WO2024070945A1 - Organic solvent recovery system - Google Patents

Organic solvent recovery system Download PDF

Info

Publication number
WO2024070945A1
WO2024070945A1 PCT/JP2023/034492 JP2023034492W WO2024070945A1 WO 2024070945 A1 WO2024070945 A1 WO 2024070945A1 JP 2023034492 W JP2023034492 W JP 2023034492W WO 2024070945 A1 WO2024070945 A1 WO 2024070945A1
Authority
WO
WIPO (PCT)
Prior art keywords
desorption
organic solvent
gas
heat exchanger
water vapor
Prior art date
Application number
PCT/JP2023/034492
Other languages
French (fr)
Japanese (ja)
Inventor
啓太郎 幸田
敏明 林
武将 岡田
Original Assignee
東洋紡エムシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社 filed Critical 東洋紡エムシー株式会社
Publication of WO2024070945A1 publication Critical patent/WO2024070945A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents

Definitions

  • the present invention relates to an organic solvent recovery system.
  • the organic solvent recovery system is equipped with a pair of treatment tanks that use an adsorbent to adsorb the organic solvents in the gas to be treated, a treatment gas supply device and a desorption gas supply device for each treatment tank, and employs a mechanism for switching between an adsorption process that supplies the gas to be treated to the treatment tank, and a desorption process that supplies the desorption gas.
  • Activated carbon fibers are used as adsorbents in gas treatment devices.
  • Activated carbon fibers have excellent ability to adsorb low-concentration organic solvent-containing gases and are used as adsorbents.
  • JP 2014-147864 A discloses a gas treatment device in which activated carbon fibers are fixed to a support or self-supported into a cylindrical shape and arranged vertically within a core material.
  • Patent Document 2 discloses an activated carbon desorption device that reduces the amount of water vapor used by connecting the condensation side of a heat exchanger to the desorption steam outlet of an activated carbon adsorber (treatment tank), supplying water to the evaporation side of the heat exchanger, and installing a pressure reducing blower in the line connecting the evaporation side of the heat exchanger to the desorption water vapor inlet of the activated carbon adsorber, and evaporating the water on the evaporation side using the heat of the desorption steam to generate water vapor for desorption.
  • JP 2014-147864 A Japanese Utility Model Application Publication No. 58-161636
  • the temperature of the desorption gas discharged from the treatment tank changes from time to time due to fluctuations in the outside air temperature, the organic solvent concentration in the gas being treated, the humidity of the gas being treated, and other factors. Therefore, when generating desorption water vapor using the heat of the desorption gas via a heat exchanger as in Patent Document 2, there is a risk that the flow rate of the desorption water vapor cannot be sufficiently secured.
  • the condensed water of the desorbed gas in the heat exchanger may be acidic due to the decomposition of organic solvents contained in the treated gas.
  • High temperatures close to steam temperature and high concentrations caused by repeated drying and wetting can increase the corrosive effect, causing pitting corrosion in the heat exchanger components. This can result in accidents such as leakage of the desorbed gas due to corrosion of the heat exchanger components.
  • the present invention aims to provide an organic solvent recovery system that has a mechanism for generating desorption steam using the heat of the desorption gas, ensures a sufficient flow rate of the desorption steam supplied to the treatment tank, improves the efficiency of organic solvent recovery, and reduces corrosion of components caused by decomposition products of the organic solvent.
  • the organic solvent recovery system of the present invention has the following configuration.
  • an organic solvent recovery apparatus including a treatment tank containing an adsorbent that adsorbs and removes an organic solvent from a gas to be treated that contains the organic solvent, and repeats an adsorption process in which the gas to be treated that is supplied to the treatment tank is brought into contact with the adsorbent to discharge a treated gas, and a desorption process in which the organic solvent is desorbed from the adsorbent by a desorption steam supplied to the treatment tank and a desorbed gas is discharged; a heat exchanger including a heat generating section through which the desorption gas discharged from the organic solvent recovery apparatus passes and a heat absorbing section to which makeup water is supplied, the heat exchanger indirectly heating the makeup water in the heat absorbing section with the desorption gas passing through the heat generating section to generate steam, and discharging the indirectly heated desorption gas; a cooling unit that cools the desorption gas discharged from the heat exchanger and discharges a condensate, a water vapor supply unit that supplies water vapor to the heat
  • the organic solvent recovery system may include a pressure measuring unit that measures the pressure of the gas phase of the heat absorbing section of the heat exchanger, and the flow rate of water vapor supplied to the heat generating section may be controlled based on the measurement results of the pressure measuring unit.
  • the organic solvent recovery system may include a temperature measuring unit that measures the temperature of the liquid phase of the heat absorption unit of the heat exchanger, and the flow rate of water vapor supplied to the heat generation unit may be controlled based on the measurement results of the temperature measuring unit.
  • the organic solvent recovery system described above includes a path for supplying the desorption gas discharged from the treatment tank to the heat exchanger, and a path for supplying the desorption gas discharged from the treatment tank to the cooling section.
  • a path for supplying the desorption gas discharged from the treatment tank to the heat exchanger In the early stage of the desorption process, water vapor is supplied to the heat generating section of the heat exchanger, and the desorption gas discharged from the treatment tank is supplied to the cooling section. In the later stage of the desorption process, the desorption gas is supplied to the heat generating section of the heat exchanger, and the desorption gas after passing through the heat generating section is supplied to the cooling section.
  • the organic solvent recovery device may include a condensate reservoir that accumulates the condensate discharged from the cooling section
  • the heat exchanger may include a desorption gas outlet receiving section in which the desorption gas accumulates after indirect heating, a piping path that supplies the uncondensed desorption gas from the desorption gas outlet receiving section to the cooling section, and a piping path that supplies the desorption gas that has become condensed from the desorption gas outlet receiving section to the condensate reservoir.
  • the heat exchanger may be a multi-tube heat exchanger having a tube portion, which is the heat generating portion, inside a container portion, which is the heat absorbing portion.
  • the water vapor supply unit may be connected to or may share a desorption water vapor supply unit that directly supplies the desorption water vapor to the organic solvent recovery device.
  • an organic solvent recovery system that has a mechanism for generating desorption steam using the heat of the desorption gas, ensures a sufficient flow rate of the desorption steam supplied to the treatment tank, improves the efficiency of organic solvent recovery, and reduces corrosion of heat exchanger components caused by decomposition products of the organic solvent.
  • FIG. 1 is a conceptual diagram showing a configuration of an organic solvent recovery device in a first embodiment.
  • 4 is a time chart showing the time-dependent switching between an adsorption process and a desorption process of the organic solvent recovery apparatus in the first embodiment.
  • FIG. 11 is a conceptual diagram showing a configuration of an organic solvent recovery device in a second embodiment.
  • organic solvents include methylene chloride, chloroform, carbon tetrachloride, ethylene chloride, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, m-dichlorobenzene, fluorocarbon-112, fluorocarbon-113, HCFC, HFC, propyl bromide, butyl iodide, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, vinyl acetate, methyl propionate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, diethyl carbonate, ethyl formate, diethyl ether, dipropyl ether, tetrahydrofuran, dibutyl ether, anisole, methanol, ethanol, isopropanol, n-butanol, 2-butanol, isobutan
  • FIG. 1 is a diagram showing the configuration of an organic solvent recovery system 1A according to the first embodiment.
  • the organic solvent recovery system 1A includes an organic solvent recovery device 100, a heat exchanger 115, and a condenser 111 as a cooling section.
  • the organic solvent recovery apparatus 100 includes a first treatment tank 104A and a second treatment tank 104B.
  • the first treatment tank 104A includes a cylindrical first adsorbent 105A
  • the second treatment tank 104B includes a cylindrical second adsorbent 105B.
  • the first adsorbent 105A and the second adsorbent 105B are passed from the outside to the inside to perform an adsorption process (adsorption process), and water vapor is passed from the inside to the outside to perform a desorption process (desorption process).
  • activated carbon fiber or activated carbon is used for the first adsorbent 105A and the second adsorbent 105B.
  • the first treatment tank 104A and the second treatment tank 104B are connected to the treated gas inlet line 103 and the desorption gas line 110.
  • the first treatment tank 104A and the second treatment tank 104B are provided with a first automatic lower damper 107A and a second automatic lower damper 107B, respectively.
  • a first automatic upper damper 106A and a second automatic upper damper 106B that control the flow of the gas I to be treated are provided above the first treatment tank 104A and the second treatment tank 104B, respectively.
  • a heat exchanger 115 is connected to the desorption gas line 110.
  • the heat exchanger 115 has a desorption gas inlet chamber 115C to which the desorption gas line 110 is connected.
  • the heat exchanger 115 also has a desorption gas outlet chamber 115D, which is a desorption gas outlet receiving section to which a heat exchanger outlet gas line 117 and a heat exchanger condensate line 118 are connected.
