
  • the via 117 is configured by a laminated structure of a first portion, a second portion, and a third portion. The first portion penetrates in the Z direction from the back-side guard ring 116 (see FIG. 18) to the layer surface 151 of the element insulating layer 150. The first portion is in contact with the back-side guard ring 116.
  • the second portion penetrates the passivation film 161 in the Z direction to connect to the first portion and is formed on the passivation film 161.
  • the second portion is covered by the first organic insulating layer 191.
  • the third portion penetrates in the Z direction through a portion of the first organic insulating layer 191 that covers the second portion and connects to both the second portion and the front-side guard ring 115.
  • the first chip 60 has a two-layer laminate structure of the first organic insulating layer 191 and the second organic insulating layer 192, but this is not limited to this.
  • the first chip 60 may have a structure in which three or more organic insulating layers are laminated.
  • FIG. 53 to 55 mainly show a process for forming a part of the first surface side coil 111A in the element insulating layer 850.
  • the manufacturing method of the first chip 60 includes the steps of preparing a substrate 830, forming an element insulating layer 850 on the substrate 830, forming a first back side coil 111B on the element insulating layer 850, and forming a passivation film 861 on the element insulating layer 850.
  • the second back side coil 112B is formed simultaneously with the step of forming the first back side coil 111B.
  • the manufacturing method of the first chip 60 includes a step of forming a first organic insulating layer 891. More specifically, the first organic insulating layer 891 is formed on the passivation film 861 by, for example, a spin coating method.
  • the first organic insulating layer 891 may contain at least one of polyimide, phenolic resin, and epoxy resin.
  • the first organic insulating layer 891 corresponds to the first organic insulating layer 191 of the first chip 60.
  • the manufacturing method of the first chip 60 includes a step of forming the first surface side coil 111A and the first electrode pad 67A. More specifically, a barrier layer (not shown) constituting the first surface side coil 111A and the first electrode pad 67A is formed on the first organic insulating layer 191, for example, by sputtering.
  • the barrier layer is a base conductive layer for plating the conductor 170 and the first electrode pad 67.
  • the barrier layer may contain at least one of titanium, titanium nitride, tantalum, and tantalum nitride, for example.
  • the barrier layer is removed from the positions other than the positions where the conductor 170 and the first electrode pad 67 of the first surface side coil 111A are to be formed, for example, by lithography and etching.
  • a conductive material constituting the conductor 170 and the first electrode pad 67 is plated on the barrier layer.
  • copper is used as the conductive material.
  • the manufacturing method of the first chip 60 includes a step of forming a second organic insulating layer 892. More specifically, the second organic insulating layer 892 is formed on the first organic insulating layer 891 by, for example, spin coating. The second organic insulating layer 892 is formed so as to cover the first surface side coil 111A and the first electrode pad 67. Although not shown, the second organic insulating layer 892 is formed so as to cover the second surface side coil 112A and the other first electrode pads 67. Next, an opening 892A that opens a part of the first electrode pad 67 in the Z direction is formed in the second organic insulating layer 892 by lithography and etching. Note that openings that open a part of each of the other first electrode pads 67 in the Z direction are also formed at the same time.
  • the manufacturing method of the first chip 60 includes a singulation process.
  • the substrate 830, the passivation film 861, the first organic insulating layer 891, and the second organic insulating layer 892 are cut by dicing. Through the above processes, the first chip 60 is manufactured.
  • the first chip 60 includes a first organic insulating layer 191 provided on an element insulating layer 150, and a second organic insulating layer 192 provided on the first organic insulating layer 191.
  • the first transformer 111 includes a first front surface side coil 111A and a second front surface side coil 112A that are disposed on the first organic insulating layer 191 and covered by the second organic insulating layer 192, and a first back surface side coil 111B and a second back surface side coil 112B that are disposed opposite the first front surface side coil 111A and the second front surface side coil 112A in the Z direction and are embedded in the element insulating layer 150.
  • both the distance between the first surface side coil 111A and the first back side coil 111B in the Z direction and the distance between the second surface side coil 112A and the second back side coil 112B in the Z direction can be increased by thickening the first organic insulating layer 191.
  • the insulation voltage between the first surface side coil 111A and the first back side coil 111B and the insulation voltage between the second surface side coil 112A and the second back side coil 112B can be improved by thickening the first organic insulating layer 191.
  • the configuration of the element insulating layer 150 can be simplified.
  • the first organic insulating layer 191 can be easily thickened by a spin coating method. As a result, the lead time can be shortened compared to when the element insulating layer 150 is made thicker, and manufacturing costs can be reduced.
  • a signal transmission device 10 of the twelfth embodiment will be described with reference to Fig. 56.
  • the signal transmission device 10 of the twelfth embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the first embodiment will be described in detail. Also, the same reference numerals are used for the components common to the first embodiment, and the description thereof will be omitted.
  • the first chip 60 includes a low dielectric layer 193 having a lower dielectric constant than the passivation film 161.
  • the low dielectric layer 193 is formed on the passivation film 161.
  • the low dielectric layer 193 is formed over the entire surface of the passivation film 161.
  • the low dielectric layer 193 is in contact with the surface of the passivation film 161. It can be said that the low dielectric layer 193 is interposed between the passivation film 161 and the sealing resin 90 in the Z direction so that the passivation film 161 and the sealing resin 90 do not come into contact with each other.
  • the thickness of the low dielectric layer 193 (the size of the low dielectric layer 193 in the Z direction) is equal to or less than the thickness of the passivation film 161. In one example, the thickness of the low dielectric layer 193 is thinner than the thickness of the passivation film 161. The thickness of the low dielectric layer 193 can be changed as desired. In one example, the thickness of the low dielectric layer 193 may be thicker than the thickness of the passivation film 161.
  • the protective film 162 is formed on the low dielectric layer 193.
  • the protective film 162 is in contact with the surface of the low dielectric layer 193.
  • the low dielectric layer 193 is sandwiched in the Z direction between the passivation film 161 and the protective film 162.
  • the protective film 162 is in contact with the sealing resin 90.
  • the thickness of the protective film 162 is thicker than the thickness of the low dielectric layer 193. In other words, the thickness of the low dielectric layer 193 is thinner than the thickness of the protective film 162.
  • the element insulating layer 150 is made of a material containing silicon oxide (SiO 2 ), and therefore the relative dielectric constant of the element insulating layer 150 is about 4.1.
  • the passivation film 161 is made of a material containing silicon nitride (SiN), and therefore the relative dielectric constant of the passivation film 161 is about 7.0. In other words, the relative dielectric constant of the passivation film 161 is higher than the relative dielectric constant of the element insulating layer 150.
  • the relative dielectric constant of the protective film 162 is about 2.9.
  • the sealing resin 90 is made of a material containing epoxy resin, the relative dielectric constant of the sealing resin 90 is about 3.9. That is, the relative dielectric constant of the sealing resin 90 is lower than the dielectric constant of the passivation film 161. The relative dielectric constant of the sealing resin 90 is higher than the dielectric constant of the protective film 162.
  • the low dielectric layer 193 has a lower dielectric constant than the passivation film 161.
  • the low dielectric layer 193 is equal to or lower than the dielectric constant of the element insulating layer 150. More specifically, the low dielectric layer 193 is lower than the dielectric constant of the element insulating layer 150.
  • the low dielectric layer 193 may be equal to or lower than the dielectric constant of the sealing resin 90.
  • the low dielectric layer 193 may be formed of a material containing silicon oxide (SiO 2 ), for example. In this way, the low dielectric layer 193 may be formed of the same material as the element insulating layer 150. The low dielectric layer 193 may have a lower dielectric constant than the element insulating layer 150.
  • the low dielectric layer 193 may be formed of a low-K film.
  • the low-K film may be appropriately selected from, for example, a carbon-added silicon oxide film (SiOC), a fluorine-added silicon oxide film (SiOF), a porous film, and the like.
  • the low dielectric layer 193 When the low dielectric layer 193 is formed of a carbon-added silicon oxide film, the low dielectric layer 193 has a dielectric constant of 2.5 or more and 3.0 or less. When the low dielectric layer 193 is formed of a fluorine-added silicon oxide film, the low dielectric layer 193 has a dielectric constant of 3.4 or more and 3.8 or less. When the low dielectric layer 193 is formed of a porous film, the low dielectric layer 193 has a dielectric constant of less than 2.5. In this manner, by using a Low-K film for the low dielectric layer 193 , the relative dielectric constant of the low dielectric layer 193 can be made lower than those of the element insulating layer 150 and the sealing resin 90 .
  • the first chip 60 includes an element insulating layer 150, a passivation film 161 formed on the element insulating layer 150 so as to cover the element insulating layer 150, and a low dielectric layer 193 formed on the surface of the passivation film 161 and having a relative dielectric constant lower than that of the passivation film 161.
  • the sealing resin 90 covers the low dielectric layer 193.
  • the low dielectric layer 193 is interposed between the passivation film 161 and the sealing resin 90, thereby preventing contact between the passivation film 161 and the sealing resin 90. This makes it possible to prevent partial discharges, and in turn, creeping discharges, caused by gaps that exist at the boundary between the sealing resin 90 and the passivation film 161. This makes it possible to improve the reliability of the first chip 60.
  • the relative dielectric constant of the low dielectric layer 193 is equal to or lower than the dielectric constant of the sealing resin 90 . According to this configuration, the inception voltage of partial discharge at the boundary between the low dielectric layer 193 and the sealing resin 90 can be increased, thereby suppressing the occurrence of partial discharge, and ultimately creeping discharge, due to gaps existing at the boundary between the low dielectric layer 193 and the sealing resin 90.
  • the thickness of the low dielectric layer 193 is equal to or less than the thickness of the passivation film 161. This configuration prevents the Z-direction dimension of the first chip 60 from increasing. In other words, the height of the first chip 60 can be reduced.
  • a signal transmission device 10 of the thirteenth embodiment will be described with reference to Figures 57 to 63.
  • the signal transmission device 10 of the thirteenth embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the first embodiment will be described in detail.
  • the same reference numerals are used for the components common to the first embodiment, and the description thereof will be omitted.
  • Fig. 57 shows an enlarged cross-sectional structure of a part of the first surface side coil 111A and its surroundings in the first chip 60. Note that, in order to make the drawing easier to understand, hatching lines of some of the components of the first chip 60 are omitted in Fig. 57.
  • the surface side corner portion 176 formed by the coil surface 171 and the pair of coil side surfaces 173 of the conductor 170 of the first surface side coil 111A is formed in a rounded curved shape, unlike the first embodiment.
  • the surface side corner portion 176 can also be said to have an R surface (curved surface). That is, in the thirteenth embodiment, an R surface (curved surface) is formed in the portion between the coil surface 171 and the pair of coil side surfaces 173 of the conductor 170. More specifically, the R surface (curved surface) is formed by both the barrier layer 174 and the metal layer 175 that make up the surface side corner portion 176.
  • the coil surface 171 of the conductor 170 is located above the layer surface 151 of the element insulating layer 150. In other words, the conductor 170 protrudes from the layer surface 151 of the element insulating layer 150.
  • the passivation film 161 covers the surface side corner portion 176 and the coil surface 171 of the conductor 170. Therefore, the surface side corner portion 176 is not in contact with the element insulating layer 150, but is in contact with the passivation film 161.
  • the portion of the pair of coil side surfaces 173 of the conductor 170 that is closer to the coil back surface 172 than the surface side corner portion 176 is in contact with the element insulating layer 150.
  • the relationship between the conductor 170 and the element insulating layer 150 can be changed as desired.
  • the conductor 170 may be embedded in the element insulating layer 150.
  • the element insulating layer 150 may be provided so that the surface side corner portion 176 of the conductor 170 and the coil surface 171 are in contact with the element insulating layer 150.
  • a passivation film 161 is formed over the entire surface of the layer surface 151 of the element insulating layer 150.
  • the conductor 170 of the second surface side coil 112A also has a surface side corner portion 176 formed by the coil surface 171 and a pair of coil side surfaces 173, which is rounded and curved.
  • the surface side corner portion 176 of at least one of the surface side coils of the first surface side coil 111A and the second surface side coil 112A is rounded and curved.
  • FIG. 58 to 63 a method for manufacturing the first chip 60, in particular a method for manufacturing the first surface side coil 111A will be described.
  • Figures 58 to 63 mainly show a process for forming a part of the first surface side coil 111A in the element insulating layer 850.
  • the method for manufacturing the first chip 60 includes the steps of preparing a substrate 830, forming an element insulating layer 850 on the substrate 830 (see FIG. 53, for example), and forming a first back surface side coil 111B (see FIG. 53) on the element insulating layer 850.
  • the second back surface side coil 112B is formed simultaneously with the step of forming the first back surface side coil 111B.
  • the manufacturing method of the first chip 60 includes a step of forming a recess 853 in the element insulating layer 850. More specifically, in this step, the layer surface 851 of the element insulating layer 850 is selectively etched to form the recess 853.
  • the recess 853 includes a bottom surface 853A and a pair of side surfaces 853B connecting the bottom surface 853A and the layer surface 851.
  • the pair of side surfaces 853B are formed in a tapered shape approaching each other in the Y direction from the layer surface 851 toward the bottom surface 853A.
  • the method for manufacturing the first chip 60 includes a step of forming a barrier layer 901. More specifically, the barrier layer 901 is formed on both the pair of side surfaces 853B and the bottom surface 853A of the recess 853 and the layer surface 851 of the element insulating layer 850, for example, by a sputtering method.
  • the barrier layer 901 may contain tantalum or tantalum nitride.
  • the barrier layer 901 is formed of a laminated structure (Ta/TaN/Ta) of a first layer containing tantalum, a second layer containing tantalum nitride laminated on the first layer, and a third layer containing tantalum laminated on the second layer.
  • the manufacturing method of the first chip 60 includes a step of forming a metal layer 902. More specifically, a conductive material for the conductor 170 is plated and grown from the barrier layer 901. In one example, copper is plated and grown from the barrier layer 901. This forms the metal layer 902 in the recess 853 and on the element insulating layer 850.
  • the metal layer 902 is formed, for example, from a material containing copper.
  • the manufacturing method of the first chip 60 includes a step of removing the upper end of the element insulating layer 850. More specifically, the entire upper end of the element insulating layer 850 is removed by dry etching or wet etching. As a result, the layer surface 851 after the upper end of the element insulating layer 850 is removed is located lower (closer to the bottom surface 853A of the recess 853) than the respective upper end surfaces of the barrier layer 901 and the metal layer 902. In other words, the upper ends of the barrier layer 901 and the metal layer 902 protrude from the layer surface 851.
  • the manufacturing method of the first chip 60 includes a process of removing both ends in the Y direction (surface side corner portions 903 in FIG. 61) of the upper end portions of the barrier layer 901 and the metal layer 902. More specifically, a resist (not shown) is formed on the upper end surface of the metal layer 902. The resist is formed so that the surface side corner portions 903 are exposed in a plan view. Next, the barrier layer 901 and the metal layer 902 constituting the surface side corner portions 903 are removed by dry etching or wet etching. As a result, the surface side corner portions 903 are formed in a curved shape. Through the above process, the conductor 170 is formed. As a result, the first surface side coils 111A to 114A are formed. Although not shown, a plurality of first electrode pads 67 are formed in parallel with the process of forming the conductor 170 shown in FIG. 58 to FIG. 62.
  • the manufacturing method of the first chip 60 includes a step of forming a passivation film 861. More specifically, the passivation film 861 is formed so as to cover the coil surface 171 and the surface side corner portion 176 of the conductor 170 and the layer surface 851 of the element insulating layer 850, for example, by chemical vapor deposition (CVD) or sputtering.
  • the passivation film 861 is formed of a material containing, for example, silicon nitride.
  • the manufacturing method of the first chip 60 includes a step of forming a protective film (not shown).
  • the protective film is, for example, a film corresponding to the protective film 162 (see FIG. 20).
  • the protective film is formed on the passivation film 861 by CVD or sputtering.
  • the protective film is formed of a material containing, for example, silicon oxide.
  • an opening that exposes a part of the first electrode pad 67 is formed in both the protective film and the passivation film 861 by etching. Thereafter, the protective film, the passivation film 861, the element insulating layer 850, and the substrate 830 are cut by dicing to separate them into individual pieces. Through the above steps, the first chip 60 is manufactured.
  • the first surface side coil 111A and the second surface side coil 112A of the first transformer 111 have a coil surface 171, a coil back surface 172 opposite the coil surface 171, and a coil side surface 173 connecting the coil surface 171 and the coil back surface 172.
  • a curved surface is formed between the coil surface 171 and the coil side surface 173.
  • This configuration can reduce electric field concentration at the surface corner portion 176, which is formed by the coil surface 171 and the coil side surface 173. This prevents the surface corner portion 176 from becoming the starting point of dielectric breakdown, thereby improving the dielectric strength of the first chip 60.
  • a signal transmission device 10 of the fourteenth embodiment will be described with reference to Figures 64 to 69.
  • the signal transmission device 10 of the fourteenth embodiment is different from the signal transmission device 10 of the eleventh embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the eleventh embodiment will be described in detail. Also, the same reference numerals are used for the components common to the eleventh embodiment, and the description thereof will be omitted.
  • FIG. 64 shows an enlarged cross-sectional structure of a part of the first surface side coil 111A in the first chip 60 and its surrounding area.
  • the first chip 60 of the 14th embodiment like the 11th embodiment, includes a first organic insulating layer 191 formed on the layer surface 151 of the element insulating layer 150, and a second organic insulating layer 192 formed on the first organic insulating layer 191. Both the first surface side coil 111A and the first electrode pad 67A are formed on the first organic insulating layer 191, like the 11th embodiment.
  • the surface side corner portion 176 formed by the coil surface 171 and the pair of coil side surfaces 173 of the conductor 170 of the first surface side coil 111A is formed in a rounded curved shape, unlike the first embodiment.
  • the surface side corner portion 176 can also be said to have an R surface (curved surface).
  • an R surface (curved surface) is formed in the portion between the coil surface 171 and the pair of coil side surfaces 173 of the conductor 170.
  • the coil surface 171 of the conductor 170 is located above the layer surface 151 of the element insulating layer 150. In other words, the conductor 170 protrudes from the layer surface 151 of the element insulating layer 150.
  • the passivation film 161 covers the surface side corner portion 176 and the coil surface 171 of the conductor 170. Therefore, the surface side corner portion 176 is not in contact with the element insulating layer 150, but is in contact with the passivation film 161.
  • the portion of the pair of coil side surfaces 173 of the conductor 170 that is closer to the coil back surface 172 than the surface side corner portion 176 is in contact with the element insulating layer 150.
  • the back side corner portion 177 formed by the coil back side 172 and the pair of coil side surfaces 173 of the conductor 170 is formed in a rounded curved shape, unlike the first embodiment.
  • the back side corner portion 177 can also be said to have an R surface (curved surface).
  • an R surface (curved surface) is formed in the portion of the conductor 170 between the coil back side 172 and the pair of coil side surfaces 173.
  • the conductor 170 is covered by the second organic insulating layer 192. More specifically, the coil surface 171, the pair of coil side surfaces 173, the front side corner portion 176, and the back side corner portion 177 of the conductor 170 are in contact with the second organic insulating layer 192.
  • the conductive wire 170 is formed by a laminated structure of a seed layer 178 and a metal layer 179 formed on the seed layer 178 .
  • the seed layer 178 constitutes the coil back surface 172. That is, the seed layer 178 is in contact with the first organic insulating layer 191.
  • the seed layer 178 may contain at least one of titanium, titanium nitride, and copper, for example.
  • the seed layer 178 is formed by a laminated structure of a first layer containing titanium and a second layer containing copper laminated on the first layer.
  • the metal layer 179 is disposed at a distance from the first organic insulating layer 191 in the Z direction.
  • the metal layer 179 includes a coil surface 171, a pair of coil side surfaces 173, a surface side corner portion 176, and a back side corner portion 177.
  • the metal layer 179 is covered with a second organic insulating layer 192.
  • Method of manufacturing the first chip A method for manufacturing the first chip 60, in particular a method for manufacturing the first surface side coil 111A, will be described with reference to FIGS.
  • the manufacturing method of the first chip 60 includes the steps of preparing a substrate 830 (see, for example, FIG. 53), forming an element insulating layer 850 on the substrate 130, forming a first back side coil 111B (see, for example, FIG. 53) on the element insulating layer 850, forming a passivation film 861, and forming a first organic insulating layer 891.
  • the second back side coil 112B is formed at the same time as the first back side coil 111B is formed.
  • the passivation film 861 is formed on the layer surface 851 of the element insulating layer 850 by, for example, a CVD method or a sputtering method.
  • the first organic insulating layer 891 is formed on the passivation film 161 by, for example, a spin coating method.
  • the method for manufacturing the first chip 60 includes a step of forming a seed layer 911. More specifically, the seed layer 911 is formed on the first organic insulating layer 891 by, for example, a sputtering method.
  • the seed layer 911 may contain titanium and copper.
  • the seed layer 911 is formed of a laminated structure (Ti/Cu) of a first seed layer 911A containing titanium and a second seed layer 911B containing copper laminated on the first seed layer 911A.
  • the method for manufacturing the first chip 60 includes a step of forming a resist 920. More specifically, first, a resist 920 is formed on the seed layer 911. Next, the resist 920 is selectively exposed to light and developed to form openings 921 that expose the portions where the conductive wires 170 (see FIG. 64) and the portions where the first electrode pads 67 (see FIG. 51) are to be formed.
  • FIG. 65 shows an opening 921 where the conductor 170 is to be formed.
  • the surfaces of the resist 920 constituting the opening 921 are tapered so that they approach each other toward the seed layer 911.
  • the portion of the opening 921 of the resist 920 that contacts the seed layer 911 has an inward protrusion 922 that is curved and concave.
  • the manufacturing method of the first chip 60 includes a step of forming a metal layer 912. More specifically, a conductive material for the conductor 170 is plated from the seed layer 911. In one example, copper is plated from the seed layer 911. This forms a metal layer 912 in the opening 921.
  • the metal layer 912 is formed of a material containing copper, for example.
  • the metal layer 912 is integrated with the second seed layer 911B. In FIG. 66, the interface between the second seed layer 911B and the metal layer 912 is shown by a two-dot chain line to facilitate understanding of the drawing. However, in reality, this interface may not be formed.
  • the metal layer 912 is formed in the opening 921 where the first electrode pad 67 is to be formed. This produces the first electrode pad 67.
  • the end of the metal layer 912 on the seed layer 911 side has a rounded corner formed by the inward protrusion 922 of the resist 920 to form an R surface (curved surface).
  • the metal layer 912 is formed with an R surface (curved surface) that corresponds to the rear side corner portion 177 of the conductor 170.
  • the method for manufacturing the first chip 60 includes a step of removing the resist 920. This causes the seed layer 911 and the metal layer 912 to be exposed.
  • the manufacturing method of the first chip 60 includes a step of etching the seed layer 911 and the metal layer 912. In one example, this step includes a step of forming curved surfaces at both ends in the Y direction of the upper end of the metal layer 912 (front surface side corner portions 913 in FIG. 67) and a step of removing the second seed layer 911B of the seed layer 911. More specifically, a resist (not shown) is formed on the upper end surface of the metal layer 912. The resist is formed so that the front surface side corner portions 913 are exposed in a plan view.
  • the metal layer 912 constituting the front surface side corner portions 913 is removed by dry etching or wet etching.
  • the front surface side corner portions 913 are formed with rounded R surfaces (curved surfaces). That is, in this step, the metal layer 912 is formed with R surfaces (curved surfaces) corresponding to the front surface side corner portions 176 of the conductive wires 170.
  • the second seed layer 911B is removed by dry etching or wet etching.
  • the method of manufacturing the first chip 60 involves removing the seed layer 911 except for the portion where the metal layer 912 is laminated. More specifically, the seed layer 911 except for the portion where the metal layer 912 is laminated is removed by, for example, etching. Through the above steps, the conductor 170 is formed. As a result, the first surface side coil 111A is formed. The second surface side coil 112A is formed in the same manner.
  • the method for manufacturing the first chip 60 includes a step of forming the second organic insulating layer 192.
  • the second organic insulating layer 192 is formed on the first organic insulating layer 191 by spin coating.
  • the second organic insulating layer 192 is formed so as to cover the conductive wires 170 and the first electrode pads 67A to 67F.
  • openings are formed in the second organic insulating layer 192 by etching, through which portions of the first electrode pads 67A to 67F are exposed.
  • the first surface side coil 111A and the second surface side coil 112A of the first transformer 111 have a coil surface 171, a coil back surface 172 opposite the coil surface 171, and a coil side surface 173 connecting the coil surface 171 and the coil back surface 172.
  • a curved surface is formed between the coil surface 171 and the coil side surface 173.
  • a curved surface is formed between the coil back surface 172 and the coil side surface 173.
  • This configuration can alleviate electric field concentration at the front side corner portion 176 formed by the coil front surface 171 and the coil side surface 173, and can alleviate electric field concentration at the back side corner portion 177 formed by the coil back surface 172 and the coil side surface 173. This prevents the front side corner portion 176 and the back side corner portion 177 from becoming the starting point of dielectric breakdown, thereby improving the dielectric strength voltage of the first chip 60.
  • a signal transmission device 10 of the fifteenth embodiment will be described with reference to Fig. 70 and Fig. 71.
  • the signal transmission device 10 of the fifteenth embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the first embodiment will be described in detail. Also, the same reference numerals are used for the components common to the first embodiment, and the description thereof will be omitted.
  • the first chip 60 has an insulating transformer region 110, a circuit region 120, and a peripheral guard ring 100 that surrounds the insulating transformer region 110 and the circuit region 120, as in the first embodiment.
  • the circuit region 120 can be defined as the region surrounded by the peripheral guard ring 100 in a plan view other than the insulating transformer region 110.
  • the insulating transformer region 110 is a region that electrically insulates the multiple first functional units of the circuit region 120 from the second chip 70 while allowing signal transmission between the multiple first functional units of the circuit region 120 and the second chip 70.
  • the insulating transformer region 110 is formed closer to the second chip side surface 64 than the center of the first chip 60 in the X direction in a plan view. In other words, the insulating transformer region 110 is formed in a region of the first chip 60 that is closer to the second chip 70 in a plan view.
  • the insulating transformer region 110 is formed closer to the third chip side surface 65 of the first chip 60. In other words, the distance between the insulating transformer region 110 and the third chip side surface 65 in the Y direction is smaller than the distance between the insulating transformer region 110 and the fourth chip side surface 66 in the Y direction.
  • a first transformer 111 is formed in the insulating transformer region 110.
  • the configuration of the first transformer 111 differs from that of the first embodiment.
  • the first transformer 111 includes a first front surface side coil 111A and a first back surface side coil 111B.
  • Each of the first front side coil 111A and the first back side coil 111B may contain at least one of titanium, titanium nitride, copper, aluminum, and tungsten.
  • the first front side coil 111A contains copper
  • the first back side coil 111B contains aluminum.
  • the first front side coil 111A has a layered structure of titanium and copper
  • the first back side coil 111B has a layered structure of titanium nitride and aluminum.
  • a plurality of first electrode pads 67 are formed in the insulating transformer region 110.
  • the plurality of first electrode pads 67 are arranged at the same positions in the Y direction and spaced apart from each other in the X direction.
  • the plurality of first electrode pads 67 include two first electrode pads 67A and 67B.
  • the first electrode pad 67B is positioned closer to the second chip side surface 64 than the first electrode pad 67A.
  • the first surface side coil 111A includes a first coil portion 111A1 that is spiral-shaped in a plan view, a first outer coil end portion 111A2, and a first inner coil end portion 111A3.
  • the first outer coil end portion 111A2 constitutes the end portion in the winding direction of the outermost periphery of the first coil portion 111A1
  • the first inner coil end portion 111A3 constitutes the end portion in the winding direction of the innermost periphery of the first coil portion 111A1.
  • the first electrode pad 67A is disposed in an inner space including the winding center of the first coil portion 111A1 in a plan view. It can be said that the first electrode pad 67A is located more inward than the first coil portion 111A1.
  • the first electrode pad 67A is connected to the first inner coil end 111A3. Therefore, it can be said that the first electrode pad 67A is electrically connected to the first end of the first surface side coil 111A.
  • the first electrode pad 67B is disposed closer to the second chip side surface 64 than the first coil portion 111A1.
  • the first electrode pad 67B is connected to the first outer coil end portion 111A2 of the first surface side coil 111A. Therefore, it can be said that the first electrode pad 67B is electrically connected to the second end portion of the first surface side coil 111A.
  • the first back side coil 111B is disposed opposite the first front side coil 111A (see FIG. 70) in the Z direction.
  • the first back side coil 111B includes a first coil portion 111B1 that is spiral in plan view, a first outer coil end 111B2, and a first inner coil end 111B3.
  • the first outer coil end 111B2 constitutes the end of the first coil portion 111B1 in the winding direction at the outermost periphery
  • the first inner coil end 111B3 constitutes the end of the first coil portion 111B1 in the winding direction at the innermost periphery.
  • the first outer coil end 111B2 is electrically connected to the first functional portion of the circuit area 120.
  • the first inner coil end 111B3 is electrically connected to the first functional portion of the circuit area 120.
  • the number of turns of the first back side coil 111B is equal to the number of turns of the first front side coil 111A.
  • a surface side guard ring 115 is formed in the insulating transformer region 110, surrounding the first surface side coil 111A, the second surface side coil 112A, and the first electrode pads 67A and 67B in a plan view.
  • the surface side guard ring 115 in a plan view includes a circular first ring portion 115A that surrounds the first surface side coil 111A and is concentric with the winding center of the first surface side coil 111A, and a semicircular second ring portion 115B that surrounds the first electrode pad 67B and is connected to the first ring portion 115A.
  • the first ring portion 115A is circular with an opening near the second chip side surface 64.
  • the second ring portion 115B is connected to this opening.
  • a back side guard ring 116 is formed in the insulating transformer region 110 to surround the first back side coil 111B in a plan view.
  • the shape and size of the back side guard ring 116 are the same as those of the front side guard ring 115 (see FIG. 70).
  • the back side guard ring 116 is formed at a position that overlaps with the front side guard ring 115.
  • the insulating transformer region 110 has a plurality of vias 117 formed therein that connect the front-side guard ring 115 and the back-side guard ring 116.
  • the vias 117 are arranged in positions that overlap both the front-side guard ring 115 and the back-side guard ring 116 in a plan view.
  • the circuit region 120 is a region in which a plurality of first functional units and a plurality of circuit elements are formed.
  • the circuit region 120 is formed with the transmitter 501, receiver 502, logic unit 503, UVLO unit 504, resistors 505, 506, 507, 509, 511, and switching elements 508, 510 shown in FIG. 16.
  • the transmitter 501, receiver 502, logic unit 503, and UVLO unit 504 correspond to the plurality of first functional units
  • the resistors 505, 506, 507, 509, 511, and switching elements 508, 510 correspond to the plurality of circuit elements.
  • the circuit region 120 is provided with a plurality of wiring layers 121.
  • the plurality of wiring layers 121 includes a wiring layer that electrically connects the plurality of functional units, and a wiring layer that electrically connects the plurality of functional units to the first and second transformers 111, 112 of the insulating transformer region 110.
  • the circuit region 120 is also provided with a plurality of second electrode pads 68 and one third electrode pad 69.
  • the peripheral guard ring 100 includes a front-side peripheral guard ring 101 and a back-side peripheral guard ring 102 .
  • the front-side outer periphery guard ring 101 is formed so as to go around the outer periphery of the first chip 60 in a plan view.
  • the front-side outer periphery guard ring 101 has a quadrangle shape with four chamfered corners in a plan view. That is, in a plan view, the four corners of the front-side outer periphery guard ring 101 include inclined portions.
  • the front-side guard ring 115 is connected to the front-side outer periphery guard ring 101 by the front-side connection wiring 103. As a result, the front-side guard ring 115 is electrically connected to the front-side outer periphery guard ring 101.
  • the shape and size of the rear-side outer peripheral guard ring 102 are the same as those of the front-side outer peripheral guard ring 101 (see FIG. 70).
  • the rear-side guard ring 116 is connected to the rear-side outer peripheral guard ring 102 by the rear-side connection wiring 104. In this way, the rear-side guard ring 116 is electrically connected to the rear-side outer peripheral guard ring 102.
  • the first chip 60 has multiple peripheral vias that connect the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102.
  • the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102 are electrically connected by the multiple peripheral vias.
  • Each peripheral via extends in the Z direction.
  • the cross-sectional structure of the first front side coil 111A is the same as the cross-sectional structure of the first front side coil 111A of the first embodiment.
  • the cross-sectional structure of the first back side coil 111B is the same as the cross-sectional structure of the first back side coil 111B of the first embodiment. Note that according to the signal transmission device 10 of the 15th embodiment, the same effects as those of the first embodiment can be obtained.
  • a signal transmission device 10 of the sixteenth embodiment will be described with reference to Figures 72 to 75.
  • the signal transmission device 10 of the sixteenth embodiment is different from the signal transmission device 10 of the first embodiment in the configuration of the first chip 60.
  • the differences in the configuration of the first chip 60 from the first embodiment will be described in detail. Also, the same reference numerals are used for the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 72 shows a schematic planar structure of an example of an internal configuration close to the chip front surface 61 of the first chip 60.
  • Fig. 73 is an enlarged view of an insulating transformer region 110, described later, in Fig. 72.
  • Fig. 74 shows a schematic planar structure of an example of an internal structure close to the chip back surface 62 of the first chip 60.
  • Fig. 75 is an enlarged view of the insulating transformer region 110 in Fig. 74.
  • the first chip 60 has an insulating transformer region 110, a circuit region 120, and an outer guard ring 100 connected to the insulating transformer region 110 and surrounding the circuit region 120.
  • the insulating transformer region 110 is a region that electrically insulates the circuit region 120 and the second chip 70 while allowing the transmission of signals between the circuit region 120 and the second chip 70.
  • the insulating transformer region 110 is formed closer to the second chip side surface 64 than the center of the first chip 60 in the X direction in a plan view. In other words, the insulating transformer region 110 is formed in a region of the first chip 60 that is closer to the second chip 70 (see Figure 7) in a plan view.
  • the insulating transformer region 110 extends across almost the entire first chip 60 in the Y direction.
  • the insulation transformer region 110 includes two transformers.
  • the first transformer 111 and the second transformer 112 are arranged at the same position in the X direction and spaced apart from each other in the Y direction. In the example shown in FIG. 72, the first transformer 111 is arranged closer to the third chip side surface 65 in the insulation transformer region 110, and the second transformer 112 is arranged closer to the fourth chip side surface 66 in the insulation transformer region 110.
  • the first transformer 111 includes a first front side coil 111A and a first back side coil 111B, and a second front side coil 112A and a second back side coil 112B.
  • the second transformer 112 includes a third front side coil 113A and a third back side coil 113B, and a fourth front side coil 114A and a fourth back side coil 114B.
  • the first to fourth surface side coils 111A to 114A are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the first to fourth surface side coils 111A to 114A are arranged in the following order from the third chip side surface 65 to the fourth chip side surface 66: first surface side coil 111A, second surface side coil 112A, third surface side coil 113A, and fourth surface side coil 114A.
  • the first to fourth back surface side coils 111B to 114B are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the first to fourth back surface side coils 111B to 114B are arranged in the following order from the third chip side surface 65 to the fourth chip side surface 66: first back surface side coil 111B, second back surface side coil 112B, third back surface side coil 113B, and fourth back surface side coil 114B.
  • first surface side coil 111A, the second surface side coil 112A, the third surface side coil 113A, and the fourth surface side coil 114A are arranged at the same position in the Z direction.
  • the first back side coil 111B, the second back side coil 112B, the third back side coil 113B, and the fourth back side coil 114B are arranged at the same position in the Z direction.
  • Each of the first to fourth front side coils 111A to 114A and the first to fourth back side coils 111B to 114B may contain at least one of titanium, titanium nitride, copper, aluminum, and tungsten.
  • the first to fourth front side coils 111A to 114A contain copper
  • the first to fourth back side coils 111B to 114B contain aluminum.
  • the first to fourth front side coils 111A to 114A have a layered structure of titanium and copper
  • the first to fourth back side coils 111B to 114B have a layered structure of titanium nitride and aluminum.
  • a plurality of first electrode pads 67 are formed in the insulating transformer region 110.
  • the plurality of first electrode pads 67 are arranged at the same positions in the X direction and spaced apart from each other in the Y direction.
  • the plurality of first electrode pads 67 include six first electrode pads 67A to 67F.
  • the first electrode pads 67A to 67F are arranged in the order of first electrode pads 67A, 67B, 67C, 67D, 67E, 67F from the third chip side surface 65 to the fourth chip side surface 66.
  • the first surface side coil 111A includes a first coil portion 111A1 that is spiral-shaped in a plan view, a first outer coil end portion 111A2, and a first inner coil end portion 111A3.
  • the first outer coil end portion 111A2 constitutes the end portion in the winding direction at the outermost periphery of the first coil portion 111A1
  • the first inner coil end portion 111A3 constitutes the end portion in the winding direction at the innermost periphery of the first coil portion 111A1.
  • the second surface side coil 112A includes a second coil portion 112A1 that is spiral-shaped in a plan view, a second outer coil end portion 112A2, and a second inner coil end portion 112A3.
  • the second outer coil end portion 112A2 constitutes the end portion in the winding direction at the outermost periphery of the second coil portion 112A1
  • the second inner coil end portion 112A3 constitutes the end portion in the winding direction at the innermost periphery of the second coil portion 112A1.
  • the first electrode pad 67A is disposed in an inner space including the winding center of the first coil portion 111A1 in a plan view. It can be said that the first electrode pad 67A is located more inward than the first coil portion 111A1.
  • the first electrode pad 67A is connected to the first inner coil end 111A3. Therefore, it can be said that the first electrode pad 67A is electrically connected to the first end of the first surface side coil 111A.
  • the first electrode pad 67B is disposed between the first surface side coil 111A and the second surface side coil 112A in the Y direction in a plan view.
  • the first electrode pad 67B is connected to the first outer coil end 111A2 of the first surface side coil 111A.
  • the first electrode pad 67B is also connected to the second outer coil end 112A2 of the second surface side coil 112A. Therefore, it can be said that the first electrode pad 67B is electrically connected to the second end of the first surface side coil 111A and the second end of the second surface side coil 112A.
  • the first electrode pad 67C is disposed in an inner space including the winding center of the second coil portion 112A1 in a plan view. It can be said that the first electrode pad 67C is located more inward than the second coil portion 112A1.
  • the first electrode pad 67C is connected to the second inner coil end portion 112A3. Therefore, it can be said that the first electrode pad 67C is electrically connected to the first end portion of the second surface side coil 112A.
  • the third surface side coil 113A includes a third coil portion 113A1 that is spiral-shaped in a plan view, a third outer coil end portion 113A2, and a third inner coil end portion 113A3.
  • the third outer coil end portion 113A2 constitutes the end portion in the winding direction at the outermost periphery of the third coil portion 113A1
  • the third inner coil end portion 113A3 constitutes the end portion in the winding direction at the innermost periphery of the third coil portion 113A1.
  • the fourth surface side coil 114A includes a fourth coil portion 114A1 that is spiral-shaped in a plan view, a fourth outer coil end portion 114A2, and a fourth inner coil end portion 114A3.
  • the fourth outer coil end portion 114A2 constitutes the end portion in the winding direction of the outermost periphery of the fourth coil portion 114A1
  • the fourth inner coil end portion 114A3 constitutes the end portion in the winding direction of the innermost periphery of the fourth coil portion 114A1.
  • the first electrode pad 67D is disposed in an inner space including the winding center of the third coil portion 113A1 in a plan view. It can be said that the first electrode pad 67D is located more inward than the third coil portion 113A1. The first electrode pad 67D is connected to the third inner coil end portion 113A3. Therefore, it can be said that the first electrode pad 67D is electrically connected to the first end portion of the third surface side coil 113A.
  • the first electrode pad 67E is disposed between the third surface side coil 113A and the fourth surface side coil 114A in the Y direction in a plan view.
  • the first electrode pad 67E is connected to the third outer coil end 113A2 of the third surface side coil 113A.
  • the first electrode pad 67E is also connected to the fourth outer coil end 114A2 of the fourth surface side coil 114A. Therefore, it can be said that the first electrode pad 67E is electrically connected to the second end of the third surface side coil 113A and the second end of the fourth surface side coil 114A.
  • the first electrode pad 67F is disposed in an inner space including the winding center of the fourth coil portion 114A1 in a plan view. It can be said that the first electrode pad 67F is located more inward than the fourth coil portion 114A1. The first electrode pad 67F is connected to the fourth inner coil end portion 114A3. Therefore, it can be said that the first electrode pad 67F is electrically connected to the first end portion of the fourth surface side coil 114A.
  • the first to fourth surface side coils 111A to 114A have the same number of turns.
  • the winding direction of the first surface side coil 111A and the winding direction of the second surface side coil 112A are opposite to each other, and the winding direction of the third surface side coil 113A and the winding direction of the fourth surface side coil 114A are opposite to each other.
  • the winding direction of the first surface side coil 111A and the winding direction of the third surface side coil 113A are the same direction, and the winding direction of the second surface side coil 112A and the winding direction of the fourth surface side coil 114A are the same direction.
  • the first back side coil 111B is disposed opposite the first front side coil 111A (see FIG. 72) in the Z direction.
  • the first back side coil 111B includes a first coil portion 111B1 that is spiral in plan view, a first outer coil end 111B2, and a first inner coil end 111B3.
  • the first outer coil end 111B2 constitutes the end of the first coil portion 111B1 in the winding direction at the outermost periphery
  • the first inner coil end 111B3 constitutes the end of the first coil portion 111B1 in the winding direction at the innermost periphery.
  • the first outer coil end 111B2 is connected to a first connection wiring 118A that extends in the X direction.
  • the first connection wiring 118A is electrically connected to the transmitter 522 (see FIG. 16) of the circuit area 120 (see FIG. 72).
  • the first inner coil end 111B3 is connected to a first wiring not shown.
  • the first wiring is electrically connected to the transmitter 501 of the circuit area 120.
  • the second back side coil 112B is arranged opposite the second front side coil 112A (see FIG. 72) in the Z direction.
  • the second back side coil 112B includes a second coil portion 112B1 that is spiral in plan view, a second outer coil end 112B2, and a second inner coil end 112B3.
  • the second outer coil end 112B2 constitutes the end of the second coil portion 112B1 in the winding direction at the outermost periphery
  • the second inner coil end 112B3 constitutes the end of the second coil portion 112B1 in the winding direction at the innermost periphery.
  • the second outer coil end 112B2 is connected to the second connection wiring 118B that extends in the X direction.
  • the second connection wiring 118B is arranged in a position adjacent to the first connection wiring 118A in the Y direction.
  • the second connection wiring 118B is arranged closer to the second back side coil 112B than the first connection wiring 118A.
  • the second connection wiring 118B is electrically connected to the transmitting section 501 of the circuit area 120.
  • the second inner coil end 112B3 is connected to a second wiring (not shown).
  • the second wiring is electrically connected to the transmitting section 501 of the circuit area 120.
  • the third back side coil 113B is disposed opposite the third front side coil 113A (see FIG. 72) in the Z direction.
  • the third back side coil 113B includes a third coil portion 113B1 that is spiral-shaped in a plan view, a third outer coil end 113B2, and a third inner coil end 113B3.
  • the third outer coil end 113B2 constitutes the end of the third coil portion 113B1 in the winding direction at the outermost periphery
  • the third inner coil end 113B3 constitutes the end of the third coil portion 113B1 in the winding direction at the innermost periphery.
  • the third outer coil end 113B2 is connected to a third connection wiring 118C that extends in the X direction.
  • the third connection wiring 118C is electrically connected to the first function unit of the circuit region 120.
  • the third inner coil end 113B3 is connected to a third wiring not shown.
  • the third wiring is electrically connected to the first function unit of the circuit region 120.
  • the fourth back side coil 114B is arranged opposite the fourth front side coil 114A (see FIG. 72) in the Z direction.
  • the fourth back side coil 114B includes a fourth coil portion 114B1 that is spiral in plan view, a fourth outer coil end 114B2, and a fourth inner coil end 114B3.
  • the fourth outer coil end 114B2 constitutes the end of the fourth coil portion 114B1 in the winding direction at the outermost part
  • the fourth inner coil end 114B3 constitutes the end of the fourth coil portion 114B1 in the winding direction at the innermost part.
  • the fourth outer coil end 114B2 is connected to a fourth connection wiring 118D that extends in the X direction.
  • the fourth connection wiring 118D is arranged in a position adjacent to the third connection wiring 118C in the Y direction.
  • the fourth connection wiring 118D is arranged closer to the fourth back side coil 114B than the third connection wiring 118C.
  • the fourth connection wiring 118D is electrically connected to the first functional unit of the circuit region 120.
  • the fourth inner coil end 114B3 is connected to a fourth wiring (not shown).
  • the fourth wiring is electrically connected to the first functional unit of the circuit region 120.
  • the number of turns of the first to fourth back side coils 111B to 114B are equal to each other.
  • the winding direction of the first back side coil 111B and the winding direction of the second back side coil 112B are opposite to each other, and the winding direction of the third back side coil 113B and the winding direction of the fourth back side coil 114B are opposite to each other.
  • the winding direction of the first back side coil 111B and the winding direction of the third back side coil 113B are the same direction, and the winding direction of the second back side coil 112B and the winding direction of the fourth back side coil 114B are the same direction.
  • the number of turns of the first to fourth back side coils 111B to 114B is equal to the number of turns of the first to fourth front side coils 111A to 114A.
  • a surface side guard ring 115 is formed in the insulating transformer region 110, surrounding the first to fourth surface side coils 111A to 114A and the first electrode pads 67A to 67F in a plan view.
  • the shape of the surface side guard ring 115 in a plan view is a track shape.
  • a back side guard ring 116 is formed in the insulating transformer region 110 to surround the first to fourth back side coils 111B to 114B in a plan view.
  • the shape of the back side guard ring 116 in a plan view is a track shape.
  • the shape and size of the back side guard ring 116 are the same as those of the front side guard ring 115.
  • the back side guard ring 116 is formed at a position that overlaps with the front side guard ring 115.
  • Vias 117 are formed to connect front-side guard ring 115 and back-side guard ring 116. Vias 117 are positioned so as to overlap both front-side guard ring 115 and back-side guard ring 116 in plan view.
  • the circuit region 120 is provided with a plurality of wiring layers 121.
  • the plurality of wiring layers 121 include a wiring layer that electrically connects the plurality of first functional units, and a wiring layer that electrically connects the plurality of functional units to the first transformer 111 and the second transformer 112 of the insulating transformer region 110.
  • the plurality of first functional units are formed in a position in the circuit region 120 closer to the chip back surface 62 (see FIG. 19) in the Z direction than the plurality of wiring layers 121.
  • the plurality of first functional units are formed in the same position in the Z direction as the first to fourth back surface side coils 111B to 114B. Note that the position in the Z direction at which the plurality of first functional units are formed can be changed as desired.
  • the peripheral guard ring 100 includes a front surface side peripheral guard ring 101 and a back surface side peripheral guard ring 102 .
  • the front-side outer periphery guard ring 101 is connected to the front-side guard ring 115. More specifically, the front-side outer periphery guard ring 101 is connected to both ends of the front-side guard ring 115 in the Y direction.
  • the front-side outer periphery guard ring 101 includes a first portion extending in the X direction at a position adjacent to the third chip side surface 65 in the Y direction in a plan view, a second portion continuing from the first portion and extending in the Y direction at a position adjacent to the second chip side surface 64 in the X direction, and a third portion continuing from the second portion and extending in the X direction at a position adjacent to the fourth chip side surface 66 in the Y direction.
  • the front-side outer periphery guard ring 101 further includes a first connection portion extending in the Y direction from the first portion toward the front-side guard ring 115 and connected to the front-side guard ring 115, and a second connection portion extending in the Y direction from the third portion toward the front-side guard ring 115 and connected to the front-side guard ring 115. In this manner, the front-side outer peripheral guard ring 101 is electrically connected to the front-side guard ring 115 .
  • the rear outer periphery guard ring 102 is connected to the rear guard ring 116. More specifically, the rear outer periphery guard ring 102 is connected to both ends of the rear guard ring 116 in the Y direction.
  • the rear outer periphery guard ring 102 includes a first portion extending in the X direction at a position adjacent to the third chip side surface 65 in the Y direction in a plan view, a second portion continuing from the first portion and extending in the Y direction at a position adjacent to the second chip side surface 64 in the X direction, and a third portion continuing from the second portion and extending in the X direction at a position adjacent to the fourth chip side surface 66 in the Y direction.
  • the rear outer periphery guard ring 102 further includes a first connection portion extending in the Y direction from the first portion toward the rear guard ring 116 and connected to the rear guard ring 116, and a second connection portion extending in the Y direction from the third portion toward the rear guard ring 116 and connected to the rear guard ring 116.
  • the rear surface outer peripheral guard ring 102 is electrically connected to the rear surface outer peripheral guard ring 116.
  • the shape and size of the rear surface outer peripheral guard ring 102 in a plan view are the same as those of the front surface outer peripheral guard ring 101.
  • the rear surface outer peripheral guard ring 102 is disposed at a position that overlaps with the front surface outer peripheral guard ring 101 in a plan view.
  • the first chip 60 has a number of peripheral vias that connect the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102.
  • the front-side peripheral guard ring 101 and the back-side peripheral guard ring 102 are electrically connected by the multiple peripheral vias.
  • Each peripheral via extends in the Z direction.
  • the signal transmission device 10 of the 16th embodiment provides the same effects as the first embodiment.
  • At least one of the configurations of the 11th, 14th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the second and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 11th, 14th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the second and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 12th, 13th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the second and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 12th, 13th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the second and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the third and fourth to sixth embodiments may be added to the signal transmission device 10 of the first embodiment. At least one of the configurations of the eleventh, fourteenth, and fifteenth embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the third and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 11th, 14th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the third and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 12th, 13th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the third and fourth to sixth embodiments is added to the first embodiment.
  • At least one of the configurations of the 12th, 13th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 3rd and 4th to 6th embodiments is added to the 1st embodiment.
  • At least one of the configurations of the fourth, fifth, eighth, and tenth embodiments may be added to the signal transmission device 10 of the seventh embodiment.
  • At least one of the configurations of the 11th, 14th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 8th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 11th, 14th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 8th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 12th, 13th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 8th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 12th, 13th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 8th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the fourth, fifth, ninth, and tenth embodiments may be added to the signal transmission device 10 of the seventh embodiment.
  • At least one of the configurations of the 11th, 14th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 9th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 11th, 14th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 9th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 12th, 13th, and 15th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 9th, and 10th embodiments is added to the 7th embodiment.
  • At least one of the configurations of the 12th, 13th, and 16th embodiments may be added to the signal transmission device 10 in which at least one of the configurations of the 4th, 5th, 9th, and 10th embodiments is added to the 7th embodiment.
  • the first die pad 30 may be provided with one or more through holes penetrating the first die pad 30 in its thickness direction (Z direction). Each through hole is filled with sealing resin 90.
  • the second die pad 50 may be provided with one or more through holes that penetrate the second die pad 50 in its thickness direction (Z direction). Each through hole is filled with sealing resin 90.
  • At least one of the recesses 39 may be omitted from the first die pad 30 . In each embodiment, at least one of the recesses 59 may be omitted from the second die pad 50 .
  • the recess 59 of the second die pad 50 may be provided at a position different from the second conductive bonding material SD2 in a planar view. According to this configuration, the recess 59 provided at a position different from the second conductive bonding material SD2 in a planar view is filled with the sealing resin 90. This can improve the adhesion between the second die pad 50 and the sealing resin 90.
  • the through holes 12AD, 12AE, 14AD, 15AD, 17AD, and 17AE may be omitted from the first lead terminals 12, 14, 15, and 17.
  • the second bond portion of the first lead wire WB may have both a configuration in which the security bond WB1 is provided and a configuration in which the security bond WB1 is not provided.
  • the security bond WB1 is provided on the second bond portion of the first lead wire WB at a location where the second bond portion of the first lead wire WB is considered to be relatively easy to peel off, and the security bond WB1 is not provided on the second bond portion of the first lead wire WB at a location where the second bond portion is considered to be relatively difficult to peel off.
  • peeling of the second bond portion it is considered that the second bond portion of a relatively long first lead wire WB is easily peeled off, and the second bond portion of a relatively short first lead wire WB is not easily peeled off.
  • the security bond WB1 is provided on the second bond portion of the relatively long first lead wire WB, and the security bond WB1 is not provided on the second bond portion of the relatively short first lead wire WB.
  • the through holes 42AD, 42AE, 44AD, 45AD, 47AD, and 47AE may be omitted from the second lead terminals 42, 44, 45, and 47.