  • makeup water VI is supplied to the makeup water storage section 115E.
  • the makeup water VI is sent to the makeup water storage section 115E, for example, by a liquid delivery pump or the like.
  • the heat exchanger 115 indirectly heats the make-up water VI in the make-up water storage section 115E with the desorption gas supplied from the desorption gas line 110, thereby evaporating the make-up water VI and generating water vapor.
  • the make-up water storage section 115E is decompressed so that the boiling point is, for example, 70°C to 97°C, preferably 75°C to 95°C, and the generated water vapor is supplied to the steam compressor 122 as regenerated water vapor through the regenerated water vapor line 119 connected to the heat exchanger 115.
  • the steam compressor 122 is a mechanism that uses high-pressure water vapor as a driving source (hereinafter, driving water vapor) to draw in constant-pressure water vapor (hereinafter, sucked water vapor) in a reduced pressure state and increase the pressure to medium-pressure water vapor (hereinafter, discharged water vapor).
  • high-pressure water vapor VIII (a part of water vapor V) is supplied to the steam compressor 122 as driving water vapor through the steam compressor water vapor line 121, so that the regenerated water vapor is sucked in as sucked water vapor through the regenerated water vapor line 119, and the desorption water vapor, which is a mixture of water vapor VIII and regenerated water vapor, is discharged as discharged water vapor through the desorption water vapor line 108.
  • the desorption steam discharged from the steam compressor 122 is supplied to the first treatment tank 104A and the second treatment tank 104B where the desorption process is being carried out through the desorption steam line 108.
  • the steam compressor 122 may be replaced by a compressor having a similar effect, such as a roots blower or a turbo blower.
  • the makeup water storage section 115E is connected to a heat exchanger steam supply line 120, which is a steam supply section for supplying steam VII, which is a part of the steam V.
  • a heat exchanger steam supply line 120 which is a steam supply section for supplying steam VII, which is a part of the steam V.
  • the makeup water storage section 115E can be kept at a predetermined pressure or higher (for example, a gauge pressure of -0.099 MPa or higher), and the flow rate of the suction steam sucked into the steam compressor 122, i.e., the regenerated steam, can be sufficiently ensured.
  • the flow rate of the discharge steam of the steam compressor 122 i.e., the desorption steam
  • the desorption efficiency of the organic solvent in the desorption process of the organic solvent recovery device 100 is maintained high.
  • the makeup water VI in the heat exchanger 115 body and the makeup water storage section 115E can be maintained at a high temperature, and the makeup water VI can be efficiently evaporated.
  • the makeup water storage section 115E is provided with a pressure sensor 115F, which is a pressure measuring section that measures the pressure inside the heat exchanger 115.
  • an adjustment valve V4 is provided on the heat exchanger steam supply line 120 to adjust the flow rate of the steam VII.
  • the heat exchanger 115 is provided with a control unit 115G that adjusts the flow rate of the water vapor VII. Specifically, the control unit 115G adjusts the opening of the adjustment valve V4 to supply the water vapor VII so that the pressure of the makeup water storage unit 115E detected by the pressure sensor 115F is maintained within a predetermined range (approximately -0.099 to -0.080 MPa in gauge pressure).
  • the heat exchanger 115 is preferably a multi-tube heat exchanger.
  • a multi-tube heat exchanger is a heat exchanger in which a large number of tubes are arranged inside a cylinder called a shell, which is a container part.
  • the surface of the tubes acts as a heat transfer surface, and heat is exchanged between the fluid flowing inside the tube 115B (hereinafter, the tube side) and the fluid flowing between the outside of the tube 115B and the inside of the shell 115A (hereinafter, the shell side).
  • the tube 115B is a heat generating part that provides heat
  • the shell 115A is a heat absorbing part that receives heat.
  • the tube 115B connects the desorption gas inlet chamber 115C and the desorption gas outlet chamber 115D. Furthermore, the heat exchanger 115 of the present invention is arranged so that the tube 115B faces horizontally, and the tube side acts as a condensation side that supplies the desorption gas, and the shell side acts as an evaporation side that supplies makeup water VI and steam VII.
  • the tube side acts as a condensation side that supplies the desorption gas
  • the shell side acts as an evaporation side that supplies makeup water VI and steam VII.
  • other types of heat exchangers may be used instead as long as they have the same effect as a heat exchanger, such as plate or spiral types.
  • makeup water VI In shell 115A, makeup water VI always remains in an amount that contacts a portion of tube 115B. When makeup water VI comes into contact with tube 115B, makeup water VI receives heat from the desorbed gas and evaporates. In addition, tube 115B also serves to heat makeup water up to the evaporation temperature, so there is no need to provide a separate makeup water heating facility to heat makeup water VI.
  • the heat exchanger 115 preferably adjusts the water level of the make-up water VI so that a portion of the tube 115B does not come into contact with the make-up water VI in the make-up water storage section 115E. Specifically, a portion of the tube 115B is located in the gas phase portion of the shell 115A between the water level of the make-up water VI and the regenerated steam line 119. The regenerated steam is heated by the tube 115B located in the gas phase portion of the shell 115A, and this prevents the regenerated steam from condensing before being sucked into the steam compressor 122.
  • possible means for adjusting the water level of the make-up water VI include, for example, a control method using a float type, a spacer type, a differential pressure type, or a capacitance type liquid level gauge.
  • the desorbed gas outlet chamber 115D of the heat exchanger 115 is connected to the heat exchanger outlet gas line 117 and is connected to the condenser 111. Inside the condenser 111, heat exchange occurs between the desorbed gas that has completed heat exchange in the heat exchanger 115 and the cooling water, and the desorbed gas is cooled and condensed.
  • the condensate condensed in the condenser 111 is supplied to the separator 113, which is a condensate reservoir, through the condenser condensate line 112.
  • the separator 113 separates the condensate sent from the condenser condensate line 112 into a layer of recovered solvent 113A and a layer of separated wastewater 113B.
  • the separated wastewater 113B may be discharged after aeration using an aeration device.
  • a three-way on-off valve V3 is provided on the desorption gas line 110.
  • One downstream side of the on-off valve V3 is connected to the desorption gas inlet chamber 115C of the heat exchanger 115, and the other downstream side is connected to the condenser 111 via the condenser line 116.
  • the on-off valve V3 can be used to switch between supplying the desorption gas to the heat exchanger 115 or to the condenser 111. Note that a similar switching operation may be performed by using multiple two-way on-off valves instead of the three-way on-off valve V3.
  • a heat exchanger condensate line 118 is connected to the desorption gas outlet chamber 115D of the heat exchanger 115.
  • the heat exchanger condensate line 118 is connected to the separator 113.
  • the desorption gas is separated into uncondensed desorption gas and condensed condensate, and supplied to the desorption gas outlet chamber 115D.
  • the condensate of the desorption gas supplied to the desorption gas outlet chamber 115D is supplied directly to the separator 113 through the heat exchanger condensate line 118.
  • a return gas line 114 is connected to the gas phase portion of the condenser 111 and the gas phase portion of the separator 113.
  • the return gas line 114 is introduced into the treated gas line 101.
  • the gas returned from the return gas line 114 to the treated gas line 101 is preferably introduced so as to flow in a counter flow direction to the flow direction of the treated gas I.
  • the treated gas line 101 is provided with a treated gas blower 102.
  • the treated gas I delivered by the treated gas blower 102 is sent through the treated gas introduction line 103 to the first treatment tank 104A and the second treatment tank 104B.
  • the discharged water vapor from the steam compressor 122 i.e., the desorption water vapor
  • the desorption water vapor line 108 is connected to the first treatment tank 104A, and the desorption water vapor line 108 is provided with a first water vapor on-off valve V1.
  • the desorption water vapor line 108 is connected to the second treatment tank 104B, and the desorption water vapor line 108 is provided with a second water vapor on-off valve V2.
  • the first automatic upper damper 106A, the second automatic upper damper 106B, the first automatic lower damper 107A, the second automatic lower damper 107B, the first water vapor on-off valve V1, the second water vapor on-off valve V2, the heat exchanger 115, the steam compressor 122, the condenser 111, the separator 113, and the treated gas blower 102 are appropriately controlled in operation and opening/closing by a control device (not shown) to realize the gas treatment method described below.
  • FIG. 1 A gas treatment method using the organic solvent recovery system 1A having the above configuration will be described.
  • a first treatment tank 104A of an organic solvent recovery apparatus 100 performs a desorption process
  • a second treatment tank 104B performs an adsorption process.
  • the treated gas I containing an organic solvent-containing gas is sent from the treated gas line 101 to the second treatment tank 104B, which is in an adsorption process, by the treated gas blower 102.