  • the second bond portion of the second lead wire WD may have both a configuration in which the security bond WD1 is provided and a configuration in which the security bond WD1 is not provided.
  • the security bond WD1 is provided at the second bond portion of the second lead wire WD at a location where the second bond portion of the second lead wire WD is considered to be relatively easy to peel off, and the security bond WD1 is not provided at the second bond portion of the second lead wire WD at a location where the second bond portion is considered to be relatively difficult to peel off.
  • peeling of the second bond portion it is considered that the second bond portion of a relatively long second lead wire WD is easily peeled off, and the second bond portion of a relatively short second lead wire WD is not easily peeled off. For this reason, the second bond portion of a relatively long second lead wire WD is provided with a security bond WD1, and the second bond portion of a relatively short second lead wire WD is not provided with a security bond WD1.
  • the coverage area of the plating layer 29 covering the wire connection portions 12AA-17AA of the first lead terminals 12-17 can be changed as desired.
  • the plating layer 29 may cover the entire inner lead surface 21B of each of the wire connection portions 12AA-17AA. In this case, a portion of the plating layer 29 may cover the tip surface 24B of the wire connection portions 12AA-17AA.
  • the coverage area of the plating layer 29 covering the wire connection portions 42AA to 47AA of the second lead terminals 42 to 47 can be changed as desired.
  • the plating layer 29 may cover the entire inner lead surface 21B of each of the wire connection portions 42AA to 47AA. In this case, a portion of the plating layer 29 may cover the tip surface 24B of the wire connection portions 42AA to 47AA.
  • the end surface plating layer 27 may be omitted from at least one of the outer lead end surfaces 24A of the first outer lead portions 11B to 18B of the first lead terminals 11 to 18.
  • the end surface plating layer 27 may be omitted from at least one of the outer lead end surfaces 24A of the second outer lead portions 41B to 48B of the second lead terminals 41 to 48.
  • the end surface plating layer 27 may be omitted from at least one of the outer lead end surfaces 24A of the first outer lead portions 11MB, 11NB, 12B to 17B, 18MB, and 18NB of the first lead terminals 11M, 11N, 12 to 17, 18M, and 18N.
  • the end surface plating layer 27 may be omitted from at least one of the outer lead end surfaces 24A of the second outer lead portions 41MB, 41NB, 42B to 47B, 48MB, and 48NB of the second lead terminals 41M, 41N, 42 to 47, 48M, and 48N.
  • the arrangement of the inter-chip wires WA in a plan view can be changed as desired.
  • the six inter-chip wires WA may be formed such that the intervals between adjacent inter-chip wires WA become larger from the first chip 60 toward the second chip 70 in a plan view.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wire WA is not limited to gold and can be changed as desired.
  • the material constituting the inter-chip wires WA is not limited to gold and can be changed arbitrarily.
  • the first lead wire WB is not limited to copper or aluminum and can be changed as desired.
  • the palladium coating on the surface of the copper wire may be omitted.
  • the first die pad wire WC, the second lead wire WD, and the second die pad wire WE can also be changed in the same manner.
  • the security bond WB1 may be omitted from at least one of the second bond portions of the multiple first lead wires WB.
  • the security bond WD1 may be omitted from at least one of the second bond portions of the multiple second lead wires WD.
  • the security bond WC1 may be omitted from at least one of the second bond portions of the multiple first die pad wires WC.
  • the security bond WE1 may be omitted from at least one of the second bond portions of the multiple second die pad wires WE.
  • the configuration of the first chip 60 may be changed to the first chip 60 shown in Figures 76 and 77.
  • the first chip 60 shown in Figures 76 and 77 has a larger ratio of the length in the longitudinal direction to the size in the lateral direction of the first chip 60 than the first chip 60 shown in Figures 72 to 75.
  • the front-side outer peripheral guard ring 101 is formed in an annular shape so as to go around the outer periphery of the first chip 60.
  • the portion of the front-side outer peripheral guard ring 101 that is adjacent to the second chip side surface 64 in the X direction and extends in the Y direction is connected to the front-side guard ring 115.
  • the configuration of the first transformer 111 and the second transformer 112 in the insulating transformer region 110 is the same as the configuration of the first transformer 111 and the second transformer 112 in the 16th embodiment.
  • the circuit region 120 has a plurality of functional units and a plurality of circuit elements of the first chip 60 formed therein.
  • the plurality of functional units and the plurality of circuit elements are similar to the plurality of functional units and the plurality of circuit elements of the circuit region 120 of the sixteenth embodiment.
  • the circuit region 120 includes a first circuit unit CR1, a second circuit unit CR2, and a third circuit unit CR3.
  • a MOSFET is formed in the first circuit unit CR1 and the second circuit unit CR2.
  • the first circuit unit CR1 includes the transmission unit 501 of FIG. 16
  • the second circuit unit CR2 includes the logic unit 503 of FIG. 16.
  • a protection element is formed in the third circuit unit CR3. Note that when the chip configurations shown in FIG. 76 and FIG. 77 are applied to the second chip 70, a DMOSFET (Double-Diffused MOSFET) may be used as the MOSFET of the second circuit unit CR2.
  • a DMOSFET Double-
  • the step portion 139 of the first chip 60 is not limited to being provided around the entire circumference of the substrate 130 in a plan view.
  • the step portion 139 may be provided partially on the first to fourth substrate sides 133 to 136 of the substrate 130.
  • the step portion 239 of the second chip 70 is not limited to being provided around the entire circumference of the substrate 230 in a plan view.
  • the step portion 239 may be provided partially on the first to fourth substrate sides 233 to 236 of the substrate 230.
  • one of the step portion 139 of the first chip 60 and the step portion 239 of the second chip 70 may be omitted. In other words, in the fifth embodiment, it is sufficient that a step portion is provided on at least one of the substrate 130 of the first chip 60 and the substrate 230 of the second chip 70.
  • the surface roughness Rz of each of the sealing front surface 91, the sealing rear surface 92, and the first to fourth sealing side surfaces 93 to 96 of the sealing resin 90 may be less than 8 ⁇ m.
  • the concentration of sulfur added to the sealing resin 90 can be changed as desired.
  • the concentration of sulfur added to the sealing resin 90 may be greater than 300 ⁇ g/g.
  • each of the third sealing side surface 95 and the fourth sealing side surface 96 can be changed as desired.
  • a plurality of grooves 95E may be formed in the center of the third sealing side surface 95 in the X direction.
  • a plurality of grooves 96E may be formed in the center of the fourth sealing side surface 96 in the X direction.
  • the number of grooves 95E on the third sealing side surface 95 can be changed as desired.
  • the third sealing side surface 95 may have only one groove 95E.
  • the number of grooves 96E on the fourth sealing side surface 96 can be changed as desired.
  • the fourth sealing side surface 96 may have only one groove 96E.
  • the depth of the multiple grooves 95E is constant, but is not limited to this. In one example, the depth of the central groove 95E in the X direction among the multiple grooves 95E may be deeper than the depth of the grooves 95E at both ends in the X direction. Similarly, the depth of the multiple grooves 96E is constant, but is not limited to this. In one example, the depth of the central groove 96E in the X direction among the multiple grooves 96E may be deeper than the depth of the grooves 96E at both ends in the X direction.
  • the signal transmission device 10 of each embodiment can be applied to an insulated gate driver that performs a switching operation of a power semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) that controls the drive of a motor.
  • a power semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) that controls the drive of a motor.
  • IGBT Insulated Gate Bipolar Transistor
  • Such an insulated gate driver can be applied to an inverter device of an electric vehicle or a hybrid vehicle.
  • the power supply voltage supplied to the first chip 60 of the signal transmission device 10 is 5V or 3.3V based on the ground potential.
  • a voltage of, for example, 600V or more is applied transiently to the second chip 70 compared to the ground potential of the first chip 60.
  • a half-bridge circuit in which a low-side switching element and a high-side switching element are connected in a totem pole shape is generally used as a motor driver circuit in an inverter device of a hybrid vehicle or
  • on as used in this disclosure includes the meanings of “on” and “above” unless the context clearly indicates otherwise.
  • the expression “A is formed on B” is intended to mean that, although in each of the above embodiments, A may be in contact with B and directly disposed on B, as a modified example, A may be disposed above B without contacting B.
  • the term “on” does not exclude a structure in which another member is formed between A and B.
  • the statement "at least one of A and B" in this specification should be understood to mean “only A, or only B, or both A and B.”
  • the Z direction used in this disclosure does not necessarily have to be a vertical direction, nor does it have to completely coincide with the vertical direction. Therefore, various structures according to the present disclosure are not limited to the "up” and “down” of the Z direction described in this specification being “up” and “down” of the vertical direction.
  • the X direction may be a vertical direction
  • the Y direction may be a vertical direction.
  • Appendix A2 The signal transmission device according to Appendix A1, wherein the first lead wire (WB) is a copper wire having a surface coated with palladium.
  • Appendix A3 Further comprising a plurality of second lead wires (WD) that individually connect the second chip (70) and the plurality of second lead terminals (42 to 47);
  • Appendix A4 Further comprising a first die pad wire (WC) connecting the first chip (60) and the first die pad (30);
  • the signal transmission device according to any one of Appendixes A1 to A3, wherein the first die pad wire (WC) is made of a material containing copper or aluminum.
  • the first die pad wire (WC) is a bonding wire
  • the signal transmission device according to Appendix A4 wherein a security bond (WC1) is formed at a joint portion of the first die pad wire (WC) with the first die pad (30).
  • the second die pad wire (WE) is a bonding wire, The signal transmission device according to Appendix A5, wherein a security bond (WE1) is formed at a joint portion of the second die pad wire (WE) with the second die pad (50).
  • the plurality of first lead terminals (11 to 18) include first remote terminals (12 to 17) arranged at a distance from the first die pad (30);
  • the first remote terminals (12 to 17) are A first portion (12AB to 17AB) extending in the first direction (X direction); a second portion (12AA to 17AA) provided continuously with the first portion (12AB to 17AB) and extending in a direction intersecting the first direction (X direction) with respect to the first portion (12AB to 17AB) in a plan view;
  • the second portion (12AA to 17AA) includes a side surface that intersects with the first lead wire (WB) connected to the second portion (12AA to 17AA) in a plan view,
  • the signal transmission device according to any one of Appendix A1 to A7, wherein the side surface faces the first die pad (30) in a plan view.
  • Appendix A9 The signal transmission device according to any one of Appendixes A1 to A8, wherein the plurality of inter-chip wires (WA1 to WA6) are formed so as to be parallel to each other in a plan view.
  • the plurality of first lead terminals (11 to 18) are first lead terminals different from the first end lead terminals (11, 18) and include first remote terminals (12 to 17) arranged at a distance from the first die pad (30);
  • the first remote terminals (12 to 17) have through holes (12AD to 17AD) penetrating in a thickness direction (Z direction) of the first remote terminals (12 to 17),
  • the signal transmission device according to any one of Appendixe
  • Each of the first lead terminals (11 to 18) is a first outer lead portion (11B to 18B) exposed to the outside of the sealing resin (90); a first inner lead portion (11A to 18A) provided inside the sealing resin (90) and connected to the first outer lead portion (11B to 18B);
  • the plurality of first lead terminals (11 to 18) are a first specific terminal (12, 14, 15, 17) in which a through hole (12AD, 14AD,
  • the sealing resin (90) has a sealing surface (91), a sealing back surface (92) opposite to the sealing surface (91), and sealing side surfaces (93-96) connecting the sealing surface (91) and the sealing back surface (92),
  • the sealing side surface (93 to 96) is a first sealing side surface (93) to which the first lead terminals (11 to 18) are exposed; a second sealing side surface (94) to which the second lead terminals (41 to 48) are exposed;
  • the first chip (60) is An element insulating layer (150); a first resin layer (191) provided on the element insulating layer (150); A second resin layer (192) provided on the first resin layer (191),
  • the isolation transformers (111, 112) are a front side coil (111A, 112A) disposed on the first resin layer (191) and covered with the second resin layer (192);
  • the signal transmission device according to any one of appendices A1 to A12, further comprising: a back side coil (111B, 112B) disposed opposite the front side coil (111A, 112A) in the thickness direction (Z direction) of the element insulating layer (150) and embedded in the element insulating layer (150).
  • the first chip (60) is An element insulating layer (150); a passivation film (161) formed on the element insulating layer (150) so as to cover the element insulating layer (150); A low dielectric layer (193) formed on the surface of the passivation film (161) and having a relative dielectric constant lower than that of the passivation film (161),
  • the signal transmission device according to any one of Appendices A1 to A12, wherein the sealing resin (90)
  • the isolation transformers (111, 112) are a front surface side coil (111A, 112A) disposed near the chip front surface (61) of the first chip (60); a back side coil (111B, 112B) arranged opposite the front side coil (111A, 112A),
  • the front coil (111A, 112A) is A coil surface (171); A back surface (172) of the coil opposite to the front surface (171) of the coil; A coil side surface (173) that connects the coil front surface (171) and the coil back surface (172),
  • the signal transmission device according to any one of appendices A1 to A12, wherein a curved surface (176) is formed between the coil surface (171) and the coil side surface (173).
  • the first chip (60) is A flat substrate (130) mounted on the first die pad (30); An element insulating layer (150) formed on the substrate (130) and having at least a part of the isolation transformer (111, 112) provided thereon;
  • the substrate (130) is a back surface (132) of the substrate facing the first die pad (30); a substrate surface (131) opposite to the substrate back surface (132); A substrate side surface (133 to 136) connecting the substrate back surface (132) and the substrate front surface (131); A first portion (137) including the rear surface (132) of the substrate; a second portion (138) disposed on the first portion (137) and including the substrate surface (131); A step portion (139) formed so that the second portion (138) is positioned inside the substrate (130) relative to the first portion (137).
  • the signal transmission device according to any one of Appendixes A1 to A12.
  • the first die pad (30) is a first tip surface (31) facing the second die pad (50) in the first direction (X direction) in a plan view; a first base end surface (32) opposite the first tip end surface (31) in a plan view; A first side surface (33) and a second side surface (34) constituting both side surfaces in the second direction (Y direction); a first tip side curved surface (35) formed between the first tip surface (31) and the first side surface (33); a second tip side curved surface (36) formed between the first tip surface (31) and the second side surface (34); a first base end curved surface (37) formed between the first base end surface (32) and the first side surface (33); a second proximal curved surface (38) formed between the first proximal surface (32) and the second side surface (34);
  • the signal transmission device according to any one of Appendix A1 to A10, wherein, in a plan view, the arc lengths of both the first distal curved surface (35) and the second distal curved surface (36)
  • the first lead terminals (11 to 18) include first inner lead portions (11A to 18A) provided in the sealing resin (90),
  • the first inner lead portion (12A to 17A) includes a wire connection portion (12AA to 17AA) to which the first lead wire (WB) is connected,
  • the wire connection portion (12AA to 17AA) is an inner lead surface (21B) to which the first lead wire (WB) is bonded; an inner lead back surface (22B) facing the opposite side to the
  • the plurality of first lead terminals (11 to 18) include first outer lead portions (11B to 18B) protruding to the outside of the sealing resin (90),
  • the first outer lead portion (11B to 18B) is An outer lead surface (21A); an outer lead back surface (22A) facing the opposite side to the outer lead front surface (21A); outer lead side surfaces (23A) connecting the outer lead surface (21A) and the outer lead back surface (22A)
  • the signal transmission device according to any one of Appendices A1 to A19, wherein an outer surface (91 to 96) of the sealing resin (90) is formed so as to have a surface roughness Rz of 8 ⁇ m or more.
  • the plurality of second lead terminals (41 to 48) include second remote terminals (42 to 47) arranged at a distance from the second die pad (50);
  • the second remote terminals (42 to 47) are a third portion (42AB to 47AB) extending in the first direction (X direction); a fourth portion (42AA to 47AA) provided continuously with the third portion (42AB to 47AB) and extending in a direction intersecting the first direction (X direction) with respect to the third portion (42AB to 47AB) in a plan view;
  • the fourth portion (42AA to 47AA) includes a side surface that intersects with the second lead wire (WD) connected to the fourth portion (42AA to 47AA) in a plan view,
  • the signal transmission device according to claim 1 or 2, wherein the side surface faces the second die pad (50) in a plan view.
  • the second die pad (50) is a second tip surface (51) facing the first die pad (30) in the first direction (X direction) in a plan view; a second base end surface (52) opposite the second tip end surface (51) in a plan view; A third side surface (53) and a fourth side surface (54) constituting both side surfaces in the second direction (Y direction); a third tip side curved surface (55) formed between the second tip surface (51) and the third side surface (53); a fourth tip side curved surface (56) formed between the second tip surface (51) and the fourth side surface (54); a third base end curved surface (57) formed between the second base end surface (52) and the third side surface (53); a fourth proximal curved surface (58) formed between the second proximal surface (52) and the fourth side surface (54);
  • the signal transmission device according to any one of Appendices A1 to A21, wherein, in a planar view, the arc lengths of both the third distal curved surface (55) and the fourth distal
  • the plurality of second lead terminals (41 to 48) are second lead terminals different from the second end lead terminals (41, 48) and include second remote terminals (42 to 47) arranged away from the second die pad (50);
  • the second remote terminals (42 to 47) have through holes (42AD to 47AD) penetrating in a thickness direction (Z direction) of the second remote terminals (42 to 47),
  • the signal transmission device according to any one of Append
  • second lead wires (WD) that individually connect the plurality of second lead terminals (41 to 48) and the second chip (70); a rectangular flat sealing resin (90) that seals the first chip (60), the second chip (70), the inter-chip wires (WA1 to WA6), the first lead wire (WB), the second lead wire (WD), the first die pad (30), and the second die pad (50) and partially seals the first lead terminals (11 to 18) and the second lead terminals (41 to 48);
  • Each of the second lead terminals (41 to 48) is a second outer lead portion (41B to 48B) exposed to the outside of the sealing resin (90); a second inner lead portion (41A to 48A) provided inside the sealing resin (90) and connected to the second outer lead portion (41B to 48B);
  • the plurality of second lead terminals (42 to 47) are a third specific terminal (42, 44, 45, 47) in which a through hole (42AD, 44AD, 45AD, 47AD) is formed in the second inner lead
  • the second lead terminals (41 to 48) include first inner lead portions (41A to 48A) provided in the sealing resin (90),
  • the first inner lead portion (42A to 47A) includes a wire connection portion (42AA to 47AA) to which the second lead wire (WD) is connected,
  • the wire connection portion (42AA to 47AA) is an inner lead surface (21B) to which the second lead wire (WD) is bonded; an inner lead back surface (22B) facing the opposite side to the inner lead front surface (21
  • the plurality of second lead terminals (41 to 48) include second outer lead portions (41B to 48B) protruding to the outside of the sealing resin (90),
  • the second outer lead portion (41B to 48B) is An outer lead surface (21A); an outer lead back surface (22A) facing the opposite side to the outer lead front surface (21A); outer lead side surfaces (23A) connecting the outer lead surface (21A) and the outer lead back surface (22A)
  • Protective film 170 Conductive wire 171: Coil surface 172: Coil back surface 173: Coil side surface 174: Barrier layer 175: Metal layer 176: Surface side corner portion 177: Back side corner portion 178: Seed layer 179: Metal layer 180: Conductive wire 181: Coil surface 182: Coil back surface 183: Coil side surface 184: Back side barrier layer 185: Metal layer 186: Surface side barrier layer 191: First organic insulating layer 192: Second organic insulating layer 192A: Opening 193: Low dielectric layer 200: Peripheral guard ring 201: Surface side peripheral guard ring 202: Back side peripheral guard ring 210: Insulating transformer region 211: First transformer 211A: First surface side coil 211A1: First coil portion 211A2: First outer coil end 211A3...first inner coil end 211B...first rear surface side coil 211B1...first coil section 211B2...first outer coil end 211B3...first inner coil

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

信号伝達装置は、第1トランスを含む第1チップと、第2チップと、複数の第1リード端子と、複数の第2リード端子と、第1チップと第2チップとを電気的に接続するチップ間ワイヤと、第1チップと複数の第1リード端子とを個別に接続する第1リード用ワイヤと、を備える。チップ間ワイヤは、金を含む材料によって形成されている。第1リード用ワイヤは、銅またはアルミニウムを含む材料によって形成されている。

Description

信号伝達装置
 本開示は、信号伝達装置に関する。
 従来、第1ダイパッドと、第1ダイパッドから離隔して配置された第2ダイパッドと、第1ダイパッドに搭載された第1チップおよびトランスチップと、第2ダイパッドに搭載された第2チップと、これらダイパッドおよびチップを封止する封止樹脂と、を備える信号伝達装置が知られている(たとえば特許文献1参照)。このような信号伝達装置では、第1チップとトランスチップとがワイヤによって電気的に接続されており、トランスチップと第2チップとが別のワイヤによって電気的に接続されている。
特開2016-207714号公報
 ところで、信号伝達装置の絶縁信頼性の観点から、隣り合うチップ同士を電気的に接続するチップ間ワイヤの形状およびワイヤ高さをより精度よく検査することが求められている。
 本開示の一態様である信号伝達装置は、絶縁トランスを含む第1チップと、前記第1チップからの信号を受信、および前記第1チップへの信号の送信の少なくとも一方を行う第2チップと、前記第1チップが搭載された第1ダイパッドと、前記第1ダイパッドに対して第1方向において離隔して配置されており、前記第2チップが搭載された第2ダイパッドと、平面視において前記第1方向において前記第1ダイパッドに対して前記第2ダイパッドとは反対側に離隔して配置され、平面視において前記第1方向と直交する第2方向に配列された複数の第1リード端子と、平面視において前記第1方向において前記第2ダイパッドに対して前記第1ダイパッドとは反対側に離隔して配置され、平面視において前記第2方向に配列された複数の第2リード端子と、前記第1チップと前記第2チップとを電気的に接続するチップ間ワイヤと、前記第1チップと前記複数の第1リード端子とを個別に接続する第1リード用ワイヤと、を備え、前記複数の第1リード端子のうち前記第2方向の両端に配置された第1リード端子である第1端部リード端子は、前記第1方向に延びる第1リード部と、前記第1リード部に接続され、前記第1方向において前記第2ダイパッドに向かうにつれて、前記第2方向において前記第1ダイパッドに向けて斜めに延びる第2リード部と、前記第2方向に延びて、前記第2リード部と前記第1ダイパッドとを接続する第3リード部と、を含み、前記複数の第2リード端子のうち前記第2方向の両端に配置された第2リード端子である第2端部リード端子は、前記第1方向に延びる第4リード部分と、前記第4リード部分に接続され、前記第1方向において前記第1ダイパッドに向かうにつれて、前記第2方向において前記第2ダイパッドに向けて斜めに延びる第5リード部分と、前記第2方向に延びて、前記第5リード部分と前記第2ダイパッドとを接続する第6リード部分と、を含み、前記チップ間ワイヤは、金を含む材料によって形成されており、前記第1リード用ワイヤは、銅またはアルミニウムを含む材料によって形成されている。
 上記信号伝達装置によれば、チップ間ワイヤのワイヤ高さをより精度よく検査することができる。
図1は、第1実施形態の信号伝達装置の斜視図である。 図2は、図1の信号伝達装置の側面図である。 図3は、図1の信号伝達装置における図2とは異なる方向から視た側面図である。 図4は、図3の第2リード端子およびその周辺の拡大図である。 図5は、図4の第2リード端子のアウターリード端面の拡大図である。 図6は、信号伝達装置が回路基板に実装された状態の側面図である。 図7は、図1の信号伝達装置の内部構成を示す概略平面図である。 図8は、図7の第1ダイパッドおよびその周辺の拡大図である。 図9は、図7の第1フレームおよびその周辺の拡大図である。 図10は、第1リード端子のワイヤ接続部の模式的な断面図である。 図11は、図7の第2ダイパッドおよびその周辺の拡大図である。 図12は、図7の第2フレームおよびその周辺の拡大図である。 図13は、第2リード端子のワイヤ接続部の模式的な断面図である。 図14は、図7のチップ間ワイヤおよびその周辺の拡大図である。 図15は、第1ダイパッド用ワイヤのセカンドボンド部およびその周辺を拡大した斜視図である。 図16は、第1実施形態の信号伝達装置の回路図である。 図17は、第1実施形態の信号伝達装置における第1チップの内部構造の一例を示す模式的な平面図である。 図18は、図17とは第1チップの厚さ方向に異なる位置における第1チップの内部構造の一例を示す模式的な平面図である。 図19は、第1チップの第1トランスおよびその周辺の断面構造を示す断面図である。 図20は、図19の第1チップの一部を拡大した拡大図である。 図21は、図20の第1チップにおける第1表面側コイルの導線を拡大した拡大図である。 図22は、図20の第1チップにおける第1裏面側コイルの導線を拡大した拡大図である。 図23は、第1チップの回路領域の一部の断面構造を示す断面図である。 図24は、図23の第1ビアおよびその周辺の拡大図である。 図25は、第1実施形態の信号伝達装置における第2チップの内部構造の一例を示す模式的な平面図である。 図26は、図25とは第2チップの厚さ方向に異なる位置における第2チップの内部構造の一例を示す模式的な平面図である。 図27は、第2実施形態の信号伝達装置について、第1フレームおよびその周辺を拡大した平面図である。 図28は、第2実施形態の信号伝達装置について、第2フレームおよびその周辺を拡大した平面図である。 図29は、第3実施形態の信号伝達装置について、第1フレームおよびその周辺を拡大した平面図である。 図30は、第3実施形態の信号伝達装置について、第2フレームおよびその周辺を拡大した平面図である。 図31は、第4実施形態の信号伝達装置について、第1ダイパッド、第2ダイパッド、およびその周辺を拡大した平面図である。 図32は、第5実施形態の信号伝達装置について、第1チップおよび第1ダイパッドの模式的な断面図である。 図33は、図32とは異なる方向で第1チップおよび第1ダイパッドを切断した模式的な断面図である。 図34は、第2チップおよび第2ダイパッドの模式的な断面図である。 図35は、図34とは異なる方向で第2チップおよび第2ダイパッドを切断した模式的な断面図である。 図36は、第5実施形態の信号伝達装置の製造工程の一例を模式的に示す断面図である。 図37は、図36に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図38は、図37に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図39は、図38に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図40は、第6実施形態の信号伝達装置について、信号伝達装置の内部構造を模式的に示す平面図である。 図41は、第7実施形態の信号伝達装置の斜視図である。 図42は、図41の信号伝達装置の内部構成を示す概略平面図である。 図43は、図42の信号伝達装置について、第1フレームおよびその周辺を拡大した平面図である。 図44は、図42の信号伝達装置について、第2フレームおよびその周辺を拡大した平面図である。 図45は、第7実施形態の信号伝達装置の回路図である。 図46は、第8実施形態の信号伝達装置について、第1フレームおよびその周辺を拡大した平面図である。 図47は、第8実施形態の信号伝達装置について、第2フレームおよびその周辺を拡大した平面図である。 図48は、第9実施形態の信号伝達装置について、第1フレームおよびその周辺を拡大した平面図である。 図49は、第9実施形態の信号伝達装置について、第2フレームおよびその周辺を拡大した平面図である。 図50は、第10実施形態の信号伝達装置について、信号伝達装置の内部構造を模式的に示す平面図である。 図51は、第11実施形態の信号伝達装置について、第1チップの第1トランスおよびその周辺の断面構造の一例を模式的に示す断面図である。 図52は、図51の第1トランスの一部およびその周辺を拡大した断面図である。 図53は、第11実施形態の信号伝達装置の製造工程の一例を模式的に示す断面図である。 図54は、図53に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図55は、図54に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図56は、第12実施形態の信号伝達装置について、第1チップの第1トランスおよびその周辺の一部の断面構造を示す断面図である。 図57は、第13実施形態の信号伝達装置について、第1チップの第1トランスにおける第1表面側コイルの一部およびその周辺を拡大した断面図である。 図58は、第13実施形態の信号伝達装置の製造工程の一例を模式的に示す断面図である。 図59は、図58に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図60は、図59に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図61は、図60に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図62は、図61に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図63は、図62に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図64は、第14実施形態の信号伝達装置について、第1チップの第1トランスにおける第1表面側コイルの一部およびその周辺を拡大した断面図である。 図65は、第14実施形態の信号伝達装置の製造工程の一例を模式的に示す断面図である。 図66は、図65に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図67は、図66に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図68は、図67に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図69は、図68に続く信号伝達装置の製造工程の一例を模式的に示す断面図である。 図70は、第15実施形態の信号伝達装置について、第1チップの内部構造の一例を示す模式的な平面図である。 図71は、図70とは第1チップの厚さ方向に異なる位置における第1チップの内部構造の一例を示す模式的な平面図である。 図72は、第16実施形態の信号伝達装置について、第1チップの内部構造を模式的に示す平面図である。 図73は、図72の第1チップにおけるトランス絶縁領域の拡大図である。 図74は、図72とは第1チップの厚さ方向に異なる位置における第1チップの内部構造の一例を示す模式的な平面図である。 図75は、図74の第1チップにおけるトランス絶縁領域の拡大図である。 図76は、変更例の信号伝達装置について、第1チップの内部構造の一例を示す平面図である。 図77は、図76とは第1チップの厚さ方向に異なる位置における第1チップの内部構造を示す模式的な平面図である。 図78は、変更例の信号伝達装置の内部構造を模式的に示す平面図である。
 以下、添付図面を参照して本開示における信号伝達装置のいくつかの実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は、必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図ではハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。
 <第1実施形態>
 図1~図26を参照して、第1実施形態の信号伝達装置10について説明する。図1~図6は、信号伝達装置10の外観構造を示している。図7~図15は、信号伝達装置10の内部構造を示している。図16は、信号伝達装置10の回路構成を示している。図17~図24は、信号伝達装置10の後述する第1チップ60の内部構造を示している。図25および図26は、信号伝達装置10の後述する第2チップ70の内部構造を示している。
 [信号伝達装置の外観構成]
 図1は、信号伝達装置10の斜視構造を示している。図2および図3は、信号伝達装置10の側面構造を示している。図4は、信号伝達装置10の後述する第2リード端子48の一部の拡大構造を示している。
 図1に示すように、信号伝達装置10のパッケージ構造は、SOP(Small Outline Package)である。なお、信号伝達装置10のパッケージ構造は任意に変更可能であり、QFN(Quad For Non Lead Package)、DFP(Dual Flat Package)、DIP(Dual Inline Package)、QFP(Quad Flat Package)、SIP(Single Inline Package)、もしくはSOJ(Small Outline J-leaded Package)、または、これらに類する種々のパッケージ構造であってもよい。
 図1に示すように、信号伝達装置10は、封止樹脂90と、封止樹脂90から突出した複数(第1実施形態では8本)の第1リード端子11~18と、封止樹脂90から突出した複数(第1実施形態では8本)の第2リード端子41~48と、を備える。
 封止樹脂90は、矩形板状に形成されている。ここで、本明細書においては、封止樹脂90の厚さ方向を「Z方向」とし、Z方向と直交する方向のうち互いに直交する2方向を「X方向」および「Y方向」とする。また、Z方向のうち上方を「+Z方向」とし、下方を「-Z方向」とする。図1では、X方向のうち前方を「-X方向」とし、後方を「+X方向」とする。図1では、Y方向のうち右方を「+Y方向」とし、左方を「-Y方向」とする。また、本明細書において、「平面視」とは、封止樹脂90の厚さ方向から信号伝達装置10を視ることを指す。特段の断りが無い限り、平面視とは、信号伝達装置10を+Z方向から視ることを指す。
 平面視における封止樹脂90の形状は、Y方向が長手方向となり、X方向が短手方向となる矩形状である。一例では、封止樹脂90のX方向の寸法は7.52mm程度であり、封止樹脂90のY方向の寸法は10.34mm程度であり、封止樹脂90のZ方向の寸法(厚さ)は2.34mm程度である。
 図1~図3に示すように、封止樹脂90は、封止表面91と、封止表面91とは反対側の封止裏面92と、封止表面91と封止裏面92とを繋ぐ第1~第4封止側面93~96と、を有する。封止表面91は+Z方向を向く面であり、封止裏面92は-Z方向を向く面である。第1封止側面93および第2封止側面94は封止樹脂90のX方向の両端面を構成し、第3封止側面95および第4封止側面96は封止樹脂90のY方向の両端面を構成している。第1封止側面93は+X方向を向く面であり、第2封止側面94は-X方向を向く面である。第3封止側面95は+Y方向を向く面であり、第4封止側面96は-Y方向を向く面である。
 図1に示すように、封止表面91には、凹部91Aが形成されている。凹部91Aは、平面視において円形である。凹部91Aは、封止表面91から湾曲凹状に凹んでいる。凹部91Aは、封止表面91のうち第1封止側面93かつ第4封止側面96寄りの部分に形成されている。凹部91Aは、第1リード端子11~18と第2リード端子41~48とを区別するための目印となる。
 図3に示すように、第1封止側面93は、封止表面91と連続する第1表面側側面93Aと、封止裏面92と連続する第1裏面側側面93Bと、第1中央側面93Cと、を含む。第2封止側面94は、封止表面91と連続する第2表面側側面94Aと、封止裏面92と連続する第2裏面側側面94Bと、第2中央側面94Cと、を含む。第1表面側側面93Aおよび第2表面側側面94Aは、封止表面91から封止裏面92に向かうにつれて互いに離れる方向に傾斜している。第1表面側側面93Aと封止表面91との接続部分は湾曲状に形成されている。第2表面側側面94Aと封止表面91との接続部分は、傾斜面94AAが形成されている。傾斜面94AAとZ方向とが成す角度は、第2表面側側面94AとZ方向とが成す角度よりも大きい。傾斜面94AAとZ方向とが成す角度は、たとえば45°である。第1裏面側側面93Bおよび第2裏面側側面94Bは、封止裏面92から封止表面91に向かうにつれて互いに離れる方向に傾斜している。第1裏面側側面93Bおよび第2裏面側側面94Bと封止裏面92との接続部分は湾曲状に形成されている。第1中央側面93Cは、第1表面側側面93Aと第1裏面側側面93BとのZ方向の間に形成されている。第1中央側面93Cは、第1表面側側面93Aおよび第1裏面側側面93Bの双方と繋がっている。第1中央側面93Cは、たとえばYZ平面に沿った平坦面として形成されている。第2中央側面94Cは、第2表面側側面94Aと第2裏面側側面94BとのZ方向の間に形成されている。第2中央側面94Cは、第2表面側側面94Aおよび第2裏面側側面94Bの双方と繋がっている。第2中央側面94Cは、たとえばYZ平面に沿った平坦面として形成されている。
 図2に示すように、第3封止側面95は、封止表面91と連続する第3表面側側面95Aと、封止裏面92と連続する第3裏面側側面95Bと、第3中央側面95Cと、を含む。第4封止側面96は、封止表面91と連続する第4表面側側面96Aと、封止裏面92と連続する第4裏面側側面96Bと、第4中央側面96Cと、を含む。第3表面側側面95Aおよび第4表面側側面96Aは、封止表面91から封止裏面92に向かうにつれて互いに離れる方向に傾斜している。第3表面側側面95Aおよび第4表面側側面96Aと封止表面91との接続部分は湾曲状に形成されている。第3裏面側側面95Bおよび第4裏面側側面96Bは、封止裏面92から封止表面91に向かうにつれて互いに離れる方向に傾斜している。第3裏面側側面95Bおよび第4裏面側側面96Bと封止裏面92との接続部分は湾曲状に形成されている。第3中央側面95Cは、第3表面側側面95Aおよび第3裏面側側面95Bの双方と繋がっている。第3中央側面95Cは、たとえばXZ平面に沿った平坦面として形成されている。第4中央側面96Cは、第4表面側側面96Aと第4裏面側側面96BとのZ方向の間に形成されている。第4中央側面96Cは、第4表面側側面96Aおよび第4裏面側側面96Bの双方と繋がっている。第4中央側面96Cは、たとえばXZ平面に沿った平坦面として形成されている。
 封止樹脂90は、たとえばトランスファーモールドによって形成されている。一例では、第3封止側面95には、モールド成型金型のゲートの跡部(図示略)が設けられている。この跡部は、モールド成型金型のゲートに位置する樹脂部分を封止樹脂90から切り離す際に形成されるものである。跡部は、たとえば第3封止側面95の第3中央側面95Cに形成されている。一例では、図3に示すように、第3中央側面95CをX方向において3つの領域R1~R3に区画する。領域R1~R3は、互いに同じ大きさの領域である。領域R1は第3中央側面95Cのうち第1封止側面93寄りの領域であり、領域R3は第3中央側面95Cのうち第2封止側面94寄りの領域であり、領域R2は領域R1と領域R3とのX方向の間の領域である。上記跡部は、領域R1に設けられていてもよい。また上記跡部は、領域R2に設けられていてもよい。上記跡部は、領域R3に設けられていてもよい。
 なお、モールド成型金型のゲートの跡部は、第3封止側面95に代えて第4封止側面96に形成されていてもよい。この場合においても、上記跡部は、たとえば第4封止側面96の第4中央側面96Cに形成されている。
 封止樹脂90の封止表面91、封止裏面92、および第1~第4封止側面93~96の各々の面粗度Rzは、たとえば5μm以上20μm以下である。第1実施形態では、封止表面91および封止裏面92の各々の全面にわたり面粗度Rzは、たとえば5μm以上20μm以下である。また、第1~第4封止側面93~96のうち第1~第4表面側側面93A~96Aおよび第1~第4裏面側側面93B~96Bの各々の全面にわたり面粗度Rzは、たとえば5μm以上20μm以下である。ここで、面粗度Rzは、基準長さにおける輪郭曲線のうち最も高い山の高さと最も深い谷の深さとの和で示すことができる。一例では、封止表面91、封止裏面92、および第1~第4封止側面93~96に対して粗面処理を実施することによって、それぞれの面粗度Rzをたとえば5μm以上20μm以下とする。粗面処理としては、たとえばショットブラストが挙げられる。
 一例では、封止表面91、封止裏面92、および第1~第4封止側面93~96の各々の面粗度Rzは、たとえば8μm以上である。一例では、封止表面91、封止裏面92、および第1~第4封止側面93~96の各々の面粗度Rzは、たとえば8μm以上20μm以下である。
 一例では、封止表面91および封止裏面92と、第1~第4表面側側面93A~96Aおよび第1~第4裏面側側面93B~96Bとの面粗度Rzは、第1~第4中央側面93C~95Cよりも大きくてもよい。一例では、封止表面91および封止裏面92と、第1~第4表面側側面93A~96Aおよび第1~第4裏面側側面93B~96Bとの面粗度Rzは、凹部91Aを構成する面の面粗度Rzよりも大きくてもよい。
 第1実施形態では、封止表面91、封止裏面92、および第1~第4封止側面93~96の全ての面粗度Rzが5μm以上20μm以下であったが、これに限られない。一例では、第3封止側面95および第4封止側面96の各々の面粗度Rzは、5μm未満であってもよいし、20μmよりも大きくてもよい。また一例では、第1封止側面93および第2封止側面94の各々の面粗度Rzは、5μm未満であってもよいし、20μmよりも大きくてもよい。また一例では、第1~第4封止側面93~96の各々の面粗度Rzは、5μm未満であってもよいし、20μmよりも大きくてもよい。また一例では、封止表面91の面粗度Rzは、5μm未満であってもよいし、20μmよりも大きくてもよい。要するに、封止表面91、封止裏面92、および第1~第4封止側面93~96のうち少なくとも1つの面粗度Rzが5μm以上20μm以下であればよい。
 封止樹脂90は、絶縁材料によって形成されている。絶縁材料の一例は、黒色のエポキシ樹脂である。封止樹脂90は、硫黄(S)を添加剤として含む。封止樹脂90は、硫黄を含むことによって、後述する第1フレーム10Aおよび第2フレーム10Bとの接着力を高めることができる。一方、封止樹脂90が硫黄を含むことによって、信号伝達装置10内の銅系の構成要素に対して硫化腐食するおそれがある。このような第1フレーム10Aおよび第2フレーム10Bと封止樹脂90との接着力の向上と、硫化腐食の抑制とのバランスを考慮して封止樹脂90における硫黄の添加濃度が設定される。一例では、封止樹脂90における硫黄の添加濃度は、300μg/g以下に設定される。
 図1に示すように、第1リード端子11~18は、封止樹脂90から外部に突出した第1アウターリード部11B~18Bを含む。平面視において第1アウターリード部11B~18Bは、第1封止側面93から+X方向に向けて突出している。第1アウターリード部11B~18Bは、Y方向において互いに離隔して配列されている。第1アウターリード部11B~18Bは、封止樹脂90の長手方向に配列されているといえる。第1アウターリード部11B~18Bは、第3封止側面95から第4封止側面96に向かうにつれて第1アウターリード部11B,12B,13B,14B,15B,16B,17B,18Bの順に配置されている。つまり、Y方向は、第1アウターリード部11B~18Bの配列方向であるといえる。換言すると、Y方向は、第1リード端子11~18の配列方向であるといえる。第1実施形態では、第1アウターリード部11B~18Bは、互いに同じ形状である。
 第2リード端子41~48は、封止樹脂90から外部に突出した第2アウターリード部41B~48Bを含む。平面視において第2アウターリード部41B~48Bは、第2封止側面94から-X方向に向けて突出している。第2アウターリード部41B~48Bは、Y方向において互いに離隔して配列されている。第2アウターリード部41B~48Bは、封止樹脂90の長手方向に配列されているといえる。第2アウターリード部41B~48Bは、第4封止側面96から第3封止側面95に向かうにつれて第2アウターリード部41B,42B,43B,44B,45B,46B,47B,48Bの順に配置されている。つまり、Y方向は、第2アウターリード部41B~48Bの配列方向であるといえる。換言すると、Y方向は、第2リード端子41~48の配列方向であるといえる。第1実施形態では、第2アウターリード部41B~48Bは、互いに同じ形状である。
 第1アウターリード部11B~18Bの幅寸法(Y方向の大きさ)および第2アウターリード部41B~48Bの幅寸法(Y方向の大きさ)の各々は、互いに等しい。第1アウターリード部11B~18Bの幅寸法および第2アウターリード部41B~48Bの幅寸法の各々は、たとえば0.4mm程度である。第1アウターリード部11B~18Bのピッチと第2アウターリード部41B~48Bのピッチとは互いに等しい。ここで、第1アウターリード部11B~18Bのピッチは、第1アウターリード部11B~18BのうちY方向に隣り合う2つのアウターリード部の中心間距離によって定義できる。第2アウターリード部41B~48Bのピッチは、第2アウターリード部41B~48BのうちY方向に隣り合う2つのアウターリード部の中心間距離によって定義できる。第1アウターリード部11B~18Bのピッチと第2アウターリード部41B~48Bのピッチとの各々は、たとえば1.27mm程度である。
 図3に示すように、X方向から視た第1アウターリード部11Bの形状と、第2アウターリード部48Bの形状とは互いに同じである。このため、第1アウターリード部11B~18Bの形状と、第2アウターリード部41B~48Bの形状とは互いに同じであるといえる。
 第2アウターリード部41B~48Bの構成について説明する。以下では、第2アウターリード部48Bの詳細な構成を説明し、第2アウターリード部41B~47Bの詳細な構成の説明を省略する。
 第2アウターリード部48Bは、第2封止側面94から-X方向に延びる突出部48Pと、突出部48Pから-Z方向に向けて延びる中間部48Qと、中間部48Qから-X方向に延びる接続部48Rと、を含む。突出部48Pと中間部48Qとの間には湾曲状の第1屈曲部が形成され、中間部48Qと接続部48Rとの間には湾曲状の第2屈曲部が形成されている。接続部48Rは、-X方向に向かうにつれて-Z方向に向けて傾斜していてもよい。接続部48RとX方向とが成す鋭角は、たとえば0°よりも大きく8°以下である。
 図4に示すように、第2アウターリード部48Bは、金属部材によって構成されたアウターリード本体20Aを含む。金属部材としては、たとえば銅、アルミニウム等が挙げられる。アウターリード本体20Aは、アウターリード表面21Aと、アウターリード表面21Aとは反対側のアウターリード裏面22Aと、アウターリード表面21Aとアウターリード裏面22Aとを繋ぐ一対のアウターリード側面23A(図5参照)と、アウターリード端面24Aと、を有する。アウターリード端面24Aは接続部48Rの先端面を構成している。
 図5に示すように、一対のアウターリード側面23Aは、湾曲凹状に形成されている。一例では、湾曲凹状のアウターリード側面23Aのうち最も深い位置(一対のアウターリード側面23AがY方向に最も接近する位置)は、アウターリード端面24AのZ方向の中央よりもアウターリード裏面22A寄りになる。
 アウターリード本体20Aは、アウターリード裏面22Aとアウターリード側面23Aとの接続部分には裏面側湾曲部25が形成されている。裏面側湾曲部25は、アウターリード本体20Aの幅方向(Y方向)の外方に向かうにつれて上方(+Z方向)に向けて湾曲している。このため、アウターリード裏面22AのY方向の両端部は、一対のアウターリード側面23Aに向かうにつれて上方(+Z方向)に向けて湾曲している。
 図4および図5に示すように、第2アウターリード部48Bは、アウターリード本体20Aを覆うめっき層26を含む。より詳細には、めっき層26は、アウターリード表面21A、アウターリード裏面22A、およびアウターリード側面23Aの各々の全面と、アウターリード端面24Aの一部とを覆っている。
 図5に示すように、めっき層26は、アウターリード端面24Aのうちアウターリード裏面22Aから連続してアウターリード表面21Aに向けて覆う端面めっき層27を含む。端面めっき層27は、アウターリード端面24Aのうちアウターリード表面21A側の端縁からZ方向に離隔して位置している。このため、アウターリード端面24Aは、端面めっき層27によって覆われた領域と、端面めっき層27によって覆われていない本体露出領域28とに区画されている。本体露出領域28は、アウターリード本体20Aが露出している。
 端面めっき層27は、アウターリード裏面22Aからアウターリード端面24AのZ方向の中央よりもアウターリード表面21A寄りまで延びている。一例では、端面めっき層27は、Z方向においてアウターリード端面24Aの2/3程度覆っている。端面めっき層27の先端縁27Aは、Y方向に向かうにつれてZ方向に凸凹した形状を含む。一例では、端面めっき層27の先端縁27Aは、Y方向の中央部付近に凹部27Bを含む。
 なお、端面めっき層27の先端縁27Aの形状は任意に変更可能である。一例では、端面めっき層27の先端縁27Aは複数の凹部27Bを含んでもよい。また一例では、端面めっき層27の先端縁27Aから凹部27Bが省略されていてもよい。
 また、端面めっき層27の先端縁27AのZ方向の位置は任意に変更可能である。一例では、端面めっき層27は、Z方向においてアウターリード端面24Aの1/2程度覆っていてもよい。また一例では、端面めっき層27は、Z方向においてアウターリード端面24Aの1/4程度覆っていてもよい。また一例では、端面めっき層27は、Z方向においてアウターリード端面24Aの3/4程度覆っていてもよい。このように、端面めっき層27は、Z方向においてアウターリード端面24Aの1/4以上3/4以下の範囲を覆っていてもよい。
 第1アウターリード部11B~18Bの構成について説明する。以下では、第1アウターリード部11Bの詳細な構成を説明し、第1アウターリード部12B~18Bの詳細な構成の説明を省略する。
 図3に示すように、第1アウターリード部11Bは、第1封止側面93から+X方向に延びる突出部11Pと、突出部11Pから-Z方向に向けて延びる中間部11Qと、中間部11Qから+X方向に延びる接続部11Rと、を含む。突出部11Pと中間部11Qとの間には湾曲状の第1屈曲部が形成され、中間部11Qと接続部11Rとの間には湾曲状の第2屈曲部が形成されている。接続部11Rは、+X方向に向かうにつれて-Z方向に向けて傾斜していてもよい。接続部11RとX方向とが成す鋭角は、たとえば0°よりも大きく8°以下である。
 なお、第1アウターリード部11Bは、第2アウターリード部48Bと同様に、アウターリード本体20Aと、アウターリード本体20Aを覆うめっき層26(ともに図4参照)と、を含む。また第1アウターリード部11Bのめっき層26は、第2アウターリード部48Bと同様に、端面めっき層27(図4参照)を含む。
 このような端面めっき層27の形成方法について以下に説明する。
 第1アウターリード部11Bを構成する第1リードフレーム(図示略)と、第2アウターリード部48Bを構成する第2リードフレーム(図示略)とが金型(パンチ)によって切断される。金型による切断は、たとえば、フレーム枠に接続された第1リードフレームおよび第2リードフレームに対して行い得る。そして、切断によって形成されたアウターリード部11B~18B,41B~48Bがフォーミングされる。
 ここで、金型によって切断される前の状態の第1リードフレームおよび第2リードフレームの双方は、アウターリード本体20Aと、アウターリード表面21A、アウターリード裏面22A、および一対のアウターリード側面23Aを覆うめっき層26と、を含む。
 金型は、第1リードフレームおよび第2リードフレームの双方に対して+Z方向に向けて第1リードフレームおよび第2リードフレームを切断する。これにより、アウターリード端面24Aをそれぞれ含む第1アウターリード部11Bおよび第2アウターリード部48Bが形成される。
 金型における切断部のコーナ部分は丸められた湾曲形状となっている。つまり、コーナ部分はR面取りされている。このようなコーナ部分を有する金型が+Z方向に向けて第1リードフレームおよび第2リードフレームの双方を切断するように移動すると、アウターリード裏面22Aのめっき層26がアウターリード表面21Aに向けて引っ張られることによってアウターリード端面24Aに端面めっき層27が形成される。
 そして、第1アウターリード部11Bおよび第2アウターリード部48Bの双方に端面めっき層27が形成されているため、図6に示すように、はんだペースト、銀(Ag)ペースト等の導電性接合材SDによって信号伝達装置10が回路基板PCBに実装される場合、第1アウターリード部11Bおよび第2アウターリード部48Bと導電性接合材SDとの接合面積を増加させることができる。より詳細には、第1アウターリード部11Bの接続部11Rのアウターリード裏面22A、一対のアウターリード側面23A(図5参照)と、中間部11Qのうち接続部11R側の端部のアウターリード裏面22Aとのそれぞれが導電性接合材SDと接合している。加えて、第1アウターリード部11Bの端面めっき層27によって、第1アウターリード部11Bのアウターリード端面24A(図5参照)と導電性接合材SDとが接合されている。この端面めっき層27と導電性接合材SDとの接合面積分、第1アウターリード部11Bと導電性接合材SDとの接合面積が増加している。また、第2アウターリード部48Bの接続部48Rのアウターリード裏面22Aと、一対のアウターリード側面23Aと、中間部48Qのうち接続部48R側の端部のアウターリード裏面22Aとのそれぞれが導電性接合材SDと接合している。加えて、第2アウターリード部48Bの端面めっき層27によって、第2アウターリード部48Bのアウターリード端面24Aと導電性接合材SDとが接合されている。この端面めっき層27と導電性接合材SDとの接合面積分、第2アウターリード部48Bと導電性接合材SDとの接合面積が増加している。加えて、第1アウターリード部11Bおよび第2アウターリード部48Bの各々の端面めっき層27と接合した導電性接合材SDによって、フィレットが形成されている。なお、図6では図示していないが、第1アウターリード部11B~17Bおよび第2アウターリード部42B~48B(ともに図1参照)についても同様に導電性接合材SDとの接合面積が増加し、かつフィレットが形成されている。
 [信号伝達装置の内部構造]
 図7は、信号伝達装置10の全体の内部構造を示している。図7、図9、および図12では、図面を容易に理解するため、封止樹脂90を二点鎖線で示している。図7では、図面を容易に理解するため、第1ダイパッド30の後述する凹部39および第2ダイパッド50の後述する凹部59を省略している。また、図面を容易に理解するため、図8では第1チップ60を二点鎖線で示し、図11では第2チップ70を二点鎖線で示している。
 図7に示すように、信号伝達装置10は、第1フレーム10Aと、第2フレーム10Bと、第1フレーム10Aに搭載された第1チップ60と、第2フレーム10Bに搭載された第2チップ70と、を備える。封止樹脂90は、第1チップ60および第2チップ70を封止するとともに第1フレーム10Aおよび第2フレーム10Bを部分的に封止している。
 第1フレーム10Aは、第1リード端子11~18を含む。第1フレーム10Aは、第1ダイパッド30をさらに含む。第1リード端子11~18および第1ダイパッド30は、同じ金属材料によって形成されている。金属材料の一例は、銅、アルミニウムが挙げられる。
 Y方向の両端に配置された第1リード端子11,18は、第1ダイパッド30に接続されている。一例では、第1リード端子11,18および第1ダイパッド30は、一体化されている。第1リード端子11と第1リード端子18とのY方向の間に配置された第1リード端子12~17は、第1ダイパッド30から離隔して配置されている。第1リード端子12,17は、第1ダイパッド30のY方向の両側に分散して配置されている。第1リード端子12,17は、Y方向から視て、第1ダイパッド30と重なる部分を含む。第1リード端子13~16は、第1ダイパッド30に対して第1封止側面93寄りに第1ダイパッド30からX方向に離隔して配置されている。第1リード端子13~16は、X方向から視て、第1ダイパッド30と重なる部分を含む。
 第1ダイパッド30は、X方向において封止樹脂90の中央よりも第1封止側面93寄りに配置されている。平面視における第1ダイパッド30の形状は、Y方向が長手方向となり、X方向が短手方向となる矩形状である。
 第1ダイパッド30に搭載された第1チップ60は、平板状に形成されている。平面視における第1チップ60の形状は、X方向が短手方向となり、Y方向が長手方向となる矩形状である。第1チップ60は、第1導電性接合材SD1によって第1ダイパッド30に実装されている。より詳細には、第1チップ60は、第1ダイパッド30にダイボンディングされている。第1チップ60は、第1ダイパッド30のX方向の中央に配置されている。また、第1チップ60は、第1ダイパッド30のY方向の中央に対して第4封止側面96寄りに配置されている。なお、第1チップ60の第1ダイパッド30に対する配置位置は任意に変更可能である。
 第2フレーム10Bは、X方向において第1フレーム10Aから離隔して配置されている。つまり、第1実施形態では、X方向は、第1フレーム10Aと第2フレーム10Bとの配列方向であるといえる。第2フレーム10Bは、第2リード端子41~48を含む。第2フレーム10Bは、第2ダイパッド50をさらに含む。第2リード端子41~48および第2ダイパッド50は、同じ金属材料によって形成されている。金属材料の一例は、銅、アルミニウムが挙げられる。一例では、第2リード端子41~48および第2ダイパッド50は、第1リード端子11~18および第1ダイパッド30と同じ金属材料によって形成されている。
 Y方向の両端に配置された第2リード端子41,48は、第2ダイパッド50に接続されている。一例では、第2リード端子41,48および第2ダイパッド50は、一体化されている。第2リード端子41と第2リード端子48とのY方向の間に配置された第2リード端子42~47は、第2ダイパッド50から離隔して配置されている。第2リード端子42,47は、第2ダイパッド50のY方向の両側に分散して配置されている。第2リード端子42,47は、Y方向から視て、第2ダイパッド50と重なる部分を含む。第2リード端子43~46は、第2ダイパッド50に対して第2封止側面94寄りに第2ダイパッド50からX方向に離隔して配置されている。第2リード端子43~46は、X方向から視て、第2ダイパッド50と重なる部分を含む。図7に示すとおり、第1実施形態では、第1リード端子11~18の形状および第2リード端子41~48の形状は、封止樹脂90のX方向の中央においてY方向に沿う仮想線に対して線対称となる。
 第2ダイパッド50は、X方向において第1ダイパッド30に対して第2封止側面94寄りに第1ダイパッド30から離隔して配置されている。つまり、X方向は、第1ダイパッド30および第2ダイパッド50の配列方向であるといえる。第1ダイパッド30および第2ダイパッド50は、封止樹脂90の短手方向に配列されているともいえる。第2ダイパッド50は、X方向において封止樹脂90の中央よりも第2封止側面94寄りに配置されている。平面視における第2ダイパッド50の形状は、Y方向が長手方向となり、X方向が短手方向となる矩形状である。第1実施形態では、第2ダイパッド50のY方向の大きさは、第1ダイパッド30のY方向の大きさと等しい。第2ダイパッド50のX方向の大きさは、第1ダイパッド30のX方向の大きさよりも大きい。なお、第1ダイパッド30および第2ダイパッド50の各々のサイズは任意に変更可能である。
 第2ダイパッド50に搭載される第2チップ70は、平板状に形成されている。平面視における第2チップ70の形状は、X方向が短手方向となり、Y方向が長手方向となる矩形状である。第2チップ70のX方向の大きさは、第1チップ60のX方向の大きさよりも大きい。第2チップ70のY方向の大きさは、第1チップ60のY方向の大きさよりも大きい。第2チップ70は、第2導電性接合材SD2によって第2ダイパッド50に実装されている。より詳細には、第2チップ70は、第2ダイパッド50にダイボンディングされている。なお、第1導電性接合材SD1および第2導電性接合材SD2の双方としては、たとえばはんだペーストまたは銀ペーストが用いられる。
 第2チップ70は、第2ダイパッド50のX方向の中央かつY方向の中央に配置されている。第2チップ70は、X方向から視て、第1チップ60と重なる位置に配置されている。なお、第2チップ70の第2ダイパッド50に対する配置位置は任意に変更可能である。
 信号伝達装置10は、導電部材10D,10Eをさらに備える。導電部材10D,10Eは、たとえば第1フレーム10Aおよび第2フレーム10Bと同じ金属材料によって形成されている。導電部材10D,10Eは、互いに離隔して配置されている。また、導電部材10D,10Eは、第1フレーム10Aおよび第2フレーム10Bの双方から離隔して配置されている。このため、導電部材10D,10Eの双方は、電気的にフローティング状態である。
 導電部材10D,10Eは、Y方向から視て、互いに重なる位置に配置されている。導電部材10D,10Eは、封止樹脂90のY方向の中央に配置されている。
 導電部材10Dは、第1フレーム10Aおよび第2フレーム10Bに対して第3封止側面95寄りに配置されている。導電部材10Dは、第3封止側面95から露出している。より詳細には、第3封止側面95のうち導電部材10Dが露出する部分には凹部95Dが形成されている。凹部95Dは、Z方向において第3封止側面95の中央に形成されている。つまり、凹部95Dは、第3中央側面95C(図2参照)に設けられている。凹部95Dは、第3封止側面95から第4封止側面96に向けて凹んでいる。凹部95Dは、+Y方向に向けて開口している。導電部材10Dは、凹部95Dの底面を構成している。
 平面視における導電部材10Dは、X方向が長手方向となり、Y方向が短手方向となる略矩形状である。導電部材10DのX方向の大きさは、第1ダイパッド30と第2ダイパッド50とのX方向の間の距離よりも大きい。このため、Y方向から視て、導電部材10Dは、第1ダイパッド30と第2ダイパッド50との双方と重なる部分を含む。
 導電部材10Dは、2つの貫通孔10D1を有する。各貫通孔10D1は、導電部材10Dをこの導電部材10Dの厚さ方向(Z方向)に貫通している。各貫通孔10D1内には、封止樹脂90が充填されている。2つの貫通孔10D1は、Y方向において互いに同じ位置であってX方向において互いに離隔して配列されている。
 導電部材10Eは、第1フレーム10Aおよび第2フレーム10Bに対して第4封止側面96寄りに配置されている。導電部材10Eは、第4封止側面96から露出している。より詳細には、第4封止側面96のうち導電部材10Eが露出する部分には凹部96Dが形成されている。凹部96Dは、Z方向において第4封止側面96の中央に形成されている。つまり、凹部96Dは、第4中央側面96C(図2参照)に設けられている。凹部96Dは、第4封止側面96から第3封止側面95に向けて凹んでいる。凹部96Dは、-Y方向に向けて開口している。導電部材10Eは、凹部96Dの底面を構成している。
 平面視における導電部材10Eは、X方向が長手方向となり、Y方向が短手方向となる略矩形状である。導電部材10EのX方向の大きさは、第1ダイパッド30と第2ダイパッド50とのX方向の間の距離よりも大きい。このため、Y方向から視て、導電部材10Eは、第1ダイパッド30と第2ダイパッド50との双方と重なる部分を含む。
 導電部材10Eは、2つの貫通孔10E1を有する。各貫通孔10E1は、導電部材10Dをこの導電部材10Eの厚さ方向(Z方向)に貫通している。各貫通孔10E1内には、封止樹脂90が充填されている。2つの貫通孔10E1は、Y方向において互いに同じ位置であってX方向において互いに離隔して配列されている。
 第1ダイパッド30の詳細な平面構造について説明する。
 図8に示すように、平面視において、第1ダイパッド30は、第1先端面31、第1基端面32、第1側面33、および第2側面34を有する。第1先端面31は第1ダイパッド30のX方向の両端面のうち第2封止側面94(図7参照)寄りの端面であり、第1基端面32は第1ダイパッド30のX方向の端面のうち第1封止側面93(図7参照)寄りの端面である。第1先端面31は、第2ダイパッド50とX方向に対向している。第1側面33は第1ダイパッド30のY方向の両端面のうち第3封止側面95(図7参照)寄りの端面であり、第2側面34は第1ダイパッド30のY方向の両端面のうち第4封止側面96(図7参照)寄りの端面である。第1先端面31および第1基端面32の双方は、平面視においてY方向に沿って延びる面である。第1側面33および第2側面34の双方は、平面視においてX方向に沿って延びる面である。
 第1ダイパッド30は、第1先端側湾曲面35、第2先端側湾曲面36、第1基端側湾曲面37、および第2基端側湾曲面38をさらに有する。
 第1先端側湾曲面35は、第1先端面31と第1側面33との間に形成されている。第1先端側湾曲面35は、第1先端面31と第1側面33との間の部分がR面取りされた部分である。第2先端側湾曲面36は、第1先端面31と第2側面34との間に形成されている。第2先端側湾曲面36は、第1先端面31と第2側面34との間の部分がR面取りされた部分である。第1基端側湾曲面37は、第1基端面32と第1側面33との間に形成されている。第1基端側湾曲面37は、第1基端面32と第1側面33との間の部分がR面取りされた形状である。第2基端側湾曲面38は、第1基端面32と第2側面34との間に形成されている。第2基端側湾曲面38は、第1基端面32と第2側面34との間の部分がR面取りされた形状である。
 第1実施形態では、平面視における第1先端側湾曲面35の弧の長さは、平面視における第1基端側湾曲面37の弧の長さおよび第2基端側湾曲面38の弧の長さと等しい。平面視における第2先端側湾曲面36の弧の長さは、平面視における第1先端側湾曲面35の弧の長さと等しい。また、平面視における第1先端側湾曲面35の曲率半径は、平面視における第1基端側湾曲面37の曲率半径および第2基端側湾曲面38の曲率半径と等しい。平面視における第2先端側湾曲面36の曲率半径は、平面視における第1先端側湾曲面35の曲率半径と等しい。
 第1ダイパッド30は、複数(第1実施形態では、28個)の凹部39を有する。各凹部39は、第1ダイパッド30の表面から裏面に向けて凹んでいる。ここで、第1ダイパッド30の表面は、第1チップ60が搭載される側の面である。第1ダイパッド30の裏面は、第1ダイパッド30の表面とは反対側を向く面である。なお、凹部39の個数は任意に変更可能である。
 第1実施形態では、平面視における凹部39の形状は円形である。複数の凹部39は、X方向およびY方向の双方において互いに離隔して配列されている。図8の例では、複数の凹部39は、格子状に配列されている。Y方向に配列される凹部39の個数は、X方向に配列される凹部39の個数よりも多い。なお、平面視における各凹部39の形状は任意に変更可能である。また複数の凹部39の配置態様は任意に変更可能である。
 平面視において第1導電性接合材SD1(図7参照)と重なる凹部39には第1導電性接合材SD1が入り込んでいる。また、第1導電性接合材SD1とは重ならない凹部39には封止樹脂90(図7参照)が充填されている。
 第1リード端子11~18の各々の詳細な構成について説明する。
 図9に示すように、第1リード端子11~18のうち第1リード端子11,12は、X方向から視て、第1ダイパッド30よりも第3封止側面95寄りに配置されている。第1リード端子17,18は、X方向から視て、第1ダイパッド30よりも第4封止側面96寄りに配置されている。ここで、第1実施形態では、第1リード端子11,18は、第1リード端子11~18のうちY方向(第2方向)の両端に配置された第1リード端子である「第1端部リード端子」に対応している。
 第1リード端子11~18は、封止樹脂90内に設けられた第1インナーリード部11A~18Aと、上述した第1アウターリード部11B~18Bと、を含む。以下では、第1インナーリード部11A~18Aの構成について説明する。
 第1インナーリード部11A,18Aは、第1ダイパッド30に接続されている。より詳細には、第1インナーリード部11Aは、第1ダイパッド30の第1側面33に接続されている。第1インナーリード部18Aは、第1ダイパッド30の第2側面34に接続されている。第1インナーリード部12A~17Aは、第1ダイパッド30から離隔して配置されている。
 第1インナーリード部11Aは、第1リード部11AA、第2リード部11AB、および第3リード部11ACを含む。
 第1リード部11AAは、第1アウターリード部11Bに接続される部分であり、平面視においてX方向に延びている。第1リード部11AAは、幅狭部11AA1および幅広部11AA2を含む。幅狭部11AA1と幅広部11AA2との間の側面のうち第1リード端子12寄りの側面は、湾曲面を含む。湾曲面は、幅狭部11AA1の側面と幅広部11AA2の側面とを繋ぐ面であり、第1インナーリード部12Aから離れるように湾曲している。
 幅狭部11AA1は、第1リード部11AAのうち第1封止側面93寄りの部分を構成している。幅狭部11AA1は、第1アウターリード部11Bに接続されている。
 幅広部11AA2は、第1リード部11AAのうち第2リード部11AB寄りの部分を構成している。幅広部11AA2は、第2リード部11ABに接続されている。幅広部11AA2は、幅狭部11AA1に対して第1リード端子12に向けてY方向に延びることによって幅広となるように形成されている。一例では、幅広部11AA2の幅寸法(Y方向の大きさ)は、幅狭部11AA1の幅寸法(Y方向の大きさ)の1.5倍程度である。なお、幅狭部11AA1および幅広部11AA2の各々の幅寸法は任意に変更可能である。
 第2リード部11ABは、第1リード部11AAに接続されている。第2リード部11ABは、X方向において第2ダイパッド50に向かうにつれて、Y方向において第1ダイパッド30に向けて斜めに延びている。図9の例では、第2リード部11ABの幅寸法は、第1リード部11AAの幅狭部11AA1の幅寸法よりも大きく、幅広部11AA2の幅寸法よりも小さい。ここで、第2リード部11ABの幅寸法は、平面視において第2リード部11ABが延びる方向と直交する方向の大きさによって定義できる。
 第3リード部11ACは、平面視においてY方向に延びている。第3リード部11ACは、第1ダイパッド30と第2リード部11ABとを接続している。図9の例では、第3リード部11ACの幅寸法(X方向の大きさ)は、第2リード部11ABの幅寸法よりも小さい。第3リード部11ACの幅寸法は、第1リード部11AAの幅狭部11AA1の幅寸法以下である。図9の例では、平面視において、第3リード部11ACの両側面のうち第1ダイパッド30との接続部分には、湾曲面が形成されている。
 第3リード部11ACは、第1側面33のうち第1基端面32寄りの部分に接続されている。つまり、第3リード部11ACと第1基端面32とのX方向の間の距離は、第3リード部11ACと第1先端面31とのX方向の間の距離よりも小さい。
 なお、幅狭部11AA1、幅広部11AA2、第2リード部11ABの幅寸法、および第3リード部11ACの幅寸法の各々は任意に変更可能である。一例では、第3リード部11ACの幅寸法は、第2リード部11ABの幅寸法以上であってもよい。
 第1インナーリード部18Aは、第1リード部18AA、第2リード部18AB、および第3リード部18ACを含む。第1インナーリード部18Aは、第1インナーリード部11Aに対して、第1ダイパッド30のY方向の中央においてX方向に沿って延びる仮想線を中心とした線対称となる形状である。このため、第1インナーリード部18Aの概要について説明し、その詳細な説明を省略する。
 第1リード部18AAは、幅狭部18AA1および幅広部18AA2を含む。幅広部18AA2は、幅狭部18AA1に対して第1リード端子17に向けて延びている。幅狭部18AA1と幅広部18AA2との間の側面のうち第1リード端子17寄りの側面は、湾曲面を含む。第2リード部18ABは、X方向において第2ダイパッド50に向かうにつれて、Y方向において第1ダイパッド30に向けて斜めに延びている。第3リード部18ACは、平面視においてY方向に延びており、第1ダイパッド30に接続されている。
 第1インナーリード部12Aは、ワイヤ接続部12AAと、ワイヤ接続部12AAから第1封止側面93に向けて延びるリード接続部12ABと、を含む。
 ワイヤ接続部12AAは、Y方向から視て、第1ダイパッド30と重なる位置に配置されている。ワイヤ接続部12AAは、Y方向から視て、第1インナーリード部11Aの第3リード部11ACと第1ダイパッド30の第1基端面32とのX方向の間に配置されている。
 ワイヤ接続部12AAの先端面は、第1ダイパッド30の第1側面33とY方向に対向している。ワイヤ接続部12AAの先端面は、平面視においてX方向に沿って延びている。ワイヤ接続部12AAは、Y方向においてワイヤ接続部12AAの先端面からリード接続部12ABに向かうにつれて第1封止側面93に向けて斜めに延びている。
 リード接続部12ABは、平面視においてX方向に延びている。リード接続部12ABは、幅狭部12AB1および幅広部12AB2を含む。幅狭部12AB1と幅広部12AB2との間の側面のうち第1リード端子11寄りの側面は、湾曲面を含む。湾曲面は、幅狭部12AB1の側面と幅広部12AB2の側面とを繋ぐ面であり、第1インナーリード部11Aから離れるように湾曲している。
 幅狭部12AB1は、リード接続部12ABのうち第1封止側面93寄りの部分を構成している。幅狭部12AB1は、第1アウターリード部12Bに接続されている。幅狭部12AB1の幅寸法(Y方向の大きさ)は、第1インナーリード部11Aの第1リード部11AAの幅狭部11AA1の幅寸法と等しい。
 幅広部12AB2は、リード接続部12ABのうちワイヤ接続部12AA寄りの部分を構成している。幅広部12AB2は、ワイヤ接続部12AAに接続されている。幅広部12AB2は、幅狭部12AB1に対して第1インナーリード部11Aの第1リード部11AAに向けてY方向に延びることによって幅広となるように形成されている。幅広部12AB2の幅寸法(Y方向の大きさ)の最大値は、幅狭部12AB1の幅寸法(Y方向の大きさ)の2倍程度である。幅広部12AB2の幅寸法の最大値は、第1インナーリード部11Aの第1リード部11AAの幅広部11AA2の幅寸法よりも大きい。なお、幅狭部12AB1および幅広部12AB2の各々の幅寸法は任意に変更可能である。
 インナーリード部12Aは、傾斜面12ACを有する。傾斜面12ACは、幅広部12AB2に形成されている。より詳細には、傾斜面12ACは、幅広部12AB2の両側面のうち第1インナーリード部11Aの第1リード部11AA寄りの側面に形成されている。傾斜面12ACは、ワイヤ接続部12AAに向かうにつれて第1ダイパッド30に向けて傾斜している。傾斜面12ACのX方向に対する傾斜角度は、第1インナーリード部11Aの第2リード部11ABのX方向に対する傾斜角度と等しい。
 第1インナーリード部17Aは、ワイヤ接続部17AA、リード接続部17AB、および傾斜面17ACを含む。第1インナーリード部17Aは、第1インナーリード部12Aに対して、第1ダイパッド30のY方向の中央においてX方向に沿って延びる仮想線を中心とした線対称となる形状である。このため、第1インナーリード部17Aの概要について説明し、その詳細な説明を省略する。
 ワイヤ接続部17AAは、Y方向から視て、第1ダイパッド30と重なる位置に配置されている。ワイヤ接続部17AAは、Y方向から視て、第1インナーリード部18Aの第3リード部18ACと第1ダイパッド30の第1基端面32とのX方向の間に配置されている。
 ワイヤ接続部17AAの先端面は、第1ダイパッド30の第2側面34とY方向に対向している。ワイヤ接続部17AAは、Y方向においてワイヤ接続部17AAの先端面からリード接続部17ABに向かうにつれて第1封止側面93に向けて斜めに延びている。
 リード接続部17ABは、平面視においてX方向に延びている。リード接続部17ABは、幅狭部17AB1および幅広部17AB2を含む。幅狭部17AB1と幅広部17AB2との間の側面のうち第1リード端子18寄りの側面は、湾曲面を含む。湾曲面は、幅狭部17AB1の側面と幅広部17AB2の側面とを繋ぐ面であり、第1インナーリード部18Aから離れるように湾曲している。
 傾斜面17ACは、幅広部17AB2の両側面のうち第1インナーリード部18Aの第1リード部18AA寄りの側面に形成されている。傾斜面17ACは、ワイヤ接続部17AAに向かうにつれて第1ダイパッド30に向けて傾斜している。傾斜面17ACのX方向に対する傾斜角度は、第1インナーリード部18Aの第2リード部18ABのX方向に対する傾斜角度と等しい。
 第1インナーリード部13A~16Aは、第1ダイパッド30よりも第1封止側面93寄りに配置されている。第1インナーリード部13A~16Aは、互いに同じ形状である。このため、第1インナーリード部13Aの構成について詳細に説明し、第1インナーリード部14A~16Aの詳細な説明を省略する。
 第1インナーリード部13Aは、X方向に沿って延びている。第1インナーリード部13Aは、ワイヤ接続部13AAと、ワイヤ接続部13AAから第1封止側面93に向けて延びるリード接続部13ABと、を含む。リード接続部13ABは、第1アウターリード部13Bに接続されている。
 平面視におけるワイヤ接続部13AAの形状は、Y方向が長手方向となり、X方向が短手方向となる略矩形状である。平面視において、ワイヤ接続部13AAのうちリード接続部13AB寄りの部分は、リード接続部13ABに向かうにつれてワイヤ接続部13AAの幅寸法(Y方向の大きさ)が小さくなる湾曲状に形成されている。平面視において、ワイヤ接続部13AAの先端部かつY方向の両端部は、ワイヤ接続部13AAの先端面に向かうにつれてワイヤ接続部13AAの幅寸法(Y方向の大きさ)が小さくなるテーパ状に形成されている。ワイヤ接続部13AAの先端面は、平面視において第1ダイパッド30とX方向に対向している面であり、Y方向に沿って延びている。
 第1インナーリード部14Aは、ワイヤ接続部14AAと、ワイヤ接続部14AAから第1封止側面93に向けて延びるリード接続部14ABと、を含む。リード接続部14ABは、第1アウターリード部14Bに接続されている。
 第1インナーリード部15Aは、ワイヤ接続部15AAと、ワイヤ接続部15AAから第1封止側面93に向けて延びるリード接続部15ABと、を含む。リード接続部15ABは、第1アウターリード部15Bに接続されている。
 第1インナーリード部16Aは、ワイヤ接続部16AAと、ワイヤ接続部16AAから第1封止側面93に向けて延びるリード接続部16ABと、を含む。リード接続部16ABは、第1アウターリード部16Bに接続されている。
 ここで、第1インナーリード部12A~17Aのワイヤ接続部12AA~17AAは「第2部分」に対応している。第1インナーリード部12A~17Aのリード接続部12AB~17ABは「第1部分」に対応している。
 次に、第1インナーリード部12A~17Aのワイヤ接続部12AA~17AAの詳細な断面構造について説明する。図10は、第1インナーリード部13Aのワイヤ接続部13AAの断面構造を示している。なお、第1インナーリード部12A,14A~17Aのワイヤ接続部12AA,14AA~17AAの断面構造はワイヤ接続部13AAの断面構造と同様であるため、その詳細な説明を省略する。
 図10に示すように、ワイヤ接続部13AAのインナーリード本体20Bは、インナーリード表面21Bと、インナーリード表面21Bと反対側のインナーリード裏面22Bと、インナーリード表面21Bとインナーリード裏面22Bとを繋ぐインナーリード側面23Bと、を有する。インナーリード側面23Bは、第1ダイパッド30の第1基端面32(図9参照)を向く先端面24Bを含む。インナーリード表面21Bは、後述する第1リード用ワイヤWBが接合する側の面であり、封止表面91(図1参照)と同じ側を向いている。
 図10の断面視において、先端面24Bは、第1ダイパッド30から離れるように凹む凹形状として形成されている。先端面24Bは、インナーリード表面21B側の端部とインナーリード裏面22B側の端部との双方から先端面24BのZ方向の中央に向けて凹んでいる。一例では、凹形状の先端面24Bの最も深い位置は、インナーリード裏面22Bからワイヤ接続部12AAの厚さの1/3程度の位置である。なお、図10の断面視における先端面24Bの形状は任意に変更可能である。
 インナーリード表面21B上には、めっき層29が形成されている。めっき層29は、たとえば銀を含む材料によって形成されている。めっき層29は、ワイヤ接続部13AAにおけるインナーリード表面21Bの概ね全体にわたり形成されている。めっき層29の厚さは、ワイヤ接続部13AAのインナーリード本体20Bの厚さよりも薄い。
 めっき層29のうち先端面24B寄りの端面29Aは、インナーリード表面21Bのうち先端面24B寄りの端縁よりもリード接続部13AB(図9参照)寄りの位置に形成されている。つまり、めっき層29は、インナーリード表面21Bのうち先端面24B寄りの端面まで覆っていない。これにより、インナーリード表面21Bのうち先端面24B寄りの端縁を含む端部は、封止樹脂90(図1参照)と接している。
 めっき層29の端面29Aは、めっき層29の表面から裏面に向かうにつれてインナーリード表面21Bのうち先端面24B寄りの端縁から離れるように傾斜している。一例では、めっき層29の裏面とインナーリード表面21Bのうち先端面24B寄りの端縁とのX方向の間の距離は、たとえばめっき層29の厚さ以上である。なお、めっき層29の裏面とインナーリード表面21Bのうち先端面24B寄りの端縁とのX方向の間の距離は任意に変更可能である。
 また、めっき層29は、ワイヤ接続部13AAの先端面24Bを覆っていない。このため、先端面24Bは、封止樹脂90と接している。また、図示していないが、めっき層29は、インナーリード側面23Bのうち先端面24B以外のインナーリード側面23Bを覆っていない。このため、インナーリード側面23Bは、封止樹脂90と接している。
 第2ダイパッド50の構成について説明する。
 図11に示すように、平面視において、第2ダイパッド50は、第2先端面51、第2基端面52、第3側面53、および第4側面54を有する。第2先端面51は第2ダイパッド50のX方向の両端面のうち第1封止側面93(図7参照)寄りの端面であり、第2基端面52は第2ダイパッド50のX方向の端面のうち第2封止側面94(図7参照)寄りの端面である。第3側面53は第2ダイパッド50のY方向の両端面のうち第3封止側面95(図7参照)寄りの端面であり、第4側面54は第2ダイパッド50のY方向の両端面のうち第4封止側面96(図7参照)寄りの端面である。第2先端面51および第2基端面52の双方は、平面視においてY方向に沿って延びる面である。第3側面53および第4側面54の双方は、平面視においてX方向に沿って延びる面である。
 第2ダイパッド50は、第3先端側湾曲面55、第4先端側湾曲面56、第3基端側湾曲面57、および第4基端側湾曲面58をさらに有する。
 第3先端側湾曲面55は、第2先端面51と第3側面53との間に形成されている。第3先端側湾曲面55は、第2先端面51と第3側面53との間の部分がR面取りされた部分である。第4先端側湾曲面56は、第2先端面51と第4側面54との間に形成されている。第4先端側湾曲面56は、第2先端面51と第4側面54との間の部分がR面取りされた部分である。第3基端側湾曲面57は、第2基端面52と第3側面53との間に形成されている。第3基端側湾曲面57は、第2基端面52と第3側面53との間の部分がR面取りされた形状である。第4基端側湾曲面58は、第2基端面52と第4側面54との間に形成されている。第4基端側湾曲面58は、第2基端面52と第4側面54との間の部分がR面取りされた形状である。
 第1実施形態では、平面視における第3先端側湾曲面55の弧の長さは、平面視における第3基端側湾曲面57の弧の長さおよび第4基端側湾曲面58の弧の長さと等しい。平面視における第4先端側湾曲面56の弧の長さは、平面視における第3先端側湾曲面55の弧の長さと等しい。また、平面視における第3先端側湾曲面55の曲率半径は、平面視における第3基端側湾曲面57の曲率半径および第4基端側湾曲面58の曲率半径と等しい。平面視における第4先端側湾曲面56の曲率半径は、平面視における第3先端側湾曲面55の曲率半径と等しい。
 第2ダイパッド50は、複数(第1実施形態では、28個)の凹部59を有する。各凹部59は、第2ダイパッド50の表面から裏面に向けて凹んでいる。ここで、第2ダイパッド50の表面は、第2チップ70が搭載される側の面である。第2ダイパッド50の裏面は、第2ダイパッド50の表面とは反対側を向く面である。なお、凹部59の個数は任意に変更可能である。
 第1実施形態では、平面視における凹部59の形状は円形である。複数の凹部59は、X方向およびY方向の双方において互いに離隔して配列されている。図11の例では、複数の凹部59は、格子状に配列されている。Y方向に配列される凹部59の個数は、X方向に配列される凹部59の個数よりも多い。凹部59のサイズは、第1ダイパッド30の凹部39のサイズと等しい。なお、平面視における各凹部59の形状は任意に変更可能である。また複数の凹部59の配置態様は任意に変更可能である。また、凹部59のサイズは任意に変更可能である。一例では、凹部59のサイズは、凹部39のサイズと異なっていてもよい。平面視において第2導電性接合材SD2(図7参照)と重なる凹部59には第2導電性接合材SD2が入り込んでいる。
 第2リード端子41~48の各々の詳細な構成について説明する。
 図12に示すように、第2リード端子41~48のうち第2リード端子41,42は、X方向から視て、第2ダイパッド50よりも第4封止側面96寄りに配置されている。第2リード端子47,48は、X方向から視て、第2ダイパッド50よりも第3封止側面95寄りに配置されている。第2リード端子43~46は、X方向から視て、第2ダイパッド50と重なる位置に配置されている。ここで、第1実施形態では、第2リード端子41,48は、第2リード端子41~48のうちY方向(第2方向)の両端に配置された第2リード端子である「第2端部リード端子」に対応している。
 第2リード端子41~48は、封止樹脂90内に設けられた第2インナーリード部41A~48Aと、上述した第2アウターリード部41B~48Bと、を含む。以下では、第2インナーリード部41A~48Aの構成について説明する。
 第2インナーリード部41A,48Aは、第2ダイパッド50に接続されている。より詳細には、第2インナーリード部41Aは、第2ダイパッド50の第3側面53に接続されている。第2インナーリード部48Aは、第2ダイパッド50の第4側面54に接続されている。第2インナーリード部42A~47Aは、第2ダイパッド50から離隔して配置されている。
 第2インナーリード部41Aは、第4リード部41AA、第5リード部41AB、および第6リード部41ACを含む。
 第4リード部41AAは、第2アウターリード部41Bに接続される部分であり、平面視においてX方向に延びている。第4リード部41AAは、幅狭部41AA1および幅広部41AA2を含む。幅狭部41AA1と幅広部41AA2との間の側面のうち第2リード端子42寄りの側面は、湾曲面を含む。湾曲面は、幅狭部41AA1の側面と幅広部41AA2の側面とを繋ぐ面であり、第2インナーリード部42Aから離れるように湾曲している。
 幅狭部41AA1は、第4リード部41AAのうち第2封止側面94寄りの部分を構成している。幅狭部41AA1は、第2アウターリード部41Bに接続されている。
 幅広部41AA2は、第4リード部41AAのうち第5リード部41AB寄りの部分を構成している。幅広部41AA2は、第5リード部41ABに接続されている。幅広部41AA2は、幅狭部41AA1に対して第2リード端子42に向けてY方向に延びることによって幅広となるように形成されている。一例では、幅広部41AA2の幅寸法(Y方向の大きさ)は、幅狭部41AA1の幅寸法(Y方向の大きさ)の1.5倍程度である。なお、幅狭部41AA1および幅広部41AA2の各々の幅寸法は任意に変更可能である。
 第5リード部41ABは、第4リード部41AAに接続されている。第5リード部41ABは、X方向において第1ダイパッド30に向かうにつれて、Y方向において第2ダイパッド50に向けて斜めに延びている。図12の例では、第5リード部41ABの幅寸法は、第4リード部41AAの幅狭部41AA1の幅寸法よりも大きく、幅広部41AA2の幅寸法よりも小さい。ここで、第5リード部41ABの幅寸法は、平面視において第5リード部41ABが延びる方向と直交する方向の大きさによって定義できる。
 第6リード部41ACは、平面視においてY方向に延びている。第6リード部41ACは、第2ダイパッド50と第6リード部41ACとを接続している。図12の例では、第6リード部41ACの幅寸法(X方向の大きさ)は、第5リード部41ABの幅寸法よりも小さい。第6リード部41ACの幅寸法は、第4リード部41AAの幅狭部41AA1の幅寸法以下である。図12の例では、平面視において、第6リード部41ACの両側面のうち第2ダイパッド50との接続部分には、湾曲面が形成されている。
 第6リード部41ACは、第3側面53のうち第2基端面52寄りの部分に接続されている。つまり、第6リード部41ACと第2基端面52とのX方向の間の距離は、第6リード部41ACと第2先端面51とのX方向の間の距離よりも小さい。
 第2インナーリード部48Aは、第4リード部48AA、第5リード部48AB、および第6リード部48ACを含む。第2インナーリード部48Aは、第2インナーリード部41Aに対して、第2ダイパッド50のY方向の中央においてX方向に沿って延びる仮想線を中心とした線対称となる形状である。このため、第2インナーリード部48Aの概要について説明し、その詳細な説明を省略する。
 第4リード部48AAは、幅狭部48AA1および幅広部48AA2を含む。幅広部48AA2は、幅狭部48AA1に対して第2リード端子47に向けて延びている。幅狭部48AA1と幅広部48AA2との間の側面のうち第2リード端子47寄りの側面は、湾曲面を含む。第5リード部48ABは、X方向において第1ダイパッド30に向かうにつれて、Y方向において第2ダイパッド50に向けて斜めに延びている。第6リード部48ACは、平面視においてY方向に延びており、第2ダイパッド50に接続されている。
 第2インナーリード部42Aは、ワイヤ接続部42AAと、ワイヤ接続部42AAから第2封止側面94に向けて延びるリード接続部42ABと、を含む。
 ワイヤ接続部42AAは、Y方向から視て、第2ダイパッド50と重なる位置に配置されている。ワイヤ接続部42AAは、Y方向から視て、第2インナーリード部41Aの第6リード部41ACと第2ダイパッド50の第2基端面52とのX方向の間に配置されている。
 ワイヤ接続部42AAの先端面は、第2ダイパッド50の第3側面53とY方向に対向している。ワイヤ接続部42AAの先端面は、平面視においてX方向に沿って延びている。ワイヤ接続部42AAは、Y方向においてワイヤ接続部42AAの先端面からリード接続部42ABに向かうにつれて第2封止側面94に向けて斜めに延びている。
 リード接続部42ABは、平面視においてX方向に延びている。リード接続部42ABは、幅狭部42AB1および幅広部42AB2を含む。幅狭部42AB1と幅広部42AB2との間の側面のうち第2リード端子41寄りの側面は、湾曲面を含む。湾曲面は、幅狭部42AB1の側面と幅広部42AB2の側面とを繋ぐ面であり、第2インナーリード部41Aから離れるように湾曲している。
 幅狭部42AB1は、リード接続部42ABのうち第2封止側面94寄りの部分を構成している。幅狭部42AB1は、第2アウターリード部42Bに接続されている。幅狭部42AB1の幅寸法(Y方向の大きさ)は、第2インナーリード部41Aの第4リード部41AAの幅狭部41AA1の幅寸法と等しい。
 幅広部42AB2は、リード接続部42ABのうちワイヤ接続部42AA寄りの部分を構成している。幅広部42AB2は、ワイヤ接続部42AAに接続されている。幅広部42AB2は、幅狭部42AB1に対して第2インナーリード部41Aの第4リード部41AAに向けてY方向に延びることによって幅広となるように形成されている。幅広部42AB2の幅寸法(Y方向の大きさ)は、幅狭部42AB1の幅寸法(Y方向の大きさ)の2倍程度である。幅広部42AB2の幅寸法は、第2インナーリード部41Aの第4リード部41AAの幅広部41AA2の幅寸法よりも大きい。なお、幅狭部42AB1および幅広部42AB2の各々の幅寸法は任意に変更可能である。
 インナーリード部42Aは、傾斜面42ACを有する。傾斜面42ACは、幅広部42AB2に形成されている。より詳細には、傾斜面42ACは、幅広部42AB2の両側面のうち第2インナーリード部41Aの第4リード部41AA寄りの側面に形成されている。傾斜面42ACは、ワイヤ接続部42AAに向かうにつれて第2ダイパッド50に向けて傾斜している。傾斜面42ACのX方向に対する傾斜角度は、第2インナーリード部41Aの第5リード部41ABのX方向に対する傾斜角度と等しい。
 第2インナーリード部47Aは、ワイヤ接続部47AA、リード接続部47AB、および傾斜面47ACを含む。第2インナーリード部47Aは、第2インナーリード部42Aに対して、第2ダイパッド50のY方向の中央においてX方向に沿って延びる仮想線を中心とした線対称となる形状である。このため、第2インナーリード部47Aの概要について説明し、その詳細な説明を省略する。
 ワイヤ接続部47AAは、Y方向から視て、第2ダイパッド50と重なる位置に配置されている。ワイヤ接続部47AAは、Y方向から視て、第2インナーリード部48Aの第6リード部48ACと第2ダイパッド50の第2基端面52とのX方向の間に配置されている。
 ワイヤ接続部47AAの先端面は、第2ダイパッド50の第4側面54とY方向に対向している。ワイヤ接続部47AAは、Y方向においてワイヤ接続部47AAの先端面からリード接続部47ABに向かうにつれて第2封止側面94に向けて斜めに延びている。
 リード接続部47ABは、平面視においてX方向に延びている。リード接続部47ABは、幅狭部47AB1および幅広部47AB2を含む。幅狭部47AB1と幅広部47AB2との間の側面のうち第2リード端子48寄りの側面は、湾曲面を含む。湾曲面は、幅狭部47AB1の側面と幅広部47AB2の側面とを繋ぐ面であり、第2インナーリード部48Aから離れるように湾曲している。
 傾斜面47ACは、幅広部47AB2の両側面のうち第2インナーリード部48Aの第4リード部48AA寄りの側面に形成されている。傾斜面47ACは、ワイヤ接続部47AAに向かうにつれて第2ダイパッド50に向けて傾斜している。傾斜面47ACのX方向に対する傾斜角度は、第2インナーリード部48Aの第5リード部48ABのX方向に対する傾斜角度と等しい。
 第2インナーリード部43A~46Aは、第2ダイパッド50よりも第2封止側面94寄りに配置されている。第2インナーリード部43A~46Aは、互いに同じ形状である。このため、第2インナーリード部43Aの構成について詳細に説明し、第2インナーリード部44A~46Aの詳細な説明を省略する。