  • the second automatic lower damper 107B is controlled to open the treated gas inlet line 103 and close the desorption gas line 110.
  • the second automatic upper damper 106B is controlled to an open state that allows the gas I to flow through the second adsorbent 105B.
  • the organic solvent is adsorbed in the second adsorbent 105B of the second treatment tank 104B, and the treated gas II is discharged outside the system.
  • the second water vapor opening/closing valve V2 of the desorption water vapor line 108 is controlled to a closed state.
  • the gas I to be treated is not sent to the first treatment tank 104A, and the first automatic lower damper 107A controls the gas to be treated introduction line 103 to be closed and the desorption gas line 110 to be open.
  • the first automatic lower damper 107A blocks the flow of gas from the outside to the inside of the first adsorbent 105A.
  • the water vapor for desorption is introduced through the water vapor line 108 for desorption so as to be able to flow from the inside to the outside of the first adsorbent 105A.
  • the first water vapor on-off valve V1 of the water vapor line 108 for desorption is controlled to be open.
  • Steam for desorption is generated by mixing steam VIII and regenerated steam in the steam compressor 122.
  • Steam VIII is a part of steam V.
  • the steam compressor 122 is driven by steam VIII supplied through steam line 121 for the steam compressor, sucks in regenerated steam in a reduced pressure state through regenerated steam line 119, and discharges desorption steam, which is a mixture of steam VIII and regenerated steam, through steam line 108 for desorption.
  • the desorption steam is ejected, and the organic solvent adsorbed to the first adsorbent 105A is desorbed from the first adsorbent 105A.
  • FIG. 2 is a time chart showing the time-dependent switching between the adsorption process and the desorption process of the organic solvent recovery device 100 of embodiment 1 shown in Figure 1.
  • First Desorption Step of First Treatment Tank 104A In the first desorption step of the first treatment tank 104A (i.e., between t0 and t1 shown in FIG. 2), the desorbed gas is supplied to the condenser 111 through the condenser line 116 by operating the three-way opening/closing valve V3.
  • the condensate of the desorbed gas condensed in the condenser 111 is supplied to the separator 113 through the condenser condensate line 112. In the separator 113, it is separated into a layer of recovered solvent 113A and a layer of separated wastewater 113B.
  • the desorbed gas is supplied to the tube side of the heat exchanger 115 and exchanges heat with the make-up water VI that is retained on the shell side of the heat exchanger 115. Specifically, the make-up water VI is indirectly heated through the heat transfer surface.
  • the desorption gas After the desorption gas has completed heat exchange with makeup water VI in heat exchanger 115, it is separated into uncondensed desorption gas and condensed condensate.
  • the uncondensed desorption gas is supplied to condenser 111 through heat exchanger outlet gas line 117. Inside condenser 111, heat exchange occurs between the desorption gas and cooling water, and the desorption gas is cooled and condensed. Meanwhile, the condensate of the desorption gas condensed in heat exchanger 115 is supplied to separator 113 through heat exchanger condensate line 118.
  • the condensate of the desorbed gas condensed in the condenser 111 is supplied to the separator 113 through the condenser condensate line 112. In the separator 113, it is separated into a layer of recovered solvent 113A and a layer of separated wastewater 113B.
  • the return gas remaining in the condenser 111 and separator 113 is pushed out by the desorbed gas and introduced into the treated gas line 101 through the return gas line 114, where it is mixed with the treated gas I.
  • the treated gas I and the return gas introduced from the treated gas line 101 are sent to the second treatment tank 104B.
  • the desorption gas is supplied to the tube side of the heat exchanger 115 on the shell side, so that water vapor is generated by the evaporation of makeup water VI.
  • water vapor VII which is a part of water vapor V
  • water vapor is supplied to the desorption gas inlet chamber 115C through the heat exchanger water vapor supply line 120, and water vapor is generated by the evaporation of makeup water VI by the water vapor VII.
  • Regenerated water vapor which is a mixture of water vapor generated by the evaporation of makeup water VI and water vapor VII, is sucked into the steam compressor 122 through the regenerated water vapor line 119.
  • the flow rate of the regenerated water vapor sucked into the steam compressor 122 is not insufficient even when the evaporation amount of makeup water VI fluctuates, and the desorption step of the first treatment tank 104A is efficiently performed.
  • the heat of the desorption steam supplied to the first treatment tank 104A in the first desorption step is consumed in large amounts to heat the first adsorbent 105A, the first treatment tank 104A body, the first automatic upper damper 106A, the first automatic lower damper 107A, and each piping line, so the temperature of the desorption gas discharged from the first treatment tank 104A is low.
  • steam VII is supplied to the desorption gas inlet chamber 115C of the heat exchanger 115 in the first desorption step and controlled so that steam VII is not supplied to the desorption gas inlet chamber of the heat exchanger 115 in the second desorption step, in which the desorption gas discharged from the first treatment tank 104A becomes high temperature (about 70 to 120°C), it is preferable because this ensures a sufficient flow rate of regenerated steam in the early stage of the desorption step and reduces the amount of steam VII used.
  • the timing for switching from the first desorption process to the second desorption process may be determined by measuring in advance the time it takes for the temperature of the desorption gas discharged from the treatment tank to reach a high temperature in the first desorption process.
  • a temperature sensor may be provided to measure the temperature of the desorption gas discharged from the treatment tank, and the process may be controlled to automatically switch from the first desorption process to the second desorption process when the temperature of the desorption gas detected by the temperature sensor reaches a high temperature.
  • the water vapor VII condensed in the heat exchanger becomes water and flows through the tube 115B of the heat exchanger 115. This washes away/dilutes the decomposition products of corrosive organic solvents contained in the condensed water of the desorption gas, thereby reducing the corrosiveness of the condensed water and extending the life of the heat exchanger 115.
  • the organic solvent recovery device 100 continuously recovers the recovered solvent 113A through continuous processing in which the adsorption process and the desorption process are alternately performed.
  • FIG. 3 is a diagram showing the configuration of an organic solvent recovery system 1B according to the second embodiment.
  • the basic configuration of the organic solvent recovery system 1B of the second embodiment is the same as that of the organic solvent recovery system 1A described in the first embodiment above. The difference is that the organic solvent recovery system 1B of the second embodiment is provided with a temperature sensor 115H, which is a temperature measurement unit that measures the temperature of the makeup water VI in the heat exchanger 115, in the makeup water storage unit 115E.
  • control unit 115G adjusts the opening of the adjustment valve V4 to supply water vapor VII so that the temperature of the make-up water VI in the make-up water storage unit 115E detected by the temperature sensor 115H is maintained within a predetermined range (approximately 70°C to 97°C).
  • the organic solvent recovery system 1B configuration of the second embodiment can achieve the same effects as the organic solvent recovery system 1A of the first embodiment.
  • the organic solvent recovery process is described as using a first treatment tank 104A and a second treatment tank 104B as treatment tanks, and alternately performing an adsorption process and a desorption process.
  • the organic solvent recovery process is not limited to using these two treatment tanks, and there may be three or more treatment tanks.
  • the present invention makes it possible to provide an organic solvent recovery system that is energy-efficient and improves the efficiency of organic solvent recovery while reducing corrosion of the mechanism that generates water vapor, making a significant contribution to the industrial world.
  • 1A, 1B organic solvent recovery system 100 organic solvent recovery device, 101 treated gas line, 102 treated gas blower, 103 treated gas introduction line, 104A first treatment tank, 104B second treatment tank, 105A first adsorbent, 105B second adsorbent, 106A first automatic upper damper, 106B second automatic upper damper, 107A first automatic lower damper, 107B second automatic lower damper, 108 desorption water vapor line, 110 desorption gas line, 111 condenser (cooling section), 112 condenser condensate line, 113 separator (condensate reservoir section), 113A recovered solvent, 113B separated wastewater, 114 return gas line, 115 heat exchanger, 115A shell (heat absorbing section, container section), 115B tube (heat generating section, tube section) , 115C Desorption gas inlet chamber, 115D Desorption gas outlet chamber (Desorption gas outlet receiving part), 115E Make-up water storage part, 115F Pressure sensor (Pressure measurement part

Abstract

Provided is an organic solvent recovery system comprising a treatment tank in which there is accommodated an adsorbent material by which an organic solvent is adsorbed and removed from an organic-solvent-containing gas being treated. The organic solvent recovery system also comprises: an organic solvent recovery device that repeatedly carries out an adsorption treatment in which the gas being treated that is supplied to the treatment tank is brought into contact with the adsorbent material and a treatment gas is discharged, and a desorption treatment in which the organic solvent is desorbed from the adsorbent material by using water vapor for desorption that is supplied to the treatment tank and a desorption gas is discharged; a heat exchanger having a heating unit through which flows the desorption gas discharged from the organic solvent recovery device, and a heat-absorbing unit to which replenishment water is supplied, the heat exchanger indirectly heating the replenishment water in the heat-absorbing unit by using the desorption gas flowing through the heating unit to generate water vapor, and discharging the indirectly heated desorption gas; and a cooling unit that cools the desorption gas discharged from the heat exchanger and discharges a condensed liquid. The organic solvent recovery system additionally comprises a water vapor supply unit that supplies the water vapor to the heating unit of the heat exchanger. The heat exchanger supplies the water vapor generated from the replenishment water to the organic solvent recovery device as at least part of the water vapor for desorption.