 第2インナーリード部43Aは、X方向に沿って延びている。第2インナーリード部43Aは、ワイヤ接続部43AAと、ワイヤ接続部43AAから第2封止側面94に向けて延びるリード接続部43ABと、を含む。リード接続部43ABは、第2アウターリード部43Bに接続されている。
 平面視におけるワイヤ接続部43AAの形状は、Y方向が長手方向となり、X方向が短手方向となる略矩形状である。平面視において、ワイヤ接続部43AAのうちリード接続部43AB寄りの部分は、リード接続部43ABに向かうにつれてワイヤ接続部43AAの幅寸法(Y方向の大きさ)が小さくなる湾曲状に形成されている。平面視において、ワイヤ接続部43AAの先端部かつY方向の両端部は、ワイヤ接続部43AAの先端面に向かうにつれてワイヤ接続部43AAの幅寸法(Y方向の大きさ)が小さくなるテーパ状に形成されている。ワイヤ接続部43AAの先端面は、平面視において第2ダイパッド50とX方向に対向している面であり、Y方向に沿って延びている。
 第2インナーリード部44Aは、ワイヤ接続部44AAと、ワイヤ接続部44AAから第2封止側面94に向けて延びるリード接続部44ABと、を含む。リード接続部44ABは、第2アウターリード部44Bに接続されている。
 第2インナーリード部45Aは、ワイヤ接続部45AAと、ワイヤ接続部45AAから第2封止側面94に向けて延びるリード接続部45ABと、を含む。リード接続部45ABは、第2アウターリード部45Bに接続されている。
 第2インナーリード部46Aは、ワイヤ接続部46AAと、ワイヤ接続部46AAから第2封止側面94に向けて延びるリード接続部46ABと、を含む。リード接続部46ABは、第2アウターリード部46Bに接続されている。
 ここで、第2インナーリード部42A~47Aのワイヤ接続部42AA~47AAは「第4部分」に対応している。第2インナーリード部42A~47Aのリード接続部42AB~47ABは「第3部分」に対応している。
 次に、第2インナーリード部42A~47Aの詳細な断面構造について説明する。図13は、第2インナーリード部43Aのワイヤ接続部43AAの断面構造を示している。なお、第2インナーリード部42A,44A~47Aのワイヤ接続部42AA,44AA~47AAの断面構造はワイヤ接続部43AAの断面構造と同様であるため、その詳細な説明を省略する。また、便宜上、第2インナーリード部43Aに関する符号は、第1インナーリード部13Aに関する符号と共通した符号を用いる。
 図13に示すように、ワイヤ接続部43AAのインナーリード本体20Bは、インナーリード表面21Bと、インナーリード表面21Bとは反対側のインナーリード裏面22Bと、インナーリード表面21Bとインナーリード裏面22Bとを繋ぐインナーリード側面23Bと、を有する。ワイヤ接続部43AAのインナーリード表面21Bはワイヤ接続部13AAのインナーリード表面21B(図10参照)と同じ側を向き、ワイヤ接続部43AAのインナーリード裏面22Bはワイヤ接続部13AAのインナーリード裏面22B(図10参照)と同じ側を向いている。
 図13の断面視において、先端面24Bは、第2ダイパッド50(図11参照)から離れるように凹む凹形状として形成されている。先端面24Bは、インナーリード表面21B側の端部とインナーリード裏面22B側の端部との双方から先端面24BのZ方向の中央に向けて凹んでいる。一例では、凹形状の先端面24Bの最も深い位置は、インナーリード裏面22Bからワイヤ接続部43AAの厚さの1/3程度である。なお、図13の断面視における先端面24Bの形状は任意に変更可能である。
 インナーリード表面21B上には、めっき層29が形成されている。めっき層29は、たとえば銀を含む材料によって形成されている。一例では、めっき層29は、ワイヤ接続部12AAのめっき層29(図10参照)と同じ材料によって形成されている。めっき層29は、インナーリード表面21Bの概ね全体にわたり形成されている。めっき層29の厚さは、ワイヤ接続部43AAのインナーリード本体20Bの厚さよりも薄い。一例では、ワイヤ接続部43AAのめっき層29の厚さは、ワイヤ接続部13AAのめっき層29の厚さと等しい。ここで、ワイヤ接続部43AAのめっき層29の厚さとワイヤ接続部13AAのめっき層29の厚さとの差がたとえばワイヤ接続部43AAのめっき層29の厚さの20%以内であれば、ワイヤ接続部43AAのめっき層29の厚さがワイヤ接続部13AAのめっき層29の厚さと等しいといえる。
 めっき層29のうちワイヤ接続部43AAの先端面24B寄りの端面29Aは、インナーリード表面21Bのうち先端面24B寄りの端縁よりもリード接続部43AB(図12参照)寄りの位置に形成されている。つまり、めっき層29は、インナーリード表面21Bのうち先端面24B寄りの端縁まで覆っていない。これにより、インナーリード表面21Bのうち先端面24B寄りの端縁を含む端部は、封止樹脂90(図1参照)と接している。
 図13の断面視において、めっき層29の端面29Aは、めっき層29の表面から裏面に向かうにつれてインナーリード表面21Bのうち先端面24B寄りの端面から離れるように傾斜している。めっき層29の裏面とインナーリード表面21Bのうち先端面24B寄りの端縁とのX方向の間の距離は、たとえばめっき層29の厚さ以上である。なお、めっき層29の裏面とインナーリード表面21Bのうち先端面24B寄りの端縁とのX方向の間の距離は任意に変更可能である。
 また、めっき層29は、ワイヤ接続部43AAの先端面24Bを覆っていない。このため、先端面24Bは、封止樹脂90と接している。また、図示していないが、めっき層29は、インナーリード側面23Bのうち先端面24B以外のインナーリード側面23Bを覆っていない。このため、インナーリード側面23Bは、封止樹脂90と接している。
 次に、第1チップ60および第2チップ70の概略構成について説明する。
 図7に示すように、第1ダイパッド30に実装された第1チップ60は、チップ表面61と、Z方向においてチップ表面61とは反対側を向くチップ裏面62(図19参照)と、チップ表面61とチップ裏面62とを繋ぐ第1~第4チップ側面63~66と、を有する。
 チップ表面61は第1チップ60に対して第1ダイパッド30側とは反対側を向き、チップ裏面62は第1ダイパッド30と対面する側を向いている。
 第1チップ側面63および第2チップ側面64は、平面視において第1チップ60のX方向の両端面を構成している。第1チップ側面63は第1チップ60のうち第1リード端子11~18が配置される側のチップ側面であり、第2チップ側面64は第1チップ60のうち第2チップ70が配置される側のチップ側面である。第3チップ側面65および第4チップ側面66は、平面視において第1チップ60のY方向の両端面を構成している。第3チップ側面65は封止樹脂90の第3封止側面95寄りのチップ側面であり、第4チップ側面66は第4封止側面96寄りのチップ側面である。
 第1チップ60は、複数(第1実施形態では6つ)の第1電極パッド67、複数(第1実施形態では7つ)の第2電極パッド68、および複数(第1実施形態では2つ)の第3電極パッド69を有する。各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69は、チップ表面61から露出するように設けられている。
 各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69は、チタン(Ti)、窒化チタン(TiN)、銅(Cu)、アルミニウム(Al)、およびタングステン(W)のうち少なくとも1つを含んでいてもよい。一例では、各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69は、チタンと銅との積層構造である。なお、各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69のうち1種類または2種類の電極パッドを構成する材料は、残りの種類の電極パッドを構成する材料と異なっていてもよい。
 別例では、各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69は、アルミニウムを含む。この場合、チップ表面61から露出する各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69の各々は、2μm以上の厚さを有する。なお、各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69の各々の厚さは任意に変更可能である。
 複数の第1電極パッド67は、第2チップ70と電気的に接続される電極パッドである。複数の第1電極パッド67は、平面視においてチップ表面61のX方向の中央よりも第2チップ側面64寄りの位置に設けられている。複数の第1電極パッド67は、第3チップ側面65寄りの3つの第1電極パッド67と、第4チップ側面66寄りの3つの第1電極パッド67とに区分できる。第3チップ側面65寄りの3つの第1電極パッド67は、X方向において互いに同じ位置であって、Y方向において互いに離隔して配列されている。第4チップ側面66寄りの3つの第1電極パッド67は、第3チップ側面65寄りの3つの第1電極パッド67よりも第2チップ側面64寄りに配置されている。第4チップ側面66寄りの3つの第1電極パッド67は、X方向において互いに同じ位置であって、Y方向において互いに離隔して配列されている。
 複数の第2電極パッド68は、第1リード端子12~17に個別に電気的に接続される電極パッドである。複数の第2電極パッド68は、平面視においてチップ表面61のX方向の中央よりも第1チップ側面63寄りの位置に設けられている。複数の第2電極パッド68のうちY方向の両端の第2電極パッド68を除いて、X方向において互いに同じ位置であって、Y方向において互いに離隔して配列されている。Y方向の両端の第2電極パッド68は、他の第2電極パッド68に対してX方向において第2チップ側面64寄りにずれて配置されている。
 複数の第3電極パッド69は、第1ダイパッド30に電気的に接続される電極パッドである。各第3電極パッド69は、第1ダイパッド30と同じ電位、すなわち第1グランド電位となる。複数の第3電極パッド69は、平面視においてチップ表面61のY方向の両端部に設けられている。複数の第3電極パッド69は、Y方向から視て、複数の第1電極パッド67と複数の第2電極パッド68とのX方向の間に配置されている。複数の第3電極パッド69は、Y方向から視て、互いに重なる位置に配置されている。
 第2ダイパッド50に実装された第2チップ70は、チップ表面71と、Z方向においてチップ表面71とは反対側を向くチップ裏面(図示略)と、チップ表面71とチップ裏面とを繋ぐ第1~第4チップ側面73~76と、を有する。
 チップ表面71は第2チップ70に対して第2ダイパッド50側とは反対側を向き、チップ裏面は第2ダイパッド50と対面する側を向いている。
 第1チップ側面73および第2チップ側面74は、平面視において第2チップ70のX方向の両端面を構成している。第1チップ側面73は第2チップ70のうち第1チップ60が配置される側のチップ側面であり、第2チップ側面74は第2チップ70のうち第2リード端子41~48が配置される側のチップ側面である。第3チップ側面75および第4チップ側面76は、平面視において第2チップ70のY方向の両端面を構成している。第3チップ側面75は封止樹脂90の第3封止側面95寄りのチップ側面であり、第4チップ側面76は第4封止側面96寄りのチップ側面である。
 第2チップ70は、複数(第1実施形態では6つ)の第1電極パッド77、複数(第1実施形態では7つ)の第2電極パッド78、および複数(第1実施形態では3つ)の第3電極パッド79を有する。各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79は、チップ表面71から露出するように設けられている。
 各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79は、チタン、窒化チタン、銅、アルミニウム、およびタングステンのうち少なくとも1つを含んでいてもよい。一例では、各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79は、チタンと銅との積層構造である。なお、各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79のうち1種類または2種類の電極パッドを構成する材料は、残りの種類の電極パッドを構成する材料と異なっていてもよい。
 別例では、各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79は、アルミニウムを含む。この場合、チップ表面71から露出する各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79の各々は、2μm以上の厚さを有する。なお、各第1電極パッド77、各第2電極パッド78、および各第3電極パッド79の各々の厚さは任意に変更可能である。
 複数の第1電極パッド77は、第1チップ60の複数の第1電極パッド67と個別に電気的に接続される電極パッドである。複数の第1電極パッド77は、平面視においてチップ表面71のX方向の中央よりも第1チップ側面73寄りの位置に設けられている。複数の第1電極パッド77は、第3チップ側面75寄りの3つの第1電極パッド77と、第4チップ側面76寄りの3つの第1電極パッド77とに区分できる。第3チップ側面75寄りの3つの第1電極パッド77は、X方向において互いに同じ位置であって、Y方向において互いに離隔して配列されている。第4チップ側面76寄りの3つの第1電極パッド77は、第3チップ側面75寄りの3つの第1電極パッド77よりも第2チップ側面74寄りに配置されている。第4チップ側面76寄りの3つの第1電極パッド77は、X方向において互いに同じ位置であって、Y方向において互いに離隔して配列されている。
 複数の第2電極パッド78は、第2リード端子42~47に個別に電気的に接続される電極パッドである。複数の第2電極パッド78は、平面視においてチップ表面71のX方向の中央よりも第2チップ側面74寄りの位置に設けられている。
 複数の第3電極パッド79は、第2ダイパッド50に電気的に接続される電極パッドである。各第3電極パッド79は、第2ダイパッド50と同じ電位、すなわち第2グランド電位となる。複数の第3電極パッド79は、平面視においてチップ表面71のY方向の両端部に設けられている。
 次に、第1チップ60および第2チップ70の電気的な接続構成について説明する。
 図14に示すように、第1チップ60の複数の第1電極パッド67と、第2チップ70の複数の第1電極パッド77とは、複数本(第1実施形態では6本)のチップ間ワイヤWAによって個別に接続されている。これにより、複数の第1電極パッド67と複数の第1電極パッド77とが個別に電気的に接続されている。
 より詳細には、第1チップ60における複数の第1電極パッド67は、第1電極パッド67A~67Fを含む。第1電極パッド67A~67Fは、第3チップ側面65から第4チップ側面66に向かうにつれて、第1電極パッド67A,67B,67C,67D,67E,67Fの順に配置されている。また、第2チップ70における複数の第1電極パッド77は、第1電極パッド77A~77Fを含む。第1電極パッド77A~77Fは、第4チップ側面76から第3チップ側面75に向かうにつれて、第1電極パッド77A,77B,77C,77D,77E,77Fの順に配置されている。
 第1チップ60の第1電極パッド67A~67Fと第2チップ70の第1電極パッド77A~77Fとは、チップ間ワイヤWA1~WA6によって個別に電気的に接続されている。
 チップ間ワイヤWA1は、第1チップ60の第1電極パッド67Aと第2チップ70の第1電極パッド77Fとを接続している。つまり、チップ間ワイヤWA1によって、第1電極パッド67Aと第1電極パッド77Fとが電気的に接続されている。
 チップ間ワイヤWA2は、第1チップ60の第1電極パッド67Bと第2チップ70の第1電極パッド77Eとを接続している。つまり、チップ間ワイヤWA2によって、第1電極パッド67Bと第1電極パッド77Eとが電気的に接続されている。
 チップ間ワイヤWA3は、第1チップ60の第1電極パッド67Cと第2チップ70の第1電極パッド77Dとを接続している。つまり、チップ間ワイヤWA3によって、第1電極パッド67Cと第1電極パッド77Dとが電気的に接続されている。
 チップ間ワイヤWA4は、第1チップ60の第1電極パッド67Dと第2チップ70の第1電極パッド77Cとを接続している。つまり、チップ間ワイヤWA4によって、第1電極パッド67Dと第1電極パッド77Cとが電気的に接続されている。
 チップ間ワイヤWA5は、第1チップ60の第1電極パッド67Eと第2チップ70の第1電極パッド77Bとを接続している。つまり、チップ間ワイヤWA5によって、第1電極パッド67Eと第1電極パッド77Bとが電気的に接続されている。
 チップ間ワイヤWA6は、第1チップ60の第1電極パッド67Fと第2チップ70の第1電極パッド77Aとを接続している。つまり、チップ間ワイヤWA6によって、第1電極パッド67Fと第1電極パッド77Aとが電気的に接続されている。
 一例では、第1チップ60の第1電極パッド67Aと第1電極パッド67BとのY方向の間の距離は、第1電極パッド67Bと第1電極パッド67CとのY方向の間の距離と等しい。第1電極パッド67Dと第1電極パッド67EとのY方向の間の距離は、第1電極パッド67Eと第1電極パッド67FとのY方向の間の距離と等しい。また一例では、第1電極パッド67Aと第1電極パッド67BとのY方向の間の距離は、第1電極パッド67Dと第1電極パッド67EとのY方向の間の距離と等しい。
 一例では、第2チップ70の第1電極パッド77Aと第1電極パッド77BとのY方向の間の距離は、第1電極パッド77Bと第1電極パッド77CとのY方向の間の距離と等しい。第1電極パッド77Dと第1電極パッド77EとのY方向の間の距離は、第1電極パッド77Eと第1電極パッド77FとのY方向の間の距離と等しい。また一例では、第1電極パッド77Aと第1電極パッド77BとのY方向の間の距離は、第1電極パッド77Dと第1電極パッド77EとのY方向の間の距離と等しい。
 一例では、第1チップ60の第1電極パッド67Aと第1電極パッド67BとのY方向の間の距離は、第2チップ70の第1電極パッド77Dと第1電極パッド77EとのY方向の間の距離と等しい。第1チップ60の第1電極パッド67Bと第1電極パッド67CとのY方向の間の距離は、第2チップ70の第1電極パッド77Eと第1電極パッド77FとのY方向の間の距離と等しい。
 一例では、第2チップ70の第1電極パッド77Aと第1電極パッド77BとのY方向の間の距離は、第1チップ60の第1電極パッド67Dと第1電極パッド67EとのY方向の間の距離と等しい。第2チップ70の第1電極パッド77Bと第1電極パッド77CとのY方向の間の距離は、第1チップ60の第1電極パッド67Eと第1電極パッド67FとのY方向の間の距離と等しい。
 このため、平面視において、第1電極パッド67Aと第1電極パッド77Fとを接続するチップ間ワイヤWA1と、第1電極パッド67Bと第1電極パッド77Eとを接続するチップ間ワイヤWA2とは、平面視において平行となる。チップ間ワイヤWA2と、第1電極パッド67Cと第1電極パッド77Dとを接続するチップ間ワイヤWA3とは、平面視において平行となる。チップ間ワイヤWA4と、第1電極パッド67Eと第1電極パッド77Bとを接続するチップ間ワイヤWA5とは、平面視において平行となる。チップ間ワイヤWA5と、第1電極パッド67Fと第1電極パッド77Aとを接続するチップ間ワイヤWA6とは、平面視において平行となる。
 ここで、平面視においてチップ間ワイヤWA1とチップ間ワイヤWA2との成す鋭角が5°以下であれば、平面視においてチップ間ワイヤWA1とチップ間ワイヤWA2とは平行であるといえる。このため、チップ間ワイヤWA1とチップ間ワイヤWA2との成す鋭角は、0°以上5°以下である。一例では、チップ間ワイヤWA1とチップ間ワイヤWA2との成す鋭角は、0°以上3°以下である。一例では、チップ間ワイヤWA1とチップ間ワイヤWA2との成す鋭角は、3°よりも大きく5°以下である。
 また、平面視においてチップ間ワイヤWA2とチップ間ワイヤWA3との成す鋭角が5°以下であれば、平面視においてチップ間ワイヤWA2とチップ間ワイヤWA3とは平行であるといえる。このため、チップ間ワイヤWA2とチップ間ワイヤWA3との成す鋭角は、0°以上5°以下である。一例では、チップ間ワイヤWA2とチップ間ワイヤWA3との成す鋭角は、0°以上3°以下である。一例では、チップ間ワイヤWA2とチップ間ワイヤWA3との成す鋭角は、3°よりも大きく5°以下である。
 また、平面視においてチップ間ワイヤWA4とチップ間ワイヤWA5との成す鋭角が5°以下であれば、平面視においてチップ間ワイヤWA4とチップ間ワイヤWA5とは平行であるといえる。このため、チップ間ワイヤWA4とチップ間ワイヤWA5との成す鋭角は、0°以上5°以下である。一例では、チップ間ワイヤWA4とチップ間ワイヤWA5との成す鋭角は、0°以上3°以下である。一例では、チップ間ワイヤWA4とチップ間ワイヤWA5との成す鋭角は、3°よりも大きく5°以下である。
 また、平面視においてチップ間ワイヤWA5とチップ間ワイヤWA6との成す鋭角が5°以下であれば、平面視においてチップ間ワイヤWA5とチップ間ワイヤWA6とは平行であるといえる。このため、チップ間ワイヤWA5とチップ間ワイヤWA6との成す鋭角は、0°以上5°以下である。一例では、チップ間ワイヤWA5とチップ間ワイヤWA6との成す鋭角は、0°以上3°以下である。一例では、チップ間ワイヤWA5とチップ間ワイヤWA6との成す鋭角は、3°よりも大きく5°以下である。
 また、平面視において、第1電極パッド67Aと第1電極パッド77DとはY方向において同じ位置であり、第1電極パッド67Bと第1電極パッド77EとはY方向において同じ位置であり、第1電極パッド67Cと第1電極パッド77FとはY方向において同じ位置である。このため、チップ間ワイヤWA1~WA3の各々は、平面視においてX方向に沿って延びている。
 また、平面視において、第1電極パッド67Dと第1電極パッド77AとはY方向において同じ位置であり、第1電極パッド67Eと第1電極パッド77BとはY方向において同じ位置であり、第1電極パッド67Fと第1電極パッド77CとはY方向において同じ位置である。このため、チップ間ワイヤWA4~WA6の各々は、平面視においてX方向に沿って延びている。
 ここで、平面視においてチップ間ワイヤWA1とX方向との成す鋭角が5°以下であれば、平面視においてチップ間ワイヤWA1がX方向に沿って延びているといえる。このため、平面視においてチップ間ワイヤWA1とX方向との成す鋭角は、0°以上5°以下である。一例では、平面視においてチップ間ワイヤWA1とX方向との成す鋭角は、0°以上3°以下である。一例では、平面視においてチップ間ワイヤWA1とX方向との成す鋭角は、3°よりも大きく5°以下である。なお、チップ間ワイヤWA2~WA6の各々についても同様である。
 図9に示すように、第1チップ60の複数の第2電極パッド68と、第1リード端子12~17とは、複数本(第1実施形態では6本)の第1リード用ワイヤWBによって個別に接続されている。これにより、第1チップ60と第1リード端子12~17とが個別に電気的に接続されている。第1リード端子12~17の各々は、1本の第1リード用ワイヤWBによって複数の第2電極パッド68に個別に接続されている。
 第1リード用ワイヤWBは、ワイヤボンディング装置によって形成されたボンディングワイヤである。一例では、第1リード用ワイヤWBは、第2電極パッド68との接合部がファーストボンド部であり、第1リード端子12~17との接合部がセカンドボンド部である。第1リード用ワイヤWBは、第1リード端子12~17のうち第1インナーリード部12A~17Aのワイヤ接続部12AA~17AAに接続されている。
 より詳細には、ワイヤ接続部12AAは、ワイヤ接続部12AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部12AAの側面は、ワイヤ接続部12AAの先端面を構成しており、Y方向において第1ダイパッド30の第1側面33と対向している。
 ワイヤ接続部13AAは、ワイヤ接続部13AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部13AAの側面は、ワイヤ接続部13AAのY方向の両端部のうちワイヤ接続部14AA寄りの端部に形成された傾斜面である。この傾斜面は、ワイヤ接続部14AAに向かうにつれて第1封止側面93に向けて傾斜している。
 ワイヤ接続部14AAは、ワイヤ接続部14AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部14AAの側面は、ワイヤ接続部14AAの先端面を構成しており、X方向において第1ダイパッド30の第1基端面32と対向している。
 ワイヤ接続部15AAは、ワイヤ接続部15AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部15AAの側面は、ワイヤ接続部15AAの先端面を構成しており、X方向において第1ダイパッド30の第1基端面32と対向している。
 ワイヤ接続部16AAは、ワイヤ接続部16AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部16AAの側面は、ワイヤ接続部16AAの先端面を構成しており、X方向において第1ダイパッド30の第1基端面32と対向している。
 ワイヤ接続部17AAは、ワイヤ接続部17AAと接続する第1リード用ワイヤWBと平面視で交差する側面を含む。この側面は、平面視において第1ダイパッド30と対向している。第1実施形態では、ワイヤ接続部17AAの側面は、ワイヤ接続部17AAの先端面を構成しており、Y方向において第1ダイパッド30の第2側面34と対向している。
 第1チップ60の複数の第3電極パッド69と、第1ダイパッド30とは、複数本(第1実施形態では2本)の第1ダイパッド用ワイヤWCによって個別に接続されている。これにより、複数の第3電極パッド69は、第1ダイパッド30と電気的に接続されている。つまり、複数の第3電極パッド69は、第1グランド電位となる。また、複数の第3電極パッド69は、第1リード端子11,18と電気的に接続されているともいえる。
 第1チップ60のうち第3チップ側面65寄りの第3電極パッド69に接続された第1ダイパッド用ワイヤWCは、第1ダイパッド30のY方向の両端部のうち第1側面33寄りの端部に接続されている。第1チップ60のうち第4チップ側面66寄りの第3電極パッド69に接続された第1ダイパッド用ワイヤWCは、第1ダイパッド30のY方向の両端部のうち第2側面34寄りの端部に接続されている。
 第1ダイパッド用ワイヤWCは、ワイヤボンディング装置によって形成されたボンディングワイヤである。一例では、第1ダイパッド用ワイヤWCは、第3電極パッド69との接合部がファーストボンド部であり、第1ダイパッド30との接合部がセカンドボンド部である。
 図12に示すように、第2チップ70の複数の第2電極パッド78と、第2リード端子42~47とは、複数本(第1実施形態では6本)の第2リード用ワイヤWDによって個別に接続されている。これにより、第2チップ70と第2リード端子42~47とが個別に電気的に接続されている。第2リード端子42~47の各々は、1本の第2リード用ワイヤWDによって複数の第2電極パッド78と個別に接続されている。
 第2リード用ワイヤWDは、ワイヤボンディング装置によって形成されたボンディングワイヤである。一例では、第2リード用ワイヤWDは、第2電極パッド78との接合部がファーストボンド部であり、第2リード端子42~47との接合部がセカンドボンド部である。第2リード用ワイヤWDは、第2リード端子42~47のうち第2インナーリード部42A~47Aのワイヤ接続部42AA~47AAに接続されている。
 より詳細には、ワイヤ接続部42AAは、ワイヤ接続部42AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部42AAの側面は、ワイヤ接続部42AAの先端面を構成しており、Y方向において第2ダイパッド50の第4側面54と対向している。
 ワイヤ接続部43AAは、ワイヤ接続部43AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部43AAの側面は、ワイヤ接続部43AAのY方向の両端部のうちワイヤ接続部44AA寄りの端部に形成された傾斜面である。この傾斜面は、ワイヤ接続部44AAに向かうにつれて第1封止側面93に向けて傾斜している。
 ワイヤ接続部44AAは、ワイヤ接続部44AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部44AAの側面は、ワイヤ接続部44AAの先端面を構成しており、X方向において第2ダイパッド50の第2基端面52と対向している。
 ワイヤ接続部45AAは、ワイヤ接続部45AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部45AAの側面は、ワイヤ接続部45AAの先端面を構成しており、X方向において第2ダイパッド50の第2基端面52と対向している。
 ワイヤ接続部46AAは、ワイヤ接続部46AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部46AAの側面は、ワイヤ接続部46AAの先端面を構成しており、X方向において第2ダイパッド50の第2基端面52と対向している。
 ワイヤ接続部47AAは、ワイヤ接続部47AAと接続する第2リード用ワイヤWDと平面視で交差する側面を含む。この側面は、平面視において第2ダイパッド50と対向している。第1実施形態では、ワイヤ接続部47AAの側面は、ワイヤ接続部47AAの先端面を構成しており、Y方向において第2ダイパッド50の第3側面53と対向している。
 第2チップ70の複数の第3電極パッド79と、第2ダイパッド50とは、複数本(第1実施形態では2本)の第2ダイパッド用ワイヤWEによって個別に接続されている。これにより、第2チップ70と第2ダイパッド50とが電気的に接続されている。このため、第2チップ70の第3電極パッド79は、第2グランド電位となる。また、第3電極パッド79は、第2リード端子41,48と電気的に接続されているともいえる。
 第2チップ70のうち第3チップ側面75寄りの第3電極パッド79に接続された第2ダイパッド用ワイヤWEは、第2ダイパッド50のY方向の両端部のうち第3側面53寄りの端部に接続されている。第2チップ70のうち第4チップ側面76寄りの第3電極パッド69に接続された第2ダイパッド用ワイヤWEは、第2ダイパッド50のY方向の両端部のうち第4側面54寄りの端部に接続されている。
 第2ダイパッド用ワイヤWEは、ワイヤボンディング装置によって形成されたボンディングワイヤである。一例では、第2ダイパッド用ワイヤWEは、第3電極パッド79との接合部がファーストボンド部であり、第2ダイパッド50との接合部がセカンドボンド部である。
 図7に示すように、チップ間ワイヤWA1~WA6を構成する材料は、第1リード用ワイヤWB、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEの各々を構成する材料とは異なる。一例では、第1リード用ワイヤWB、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEは、互いに同じ材料によって構成されている。
 チップ間ワイヤWA1~WA6は、金を含む材料によって形成されている。第1リード用ワイヤWB、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEの各々は、銅を含む材料によって形成されている。一例では、第1リード用ワイヤWB、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEの各々は、銅ワイヤの表面がパラジウム(Pd)によってコーティングされた構成である。これにより、銅ワイヤの表面がパラジウムでコーティングされていないワイヤと比較して、耐酸化性および耐腐食性の向上を図ることができる。
 なお、第1リード用ワイヤWB、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEの各々は、アルミニウムを含む材料によって形成されていてもよい。
 第1実施形態では、各第1ダイパッド用ワイヤWCのセカンドボンド部にはセキュリティボンドWC1が形成されている。各第2ダイパッド用ワイヤWEのセカンドボンド部にはセキュリティボンドWE1が形成されている。
 図15は第1ダイパッド用ワイヤWCのセカンドボンド部およびその周辺の斜視構造を示している。なお、第1ダイパッド用ワイヤWCのセカンドボンド部の構成と第2ダイパッド用ワイヤWEのセカンドボンド部の構成とは互いに同じであるため、第1ダイパッド用ワイヤWCのセカンドボンド部の構成について詳述し、第2ダイパッド用ワイヤWEのセカンドボンド部の構成についての詳細な説明を省略する。
 図15に示すように、第1ダイパッド用ワイヤWCのセカンドボンド部は、第1ダイパッド30に接合された接合部WCPを含む。接合部WCPは、ワイヤボンディング装置によって第1ダイパッド30に押圧されることによって圧し潰された部分である。接合部WCPの厚さは、第1ダイパッド用ワイヤWCの径よりも小さい。
 セキュリティボンドWC1は、たとえば接合部WCP上にスタッドバンプSBを設けることによって構成されている。一例では、スタッドバンプSBは、ワイヤボンディング装置を用いたボールボンドによって構成されている。接合部WCPは、第1ダイパッド30とスタッドバンプSBとによって挟み込まれている。
 なお、第1リード用ワイヤWBのセカンドボンド部に形成されたセキュリティボンドWB1および第2リード用ワイヤWDのセカンドボンド部に形成されたセキュリティボンドWD1の各々の構成は、たとえば第1ダイパッド用ワイヤWCのセキュリティボンドWC1と同じ構成である。
 [信号伝達装置の回路構成]
 図16を参照して、第1実施形態の信号伝達装置10の回路構成について説明する。
 信号伝達装置10は、第1回路500および第2回路520と、第1トランス111および第2トランス112と、を備える。第1実施形態では、第1チップ60は第1回路500および第1トランス111を含み、第2チップ70は第2回路520および第2トランス112を含む。第1トランス111および第2トランス112は、第1回路500と第2回路520とを絶縁するとともに、第1回路500と第2回路520との間の信号のやりとりを可能とするように構成されている。
 また、信号伝達装置10は、第1回路500に電気的に接続された外部端子である第1端子P1~P8と、第2回路520に電気的に接続された外部端子である第2端子Q1~Q8と、を備える。
 第1端子P1はグランド端子(GND1)であり、第1端子P2は正極の入力端子(IN+)であり、第1端子P3は負極の入力端子(IN-)であり、第1端子P4は入出力端子(RDYC)であり、第1端子P5は検出用端子(/FLT)であり、第1端子P6はリセット端子(/RST)であり、第1端子P7は電源端子(VCC1)であり、第1端子P8はグランド端子(GND1)である。第1端子P1と第1端子P8とは互いに電気的に接続されている。一例では、第1端子P1は第1リード端子11に対応し、第1端子P2は第1リード端子12に対応し、第1端子P3は第1リード端子13に対応し、第1端子P4は第1リード端子14に対応し、第1端子P5は第1リード端子15に対応し、第1端子P6は第1リード端子16に対応し、第1端子P7は第1リード端子17に対応し、第1端子P8は第1リード端子18に対応している。
 第2端子Q1は負極の電源端子(VEE2)であり、第2端子Q2は電圧検出用端子(DESAT)であり、第2端子Q3はグランド端子(GND2)であり、第2端子Q4はセット端子(TLSET)であり、第2端子Q5は正極の電源端子(VCC2)であり、第2端子Q6は出力端子(OUT)であり、第2端子Q7はクランプ用端子(CLAMP)であり、第2端子Q8は負極の電源端子(VEE2)である。第2端子Q1と第2端子Q8とは互いに電気的に接続されている。一例では、第2端子Q1は第2リード端子41に対応し、第2端子Q2は第2リード端子42に対応し、第2端子Q3は第2リード端子43に対応し、第2端子Q4は第2リード端子44に対応し、第2端子Q5は第2リード端子45に対応し、第2端子Q6は第2リード端子46に対応し、第2端子Q7は第2リード端子47に対応し、第2端子Q8は第2リード端子48に対応している。
 第1回路500は、第1機能部として送信部501、受信部502、ロジック部503、およびUVLO部504と、回路素子として抵抗505,506,507,509,511と、スイッチング素子508,510と、を含む。
 第1端子P2~P6はロジック部503に電気的に接続され、第1端子P7はUVLO部504に電気的に接続されている。ロジック部503は、送信部501、受信部502、およびUVLO部504と個別に電気的に接続されている。
 送信部501は、第1トランス111に電気的に接続されている。送信部501は、ロジック部503から入力された制御信号を、第1トランス111を用いて第2回路520に送信するように構成されている。
 受信部502は、第2トランス112に電気的に接続されている。受信部502は、第2トランス112を介して第2回路520からの信号を受信し、その受信した信号をロジック部503に出力するように構成されている。
 ロジック部503は、第1端子P2~P6を介して、信号伝達装置10の外部の制御装置(図示略)と各種信号のやり取りを行うとともに、送信部501および受信部502を用いて第2回路520との間で各種信号のやり取りを行うように構成されている。
 ロジック部503は、たとえば受信部502に電気的に接続されたデコーダ、送信部501に電気的に接続された第1AND回路と、スイッチング素子510のゲート信号を生成するためのフリップフロップ回路および第2AND回路と、スイッチング素子508のゲート信号を生成するための第3AND回路と、を含む。ロジック部503は、たとえば第1AND回路と第1端子P2との間に設けられた第1遅延回路と、第1AND回路と第1端子P3との間に設けられた第2遅延回路と、フリップフロップ回路と第1端子P6との間に設けられた第3遅延回路と、を含む。
 第1端子P2とロジック部503との導電経路には抵抗505が電気的に接続されている。抵抗505の第1端子は上記導電経路に電気的に接続されており、第2端子は第1端子P1(P8)に電気的に接続されている。このため、抵抗505は、プルダウン抵抗である。
 第1端子P3とロジック部503との導電経路には抵抗506が電気的に接続されている。抵抗506の第1端子は第1端子P7に電気的に接続され、第2端子は上記導電経路に電気的に接続されている。このため、抵抗506は、プルアップ抵抗である。
 第1端子P4とロジック部503との間には、スイッチング素子508および抵抗507が設けられている。スイッチング素子508としては、たとえばnチャネル型MOSFETが用いられている。抵抗506の第1端子は第1端子P7に電気的に接続され、抵抗506の第2端子はスイッチング素子508のドレインに電気的に接続されている。第1端子P4は、抵抗506の第2端子とスイッチング素子508のドレインとの接続点に電気的に接続されている。スイッチング素子508のソースは第1端子P1(P8)に電気的に接続されている。スイッチング素子508のゲートは、ロジック部503に電気的に接続されている。
 第1端子P5とロジック部503との間には、スイッチング素子510および抵抗509が設けられている。スイッチング素子510としては、たとえばnチャネル型MOSFETが用いられている。抵抗509の第1端子は第1端子P7に電気的に接続され、抵抗509の第2端子はスイッチング素子510のドレインに電気的に接続されている。第1端子P5は、抵抗509の第2端子とスイッチング素子510のドレインとの接続点に電気的に接続されている。スイッチング素子510のソースは第1端子P1(P8)に電気的に接続されている。スイッチング素子510のゲートは、ロジック部503に電気的に接続されている。
 第1端子P6とロジック部503との導電経路には抵抗511が電気的に接続されている。抵抗511の第1端子は第1端子P7に電気的に接続され、第2端子は上記導電経路に電気的に接続されている。このため、抵抗511は、プルアップ抵抗である。
 ロジック部503は、スイッチング素子508,510をオンオフすることによって、第1端子P4,P5の電圧を変化させる。制御装置は、第1端子P4,P5を監視することによって信号伝達装置10の状態を把握できる。
 UVLO部504は、第1端子P7に電気的に接続された制御電源の電圧がしきい値電圧を下回るときにロジック部503の動作を停止して誤動作の発生を抑制する。
 第2回路520は、第2機能部として受信部521、送信部522、ロジック部523、UVLO部524、クランプ制御部525、出力制御部526、非飽和フォルト検出部527と、回路素子としてスイッチング素子528、第1出力用スイッチング素子529、第2出力用スイッチング素子530、第3出力用スイッチング素子531,抵抗532,534,539、電流源533,537、スイッチング素子535,538、および比較器536と、を含む。
 第2端子Q2は非飽和フォルト検出部527に電気的に接続され、第2端子Q4は比較器536に電気的に接続され、第2端子Q5はUVLO部524に電気的に接続され、第2端子Q6は出力制御部526に電気的に接続され、第2端子Q7はクランプ制御部525に電気的に接続されている。ロジック部523は、受信部521、送信部522、UVLO部524、クランプ制御部525、出力制御部526、非飽和フォルト検出部527、および比較器536と個別に電気的に接続されている。
 受信部521は、第1トランス111と電気的に接続されている。受信部521は、第1トランス111を介して送信部501からの制御信号を受信し、その受信した制御信号をロジック部523に出力するように構成されている。
 送信部522は、第2トランス112と電気的に接続されている。送信部522は、ロジック部523から入力された信号を、第2トランス112を用いて受信部521に送信する。
 ロジック部523は、クランプ制御部525、出力制御部526、および非飽和フォルト検出部527を個別に制御する。ロジック部523は、クランプ制御部525、出力制御部526、および非飽和フォルト検出部527からの信号を送信部522に出力するように構成されている。
 UVLO部524は、第2端子Q5に電気的に接続された制御電源の電圧がしきい値電圧を下回るときにロジック部523の動作を停止して誤動作の発生を抑制する。
 クランプ制御部525は、スイッチング素子528の動作を制御する回路である。スイッチング素子528はたとえばnチャネル型MOSFETが用いられる。スイッチング素子528のドレインは第2端子Q7に電気的に接続され、スイッチング素子528のソースは第2端子Q1(Q8)に電気的に接続されている。スイッチング素子528のゲートはクランプ制御部525に電気的に接続されている。
 クランプ制御部525は、スイッチング素子528を制御するAND回路およびバッファ回路と、第2端子Q7の電圧と予め設定された電圧とを比較して比較結果をAND回路に出力する比較器と、を含む。
 出力制御部526は、第1出力用スイッチング素子529、第2出力用スイッチング素子530、および第3出力用スイッチング素子531の各々の動作を制御する回路である。第1出力用スイッチング素子529としてはたとえばpチャネル型MOSFETが用いられ、第2出力用スイッチング素子530および第3出力用スイッチング素子531としてはたとえばnチャネル型MOSFETが用いられる。第1出力用スイッチング素子529、第2出力用スイッチング素子530、および第3出力用スイッチング素子531のオンオフ動作に基づいて第2端子Q6の電圧が変化することによって第2端子Q6から出力信号が出力される。
 第1出力用スイッチング素子529、第2出力用スイッチング素子530、および第3出力用スイッチング素子531の各々のゲートは、出力制御部526と電気的に接続されている。第1出力用スイッチング素子529のドレインは、第3出力用スイッチング素子531のドレインと電気的に接続されている。第1出力用スイッチング素子529のドレインと第3出力用スイッチング素子531のドレインとの接続点は、第2端子Q6と電気的に接続されている。第1出力用スイッチング素子529のソースおよび第2出力用スイッチング素子530のドレインは第2端子Q5に電気的に接続されている。第2出力用スイッチング素子530のソースは第2端子Q6および出力制御部526の双方に電気的に接続されている。第2出力用スイッチング素子530のソースと第3出力用スイッチング素子531のゲートとの間には抵抗532が電気的に接続されている。
 非飽和フォルト検出部527には、第2端子Q2に入力されたフォルト信号が入力される。非飽和フォルト検出部527は、入力されたフォルト信号をロジック部523に出力する。非飽和フォルト検出部527は、電流源533およびスイッチング素子535と電気的に接続されている。
 電流源533は、第2端子Q5と第2端子Q2とに電気的に接続されている。電流源533は、非飽和フォルト検出部527に電流を供給する。スイッチング素子535としては、nチャネル型MOSFETが用いられている。スイッチング素子535のドレインは抵抗534を介して第2端子Q2と電気的に接続され、スイッチング素子535のソースは第2端子Q2と電気的に接続されている。スイッチング素子535のゲートは非飽和フォルト検出部527と電気的に接続されている。このため、非飽和フォルト検出部527は、スイッチング素子535の動作を制御する。
 非飽和フォルト検出部527は、第2端子Q2に電気的に接続された比較器と、比較器の出力信号が入力されるフリップフロップ回路と、スイッチング素子535を制御するAND回路と、含む。
 第2端子Q4と比較器536との間には、電流源537、スイッチング素子538、および抵抗539が設けられている。電流源537は、第2端子Q5と第2端子Q4とに電気的に接続されている。スイッチング素子538としては、nチャネル型MOSFETが用いられている。スイッチング素子538のドレインは第2端子Q4と電気的に接続され、スイッチング素子538のソースは第2端子Q1(Q8)と電気的に接続されている。スイッチング素子538のドレインは比較器536と電気的に接続されている。抵抗539は、電流源537と第2端子Q4との間に設けられている。抵抗539の第1端子は第2端子Q4に電気的に接続され、抵抗539の第2端子は電流源537とスイッチング素子538のドレインとの接続点に電気的に接続されている。
 [第1チップの詳細な構成]
 上述した信号伝達装置10の回路構成の一部を含む第1チップ60の詳細な構成について図17~図24を用いて説明する。
 図17および図18は、第1チップ60の内部構成の一例についての概略平面構造を示している。図19~図24は、第1チップ60の内部構成の一例についての概略断面構造を示している。なお、図面の理解を容易にするために、図19~図24の第1チップ60の概略断面構造において、一部のハッチング線を省略している。
 (第1チップの平面構造)
 図17は、第1チップ60のチップ表面61寄りの内部構成の一例についての概略平面構造を示している。図18は、第1チップ60のチップ裏面62寄りの内部構造の一例について概略平面構造を示している。
 第1チップ60は、絶縁トランス領域110および回路領域120と、絶縁トランス領域110に接続され、回路領域120を囲う外周ガードリング100と、を有する。
 絶縁トランス領域110は、回路領域120と第2チップ70とを電気的に絶縁する一方、回路領域120と第2チップ70との間の信号の伝達を許容する領域である。絶縁トランス領域110は、平面視において第1チップ60のX方向の中央に対して第2チップ側面64寄りに形成されている。つまり、絶縁トランス領域110は、平面視において第1チップ60のうち第2チップ70(図7参照)に近い領域に形成されている。絶縁トランス領域110は、第1チップ60の第3チップ側面65寄りに形成されている。
 回路領域120は、図16の第1回路500のうち第1トランス111以外の構成要素が形成されている。この構成要素としては、図16の送信部501、受信部502、ロジック部503、UVLO部504、抵抗505,506,507,509,511と、スイッチング素子508,510等が挙げられる。以降の説明において、第1回路500のうち第1トランス111以外の構成要素を「複数の第1機能部」および「複数の回路素子」と称する場合がある。
 絶縁トランス領域110には、第1トランス111が形成されている。図17および図18に示すように、第1トランス111は、第1表面側コイル111Aおよび第1裏面側コイル111Bと、第2表面側コイル112Aおよび第2裏面側コイル112Bと、を含む。
 図17に示すように、第1表面側コイル111Aおよび第2表面側コイル112Aは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1表面側コイル111Aは、第2表面側コイル112Aに対して、第3チップ側面65寄りに配置されている。
 図18に示すように、第1裏面側コイル111Bおよび第2裏面側コイル112Bは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1裏面側コイル111Bは、第2裏面側コイル112Bに対して、第3チップ側面65寄りに配置されている。
 なお、図示していないが、第1表面側コイル111Aおよび第2表面側コイル112Aは、Z方向において互いに同じ位置に配置されている。第1裏面側コイル111Bおよび第2裏面側コイル112Bは、Z方向において互いに同じ位置に配置されている。
 第1表面側コイル111A、第2表面側コイル112A、第1裏面側コイル111B、および第2裏面側コイル112Bの各々は、チタン、窒化チタン、銅、アルミニウム、およびタングステンのうち少なくとも1つを含んでいてもよい。一例では、第1表面側コイル111Aおよび第2表面側コイル112Aは銅を含んでおり、第1裏面側コイル111Bおよび第2裏面側コイル112Bはアルミニウムを含んでいる。また一例では、第1表面側コイル111Aおよび第2表面側コイル112Aはチタンと銅との積層構造であり、第1裏面側コイル111Bおよび第2裏面側コイル112Bは窒化チタンとアルミニウムとの積層構造である。
 図17に示すように、絶縁トランス領域110内には、複数の第1電極パッド67A~67Cが形成されている。複数の第1電極パッド67A~67Cは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。回路領域120内には、複数の第1電極パッド67D~67Fが形成されている。複数の第1電極パッド67D~67Fは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1電極パッド67D~67Fは、第1電極パッド67A~67Cよりも第2チップ側面64寄りに配置されている。
 第1表面側コイル111Aは、平面視で渦巻き状の第1コイル部111A1と、第1外側コイル端部111A2と、第1内側コイル端部111A3と、を含む。第1外側コイル端部111A2は第1コイル部111A1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111A3は第1コイル部111A1の最内周の部分における巻回方向の端部を構成している。
 第2表面側コイル112Aは、平面視で渦巻き状の第2コイル部112A1と、第2外側コイル端部112A2と、第2内側コイル端部112A3と、を含む。第2外側コイル端部112A2は第2コイル部112A1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部112A3は第2コイル部112A1の最内周の部分における巻回方向の端部を構成している。
 第1電極パッド67Aは、平面視において第1コイル部111A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Aは、第1コイル部111A1よりも内方に位置しているといえる。第1電極パッド67Aは、第1内側コイル端部111A3と接続されている。このため、第1電極パッド67Aは、第1表面側コイル111Aの第1端部と電気的に接続されているといえる。
 第1電極パッド67Bは、平面視において第1表面側コイル111Aと第2表面側コイル112AとのY方向の間に配置されている。第1電極パッド67Bは、第1表面側コイル111Aの第1外側コイル端部111A2に接続されている。また、第1電極パッド67Bは、第2表面側コイル112Aの第2外側コイル端部112A2に接続されている。このため、第1電極パッド67Bは、第1表面側コイル111Aの第2端部と第2表面側コイル112Aの第2端部と電気的に接続されているといえる。
 第1電極パッド67Cは、平面視において第2コイル部112A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Cは、第2コイル部112A1よりも内方に位置しているといえる。第1電極パッド67Cは、第2内側コイル端部112A3と接続されている。このため、第1電極パッド67Cは、第2表面側コイル112Aの第1端部と電気的に接続されているといえる。
 図17の例では、第1表面側コイル111Aの巻回数と第2表面側コイル112Aの巻回数とは、互いに等しい。平面視において、第1表面側コイル111Aの巻回方向と第2表面側コイル112Aの巻回方向とは互いに反対方向である。
 図18に示すように、第1裏面側コイル111Bは、Z方向において第1表面側コイル111A(図17参照)と対向配置されている。第1裏面側コイル111Bは、平面視で渦巻き状の第1コイル部111B1と、第1外側コイル端部111B2と、第1内側コイル端部111B3と、を含む。第1外側コイル端部111B2は第1コイル部111B1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111B3は第1コイル部111B1の最内周の部分における巻回方向の端部を構成している。第1外側コイル端部111B2は、X方向に延びる第1接続配線118Aに接続されている。第1接続配線118Aは、回路領域120(図17参照)の送信部501(図16参照)に電気的に接続されている。第1内側コイル端部111B3は、図示していない第1配線に接続されている。第1配線は、回路領域120の送信部501に電気的に接続されている。
 第2裏面側コイル112Bは、Z方向において第2表面側コイル112A(図17参照)と対向配置されている。第2裏面側コイル112Bは、平面視で渦巻き状の第2コイル部112B1と、第2外側コイル端部112B2と、第2内側コイル端部112B3と、を含む。第2外側コイル端部112B2は第2コイル部112B1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部112B3は第2コイル部112B1の最内周の部分における巻回方向の端部を構成している。第2外側コイル端部112B2は、X方向に延びる第2接続配線118Bに接続されている。第2接続配線118Bは、Y方向において第1接続配線118Aと隣り合う位置に配置されている。第2接続配線118Bは、第1接続配線118Aよりも第2裏面側コイル112B寄りに配置されている。第2接続配線118Bは、回路領域120の送信部501に電気的に接続されている。第2内側コイル端部112B3は、図示していない第2配線に接続されている。第2配線は、回路領域120の送信部501に電気的に接続されている。
 ここで、第1裏面側コイル111Bの巻回数と第2裏面側コイル112Bの巻回数とは、互いに等しい。平面視において、第1裏面側コイル111Bの巻回方向と第2裏面側コイル112Bの巻回方向とは互いに反対方向である。また一例では、第1裏面側コイル111Bおよび第2裏面側コイル112Bの巻回数は、第1表面側コイル111Aおよび第2表面側コイル112Aの巻回数と等しい。
 図17に示すように、絶縁トランス領域110には、平面視において第1表面側コイル111A、第2表面側コイル112A、および第1電極パッド67A~67Cを囲む表面側ガードリング115が形成されている。平面視における表面側ガードリング115の形状は、トラック形状である。
 図18に示すように、絶縁トランス領域110には、平面視において第1裏面側コイル111Bおよび第2裏面側コイル112Bを囲む裏面側ガードリング116が形成されている。平面視における裏面側ガードリング116の形状は、トラック形状である。裏面側ガードリング116の形状およびサイズは、表面側ガードリング115と同じである。平面視において、裏面側ガードリング116は、表面側ガードリング115と重なる位置に形成されている。
 絶縁トランス領域110には、表面側ガードリング115と裏面側ガードリング116とを接続する複数のビア117が形成されている。ビア117は、平面視において表面側ガードリング115と裏面側ガードリング116との双方と重なる位置に配置されている。
 図17に示すように、回路領域120には、複数の第2電極パッド68,複数の第3電極パッド69、および複数の配線層121が設けられている。複数の配線層121は、複数の第1機能部を電気的に接続する配線層と、複数の第1機能部と絶縁トランス領域110の第1トランス111とを電気的に接続する配線層と、を含む。複数の第1機能部は、回路領域120のうちZ方向において複数の配線層121よりもチップ裏面62(図19参照)寄りの位置に形成されている。一例では、図18では図示していないが、複数の第1機能部は、第1裏面側コイル111Bおよび第2裏面側コイル112BとZ方向において同じ位置に形成されている。なお、複数の第1機能部が形成されるZ方向の位置は任意に変更可能である。
 図17および図18に示すように、外周ガードリング100は、表面側外周ガードリング101と、裏面側外周ガードリング102と、を含む。
 図17に示すように、表面側外周ガードリング101は、表面側ガードリング115に接続されている。より詳細には、表面側外周ガードリング101は、表面側ガードリング115のうち第2チップ側面64寄りの直線部に接続されている。これにより、表面側外周ガードリング101は、表面側ガードリング115と電気的に接続されている。
 図18に示すように、裏面側外周ガードリング102は、裏面側ガードリング116に接続されている。より詳細には、裏面側外周ガードリング102は、裏面側ガードリング116のうち第2チップ側面64寄りの直線部に接続されている。これにより、裏面側外周ガードリング102は、裏面側ガードリング116と電気的に接続されている。平面視における裏面側外周ガードリング102の形状およびサイズは、表面側外周ガードリング101と同じである。裏面側外周ガードリング102は、平面視において表面側外周ガードリング101と重なる位置に配置されている。
 なお、図示していないが、第1チップ60は、表面側外周ガードリング101と裏面側外周ガードリング102とを接続する複数の外周ビアを有する。複数の外周ビアによって表面側外周ガードリング101と裏面側外周ガードリング102とが電気的に接続されている。各外周ビアは、Z方向に延びている。
 (第1チップの断面構造)
 第1チップ60の内部構成の一例としての絶縁トランス領域110の断面構造について図19~図24を用いて説明する。
 図19は、第1トランス111の一部を切断した断面構造を示している。図20は、図19の第1トランス111の一部を拡大した拡大図である。図21は図20における第1トランス111の第1表面側コイル111AのうちF21部を拡大した拡大図であり、図22は図20における第1トランス111の第1裏面側コイル111BのうちF22部を拡大した拡大図である。なお、図19では、図面の理解を容易にするため、ハッチング線を省略している。
 図19に示すように、第1チップ60は、上述した基板130と、基板130上に形成された素子絶縁層150と、を有する。
 基板130は、たとえば半導体基板によって形成されている。第1実施形態では、基板130は、シリコン(Si)を含む材料によって形成された半導体基板である。なお、基板130は、半導体基板として、ワイドバンドギャップ半導体または化合物半導体が用いられていてもよい。また、基板130は、半導体基板に代えて、ガラスを含む材料によって形成された絶縁基板、またはアルミナ等のセラミックスを含む材料によって形成された絶縁基板が用いられていてもよい。
 ワイドバンドギャップ半導体は、2.0eV以上のバンドギャップを有する半導体基板である。ワイドバンドギャップ半導体は、炭化シリコン(SiC)、窒化ガリウム(GaN)、および酸化ガリウム(Ga)のいずれか1つであってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、窒化アルミニウム(AlN)、窒化インジウム(InN)、窒化ガリウム、およびヒ化ガリウム(GaAs)のうち少なくとも1つを含んでもよい。
 基板130は、平板状に形成されている。基板130は、基板表面131と、基板表面131とは反対側の基板裏面132と、を有する。基板裏面132は第1チップ60のチップ裏面62を構成している。
 素子絶縁層150は、基板表面131に接触している。一例では、素子絶縁層150は、基板表面131の全面にわたり形成されている。一例では、素子絶縁層150は、酸化シリコン(SiO)を含む材料によって形成された酸化膜である。素子絶縁層150は、この酸化膜が複数積層されることによって構成されていてもよい。なお、素子絶縁層150を構成する材料は任意に変更可能である。
 素子絶縁層150は、層表面151と、層表面151とは反対側の層裏面152と、有している。層表面151は基板表面131と同じ側を向き、層裏面152は基板裏面132と同じ側を向いている。層裏面152は基板表面131と接している。
 素子絶縁層150上には、複数の第1電極パッド67A~67F(図19では図示略、図17参照)、パッシベーション膜161と、保護膜162(ともに図20参照)と、が形成されている。
 複数の第1電極パッド67A~67Fは、素子絶縁層150の層表面151に接している。一例では、複数の第1電極パッド67A~67Fは、Z方向において互いに同じ位置に形成されている。
 図20に示すように、パッシベーション膜161は、素子絶縁層150を保護する膜であり、層表面151を覆うように形成されている。パッシベーション膜161は、複数の第1電極パッド67A~67Fを覆うように形成されている。一方、パッシベーション膜161は、複数の第1電極パッド67A~67Fの一部をZ方向に露出する開口部(図示略)を有する。保護膜162は、パッシベーション膜161上に形成されている。一例では、パッシベーション膜161は、窒化シリコン(SiN)膜または酸窒化シリコン(SiON)膜の単層によって形成されている。また一例では、パッシベーション膜161は、酸化シリコン膜と窒化シリコン膜との積層構造によって形成されている。この場合、窒化シリコン膜は、酸化シリコン膜上に形成されていてよい。また一例では、パッシベーション膜161は、酸化シリコン膜と酸窒化シリコン膜との積層構造によって形成されている。この場合、酸窒化シリコン膜は、酸化シリコン膜上に形成されていてよい。
 パッシベーション膜161の厚さ(パッシベーション膜161のZ方向の大きさ)は、保護膜162の厚さ(保護膜162のZ方向の大きさ)よりも薄い。一例では、パッシベーション膜161の厚さは、保護膜162の厚さの1/3以下である。一例では、パッシベーション膜161の厚さは、保護膜162の厚さの1/4以下である。一例では、パッシベーション膜161の厚さは、保護膜162の厚さの1/5以上である。図20に示す例では、パッシベーション膜161の厚さは、1.3μm程度である。
 保護膜162は、パッシベーション膜161上に形成されている。保護膜162は、第1チップ60を保護する膜であり、たとえばポリイミド(PI)を含む材料によって形成されている。保護膜162は、封止樹脂90と素子絶縁層150および基板130との間の応力を緩和する層であるともいえる。保護膜162は、第1チップ60のチップ表面61を構成している。
 第1トランス111の第1表面側コイル111Aと第1裏面側コイル111Bとは、Z方向において間隔をあけて対向配置されている。第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間には素子絶縁層150が介在している。第1表面側コイル111Aおよび第1裏面側コイル111Bは、素子絶縁層150に設けられている。第1裏面側コイル111Bは、素子絶縁層150内に埋め込まれているともいえる。第1表面側コイル111Aは、第1裏面側コイル111Bに対して素子絶縁層150の層表面151寄りに配置されている。換言すると、第1裏面側コイル111Bは、第1表面側コイル111Aに対して素子絶縁層150の層裏面152寄り(基板130寄り)に配置されている。第1表面側コイル111Aは、Z方向において素子絶縁層150の層表面151から露出している。第1表面側コイル111Aは、パッシベーション膜161によって覆われている。第1裏面側コイル111Bは、素子絶縁層150の層裏面152に対してZ方向に間隔をあけて配置されている。つまり、第1裏面側コイル111Bは、基板130からZ方向に離隔して配置されている。第1裏面側コイル111Bと基板130との間には、素子絶縁層150が介在している。
 図21に示すように、第1表面側コイル111Aは、素子絶縁層150の層表面151から層裏面152(図20参照)に向けて凹む凹部153に埋め込まれている。凹部153は、平面視において渦巻き状に形成されている。第1表面側コイル111Aは、凹部153に埋め込まれた1本の導線170によって形成されている。つまり、平面視において、1本の導線170が渦巻き状に形成されることによって第1表面側コイル111Aが構成されている。
 導線170は、コイル表面171と、コイル表面171とは反対側のコイル裏面172と、コイル表面171とコイル裏面172とを繋ぐ一対のコイル側面173と、を有する。コイル表面171は素子絶縁層150の層表面151と同じ側を向き、コイル裏面172は層裏面152と同じ側を向いている。一対のコイル側面173は、コイル表面171からコイル裏面172に向かうにつれてX方向の大きさが小さくなるテーパ状に形成されている。コイル裏面172および一対のコイル側面173は、凹部153に接している。つまり、コイル裏面172および一対のコイル側面173は、素子絶縁層150と接している。コイル表面171は、パッシベーション膜161によって覆われている。
 導線170は、バリア層174と、バリア層174上に形成された金属層175と、を含む。
 バリア層174は、凹部153に接するように形成されている。バリア層174は、金属層175と素子絶縁層150との間に介在する薄膜であるといえる。金属層175は、凹部153を充填するように形成されている。
 金属層175は、たとえば銅を含む材料によって形成されている。バリア層174は、たとえば銅の拡散を抑制する機能を有する。バリア層174は、チタン、窒化チタン、タンタル(Ta)、および窒化タンタル(TaN)のうち少なくとも1つを含んでいてもよい。なお、金属層175は、アルミニウム、金(Au)、銀、およびタングステン(W)のうち少なくとも1つを含んでいてもよい。
 第1表面側コイル111Aの導線170の厚さは、パッシベーション膜161の厚さよりも厚く、保護膜162の厚さよりも薄い。導線170の厚さは、第1裏面側コイル111B(図20参照)の厚さよりも厚い。一例では、導線170の厚さは、パッシベーション膜161の厚さの2倍以上3倍以下である。一例では、導線170の厚さは、保護膜162の厚さの1/2以下である。一例では、導線170の厚さは、保護膜162の厚さの1/3以上である。ここで、導線170の厚さは、コイル表面171とコイル裏面172とのZ方向の間の距離によって定義できる。
 導線170のコイル表面171の幅寸法(図21ではX方向の長さ)は、導線170の厚さよりも長い。一例では、コイル表面171の幅寸法は、導線170の厚さの2倍以上である。一例では、コイル表面171の幅寸法は、導線170の厚さの3倍以下である。図21の例では、コイル表面171の幅寸法は、6.8μm程度である。
 第1表面側コイル111AにおいてX方向に隣り合う導線170の間には、素子絶縁層150が介在している。つまり、第1表面側コイル111Aは、X方向において導線170が互いに離間している。X方向に隣り合う導線170の間の距離は、コイル表面171からコイル裏面172に向かうにつれて徐々に大きくなる。
 図21において、X方向に隣り合う導線170の間の距離のうちX方向に隣り合う導線170のコイル表面171の間の距離を導線間距離とする。この導線間距離は、X方向に隣り合う導線170の最小距離を指す。導線間距離は、コイル表面171のX方向の長さよりも小さい。一例では、導線間距離は、コイル表面171の幅寸法の1/2以下である。一例では、導線間距離は、コイル表面171の幅寸法の1/3以下である。一例では、導線間距離は、コイル表面171の幅寸法の1/4以下である。一例では、導線間距離は、コイル表面171の幅寸法の1/5以下である。一例では、導線間距離は、コイル表面171の幅寸法の1/6以下である。一例では、導線間距離は、コイル表面171の幅寸法の1/7以上である。導線間距離は、導線170の厚さよりも小さい。一例では、導線間距離は、導線170の厚さの1/2以下である。一例では、導線間距離は、導線170の厚さの1/3以上である。図21の例では、導線間距離は、1μm程度である。
 図20および図22に示すように、第1裏面側コイル111Bは、2層のコイル層111BA,111BBによって構成されている。コイル層111BAは素子絶縁層150の層表面151寄りの導線を構成し、コイル層111BBは層裏面152寄りの導線を構成している。コイル層111BAとコイル層111BBとは、Z方向において離隔して配置されている。コイル層111BAとコイル層111BBとのZ方向の間には素子絶縁層150が介在している。コイル層111BA,111BBの各々は、導線180を含む。つまり、平面視において導線180が渦巻き状に形成されることによってコイル層111BAが構成され、平面視において別の導線180が渦巻き状に形成されることによってコイル層111BBが構成されている。ここで、第1裏面側コイル111Bの巻回数は、コイル層111BAの巻回数とコイル層111BBの巻回数との合計によって定義できる。
 図20に示すように、コイル層111BAとコイル層111BBとは、X方向において互いにずれて配置されている。平面視において、コイル層111BAとコイル層111BBとは部分的に重なるように配置されている。換言すると、平面視において、コイル層111BAとコイル層111BBとは部分的に重ならない部分を有するように配置されている。図22に示す例では、コイル層111BAは、コイル層111BBに対して導線180の幅寸法(図22ではX方向の長さ)の1/2分だけX方向にずれて配置されている。
 コイル層111BA,111BBの各々は、第1表面側コイル111Aに対してX方向にずれて配置されている。平面視において、コイル層111BA,111BBは、第1表面側コイル111Aと部分的に重なるように配置されている。図22に示す例では、コイル層111BAは、第1表面側コイル111A(図20参照)に対して第1チップ側面63(図17参照)寄りにずれている。コイル層111BBは、第1表面側コイル111Aに対して第2チップ側面64(図17参照)寄りにずれている。
 コイル層111BAの巻回数およびコイル層111BBの巻回数は互いに同じである。コイル層111BA,111BBの巻回数は、第1表面側コイル111Aの巻回数よりも少ない。一例では、コイル層111BAの巻回数は第1表面側コイル111Aの巻回数の1/2であり、コイル層111BBの巻回数は第1表面側コイル111Aの巻回数の1/2である。つまり、コイル層111BAの巻回数とコイル層111BBの巻回数との合計は、第1表面側コイル111Aの巻回数と同じになる。このため、第1裏面側コイル111Bの巻回数は、第1表面側コイル111Aの巻回数と同じである。
 コイル層111BAとコイル層111BBは、同一形状の導線180が平面視で渦巻き状に形成されていることによって構成されている。導線180は、コイル表面181と、コイル表面181とは反対側のコイル裏面182と、コイル表面181とコイル裏面182とを繋ぐ一対のコイル側面183と、を有する。コイル表面181は素子絶縁層150の層表面151と同じ側を向き、コイル裏面172は層裏面152と同じ側を向いている。一対のコイル側面183は、Z方向に沿って延びている。コイル表面181、コイル裏面182、および一対のコイル側面183の各々は、素子絶縁層150と接している。
 導線180は、裏面側バリア層184と、裏面側バリア層184上に形成された金属層185と、金属層185上に形成された表面側バリア層186と、を含む。
 裏面側バリア層184は、導線180のコイル裏面182を構成している。裏面側バリア層184は、金属層185の裏面と素子絶縁層150とのZ方向の間に介在する薄膜であるといえる。
 表面側バリア層186は、導線180のコイル表面181を構成している。表面側バリア層186は、金属層185の表面と素子絶縁層150とのZ方向の間に介在する薄膜であるといえる。
 金属層185は、裏面側バリア層184および表面側バリア層186よりも厚い厚さを有する。金属層185の一対の側面は、裏面側バリア層184および表面側バリア層186の双方によって覆われておらず、素子絶縁層150と接している。金属層185の一対の側面は、一対のコイル側面183のZ方向の一部を構成している。
 金属層185は、たとえばアルミニウムを含む材料によって形成されている。裏面側バリア層184および表面側バリア層186の双方は、チタンまたは窒化チタンを含んでいてもよい。このように、第1裏面側コイル111Bを構成する材料は、第1表面側コイル111Aを構成する材料と異なっている。
 なお、第1表面側コイル111Aを構成する材料および第1裏面側コイル111Bを構成する材料の各々は任意に変更可能である。一例では、第1表面側コイル111Aを構成する材料と第1裏面側コイル111Bを構成する材料とが同じであってもよい。
 図20に示すように、第1裏面側コイル111Bの導線180の厚さは、保護膜162の厚さよりも薄い。導線180の厚さは、導線170の厚さよりも薄い。一例では、導線180の厚さは、導線170の厚さの1/2以下である。一例では、導線180の厚さは、導線170の厚さの1/3程度である。導線180の厚さは、パッシベーション膜161の厚さよりも薄い。導線180の厚さは、パッシベーション膜161の厚さの1/2以上である。ここで、導線180の厚さは、コイル表面181とコイル裏面182とのZ方向の間の距離によって定義できる。
 導線180の幅寸法(図20ではX方向の長さ)は、導線180の厚さよりも長い。一例では、導線180の幅寸法は、導線180の厚さの2倍以上である。一例では、導線180の幅寸法は、導線180の厚さの5倍以上である。一例では、導線180の幅寸法は、導線180の厚さの10倍以上である。一例では、導線180の幅寸法は、導線180の厚さの12倍以上である。一例では、導線180の幅寸法は、導線180の厚さの15倍以上である。一例では、導線180の幅寸法は、導線180の厚さの16倍以上である。一例では、導線180の幅寸法は、導線180の厚さの17倍程度である。
 一例では、導線180の幅寸法は、導線170の幅寸法よりも長い。導線180の幅寸法は、導線170の幅寸法の2倍以上である。導線180の幅寸法は、導線170の幅寸法の3倍以下である。図20の例では、導線180の幅寸法は、15.8μm程度である。なお、導線170の幅寸法は、平面視において導線170が延びる方向と直交する方向の大きさとして定義できる。導線180の幅寸法は、平面視において導線180が延びる方向と直交する方向の大きさとして定義できる。
 コイル層111BA,111BBにおいてX方向に隣り合う導線180の間には、素子絶縁層150が介在している。つまり、コイル層111BA,111BBは、X方向において導線180が互いに離間している。X方向に隣り合う導線180の間の距離(以下、「導線間距離」)は、コイル表面181からコイル裏面182に向かい同じ大きさを有する。導線間距離は、導線180の幅寸法よりも小さい。一例では、導線間距離は、導線180の幅寸法の1/2以下である。一例では、導線間距離は、導線180の幅寸法の1/5以下である。一例では、導線間距離は、導線180の幅寸法の1/10以下である。一例では、導線間距離は、導線180の幅寸法の1/15以下である。一例では、導線間距離は、導線180の幅寸法の1/16以下である。一例では、導線間距離は、導線180の幅寸法の1/17以下である。一例では、導線間距離は、導線180の幅寸法の1/18以下である。一例では、導線間距離は、導線180の幅寸法の1/19以下である。一例では、導線間距離は、導線180の幅寸法の1/20以上である。導線間距離は、導線180の厚さよりも小さい。一方、導線間距離は、導線180の厚さの1/2以上である。コイル層111BA,111BBの導線間距離は、第1表面側コイル111Aの導線間距離よりも小さい。図20の例では、導線間距離は、0.8μm程度である。
 第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離は、素子絶縁層150の層裏面152と第1裏面側コイル111BとのZ方向の間の距離よりも大きい。一例では、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離は、導線180の幅寸法よりも小さい。第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離は、たとえば12.8μm程度である。ここで、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離は、導線170のコイル裏面172と、コイル層111BAの導線180のコイル表面181とのZ方向の間の距離によって定義できる。第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離は、所望の絶縁耐圧、および第1表面側コイル111Aと第1裏面側コイル111Bとの各々の電界強度に応じて設定される。
 なお、第1実施形態では、第1表面側コイル111Aの導線170は、そのコイル表面171が素子絶縁層150からZ方向に露出するように形成されていたが、これに限られない。第1表面側コイル111Aの導線170は、素子絶縁層150に埋め込まれていてもよい。つまり、導線170のコイル表面171は、素子絶縁層150が接していてもよい。換言すると、導線170は、素子絶縁層150の層表面151よりも層裏面152寄りに配置されていてもよい。
 次に、図23および図24を参照して、回路領域120の配線構造の一例について説明する。
 回路領域120は、図17に示す配線層121と、配線層121よりも基板130寄りに配置された基板側配線層122と、を含む。
 一例では、配線層121は、第1トランス111の第1表面側コイル111AとZ方向において同じ位置に形成されている。つまり、配線層121の表面は、素子絶縁層150の層表面151から露出するとともにパッシベーション膜161によって覆われている。図23に示す例では、配線層121の厚さは、2.8μmである。
 基板側配線層122は、素子絶縁層150に埋め込まれている。一例では、基板側配線層122は、第1配線層122Aと、第2配線層122Bと、第3配線層122Cと、を含む。第1配線層122Aは、Z方向において第2配線層122Bおよび第3配線層122Cよりも基板130寄りに配置されている。第1配線層122Aは、素子絶縁層150の層裏面152からZ方向において離隔して配置されている。換言すると、第1配線層122Aは、基板130からZ方向に離隔して配置されている。第1配線層122Aと基板130とのZ方向の間には素子絶縁層150が介在している。
 回路領域120は、配線層121と基板側配線層122とを接続する第1ビア123を含む。図23に示す例では、第1ビア123は、配線層121と第1配線層122Aとを接続している。第1ビア123は、たとえば配線層121と同じ材料によって形成されている。
 図24に示すように、第1ビア123は、たとえば導線170と同様に、バリア層123Aおよび金属層123Bを含む。バリア層123Aおよび金属層123Bの各々を構成する材料は、たとえば導線170のバリア層174および金属層175(ともに図21参照)と同じである。
 図23に示すように、回路領域120は、第1配線層122Aと基板130とを接続する第2ビア124と、第1配線層122Aと第2配線層122Bとを接続する第3ビア125と、第2配線層122Bと第3配線層122Cとを接続する第4ビア126と、を含む。これにより、図23に示す例においては、基板側配線層122は、基板130と電気的に接続されている。第1~第4ビア123~126は、たとえばタングステンを含む材料によって形成されている。
 図24に示すように、第1配線層122A、第2配線層122B、および第3配線層122Cの各々の厚さは互いに異なっている。第1配線層122Aの厚さは、第2配線層122Bの厚さおよび第3配線層122Cの厚さの双方よりも薄い。第2配線層122Bの厚さは、第3配線層122Cの厚さと同じである。つまり、第1~第3配線層122A~122Cは、Z方向において基板130の近くでは厚さが薄くなっている。換言すると、第1~第3配線層122A~122Cは、Z方向において基板130から離れると厚さが厚くなっている。一例では、第2配線層122Bおよび第3配線層122Cの厚さは、第1配線層122Aの厚さの2倍以下である。図24に示す例では、第1配線層122Aの厚さはたとえば0.52μmであり、第2配線層122Bおよび第3配線層122Cの厚さはたとえば0.93μmである。また、一例では、第2配線層122Bは第1裏面側コイル111Bのコイル層111BBとZ方向において同じ位置に形成され、第3配線層122Cはコイル層111BAとZ方向において同じ位置に形成されている。
 [第2チップの詳細な構成]
 図25および図26を参照して、第2チップ70の詳細な構成について説明する。
 図25は、第2チップ70のチップ表面71寄りの内部構成の一例についての概略平面構造を示している。図26は、第2チップ70のチップ裏面(図示略)寄りの内部構造の一例について概略平面構造を示している。
 図25に示すように、第2チップ70は、絶縁トランス領域210および回路領域220と、絶縁トランス領域210および回路領域220を囲う外周ガードリング200と、を有する。一例では、回路領域220は、平面視において外周ガードリング200によって囲まれた領域において絶縁トランス領域210以外の領域として定義できる。
 絶縁トランス領域210は、回路領域220の複数の第2機能部と第1チップ60とを電気的に絶縁する一方、回路領域220の複数の第2機能部と第1チップ60との間の信号の伝達を許容する領域である。絶縁トランス領域210は、平面視において第2チップ70のX方向の中央に対して第2チップ側面74寄りに形成されている。つまり、絶縁トランス領域210と第2チップ側面74とのX方向の間の距離は、絶縁トランス領域210と第1チップ側面73とのX方向の間の距離よりも小さい。また、絶縁トランス領域210は、平面視において第2チップ70のY方向の中央に対して第3チップ側面75寄りに形成されている。つまり、絶縁トランス領域210と第3チップ側面75とのY方向の間の距離は、絶縁トランス領域210と第4チップ側面76とのY方向の間の距離よりも小さい。このように、絶縁トランス領域210は、平面視において第2チップ70のうち第1チップ60に近い領域に形成されている。
 絶縁トランス領域210には、第1トランス211が形成されている。換言すると、絶縁トランス領域210には、1つのトランスが形成されている。また、絶縁トランス領域210には、第1電極パッド77A~77Cが形成されている。換言すると、絶縁トランス領域210には、3つの第1電極パッド77が形成されている。第1電極パッド77A~77Cは、Y方向において互いに同じ位置であってX方向において互いに離隔して配列されている。
 回路領域220は、図16の第2回路520のうち第1トランス211以外の構成要素が形成されている。この構成要素としては、図16の受信部521、送信部522、ロジック部523、UVLO部524、クランプ制御部525、出力制御部526、非飽和フォルト検出部527、スイッチング素子528、第1出力用スイッチング素子529、第2出力用スイッチング素子530、第3出力用スイッチング素子531,抵抗532,534,539、電流源533,537、スイッチング素子535,538、および比較器536等が挙げられる。以降の説明において、第2回路520のうち第1トランス211以外の構成要素を「複数の第2機能部」および「複数の回路素子」と称する場合がある。
 絶縁トランス領域210には、第1トランス211が形成されている。図25および図26に示すように、第1トランス211は、第1表面側コイル211Aおよび第1裏面側コイル211Bと、第2表面側コイル212Aおよび第2裏面側コイル212Bと、を含む。
 図25に示すように、第1表面側コイル211Aおよび第2表面側コイル212Aは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1表面側コイル211Aは、第2表面側コイル212Aに対して、第4チップ側面76寄りに配置されている。
 図26に示すように、第1裏面側コイル211Bおよび第2裏面側コイル212Bは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1裏面側コイル211Bは、第2裏面側コイル212Bに対して、第4チップ側面76寄りに配置されている。
 なお、図示していないが、第1表面側コイル211Aおよび第2表面側コイル212Aは、Z方向において互いに同じ位置に配置されている。第1裏面側コイル211Bおよび第2裏面側コイル212Bは、Z方向において互いに同じ位置に配置されている。
 第1表面側コイル211A、第2表面側コイル212A、第1裏面側コイル211B、および第2裏面側コイル212Bの各々は、チタン、窒化チタン、銅、アルミニウム、およびタングステンのうち少なくとも1つを含んでいてもよい。一例では、第1表面側コイル211Aおよび第2表面側コイル212Aは銅を含んでおり、第1裏面側コイル211Bおよび第2裏面側コイル212Bはアルミニウムを含んでいる。また一例では、第1表面側コイル211Aおよび第2表面側コイル212Aはチタンと銅との積層構造であり、第1裏面側コイル211Bおよび第2裏面側コイル212Bは窒化チタンとアルミニウムとの積層構造である。
 図25に示すように、絶縁トランス領域210内には、複数の第1電極パッド77A~77Cが形成されている。複数の第1電極パッド77A~77Cは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。回路領域220内には、複数の第1電極パッド77D~77Fが形成されている。複数の第1電極パッド77D~77Fは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1電極パッド77D~77Fは、第1電極パッド77A~77Cよりも第2チップ側面74寄りに配置されている。
 第1表面側コイル211Aは、平面視で渦巻き状の第1コイル部211A1と、第1外側コイル端部211A2と、第1内側コイル端部211A3と、を含む。第1外側コイル端部211A2は第1コイル部211A1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部211A3は第1コイル部211A1の最内周の部分における巻回方向の端部を構成している。
 第2表面側コイル212Aは、平面視で渦巻き状の第2コイル部212A1と、第2外側コイル端部212A2と、第2内側コイル端部212A3と、を含む。第2外側コイル端部212A2は第2コイル部212A1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部212A3は第2コイル部212A1の最内周の部分における巻回方向の端部を構成している。
 第1電極パッド77Aは、平面視において第1コイル部211A1の巻回中心を含む内方空間に配置されている。第1電極パッド77Aは、第1コイル部211A1よりも内方に位置しているといえる。第1電極パッド77Aは、第1内側コイル端部211A3と接続されている。このため、第1電極パッド77Aは、第1表面側コイル211Aの第1端部と電気的に接続されているといえる。
 第1電極パッド77Bは、平面視において第1表面側コイル211Aと第2表面側コイル212AとのY方向の間に配置されている。第1電極パッド77Bは、第1表面側コイル211Aの第1外側コイル端部211A2に接続されている。また、第1電極パッド77Bは、第2表面側コイル212Aの第2外側コイル端部212A2に接続されている。このため、第1電極パッド77Bは、第1表面側コイル211Aの第2端部と第2表面側コイル212Aの第2端部とに電気的に接続されているといえる。
 第1電極パッド77Cは、平面視において第2コイル部212A1の巻回中心を含む内方空間に配置されている。第1電極パッド77Cは、第2コイル部212A1よりも内方に位置しているといえる。第1電極パッド77Cは、第2内側コイル端部212A3と接続されている。このため、第1電極パッド77Cは、第2表面側コイル212Aの第1端部と電気的に接続されているといえる。
 図25の例では、第1表面側コイル211Aの巻回数と第2表面側コイル212Aの巻回数とは、互いに等しい。平面視において、第1表面側コイル211Aの巻回方向と第2表面側コイル212Aの巻回方向とは互いに反対方向である。
 図26に示すように、第1裏面側コイル211Bは、Z方向において第1表面側コイル211A(図25参照)と対向配置されている。第1裏面側コイル211Bは、平面視で渦巻き状の第1コイル部211B1と、第1外側コイル端部211B2と、第1内側コイル端部211B3と、を含む。第1外側コイル端部211B2は第1コイル部211B1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部211B3は第1コイル部211B1の最内周の部分における巻回方向の端部を構成している。第1外側コイル端部211B2は、X方向に延びる第3接続配線(図示略)に接続されている。第3接続配線は、回路領域220(図25参照)の送信部522(図16参照)に電気的に接続されている。第1内側コイル端部211B3は、図示していない第1配線に接続されている。第1配線は、回路領域220の送信部522に電気的に接続されている。
 第2裏面側コイル212Bは、Z方向において第2表面側コイル212A(図25参照)と対向配置されている。第2裏面側コイル212Bは、平面視で渦巻き状の第2コイル部212B1と、第2外側コイル端部212B2と、第2内側コイル端部212B3と、を含む。第2外側コイル端部212B2は第2コイル部212B1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部212B3は第2コイル部212B1の最内周の部分における巻回方向の端部を構成している。第2外側コイル端部212B2は、X方向に延びる第4接続配線(図示略)に接続されている。第4接続配線は、回路領域220の送信部522に電気的に接続されている。第2内側コイル端部212B3は、図示していない第2配線に接続されている。第2配線は、回路領域220の送信部522に電気的に接続されている。
 ここで、第1裏面側コイル211Bの巻回数と第2裏面側コイル212Bの巻回数とは、互いに等しい。平面視において、第1裏面側コイル211Bの巻回方向と第2裏面側コイル212Bの巻回方向とは互いに反対方向である。また一例では、第1裏面側コイル211Bおよび第2裏面側コイル212Bの巻回数は、第1表面側コイル211Aおよび第2表面側コイル212Aの巻回数と等しい。
 図25に示すように、絶縁トランス領域210には、平面視において第1表面側コイル211A、第2表面側コイル212A、および第1電極パッド77A~77Cを囲む表面側ガードリング215が形成されている。平面視における表面側ガードリング215の形状は、トラック形状である。
 図26に示すように、絶縁トランス領域210には、平面視において第1裏面側コイル211Bおよび第2裏面側コイル212Bを囲む裏面側ガードリング216が形成されている。平面視における裏面側ガードリング216の形状は、トラック形状である。裏面側ガードリング216の形状およびサイズは、表面側ガードリング215と同じである。平面視において、裏面側ガードリング216は、表面側ガードリング215と重なる位置に形成されている。
 絶縁トランス領域210には、表面側ガードリング215と裏面側ガードリング216とを接続する複数のビア217が形成されている。ビア217は、平面視において表面側ガードリング215と裏面側ガードリング216との双方と重なる位置に配置されている。
 図25に示すように、回路領域220には、複数の第2電極パッド78,複数の第3電極パッド79、および複数の配線層(図示略)が設けられている。複数の配線層は、複数の第2機能部を電気的に接続する配線層と、複数の第2機能部と絶縁トランス領域210の第2トランス112とを電気的に接続する配線層と、を含む。複数の第2機能部は、回路領域220のうちZ方向において複数の配線層よりもチップ裏面寄りの位置に形成されている。一例では、図26では図示していないが、複数の第2機能部は、第1裏面側コイル211Bおよび第2裏面側コイル212BとZ方向において同じ位置に形成されている。なお、複数の第2機能部が形成されるZ方向の位置は任意に変更可能である。
 図25および図26に示すように、外周ガードリング200は、表面側外周ガードリング201と、裏面側外周ガードリング202と、を含む。
 図25に示すように、表面側外周ガードリング201は、表面側ガードリング215に接続されている。より詳細には、表面側外周ガードリング201は、表面側ガードリング215のうち第2チップ側面74寄りの直線部に接続されている。これにより、表面側外周ガードリング201は、表面側ガードリング215と電気的に接続されている。
 図26に示すように、裏面側外周ガードリング202は、裏面側ガードリング216に接続されている。より詳細には、裏面側外周ガードリング202は、裏面側ガードリング216のうち第2チップ側面74寄りの直線部に接続されている。これにより、裏面側外周ガードリング202は、裏面側ガードリング216と電気的に接続されている。平面視における裏面側外周ガードリング202の形状およびサイズは、表面側外周ガードリング201と同じである。裏面側外周ガードリング202は、平面視において表面側外周ガードリング201と重なる位置に配置されている。
 なお、図示していないが、第2チップ70は、表面側外周ガードリング201と裏面側外周ガードリング202とを接続する複数の外周ビアを有する。複数の外周ビアによって表面側外周ガードリング201と裏面側外周ガードリング202とが電気的に接続されている。各外周ビアは、Z方向に延びている。
 [効果]
 第1実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (1-1)信号伝達装置10は、第1チップ60と第2チップ70とを電気的に接続するチップ間ワイヤWAと、第1チップ60と第1リード端子11とを個別に接続する第1リード用ワイヤWBと、を備える。チップ間ワイヤWAは、金を含む材料によって形成されている。第1リード用ワイヤWBは、銅またはアルミニウムを含む材料によって形成されている。
 チップ間ワイヤWAは信号伝達装置10の絶縁信頼性の観点から比較的重要であり、ワイヤの高さおよびワイヤの形状を精度よく検査する必要がある。この点、第1実施形態では、チップ間ワイヤWAが金を含む材料によって形成されていることによって、チップ間ワイヤWAの高さをたとえばX線検査を用いて検査する場合、チップ間ワイヤWAが銅またはアルミニウムを含む材料によって形成される場合と比較して、チップ間ワイヤWAが明瞭に表示される。したがって、チップ間ワイヤWAの高さを正確に検査することができる。また、チップ間ワイヤWAの形状も正確に検査することができる。
 一方、第1リード用ワイヤWBは信号伝達装置10の絶縁信頼性の観点においてチップ間ワイヤWAよりも重要性が低い。この点、第1実施形態では、第1リード用ワイヤWBが銅またはアルミニウムを含む材料によって形成されるため、第1リード用ワイヤWBが金を含む材料によって形成される場合と比較して、コスト低減を図ることができる。このように、信号伝達装置10の品質の向上とコスト低減との両立を図ることができる。
 (1-2)第1リード用ワイヤWBは、銅ワイヤの表面にパラジウムがコーティングされた構成である。
 この構成によれば、銅ワイヤの表面にコーティングされたパラジウムによって第1リード用ワイヤWBのセカンドボンド部となる第1リード用ワイヤWBと第1リード端子11~18との接合部の接合面積を増大させることができる。これにより、第1リード用ワイヤWBと第1リード端子11~18との接合強度を高めることができるため、第1リード用ワイヤWBと第1リード端子11~18との接合部においてクラックの発生を抑制できる。
 (1-3)信号伝達装置10は、第2チップ70と第2リード端子42~47とを個別に接続する複数の第2リード用ワイヤWDをさらに備える。第2リード用ワイヤWDは、銅またはアルミニウムを含む材料によって形成されている。
 この構成によれば、信号伝達装置10の絶縁信頼性の観点からチップ間ワイヤWAよりも重要性が低い第2リード用ワイヤWDが銅またはアルミニウムを含む材料によって形成されているため、第2リード用ワイヤWDが金を含む材料によって形成される場合と比較して、コスト低減を図ることができる。
 (1-4)第2リード用ワイヤWDは、銅ワイヤの表面にパラジウムがコーティングされた構成である。
 この構成によれば、上記(1-2)の効果と同様の効果が得られる。
 (1-5)信号伝達装置10は、第1チップ60と第1ダイパッド30とを接続する第1ダイパッド用ワイヤWCをさらに備える。第1ダイパッド用ワイヤWCは、銅またはアルミニウムを含む材料によって形成されている。この構成によれば、上記(1-3)の効果と同様の効果が得られる。
 (1-6)第1ダイパッド用ワイヤWCは、銅ワイヤの表面にパラジウムがコーティングされた構成である。
 この構成によれば、上記(1-2)の効果と同様の効果が得られる。
 (1-7)第1ダイパッド用ワイヤWCのセカンドボンド部である第1ダイパッド用ワイヤWCと第1ダイパッド30との接合部にはセキュリティボンドWC1が形成されている。
 この構成によれば、セキュリティボンドWC1によって第1ダイパッド用ワイヤWCのセカンドボンド部の厚肉化を図ることができる。これにより、第1ダイパッド用ワイヤWCのセカンドボンド部におけるクラックの発生を抑制できる。
 (1-8)信号伝達装置10は、第2チップ70と第2ダイパッド50とを接続する第2ダイパッド用ワイヤWEをさらに備える。第2ダイパッド用ワイヤWEは、銅またはアルミニウムを含む材料によって形成されている。この構成によれば、上記(1-3)の効果と同様の効果が得られる。
 (1-9)第2ダイパッド用ワイヤWEのセカンドボンド部である第2ダイパッド用ワイヤWEと第2ダイパッド50との接合部にはセキュリティボンドWE1が形成されている。この構成によれば、上記(1-7)と同様の効果が得られる。
 (1-10)第1チップ60の各第1電極パッド67、各第2電極パッド68、および各第3電極パッド69は、2μm以上の厚さを有する。
 この構成によれば、各第1電極パッド67にチップ間ワイヤWAが接合されたとしても各第1電極パッド67の直下の素子絶縁層150にクラックが発生することを抑制できる。各第2電極パッド68に第1リード用ワイヤWBが接合されたとしても同様に素子絶縁層150にクラックが発生することを抑制できる。各第3電極パッド69に第1ダイパッド用ワイヤWCが接合されたとしても同様に素子絶縁層150にクラックが発生することを抑制できる。
 (1-11)封止樹脂90は、添加剤として硫黄を含む。硫黄の添加濃度は、300μg/g以下である。
 この構成によれば、第1リード用ワイヤWB、第2リード用ワイヤWD、第1ダイパッド用ワイヤWC、および第2ダイパッド用ワイヤWEのような銅ワイヤの表面にパラジウムでコーティングされたワイヤの硫化腐食を低減できる。
 (1-12)第1リード端子12の第1インナーリード部12Aにおけるワイヤ接続部12AAのインナーリード表面21Bには、めっき層29が形成されている。ワイヤ接続部12AAのインナーリード表面21Bのうち先端面24B側の端部には、めっき層29が形成されておらず、封止樹脂90と接している。
 この構成によれば、ワイヤ接続部12AAのインナーリード表面21Bにおける先端面24B寄りの端部のめっき層29と封止樹脂90との剥離の発生を抑制できる。なお、第1リード端子13~17のワイヤ接続部13AA~17AAも同様の構成であるため、同様の効果が得られる。
 (1-13)第2リード端子42の第2インナーリード部42Aにおけるワイヤ接続部42AAのインナーリード表面21Bには、めっき層29が形成されている。ワイヤ接続部42AAのインナーリード表面21Bのうち先端面24B側の端部には、めっき層29が形成されておらず、封止樹脂90と接している。
 この構成によれば、ワイヤ接続部42AAのインナーリード表面21Bにおける先端面24B寄りの端部のめっき層29と封止樹脂90との剥離の発生を抑制できる。なお、第2リード端子43~47のワイヤ接続部43AA~47AAも同様の構成であるため、同様の効果が得られる。
 (1-14)第1アウターリード部11B~18Bのアウターリード本体20Aのアウターリード表面21A、アウターリード裏面22A、およびアウターリード側面23Aには、めっき層26が形成されている。めっき層26は、アウターリード端面24Aのうちアウターリード裏面22Aからアウターリード表面21Aに向けて連続的に形成されている。めっき層26は、アウターリード表面21Aとは離隔している。
 この構成によれば、信号伝達装置10が導電性接合材SDによって回路基板PCBに実装される場合、アウターリード端面24Aに形成されためっき層26に導電性接合材SDが接触する。これにより、アウターリード端面24Aに接触した導電性接合材SDによってフィレットが形成される。したがって、信号伝達装置10の回路基板PCBへの実装状態を容易に確認できる。
 (1-15)封止樹脂90の外表面は、面粗度Rzが8μm以上となるように形成されている。
 この構成によれば、第1リード端子11~18と第2リード端子41~48との間の封止樹脂90を介する沿面距離が長くなる。したがって、第1リード端子11~18と第2リード端子41~48との間の絶縁耐圧の向上を図ることができる。
 (1-16)第1チップ60と第2チップ70とを接続するチップ間ワイヤWA1~WA3は、平面視において互いに平行である。
 この構成によれば、チップ間ワイヤWA1~WA3のワイヤ高さを検査する場合において、チップ間ワイヤWA1~WA3のワイヤ高さのばらつきが生じにくくなる。したがって、チップ間ワイヤWA1~WA3のワイヤ高さを精度よく検査することができる。
 また、第1チップ60と第2チップ70とを接続するチップ間ワイヤWA4~WA6は、平面視において互いに平行である。
 この構成によれば、チップ間ワイヤWA4~WA6のワイヤ高さを検査する場合において、チップ間ワイヤWA4~WA6のワイヤ高さのばらつきが生じにくくなる。したがって、チップ間ワイヤWA4~WA6のワイヤ高さを精度よく検査することができる。
 (1-17)第1ダイパッド30には複数の凹部39が形成されている。
 この構成によれば、凹部39に第1導電性接合材SD1が入り込むことによって第1ダイパッド30と第1導電性接合材SD1との密着性の向上を図ることができる。また、第1導電性接合材SD1が入り込んでいない凹部39には封止樹脂90が入り込んでいる。このため、第1ダイパッド30と封止樹脂90との密着性の向上を図ることができる。
 (1-18)第2ダイパッド50には複数の凹部59が形成されている。
 この構成によれば、凹部59に第2導電性接合材SD2が入り込むことによって第2ダイパッド50と第2導電性接合材SD2との密着性の向上を図ることができる。
 <第2実施形態>
 図27および図28を参照して、第2実施形態の信号伝達装置10について説明する。第2実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成が異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第2実施形態の第1フレーム10Aは、第1リード端子11~18のうち第1リード端子12~17の構成が第1実施形態とは異なる。より詳細には、図27に示すように、第1リード端子12~17の第1インナーリード部12A~17Aには、第1インナーリード部12A~17Aをその厚さ方向(Z方向)に貫通する貫通孔12AD~17ADが形成されている。また、第1インナーリード部12A,17Aには、貫通孔12AD,17ADとは別の貫通孔12AE,17AEが形成されている。つまり、第1インナーリード部12A,17Aは、2つの貫通孔を有する。一例では、平面視における貫通孔12AD~17AD,12AE,17AEの形状は円形である。第2実施形態では、貫通孔12AD~17AD,12AE,17AEの直径は互いに等しい。なお、平面視における貫通孔12AD~17AD,12AE,17AEの形状およびサイズの各々は任意に変更可能である。
 貫通孔12AD~17AD,12AE,17AE内には、封止樹脂90が充填されている。つまり、貫通孔12AD~17AD,12AE,17AE内に充填された封止樹脂90によって、第1インナーリード部12A~17Aよりも封止表面91(図2参照)寄りに設けられた封止樹脂90と、第1インナーリード部12A~17Aよりも封止裏面92(図2参照)寄りに設けられた封止樹脂90とが繋がっている。
 ここで、第1リード端子11,18は、第1ダイパッド30と一体化されているので、「第1接続端子」に対応している。第1リード端子12~17は、第1ダイパッド30から離隔して配置されているので、「第1離隔端子」に対応している。第1リード端子12~17に貫通孔12AD~17ADが形成されているため、第1離隔端子は、第1離隔端子の厚さ方向に貫通する貫通孔を有するといえる。一方、第1接続端子は、貫通孔を有していない。
 図27に示す例においては、貫通孔12ADは、リード接続部12ABの幅広部12AB2に形成されている。より詳細には、貫通孔12ADは、幅広部12AB2のうち傾斜面12ACよりも幅狭部12AB1寄りの部分に形成されている。貫通孔12AEは、ワイヤ接続部12AAに形成されている。より詳細には、貫通孔12AEは、ワイヤ接続部12AAのうちリード接続部12AB寄りの部分に形成されている。
 ワイヤ接続部12AAに対応する第1リード用ワイヤWBは、ワイヤ接続部12AAのうち貫通孔12ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔12ADからY方向に離隔して配置されている。このセカンドボンド部は、平面視において、貫通孔12ADよりもワイヤ接続部12AAの先端面寄りの部分に形成されているともいえる。
 貫通孔13ADは、第1インナーリード部13Aのワイヤ接続部13AAのうちリード接続部13AB寄りの部分に形成されている。ワイヤ接続部13AAに対応する第1リード用ワイヤWBは、ワイヤ接続部13AAのうち貫通孔13ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔13ADからX方向に離隔して配置されている。
 貫通孔14ADは、第1インナーリード部14Aのワイヤ接続部14AAのうちリード接続部14AB寄りの部分に形成されている。ワイヤ接続部14AAに対応する第1リード用ワイヤWBは、ワイヤ接続部14AAのうち貫通孔14ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔14ADからX方向に離隔して配置されている。
 貫通孔15ADは、第1インナーリード部15Aのワイヤ接続部15AAのうちリード接続部15AB寄りの部分に形成されている。ワイヤ接続部15AAに対応する第1リード用ワイヤWBは、ワイヤ接続部15AAのうち貫通孔15ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔15ADからX方向に離隔して配置されている。
 貫通孔16ADは、第1インナーリード部16Aのワイヤ接続部16AAのうちリード接続部16AB寄りの部分に形成されている。ワイヤ接続部16AAに対応する第1リード用ワイヤWBは、ワイヤ接続部16AAのうち貫通孔16ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔16ADからX方向に離隔して配置されている。
 図27に示す例においては、貫通孔17ADは、リード接続部17ABの幅広部17AB2に形成されている。より詳細には、貫通孔17ADは、幅広部17AB2のうち傾斜面17ACよりも幅狭部17AB1寄りの部分に形成されている。貫通孔17AEは、ワイヤ接続部17AAに形成されている。より詳細には、貫通孔17AEは、ワイヤ接続部17AAのうちリード接続部17AB寄りの部分に形成されている。
 ワイヤ接続部17AAに対応する第1リード用ワイヤWBは、ワイヤ接続部17AAのうち貫通孔17ADよりも第1チップ60寄りの部分に接合されている。第1リード用ワイヤWBのセカンドボンド部は、平面視において、貫通孔17ADからY方向に離隔して配置されている。このセカンドボンド部は、平面視において、貫通孔17ADよりもワイヤ接続部17AAの先端面寄りの部分に形成されているともいえる。
 なお、貫通孔12AD~17AD,12AE,17AEの形成位置は任意に変更可能である。一例では、貫通孔12AD~17ADは、リード接続部12AB~17ABに形成されていてもよい。また、貫通孔12AD~17ADは、ワイヤ接続部12AA~17AAとリード接続部12AB~17ABとにわたり形成されていてもよい。また、貫通孔12AE,17AEは、幅広部12AB2,17AB2のうちワイヤ接続部12AA,17AA寄りの部分に形成されていてもよい。また、第1インナーリード部12Aから貫通孔12AD,12AEのうち一方を省略してもよい。また、第1インナーリード部17Aから貫通孔17AD,17AEのうち一方を省略してもよい。
 図28に示すように、第2実施形態の第2フレーム10Bは、第2リード端子41~48のうち第2リード端子42~47の構成が第1実施形態とは異なる。より詳細には、第2リード端子42~47の第2インナーリード部42A~47Aには、第2インナーリード部42A~47Aをその厚さ方向(Z方向)に貫通する貫通孔42AD~47ADが形成されている。また、第2インナーリード部42A,47Aには、貫通孔42AD,47ADとは別に貫通孔42AE,47AEが形成されている。つまり、第2インナーリード部42A,47Aは、2つの貫通孔を有する。一例では、平面視における貫通孔42AD~47AD,42AE,47AEの形状は円形である。第2実施形態では、貫通孔42AD~47AD,42AE,47AEの直径は互いに等しい。また、貫通孔42AD~47AD,42AE,47AEの直径は、貫通孔12AD~17AD,12AE,17AEの直径と等しい。なお、平面視における貫通孔42AD~47AD,42AE,47AEの形状およびサイズの各々は任意に変更可能である。
 貫通孔42AD~47AD,42AE,47AE内には、封止樹脂90が充填されている。つまり、貫通孔42AD~47AD,42AE,47AE内に充填された封止樹脂90によって、第2インナーリード部42A~47Aよりも封止表面91(図2参照)寄りに設けられた封止樹脂90と、第2インナーリード部42A~47Aよりも封止裏面92(図2参照)寄りに設けられた封止樹脂90とが繋がっている。
 ここで、第2リード端子41,48は、第2ダイパッド50と一体化されているので、「第2接続端子」に対応している。第2リード端子42~47は、第2ダイパッド50から離隔して配置されているので、「第2離隔端子」に対応している。第2リード端子42~47に貫通孔42AD~47ADが形成されているため、第2離隔端子は、第2離隔端子の厚さ方向に貫通する貫通孔を有するといえる。一方、第2接続端子は、貫通孔を有していない。
 図28に示す例においては、貫通孔42ADは、リード接続部42ABの幅広部42AB2に形成されている。より詳細には、貫通孔42ADは、幅広部42AB2のうち傾斜面42ACよりも幅狭部42AB1寄りの部分に形成されている。貫通孔42AEは、ワイヤ接続部42AAに形成されている。より詳細には、貫通孔42AEは、ワイヤ接続部42AAのうちリード接続部42AB寄りの部分に形成されている。
 ワイヤ接続部42AAに対応する第2リード用ワイヤWDは、ワイヤ接続部42AAのうち貫通孔42ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔42ADからY方向に離隔して配置されている。このセカンドボンド部は、平面視において、貫通孔42ADよりもワイヤ接続部42AAの先端面寄りの部分に形成されているともいえる。
 貫通孔43ADは、第2インナーリード部43Aのワイヤ接続部43AAのうちリード接続部43AB寄りの部分に形成されている。ワイヤ接続部43AAに対応する第2リード用ワイヤWDは、ワイヤ接続部43AAのうち貫通孔43ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔43ADからX方向に離隔して配置されている。
 貫通孔44ADは、第2インナーリード部44Aのワイヤ接続部44AAのうちリード接続部44AB寄りの部分に形成されている。ワイヤ接続部44AAに対応する第2リード用ワイヤWDは、ワイヤ接続部44AAのうち貫通孔44ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔44ADからX方向に離隔して配置されている。
 貫通孔45ADは、第2インナーリード部45Aのワイヤ接続部45AAのうちリード接続部45AB寄りの部分に形成されている。ワイヤ接続部45AAに対応する第2リード用ワイヤWDは、ワイヤ接続部45AAのうち貫通孔45ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔45ADからX方向に離隔して配置されている。
 貫通孔46ADは、第2インナーリード部46Aのワイヤ接続部46AAのうちリード接続部46AB寄りの部分に形成されている。ワイヤ接続部46AAに対応する第2リード用ワイヤWDは、ワイヤ接続部46AAのうち貫通孔46ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔46ADからX方向に離隔して配置されている。
 図28に示す例においては、貫通孔47ADは、リード接続部47ABの幅広部47AB2に形成されている。より詳細には、貫通孔47ADは、幅広部47AB2のうち傾斜面47ACよりも幅狭部47AB1寄りの部分に形成されている。貫通孔47AEは、ワイヤ接続部47AAに形成されている。より詳細には、貫通孔47AEは、ワイヤ接続部47AAのうちリード接続部47AB寄りの部分に形成されている。
 ワイヤ接続部47AAに対応する第2リード用ワイヤWDは、ワイヤ接続部47AAのうち貫通孔47ADよりも第2チップ70寄りの部分に接合されている。第2リード用ワイヤWDのセカンドボンド部は、平面視において、貫通孔47ADからY方向に離隔して配置されている。このセカンドボンド部は、平面視において、貫通孔47ADよりもワイヤ接続部47AAの先端面寄りの部分に形成されているともいえる。
 なお、貫通孔42AD~47AD,42AE,47AEの形成位置は任意に変更可能である。一例では、貫通孔42AD~47ADは、リード接続部42AB~47ABに形成されていてもよい。また、貫通孔42AD~47ADは、ワイヤ接続部42AA~47AAとリード接続部42AB~47ABとにわたり形成されていてもよい。また、貫通孔42AE,47AEは、幅広部42AB2,47AB2のうちワイヤ接続部42AA,47AA寄りの部分に形成されていてもよい。また、第2インナーリード部42Aから貫通孔42AD,42AEのうち一方を省略してもよい。また、第2インナーリード部47Aから貫通孔47AD,47AEのうち一方を省略してもよい。
 [効果]
 第2実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (2-1)第1リード端子12~17は、貫通孔12AD~17AD,12AE,17AEを有する。貫通孔12AD~17AD,12AE,17AEには、封止樹脂90が充填されている。
 この構成によれば、貫通孔12AD~17AD,12AE,17AEに充填された封止樹脂90によって第1リード端子12~17に外力が加えられた際に第1リード端子12~17が移動することを抑制できる。したがって、第1リード端子12~17の移動に起因して第1リード用ワイヤWBに力が加えられることを抑制できる。
 (2-2)第2リード端子42~47は、貫通孔42AD~47AD,42AE,47AEを有する。貫通孔42AD~47AD,42AE,47AEには、封止樹脂90が充填されている。
 この構成によれば、貫通孔42AD~47AD,42AE,47AEに充填された封止樹脂90によって第2リード端子42~47に外力が加えられた際に第2リード端子42~47が移動することを抑制できる。したがって、第2リード端子42~47の移動に起因して第2リード用ワイヤWDに力が加えられることを抑制できる。
 <第3実施形態>
 図29および図30を参照して、第3実施形態の信号伝達装置10について説明する。第3実施形態の信号伝達装置10は、第2実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成と、ワイヤの構成とが異なる。以下の説明では、第2実施形態と異なる構成について詳細に説明し、第2実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第3実施形態の第1フレーム10Aは、第2実施形態と比較して、第1リード端子11~18のうち第1リード端子13,16の構成が異なる。より詳細には、図29に示すように、第1リード端子13,16の第1インナーリード部13A,16Aから貫通孔13AD,16AD(図27参照)が省略されている。
 つまり、第1フレーム10Aは、第1リード端子12~17の第1インナーリード部12A~17Aのうち貫通孔が形成された第1特定端子(第3実施形態では第1リード端子12,14,15,17)と、貫通孔が形成されていない第2特定端子(第3実施形態では第1リード端子13,16)との2種類の第1リード端子を含む。
 第3実施形態では、第1特定端子および第2特定端子に応じて、第1リード用ワイヤWBのセカンドボンド部の構成が異なる。より詳細には、第2特定端子としての第1リード端子13,16における第1インナーリード部13A,16Aのワイヤ接続部13AA,16AAに接続された第1リード用ワイヤWBのセカンドボンド部には、セキュリティボンドWB1が形成されている。一方、第1特定端子としての第1リード端子12,14,15,17における第1インナーリード部13A,14A,15A,17Aのワイヤ接続部13AA,14AA,15AA,17AAに接続された第1リード用ワイヤWBのセカンドボンド部には、セキュリティボンドWB1が形成されていない。なお、セキュリティボンドWB1の構成は、図15に示す第1実施形態のセキュリティボンドWC1の構成と同じである。
 つまり、複数の第1リード用ワイヤWBは、第1特定端子(第3実施形態では第1リード端子12,14,15,17)に接合された第1特定ワイヤと、第2特定端子(第3実施形態では第1リード端子13,16)に接合された第2特定ワイヤと、を含む。第2特定ワイヤのうち第2特定端子に接合された接合部(セカンドボンド部)には、セキュリティボンドが形成されている。
 第3実施形態の第2フレーム10Bは、第2実施形態と比較して、第2リード端子41~48のうち第2リード端子43,46の構成が異なる。より詳細には、図30に示すように、第2リード端子43,46の第2インナーリード部43A,46Aから貫通孔43AD,46AD(図28参照)が省略されている。
 つまり、第2フレーム10Bは、第2リード端子42~47の第2インナーリード部42A~47Aのうち貫通孔が形成された第3特定端子(第3実施形態では第2リード端子42,44,45,47)と、貫通孔が形成されていない第4特定端子(第3実施形態では第2リード端子43,46)との2種類の第2リード端子を含む。
 第3実施形態では、第3特定端子および第4特定端子に応じて、第2リード用ワイヤWDのセカンドボンド部の構成が異なる。より詳細には、第4特定端子としての第2リード端子43,46における第2インナーリード部43A,46Aのワイヤ接続部43AA,46AAに接続された第2リード用ワイヤWDのセカンドボンド部には、セキュリティボンドWD1が形成されている。一方、第3特定端子としての第2リード端子42,44,45,47における第2インナーリード部43A,44A,45A,47Aのワイヤ接続部43AA,44AA,45AA,47AAに接続された第2リード用ワイヤWDのセカンドボンド部には、セキュリティボンドWD1が形成されていない。なお、セキュリティボンドWD1の構成は、図15に示す第1実施形態のセキュリティボンドWC1の構成と同じである。
 つまり、複数の第2リード用ワイヤWDは、第3特定端子(第3実施形態では第2リード端子42,44,45,47)に接合された第3特定ワイヤと、第4特定端子(第3実施形態では第2リード端子43,46)に接合された第4特定ワイヤと、を含む。第4特定ワイヤのうち第4特定端子に接合された接合部(セカンドボンド部)には、セキュリティボンドが形成されている。
 [効果]
 第3実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (3-1)第1リード端子12~17のうち第1リード端子13,16には貫通孔13AD,16ADが形成されていない。第1リード端子13,16のワイヤ接続部13AA,16AAに接合された第1リード用ワイヤWBのセカンドボンド部にはセキュリティボンドWB1が形成されている。
 この構成によれば、第1リード端子13,16に外力が加わった際に第1リード端子13,16が移動して第1リード用ワイヤWBに力が加わったとしてもセキュリティボンドWB1によって第1リード用ワイヤWBがワイヤ接続部13AA,16AAから剥離することを抑制できる。
 (3-2)第1リード端子12~17のうち第1リード端子12,14,15,17には貫通孔12AD,12AE,14AD,15AD,17AD,17AEが形成されている。第1リード端子12,14,15,17のワイヤ接続部12AA,12AA,14AA,15AA,17AAに接合された第1リード用ワイヤWBのセカンドボンド部にはセキュリティボンドが形成されていない。
 この構成によれば、貫通孔12AD,12AE,14AD,15AD,17AD,17AEに充填された封止樹脂90によって第1リード端子12,14,15,17の移動が抑制されるため、第1リード端子12,14,15,17に接合された第1リード用ワイヤWBに力が加わりにくくなる。そして、第1リード端子12,14,15,17に接合された第1リード用ワイヤWBにセキュリティボンドを形成する必要がなくなるため、製造工程を簡素化できる。したがって、信号伝達装置10の製造コストの低減を図ることができる。
 (3-3)第2リード端子42~47のうち第2リード端子43,46には貫通孔43AD,46ADが形成されていない。第2リード端子43,46のワイヤ接続部43AA,46AAに接合された第2リード用ワイヤWDのセカンドボンド部にはセキュリティボンドWD1が形成されている。
 この構成によれば、第2リード端子43,46に外力が加わった際に第2リード端子43,46が移動して第2リード用ワイヤWDに力が加わったとしてもセキュリティボンドWD1によって第2リード用ワイヤWDがワイヤ接続部43AA,46AAから剥離することを抑制できる。
 (3-4)第2リード端子42~47のうち第2リード端子42,44,45,47には貫通孔42AD,42AE,44AD,45AD,47AD,47AEが形成されている。第2リード端子42,44,45,47に接合された第2リード用ワイヤWDのセカンドボンド部にはセキュリティボンドが形成されていない。
 この構成によれば、貫通孔42AD,42AE,44AD,45AD,47AD,47AEに充填された封止樹脂90によって第2リード端子42,44,45,47の移動が抑制されるため、第2リード端子42,44,45,47に接合された第2リード用ワイヤWDに力が加わりにくくなる。そして、第2リード端子42,44,45,47に接合された第2リード用ワイヤWDにセキュリティボンドを形成する必要がなくなるため、製造工程を簡素化できる。したがって、信号伝達装置10の製造コストの低減を図ることができる。
 <第4実施形態>
 図31を参照して、第4実施形態の信号伝達装置10について説明する。第4実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成が異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第4実施形態の第1フレーム10Aおよび第2フレーム10Bは、第1実施形態と比較して、第1ダイパッド30および第2ダイパッド50の形状が異なる。
 平面視において、第1ダイパッド30の第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さよりも長い。平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さよりも長い。また、平面視において、第1先端側湾曲面35の曲率半径は、第1基端側湾曲面37の曲率半径よりも大きいといえる。平面視において、第1先端側湾曲面35の曲率半径は、第2基端側湾曲面38の曲率半径よりも大きいといえる。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さの2倍以上である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さの3倍以上である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さの4倍以下である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さの2倍以上である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さの3倍以上である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さの4倍以下である。
 なお、第1先端側湾曲面35の弧の長さは任意に変更可能である。一例では、平面視において、第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第1先端側湾曲面35の弧の長さは、第1基端側湾曲面37の弧の長さよりも大きくかつ第1基端側湾曲面37の2倍よりも小さくてもよい。また、一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2基端側湾曲面38の弧の長さよりも大きくかつ第2基端側湾曲面38の2倍よりも小さくてもよい。
 平面視において、第1ダイパッド30の第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さよりも長い。平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さよりも長い。また、平面視において、第2先端側湾曲面36の曲率半径は、第1基端側湾曲面37の曲率半径よりも大きいといえる。平面視において、第2先端側湾曲面36の曲率半径は、第2基端側湾曲面38の曲率半径よりも大きいといえる。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さの2倍以上である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さの3倍以上である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さの4倍以下である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さの2倍以上である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さの3倍以上である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さの4倍以下である。