Description

有機溶剤回収システムOrganic Solvent Recovery System
 本発明は、有機溶剤回収システムに関するものである。 The present invention relates to an organic solvent recovery system.
 有機溶剤回収装置は、吸着材で被処理ガスの有機溶剤を吸着する1対の処理槽と、各処理槽に対する被処理ガス供給装置と脱着用ガス供給装置とを設け、処理槽に被処理ガスを供給する吸着工程と脱着用ガスを供給する脱着工程とに切り替える機構が採用されている。 The organic solvent recovery system is equipped with a pair of treatment tanks that use an adsorbent to adsorb the organic solvents in the gas to be treated, a treatment gas supply device and a desorption gas supply device for each treatment tank, and employs a mechanism for switching between an adsorption process that supplies the gas to be treated to the treatment tank, and a desorption process that supplies the desorption gas.
 ガス処理装置の吸着材として、例えば、活性炭素繊維が使用されている。活性炭素繊維は低濃度の有機溶剤含有ガスを吸着する機能に優れ、吸着材として使用されている。例えば、活性炭素繊維を支持体に固定し、又は自己支持にて円筒状に構成し、芯材内に縦型に配設したガス処理装置が、特開2014-147864号公報(特許文献1)に開示されている。 Activated carbon fibers, for example, are used as adsorbents in gas treatment devices. Activated carbon fibers have excellent ability to adsorb low-concentration organic solvent-containing gases and are used as adsorbents. For example, JP 2014-147864 A (Patent Document 1) discloses a gas treatment device in which activated carbon fibers are fixed to a support or self-supported into a cylindrical shape and arranged vertically within a core material.
 また、実開昭58-161636号公報(特許文献2)では活性炭吸着器(処理槽)の脱着蒸気出口に熱交換器の凝縮側を接続すると共に、熱交換器の蒸発側に水を供給し、熱交換器の蒸発側と前記活性炭吸着器の脱着用水蒸気入口を接続したラインに減圧ブロアを介設し、脱着蒸気の熱で蒸発側の水を蒸発させて脱着用水蒸気を発生させることで、水蒸気使用量を削減した活性炭脱着装置が開示されている。 Furthermore, Japanese Utility Model Application Publication No. 58-161636 (Patent Document 2) discloses an activated carbon desorption device that reduces the amount of water vapor used by connecting the condensation side of a heat exchanger to the desorption steam outlet of an activated carbon adsorber (treatment tank), supplying water to the evaporation side of the heat exchanger, and installing a pressure reducing blower in the line connecting the evaporation side of the heat exchanger to the desorption water vapor inlet of the activated carbon adsorber, and evaporating the water on the evaporation side using the heat of the desorption steam to generate water vapor for desorption.
特開2014-147864号公報JP 2014-147864 A 実開昭58-161636号公報Japanese Utility Model Application Publication No. 58-161636
 脱着工程において、処理槽から排出される脱着ガスの温度は外気温度や被処理ガスの有機溶剤濃度、被処理ガスの湿度などの変動によって随時変化するため、特許文献2のように熱交換器を介して脱着ガスの熱で脱着用水蒸気を発生させる場合は、脱着用水蒸気の流量を十分確保できない恐れがある。 In the desorption process, the temperature of the desorption gas discharged from the treatment tank changes from time to time due to fluctuations in the outside air temperature, the organic solvent concentration in the gas being treated, the humidity of the gas being treated, and other factors. Therefore, when generating desorption water vapor using the heat of the desorption gas via a heat exchanger as in Patent Document 2, there is a risk that the flow rate of the desorption water vapor cannot be sufficiently secured.
 また、脱着工程の前期において、処理槽に供給される脱着用水蒸気の熱は吸着材や処理槽本体、配管、切り替えバルブの加熱に多く消費されるため、結果として処理槽から排出される脱着ガスの温度が低くなる。そのため、特許文献2のように熱交換器を介して脱着ガスの熱で脱着用水蒸気を発生させる場合は、脱着工程の前期において、脱着用水蒸気がほとんど発生させることができない恐れがある。その結果、脱着工程の前期において、脱着用水蒸気の流量を十分確保できない恐れがある。 In addition, in the early stage of the desorption process, much of the heat of the desorption steam supplied to the treatment tank is consumed in heating the adsorbent, the treatment tank body, the piping, and the switching valve, resulting in a low temperature of the desorption gas discharged from the treatment tank. Therefore, when desorption steam is generated using the heat of the desorption gas via a heat exchanger as in Patent Document 2, there is a risk that almost no desorption steam can be generated in the early stage of the desorption process. As a result, there is a risk that a sufficient flow rate of desorption steam cannot be secured in the early stage of the desorption process.
 これらの問題により、脱着ガスの熱で脱着用水蒸気を発生させる機構を有する有機溶剤回収装置を考えた場合は、脱着工程中の脱着用水蒸気の流量が安定しないことから、有機溶剤の脱着効率が低下し、有機溶剤の回収効率が低下する恐れがある。 When considering an organic solvent recovery device that has a mechanism for generating desorption steam using the heat of the desorption gas due to these problems, the flow rate of the desorption steam during the desorption process is not stable, which may reduce the desorption efficiency of the organic solvent and the recovery efficiency of the organic solvent.
 また、特許文献において、熱交換器内にある脱着ガスの凝縮水は、処理ガスに含まれる有機溶剤の分解物によって酸性を示す場合がある。蒸気温度に近い高温状態や、乾湿の繰り返しによる高濃度化によって腐食作用が高くなり、熱交換器の部材での孔食などの原因となる。その結果、熱交換器の部材の腐食による脱着ガスの漏洩などの事故を引き起こす恐れがある。 The patent document also states that the condensed water of the desorbed gas in the heat exchanger may be acidic due to the decomposition of organic solvents contained in the treated gas. High temperatures close to steam temperature and high concentrations caused by repeated drying and wetting can increase the corrosive effect, causing pitting corrosion in the heat exchanger components. This can result in accidents such as leakage of the desorbed gas due to corrosion of the heat exchanger components.
 そこで本発明では、上記課題に鑑みなされ、その目的は、脱着ガスの熱で脱着用水蒸気を発生させる機構を有し、処理槽へ供給される脱着用水蒸気の流量が十分確保され、有機溶剤の回収効率が向上し、有機溶剤の分解物による部材の腐食が低減される、有機溶剤回収システムを提供することにある。 In view of the above problems, the present invention aims to provide an organic solvent recovery system that has a mechanism for generating desorption steam using the heat of the desorption gas, ensures a sufficient flow rate of the desorption steam supplied to the treatment tank, improves the efficiency of organic solvent recovery, and reduces corrosion of components caused by decomposition products of the organic solvent.
 本発明の有機溶剤回収システムは、以下の構成を備える。 The organic solvent recovery system of the present invention has the following configuration.
 有機溶剤を含有する被処理ガスから有機溶剤を吸着除去する吸着材が収容された処理槽を備え、前記処理槽に供給された前記被処理ガスを前記吸着材に接触させて処理ガスを排出する吸着処理と、前記処理槽に供給された脱着用水蒸気により前記吸着材から前記有機溶剤を脱着して脱着ガスを排出する脱着処理とを繰り返す有機溶剤回収装置と、
 前記有機溶剤回収装置から排出された前記脱着ガスが通過する発熱部と、補給水が供給される吸熱部とを有し、当該発熱部を通過する前記脱着ガスにて、当該吸熱部の補給水を間接加熱して水蒸気を発生させ、間接加熱後の前記脱着ガスを排出する熱交換器と、
 前記熱交換器から排出された前記脱着ガスを冷却して凝縮液を排出する冷却部と、を備えた有機溶剤回収システムであって、
 前記熱交換器の前記発熱部に水蒸気を供給する水蒸気供給部を備え、
 前記熱交換器は、前記補給水から発生した水蒸気を、前記脱着用水蒸気の少なくとも一部として前記有機溶剤回収装置に供給する。
an organic solvent recovery apparatus including a treatment tank containing an adsorbent that adsorbs and removes an organic solvent from a gas to be treated that contains the organic solvent, and repeats an adsorption process in which the gas to be treated that is supplied to the treatment tank is brought into contact with the adsorbent to discharge a treated gas, and a desorption process in which the organic solvent is desorbed from the adsorbent by a desorption steam supplied to the treatment tank and a desorbed gas is discharged;
a heat exchanger including a heat generating section through which the desorption gas discharged from the organic solvent recovery apparatus passes and a heat absorbing section to which makeup water is supplied, the heat exchanger indirectly heating the makeup water in the heat absorbing section with the desorption gas passing through the heat generating section to generate steam, and discharging the indirectly heated desorption gas;
a cooling unit that cools the desorption gas discharged from the heat exchanger and discharges a condensate,
a water vapor supply unit that supplies water vapor to the heat generating unit of the heat exchanger,
The heat exchanger supplies the water vapor generated from the make-up water to the organic solvent recovery apparatus as at least a part of the desorption water vapor.
 上記の有機溶剤回収システムは、前記熱交換器の前記吸熱部の気相部分の圧力を測定する圧力測定部を備え、当該圧力測定部の測定結果により前記発熱部に供給する水蒸気の流量を制御してもよい。 The organic solvent recovery system may include a pressure measuring unit that measures the pressure of the gas phase of the heat absorbing section of the heat exchanger, and the flow rate of water vapor supplied to the heat generating section may be controlled based on the measurement results of the pressure measuring unit.
 上記の有機溶剤回収システムは、前記熱交換器の前記吸熱部の液相部分の温度を測定する温度測定部を備え、当該温度測定部の測定結果により前記発熱部に供給する水蒸気の流量を制御してもよい。 The organic solvent recovery system may include a temperature measuring unit that measures the temperature of the liquid phase of the heat absorption unit of the heat exchanger, and the flow rate of water vapor supplied to the heat generation unit may be controlled based on the measurement results of the temperature measuring unit.
 上記の有機溶剤回収システムは、前記処理槽から排出される前記脱着ガスを前記熱交換器に供給する経路と、前記処理槽から排出される前記脱着ガスを前記冷却部に供給する経路と、を備え、前記脱着処理の前期において、前記熱交換器の前記発熱部に水蒸気を供給するとともに、前記冷却部に前記処理槽から排出される前記脱着ガスを供給し、前記脱着工程の後期において、前記熱交換器の前記発熱部に前記脱着ガスを供給するとともに、前記冷却部に前記発熱部を通過した後の前記脱着ガスを供給してもよい。 The organic solvent recovery system described above includes a path for supplying the desorption gas discharged from the treatment tank to the heat exchanger, and a path for supplying the desorption gas discharged from the treatment tank to the cooling section. In the early stage of the desorption process, water vapor is supplied to the heat generating section of the heat exchanger, and the desorption gas discharged from the treatment tank is supplied to the cooling section. In the later stage of the desorption process, the desorption gas is supplied to the heat generating section of the heat exchanger, and the desorption gas after passing through the heat generating section is supplied to the cooling section.
 上記の有機溶剤回収システムでは、前記有機溶剤回収装置は、前記冷却部から排出される凝縮液を溜める凝縮液溜部を備え、前記熱交換器は、間接加熱した後の前記脱着ガスが滞留する脱着ガス出口受部と、当該脱着ガス出口受部から未凝縮の前記脱着ガスを前記冷却部に供給する配管経路と、当該脱着ガス出口受部から凝縮液となった前記脱着ガスを前記凝縮液溜部に供給する配管経路と、を備えてもよい。 In the above organic solvent recovery system, the organic solvent recovery device may include a condensate reservoir that accumulates the condensate discharged from the cooling section, and the heat exchanger may include a desorption gas outlet receiving section in which the desorption gas accumulates after indirect heating, a piping path that supplies the uncondensed desorption gas from the desorption gas outlet receiving section to the cooling section, and a piping path that supplies the desorption gas that has become condensed from the desorption gas outlet receiving section to the condensate reservoir.
 上記の有機溶剤回収システムでは、前記熱交換器は、前記吸熱部である容器部の内部に前記発熱部である管部を備えた多管式熱交換器であってもよい。 In the organic solvent recovery system described above, the heat exchanger may be a multi-tube heat exchanger having a tube portion, which is the heat generating portion, inside a container portion, which is the heat absorbing portion.
 上記の有機溶剤回収システムでは、前記水蒸気供給部は、前記有機溶剤回収装置に前記脱着用水蒸気を直接供給する脱着用水蒸気供給部と接続している又は兼用されていてもよい。 In the organic solvent recovery system described above, the water vapor supply unit may be connected to or may share a desorption water vapor supply unit that directly supplies the desorption water vapor to the organic solvent recovery device.
 本発明に従えば、脱着ガスの熱で脱着用水蒸気を発生させる機構を有し、処理槽へ供給される脱着用水蒸気の流量が十分確保され、有機溶剤の回収効率が向上しつつ、有機溶剤の分解物による熱交換器の部材の腐食が低減される、有機溶剤回収システムの提供を可能にする。 According to the present invention, it is possible to provide an organic solvent recovery system that has a mechanism for generating desorption steam using the heat of the desorption gas, ensures a sufficient flow rate of the desorption steam supplied to the treatment tank, improves the efficiency of organic solvent recovery, and reduces corrosion of heat exchanger components caused by decomposition products of the organic solvent.
実施の形態1における有機溶剤回収装置の構成を示す概念図である。1 is a conceptual diagram showing a configuration of an organic solvent recovery device in a first embodiment. 実施の形態1における有機溶剤回収装置の吸着工程及び脱着工程の時間的な切り替わりを示すタイムチャートである。4 is a time chart showing the time-dependent switching between an adsorption process and a desorption process of the organic solvent recovery apparatus in the first embodiment. 実施の形態2における有機溶剤回収装置の構成を示す概念図である。FIG. 11 is a conceptual diagram showing a configuration of an organic solvent recovery device in a second embodiment.
 本発明に基づいた実施の形態の有機溶剤回収システムについて、以下、図面を参照しながら説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されていることである。 The organic solvent recovery system according to the embodiment of the present invention will be described below with reference to the drawings. In the embodiment described below, when numbers, amounts, etc. are mentioned, the scope of the present invention is not necessarily limited to those numbers, amounts, etc., unless otherwise specified. The same reference numbers are used for the same parts or equivalent parts, and redundant descriptions may not be repeated. It is intended from the beginning that the configurations in the embodiment will be used in appropriate combinations.
 ここで、本明細書において有機溶剤とは、塩化メチレン、クロロホルム、四塩化炭素、塩化エチレン、トリクロロエチレン、テトラクロロエチレン、o-ジクロロベンゼン、m-ジクロロベンゼン、フロン-112、フロン-113、HCFC、HFC、臭化プロピル、ヨウ化ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ビニル、プロピオン酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、炭酸ジエチル、蟻酸エチル、ジエチルエーテル、ジプロピルエーテル、テトラヒドロフラン、ジブチルエーテル、アニソール、メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、アリルアルコール、ペンタノール、ヘプタノール、エチレングリコール、ジエチレングリコール、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ホロン、アクリロニトリル、n-ヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、イソノナン、デカン、ドデカン、ウンデカン、テトラデカン、デカリン、ベンゼン、トルエン、m-キシレン、p-キシレン、o-キシレン、エチルベンゼン、1,3,5-トリメチルベンゼン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド及びジメチルスルホキシド等を指すが、これらには限定されない。 In this specification, organic solvents include methylene chloride, chloroform, carbon tetrachloride, ethylene chloride, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, m-dichlorobenzene, fluorocarbon-112, fluorocarbon-113, HCFC, HFC, propyl bromide, butyl iodide, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, vinyl acetate, methyl propionate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, diethyl carbonate, ethyl formate, diethyl ether, dipropyl ether, tetrahydrofuran, dibutyl ether, anisole, methanol, ethanol, isopropanol, n-butanol, 2-butanol, isobutanol, t-butanol, and allyl alcohol. , pentanol, heptanol, ethylene glycol, diethylene glycol, phenol, o-cresol, m-cresol, p-cresol, xylenol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, phorone, acrylonitrile, n-hexane, isohexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, isononane, decane, dodecane, undecane, tetradecane, decalin, benzene, toluene, m-xylene, p-xylene, o-xylene, ethylbenzene, 1,3,5-trimethylbenzene, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, and dimethylsulfoxide, but are not limited to these.
 [実施の形態1]
 図1を参照して、本実施の形態1の有機溶剤回収システムについて説明する。図1は、実施の形態1の有機溶剤回収システム1Aの構成を示す図である。
[First embodiment]
An organic solvent recovery system according to the first embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing the configuration of an organic solvent recovery system 1A according to the first embodiment.