 なお、第2先端側湾曲面36の弧の長さは任意に変更可能である。一例では、平面視において、第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第2先端側湾曲面36の弧の長さは、第1基端側湾曲面37の弧の長さよりも大きくかつ第1基端側湾曲面37の2倍よりも小さくてもよい。また、一例では、平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第2先端側湾曲面36の弧の長さは、第2基端側湾曲面38の弧の長さよりも大きくかつ第2基端側湾曲面38の2倍よりも小さくてもよい。
 一例では、平面視において、第1先端側湾曲面35の弧の長さは、第2先端側湾曲面36の弧の長さと等しい。ここで、第1先端側湾曲面35の弧の長さと第2先端側湾曲面36の弧の長さとの差がたとえば第1先端側湾曲面35の弧の長さの10%以下であれば、第1先端側湾曲面35の弧の長さが第2先端側湾曲面36の弧の長さと等しいといえる。
 平面視において、第2ダイパッド50の第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さよりも長い。平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さよりも長い。また、平面視において、第3先端側湾曲面55の曲率半径は、第3基端側湾曲面57の曲率半径よりも大きいといえる。平面視において、第3先端側湾曲面55の曲率半径は、第4基端側湾曲面58の曲率半径よりも大きいといえる。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さの2倍以上である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さの3倍以上である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さの4倍以下である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さの2倍以上である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さの3倍以上である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さの4倍以下である。
 なお、第3先端側湾曲面55の弧の長さは任意に変更可能である。一例では、平面視において、第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第3先端側湾曲面55の弧の長さは、第3基端側湾曲面57の弧の長さよりも大きくかつ第3基端側湾曲面57の2倍よりも小さくてもよい。また、一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4基端側湾曲面58の弧の長さよりも大きくかつ第4基端側湾曲面58の2倍よりも小さくてもよい。
 平面視において、第2ダイパッド50の第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さよりも長い。平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さよりも長い。また、平面視において、第4先端側湾曲面56の曲率半径は、第3基端側湾曲面57の曲率半径よりも大きいといえる。平面視において、第4先端側湾曲面56の曲率半径は、第4基端側湾曲面58の曲率半径よりも大きいといえる。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さの2倍以上である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さの3倍以上である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さの4倍以下である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さの2倍以上である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さの3倍以上である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さの4倍以下である。
 なお、第4先端側湾曲面56の弧の長さは任意に変更可能である。一例では、平面視において、第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第4先端側湾曲面56の弧の長さは、第3基端側湾曲面57の弧の長さよりも大きくかつ第3基端側湾曲面57の2倍よりも小さくてもよい。また、一例では、平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さの4倍よりも大きくてもよい。また、一例では、平面視において、第4先端側湾曲面56の弧の長さは、第4基端側湾曲面58の弧の長さよりも大きくかつ第4基端側湾曲面58の2倍よりも小さくてもよい。
 一例では、平面視において、第3先端側湾曲面55の弧の長さは、第4先端側湾曲面56の弧の長さと等しい。ここで、第3先端側湾曲面55の弧の長さと第4先端側湾曲面56の弧の長さとの差がたとえば第3先端側湾曲面55の弧の長さの10%以下であれば、第3先端側湾曲面55の弧の長さが第4先端側湾曲面56の弧の長さと等しいといえる。
 一例では、平面視において、第3先端側湾曲面55の弧の長さは、第1ダイパッド30の第1先端側湾曲面35の弧の長さと等しい。ここで、第3先端側湾曲面55の弧の長さと第1先端側湾曲面35の弧の長さとの差がたとえば第3先端側湾曲面55の弧の長さの10%以下であれば、第3先端側湾曲面55の弧の長さが第1先端側湾曲面35の弧の長さと等しいといえる。
 一例では、平面視において、第4先端側湾曲面56の弧の長さは、第1ダイパッド30の第2先端側湾曲面36の弧の長さと等しい。ここで、第4先端側湾曲面56の弧の長さと第2先端側湾曲面36の弧の長さとの差がたとえば第4先端側湾曲面56の弧の長さの10%以下であれば、第4先端側湾曲面56の弧の長さが第2先端側湾曲面36の弧の長さと等しいといえる。
 [効果]
 第4実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (4-1)第1ダイパッド30では、平面視において、第1先端側湾曲面35および第2先端側湾曲面36の双方の弧の長さは、第1基端側湾曲面37および第2基端側湾曲面38の双方の弧の長さよりも長い。
 この構成によれば、第1先端側湾曲面35および第2先端側湾曲面36によって第1ダイパッド30のうち第2ダイパッド50に近い先端部におけるコーナ部分の電界集中を緩和できる。これにより、第1ダイパッド30と第2ダイパッド50との間の絶縁破壊を回避できるため、信号伝達装置10の絶縁耐圧の向上を図ることができる。
 (4-2)第2ダイパッド50では、平面視において、第3先端側湾曲面55および第4先端側湾曲面56の双方の弧の長さは、第3基端側湾曲面57および第4基端側湾曲面58の双方の弧の長さよりも長い。
 この構成によれば、第3先端側湾曲面55および第4先端側湾曲面56によって第2ダイパッド50のうち第1ダイパッド30に近い先端部におけるコーナ部分の電界集中を緩和できる。これにより、第1ダイパッド30と第2ダイパッド50との間の絶縁破壊を回避できるため、信号伝達装置10の絶縁耐圧の向上を図ることができる。
 <第5実施形態>
 図32~図39を参照して、第5実施形態の信号伝達装置10について説明する。第5実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60および第2チップ70の各々の構成が主に異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 図32は第1ダイパッド30および第1チップ60をXZ平面で切断した概略断面構造を示し、図33は第1ダイパッド30および第1チップ60をYZ平面で切断した概略断面構造を示している。このため、図32および図33の断面構造では、ワイヤWA~WCおよび封止樹脂90を省略している。
 図32および図33に示すように、第1チップ60の基板130は、基板表面131と基板裏面132とを繋ぐ第1~第4基板側面133~136を有する。第1基板側面133は第1チップ60の第1チップ側面63の一部を構成し、第2基板側面134は第2チップ側面64の一部を構成し、第3基板側面135は第3チップ側面65の一部を構成し、第4基板側面136は第4チップ側面66の一部を構成している。
 基板130は、段差部139によって第1部分137および第2部分138に区分できる。第1部分137は、基板130のうち第1ダイパッド30寄りの部分である。第2部分138は、第1部分137上に設けられた部分である。図32および図33に示すとおり、段差部139は、基板130の全周にわたり形成されている。
 一例では、第1部分137の厚さ寸法(Z方向の大きさ)は、第2部分138の厚さ寸法(Z方向の大きさ)よりも大きい。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の2倍以上である。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の3倍以上である。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の4倍以下である。
 図32および図33に示すように、第1導電性接合材SD1は、第1部分137と第1ダイパッド30とのZ方向の間に介在するとともに、Z方向と直交する方向において第1チップ60からはみ出した部分を有する。このはみ出した部分は、第1部分137との間において第1フィレットSDAを形成している。第1フィレットSDAは、段差部139によって第2部分138には形成されていない。図32および図33に示す例においては、第1フィレットSDAは、Z方向において第1部分137の全体にわたり形成されている。
 なお、第1フィレットSDAの高さ寸法(Z方向の大きさ)は段差部139よりも低い範囲において任意に変更可能である。一例では、第1フィレットSDAの高さ寸法は、第1部分137の厚さ寸法の1/2程度であってもよい。
 また、第1チップ60における段差部139のZ方向の位置は任意に変更可能である。つまり、第1部分137の厚さ寸法と第2部分138の厚さ寸法との関係は任意に変更可能である。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法と等しくてもよい。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の1/2以下である。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の1/3以下である。一例では、第1部分137の厚さ寸法は、第2部分138の厚さ寸法の1/4以上である。一例では、第1部分137の厚さ寸法は、第1チップ60の厚さ寸法(Z方向の大きさ)の1/4以上3/4以下である。
 段差部139の幅H1は、第1~第4基板側面133~136において互いに等しい。段差部139の幅H1は、たとえば3μm程度である。ここで、段差部139の幅H1は、たとえば第1基板側面133における第1部分137に対応する部分と第2部分138に対応する部分との間の距離によって定義できる。
 図34は第2ダイパッド50および第2チップ70をXZ平面で切断した概略断面構造を示し、図35は第2ダイパッド50および第2チップ70をYZ平面で切断した概略断面構造を示している。このため、図34および図35の断面構造では、ワイヤWD,WEおよび封止樹脂90を省略している。
 図34および図35に示すように、第2ダイパッド50に実装された第2チップ70は、基板230を備える。
 基板230は、たとえば半導体基板によって形成されている。基板230は、シリコンを含む材料によって形成された半導体基板である。なお、基板230は、半導体基板として、ワイドバンドギャップ半導体または化合物半導体が用いられていてもよい。また、基板230は、半導体基板に代えて、ガラスを含む材料によって形成された絶縁基板、またはアルミナ等のセラミックスを含む材料によって形成された絶縁基板が用いられていてもよい。
 ワイドバンドギャップ半導体は、2.0eV以上のバンドギャップを有する半導体基板である。ワイドバンドギャップ半導体は、炭化シリコン、窒化ガリウム、および酸化ガリウムのいずれか1つであってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、窒化アルミニウム、窒化インジウム、窒化ガリウム、およびヒ化ガリウムのうち少なくとも1つを含んでもよい。
 第2チップ70の基板230は、基板表面231と基板裏面232とを繋ぐ第1~第4基板側面233~236を有する。第1基板側面233は第2チップ70の第1チップ側面73の一部を構成し、第2基板側面234は第2チップ側面74の一部を構成し、第3基板側面235は第3チップ側面75の一部を構成し、第4基板側面236は第4チップ側面76の一部を構成している。
 基板230は、段差部239によって第1部分237および第2部分238に区分できる。第1部分237は、基板230のうち第2ダイパッド50寄りの部分である。第2部分238は、第1部分237上に設けられた部分である。図34および図35に示すとおり、段差部239は、基板230の全周にわたり形成されている。
 一例では、第1部分237の厚さ寸法(Z方向の大きさ)は、第2部分238の厚さ寸法(Z方向の大きさ)よりも大きい。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の2倍以上である。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の3倍以上である。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の4倍以下である。
 図34および図35に示すように、第2導電性接合材SD2は、第1部分237と第2ダイパッド50とのZ方向の間に介在するとともに、Z方向と直交する方向において第2チップ70からはみ出した部分を有する。このはみ出した部分は、第1部分237との間において第2フィレットSDBを形成している。第2フィレットSDBは、段差部239によって第2部分238には形成されていない。図34および図35に示す例においては、第2フィレットSDBは、Z方向において第1部分237の全体にわたり形成されている。
 なお、第2フィレットSDBの高さ寸法(Z方向の大きさ)は段差部239よりも低い範囲において任意に変更可能である。一例では、第2フィレットSDBの高さ寸法は、第1部分237の厚さ寸法の1/2程度であってもよい。
 また、第2チップ70における段差部239のZ方向の位置は任意に変更可能である。つまり、第1部分237の厚さ寸法と第2部分238の厚さ寸法との関係は任意に変更可能である。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法と等しくてもよい。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の1/2以下である。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の1/3以下である。一例では、第1部分237の厚さ寸法は、第2部分238の厚さ寸法の1/4以上である。一例では、第1部分237の厚さ寸法は、第2チップ70の厚さ寸法(Z方向の大きさ)の1/4以上3/4以下である。
 段差部239の幅H2は、第1~第4基板側面233~236において互いに等しい。段差部239の幅H2は、たとえば3μm程度である。ここで、段差部239の幅H2は、たとえば第1基板側面233における第1部分237に対応する部分と第2部分238に対応する部分との間の距離によって定義できる。
 [第1チップの製造方法]
 図36~図39を参照して、第1チップ60の製造工程の一例について説明する。
 第1チップ60の製造方法は、基板830を用意する工程と、基板830上に素子絶縁層850を形成する工程と、パッシベーション膜861を形成する工程と、保護膜862を形成する工程と、個片化する工程と、を含む。以下、各工程の概要について説明する。なお、図36~図39では、第1チップ60の概略断面構造を示している。図37~図39では、図面の理解を容易にするため、パッシベーション膜861および保護膜862のハッチング線を省略している。
 図36に示すように、基板830を用意する工程では、複数の基板130(図32参照)を含む基板830が用意される。ここで、基板830のうち複数の基板130の各々に対応した領域には、図16に示す送信部501、受信部502、ロジック部503、UVLO部504、抵抗505,506,507,509,511、およびスイッチング素子508,510が形成されている。
 図37に示すように、基板830上に素子絶縁層850を形成する工程では、たとえばCVD法によって基板830の基板表面831にSiO膜が積層される。SiO膜は、素子絶縁層850を構成する膜である。素子絶縁層850は、たとえば複数のSiO膜の積層構造によって構成されている。
 また、図示していないが、基板830上に素子絶縁層850を形成する工程の途中に、たとえばスパッタ法およびエッチングによって第1裏面側コイル111Bおよび第2裏面側コイル112Bを形成する工程が実施される。そして、第1裏面側コイル111Bおよび第2裏面側コイル112Bを形成する工程が実施された後、基板830上に素子絶縁層850を形成する工程が再び実施される。
 図示していないが、素子絶縁層850が形成された後、スパッタ法およびエッチングによって第1表面側コイル111Aおよび第2表面側コイル112Aおよび第1~第3電極パッド67~69を形成する工程が実施される。
 続いて、パッシベーション膜861を形成する工程では、たとえばCVD法によって素子絶縁層850上にパッシベーション膜861が形成される。パッシベーション膜861は、図示していないが、第2表面側コイル112Aおよび第1~第3電極パッド67~69も覆っている。
 続いて、保護膜862を形成する工程では、パッシベーション膜861上にたとえばCVD法によって保護膜862が形成される。保護膜862は、たとえばパッシベーション膜861の表面全体にわたり形成されている。
 続いて、図示していないが、保護膜862およびパッシベーション膜861の双方における第1~第3電極パッド67~69の各々の一部と重なる位置にたとえばエッチングによって開口部を形成する。これにより、第1~第3電極パッド67~69の一部は、保護膜862およびパッシベーション膜861の双方からZ方向に露出する。
 図38および図39に示すように、個片化する工程は、第1ダイシング工程と、第2ダイシング工程と、を含む。
 図38に示すように、第1ダイシング工程では、まず、基板830がダイシングテープDTに設置される。基板830の基板裏面832がダイシングテープDTに接している。続いて、第1ダイシングブレードDB1によって、保護膜862、パッシベーション膜861、および素子絶縁層850が切断されるとともに、基板830のZ方向の一部が切削される。これにより、基板830には凹部833が形成される。
 続いて、図39に示すように、第2ダイシング工程では、第2ダイシングブレードDB2によって、基板830が切断される。第2ダイシングブレードDB2は、第1ダイシングブレードDB1よりも幅が狭いブレードである。第2ダイシングブレードDB2は、基板830の凹部833から基板830を切断する。これにより、基板830には段差部839が形成される。その後、ダイシングテープDTが除去される。以上の工程を経て、第1チップ60が製造される。
 [効果]
 第5実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (5-1)第1チップ60の基板130は、基板裏面132を含む第1部分137と、第1部分137上に設けられた第2部分138と、第1部分137に対して第2部分138が基板130の内側に位置するように形成された段差部139と、を有する。
 この構成によれば、第1導電性接合材SD1によって第1チップ60が第1ダイパッド30に実装された際に、段差部139によって第1導電性接合材SD1が第1チップ60のチップ表面61まで這い上がることを抑制できる。
 (5-2)第2チップ70の基板230は、基板裏面232を含む第1部分237と、第1部分237上に設けられた第2部分238と、第1部分237に対して第2部分238が基板230の内側に位置するように形成された段差部239と、を有する。
 この構成によれば、第2導電性接合材SD2によって第2チップ70が第2ダイパッド50に実装された際に、段差部239によって第2導電性接合材SD2が第2チップ70のチップ表面71まで這い上がることを抑制できる。
 <第6実施形態>
 図40を参照して、第6実施形態の信号伝達装置10について説明する。第6実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、導電部材10D,10Eが省略された点が異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 図40に示すように、信号伝達装置10は、導電部材10D,10E(図7参照)を備えていない。このため、封止樹脂90の第3封止側面95から導電部材10Dが露出していない。また、封止樹脂90の第4封止側面96から導電部材10Eが露出していない。このように、第3封止側面95および第4封止側面96の双方は、封止樹脂90を構成する樹脂材料のみによって構成されている。
 また、導電部材10D,10Eが省略されたことにともない、第3封止側面95から凹部95D(図7参照)が省略され、第4封止側面96から凹部96D(図7参照)が省略されている。つまり、第3封止側面95のうち第3表面側側面95Aと第3裏面側側面95Bとの間の部分は、X方向の全体にわたりXZ平面に沿った平坦面が形成されている。第4封止側面96のうち第4表面側側面96Aと第4裏面側側面96Bとの間の部分は、X方向の全体にわたりXZ平面に沿った平坦面が形成されている。
 [効果]
 第6実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (6-1)封止樹脂90の第3封止側面95および第4封止側面96の双方は、導電部材が露出することなく封止樹脂90のみで構成されている。
 この構成によれば、第3封止側面95および第4封止側面96の少なくとも一方に導電部材が露出する構成と比較して、静電気等が導電部材を介して封止樹脂90内に進入することを抑制できる。また、導電部材が露出していないことによって第1リード端子11~18と第2リード端子41~48との間の絶縁距離を大きくとることができる。したがって、信号伝達装置10の絶縁耐圧の向上を図ることができる。
 <第7実施形態>
 図41~図45を参照して、第7実施形態の信号伝達装置10について説明する。第7実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1フレーム10A、第2フレーム10B、第1チップ60、および第2チップ70の構成が主に異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 [信号伝達装置の全体構成]
 図41に示すように、第7実施形態では、第1実施形態とは異なり、信号伝達装置10は、封止樹脂90の第1封止側面93から突出した10個の第1リード端子11M,11N,12~17,18M,18Nと、第2封止側面94から突出した10個の第2リード端子41M,41N,42~47,48M,48Nと、を備える。つまり、第7実施形態では、第1実施形態よりも第1リード端子および第2リード端子の個数が多くなっている。
 第1リード端子11M,11N,12~17,18M,18Nのうち封止樹脂90の外部の第1アウターリード部11MB,11NB,12B~17B,18MB,18NBの構成は、第1実施形態の第1アウターリード部11B~18Bの構成と同じである。第2リード端子41M,41N,42~47,48M,48Nのうち封止樹脂90の外部の第2アウターリード部41MB,41NB,42B~47B,48MB,48NBの構成は、第1実施形態の第2アウターリード部41B~48Bの構成と同じである。このため、第1アウターリード部11MB,11NB,12B~17B,18MB,18NBおよび第2アウターリード部41MB,41NB,42B~47B,48MB,48NBの構成の詳細な説明を省略する。また、封止樹脂90の構成は、第1実施形態の封止樹脂90の構成と同じであるため、その詳細な説明を省略する。
 図42に示すように、上述のとおり、第7実施形態では、第1フレーム10Aは、10個の第1リード端子11M,11N,12~17,18M,18Nを含む。第1リード端子11M,11N,12~17,18M,18Nは、Y方向において互いに離隔して配列されている。第1リード端子11M,11N,12~17,18M,18Nは、第3封止側面95から第4封止側面96に向けて第1リード端子11M,11N,12,13,14,15,16,17,18N,18Mの順に配置されている。
 第1リード端子11M,11N,18M,18Nは、第1インナーリード部11MA,11NA,18MA,18NAを含む。第1インナーリード部11MA,11NA,18MA,18NAの各々は、第1ダイパッド30に接続されている。一例では、第1インナーリード部11MA,11NA,18MA,18NAは、第1ダイパッド30と一体化されている。第1リード端子12~17は、第1実施形態と同様に、第1ダイパッド30から離隔して配置されている。
 図43に示すように、第1リード端子11M,11Nの第1インナーリード部11MA,11NAの各々の構成は、第1実施形態の第1リード端子11の第1インナーリード部11Aの構成と共通した構成を含む。このため、第1インナーリード部11MA,11NAの各々のうち第1実施形態の第1インナーリード部11Aの構成と共通した構成には、第1実施形態の第1インナーリード部11Aと同じ符号を付し、その詳細な説明を省略する。
 第1リード端子18M,18Nの第1インナーリード部18MA,18NAの各々の構成は、第1実施形態の第1リード端子18の第1インナーリード部18Aの構成と共通した構成を含む。このため、第1インナーリード部18MA,18NAの各々のうち第1実施形態の第1インナーリード部18Aの構成と共通した構成には、第1実施形態の第1インナーリード部18Aと同じ符号を付し、その詳細な説明を省略する。
 第1ダイパッド30は、第1側面33から第3封止側面95に向けて突出する第1突出部33Aと、第2側面34から第4封止側面96に向けて突出する第2突出部34Aと、を含む。第1突出部33AのX方向の大きさおよび第2突出部34AのX方向の大きさは互いに等しく、第1ダイパッド30のX方向の大きさよりも小さい。
 第1突出部33Aおよび第2突出部34Aの双方は、第1ダイパッド30のうち第1先端面31寄りに配置されている。つまり、第1突出部33Aおよび第2突出部34Aと第1先端面31とのX方向の間の距離は、第1突出部33Aおよび第2突出部34Aと第1基端面32とのX方向の間の距離よりも小さい。また、Y方向から視て、第1突出部33Aおよび第2突出部34Aの双方は、第1チップ60と重なる位置に形成されている。
 第1インナーリード部11MA,11NAは、第1突出部33Aに接続されている。より詳細には、第1インナーリード部11MA,11NAの各々のうち第3リード部11ACは、第1突出部33Aに接続されている。第1インナーリード部11MAが第1インナーリード部11NAよりも第3封止側面95寄りに配置されているため、第1インナーリード部11MAの第3リード部11ACは、第1インナーリード部11NAの第3リード部11ACよりも第2フレーム10B寄りに配置されている。
 第1インナーリード部18MA,18NAは、第2突出部34Aに接続されている。より詳細には、第1インナーリード部18MA,18NAの各々のうち第3リード部18ACは、第2突出部34Aに接続されている。第1インナーリード部18MAが第1インナーリード部18NAよりも第4封止側面96寄りに配置されているため、第1インナーリード部18NAの第3リード部18ACは、第1インナーリード部18NAの第3リード部18ACよりも第2フレーム10B寄りに配置されている。
 図43に示すとおり、第1チップ60の第3チップ側面65寄りの第3電極パッド69に接続された第1ダイパッド用ワイヤWCのセカンドボンド部は、第1突出部33Aに形成されている。この第1ダイパッド用ワイヤWCのセカンドボンド部は、第1突出部33AにおいてセキュリティボンドWC1が形成されている。第1チップ60の第4チップ側面66寄りの第3電極パッド69に接続された第1ダイパッド用ワイヤWCのセカンドボンド部は、第2突出部34Aに形成されている。この第1ダイパッド用ワイヤWCのセカンドボンド部は、第2突出部34AにおいてセキュリティボンドWC1が形成されている。
 図42に示すように、上述のとおり、第7実施形態では、第2フレーム10Bは、10個の第2リード端子41M,41N,42~47,48M,48Nを含む。第2リード端子41M,41N,42~47,48M,48Nは、Y方向において互いに離隔して配列されている。第2リード端子41M,41N,42~47,48M,48Nは、第4封止側面96から第3封止側面95に向けて第2リード端子41M,41N,42,43,44,45,46,47,48N,48Mの順に配置されている。
 第2リード端子41M,41N,48M,48Nは、第2インナーリード部41MA,41NA,48MA,48NAを含む。第2インナーリード部41MA,41NA,48MA,48NAの各々は、第2ダイパッド50に接続されている。一例では、第2インナーリード部41MA,41NA,48MA,48NAは、第2ダイパッド50と一体化されている。第2リード端子42~47は、第1実施形態と同様に、第2ダイパッド50から離隔して配置されている。
 図44に示すように、第2リード端子41M,41Nの第2インナーリード部41MA,41NAの各々の構成は、第1実施形態の第2リード端子41の第2インナーリード部41Aの構成と共通した構成を含む。このため、第2インナーリード部41MA,41NAの各々のうち第1実施形態の第2インナーリード部41Aの構成と共通した構成には、第1実施形態の第2インナーリード部41Aと同じ符号を付し、その詳細な説明を省略する。
 第2ダイパッド50は、第3側面53から第3封止側面95に向けて突出する第3突出部53Aと、第4側面54から第4封止側面96に向けて突出する第4突出部54Aと、を含む。第3突出部53AのX方向の大きさおよび第4突出部54AのX方向の大きさは互いに等しく、第2ダイパッド50のX方向の大きさよりも小さい。
 第3突出部53Aおよび第4突出部54Aの双方は、第2ダイパッド50のうち第2先端面51寄りに配置されている。つまり、第3突出部53Aおよび第4突出部54Aと第2先端面51とのX方向の間の距離は、第3突出部53Aおよび第4突出部54Aと第2基端面52とのX方向の間の距離よりも小さい。また、Y方向から視て、第3突出部53Aおよび第4突出部54Aの双方は、第2チップ70と重なる位置に形成されている。
 第2インナーリード部41MA,41NAは、第3突出部53Aに接続されている。より詳細には、第2インナーリード部41MA,41NAの各々のうち第6リード部41ACは、第3突出部53Aに接続されている。第2インナーリード部41MAが第2インナーリード部41NAよりも第3封止側面95寄りに配置されているため、第2インナーリード部41MAの第6リード部41ACは、第2インナーリード部41NAの第6リード部41ACよりも第1フレーム10A寄りに配置されている。
 第2インナーリード部48MA,48NAは、第4突出部54Aに接続されている。より詳細には、第2インナーリード部48MA,48NAの各々のうち第6リード部48ACは、第4突出部54Aに接続されている。第2インナーリード部48MAが第2インナーリード部48NAよりも第4封止側面96寄りに配置されているため、第2インナーリード部48NAの第6リード部48ACは、第2インナーリード部48NAの第6リード部48ACよりも第1フレーム10A寄りに配置されている。
 図44に示すとおり、第2チップ70の第3チップ側面75寄りの第3電極パッド79に接続された第2ダイパッド用ワイヤWEのセカンドボンド部は、第3突出部53Aに形成されている。この第2ダイパッド用ワイヤWEのセカンドボンド部は、第3突出部53AにおいてセキュリティボンドWE1が形成されている。第2チップ70の第4チップ側面76寄りの第3電極パッド79に接続された第2ダイパッド用ワイヤWEのセカンドボンド部は、第4突出部54Aに形成されている。この第2ダイパッド用ワイヤWEのセカンドボンド部は、第4突出部54AにおいてセキュリティボンドWE1が形成されている。
 [信号伝達装置の回路構成]
 図45を参照して、第7実施形態の信号伝達装置10の回路構成について説明する。第7実施形態の信号伝達装置10の回路構成は、第1実施形態の信号伝達装置10の回路構成と比較して、第1端子および第2端子の構成が異なる。以下では、第1端子および第2端子の構成について説明する。
 第7実施形態の信号伝達装置10は、第1回路500に電気的に接続された外部端子である第1端子PM1,PN1,P2~P7,PM8,PN8と、第2回路520に電気的に接続された第2端子QM1,QN2,Q2~Q7,QM8,QN8と、を備える。
 第1端子PM1,PN1は、第1実施形態の第1端子P1と同様に、グランド端子(GND1)を構成している。第1端子PM8,PN8は、第1実施形態の第1端子P8と同様に、グランド端子(GND1)を構成している。第1端子PM1,PN1,PM8,PN8は、互いに電気的に接続されている。
 第2端子QM1,QN1は、第1実施形態の第2端子Q1と同様に、負極の電源端子(VEE2)を構成している。第2端子QM8,QN8は、第1実施形態の第2端子Q8と同様に、負極の電源端子(VEE2)を構成している。第2端子QM1,QN1,QM8,QN8は、互いに電気的に接続されている。なお、第7実施形態の信号伝達装置10によれば、第1実施形態と同様の効果が得られる。
 <第8実施形態>
 図46および図47を参照して、第8実施形態の信号伝達装置10について説明する。第8実施形態の信号伝達装置10は、第2実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成が異なる。以下の説明では、第1実施形態と異なる構成について詳細に説明し、第1実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第8実施形態の第1フレーム10Aは、第2実施形態と比較して、第2実施形態の第1リード端子11,18に対応する第1リード端子の構成が異なる。より詳細には、図46に示すように、第8実施形態の第1フレーム10Aは、第7実施形態と同様に、第1リード端子11M,11N,18M,18Nを備える。一方、第1リード端子12~17の構成は、第2実施形態の第1リード端子12~17と同様である。つまり、第1リード端子12~17の第1インナーリード部12A~17Aには、第1インナーリード部12A~17Aをその厚さ方向(Z方向)に貫通する貫通孔12AD~17ADが形成されている。また、第1インナーリード部12A,17Aには、貫通孔12AD,17ADとは別の貫通孔12AE,17AEが形成されている。つまり、第1インナーリード部12A,17Aは、2つの貫通孔を有する。第8実施形態では、貫通孔12AD~17AD,12AE,17AEの形成位置、形状、およびサイズは第2実施形態と同様である。また、第1リード用ワイヤWBのセカンドボンド部の位置は第2実施形態と同様である。このため、貫通孔12AD~17AD,12AE,17AEおよび第1リード用ワイヤWBの詳細な説明を省略する。第8実施形態では、第1リード用ワイヤWBのセカンドボンド部には、セキュリティボンドWB1(図42参照)が形成されていない。
 貫通孔12AD~17AD,12AE,17AE内には、封止樹脂90が充填されている。つまり、貫通孔12AD~17AD,12AE,17AE内に充填された封止樹脂90によって、第1インナーリード部12A~17Aよりも封止表面91(図2参照)寄りに設けられた封止樹脂90と、第1インナーリード部12A~17Aよりも封止裏面92(図2参照)寄りに設けられた封止樹脂90とが繋がっている。
 ここで、第1リード端子11M,11N,18M,18Nは、第1ダイパッド30と一体化されているので、「第1接続端子」に対応している。第1リード端子12~17は、第1ダイパッド30から離隔して配置されているので、「第1離隔端子」に対応している。第1リード端子12~17に貫通孔12AD~17ADが形成されているため、第1離隔端子は、第1離隔端子の厚さ方向に貫通する貫通孔を有するといえる。一方、第1接続端子は、貫通孔を有していない。
 図47に示すように、第8実施形態の第2フレーム10Bは、第2実施形態と比較して、第2実施形態の第2リード端子41,48に対応する第2リード端子の構成が異なる。より詳細には、第8実施形態の第2フレーム10Bは、第7実施形態と同様に、第2リード端子41M,41N,48M,48Nを備える。一方、第2リード端子42~47の構成は、第2実施形態の第2リード端子42~47と同様である。つまり、第2リード端子42~47の第2インナーリード部42A~47Aには、第2インナーリード部42A~47Aをその厚さ方向(Z方向)に貫通する貫通孔42AD~47ADが形成されている。また、第2インナーリード部42A,47Aには、貫通孔42AD,47ADとは別に貫通孔42AE,47AEが形成されている。つまり、第2インナーリード部42A,47Aは、2つの貫通孔を有する。第8実施形態では、貫通孔42AD~47AD,42AE,47AEの形成位置、形状、およびサイズは第2実施形態と同様である。また、第2リード用ワイヤWDのセカンドボンド部の位置は第2実施形態と同様である。このため、貫通孔42AD~47AD,42AE,47AEおよび第2リード用ワイヤWDの詳細な説明を省略する。第8実施形態では、第2リード用ワイヤWDのセカンドボンド部には、セキュリティボンドWD1(図42参照)が形成されていない。
 貫通孔42AD~47AD,42AE,47AE内には、封止樹脂90が充填されている。つまり、貫通孔42AD~47AD,42AE,47AE内に充填された封止樹脂90によって、第2インナーリード部42A~47Aよりも封止表面91(図2参照)寄りに設けられた封止樹脂90と、第2インナーリード部42A~47Aよりも封止裏面92(図2参照)寄りに設けられた封止樹脂90とが繋がっている。
 ここで、第2リード端子41M,41N,48M,48Nは、第2ダイパッド50と一体化されているので、「第2接続端子」に対応している。第2リード端子42~47は、第2ダイパッド50から離隔して配置されているので、「第2離隔端子」に対応している。第2リード端子42~47に貫通孔42AD~47ADが形成されているため、第2離隔端子は、第2離隔端子の厚さ方向に貫通する貫通孔を有するといえる。一方、第2接続端子は、貫通孔を有していない。なお、第8実施形態の信号伝達装置10によれば、第2実施形態と同様の効果が得られる。
 <第9実施形態>
 図48および図49を参照して、第9実施形態の信号伝達装置10について説明する。第9実施形態の信号伝達装置10は、第3実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成が異なる。以下の説明では、第3実施形態と異なる構成について詳細に説明し、第3実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第9実施形態の第1フレーム10Aは、第3実施形態と比較して、第3実施形態の第1リード端子11,18に対応する第1リード端子の構成が異なる。より詳細には、図48に示すように、第9実施形態の第1フレーム10Aは、第7実施形態と同様に、第1リード端子11M,11N,18M,18Nを備える。一方、第1リード端子12~17の構成は、第3実施形態の第1リード端子12~17と同様である。つまり、第1フレーム10Aは、第1リード端子12~17の第1インナーリード部12A~17Aのうち貫通孔が形成された第1特定端子(第9実施形態では第1リード端子12,14,15,17)と、貫通孔が形成されていない第2特定端子(第9実施形態では第1リード端子13,16)との2種類の第1リード端子を含む。
 第9実施形態では、第1特定端子および第2特定端子に応じて、第1リード用ワイヤWBのセカンドボンド部の構成が異なる。より詳細には、第2特定端子としての第1リード端子13,16における第1インナーリード部13A,16Aのワイヤ接続部13AA,16AAに接続された第1リード用ワイヤWBのセカンドボンド部には、セキュリティボンドWB1が形成されている。一方、第1特定端子としての第1リード端子12,14,15,17における第1インナーリード部12A,14A,15A,17Aのワイヤ接続部12AA,14AA,15AA,17AAに接続された第1リード用ワイヤWBのセカンドボンド部には、セキュリティボンドWB1が形成されていない。なお、セキュリティボンドWB1の構成は、図15に示す第1実施形態のセキュリティボンドWC1の構成と同じである。
 つまり、複数の第1リード用ワイヤWBは、第1特定端子(第9実施形態では第1リード端子12,14,15,17)に接合された第1特定ワイヤと、第2特定端子(第9実施形態では第1リード端子13,16)に接合された第2特定ワイヤと、を含む。第2特定ワイヤのうち第2特定端子に接合された接合部(セカンドボンド部)には、セキュリティボンドが形成されている。
 第9実施形態の第2フレーム10Bは、第3実施形態と比較して、第3実施形態の第2リード端子41,48に対応する第2リード端子の構成が異なる。より詳細には、図49に示すように、第9実施形態の第2フレーム10Bは、第7実施形態と同様に、第2リード端子41M,41N,48M,48Nを備える。一方、第2リード端子42~47の構成は、第3実施形態の第2リード端子42~47と同様である。つまり、第2フレーム10Bは、第2リード端子42~47の第2インナーリード部42A~47Aのうち貫通孔が形成された第3特定端子(第9実施形態では第2リード端子42,44,45,47)と、貫通孔が形成されていない第4特定端子(第9実施形態では第2リード端子43,46)との2種類の第2リード端子を含む。
 第9実施形態では、第3特定端子および第4特定端子に応じて、第2リード用ワイヤWDのセカンドボンド部の構成が異なる。より詳細には、第4特定端子としての第2リード端子43,46における第2インナーリード部43A,46Aのワイヤ接続部43AA,46AAに接続された第2リード用ワイヤWDのセカンドボンド部には、セキュリティボンドWD1が形成されている。一方、第3特定端子としての第2リード端子42,44,45,47における第2インナーリード部42A,44A,45A,47Aのワイヤ接続部42AA,44AA,45AA,47AAに接続された第2リード用ワイヤWDのセカンドボンド部には、セキュリティボンドWD1が形成されていない。なお、セキュリティボンドWD1の構成は、図15に示す第1実施形態のセキュリティボンドWC1の構成と同じである。
 つまり、複数の第2リード用ワイヤWDは、第3特定端子(第9実施形態では第2リード端子42,44,45,47)に接合された第3特定ワイヤと、第4特定端子(第9実施形態では第2リード端子43,46)に接合された第4特定ワイヤと、を含む。第4特定ワイヤのうち第4特定端子に接合された接合部(セカンドボンド部)には、セキュリティボンドが形成されている。なお、第9実施形態の信号伝達装置10によれば、第3実施形態と同様の効果が得られる。
 <第10実施形態>
 図50を参照して、第10実施形態の信号伝達装置10について説明する。第10実施形態の信号伝達装置10は、第6実施形態の信号伝達装置10と比較して、第1フレーム10Aおよび第2フレーム10Bの構成が異なる。以下の説明では、第6実施形態と異なる構成について詳細に説明し、第6実施形態と共通の構成要素には同一符号を付し、その説明を省略する。
 第10実施形態の第1フレーム10Aは、第6実施形態と比較して、第6実施形態の第1リード端子11,18に対応する第1リード端子の構成が異なる。より詳細には、図50に示すように、第10実施形態の第1フレーム10Aは、第7実施形態と同様に、第1リード端子11M,11N,18M,18Nを備える。
 第10実施形態の第2フレーム10Bは、第6実施形態と比較して、第6実施形態の第2リード端子41,48に対応する第1リード端子の構成が異なる。より詳細には、図50に示すように、第10実施形態の第2フレーム10Bは、第7実施形態と同様に、第2リード端子41M,41N,48M,48Nを備える。なお、第10実施形態の信号伝達装置10によれば、第6実施形態と同様の効果が得られる。
 <第11実施形態>
 図51~図55を参照して、第11実施形態の信号伝達装置10について説明する。第11実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第1実施形態と異なる点を詳細に説明する。また、第1実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 図51に示すように、素子絶縁層150の層表面151上にパッシベーション膜161が形成されている一方、層表面151上に複数の第1電極パッド67は形成されていない。つまり、パッシベーション膜161は層表面151に接しており、複数の第1電極パッド67は層表面151からZ方向に離隔して配置されている。パッシベーション膜161は、素子絶縁層150の層表面151の全体にわたり形成されている。
 第1チップ60は、パッシベーション膜161上に形成された第1有機絶縁層191と、第1有機絶縁層191上に形成された第2有機絶縁層192と、をさらに備える。ここで、第1有機絶縁層191は「第1樹脂層」に対応しており、第2有機絶縁層192は「第2樹脂層」に対応している。
 第1有機絶縁層191および第2有機絶縁層192の双方は、素子絶縁層150とは異なる比誘電率を有する絶縁材料によって形成されている。第1有機絶縁層191および第2有機絶縁層192の双方は、ポリイミド、フェノール樹脂、およびエポキシ樹脂のうち少なくとも1つを含んでいてよい。第1有機絶縁層191および第2有機絶縁層192は、互いに同じ樹脂材料によって形成されてもよいし、互いに異なる樹脂材料によって形成されていてもよい。
 第1有機絶縁層191は、耐サージ電圧の向上を目的として設けられている。第1有機絶縁層191の厚さは、素子絶縁層150の厚さよりも薄い。第1有機絶縁層191の厚さは、第1裏面側コイル111Bのコイル層111BAにおける導線180のコイル表面181と素子絶縁層150の層表面151とのZ方向の間の距離よりも薄い。第1有機絶縁層191の厚さは、導線180の厚さよりも厚い。第1有機絶縁層191の厚さは、第1表面側コイル111Aの導線170の厚さよりも厚い。第1有機絶縁層191の厚さは、たとえば所望の絶縁耐圧(絶縁破壊耐量)に応じて設定される。
 第1表面側コイル111Aおよび複数の第1電極パッド67は、第1有機絶縁層191上に形成されている。つまり、第1表面側コイル111Aおよび複数の第1電極パッド67の双方は、素子絶縁層150の外部に設けられている。第1表面側コイル111Aおよび複数の第1電極パッド67の双方は、素子絶縁層150からZ方向に離隔して配置されているともいえる。第1表面側コイル111Aおよび複数の第1電極パッド67は、Z方向において互いに同じ位置に設けられている。なお、図示していないが、第2~第4表面側コイル112A~114Aも第1有機絶縁層191上に形成されている。このように、第1~第4表面側コイル111A~114Aは「表面側コイル」に対応している。
 第1表面側コイル111Aおよび複数の第1電極パッド67は、第2有機絶縁層192によって覆われている。第2有機絶縁層192は、各第1電極パッド67の表面の一部をZ方向に露出する開口部192Aを有する。第2有機絶縁層192は、第1チップ60を保護する保護膜であり、チップ表面61を構成している。
 図52に示すように、第1表面側コイル111Aの導線170のコイル裏面172は、第1有機絶縁層191に接している。第1表面側コイル111Aは、第1有機絶縁層191および第2有機絶縁層192によって覆われている。第2有機絶縁層192は、導線170のコイル表面171および一対のコイル側面173と接している。第1表面側コイル111AのY方向に隣り合う導線170の間には、第2有機絶縁層192が介在している。
 第2有機絶縁層192の厚さは、素子絶縁層150の厚さよりも薄い。第2有機絶縁層192の厚さは、第1裏面側コイル111Bのコイル層111BAにおける導線180のコイル表面181と素子絶縁層150の層表面151とのZ方向の間の距離よりも薄い。第2有機絶縁層192の厚さは、導線180の厚さよりも厚い。第2有機絶縁層192の厚さは、導線170の厚さよりも厚い。第2有機絶縁層192の厚さは、第1電極パッド67Aの厚さ(第1電極パッド67AのZ方向の大きさ)よりも厚い。
 第1裏面側コイル111Bは、第1実施形態と同様に、素子絶縁層150内に埋め込まれている。第1裏面側コイル111Bは、素子絶縁層150の層裏面152寄りに配置されている。なお、図示していないが、第2~第4裏面側コイル112B~114Bも素子絶縁層150内に埋め込まれている。ここで、第1~第4裏面側コイル111B~114Bは「裏面側コイル」に対応している。
 このように、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間には、素子絶縁層150と第1有機絶縁層191との両方が介在している。つまり、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間には、無機絶縁層および有機絶縁層の双方が介在している。図52の例においては、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間には、素子絶縁層150、パッシベーション膜161、および第1有機絶縁層191の3つの異なる層が介在している。
 図示していないが、表面側ガードリング115(図17参照)は、第1有機絶縁層191上に形成されている。つまり、表面側ガードリング115は、第1表面側コイル111Aおよび第1電極パッド67AとZ方向において同じ位置に設けられている。一例では、ビア117は、第1部分と、第2部分と、第3部分との積層構造によって構成されている。第1部分は、裏面側ガードリング116(図18参照)から素子絶縁層150の層表面151までをZ方向に貫通している。第1部分は、裏面側ガードリング116と接している。第2部分は、パッシベーション膜161をZ方向に貫通して第1部分と接続するとともにパッシベーション膜161上に形成されている。第2部分は、第1有機絶縁層191によって覆われている。第3部分は、第1有機絶縁層191のうち第2部分を覆う部分をZ方向に貫通して第2部分と表面側ガードリング115との双方に接続している。
 なお、図51および図52の例では、第1チップ60は、第1有機絶縁層191および第2有機絶縁層192の2層の積層構造であったが、これに限られない。第1チップ60は、3層以上の有機絶縁層が積層された構造であってもよい。
 [第1チップの製造方法]
 図53~図55を用いて、第1チップ60の製造方法、特に第1表面側コイル111Aの製造方法について説明する。図53~図55では、素子絶縁層850に第1表面側コイル111Aの一部が形成される工程を主に示している。
 図示していないが、第1チップ60の製造方法は、基板830を用意する工程と、基板830上に素子絶縁層850を形成する工程と、素子絶縁層850に第1裏面側コイル111Bを形成する工程と、素子絶縁層850上にパッシベーション膜861を形成する工程と、を含む。なお、第2裏面側コイル112Bは、第1裏面側コイル111Bが形成される工程と同時に形成される。
 ここで、基板830は、複数の基板130を構成する基板である。素子絶縁層850は、複数の基板130に対応する領域にわたり形成されている。素子絶縁層850は、第1チップ60の素子絶縁層150に対応している。パッシベーション膜861は、素子絶縁層850の層表面の全面にわたり形成されている。パッシベーション膜861は、第1チップ60のパッシベーション膜161に対応している。
 図53に示すように、第1チップ60の製造方法は、第1有機絶縁層891を形成する工程を含む。より詳細には、たとえばスピンコート法によってパッシベーション膜861上に第1有機絶縁層891が形成される。第1有機絶縁層891は、ポリイミド、フェノール樹脂、およびエポキシ樹脂のうち少なくとも1つを含んでいてよい。第1有機絶縁層891は、第1チップ60の第1有機絶縁層191と対応している。
 図54に示すように、第1チップ60の製造方法は、第1表面側コイル111Aおよび第1電極パッド67Aを形成する工程を含む。より詳細には、第1有機絶縁層191上には、たとえばスパッタ法によって第1表面側コイル111Aおよび第1電極パッド67Aを構成するバリア層(図示略)が形成される。ここで、バリア層は、導線170および第1電極パッド67をめっき成長させるためのベース導電層である。バリア層は、たとえばチタン、窒化チタン、タンタル、および窒化タンタルのうち少なくとも1つを含んでいてもよい。続いて、たとえばリソグラフィおよびエッチングによって第1表面側コイル111Aの導線170および第1電極パッド67が形成される位置以外のバリア層を除去する。続いて、バリア層上に導線170および第1電極パッド67を構成する導電材料をめっき成長させる。導電材料としては、たとえば銅が用いられる。以上の工程を経て、第1表面側コイル111Aおよび第1電極パッド67が製造される。なお、図示していないが、第2表面側コイル112Aおよび他の第1電極パッド67は、この工程と同時に製造される。
 図55に示すように、第1チップ60の製造方法は、第2有機絶縁層892を形成する工程を含む。より詳細には、たとえばスピンコート法によって第1有機絶縁層891上に第2有機絶縁層892が形成される。第2有機絶縁層892は、第1表面側コイル111Aおよび第1電極パッド67を覆うように形成されている。なお、図示していないが、第2有機絶縁層892は、第2表面側コイル112Aおよび他の第1電極パッド67を覆うように形成される。続いて、リソグラフィおよびエッチングによって第2有機絶縁層892には、第1電極パッド67の一部をZ方向に開口する開口部892Aが形成される。なお、他の第1電極パッド67の各々の一部をZ方向に開口する開口部も同時に形成される。
 続いて、第1チップ60の製造方法は、個片化工程を含む。個片化工程では、ダイシングによって、基板830、パッシベーション膜861、第1有機絶縁層891、および第2有機絶縁層892が切断される。以上の工程を経て、第1チップ60が製造される。
 [効果]
 第11実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (11-1)第1チップ60は、素子絶縁層150上に設けられた第1有機絶縁層191と、第1有機絶縁層191上に設けられた第2有機絶縁層192と、を備える。第1トランス111は、第1有機絶縁層191上に配置され、第2有機絶縁層192によって覆われた第1表面側コイル111Aおよび第2表面側コイル112Aと、Z方向において第1表面側コイル111Aおよび第2表面側コイル112Aと対向配置され、素子絶縁層150内に埋め込まれた第1裏面側コイル111Bおよび第2裏面側コイル112Bと、を含む。
 この構成によれば、第1表面側コイル111Aと第1裏面側コイル111BとのZ方向の間の距離と、第2表面側コイル112Aと第2裏面側コイル112BとのZ方向の間の距離との双方を第1有機絶縁層191の厚膜化によって大きくすることができる。つまり、第1表面側コイル111Aと第1裏面側コイル111Bとの間の絶縁耐圧と、第2表面側コイル112Aと第2裏面側コイル112Bとの間の絶縁耐圧との向上を第1有機絶縁層191の厚膜化によって実現することができる。このため、素子絶縁層150を厚くするため、素子絶縁層150をたとえば窒化シリコン膜によって形成されたエッチングストッパ膜と酸化シリコン膜によって形成された層間絶縁膜とを1つずつ交互に複数積層した積層構造とする必要がなくなる。このため、素子絶縁層150の構成を簡素化できる。加えて、第1有機絶縁層191は、スピンコート法によって容易に厚膜化することができる。その結果、素子絶縁層150を厚くする場合と比較して、リードタイムを短縮することができるので、製造コストを低減することができる。
 <第12実施形態>
 図56を参照して、第12実施形態の信号伝達装置10について説明する。第12実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第1実施形態と異なる点を詳細に説明する。また、第1実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 図56に示すように、第12実施形態では、第1チップ60は、パッシベーション膜161よりも比誘電率が低い低誘電層193を備える。低誘電層193は、パッシベーション膜161上に形成されている。第12実施形態では、低誘電層193は、パッシベーション膜161の表面全体にわたり形成されている。低誘電層193は、パッシベーション膜161の表面と接している。低誘電層193は、パッシベーション膜161と封止樹脂90とが接しないようにパッシベーション膜161と封止樹脂90とのZ方向の間に介在しているといえる。
 低誘電層193の厚さ(低誘電層193のZ方向の大きさ)は、パッシベーション膜161の厚さ以下である。一例では、低誘電層193の厚さは、パッシベーション膜161の厚さよりも薄い。なお、低誘電層193の厚さは任意に変更可能である。一例では、低誘電層193の厚さは、パッシベーション膜161の厚さよりも厚くてもよい。
 保護膜162は、低誘電層193上に形成されている。保護膜162は、低誘電層193の表面と接している。つまり、低誘電層193は、パッシベーション膜161と保護膜162とによってZ方向に挟み込まれている。保護膜162は、封止樹脂90と接している。保護膜162の厚さは、低誘電層193の厚さよりも厚い。換言すると、低誘電層193の厚さは、保護膜162の厚さよりも薄い。
 次に、素子絶縁層150、パッシベーション膜161、低誘電層193、保護膜162、および封止樹脂90の誘電率の関係について説明する。
 第12実施形態では、素子絶縁層150は酸化シリコン(SiO)を含む材料によって形成されるため、素子絶縁層150の比誘電率は4.1程度である。パッシベーション膜161は窒化シリコン(SiN)を含む材料によって形成されるため、パッシベーション膜161の比誘電率は7.0程度である。つまり、パッシベーション膜161の比誘電率は、素子絶縁層150の比誘電率よりも高い。
 第12実施形態では、保護膜162はポリイミドを含む材料からなるため、保護膜162の比誘電率は2.9程度である。
 また、第12実施形態では、封止樹脂90はエポキシ樹脂を含む材料からなるため、封止樹脂90の比誘電率は3.9程度である。つまり、封止樹脂90の比誘電率は、パッシベーション膜161の誘電率よりも低い。封止樹脂90の比誘電率は、保護膜162の比誘電率よりも高い。
 低誘電層193は、パッシベーション膜161よりも比誘電率が低い。たとえば、低誘電層193は、素子絶縁層150の比誘電率以下である。より詳細には、低誘電層193は、素子絶縁層150の比誘電率よりも低い。低誘電層193は、封止樹脂90の比誘電率以下であってもよい。
 低誘電層193は、たとえば、酸化シリコン(SiO)を含む材料から形成されていてもよい。このように、低誘電層193は、素子絶縁層150と同じ材料から形成されていてもよい。また、低誘電層193は、素子絶縁層150よりも比誘電率が低くてもよい。低誘電層193は、Low-K膜から形成されていてもよい。Low-K膜としては、たとえば炭素添加酸化シリコン膜(SiOC)、フッ素添加酸化シリコン膜(SiOF)、ポーラス膜等から適宜選択される。低誘電層193が炭素添加酸化シリコン膜によって形成される場合、低誘電層193の比誘電率は、2.5以上3.0以下である。低誘電層193がフッ素添加酸化シリコン膜によって形成される場合、低誘電層193の比誘電率は、3.4以上3.8以下である。低誘電層193がポーラス膜によって形成される場合、低誘電層193の比誘電率は、2.5未満である。このように、低誘電層193にLow-K膜を用いることによって、低誘電層193の比誘電率を素子絶縁層150および封止樹脂90よりも低くすることができる。
 [効果]
 第12実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (12-1)第1チップ60は、素子絶縁層150と、素子絶縁層150を覆うように素子絶縁層150上に形成されたパッシベーション膜161と、パッシベーション膜161の表面に形成され、パッシベーション膜161よりも比誘電率が低い低誘電層193と、を備える。封止樹脂90は、低誘電層193を覆っている。
 この構成によれば、パッシベーション膜161と封止樹脂90との間に低誘電層193が介在することによってパッシベーション膜161と封止樹脂90とが接触することが抑制される。これにより、封止樹脂90とパッシベーション膜161との境界部分に存在する空隙に起因して部分放電、ひいては沿面放電が発生することを抑制できる。したがって、第1チップ60の信頼性を高めることができる。
 (12-2)低誘電層193の比誘電率は、封止樹脂90の誘電率以下である。
 この構成によれば、低誘電層193と封止樹脂90との境界部分における部分放電の開始電圧を高くすることができるため、低誘電層193と封止樹脂90との境界部分に存在する空隙に起因して部分放電、ひいては沿面放電が発生することを抑制できる。
 (12-3)低誘電層193の厚さは、パッシベーション膜161の厚さ以下である。この構成によれば、第1チップ60のZ方向の寸法が大きくなることを抑制できる。つまり、第1チップ60の低背化を図ることができる。
 <第13実施形態>
 図57~図63を参照して、第13実施形態の信号伝達装置10について説明する。第13実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第1実施形態と異なる点を詳細に説明する。また、第1実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 [第1チップの構成]
 図57は、第1チップ60における第1表面側コイル111Aの一部およびその周辺を拡大した断面構造を示している。なお、図面の理解を容易にするために、図57では第1チップ60の構成要素の一部のハッチング線を省略している。
 図57に示すように、第1表面側コイル111Aの導線170におけるコイル表面171と一対のコイル側面173とによって形成された表面側コーナ部分176は、第1実施形態とは異なり、丸められた湾曲状に形成されている。表面側コーナ部分176は、R面(湾曲面)を有するともいえる。つまり、第13実施形態では、導線170におけるコイル表面171と一対のコイル側面173との間の部分には、R面(湾曲面)が形成されている。より詳細には、R面(湾曲面)は、表面側コーナ部分176を構成するバリア層174および金属層175の双方によって構成されている。