 有機溶剤回収システム1Aは、有機溶剤回収装置100、熱交換器115、及び冷却部としてコンデンサ111を備える。
 有機溶剤回収装置100は、第1処理槽104A、及び、第2処理槽104Bを備える。第1処理槽104Aは、円筒形状の第1吸着材105Aを含み、第2処理槽104Bは、円筒形状の第2吸着材105Bを含む。第1吸着材105A及び第2吸着材105Bは、外側から内側に向けて被処理ガスIが通過して吸着工程(吸着処理)が実施され、内側から外側に向けて水蒸気が通過して脱着工程(脱着処理)が実施される。第1吸着材105A及び第2吸着材105Bには、例えば、活性炭素繊維や活性炭等が用いられる。
The organic solvent recovery system 1A includes an organic solvent recovery device 100, a heat exchanger 115, and a condenser 111 as a cooling section.
The organic solvent recovery apparatus 100 includes a first treatment tank 104A and a second treatment tank 104B. The first treatment tank 104A includes a cylindrical first adsorbent 105A, and the second treatment tank 104B includes a cylindrical second adsorbent 105B. The first adsorbent 105A and the second adsorbent 105B are passed from the outside to the inside to perform an adsorption process (adsorption process), and water vapor is passed from the inside to the outside to perform a desorption process (desorption process). For example, activated carbon fiber or activated carbon is used for the first adsorbent 105A and the second adsorbent 105B.
 第1処理槽104A及び第2処理槽104Bは、被処理ガス導入ライン103及び脱着ガスライン110に連結されている。被処理ガス導入ライン103への連結の開閉、及び、脱着ガスライン110への連結の開閉を行なうため、第1処理槽104A及び第2処理槽104Bには、それぞれ、第1自動下ダンパ107A及び第2自動下ダンパ107Bが設けられている。 The first treatment tank 104A and the second treatment tank 104B are connected to the treated gas inlet line 103 and the desorption gas line 110. In order to open and close the connection to the treated gas inlet line 103 and the desorption gas line 110, the first treatment tank 104A and the second treatment tank 104B are provided with a first automatic lower damper 107A and a second automatic lower damper 107B, respectively.
 第1処理槽104A及び第2処理槽104Bの上方には、それぞれ、被処理ガスIの流通を制御する第1自動上ダンパ106A及び第2自動上ダンパ106Bが設けられている。 A first automatic upper damper 106A and a second automatic upper damper 106B that control the flow of the gas I to be treated are provided above the first treatment tank 104A and the second treatment tank 104B, respectively.
 脱着ガスライン110には、熱交換器115が連結されている。熱交換器115は脱着ガスライン110が連結される脱着ガス入口チャンバー115Cを有する。また、熱交換器115は熱交換器出口ガスライン117、及び、熱交換器凝縮液ライン118が連結される脱着ガス出口受部である脱着ガス出口チャンバー115Dを有する。さらに補給水収容部115Eには補給水VIが供給される。補給水VIは、例えば、送液ポンプなどによって補給水収容部115Eに送られる。 A heat exchanger 115 is connected to the desorption gas line 110. The heat exchanger 115 has a desorption gas inlet chamber 115C to which the desorption gas line 110 is connected. The heat exchanger 115 also has a desorption gas outlet chamber 115D, which is a desorption gas outlet receiving section to which a heat exchanger outlet gas line 117 and a heat exchanger condensate line 118 are connected. Furthermore, makeup water VI is supplied to the makeup water storage section 115E. The makeup water VI is sent to the makeup water storage section 115E, for example, by a liquid delivery pump or the like.
 熱交換器115は、脱着ガスライン110から供給された脱着ガスによって補給水収容部115E中の補給水VIを間接加熱することにより、当該補給水VIを蒸発させて水蒸気を発生させる。 The heat exchanger 115 indirectly heats the make-up water VI in the make-up water storage section 115E with the desorption gas supplied from the desorption gas line 110, thereby evaporating the make-up water VI and generating water vapor.
 補給水収容部115Eは、沸点が例えば70℃以上97℃以下、好ましくは75℃以上95℃以下になるように減圧されており、発生した水蒸気は熱交換器115に連結された再生水蒸気ライン119を通じ、再生水蒸気としてスチームコンプレッサー122に供給される。スチームコンプレッサー122は高圧の水蒸気を駆動源(以下、駆動水蒸気)として定圧の水蒸気(以下、吸引水蒸気)を減圧状態にして吸込み、中圧の水蒸気(以下、吐出水蒸気)へ昇圧する機構である。本発明では、スチームコンプレッサー用水蒸気ライン121を通じて高圧の水蒸気VIII(水蒸気Vの一部)を駆動水蒸気としてスチームコンプレッサー122に供給することで、再生水蒸気ライン119を通じて再生水蒸気を吸引水蒸気として吸込み、脱着用水蒸気ライン108を通じて水蒸気VIIIと再生水蒸気が混合された脱着用水蒸気を吐出水蒸気として排出する。スチームコンプレッサー122から排出された脱着用水蒸気は脱着用水蒸気ライン108を通じて脱着工程を行っている第1処理槽104A及び第2処理槽104Bに供給される。なお、スチームコンプレッサー122は同様の効果を有する圧縮機を代わりに用いても良く、例えばルーツブロワー、ターボブロワーなどがあげられる。 The make-up water storage section 115E is decompressed so that the boiling point is, for example, 70°C to 97°C, preferably 75°C to 95°C, and the generated water vapor is supplied to the steam compressor 122 as regenerated water vapor through the regenerated water vapor line 119 connected to the heat exchanger 115. The steam compressor 122 is a mechanism that uses high-pressure water vapor as a driving source (hereinafter, driving water vapor) to draw in constant-pressure water vapor (hereinafter, sucked water vapor) in a reduced pressure state and increase the pressure to medium-pressure water vapor (hereinafter, discharged water vapor). In the present invention, high-pressure water vapor VIII (a part of water vapor V) is supplied to the steam compressor 122 as driving water vapor through the steam compressor water vapor line 121, so that the regenerated water vapor is sucked in as sucked water vapor through the regenerated water vapor line 119, and the desorption water vapor, which is a mixture of water vapor VIII and regenerated water vapor, is discharged as discharged water vapor through the desorption water vapor line 108. The desorption steam discharged from the steam compressor 122 is supplied to the first treatment tank 104A and the second treatment tank 104B where the desorption process is being carried out through the desorption steam line 108. Note that the steam compressor 122 may be replaced by a compressor having a similar effect, such as a roots blower or a turbo blower.
 補給水収容部115Eには、水蒸気Vの一部である水蒸気VIIを供給するための水蒸気供給部である熱交換器用水蒸気供給ライン120が連結されている。水蒸気VIIを供給することで、補給水収容部115Eを所定の圧力以上(例えばゲージ圧で-0.099MPa以上)に保つことができ、スチームコンプレッサー122が吸い込む吸引水蒸気、すなわち再生水蒸気の流量を十分確保することができる。結果としてスチームコンプレッサー122の吐出水蒸気、すなわち脱着用水蒸気の流量を十分確保することができ、有機溶剤回収装置100の脱着工程における有機溶剤の脱着効率が高く維持される。また、熱交換器115に供給される脱着ガスの温度が低い時間帯において、水蒸気VIIを供給することで熱交換器115本体や補給水収容部115E中の補給水VIを高温の状態に維持することができ、補給水VIを効率よく蒸発させることができる。 The makeup water storage section 115E is connected to a heat exchanger steam supply line 120, which is a steam supply section for supplying steam VII, which is a part of the steam V. By supplying steam VII, the makeup water storage section 115E can be kept at a predetermined pressure or higher (for example, a gauge pressure of -0.099 MPa or higher), and the flow rate of the suction steam sucked into the steam compressor 122, i.e., the regenerated steam, can be sufficiently ensured. As a result, the flow rate of the discharge steam of the steam compressor 122, i.e., the desorption steam, can be sufficiently ensured, and the desorption efficiency of the organic solvent in the desorption process of the organic solvent recovery device 100 is maintained high. In addition, by supplying steam VII during a time period when the temperature of the desorption gas supplied to the heat exchanger 115 is low, the makeup water VI in the heat exchanger 115 body and the makeup water storage section 115E can be maintained at a high temperature, and the makeup water VI can be efficiently evaporated.
 補給水収容部115Eには、熱交換器115内の圧力を測定する圧力測定部である圧力センサー115Fが設けられている。また、熱交換器用水蒸気供給ライン120上には水蒸気VIIの流量を調整する調整バルブV4が設けられている。 The makeup water storage section 115E is provided with a pressure sensor 115F, which is a pressure measuring section that measures the pressure inside the heat exchanger 115. In addition, an adjustment valve V4 is provided on the heat exchanger steam supply line 120 to adjust the flow rate of the steam VII.
 熱交換器115には水蒸気VIIの流量を調整する制御部115Gが設けられている。具体的に、制御部115Gは圧力センサー115Fで検出される補給水収容部115Eの圧力が所定範囲(ゲージ圧で-0.099~-0.080MPa程度)に維持されるように、調整バルブV4の開度を調整して水蒸気VIIを供給する。 The heat exchanger 115 is provided with a control unit 115G that adjusts the flow rate of the water vapor VII. Specifically, the control unit 115G adjusts the opening of the adjustment valve V4 to supply the water vapor VII so that the pressure of the makeup water storage unit 115E detected by the pressure sensor 115F is maintained within a predetermined range (approximately -0.099 to -0.080 MPa in gauge pressure).
 熱交換器115は多管式熱交換器が好ましい。多管式熱交換器とは容器部であるシェルと呼ばれる円筒内に多数の管部であるチューブを配列した熱交換器であり、チューブの表面が伝熱面としてはたらき、チューブ115Bの内側(以下、チューブ側)に流れる流体とチューブ115Bの外側とシェル115Aの内側との間(以下、シェル側)に流れる流体との熱交換が行われる。つまり、チューブ115Bが熱を与える発熱部であり、シェル115Aが熱を受け取る吸熱部である。チューブ115Bは脱着ガス入口チャンバー115Cと脱着ガス出口チャンバー115Dを連結する。さらに本発明の熱交換器115は、チューブ115Bが水平方向を向くように配置され、チューブ側が脱着ガスを供給する凝縮側としてはたらき、シェル側が補給水VI及び水蒸気VIIを供給する蒸発側としてはたらく。なお、熱交換器として同様の効果を持つものであれば他の方式の熱交換器を代わりに使用してもよく、例えばプレート式やスパイラル式などの構造があげられる。 The heat exchanger 115 is preferably a multi-tube heat exchanger. A multi-tube heat exchanger is a heat exchanger in which a large number of tubes are arranged inside a cylinder called a shell, which is a container part. The surface of the tubes acts as a heat transfer surface, and heat is exchanged between the fluid flowing inside the tube 115B (hereinafter, the tube side) and the fluid flowing between the outside of the tube 115B and the inside of the shell 115A (hereinafter, the shell side). In other words, the tube 115B is a heat generating part that provides heat, and the shell 115A is a heat absorbing part that receives heat. The tube 115B connects the desorption gas inlet chamber 115C and the desorption gas outlet chamber 115D. Furthermore, the heat exchanger 115 of the present invention is arranged so that the tube 115B faces horizontally, and the tube side acts as a condensation side that supplies the desorption gas, and the shell side acts as an evaporation side that supplies makeup water VI and steam VII. However, other types of heat exchangers may be used instead as long as they have the same effect as a heat exchanger, such as plate or spiral types.
 シェル115A内では補給水VIがチューブ115Bの一部と接触する水量で常に滞留している。補給水VIとチューブ115Bが接触することにより、補給水VIが脱着ガスから受熱して蒸発する。また、チューブ115Bは補給水を蒸発温度まで加熱する役割も果たすため、補給水VIを加温するための補給水加温設備を別途設ける必要がない。 In shell 115A, makeup water VI always remains in an amount that contacts a portion of tube 115B. When makeup water VI comes into contact with tube 115B, makeup water VI receives heat from the desorbed gas and evaporates. In addition, tube 115B also serves to heat makeup water up to the evaporation temperature, so there is no need to provide a separate makeup water heating facility to heat makeup water VI.
 熱交換器115は、チューブ115Bの一部が補給水収容部115E中の補給水VIと接触させないように補給水VIの水面高さを調整することが好ましい。具体的に、チューブ115Bの一部が補給水VIの水面と再生水蒸気ライン119との間の、シェル115A内の気相部分に位置する。シェル115A内の気相部分に位置するチューブ115Bによって、再生水蒸気が加熱され、再生水蒸気がスチームコンプレッサー122に吸い込まれるまでに凝縮することを防ぐことができる。なお、補給水VIの水面高さを調整する手段として、例えばフロート式、ディスペーサー式、差圧式、静電容量式液面計による制御方法が考えられる。 The heat exchanger 115 preferably adjusts the water level of the make-up water VI so that a portion of the tube 115B does not come into contact with the make-up water VI in the make-up water storage section 115E. Specifically, a portion of the tube 115B is located in the gas phase portion of the shell 115A between the water level of the make-up water VI and the regenerated steam line 119. The regenerated steam is heated by the tube 115B located in the gas phase portion of the shell 115A, and this prevents the regenerated steam from condensing before being sucked into the steam compressor 122. Note that possible means for adjusting the water level of the make-up water VI include, for example, a control method using a float type, a spacer type, a differential pressure type, or a capacitance type liquid level gauge.
 熱交換器115の脱着ガス出口チャンバー115Dは熱交換器出口ガスライン117に連結し、コンデンサ111と接続される。コンデンサ111の内部では、熱交換器115で熱交換を終えた脱着ガスと冷却水との熱交換が行われ、脱着ガスが冷却凝縮される。 The desorbed gas outlet chamber 115D of the heat exchanger 115 is connected to the heat exchanger outlet gas line 117 and is connected to the condenser 111. Inside the condenser 111, heat exchange occurs between the desorbed gas that has completed heat exchange in the heat exchanger 115 and the cooling water, and the desorbed gas is cooled and condensed.
 コンデンサ111で凝縮した凝縮液はコンデンサ凝縮液ライン112を通じて凝縮液溜部であるセパレータ113に供給される。セパレータ113は、コンデンサ凝縮液ライン112から送られた凝縮液を、回収溶剤113Aの層と分離排水113Bの層とに分離する。分離排水113Bについては、曝気装置にて曝気後に排水する構成を採用してもよい。 The condensate condensed in the condenser 111 is supplied to the separator 113, which is a condensate reservoir, through the condenser condensate line 112. The separator 113 separates the condensate sent from the condenser condensate line 112 into a layer of recovered solvent 113A and a layer of separated wastewater 113B. The separated wastewater 113B may be discharged after aeration using an aeration device.
 脱着ガスライン110上に三方式の開閉バルブV3を設けている。開閉バルブV3の下流側の一方は熱交換器115の脱着ガス入口チャンバー115Cに接続され、下流側のもう一方はコンデンサライン116を経由してコンデンサ111に接続される。開閉バルブV3によって脱着ガスの熱交換器115への供給、又はコンデンサ111への供給を切り替えることができる。なお、三方式の開閉バルブV3の代わりに二方式の開閉バルブを複数用いて同様の切り替え動作を行ってもよい。 A three-way on-off valve V3 is provided on the desorption gas line 110. One downstream side of the on-off valve V3 is connected to the desorption gas inlet chamber 115C of the heat exchanger 115, and the other downstream side is connected to the condenser 111 via the condenser line 116. The on-off valve V3 can be used to switch between supplying the desorption gas to the heat exchanger 115 or to the condenser 111. Note that a similar switching operation may be performed by using multiple two-way on-off valves instead of the three-way on-off valve V3.
 熱交換器115の脱着ガス出口チャンバー115Dには熱交換器凝縮液ライン118が連結されている。熱交換器凝縮液ライン118はセパレータ113に連結されている。熱交換器115のチューブ115Bで熱交換を終えた脱着ガスは、未凝縮の脱着ガスと凝縮した凝縮液とに分離され、脱着ガス出口チャンバー115Dに供給される。脱着ガス出口チャンバー115Dに供給された脱着ガスの凝縮液は熱交換器凝縮液ライン118を通じてセパレータ113に直接供給される。熱交換器115の凝縮液をコンデンサに通さないことで、コンデンサで使用される冷却水の水量を削減することができる。 A heat exchanger condensate line 118 is connected to the desorption gas outlet chamber 115D of the heat exchanger 115. The heat exchanger condensate line 118 is connected to the separator 113. After completing heat exchange in the tube 115B of the heat exchanger 115, the desorption gas is separated into uncondensed desorption gas and condensed condensate, and supplied to the desorption gas outlet chamber 115D. The condensate of the desorption gas supplied to the desorption gas outlet chamber 115D is supplied directly to the separator 113 through the heat exchanger condensate line 118. By not passing the condensate of the heat exchanger 115 through the condenser, the amount of cooling water used in the condenser can be reduced.
 コンデンサ111の気相部分及びセパレータ113の気相部分には、戻りガスライン114が連結されている。戻りガスライン114は、被処理ガスライン101に導入されている。戻りガスライン114から被処理ガスライン101に返送されるガスは、被処理ガスIの流れ方向に対して、対抗流となるように導入されるとよい。 A return gas line 114 is connected to the gas phase portion of the condenser 111 and the gas phase portion of the separator 113. The return gas line 114 is introduced into the treated gas line 101. The gas returned from the return gas line 114 to the treated gas line 101 is preferably introduced so as to flow in a counter flow direction to the flow direction of the treated gas I.