 導線170のコイル表面171は、素子絶縁層150の層表面151よりも上方に位置している。つまり、導線170は、素子絶縁層150の層表面151から突出している。パッシベーション膜161は、導線170の表面側コーナ部分176およびコイル表面171を覆っている。このため、表面側コーナ部分176は、素子絶縁層150と接しておらず、パッシベーション膜161と接している。導線170の一対のコイル側面173のうち表面側コーナ部分176よりもコイル裏面172寄りの部分は、素子絶縁層150に接している。
 なお、導線170と素子絶縁層150との関係は任意に変更可能である。一例では、導線170が素子絶縁層150に埋め込まれていてもよい。つまり、導線170の表面側コーナ部分176およびコイル表面171が素子絶縁層150に接するように素子絶縁層150が設けられていてもよい。この場合、素子絶縁層150の層表面151の全面にわたりパッシベーション膜161が形成されている。
 また、図示していないが、第2表面側コイル112Aの導線170についても同様に、コイル表面171と一対のコイル側面173とによって形成された表面側コーナ部分176が丸められた湾曲状に形成されている。なお、第13実施形態では、第1表面側コイル111Aおよび第2表面側コイル112Aのうち少なくとも一方の表面側コイルにおける表面側コーナ部分176が丸められた湾曲状に形成されていればよい。
 [第1チップの製造方法]
 図58~図63を用いて、第1チップ60の製造方法、特に第1表面側コイル111Aの製造方法について説明する。図58~図63では、素子絶縁層850に第1表面側コイル111Aの一部が形成される工程を主に示している。
 図示していないが、第1チップ60の製造方法は、基板830を用意する工程と、基板830(たとえば図53参照)上に素子絶縁層850を形成する工程と、素子絶縁層850に第1裏面側コイル111B(図53参照)を形成する工程と、を含む。なお、第2裏面側コイル112Bは、第1裏面側コイル111Bが形成される工程と同時に形成される。
 図58に示すように、第1チップ60の製造方法は、素子絶縁層850に凹部853を形成する工程を含む。より詳細には、この工程では、素子絶縁層850の層表面851が選択的にエッチングされることによって凹部853が形成される。凹部853は、底面853Aと、底面853Aと層表面851とを繋ぐ一対の側面853Bと、を含む。一対の側面853Bは、層表面851から底面853Aに向かうにつれてY方向において互いに接近するテーパ状に形成されている。
 図59に示すように、第1チップ60の製造方法は、バリア層901を形成する工程を含む。より詳細には、凹部853の一対の側面853Bおよび底面853Aと、素子絶縁層850の層表面851との双方には、たとえばスパッタ法によってバリア層901が形成される。バリア層901は、タンタルまたは窒化タンタルを含んでいてもよい。一例では、バリア層901は、タンタルを含む第1層と、第1層上に積層された窒化タンタルを含む第2層と、第2層上に積層されたタンタルを含む第3層との積層構造(Ta/TaN/Ta)によって形成されている。
 続いて、第1チップ60の製造方法は、金属層902を形成する工程を含む。より詳細には、バリア層901から導線170用の導電材料をめっき成長させる。一例では、バリア層901から銅をめっき成長させる。これにより、凹部853内および素子絶縁層850上に金属層902が形成される。金属層902は、たとえば銅を含む材料によって形成されている。
 図60に示すように、第1チップ60の製造方法は、素子絶縁層850上のバリア層901および金属層902を除去する工程を含む。より詳細には、化学的機械研磨(Chemical Mechanical Polishing:CMP)によって素子絶縁層850上のバリア層901および金属層902の双方が除去される。これにより、素子絶縁層850の層表面851が露出する。
 図61に示すように、第1チップ60の製造方法は、素子絶縁層850の上端部を除去する工程を含む。より詳細には、ドライエッチングまたはウェットエッチングによって素子絶縁層850の上端部を全体にわたり除去する。これにより、素子絶縁層850の上端部が除去された後の層表面851は、バリア層901および金属層902の各々の上端面よりも下方(凹部853の底面853A寄り)に位置している。換言すると、バリア層901および金属層902の上端部は、層表面851から突出している。
 図62に示すように、第1チップ60の製造方法は、バリア層901および金属層902の上端部のうちY方向の両端部(図61の表面側コーナ部分903)を除去する工程を含む。より詳細には、金属層902の上端面にレジスト(図示略)を形成する。レジストは、平面視において表面側コーナ部分903が露出するように形成されている。続いて、ドライエッチングまたはウェットエッチングによって、表面側コーナ部分903を構成するバリア層901および金属層902が除去される。これにより、表面側コーナ部分903は、湾曲状に形成される。以上の工程を経て、導線170が形成される。これにより、第1表面側コイル111A~114Aが形成される。なお、図示していないが、図58~図62に示す導線170を形成する工程と並行して、複数の第1電極パッド67が形成されている。
 図63に示すように、第1チップ60の製造方法は、パッシベーション膜861を形成する工程を含む。より詳細には、たとえば化学気相成長法(Chemical Vapor Deposition:CVD)またはスパッタ法によって導線170のコイル表面171および表面側コーナ部分176と素子絶縁層850の層表面851とを覆うようにパッシベーション膜861が形成される。パッシベーション膜861は、たとえば窒化シリコンを含む材料によって形成されている。
 図示していないが、第1チップ60の製造方法は、保護膜(図示略)を形成する工程を含む。保護膜は、たとえば保護膜162(図20参照)に対応する膜である。保護膜は、CVD法またはスパッタ法によってパッシベーション膜861上に形成される。保護膜は、たとえば酸化シリコンを含む材料によって形成されている。また、エッチングによって保護膜およびパッシベーション膜861の双方に、第1電極パッド67の一部が露出する開口部が形成される。その後、ダイシングによって保護膜、パッシベーション膜861、素子絶縁層850、および基板830が切断されることによって個片化される。以上の工程を経て、第1チップ60が製造される。
 [効果]
 第13実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (13-1)第1トランス111の第1表面側コイル111Aおよび第2表面側コイル112Aは、コイル表面171と、コイル表面171とは反対側のコイル裏面172と、コイル表面171とコイル裏面172とを繋ぐコイル側面173と、を有する。コイル表面171とコイル側面173との間には湾曲面が形成されている。
 この構成によれば、コイル表面171とコイル側面173とによって構成された表面側コーナ部分176における電界集中を緩和できる。これにより、表面側コーナ部分176が絶縁破壊の起点になることが抑制されるので、第1チップ60の絶縁耐圧の向上を図ることができる。
 <第14実施形態>
 図64~図69を参照して、第14実施形態の信号伝達装置10について説明する。第14実施形態の信号伝達装置10は、第11実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第11実施形態と異なる点を詳細に説明する。また、第11実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 [第1チップの構成]
 図64は、第1チップ60における第1表面側コイル111Aの一部およびその周辺を拡大した断面構造を示している。
 第14実施形態の第1チップ60は、第11実施形態と同様に、素子絶縁層150の層表面151上に形成された第1有機絶縁層191と、第1有機絶縁層191上に形成された第2有機絶縁層192と、を備える。第1表面側コイル111Aおよび第1電極パッド67Aの双方は、第11実施形態と同様に、第1有機絶縁層191上に形成されている。
 第1表面側コイル111Aの導線170におけるコイル表面171と一対のコイル側面173とによって形成された表面側コーナ部分176は、第1実施形態とは異なり、丸められた湾曲状に形成されている。表面側コーナ部分176は、R面(湾曲面)を有するともいえる。つまり、第14実施形態では、導線170におけるコイル表面171と一対のコイル側面173との間の部分には、R面(湾曲面)が形成されている。
 導線170のコイル表面171は、素子絶縁層150の層表面151よりも上方に位置している。つまり、導線170は、素子絶縁層150の層表面151から突出している。パッシベーション膜161は、導線170の表面側コーナ部分176およびコイル表面171を覆っている。このため、表面側コーナ部分176は、素子絶縁層150と接しておらず、パッシベーション膜161と接している。導線170の一対のコイル側面173のうち表面側コーナ部分176よりもコイル裏面172寄りの部分は、素子絶縁層150に接している。
 導線170におけるコイル裏面172と一対のコイル側面173とによって形成された裏面側コーナ部分177は、第1実施形態とは異なり、丸められた湾曲状によって形成されている。裏面側コーナ部分177は、R面(湾曲面)を有するともいえる。つまり、第14実施形態では、導線170におけるコイル裏面172と一対のコイル側面173との間の部分には、R面(湾曲面)が形成されている。
 導線170は、第2有機絶縁層192によって覆われている。より詳細には、導線170のコイル表面171、一対のコイル側面173、表面側コーナ部分176、および裏面側コーナ部分177は、第2有機絶縁層192に接している。
 導線170は、シード層178と、シード層178上に形成された金属層179との積層構造によって形成されている。
 シード層178は、コイル裏面172を構成している。つまり、シード層178は、第1有機絶縁層191に接している。シード層178は、たとえばチタン、窒化チタン、および銅の少なくとも1つを含んでいてよい。一例では、シード層178は、チタンを含む第1層と、第1層上に積層された銅を含む第2層との積層構造によって形成されている。
 金属層179と第1有機絶縁層191とのZ方向の間にシード層178が介在しているため、金属層179は、第1有機絶縁層191からZ方向に離隔して配置されている。金属層179は、コイル表面171、一対のコイル側面173、表面側コーナ部分176、および裏面側コーナ部分177を含む。金属層179は、第2有機絶縁層192によって覆われている。
 [第1チップの製造方法]
 図65~図69を用いて、第1チップ60の製造方法、特に第1表面側コイル111Aの製造方法について説明する。
 図示していないが、第1チップ60の製造方法は、基板830(たとえば図53参照)を用意する工程と、基板130上に素子絶縁層850を形成する工程と、素子絶縁層850に第1裏面側コイル111B(図53参照)を形成する工程と、パッシベーション膜861を形成する工程と、第1有機絶縁層891を形成する工程と、を含む。なお、第2裏面側コイル112Bは、第1裏面側コイル111Bが形成される工程と同時に形成される。パッシベーション膜861は、たとえばCVD法またはスパッタ法によって素子絶縁層850の層表面851に形成されている。第1有機絶縁層891は、たとえばスピンコート法によってパッシベーション膜161上に形成されている。
 図65に示すように、第1チップ60の製造方法は、シード層911を形成する工程を含む。より詳細には、第1有機絶縁層891上には、たとえばスパッタ法によってシード層911が形成される。シード層911は、チタンおよび銅を含んでいてもよい。一例では、シード層911は、チタンを含む第1シード層911Aと、第1シード層911A上に積層された銅を含む第2シード層911Bとの積層構造(Ti/Cu)によって形成されている。
 続いて、第1チップ60の製造方法は、レジスト920を形成する工程を含む。より詳細には、まずシード層911上には、レジスト920が形成される。続いて、レジスト920を選択的に露光および現像することによって、導線170(図64参照)を形成すべき部分および第1電極パッド67(図51参照)を形成すべき部分の各々を露出させる開口部921が形成される。
 図65では、導線170を形成すべき部分の開口部921を示している。レジスト920のうち開口部921を構成する面は、シード層911に向かうにつれて互いに接近するテーパ状に形成されている。レジスト920の開口部921のうちシード層911と接する部分は、湾曲凹状に形成された内方突出部922が形成されている。
 図66に示すように、第1チップ60の製造方法は、金属層912を形成する工程を含む。より詳細には、シード層911から導線170用の導電材料をめっき成長させる。一例では、シード層911から銅をめっき成長させる。これにより、開口部921内に金属層912が形成される。金属層912は、たとえば銅を含む材料によって形成されている。金属層912は第2シード層911Bと一体化される。ここで、図66では、図面の理解を容易にするため、第2シード層911Bと金属層912との界面を二点鎖線にて示している。しかし、実際はこの界面は形成されていない場合がある。また、図示していないが、第1電極パッド67を形成すべき開口部921内に金属層912が形成される。これにより、第1電極パッド67が製造される。
 ここで、金属層912のうちシード層911側の端部は、レジスト920の内方突出部922によってコーナ部分が丸められたR面(湾曲面)が形成される。つまり、この工程では、金属層912には、導線170の裏面側コーナ部分177に相当するR面(湾曲面)が形成される。
 図67に示すように、第1チップ60の製造方法は、レジスト920を除去する工程を含む。これにより、シード層911および金属層912が露出する。
 図68に示すように、第1チップ60の製造方法は、シード層911および金属層912をエッチングする工程を含む。一例では、この工程は、金属層912の上端部のうちY方向の両端部(図67の表面側コーナ部分913)に湾曲面を形成する工程と、シード層911のうち第2シード層911Bを除去する工程と、を含む。より詳細には、金属層912の上端面にレジスト(図示略)を形成する。レジストは、平面視において表面側コーナ部分913が露出するように形成されている。続いて、ドライエッチングまたはウェットエッチングによって、表面側コーナ部分913を構成する金属層912が除去される。これにより、表面側コーナ部分913は、丸められたR面(湾曲面)が形成される。つまり、この工程では、金属層912には、導線170の表面側コーナ部分176に相当するR面(湾曲面)が形成される。また、ドライエッチングまたはウェットエッチングによって、第2シード層911Bが除去される。
 図69に示すように、第1チップ60の製造方法は、シード層911のうち金属層912が積層された部分以外の部分を除去する。より詳細には、たとえばエッチングによってシード層911のうち金属層912が積層された部分以外の部分が除去される。以上の工程を経て、導線170が形成される。これにより、第1表面側コイル111Aが形成される。なお、第2表面側コイル112Aも同様に形成される。
 図示していないが、第1チップ60の製造方法は、第2有機絶縁層192を形成する工程を含む。第2有機絶縁層192は、スピンコート法によって第1有機絶縁層191上に形成される。第2有機絶縁層192は、導線170および第1電極パッド67A~67Fを覆うように形成される。また、エッチングによって第2有機絶縁層192に、第1電極パッド67A~67Fの一部が露出する開口部が形成される。以上の工程を経て、第1チップ60が製造される。
 [効果]
 第14実施形態の信号伝達装置10によれば、以下の効果が得られる。
 (14-1)第1トランス111の第1表面側コイル111Aおよび第2表面側コイル112Aは、コイル表面171と、コイル表面171とは反対側のコイル裏面172と、コイル表面171とコイル裏面172とを繋ぐコイル側面173と、を有する。コイル表面171とコイル側面173との間には湾曲面が形成されている。コイル裏面172とコイル側面173との間には湾曲面が形成されている。
 この構成によれば、コイル表面171とコイル側面173とによって構成された表面側コーナ部分176における電界集中を緩和でき、コイル裏面172とコイル側面173とによって構成された裏面側コーナ部分177における電界集中を緩和できる。これにより、表面側コーナ部分176および裏面側コーナ部分177が絶縁破壊の起点になることが抑制されるので、第1チップ60の絶縁耐圧の向上を図ることができる。
 <第15実施形態>
 図70および図71を参照して、第15実施形態の信号伝達装置10について説明する。第15実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第1実施形態と異なる点を詳細に説明する。また、第1実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 図70に示すように、第1チップ60は、第1実施形態と同様に、絶縁トランス領域110および回路領域120と、絶縁トランス領域110および回路領域120を囲う外周ガードリング100と、を有する。一例では、回路領域120は、平面視において外周ガードリング100によって囲まれた領域において絶縁トランス領域110以外の領域として定義できる。
 絶縁トランス領域110は、回路領域120の複数の第1機能部と第2チップ70とを電気的に絶縁する一方、回路領域120の複数の第1機能部と第2チップ70との間の信号の伝達を許容する領域である。絶縁トランス領域110は、平面視において第1チップ60のX方向の中央に対して第2チップ側面64寄りに形成されている。つまり、絶縁トランス領域110は、平面視において第1チップ60のうち第2チップ70に近い領域に形成されている。絶縁トランス領域110は、第1チップ60の第3チップ側面65寄りに形成されている。つまり、絶縁トランス領域110と第3チップ側面65とのY方向の間の距離は、絶縁トランス領域110と第4チップ側面66とのY方向の間の距離よりも小さい。
 絶縁トランス領域110には、第1トランス111が形成されている。第15実施形態では、第1トランス111の構成が第1実施形態とは異なる。図70および図71に示すように、第1トランス111は、第1表面側コイル111Aおよび第1裏面側コイル111Bを含む。
 第1表面側コイル111Aおよび第1裏面側コイル111Bの各々は、チタン、窒化チタン、銅、アルミニウム、およびタングステンのうち少なくとも1つを含んでいてもよい。一例では、第1表面側コイル111Aは銅を含んでおり、第1裏面側コイル111Bはアルミニウムを含んでいる。また一例では、第1表面側コイル111Aはチタンと銅との積層構造であり、第1裏面側コイル111Bは窒化チタンとアルミニウムとの積層構造である。
 図70に示すように、絶縁トランス領域110内には、複数(第15実施形態では2つ)の第1電極パッド67が形成されている。複数の第1電極パッド67は、Y方向において互いに同じ位置であってX方向において互いに離隔して配列されている。複数の第1電極パッド67は、第1実施形態とは異なり、2つの第1電極パッド67A,67Bを含む。第1電極パッド67Bは、第1電極パッド67Aよりも第2チップ側面64寄りに配置されている。
 第1表面側コイル111Aは、平面視で渦巻き状の第1コイル部111A1と、第1外側コイル端部111A2と、第1内側コイル端部111A3と、を含む。第1外側コイル端部111A2は第1コイル部111A1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111A3は第1コイル部111A1の最内周の部分における巻回方向の端部を構成している。
 第1電極パッド67Aは、平面視において第1コイル部111A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Aは、第1コイル部111A1よりも内方に位置しているといえる。第1電極パッド67Aは、第1内側コイル端部111A3と接続されている。このため、第1電極パッド67Aは、第1表面側コイル111Aの第1端部と電気的に接続されているといえる。
 第1電極パッド67Bは、第1コイル部111A1よりも第2チップ側面64寄りに配置されている。第1電極パッド67Bは、第1表面側コイル111Aの第1外側コイル端部111A2と接続されている。このため、第1電極パッド67Bは、第1表面側コイル111Aの第2端部と電気的に接続されているといえる。
 図71に示すように、第1裏面側コイル111Bは、Z方向において第1表面側コイル111A(図70参照)と対向配置されている。第1裏面側コイル111Bは、平面視で渦巻き状の第1コイル部111B1と、第1外側コイル端部111B2と、第1内側コイル端部111B3と、を含む。第1外側コイル端部111B2は第1コイル部111B1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111B3は第1コイル部111B1の最内周の部分における巻回方向の端部を構成している。第1外側コイル端部111B2は、回路領域120の第1機能部に電気的に接続されている。第1内側コイル端部111B3は、回路領域120の第1機能部に電気的に接続されている。第1裏面側コイル111Bの巻回数は、第1表面側コイル111Aの巻回数と等しい。
 図70に示すように、絶縁トランス領域110には、平面視において第1表面側コイル111A、第2表面側コイル112A、および第1電極パッド67A,67Bを囲む表面側ガードリング115が形成されている。平面視における表面側ガードリング115は、第1表面側コイル111Aを囲むとともに第1表面側コイル111Aの巻回中心と同心となる円形の第1リング部115Aと、第1電極パッド67Bを囲むとともに第1リング部115Aに接続された半円状の第2リング部115Bと、を含む。第1リング部115Aは、第2チップ側面64寄りの部分が開口した円形となる。この開口した部分に第2リング部115Bが接続されている。
 図71に示すように、絶縁トランス領域110には、平面視において第1裏面側コイル111Bを囲む裏面側ガードリング116が形成されている。裏面側ガードリング116の形状およびサイズは、表面側ガードリング115(図70参照)と同じである。平面視において、裏面側ガードリング116は、表面側ガードリング115と重なる位置に形成されている。
 絶縁トランス領域110は、表面側ガードリング115と裏面側ガードリング116とを接続する複数のビア117が形成されている。複数のビア117は、平面視において表面側ガードリング115と裏面側ガードリング116との双方と重なる位置に配置されている。
 図70に示すように、回路領域120は、複数の第1機能部および複数の回路素子が形成された領域である。一例では、回路領域120には、図16に示す送信部501、受信部502、ロジック部503、UVLO部504、抵抗505,506,507,509,511、およびスイッチング素子508,510が形成されている。ここで、送信部501、受信部502、ロジック部503、およびUVLO部504は複数の第1機能部に対応し、抵抗505,506,507,509,511およびスイッチング素子508,510は複数の回路素子に対応している。
 回路領域120には、複数の配線層121が設けられている。複数の配線層121は、複数の機能部を電気的に接続する配線層と、複数の機能部と絶縁トランス領域110の第1および第2トランス111,112とを電気的に接続する配線層と、を含む。また、回路領域120には、複数の第2電極パッド68および1つの第3電極パッド69が設けられている。
 図70および図71に示すように、外周ガードリング100は、表面側外周ガードリング101と、裏面側外周ガードリング102と、を含む。
 図70に示すように、表面側外周ガードリング101は、平面視において第1チップ60の外周部を1周するように形成されている。平面視における表面側外周ガードリング101の形状は、4隅が面取りされた四角形である。つまり、平面視において、表面側外周ガードリング101の4隅は、傾斜部を含む。表面側ガードリング115は、表面側接続配線103によって表面側外周ガードリング101に接続されている。これにより、表面側ガードリング115は、表面側外周ガードリング101と電気的に接続されている。
 図71に示すように、裏面側外周ガードリング102の形状およびサイズは、表面側外周ガードリング101(図70参照)と同じである。裏面側ガードリング116は、裏面側接続配線104によって裏面側外周ガードリング102に接続されている。これにより、裏面側ガードリング116は、裏面側外周ガードリング102と電気的に接続されている。
 なお、図示していないが、第1チップ60は、表面側外周ガードリング101と裏面側外周ガードリング102とを接続する複数の外周ビアを有する。複数の外周ビアによって表面側外周ガードリング101と裏面側外周ガードリング102とが電気的に接続されている。各外周ビアは、Z方向に延びている。
 第1表面側コイル111Aの断面構造は、第1実施形態の第1表面側コイル111Aの断面構造と同じである。第1裏面側コイル111Bの断面構造は、第1実施形態の第1裏面側コイル111Bの断面構造と同じである。なお、第15実施形態の信号伝達装置10によれば、第1実施形態と同様の効果が得られる。
 <第16実施形態>
 図72~図75を参照して、第16実施形態の信号伝達装置10について説明する。第16実施形態の信号伝達装置10は、第1実施形態の信号伝達装置10と比較して、第1チップ60の構成が異なる。以下では、第1チップ60の構成について第1実施形態と異なる点を詳細に説明する。また、第1実施形態と共通の構成要素には、同一符号を付し、その説明を省略する。
 [第1チップの内部構造]
 図72は、第1チップ60のチップ表面61寄りの内部構成の一例についての概略平面構造を示している。図73は、図72における後述する絶縁トランス領域110の拡大図である。図74は、第1チップ60のチップ裏面62寄りの内部構造の一例について概略平面構造を示している。図75は、図74における絶縁トランス領域110の拡大図である。
 図72に示すように、第1チップ60は、絶縁トランス領域110および回路領域120と、絶縁トランス領域110に接続され、回路領域120を囲う外周ガードリング100と、を有する。
 絶縁トランス領域110は、回路領域120と第2チップ70とを電気的に絶縁する一方、回路領域120と第2チップ70との間の信号の伝達を許容する領域である。絶縁トランス領域110は、平面視において第1チップ60のX方向の中央に対して第2チップ側面64寄りに形成されている。つまり、絶縁トランス領域110は、平面視において第1チップ60のうち第2チップ70(図7参照)に近い領域に形成されている。絶縁トランス領域110は、第1チップ60のY方向の概ね全体にわたり延びている。
 回路領域120には、図16の第1回路500の複数の第1機能部および複数の回路素子が形成されている。
 絶縁トランス領域110には、第1トランス111および第2トランス112が形成されている。つまり、第16実施形態では、第1実施形態とは異なり、絶縁トランス領域110は、2つのトランスを含む。第1トランス111および第2トランス112は、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。図72に示す例では、第1トランス111は絶縁トランス領域110のうち第3チップ側面65寄りに配置されており、第2トランス112は絶縁トランス領域110のうち第4チップ側面66寄りに配置されている。
 図72および図74に示すように、第1トランス111は、第1表面側コイル111Aおよび第1裏面側コイル111Bと、第2表面側コイル112Aおよび第2裏面側コイル112Bと、を含む。第2トランス112は、第3表面側コイル113Aおよび第3裏面側コイル113Bと、第4表面側コイル114Aおよび第4裏面側コイル114Bと、を含む。
 図72に示すように、第1~第4表面側コイル111A~114Aは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1~第4表面側コイル111A~114Aは、第3チップ側面65から第4チップ側面66に向かうにつれて、第1表面側コイル111A、第2表面側コイル112A、第3表面側コイル113A、および第4表面側コイル114Aの順に配列されている。
 図74に示すように、第1~第4裏面側コイル111B~114Bは、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。第1~第4裏面側コイル111B~114Bは、第3チップ側面65から第4チップ側面66に向かうにつれて、第1裏面側コイル111B、第2裏面側コイル112B、第3裏面側コイル113B、および第4裏面側コイル114Bの順に配列されている。
 なお、図示していないが、第1表面側コイル111A、第2表面側コイル112A、第3表面側コイル113A、および第4表面側コイル114Aは、Z方向において互いに同じ位置に配置されている。第1裏面側コイル111B、第2裏面側コイル112B、第3裏面側コイル113B、および第4裏面側コイル114Bは、Z方向において互いに同じ位置に配置されている。
 第1~第4表面側コイル111A~114Aおよび第1~第4裏面側コイル111B~114Bの各々は、チタン、窒化チタン、銅、アルミニウム、およびタングステンのうち少なくとも1つを含んでいてもよい。一例では、第1~第4表面側コイル111A~114Aは銅を含んでおり、第1~第4裏面側コイル111B~114Bはアルミニウムを含んでいる。また一例では、第1~第4表面側コイル111A~114Aはチタンと銅との積層構造であり、第1~第4裏面側コイル111B~114Bは窒化チタンとアルミニウムとの積層構造である。
 図72に示すように、絶縁トランス領域110内には、複数の第1電極パッド67が形成されている。複数の第1電極パッド67は、X方向において互いに同じ位置であってY方向において互いに離隔して配列されている。複数の第1電極パッド67は、6つの第1電極パッド67A~67Fを含む。第1電極パッド67A~67Fは、第3チップ側面65から第4チップ側面66に向かうにつれて第1電極パッド67A,67B,67C,67D,67E,67Fの順に配置されている。
 図73に示すように、第1表面側コイル111Aは、平面視で渦巻き状の第1コイル部111A1と、第1外側コイル端部111A2と、第1内側コイル端部111A3と、を含む。第1外側コイル端部111A2は第1コイル部111A1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111A3は第1コイル部111A1の最内周の部分における巻回方向の端部を構成している。
 第2表面側コイル112Aは、平面視で渦巻き状の第2コイル部112A1と、第2外側コイル端部112A2と、第2内側コイル端部112A3と、を含む。第2外側コイル端部112A2は第2コイル部112A1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部112A3は第2コイル部112A1の最内周の部分における巻回方向の端部を構成している。
 第1電極パッド67Aは、平面視において第1コイル部111A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Aは、第1コイル部111A1よりも内方に位置しているといえる。第1電極パッド67Aは、第1内側コイル端部111A3と接続されている。このため、第1電極パッド67Aは、第1表面側コイル111Aの第1端部と電気的に接続されているといえる。
 第1電極パッド67Bは、平面視において第1表面側コイル111Aと第2表面側コイル112AとのY方向の間に配置されている。第1電極パッド67Bは、第1表面側コイル111Aの第1外側コイル端部111A2に接続されている。また、第1電極パッド67Bは、第2表面側コイル112Aの第2外側コイル端部112A2に接続されている。このため、第1電極パッド67Bは、第1表面側コイル111Aの第2端部と第2表面側コイル112Aの第2端部と電気的に接続されているといえる。
 第1電極パッド67Cは、平面視において第2コイル部112A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Cは、第2コイル部112A1よりも内方に位置しているといえる。第1電極パッド67Cは、第2内側コイル端部112A3と接続されている。このため、第1電極パッド67Cは、第2表面側コイル112Aの第1端部と電気的に接続されているといえる。
 第3表面側コイル113Aは、平面視で渦巻き状の第3コイル部113A1と、第3外側コイル端部113A2と、第3内側コイル端部113A3と、を含む。第3外側コイル端部113A2は第3コイル部113A1の最外周の部分における巻回方向の端部を構成しており、第3内側コイル端部113A3は第3コイル部113A1の最内周の部分における巻回方向の端部を構成している。
 第4表面側コイル114Aは、平面視で渦巻き状の第4コイル部114A1と、第4外側コイル端部114A2と、第4内側コイル端部114A3と、を含む。第4外側コイル端部114A2は第4コイル部114A1の最外周の部分における巻回方向の端部を構成しており、第4内側コイル端部114A3は第4コイル部114A1の最内周の部分における巻回方向の端部を構成している。
 第1電極パッド67Dは、平面視において第3コイル部113A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Dは、第3コイル部113A1よりも内方に位置しているといえる。第1電極パッド67Dは、第3内側コイル端部113A3と接続されている。このため、第1電極パッド67Dは、第3表面側コイル113Aの第1端部と電気的に接続されているといえる。
 第1電極パッド67Eは、平面視において第3表面側コイル113Aと第4表面側コイル114AとのY方向の間に配置されている。第1電極パッド67Eは、第3表面側コイル113Aの第3外側コイル端部113A2と接続されている。また、第1電極パッド67Eは、第4表面側コイル114Aの第4外側コイル端部114A2と接続されている。このため、第1電極パッド67Eは、第3表面側コイル113Aの第2端部と第4表面側コイル114Aの第2端部と電気的に接続されているといえる。
 第1電極パッド67Fは、平面視において第4コイル部114A1の巻回中心を含む内方空間に配置されている。第1電極パッド67Fは、第4コイル部114A1よりも内方に位置しているといえる。第1電極パッド67Fは、第4内側コイル端部114A3と接続されている。このため、第1電極パッド67Fは、第4表面側コイル114Aの第1端部と電気的に接続されているといえる。
 図72および図73の例では、第1~第4表面側コイル111A~114Aの巻回数は、互いに等しい。平面視において、第1表面側コイル111Aの巻回方向と第2表面側コイル112Aの巻回方向とは互いに反対方向であり、第3表面側コイル113Aの巻回方向と第4表面側コイル114Aの巻回方向とは互いに反対方向である。第1表面側コイル111Aの巻回方向と第3表面側コイル113Aの巻回方向とは同じ方向であり、第2表面側コイル112Aの巻回方向と第4表面側コイル114Aの巻回方向とは同じ方向である。
 図75に示すように、第1裏面側コイル111Bは、Z方向において第1表面側コイル111A(図72参照)と対向配置されている。第1裏面側コイル111Bは、平面視で渦巻き状の第1コイル部111B1と、第1外側コイル端部111B2と、第1内側コイル端部111B3と、を含む。第1外側コイル端部111B2は第1コイル部111B1の最外周の部分における巻回方向の端部を構成しており、第1内側コイル端部111B3は第1コイル部111B1の最内周の部分における巻回方向の端部を構成している。第1外側コイル端部111B2は、X方向に延びる第1接続配線118Aに接続されている。第1接続配線118Aは、回路領域120(図72参照)の送信部522(図16参照)に電気的に接続されている。第1内側コイル端部111B3は、図示していない第1配線に接続されている。第1配線は、回路領域120の送信部501に電気的に接続されている。
 第2裏面側コイル112Bは、Z方向において第2表面側コイル112A(図72参照)と対向配置されている。第2裏面側コイル112Bは、平面視で渦巻き状の第2コイル部112B1と、第2外側コイル端部112B2と、第2内側コイル端部112B3と、を含む。第2外側コイル端部112B2は第2コイル部112B1の最外周の部分における巻回方向の端部を構成しており、第2内側コイル端部112B3は第2コイル部112B1の最内周の部分における巻回方向の端部を構成している。第2外側コイル端部112B2は、X方向に延びる第2接続配線118Bに接続されている。第2接続配線118Bは、Y方向において第1接続配線118Aと隣り合う位置に配置されている。第2接続配線118Bは、第1接続配線118Aよりも第2裏面側コイル112B寄りに配置されている。第2接続配線118Bは、回路領域120の送信部501に電気的に接続されている。第2内側コイル端部112B3は、図示していない第2配線に接続されている。第2配線は、回路領域120の送信部501に電気的に接続されている。
 第3裏面側コイル113Bは、Z方向において第3表面側コイル113A(図72参照)と対向配置されている。第3裏面側コイル113Bは、平面視で渦巻き状の第3コイル部113B1と、第3外側コイル端部113B2と、第3内側コイル端部113B3と、を含む。第3外側コイル端部113B2は第3コイル部113B1の最外周の部分における巻回方向の端部を構成しており、第3内側コイル端部113B3は第3コイル部113B1の最内周の部分における巻回方向の端部を構成している。第3外側コイル端部113B2は、X方向に延びる第3接続配線118Cに接続されている。第3接続配線118Cは、回路領域120の第1機能部に電気的に接続されている。第3内側コイル端部113B3は、図示していない第3配線に接続されている。第3配線は、回路領域120の第1機能部に電気的に接続されている。
 第4裏面側コイル114Bは、Z方向において第4表面側コイル114A(図72参照)と対向配置されている。第4裏面側コイル114Bは、平面視で渦巻き状の第4コイル部114B1と、第4外側コイル端部114B2と、第4内側コイル端部114B3と、を含む。第4外側コイル端部114B2は第4コイル部114B1の最外周の部分における巻回方向の端部を構成しており、第4内側コイル端部114B3は第4コイル部114B1の最内周の部分における巻回方向の端部を構成している。第4外側コイル端部114B2は、X方向に延びる第4接続配線118Dに接続されている。第4接続配線118Dは、Y方向において第3接続配線118Cと隣り合う位置に配置されている。第4接続配線118Dは、第3接続配線118Cよりも第4裏面側コイル114B寄りに配置されている。第4接続配線118Dは、回路領域120の第1機能部に電気的に接続されている。第4内側コイル端部114B3は、図示していない第4配線に接続されている。第4配線は、回路領域120の第1機能部に電気的に接続されている。
 ここで、第1~第4裏面側コイル111B~114Bの巻回数は、互いに等しい。平面視において、第1裏面側コイル111Bの巻回方向と第2裏面側コイル112Bの巻回方向とは互いに反対方向であり、第3裏面側コイル113Bの巻回方向と第4裏面側コイル114Bの巻回方向とは互いに反対方向である。第1裏面側コイル111Bの巻回方向と第3裏面側コイル113Bの巻回方向とは同じ方向であり、第2裏面側コイル112Bの巻回方向と第4裏面側コイル114Bの巻回方向とは同じ方向である。また一例では、第1~第4裏面側コイル111B~114Bの巻回数は、第1~第4表面側コイル111A~114Aの巻回数と等しい。
 図72に示すように、絶縁トランス領域110には、平面視において第1~第4表面側コイル111A~114Aおよび第1電極パッド67A~67Fを囲む表面側ガードリング115が形成されている。平面視における表面側ガードリング115の形状は、トラック形状である。
 図74に示すように、絶縁トランス領域110には、平面視において第1~第4裏面側コイル111B~114Bを囲む裏面側ガードリング116が形成されている。平面視における裏面側ガードリング116の形状は、トラック形状である。裏面側ガードリング116の形状およびサイズは、表面側ガードリング115と同じである。平面視において、裏面側ガードリング116は、表面側ガードリング115と重なる位置に形成されている。
 絶縁トランス領域110には、表面側ガードリング115と裏面側ガードリング116とを接続する複数のビア117が形成されている。ビア117は、平面視において表面側ガードリング115と裏面側ガードリング116との双方と重なる位置に配置されている。
 図72に示すように、回路領域120には、複数の配線層121が設けられている。複数の配線層121は、複数の第1機能部を電気的に接続する配線層と、複数の機能部と絶縁トランス領域110の第1トランス111および第2トランス112とを電気的に接続する配線層と、を含む。複数の第1機能部は、回路領域120のうちZ方向において複数の配線層121よりもチップ裏面62(図19参照)寄りの位置に形成されている。一例では、図74では図示していないが、複数の第1機能部は、第1~第4裏面側コイル111B~114BとZ方向において同じ位置に形成されている。なお、複数の第1機能部が形成されるZ方向の位置は任意に変更可能である。
 図72および図74に示すように、外周ガードリング100は、表面側外周ガードリング101と、裏面側外周ガードリング102と、を含む。
 図72に示すように、表面側外周ガードリング101は、表面側ガードリング115に接続されている。より詳細には、表面側外周ガードリング101は、表面側ガードリング115のY方向の両端部に接続されている。表面側外周ガードリング101は、平面視において第3チップ側面65にY方向に隣り合う位置においてX方向に延びる第1部分と、第1部分から連続し、第2チップ側面64にX方向に隣り合う位置においてY方向に延びる第2部分と、第2部分から連続し、第4チップ側面66にY方向に隣り合う位置においてX方向に延びる第3部分と、を含む。表面側外周ガードリング101は、第1部分から表面側ガードリング115に向けてY方向に延びて表面側ガードリング115に接続される第1接続部と、第3部分から表面側ガードリング115に向けてY方向に延びて表面側ガードリング115に接続される第2接続部と、をさらに含む。このように、表面側外周ガードリング101は、表面側ガードリング115と電気的に接続されている。
 図74に示すように、裏面側外周ガードリング102は、裏面側ガードリング116に接続されている。より詳細には、裏面側外周ガードリング102は、裏面側ガードリング116のY方向の両端部に接続されている。裏面側外周ガードリング102は、平面視において第3チップ側面65にY方向に隣り合う位置においてX方向に延びる第1部分と、第1部分から連続し、第2チップ側面64にX方向に隣り合う位置においてY方向に延びる第2部分と、第2部分から連続し、第4チップ側面66にY方向に隣り合う位置においてX方向に延びる第3部分と、を含む。裏面側外周ガードリング102は、第1部分から裏面側ガードリング116に向けてY方向に延びて裏面側ガードリング116に接続される第1接続部と、第3部分から裏面側ガードリング116に向けてY方向に延びて裏面側ガードリング116に接続される第2接続部と、をさらに含む。このように、裏面側外周ガードリング102は、裏面側ガードリング116と電気的に接続されている。平面視における裏面側外周ガードリング102の形状およびサイズは、表面側外周ガードリング101と同じである。裏面側外周ガードリング102は、平面視において表面側外周ガードリング101と重なる位置に配置されている。
 なお、図示していないが、第1チップ60は、表面側外周ガードリング101と裏面側外周ガードリング102とを接続する複数の外周ビアを有する。複数の外周ビアによって表面側外周ガードリング101と裏面側外周ガードリング102とが電気的に接続されている。各外周ビアは、Z方向に延びている。なお、第16実施形態の信号伝達装置10によれば、第1実施形態と同様の効果が得られる。
 <変更例>
 上記各実施形態は、以下のように変更して実施することができる。また、上記各実施形態および以下の各変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 [実施形態の組み合わせ]
 第1~第16実施形態の組み合わせの例について以下に説明する。
 ・第1実施形態の信号伝達装置10に対して、第2および第4~第6実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第2および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第2および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第2および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第2および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態の信号伝達装置10に対して、第3および第4~第6実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第3および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第3および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第3および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第1実施形態に第3および第4~第6実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態の信号伝達装置10に対して、第4、第5、第8、および第10実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第8、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第8、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第8、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第8、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態の信号伝達装置10に対して、第4、第5、第9、および第10実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第9、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第9、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第11、第14、および第16実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第9、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第15実施形態の構成の少なくとも1つを追加してもよい。
 ・第7実施形態に第4、第5、第9、および第10実施形態の構成の少なくとも1つを追加した信号伝達装置10に対して、第12、第13、および第16実施形態の構成の少なくとも1つを追加してもよい。
 [第1ダイパッドおよび第2ダイパッドの変更例]
 ・各実施形態において、第1ダイパッド30には、第1ダイパッド30をその厚さ方向(Z方向)に貫通する1または複数の貫通孔が設けられていてもよい。各貫通孔には、封止樹脂90が充填されている。
 ・各実施形態において、第2ダイパッド50には、第2ダイパッド50をその厚さ方向(Z方向)に貫通する1または複数の貫通孔が設けられていてもよい。各貫通孔には、封止樹脂90が充填されている。
 ・各実施形態において、第1ダイパッド30から複数の凹部39の少なくとも1つを省略してもよい。
 ・各実施形態において、第2ダイパッド50から複数の凹部59の少なくとも1つを省略してもよい。
 ・各実施形態において、第2ダイパッド50の凹部59は、平面視において第2導電性接合材SD2とは異なる位置に設けられていてもよい。この構成によれば、平面視において第2導電性接合材SD2とは異なる位置に設けられた凹部59には封止樹脂90が充填される。これにより、第2ダイパッド50と封止樹脂90との密着性の向上を図ることができる。
 [第1リード端子および第2リード端子の変更例]
 ・第3実施形態において、第1リード端子12,14,15,17から貫通孔12AD,12AE,14AD,15AD,17AD,17AEを省略してもよい。つまり、貫通孔12AD,12AE,14AD,15AD,17AD,17AEの有無にかかわらず、第1リード用ワイヤWBのセカンドボンド部は、セキュリティボンドWB1が設けられた構成と、セキュリティボンドWB1が設けられていない構成とが併存していてもよい。一例では、第1リード用ワイヤWBのセカンドボンド部が比較的剥離しやすいと考えられる箇所の第1リード用ワイヤWBのセカンドボンド部にセキュリティボンドWB1が設けられ、セカンドボンド部が比較的剥離しにくいと考えられる箇所の第1リード用ワイヤWBのセカンドボンド部にはセキュリティボンドWB1が設けられていない。セカンドボンド部の剥離の一例としては、比較的長い第1リード用ワイヤWBのセカンドボンド部は剥離しやすく、比較的短い第1リード用ワイヤWBのセカンドボンド部は剥離しにくいと考えられる。このため、比較的長い第1リード用ワイヤWBのセカンドボンド部にはセキュリティボンドWB1が設けられ、比較的短い第1リード用ワイヤWBのセカンドボンド部にはセキュリティボンドWB1が設けられていない。
 ・第3実施形態において、第2リード端子42,44,45,47から貫通孔42AD,42AE,44AD,45AD,47AD,47AEを省略してもよい。つまり、貫通孔42AD,42AE,44AD,45AD,47AD,47AEの有無にかかわらず、第2リード用ワイヤWDのセカンドボンド部は、セキュリティボンドWD1が設けられた構成と、セキュリティボンドWD1が設けられていない構成とが併存していてもよい。一例では、第2リード用ワイヤWDのセカンドボンド部が比較的剥離しやすいと考えられる箇所の第2リード用ワイヤWDのセカンドボンド部にセキュリティボンドWD1が設けられ、セカンドボンド部が比較的剥離しにくいと考えられる箇所の第2リード用ワイヤWDのセカンドボンド部にはセキュリティボンドWD1が設けられていない。セカンドボンド部の剥離の一例としては、比較的長い第2リード用ワイヤWDのセカンドボンド部は剥離しやすく、比較的短い第2リード用ワイヤWDのセカンドボンド部は剥離しにくいと考えられる。このため、比較的長い第2リード用ワイヤWDのセカンドボンド部にはセキュリティボンドWD1が設けられ、比較的短い第2リード用ワイヤWDのセカンドボンド部にはセキュリティボンドWD1が設けられていない。
 ・各実施形態において、第1リード端子12~17のワイヤ接続部12AA~17AAを覆うめっき層29の被覆領域は任意に変更可能である。一例では、めっき層29は、ワイヤ接続部12AA~17AAの各々のインナーリード表面21Bの全体にわたり覆っていてもよい。この場合、めっき層29の一部は、ワイヤ接続部12AA~17AAの先端面24Bを覆っていてもよい。
 ・各実施形態において、第2リード端子42~47のワイヤ接続部42AA~47AAを覆うめっき層29の被覆領域は任意に変更可能である。一例では、めっき層29は、ワイヤ接続部42AA~47AAの各々のインナーリード表面21Bの全体にわたり覆っていてもよい。この場合、めっき層29の一部は、ワイヤ接続部42AA~47AAの先端面24Bを覆っていてもよい。
 ・第1~第6および第11~第16実施形態において、第1リード端子11~18の第1アウターリード部11B~18Bにおけるアウターリード端面24Aの少なくとも1つから端面めっき層27を省略してもよい。
 ・第1~第6および第11~第16実施形態において、第2リード端子41~48の第2アウターリード部41B~48Bにおけるアウターリード端面24Aの少なくとも1つから端面めっき層27を省略してもよい。
 ・第7~第10実施形態において、第1リード端子11M,11N,12~17,18M,18Nの第1アウターリード部11MB,11NB,12B~17B,18MB,18NBにおけるアウターリード端面24Aの少なくとも1つから端面めっき層27を省略してもよい。
 ・第7~第10実施形態において、第2リード端子41M,41N,42~47,48M,48Nの第2アウターリード部41MB,41NB,42B~47B,48MB,48NBにおけるアウターリード端面24Aの少なくとも1つから端面めっき層27を省略してもよい。
 [ワイヤの変更例]
 ・各実施形態において、平面視におけるチップ間ワイヤWAの配置態様は任意に変更可能である。一例では、平面視において、6本のチップ間ワイヤWAは、たとえば第1チップ60から第2チップ70に向かうにつれて、隣り合うチップ間ワイヤWAの間隔が大きくなるように形成されていてもよい。
 ・第1および第7実施形態において、封止樹脂90の封止表面91、封止裏面92、第1~第4封止側面93~96の各々の面粗度Rzが8μm以上の場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第1実施形態において、第1リード端子11~18のアウターリード端面24Aに端面めっき層27が形成される場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第1実施形態において、第2リード端子41~48のアウターリード端面24Aに端面めっき層27が形成される場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第7実施形態において、第1リード端子11M,11N,12~17,18M,18Nのアウターリード端面24Aに端面めっき層27が形成される場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第7実施形態において、第2リード端子41M,41N,42~47,48M,48Nのアウターリード端面24Aに端面めっき層27が形成される場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第1および第7実施形態において、第1リード端子12~17のワイヤ接続部12AA~17AAのインナーリード表面21Bにおける先端面24B寄りの端部にめっき層29が形成されず、封止樹脂90が接している構成の場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第1および第7実施形態において、第2リード端子42~47のワイヤ接続部42AA~47AAのインナーリード表面21Bにおける先端面24B寄りの端部にめっき層29が形成されず、封止樹脂90が接している構成の場合、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・第2~第6、第8~第16実施形態において、チップ間ワイヤWAを構成する材料は、金に限られず、任意に変更可能である。
 ・各実施形態において、第1リード用ワイヤWBは、銅またはアルミニウムに限られず、任意に変更可能である。また、第1リード用ワイヤWBが銅ワイヤによって形成される場合、銅ワイヤの表面におけるパラジウムのコーティングを省略してもよい。なお、第1ダイパッド用ワイヤWC、第2リード用ワイヤWD、および第2ダイパッド用ワイヤWEについても同様に変更できる。
 ・第1、第4~第6、第7、および第10~第16実施形態において、複数の第1リード用ワイヤWBのセカンドボンド部のうち少なくとも1つからセキュリティボンドWB1を省略してもよい。
 ・第1、第4~第6、第7、および第10~第16実施形態において、複数の第2リード用ワイヤWDのセカンドボンド部のうち少なくとも1つからセキュリティボンドWD1を省略してもよい。
 ・各実施形態において、複数の第1ダイパッド用ワイヤWCのセカンドボンド部のうち少なくとも1つからセキュリティボンドWC1を省略してもよい。
 ・各実施形態において、複数の第2ダイパッド用ワイヤWEのセカンドボンド部のうち少なくとも1つからセキュリティボンドWE1を省略してもよい。
 [第1チップおよび第2チップの変更例]
 ・第16実施形態において、第1チップ60の構成を図76および図77に示す第1チップ60に変更してもよい。図76および図77に示す第1チップ60は、図72~図75に示す第1チップ60と比較して、第1チップ60の短手方向の大きさに対する長手方向の長さの比率が大きくなる。
 図76に示すように、表面側外周ガードリング101は、第1チップ60の外周縁を1周するように環状に形成されている。平面視において、表面側外周ガードリング101のうち第2チップ側面64とX方向に隣り合い、Y方向に延びる部分は、表面側ガードリング115に接続されている。
 図76および図77に示すとおり、絶縁トランス領域110の第1トランス111および第2トランス112の構成は、第16実施形態の第1トランス111および第2トランス112の構成と同じである。
 回路領域120は、第1チップ60の複数の機能部および複数の回路素子が形成されている。複数の機能部および複数の回路素子は、第16実施形態の回路領域120の複数の機能部および複数の回路素子と同様である。図77に示すように、回路領域120は、第1回路部CR1、第2回路部CR2、および第3回路部CR3を含む。第1回路部CR1および第2回路部CR2には、たとえばMOSFETが形成されている。一例では、第1回路部CR1は図16の送信部501を含み、第2回路部CR2は図16のロジック部503を含む。第3回路部CR3には、たとえば保護素子が形成されている。なお、図76および図77に示すチップの構成を第2チップ70に適用した場合、第2回路部CR2のMOSFETとして、DMOSFET(Double-Diffused MOSFET)が用いられてもよい。
 ・第5実施形態において、第1チップ60の段差部139は、平面視において基板130の全周に設けられた構成に限られない。段差部139は、基板130の第1~第4基板側面133~136に対して部分的に設けられていてもよい。
 ・第5実施形態において、第2チップ70の段差部239は、平面視において基板230の全周に設けられた構成に限られない。段差部239は、基板230の第1~第4基板側面233~236に対して部分的に設けられていてもよい。
 ・第5実施形態において、第1チップ60の段差部139および第2チップ70の段差部239の一方を省略してもよい。つまり、第5実施形態では、第1チップ60の基板130および第2チップ70の基板230の少なくとも一方に段差部が設けられていればよい。
 [封止樹脂の変更例]
 ・各実施形態において、封止樹脂90の封止表面91、封止裏面92、第1~第4封止側面93~96の各々の面粗度Rzは、8μm未満であってもよい。
 ・各実施形態において、封止樹脂90に対する硫黄の添加濃度は、任意に変更可能である。一例では、封止樹脂90に対する硫黄の添加濃度は、300μg/gよりも大きくてもよい。
 ・第6および第10実施形態において、第3封止側面95および第4封止側面96の各々の形状は任意に変更可能である。一例では、図78に示すように、第3封止側面95のX方向の中央部に複数の溝部95Eが形成されていてもよい。第4封止側面96のX方向の中央部に複数の溝部96Eが形成されていてもよい。なお、第3封止側面95の溝部95Eの個数は任意に変更可能である。一例では、第3封止側面95の溝部95Eは1つであってもよい。また、第4封止側面96の溝部96Eの個数は任意に変更可能である。一例では、第4封止側面96の溝部96Eは1つであってもよい。
 図78に示す例では、複数の溝部95Eの深さは一定であるが、これに限られない。一例では、複数の溝部95EのうちX方向の中央の溝部95Eの深さが、X方向の両端の溝部95Eの深さよりも深くてもよい。また同様に、複数の溝部96Eの深さは一定であるが、これに限られない。一例では、複数の溝部96EのうちX方向の中央の溝部96Eの深さが、X方向の両端の溝部96Eの深さよりも深くてもよい。
 [信号伝達装置の適用例]
 各実施形態の信号伝達装置10は、たとえばモータの駆動を制御するIGBT(Insulated Gate Bipolar Transistor)などのパワー半導体素子のスイッチング動作を行う絶縁ゲートドライバに適用できる。このような絶縁ゲートドライバは、たとえば電気自動車またはハイブリッド自動車のインバータ装置に適用できる。この場合、信号伝達装置10の第1チップ60に供給される電源電圧は、グランド電位基準で5Vまたは3.3Vである。一方、第2チップ70には、第1チップ60のグランド電位と比較して、たとえば600V以上の電圧が過渡的に印加される。より詳細には、ハイブリッド自動車などのインバータ装置におけるモータドライバ回路は、ローサイドスイッチング素子とハイサイドスイッチング素子とをトーテムポール状に接続したハーフブリッジ回路が一般的に使用されている。
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「AがB上に形成される」という表現は、上記各実施形態ではAがBに接触してB上に直接配置され得るが、変更例として、AがBに接触することなくBの上方に配置され得ることが意図される。すなわち、「~上に」という用語は、AとBとの間に他の部材が形成される構造を排除しない。
 本明細書における記述「AおよびBの少なくとも1つ」は、「Aのみ、または、Bのみ、または、AとBの両方」を意味するものとして理解されたい。
 本開示で使用されるZ方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造は、本明細書で説明されるZ方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。例えば、X方向が鉛直方向であってもよく、またはY方向が鉛直方向であってもよい。
 <付記>
 本開示から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載した構成について上記実施形態中の対応する符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各符号に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
 [付記A1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第1方向(X方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)と前記第2チップ(70)とを電気的に接続するチップ間ワイヤ(WA1~WA6)と、
 前記第1チップ(60)と前記複数の第1リード端子(12~17)とを個別に接続する第1リード用ワイヤ(WB)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部分(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記チップ間ワイヤ(WA1~WA6)は、金を含む材料によって形成されており、
 前記第1リード用ワイヤ(WB)は、銅またはアルミニウムを含む材料によって形成されている
 信号伝達装置。
 [付記A2]
 前記第1リード用ワイヤ(WB)は、銅ワイヤの表面にパラジウムがコーティングされた構成である
 付記A1に記載の信号伝達装置。
 [付記A3]
 前記第2チップ(70)と前記複数の第2リード端子(42~47)とを個別に接続する複数の第2リード用ワイヤ(WD)をさらに備え、
 前記第2リード用ワイヤ(WD)は、銅またはアルミニウムを含む材料によって形成されている
 付記A1またはA2に記載の信号伝達装置。
 [付記A4]
 前記第1チップ(60)と前記第1ダイパッド(30)とを接続する第1ダイパッド用ワイヤ(WC)をさらに備え、
 前記第1ダイパッド用ワイヤ(WC)は、銅またはアルミニウムを含む材料によって形成されている
 付記A1~A3のいずれか1つに記載の信号伝達装置。
 [付記A5]
 前記第2チップ(70)と前記第2ダイパッド(50)とを接続する第2ダイパッド用ワイヤ(WE)をさらに備え、
 前記第2ダイパッド用ワイヤ(WE)は、銅またはアルミニウムを含む材料によって形成されている
 付記A1~A4のいずれか1つに記載の信号伝達装置。
 [付記A6]
 前記第1ダイパッド用ワイヤ(WC)は、ボンディングワイヤであり、
 前記第1ダイパッド用ワイヤ(WC)のうち前記第1ダイパッド(30)との接合部には、セキュリティボンド(WC1)が形成されている
 付記A4に記載の信号伝達装置。
 [付記A7]
 前記第2ダイパッド用ワイヤ(WE)は、ボンディングワイヤであり、
 前記第2ダイパッド用ワイヤ(WE)のうち前記第2ダイパッド(50)との接合部には、セキュリティボンド(WE1)が形成されている
 付記A5に記載の信号伝達装置。
 [付記A8]
 前記複数の第1リード端子(11~18)は、前記第1ダイパッド(30)から離隔して配置された第1離隔端子(12~17)を含み、
 前記第1離隔端子(12~17)は、
 前記第1方向(X方向)に延びる第1部分(12AB~17AB)と、
 前記第1部分(12AB~17AB)に連続して設けられ、平面視において前記第1部分(12AB~17AB)に対して前記第1方向(X方向)と交差する方向に延びる第2部分(12AA~17AA)と、を含み、
 前記第2部分(12AA~17AA)は、当該第2部分(12AA~17AA)と接続する前記第1リード用ワイヤ(WB)と平面視で交差する側面を含み、
 前記側面は、平面視において前記第1ダイパッド(30)と対向している
 付記A1~A7のいずれか1つに記載の信号伝達装置。
 [付記A9]
 前記複数のチップ間ワイヤ(WA1~WA6)は、平面視において互いに平行となるように形成されている
 付記A1~A8のいずれか1つに記載の信号伝達装置。
 [付記A10]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記複数の第1リード端子(11~18)は、前記第1端部リード端子(11,18)とは異なる第1リード端子であって、前記第1ダイパッド(30)から離隔して配置された第1離隔端子(12~17)を含み、
 前記第1離隔端子(12~17)は、前記第1離隔端子(12~17)の厚さ方向(Z方向)に貫通する貫通孔(12AD~17AD)を有し、
 前記貫通孔(12AD~17AD)内には前記封止樹脂(90)が充填されている
 付記A1~A9のいずれか1つに記載の信号伝達装置。
 [付記A11]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記各第1リード端子(11~18)は、
 前記封止樹脂(90)の外部に露出した第1アウターリード部(11B~18B)と、
 前記封止樹脂(90)の内部に設けられ、前記第1アウターリード部(11B~18B)に接続された第1インナーリード部(11A~18A)と、を含み、
 前記複数の第1リード端子(11~18)は、
 前記第1インナーリード部(12A,14A,15A,17A)に前記第1リード端子(11~18)の厚さ方向(Z方向)に貫通した貫通孔(12AD,14AD,15AD,17AD)が形成された第1特定端子(12,14,15,17)と、
 前記第1インナーリード部(13A,16A)に前記貫通孔が形成されていない第2特定端子(13,16)と、を含み、
 前記複数の第1リード用ワイヤ(WB)は、
 前記第1特定端子(12,14,15,17)に接合された第1特定ワイヤと、
 前記第2特定端子(13,16)に接合された第2特定ワイヤと、を含み、
 前記第2特定ワイヤのうち前記第2特定端子(13,16)に接合された接合部には、セキュリティボンド(WB1)が形成されている
 付記A1~A9のいずれか1つに記載の信号伝達装置。
 [付記A12]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記封止樹脂(90)は、封止表面(91)と、前記封止表面(91)とは反対側の封止裏面(92)と、前記封止表面(91)と前記封止裏面(92)とを繋ぐ封止側面(93~96)と、を有し、
 前記封止側面(93~96)は、
 前記複数の第1リード端子(11~18)が露出された第1封止側面(93)と、
 前記複数の第2リード端子(41~48)が露出された第2封止側面(94)と、
 前記第1封止側面(93)と前記第2封止側面(94)とを繋ぐ第3封止側面(95)および第4封止側面(96)と、を含み、
 前記第3封止側面(95)および前記第4封止側面(96)の双方は、導電部材が露出することなく前記封止樹脂(90)のみで構成されている
 付記A1~A11のいずれか1つに記載の信号伝達装置。
 [付記A13]
 前記第1チップ(60)は、
 素子絶縁層(150)と、
 前記素子絶縁層(150)上に設けられた第1樹脂層(191)と、
 前記第1樹脂層(191)上に設けられた第2樹脂層(192)と、を備え、
 前記絶縁トランス(111,112)は、
 前記第1樹脂層(191)上に配置され、前記第2樹脂層(192)によって覆われた表面側コイル(111A,112A)と、
 前記素子絶縁層(150)の厚さ方向(Z方向)において前記表面側コイル(111A,112A)と対向配置され、前記素子絶縁層(150)内に埋め込まれた裏面側コイル(111B,112B)と、を含む
 付記A1~A12のいずれか1つに記載の信号伝達装置。
 [付記A14]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記第1チップ(60)は、
 素子絶縁層(150)と、
 前記素子絶縁層(150)を覆うように前記素子絶縁層(150)上に形成されたパッシベーション膜(161)と、
 前記パッシベーション膜(161)の表面に形成され、前記パッシベーション膜(161)よりも比誘電率が低い低誘電層(193)と、を備え、
 前記封止樹脂(90)は、前記低誘電層(193)を覆っている
 付記A1~A12のいずれか1つに記載の信号伝達装置。
 [付記A15]
 前記絶縁トランス(111,112)は、
 前記第1チップ(60)のチップ表面(61)寄りに配置された表面側コイル(111A,112A)と、
 前記表面側コイル(111A,112A)と対向配置された裏面側コイル(111B,112B)と、を含み、
 前記表面側コイル(111A,112A)は、
 コイル表面(171)と、
 前記コイル表面(171)とは反対側のコイル裏面(172)と、
 前記コイル表面(171)と前記コイル裏面(172)とを繋ぐコイル側面(173)と、を有し、
 前記コイル表面(171)と前記コイル側面(173)との間には湾曲面(176)が形成されている
 付記A1~A12のいずれか1つに記載の信号伝達装置。
 [付記A16]
 前記第1チップ(60)は、
 前記第1ダイパッド(30)に搭載された平板状の基板(130)と、
 前記基板(130)上に形成され、前記絶縁トランス(111,112)の少なくとも一部が設けられた素子絶縁層(150)と、を備え、
 前記基板(130)は、
 前記第1ダイパッド(30)と対面する基板裏面(132)と、
 前記基板裏面(132)とは反対側の基板表面(131)と、
 前記基板裏面(132)と前記基板表面(131)とを繋ぐ基板側面(133~136)と、
 前記基板裏面(132)を含む第1部分(137)と、
 前記第1部分(137)上に設けられ、前記基板表面(131)を含む第2部分(138)と、
 前記第1部分(137)に対して前記第2部分(138)が前記基板(130)の内側に位置するように形成された段差部(139)と、を有する
 付記A1~A12のいずれか1つに記載の信号伝達装置。
 [付記A17]
 前記第1ダイパッド(30)は、
 平面視において前記第2ダイパッド(50)と前記第1方向(X方向)に対向する第1先端面(31)と、
 平面視において前記第1先端面(31)とは反対側の第1基端面(32)と、
 前記第2方向(Y方向)の両側面を構成する第1側面(33)および第2側面(34)と、
 前記第1先端面(31)と前記第1側面(33)との間に形成された第1先端側湾曲面(35)と、
 前記第1先端面(31)と前記第2側面(34)との間に形成された第2先端側湾曲面(36)と、
 前記第1基端面(32)と前記第1側面(33)との間に形成された第1基端側湾曲面(37)と、
 前記第1基端面(32)と前記第2側面(34)との間に形成された第2基端側湾曲面(38)と、を有し、
 平面視において、前記第1先端側湾曲面(35)および前記第2先端側湾曲面(36)の双方の弧の長さは、前記第1基端側湾曲面(37)および前記第2基端側湾曲面(38)の双方の弧の長さよりも長い
 付記A1~A10のいずれか1つに記載の信号伝達装置。
 [付記A18]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記第1リード端子(11~18)は、前記封止樹脂(90)内に設けられた第1インナーリード部(11A~18A)を含み、
 前記第1インナーリード部(12A~17A)は、前記第1リード用ワイヤ(WB)が接続されるワイヤ接続部(12AA~17AA)を含み、
 前記ワイヤ接続部(12AA~17AA)は、
 前記第1リード用ワイヤ(WB)が接合されるインナーリード表面(21B)と、
 前記インナーリード表面(21B)とは反対側を向くインナーリード裏面(22B)と、
 前記インナーリード表面(21B)と前記インナーリード裏面(22B)とを繋ぐインナーリード側面(23B)と、を有し、
 前記インナーリード側面(23B)は、前記第1ダイパッド(30)と前記第1方向(X方向)に対向する先端面(24B)を含み、
 前記インナーリード表面(21B)には、めっき層(29)が形成されており、
 前記インナーリード表面(21B)のうち前記先端面(24B)側の端部には、めっき層(29)が形成されておらず、前記封止樹脂(90)と接している
 付記A1~A10のいずれか1つに記載の信号伝達装置。
 [付記A19]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記複数の第1リード端子(11~18)は、前記封止樹脂(90)の外部に突出した第1アウターリード部(11B~18B)を含み、
 前記第1アウターリード部(11B~18B)は、
 アウターリード表面(21A)と、
 前記アウターリード表面(21A)とは反対側を向くアウターリード裏面(22A)と、
 前記第1アウターリード部(11B~18B)の幅方向(Y方向)の両端において前記アウターリード表面(21A)と前記アウターリード裏面(22A)とを繋ぐアウターリード側面(23A)と、
 前記第1アウターリード部(11B~18B)が延びる方向の端面であるアウターリード端面(24A)と、を有し、
 前記アウターリード表面(21A)、前記アウターリード裏面(22A)、および前記アウターリード側面(23A)には、めっき層(26)が形成され、
 前記めっき層(26)は、前記アウターリード端面(24A)のうち前記アウターリード裏面(22A)から前記アウターリード表面(21A)に向けて連続的に形成され、かつ前記アウターリード表面(21A)とは離隔している
 付記A1~A10のいずれか1つに記載の信号伝達装置。
 [付記A20]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記封止樹脂(90)の外表面(91~96)は、面粗度Rzが8μm以上となるように形成されている
 付記A1~A19のいずれか1つに記載の信号伝達装置。
 [付記A21]
 前記第2チップ(70)と前記複数の第2リード端子(42~47)とを個別に接続する複数の第2リード用ワイヤ(WD)をさらに備え、
 前記複数の第2リード端子(41~48)は、前記第2ダイパッド(50)から離隔して配置された第2離隔端子(42~47)を含み、
 前記第2離隔端子(42~47)は、
 前記第1方向(X方向)に延びる第3部分(42AB~47AB)と、
 前記第3部分(42AB~47AB)に連続して設けられ、平面視において前記第3部分(42AB~47AB)に対して前記第1方向(X方向)と交差する方向に延びる第4部分(42AA~47AA)と、を含み、
 前記第4部分(42AA~47AA)は、当該第4部分(42AA~47AA)と接続する前記第2リード用ワイヤ(WD)と平面視で交差する側面を含み、
 前記側面は、平面視において前記第2ダイパッド(50)と対向している
 付記A1またはA2に記載の信号伝達装置。
 [付記A22]
 前記第2ダイパッド(50)は、
 平面視において前記第1ダイパッド(30)と前記第1方向(X方向)に対向する第2先端面(51)と、
 平面視において前記第2先端面(51)とは反対側の第2基端面(52)と、
 前記第2方向(Y方向)の両側面を構成する第3側面(53)および第4側面(54)と、
 前記第2先端面(51)と前記第3側面(53)との間に形成された第3先端側湾曲面(55)と、
 前記第2先端面(51)と前記第4側面(54)との間に形成された第4先端側湾曲面(56)と、
 前記第2基端面(52)と前記第3側面(53)との間に形成された第3基端側湾曲面(57)と、
 前記第2基端面(52)と前記第4側面(54)との間に形成された第4基端側湾曲面(58)と、を有し、
 平面視において、前記第3先端側湾曲面(55)および前記第4先端側湾曲面(56)の双方の弧の長さは、前記第3基端側湾曲面(57)および前記第4基端側湾曲面(58)の双方の弧の長さよりも長い
 付記A1~A21のいずれか1つに記載の信号伝達装置。
 [付記A23]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記複数の第2リード端子(41~48)は、前記第2端部リード端子(41,48)とは異なる第2リード端子であって、前記第2ダイパッド(50)から離隔して配置された第2離隔端子(42~47)を含み、
 前記第2離隔端子(42~47)は、前記第2離隔端子(42~47)の厚さ方向(Z方向)に貫通する貫通孔(42AD~47AD)を有し、
 前記貫通孔(42AD~47AD)内には前記封止樹脂(90)が充填されている
 付記A1~A10のいずれか1つに記載の信号伝達装置。
 [付記A24]
 前記複数の第2リード端子(41~48)と前記第2チップ(70)とを個別に接続する第2リード用ワイヤ(WD)と、
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第2リード用ワイヤ(WD)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、をさらに備え、
 前記各第2リード端子(41~48)は、
 前記封止樹脂(90)の外部に露出した第2アウターリード部(41B~48B)と、
 前記封止樹脂(90)の内部に設けられ、前記第2アウターリード部(41B~48B)に接続された第2インナーリード部(41A~48A)と、を含み、
 前記複数の第2リード端子(42~47)は、
 前記第2インナーリード部(42A,44A,45A,47A)に前記第2リード端子(42,44,45,47)の厚さ方向(Z方向)に貫通した貫通孔(42AD,44AD,45AD,47AD)が形成された第3特定端子(42,44,45,47)と、
 前記第2インナーリード部(43A,46A)に前記貫通孔が形成されていない第4特定端子(43、46)と、を含み、
 前記複数の第2リード用ワイヤ(WD)は、
 前記第3特定端子(42,44,45,47)に接合された第3特定ワイヤと、
 前記第4特定端子(43,46)に接合された第4特定ワイヤと、を含み、
 前記第4特定ワイヤのうち前記第4特定端子(43,46)に接合された接合部には、セキュリティボンド(WB1)が形成されている
 付記A1~A9、A11のいずれか1つに記載の信号伝達装置。
 [付記A25]
 前記複数の第2リード端子(41~48)と前記第2チップ(70)とを個別に接続する第2リード用ワイヤ(WD)と、
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第2リード用ワイヤ(WD)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~44)を部分的に封止する矩形平板状の封止樹脂(90)と、をさらに備え、
 前記第2リード端子(41~48)は、前記封止樹脂(90)内に設けられた第1インナーリード部(41A~48A)を含み、
 前記第1インナーリード部(42A~47A)は、前記第2リード用ワイヤ(WD)が接続されるワイヤ接続部(42AA~47AA)を含み、
 前記ワイヤ接続部(42AA~47AA)は、
 前記第2リード用ワイヤ(WD)が接合されるインナーリード表面(21B)と、
 前記インナーリード表面(21B)とは反対側を向くインナーリード裏面(22B)と、
 前記インナーリード表面(21B)と前記インナーリード裏面(22B)とを繋ぐインナーリード側面(23B)と、を有し、
 前記インナーリード側面(23B)は、前記第2ダイパッド(50)と前記第1方向(X方向)に対向する先端面(24B)を含み、
 前記インナーリード表面(21B)には、めっき層(29)が形成されており、
 前記インナーリード表面(21B)のうち前記先端面(24B)側の端部には、めっき層(29)が形成されておらず、前記封止樹脂(90)と接している
 付記A1~A10,A18のいずれか1つに記載の信号伝達装置。
 [付記A26]
 前記第1チップ(60)、前記第2チップ(70)、前記チップ間ワイヤ(WA1~WA6)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)をさらに備え、
 前記複数の第2リード端子(41~48)は、前記封止樹脂(90)の外部に突出した第2アウターリード部(41B~48B)を含み、
 前記第2アウターリード部(41B~48B)は、
 アウターリード表面(21A)と、
 前記アウターリード表面(21A)とは反対側を向くアウターリード裏面(22A)と、
 前記第2アウターリード部(41B~48B)の幅方向(Y方向)の両端において前記アウターリード表面(21A)と前記アウターリード裏面(22A)とを繋ぐアウターリード側面(23A)と、
 前記第2アウターリード部(41B~48B)が延びる方向の端面であるアウターリード端面(24A)と、を有し、
 前記アウターリード表面(21A)、前記アウターリード裏面(22A)、および前記アウターリード側面(23A)には、めっき層(26)が形成され、
 前記めっき層(26)は、前記アウターリード端面(24A)のうち前記アウターリード裏面(22A)から前記アウターリード表面(21A)に向けて連続的に形成され、かつ前記アウターリード表面(21A)とは離隔している
 付記A1~A10、A19のいずれか1つに記載の信号伝達装置。
 [付記B1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)と前記複数の第1リード端子(41~48)とを個別に接続する第1リード用ワイヤ(WB)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記複数の第1リード端子(11~18)は、前記第1端部リード端子(11,18)とは異なる第1リード端子であって、前記第1ダイパッド(30)と離隔して配置された第1離隔端子(12~17)を含み、
 前記第1離隔端子(12~17)は、前記第1離隔端子(12~17)の厚さ方向(Z方向)に貫通する貫通孔(12AD~17AD)を有し、
 前記貫通孔(12AD~17AD)内には前記封止樹脂(90)が充填されている
 信号伝達装置(10)。
 [付記B1が解決しようとする課題]
 第1離隔端子に外力が加えられた場合、第1離隔端子が封止樹脂に対して移動するおそれがある。第1離隔端子の移動にともない、第1リード用ワイヤに力が加えられるおそれがある。
 [付記B1の効果]
 付記B1に記載の信号伝達装置によれば、第1離隔端子の移動に起因して第1リード用ワイヤに力が加えられることを抑制できる。
 [付記C1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)と前記複数の第1リード端子(41~48)とを個別に接続する第1リード用ワイヤ(WB)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1リード用ワイヤ(WB)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記各第1リード端子(11~18)は、
 前記封止樹脂(90)の外部に露出した第1アウターリード部(11B~18B)と、
 前記封止樹脂(90)の内部に設けられ、前記第1アウターリード部(11B~18B)に接続された第1インナーリード部(11A~18A)と、を含み、
 前記複数の第1リード端子(11~18)は、
 前記第1インナーリード部(12A,14A,15A,17A)に前記第1リード端子(11~18)の厚さ方向(Z方向)に貫通した貫通孔(12AD,14AD,15AD,17AD)が形成された第1特定端子(12,14,15,17)と、
 前記第1インナーリード部(13A,16A)に前記貫通孔が形成されていない第2特定端子(13,16)と、を含み、
 前記複数の第1リード用ワイヤ(WB)は、
 前記第1特定端子(12,14,15,17)に接合された第1特定ワイヤと、
 前記第2特定端子(13,16)に接合された第2特定ワイヤと、を含み、
 前記第2特定ワイヤのうち前記第2特定端子(13,16)に接合された接合部には、セキュリティボンド(WB1)が形成されている
 信号伝達装置(10)。
 [付記C1が解決する課題]
 第1リード端子に外力が加えられた場合、第1リード端子が封止樹脂に対して移動するおそれがある。第1リード端子の移動にともない、第1リード用ワイヤに力が加えられるおそれがある。
 [付記C1の効果]
 付記C1に記載の信号伝達装置によれば、第1リード端子の移動に起因して第1リード用ワイヤに力が加えられることを抑制できる。
 [付記D1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記封止樹脂(90)は、封止表面(91)と、前記封止表面(91)とは反対側の封止裏面(92)と、前記封止表面(91)と前記封止裏面(92)とを繋ぐ封止側面(93~96)と、を有し、
 前記封止側面(93~96)は、
 前記複数の第1リード端子(11~18)が露出された第1封止側面(93)と、
 前記複数の第2リード端子(41~48)が露出された第2封止側面(94)と、
 前記第1封止側面(93)と前記第2封止側面(94)とを繋ぐ第3封止側面(95)および第4封止側面(96)と、を含み、
 前記第3封止側面(95)および前記第4封止側面(96)の双方は、導電部材(10D,10E)が露出することなく前記封止樹脂(90)のみで構成されている
 信号伝達装置(10)。
 [付記D1が解決しようとする課題]
 信号伝達装置の絶縁耐圧の向上の観点から、複数の第1リード端子と複数の第2リード端子との間の絶縁距離を大きくとることが望まれている。
 [付記D1の効果]
 付記D1に記載の信号伝達装置によれば、信号伝達装置の絶縁耐圧の向上を図ることができる。
 [付記E1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記第1チップ(60)は、
 素子絶縁層(150)と、
 前記素子絶縁層(150)上に設けられた第1樹脂層(191)と、
 前記第1樹脂層(191)上に設けられた第2樹脂層(192)と、を備え、
 前記絶縁トランス(111,112)は、
 前記第1樹脂層(191)上に配置され、前記第2樹脂層(192)によって覆われた第1コイル(111A~114A)と、
 前記素子絶縁層(150)の厚さ方向(Z方向)において前記第1コイル(111A~114A)と対向配置され、前記素子絶縁層(150)内に埋め込まれた第2コイル(111B~114B)と、を含む
 信号伝達装置(10)。
 [付記E1が解決しようとする課題]
 信号伝達装置の絶縁耐圧の向上の観点から絶縁トランスの第1コイルと第2コイルとの間の距離が大きいことが望ましい。
 [付記E1の効果]
 付記G1に記載の信号伝達装置によれば、絶縁トランスの第1コイルと第2コイルとの間の距離を容易に大きくすることができる。
 [付記F1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記第1チップ(60)は、
 素子絶縁層(150)と、
 前記素子絶縁層(150)を覆うように前記素子絶縁層(150)上に形成されたパッシベーション膜(161)と、
 前記パッシベーション膜(161)の表面に形成され、前記パッシベーション膜(161)よりも比誘電率が低い低誘電率層(193)と、を備え、
 前記封止樹脂(90)は、前記低誘電率層(193)を覆っている
 信号伝達装置(10)。
 [付記F1が解決しようとする課題]
 封止樹脂とパッシベーション膜とが接触する構造では、封止樹脂とパッシベーション膜との境界部分に空隙が存在する場合がある。この空隙に起因して部分放電、ひいては沿面放電が発生するおそれがある。
 [付記F1の効果]
 付記F1の信号伝達装置によれば、部分放電、ひいては沿面放電の発生を抑制することによって第1チップの信頼性を高めることができる。
 [付記G1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記絶縁トランス(111,112)は、
 第1コイル(111A~114A)と、
 前記第1コイル(111A~114A)と対向配置された第2コイル(111B~114B)と、を含み、
 前記第1コイル(111A~114A)は、
 コイル表面(171)と、
 前記コイル表面(171)とは反対側のコイル裏面(172)と、
 前記コイル表面(171)と前記コイル裏面(172)とを繋ぐコイル側面(173)と、を有し、
 前記コイル表面(171)と前記コイル側面(173)との間には湾曲面(176)が形成されている
 信号伝達装置(10)。
 [付記G1が解決しようとする課題]
 第1コイルのコイル表面とコイル側面とによって構成されたコーナ部分には電界集中が生じやすい。この電界集中に起因して第1チップの絶縁耐圧の低下を招くおそれがある。
 [付記G1の効果]
 付記G1に記載の信号伝達装置によれば、第1コイルの電界集中の発生を抑制することによって第1チップの絶縁耐圧の低下を抑制できる。
 [付記H1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記第1チップ(60)は、
 前記第1ダイパッド(30)に搭載された平板状の基板(130)と、
 前記基板(130)上に形成され、前記絶縁トランス(111,112)の少なくとも一部が設けられた素子絶縁層(150)と、を備え、
 前記基板(130)は、
 前記第1ダイパッド(30)と対面する基板裏面(132)と、
 前記基板裏面(132)とは反対側の基板表面(131)と、
 前記基板裏面(132)と前記基板表面(131)とを繋ぐ基板側面(133~136)と、
 前記基板裏面(132)を含む第1部分(137)と、
 前記第1部分(137)上に設けられ、前記基板表面(131)を含む第2部分(138)と、
 前記第1部分(137)に対して前記第2部分(138)が前記基板(130)の内側に位置するように形成された段差部(139)と、を有する
 信号伝達装置(10)。
 [付記H1が解決しようとする課題]
 第1導電性接合材によって第1チップが第1ダイパッドに実装された場合、第1導電性接合材が第1チップのチップ表面まで這い上がるおそれがある。
 [付記H1の効果]
 付記H1に記載の信号伝達装置によれば、第1導電性接合材が第1チップのチップ表面まで這い上がることを抑制できる。
 [付記I1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記第1ダイパッド(30)は、
 平面視において前記第2ダイパッド(50)と前記第1方向(X方向)に対向する第1先端面(31)と、
 平面視において前記第1先端面(31)とは反対側の第1基端面(32)と、
 前記第2方向(Y方向)の両側面を構成する第1側面(33)および第2側面(34)と、
 前記第1先端面(31)と前記第1側面(33)との間に形成された第1先端側湾曲面(55)と、
 前記第1先端面(31)と前記第2側面(34)との間に形成された第2先端側湾曲面(56)と、
 前記第1基端面(32)と前記第1側面(33)との間に形成された第1基端側湾曲面(57)と、
 前記第1基端面(32)と前記第2側面(34)との間に形成された第2基端側湾曲面(58)と、を有し、
 平面視において、前記第1先端側湾曲面(55)および前記第2先端側湾曲面(56)の双方の弧の長さは、前記第1基端側湾曲面(57)および前記第2基端側湾曲面(58)の双方の弧の長さよりも長い
 信号伝達装置(10)。
 [付記I1が解決しようとする課題]
 第1ダイパッドおよび第2ダイパッドの双方にコーナ部分が形成される場合、コーナ部分には電界集中が生じやすい。このようなコーナ部分が第1方向に対向していると、これらコーナ部分の電界集中に起因して第1ダイパッドと第2ダイパッドとの間で絶縁破壊が生じるおそれがある。
 [付記I1の効果]
 付記K1に記載の信号伝達装置によれば、第1ダイパッドと第2ダイパッドとの間の絶縁破壊の発生を抑制できる。
 [付記J1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記複数の第1リード端子(11~18)は、前記封止樹脂の外部に突出した第1アウターリード部(11B~18B)を含み、
 前記第1アウターリード部(11B~18B)は、
 アウターリード表面(21A)と、
 前記アウターリード表面(21A)とは反対側を向くアウターリード裏面(21A)と、
 前記第1アウターリード部(11B~18B)の幅方向(Y方向)の両端において前記アウターリード表面(21A)と前記アウターリード裏面(21A)とを繋ぐアウターリード側面(23A)と、
 前記第1アウターリード部(11B~18B)が延びる方向の端面であるアウターリード端面(24A)と、を有し、
 前記アウターリード表面(21A)、前記アウターリード裏面(22A)、および前記アウターリード側面(23A)には、めっき層(26)が形成され、
 前記めっき層(26)は、前記アウターリード端面(24A)のうち前記アウターリード裏面(22A)から前記アウターリード表面(21A)に向けて連続的に形成され、かつ前記アウターリード表面(21A)とは離隔している
 信号伝達装置(10)。
 [付記J1が解決しようとする課題]
 たとえば導電性接合材によって信号伝達装置が回路基板に実装された場合、信号伝達装置と回路基板との実装状態が確認しやすいことが望ましい。
 [付記J1の効果]
 付記J1に記載の信号伝達装置によれば、アウターリード端面に導電性接合材が接してフィレットが形成されるため、信号伝達装置と回路基板との実装状態が確認しやすくなる。
 [付記K1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記第1リード端子(11~18)は、前記封止樹脂(90)内に設けられた第1インナーリード部(11A~18A)を含み、
 前記第1インナーリード部(12A~17A)は、前記第1リード用ワイヤ(WB)が接続されるワイヤ接続部(12AA~17AA)を含み、
 前記ワイヤ接続部(12AA~17AA)は、
 前記第1リード用ワイヤ(WB)が接合されるインナーリード表面(21B)と、
 前記インナーリード表面(21B)とは反対側を向くインナーリード裏面(22B)と、
 前記インナーリード表面(21B)と前記インナーリード裏面(22B)とを繋ぐインナーリード側面(23B)と、を有し、
 前記インナーリード側面(23B)は、前記第1ダイパッド(30)と前記第1方向(X方向)に対向する先端面(24B)を含み、
 前記インナーリード表面(21B)には、めっき層(29)が形成されており、
 前記インナーリード表面(21B)のうち前記先端面(24B)側の端部には、めっき層(29)が形成されておらず、前記封止樹脂(90)と接している
 信号伝達装置(10)。
 [付記K1が解決しようとする課題]
 ワイヤ接続部と第1リード用ワイヤとを良好に接合するため、ワイヤ接続部のインナーリード表面にはめっき層が形成されている。このめっき層とインナーリード表面とが剥離することに起因して、ワイヤ接続部と第1リード用ワイヤとが良好に接合できないおそれがある。
 [付記K1の効果]
 付記K1に記載の信号伝達装置によれば、ワイヤ接続部と第1リード用ワイヤとを良好に接合することができる。
 [付記L1]
 絶縁トランス(111,112)を含む第1チップ(60)と、
 前記第1チップ(60)からの信号を受信、および前記第1チップ(60)への信号の送信の少なくとも一方を行う第2チップ(70)と、
 前記第1チップ(60)が搭載された第1ダイパッド(30)と、
 前記第1ダイパッド(30)に対して第1方向(X方向)において離隔して配置されており、前記第2チップ(70)が搭載された第2ダイパッド(50)と、
 平面視において前記第1方向(X方向)において前記第1ダイパッド(30)に対して前記第2ダイパッド(50)とは反対側に離隔して配置され、平面視において前記第1方向(X方向)と直交する第2方向(Y方向)に配列された複数の第1リード端子(11~18)と、
 平面視において前記第2方向(Y方向)において前記第2ダイパッド(50)に対して前記第1ダイパッド(30)とは反対側に離隔して配置され、平面視において前記第2方向(Y方向)に配列された複数の第2リード端子(41~48)と、
 前記第1チップ(60)、前記第2チップ(70)、前記第1ダイパッド(30)、および前記第2ダイパッド(50)を封止するとともに前記各第1リード端子(11~18)および前記各第2リード端子(41~48)を部分的に封止する矩形平板状の封止樹脂(90)と、を備え、
 前記複数の第1リード端子(11~18)のうち前記第2方向(Y方向)の両端に配置された第1リード端子である第1端部リード端子(11,18)は、
 前記第1方向(X方向)に延びる第1リード部(11AA,18AA)と、
 前記第1リード部(11AA,18AA)に接続され、前記第1方向(X方向)において前記第2ダイパッド(50)に向かうにつれて、前記第2方向(Y方向)において前記第1ダイパッド(30)に向けて斜めに延びる第2リード部(11AB,18AB)と、
 前記第2方向(Y方向)に延びて、前記第2リード部(11AB,18AB)と前記第1ダイパッド(30)とを接続する第3リード部(11AC,18AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子である第2端部リード端子(41,48)は、
 前記第1方向(X方向)に延びる第4リード部(41AA,48AA)と、
 前記第4リード部分(41AA,48AA)に接続され、前記第1方向(X方向)において前記第1ダイパッド(30)に向かうにつれて、前記第2方向(Y方向)において前記第2ダイパッド(50)に向けて斜めに延びる第5リード部分(41AB,48AB)と、
 前記第2方向(Y方向)に延びて、前記第5リード部分(41AB,48AB)と前記第2ダイパッド(50)とを接続する第6リード部分(41AC,48AC)と、を含み、
 前記複数の第2リード端子(41~48)のうち前記第2方向(Y方向)の両端に配置された第2リード端子(41,48)は、前記第2ダイパッド(50)の前記第2方向(Y方向)の両端部に接続されており、
 前記封止樹脂(90)の外表面(91~96)は、面粗度Rzが8μm以上となるように形成されている
 信号伝達装置(10)。
 [付記L1が解決しようとする課題]
 信号伝達装置の絶縁耐圧の向上の観点から、複数の第1リード端子と複数の第2リード端子との間の絶縁距離を大きくとることが望まれている。
 [付記L1の効果]
 付記L1に記載の信号伝達装置によれば、信号伝達装置の絶縁耐圧の向上を図ることができる。
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。
 10…信号伝達装置
 10A…第1フレーム
 10B…第2フレーム
 10D,10E…導電部材
 10D1,10E1…貫通孔
 11~18,11M,11N…第1リード端子
 11A~18A,11MA,11NA,18MA,18NA…第1インナーリード部
 11AA~17AA…ワイヤ接続部
 11AA,18AA…第1リード部
 11AA1,12AB1,17AB1,18AA1…幅狭部
 11AA2,12AB2,17AB2,18AA2…幅広部
 11AB,18AB…第2リード部
 11AC,18AC…第3リード部
 11AD~17AD,12AE,17AE…貫通孔
 11B~18B,11MB,11NB,18MB,18NB…第1アウターリード部
 11P…突出部
 11Q…中間部
 11R…接続部
 12AB~17AB…リード接続部
 12AC,17AC…傾斜面
 20A…アウターリード本体
 20B…インナーリード本体
 21A…アウターリード表面
 21B…インナーリード表面
 22A…アウターリード裏面
 22B…インナーリード裏面
 23A…アウターリード側面
 23B…インナーリード側面
 24A…アウターリード端面
 24B…先端面
 25…裏面側湾曲部
 26…めっき層
 27…端面めっき層
 27A…先端縁
 27B…凹部
 28…本体露出領域
 29…めっき層
 29A…端面
 30…第1ダイパッド
 31…第1先端面
 32…第1基端面
 33…第1側面
 33A…第1突出部
 34…第2側面
 34A…第2突出部
 35…第1先端側湾曲面
 36…第2先端側湾曲面
 37…第1基端側湾曲面
 38…第2基端側湾曲面
 41~48,41M,41N,48M,48N…第2リード端子
 41A~48A…第2インナーリード部
 41AA,48AA…第4リード部
 41AA1,42AB1,47AB1,48AA1…幅狭部
 41AA2,42AB2,47AB2,48AA2…幅広部
 41AB,48AB…第5リード部
 41AC,48AC…第6リード部
 41B~48B,41MB,41NB,48MB,48NB…第2アウターリード部
 42AA~47AA…ワイヤ接続部
 42AB~47AB…リード接続部
 42AC,47AC…傾斜面
 42AD~47AD…貫通孔
 48P…突出部
 48Q…中間部
 48R…接続部
 50…第2ダイパッド
 51…第2先端面
 52…第2基端面
 53…第3側面
 53A…第3突出部
 54…第4側面
 54A…第4突出部
 55…第3先端側湾曲面
 56…第4先端側湾曲面
 57…第3基端側湾曲面
 58…第4基端側湾曲面
 59…凹部
 60…第1チップ
 61…チップ表面
 62…チップ裏面
 63~66…第1~第4チップ側面
 67,67A~67F…第1電極パッド
 68…第2電極パッド
 69…第3電極パッド
 70…第2チップ
 71…チップ表面
 72…チップ裏面
 73~76…第1~第4チップ側面
 77,77A~77F…第1電極パッド
 78…第2電極パッド
 79…第3電極パッド
 90…封止樹脂
 91…封止表面
 91A…凹部
 92…封止裏面
 93~96…第1~第4封止側面
 93A…第1表面側側面
 93B…第1裏面側側面
 93C…第1中央側面
 94A…第2表面側側面
 94AA…傾斜面
 94B…第2裏面側側面
 94C…第2中央側面
 95A…第3表面側側面
 95B…第3裏面側側面
 95C…第3中央側面
 95D…凹部
 95E…溝部
 96A…第4表面側側面
 96B…第4裏面側側面
 96C…第4中央側面
 96D…凹部
 96E…溝部
 100…外周ガードリング
 101…表面側外周ガードリング
 102…裏面側外周ガードリング
 103…表面側接続配線
 104…裏面側接続配線
 110…絶縁トランス領域
 111…第1トランス
 111A…第1表面側コイル
 111A1…第1コイル部
 111A2…第1外側コイル端部
 111A3…第1内側コイル端部
 111B…第1裏面側コイル
 111BA,111BB…コイル層
 111B1…第1コイル部
 111B2…第1外側コイル端部
 111B3…第1内側コイル端部
 112A…第2表面側コイル
 112…第2トランス
 112A1…第2コイル部
 112A2…第2外側コイル端部
 112A3…第2内側コイル端部
 112B…第2裏面側コイル
 112B1…第2コイル部
 112B2…第2外側コイル端部
 112B3…第2内側コイル端部
 113A…第3表面側コイル
 113A1…第3コイル部
 113A2…第3外側コイル端部
 113A3…第3内側コイル端部
 113B…第3裏面側コイル
 113B1…第3コイル部
 113B2…第3外側コイル端部
 113B3…第3内側コイル端部
 114A…第4表面側コイル
 114A1…第4コイル部
 114A2…第4外側コイル端部
 114A3…第4内側コイル端部
 114B…第4裏面側コイル
 114B1…第4コイル部
 114B2…第4外側コイル端部
 114B3…第4内側コイル端部
 115…表面側ガードリング
 115A…第1リング部
 115B…第2リング部
 116…裏面側ガードリング
 117…ビア
 118A…第1接続配線
 118B…第2接続配線
 118C…第3接続配線
 118D…第4接続配線
 120…回路領域
 121…配線層
 122…基板側配線層
 122A…第1配線層
 122B…第2配線層
 122C…第3配線層
 123…第1ビア
 123A…バリア層
 123B…金属層
 124…第2ビア
 125…第3ビア
 126…第4ビア
 130…基板
 131…基板表面
 132…基板裏面
 133~136…第1~第4基板側面
 137…第1部分
 138…第2部分
 139…段差部
 150…素子絶縁層
 151…層表面
 152…層裏面
 153…凹部
 161…パッシベーション膜
 162…保護膜
 170…導線
 171…コイル表面
 172…コイル裏面
 173…コイル側面
 174…バリア層
 175…金属層
 176…表面側コーナ部分
 177…裏面側コーナ部分
 178…シード層
 179…金属層
 180…導線
 181…コイル表面
 182…コイル裏面
 183…コイル側面
 184…裏面側バリア層
 185…金属層
 186…表面側バリア層
 191…第1有機絶縁層
 192…第2有機絶縁層
 192A…開口部
 193…低誘電層
 200…外周ガードリング
 201…表面側外周ガードリング
 202…裏面側外周ガードリング
 210…絶縁トランス領域
 211…第1トランス
 211A…第1表面側コイル
 211A1…第1コイル部
 211A2…第1外側コイル端部
 211A3…第1内側コイル端部
 211B…第1裏面側コイル
 211B1…第1コイル部
 211B2…第1外側コイル端部
 211B3…第1内側コイル端部
 212…第2トランス
 212A…第2表面側コイル
 212A1…第2コイル部
 212A2…第2外側コイル端部
 212A3…第2内側コイル端部
 212B…第2裏面側コイル
 212B1…第2コイル部
 212B2…第2外側コイル端部
 212B3…第2内側コイル端部
 215…表面側ガードリング
 216…裏面側ガードリング
 217…ビア
 220…回路領域
 230…基板
 231…基板表面
 232…基板裏面
 233~236…第1~第4基板側面
 237…第1部分
 238…第2部分
 239…段差部
 500…第1回路
 501…送信部
 502…受信部
 503…ロジック部
 504…UVLO部
 505~507,509,511…抵抗
 508,510…スイッチング素子
 520…第2回路
 521…受信部
 522…送信部
 523…ロジック部
 524…UVLO部
 525…クランプ制御部
 526…出力制御部
 527…非飽和フォルト検出部
 528…スイッチング素子
 529…第1出力用スイッチング素子
 530…第2出力用スイッチング素子
 531…第3出力用スイッチング素子
 532,534,539…抵抗
 533,537…電流源
 535,538…スイッチング素子
 536…比較器
 830…基板
 831…基板表面
 832…基板裏面
 833…凹部
 839…段差部
 850…素子絶縁層
 851…層表面
 853…凹部
 853A…底面
 853B…側面
 861…パッシベーション膜
 862…保護膜
 891…第1有機絶縁層
 892…第2有機絶縁層
 892A…開口部
 901…バリア層
 902…金属層
 903…表面側コーナ部分
 911…シード層
 911A…第1シード層
 911B…第2シード層
 912…金属層
 913…表面側コーナ部分
 920…レジスト
 921…開口部
 922…内方突出部
 P1~P8,PM1,PM8,PN1,PN8…第1端子
 Q1~Q8,QM1,QM8,QN1,QN8…第2端子
 PCB…回路基板
 SD…導電性接合材
 SD1…第1導電性接合材
 SDA…第1フィレット
 SD2…第2導電性接合材
 SDB…第2フィレット
 SB…スタッドバンプ
 WA,WA1~WA6…チップ間ワイヤ
 WB…第1リード用ワイヤ
 WB1…セキュリティボンド
 WC…第1ダイパッド用ワイヤ
 WC1…セキュリティボンド
 WCP…接合部
 WD…第2リード用ワイヤ
 WD1…セキュリティボンド
 WE…第2ダイパッド用ワイヤ
 WE1…セキュリティボンド
 FM1…第1リードフレーム
 FM2…第2リードフレーム
 PM…金型
 PMA…コーナ部分
 DB1…第1ダイシングブレード
 DB2…第2ダイシングブレード
 DT…ダイシングテープ
 R1~R3…領域
 H1,H2…幅
 CR1~CR3…第1~第3回路部

Claims (20)

  1.  絶縁トランスを含む第1チップと、
     前記第1チップからの信号を受信、および前記第1チップへの信号の送信の少なくとも一方を行う第2チップと、
     前記第1チップが搭載された第1ダイパッドと、
     前記第1ダイパッドに対して第1方向において離隔して配置されており、前記第2チップが搭載された第2ダイパッドと、
     平面視において前記第1方向において前記第1ダイパッドに対して前記第2ダイパッドとは反対側に離隔して配置され、平面視において前記第1方向と直交する第2方向に配列された複数の第1リード端子と、
     平面視において前記第1方向において前記第2ダイパッドに対して前記第1ダイパッドとは反対側に離隔して配置され、平面視において前記第2方向に配列された複数の第2リード端子と、
     前記第1チップと前記第2チップとを電気的に接続するチップ間ワイヤと、
     前記第1チップと前記複数の第1リード端子とを個別に接続する第1リード用ワイヤと、
    を備え、
     前記複数の第1リード端子のうち前記第2方向の両端に配置された第1リード端子である第1端部リード端子は、
     前記第1方向に延びる第1リード部と、
     前記第1リード部に接続され、前記第1方向において前記第2ダイパッドに向かうにつれて、前記第2方向において前記第1ダイパッドに向けて斜めに延びる第2リード部と、
     前記第2方向に延びて、前記第2リード部と前記第1ダイパッドとを接続する第3リード部と、
    を含み、
     前記複数の第2リード端子のうち前記第2方向の両端に配置された第2リード端子である第2端部リード端子は、
     前記第1方向に延びる第4リード部分と、
     前記第4リード部分に接続され、前記第1方向において前記第1ダイパッドに向かうにつれて、前記第2方向において前記第2ダイパッドに向けて斜めに延びる第5リード部分と、
     前記第2方向に延びて、前記第5リード部分と前記第2ダイパッドとを接続する第6リード部分と、
    を含み、
     前記チップ間ワイヤは、金を含む材料によって形成されており、
     前記第1リード用ワイヤは、銅またはアルミニウムを含む材料によって形成されている
     信号伝達装置。
  2.  前記第1リード用ワイヤは、銅ワイヤの表面にパラジウムがコーティングされた構成である
     請求項1に記載の信号伝達装置。
  3.  前記第2チップと前記複数の第2リード端子とを個別に接続する複数の第2リード用ワイヤをさらに備え、
     前記第2リード用ワイヤは、銅またはアルミニウムを含む材料によって形成されている
     請求項1または2に記載の信号伝達装置。
  4.  前記第1チップと前記第1ダイパッドとを接続する第1ダイパッド用ワイヤをさらに備え、
     前記第1ダイパッド用ワイヤは、銅またはアルミニウムを含む材料によって形成されている
     請求項1~3のいずれか一項に記載の信号伝達装置。
  5.  前記第2チップと前記第2ダイパッドとを接続する第2ダイパッド用ワイヤをさらに備え、
     前記第2ダイパッド用ワイヤは、銅またはアルミニウムを含む材料によって形成されている
     請求項1~4のいずれか一項に記載の信号伝達装置。
  6.  前記第1ダイパッド用ワイヤは、ボンディングワイヤであり、
     前記第1ダイパッド用ワイヤのうち前記第1ダイパッドとの接合部には、セキュリティボンドが形成されている
     請求項4に記載の信号伝達装置。
  7.  前記第2ダイパッド用ワイヤは、ボンディングワイヤであり、
     前記第2ダイパッド用ワイヤのうち前記第2ダイパッドとの接合部には、セキュリティボンドが形成されている
     請求項5に記載の信号伝達装置。
  8.  前記複数の第1リード端子は、前記第1ダイパッドから離隔して配置された第1離隔端子を含み、
     前記第1離隔端子は、
     前記第1方向に延びる第1部分と、
     前記第1部分に連続して設けられ、平面視において前記第1部分に対して前記第1方向とは交差する方向に延びる第2部分と、
    を含み、
     前記第2部分は、当該第2部分と接続する前記第1リード用ワイヤと平面視で交差する側面を含み、
     前記側面は、平面視において前記第1ダイパッドと対向している
     請求項1~7のいずれか一項に記載の信号伝達装置。
  9.  前記複数のチップ間ワイヤは、平面視において互いに平行となるように形成されている
     請求項1~8のいずれか一項に記載の信号伝達装置。
  10.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記複数の第1リード端子は、
     前記第1ダイパッドと一体化された第1接続端子と、
     前記第1ダイパッドから離隔して配置された第1離隔端子と、
    を含み、
     前記第1離隔端子は、前記第1離隔端子の厚さ方向に貫通する貫通孔を有し、
     前記貫通孔内には前記封止樹脂が充填されている
     請求項1~9のいずれか一項に記載の信号伝達装置。
  11.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記各第1リード端子は、
     前記封止樹脂の外部に露出した第1アウターリード部と、
     前記封止樹脂の内部に設けられ、前記第1アウターリード部に接続された第1インナーリード部と、
    を含み、
     前記複数の第1リード端子は、
     前記第1インナーリード部に前記第1リード端子の厚さ方向に貫通した貫通孔が形成された第1特定端子と、
     前記第1インナーリード部に前記貫通孔が形成されていない第2特定端子と、
    を含み、
     前記複数の第1リード用ワイヤは、
     前記第1特定端子に接合された第1特定ワイヤと、
     前記第2特定端子に接合された第2特定ワイヤと、
    を含み、
     前記第2特定ワイヤのうち前記第2特定端子に接合された接合部には、セキュリティボンドが形成されている
     請求項1~9のいずれか一項に記載の信号伝達装置。
  12.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記封止樹脂は、封止表面と、前記封止表面とは反対側の封止裏面と、前記封止表面と前記封止裏面とを繋ぐ封止側面と、を有し、
     前記封止側面は、
     前記複数の第1リード端子が露出された第1封止側面と、
     前記複数の第2リード端子が露出された第2封止側面と、
     前記第1封止側面と前記第2封止側面とを繋ぐ第3封止側面および第4封止側面と、
    を含み、
     前記第3封止側面および前記第4封止側面の双方は、導電部材が露出することなく前記封止樹脂のみで構成されている
     請求項1~11のいずれか一項に記載の信号伝達装置。
  13.  前記第1チップは、
     素子絶縁層と、
     前記素子絶縁層上に設けられた第1樹脂層と、
     前記第1樹脂層上に設けられた第2樹脂層と、
    を備え、
     前記絶縁トランスは、
     前記第1樹脂層上に配置され、前記第2樹脂層によって覆われた表面側コイルと、
     前記素子絶縁層の厚さ方向において前記表面側コイルと対向配置され、前記素子絶縁層内に埋め込まれた裏面側コイルと、
    を含む
     請求項1~12のいずれか一項に記載の信号伝達装置。
  14.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記第1チップは、
     素子絶縁層と、
     前記素子絶縁層を覆うように前記素子絶縁層上に形成されたパッシベーション膜と、
     前記パッシベーション膜の表面に形成され、前記パッシベーション膜よりも比誘電率が低い低誘電層と、
    を備え、
     前記封止樹脂は、前記低誘電層を覆っている
     請求項1~12のいずれか一項に記載の信号伝達装置。
  15.  前記絶縁トランスは、
     前記第1チップのチップ表面寄りに配置された表面側コイルと、
     前記表面側コイルと対向配置された裏面側コイルと、
    を含み、
     前記表面側コイルは、
     コイル表面と、
     前記コイル表面とは反対側のコイル裏面と、
     前記コイル表面と前記コイル裏面とを繋ぐコイル側面と、
    を有し、
     前記コイル表面と前記コイル側面との間には湾曲面が形成されている
     請求項1~12のいずれか一項に記載の信号伝達装置。
  16.  前記第1チップは、
     前記第1ダイパッドに搭載された平板状の基板と、
     前記基板上に形成され、前記絶縁トランスの少なくとも一部が設けられた素子絶縁層と、
    を備え、
     前記基板は、
     前記第1ダイパッドと対面する基板裏面と、
     前記基板裏面とは反対側の基板表面と、
     前記基板裏面と前記基板表面とを繋ぐ基板側面と、
     前記基板裏面を含む第1部分と、
     前記第1部分上に設けられ、前記基板表面を含む第2部分と、
     前記第1部分に対して前記第2部分が前記基板の内側に位置するように形成された段差部と、
    を有する
     請求項1~12のいずれか一項に記載の信号伝達装置。
  17.  前記第1ダイパッドは、
     平面視において前記第2ダイパッドと前記第1方向に対向する第1先端面と、
     平面視において前記第1先端面とは反対側の第1基端面と、
     前記第2方向の両側面を構成する第1側面および第2側面と、
     前記第1先端面と前記第1側面との間に形成された第1先端側湾曲面と、
     前記第1先端面と前記第2側面との間に形成された第2先端側湾曲面と、
     前記第1基端面と前記第1側面との間に形成された第1基端側湾曲面と、
     前記第1基端面と前記第2側面との間に形成された第2基端側湾曲面と、
    を有し、
     平面視において、前記第1先端側湾曲面および前記第2先端側湾曲面の双方の弧の長さは、前記第1基端側湾曲面および前記第2基端側湾曲面の双方の弧の長さよりも長い
     請求項1~10のいずれか一項に記載の信号伝達装置。
  18.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記第1リード端子は、前記封止樹脂内に設けられた第1インナーリード部を含み、
     前記第1インナーリード部は、前記第1リード用ワイヤが接続されるワイヤ接続部を含み、
     前記ワイヤ接続部は、
     前記第1リード用ワイヤが接合されるインナーリード表面と、
     前記インナーリード表面とは反対側を向くインナーリード裏面と、
     前記インナーリード表面と前記インナーリード裏面とを繋ぐインナーリード側面と、
    を有し、
     前記インナーリード側面は、前記第1ダイパッドと前記第1方向に対向する先端面を含み、
     前記インナーリード表面には、めっき層が形成されており、
     前記インナーリード表面のうち前記先端面側の端部には、めっき層が形成されておらず、前記封止樹脂と接している
     請求項1~10のいずれか一項に記載の信号伝達装置。
  19.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形平板状の封止樹脂をさらに備え、
     前記複数の第1リード端子は、前記封止樹脂の外部に突出した第1アウターリード部を含み、
     前記第1アウターリード部は、
     アウターリード表面と、
     前記アウターリード表面とは反対側を向くアウターリード裏面と、
     前記第1アウターリード部の幅方向の両端において前記アウターリード表面と前記アウターリード裏面とを繋ぐアウターリード側面と、
     前記第1アウターリード部が延びる方向の端面であるアウターリード端面と、
    を有し、
     前記アウターリード表面、前記アウターリード裏面、および前記アウターリード側面には、めっき層が形成され、
     前記めっき層は、前記アウターリード端面のうち前記アウターリード裏面から前記アウターリード表面に向けて連続的に形成され、かつ前記アウターリード表面とは離隔している
     請求項1~10のいずれか一項に記載の信号伝達装置。
  20.  前記第1チップ、前記第2チップ、前記チップ間ワイヤ、前記第1リード用ワイヤ、前記第1ダイパッド、および前記第2ダイパッドを封止するとともに前記各第1リード端子および前記各第2リード端子を部分的に封止する矩形板状の封止樹脂をさらに備え、
     前記封止樹脂の外表面は、面粗度Rzが8μm以上となるように形成されている
     請求項1~19のいずれか一項に記載の信号伝達装置。
PCT/JP2023/034562 2022-09-29 2023-09-22 信号伝達装置 WO2024070967A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156996 2022-09-29
JP2022156996 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070967A1 true WO2024070967A1 (ja) 2024-04-04

Family

ID=90477758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034562 WO2024070967A1 (ja) 2022-09-29 2023-09-22 信号伝達装置

Country Status (1)

Country Link
WO (1) WO2024070967A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012673A (ja) * 2014-06-30 2016-01-21 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2016207714A (ja) * 2015-04-16 2016-12-08 ローム株式会社 半導体装置
JP2018157134A (ja) * 2017-03-21 2018-10-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
WO2022130906A1 (ja) * 2020-12-18 2022-06-23 ローム株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012673A (ja) * 2014-06-30 2016-01-21 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP2016207714A (ja) * 2015-04-16 2016-12-08 ローム株式会社 半導体装置
JP2018157134A (ja) * 2017-03-21 2018-10-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
WO2022130906A1 (ja) * 2020-12-18 2022-06-23 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
EP2605276B1 (en) Packaged leadless semiconductor device
US9406628B2 (en) Semiconductor device and method of manufacturing the same
EP0704900A2 (en) Film carrier semiconductor device
US20080164588A1 (en) High power semiconductor package
US20100123226A1 (en) Semiconductor package
KR101555300B1 (ko) 외부 본딩 영역을 구비하는 반도체 파워 모듈 패키지
US20100308457A1 (en) Semiconductor apparatus and manufacturing method of the same
JP2009231805A (ja) 半導体装置
US20140145318A1 (en) Semiconductor Packages and Methods of Formation Thereof
US8643158B2 (en) Semiconductor package and lead frame therefor
US20200312806A1 (en) Semiconductor device and semiconductor package
KR20180013711A (ko) 반도체 장치 및 그 제조 방법
WO2024070967A1 (ja) 信号伝達装置
US10068871B2 (en) Semiconductor device and method for manufacturing the same
WO2024070957A1 (ja) 信号伝達装置
WO2024070956A1 (ja) 信号伝達装置
WO2024070966A1 (ja) 信号伝達装置
WO2024070958A1 (ja) 信号伝達装置
US20240006364A1 (en) Semiconductor device
US20220246595A1 (en) Semiconductor device and a method of manufacturing a semiconductor device
US20210296223A1 (en) Wiring board and semiconductor device
JP2019102568A (ja) 半導体装置およびその製造方法
US7592672B2 (en) Grounding structure of semiconductor device including a conductive paste
EP0415106B1 (en) Lead frames for semiconductor device
JP3906233B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872193

Country of ref document: EP

Kind code of ref document: A1