 被処理ガスライン101には、被処理ガス送風機102が設けられている。被処理ガス送風機102で送り出される被処理ガスIは、被処理ガス導入ライン103を通じて、第1処理槽104A及び第2処理槽104Bに送り込まれる。 The treated gas line 101 is provided with a treated gas blower 102. The treated gas I delivered by the treated gas blower 102 is sent through the treated gas introduction line 103 to the first treatment tank 104A and the second treatment tank 104B.
 スチームコンプレッサー122の吐出水蒸気、すなわち脱着用水蒸気は、脱着用水蒸気ライン108を通じて、第1処理槽104A及び第2処理槽104Bに供給される。第1処理槽104Aには、脱着用水蒸気ライン108が連結し、脱着用水蒸気ライン108には、第1水蒸気開閉弁V1が設けられている。第2処理槽104Bには、脱着用水蒸気ライン108が連結し、脱着用水蒸気ライン108には、第2水蒸気開閉弁V2が設けられている。 The discharged water vapor from the steam compressor 122, i.e., the desorption water vapor, is supplied to the first treatment tank 104A and the second treatment tank 104B through the desorption water vapor line 108. The desorption water vapor line 108 is connected to the first treatment tank 104A, and the desorption water vapor line 108 is provided with a first water vapor on-off valve V1. The desorption water vapor line 108 is connected to the second treatment tank 104B, and the desorption water vapor line 108 is provided with a second water vapor on-off valve V2.
 上記構成を有する有機溶剤回収装置100において、第1自動上ダンパ106A、第2自動上ダンパ106B、第1自動下ダンパ107A、第2自動下ダンパ107B、第1水蒸気開閉弁V1、第2水蒸気開閉弁V2、熱交換器115、スチームコンプレッサー122、コンデンサ111、セパレータ113、及び、被処理ガス送風機102は、図示しない制御装置により、以下に示すガス処理方法を実現するように運転及び開閉が適宜制御される。 In the organic solvent recovery apparatus 100 having the above configuration, the first automatic upper damper 106A, the second automatic upper damper 106B, the first automatic lower damper 107A, the second automatic lower damper 107B, the first water vapor on-off valve V1, the second water vapor on-off valve V2, the heat exchanger 115, the steam compressor 122, the condenser 111, the separator 113, and the treated gas blower 102 are appropriately controlled in operation and opening/closing by a control device (not shown) to realize the gas treatment method described below.
 (ガス処理方法)
 上記構成を有する有機溶剤回収システム1Aを用いたガス処理方法について説明する。図1において、有機溶剤回収装置100の第1処理槽104Aは脱着工程が実施され、第2処理槽104Bは吸着工程が実施される。
(Gas Treatment Method)
A gas treatment method using the organic solvent recovery system 1A having the above configuration will be described. In Fig. 1, a first treatment tank 104A of an organic solvent recovery apparatus 100 performs a desorption process, and a second treatment tank 104B performs an adsorption process.
(第2処理槽104Bの吸着工程)
 有機溶剤含有ガスを含んだ被処理ガスIは、被処理ガスライン101から、被処理ガス送風機102にて吸着工程となっている第2処理槽104Bに送られる。第2自動下ダンパ107Bは、被処理ガス導入ライン103を開放し、脱着ガスライン110を閉鎖するように制御される。
(Adsorption step in second treatment tank 104B)
The treated gas I containing an organic solvent-containing gas is sent from the treated gas line 101 to the second treatment tank 104B, which is in an adsorption process, by the treated gas blower 102. The second automatic lower damper 107B is controlled to open the treated gas inlet line 103 and close the desorption gas line 110.
 第2自動上ダンパ106Bは、第2吸着材105Bにおける被処理ガスIの流通を可能とする開状態に制御される。 The second automatic upper damper 106B is controlled to an open state that allows the gas I to flow through the second adsorbent 105B.
 第2処理槽104Bの第2吸着材105Bで有機溶剤の吸着が行なわれ、処理ガスIIとして、システム外へ導出される。脱着用水蒸気ライン108の第2水蒸気開閉弁V2は、閉状態に制御される。 The organic solvent is adsorbed in the second adsorbent 105B of the second treatment tank 104B, and the treated gas II is discharged outside the system. The second water vapor opening/closing valve V2 of the desorption water vapor line 108 is controlled to a closed state.
 (第1処理槽104Aの脱着工程)
 第1処理槽104Aには被処理ガスIを送ることはなく、第1自動下ダンパ107Aで、被処理ガス導入ライン103は閉鎖され、脱着ガスライン110が開放された状態に制御される。第1自動下ダンパ107Aは、第1吸着材105Aの外側から内側へのガスの流通が閉鎖される。脱着用水蒸気が、脱着用水蒸気ライン108を通じて、第1吸着材105Aの内側から外側への流通を可能に導入される。脱着用水蒸気ライン108の第1水蒸気開閉弁V1は、開状態に制御される。
(Desorption process of first treatment tank 104A)
The gas I to be treated is not sent to the first treatment tank 104A, and the first automatic lower damper 107A controls the gas to be treated introduction line 103 to be closed and the desorption gas line 110 to be open. The first automatic lower damper 107A blocks the flow of gas from the outside to the inside of the first adsorbent 105A. The water vapor for desorption is introduced through the water vapor line 108 for desorption so as to be able to flow from the inside to the outside of the first adsorbent 105A. The first water vapor on-off valve V1 of the water vapor line 108 for desorption is controlled to be open.
 脱着用水蒸気は水蒸気VIIIと再生水蒸気とがスチームコンプレッサー122で混合されて生成される。水蒸気VIIIは水蒸気Vの一部である。スチームコンプレッサー122はスチームコンプレッサー用水蒸気ライン121を通じて供給される水蒸気VIIIを駆動源とし、再生水蒸気ライン119を通じて減圧状態にした再生水蒸気を吸込み、脱着用水蒸気ライン108を通じて水蒸気VIIIと再生水蒸気とが混合された脱着用水蒸気を吐出する。  Steam for desorption is generated by mixing steam VIII and regenerated steam in the steam compressor 122. Steam VIII is a part of steam V. The steam compressor 122 is driven by steam VIII supplied through steam line 121 for the steam compressor, sucks in regenerated steam in a reduced pressure state through regenerated steam line 119, and discharges desorption steam, which is a mixture of steam VIII and regenerated steam, through steam line 108 for desorption.
 第1処理槽104A内では、脱着用水蒸気が噴出し、第1吸着材105Aに吸着された有機溶剤が、第1吸着材105Aから脱着される。 In the first treatment tank 104A, the desorption steam is ejected, and the organic solvent adsorbed to the first adsorbent 105A is desorbed from the first adsorbent 105A.
 脱着された有機溶剤と水蒸気が混合された脱着ガスは、脱着工程の前期である第1脱着工程と後期である第2脱着工程とで動作が異なる。図2は、図1に示す実施の形態1の有機溶剤回収装置100の吸着工程及び脱着工程の時間的な切り替わりを示すタイムチャートである。 The desorption gas, which is a mixture of the desorbed organic solvent and water vapor, behaves differently in the first desorption process, which is the early stage of the desorption process, and the second desorption process, which is the later stage. Figure 2 is a time chart showing the time-dependent switching between the adsorption process and the desorption process of the organic solvent recovery device 100 of embodiment 1 shown in Figure 1.
(第1処理槽104Aの第1脱着工程)
 第1処理槽104Aの第1脱着工程(すなわち、図2に示すt0~t1の間)においては、三方式の開閉バルブV3を操作することによって、脱着ガスがコンデンサライン116を通じてコンデンサ111に供給される。
(First Desorption Step of First Treatment Tank 104A)
In the first desorption step of the first treatment tank 104A (i.e., between t0 and t1 shown in FIG. 2), the desorbed gas is supplied to the condenser 111 through the condenser line 116 by operating the three-way opening/closing valve V3.
 コンデンサ111の内部では、脱着ガスと冷却水との熱交換が行われ、脱着ガスが冷却凝縮される。コンデンサ111で凝縮した脱着ガスの凝縮液はコンデンサ凝縮液ライン112を通じてセパレータ113に供給される。セパレータ113において、回収溶剤113Aの層と分離排水113Bの層とに分離する。 Inside the condenser 111, heat exchange takes place between the desorbed gas and the cooling water, and the desorbed gas is cooled and condensed. The condensate of the desorbed gas condensed in the condenser 111 is supplied to the separator 113 through the condenser condensate line 112. In the separator 113, it is separated into a layer of recovered solvent 113A and a layer of separated wastewater 113B.
(第1処理槽104Aの第2脱着工程)
 第1処理槽104Aの第2脱着工程(すなわち、図2に示すt1~t2の間)においては、三方式の開閉バルブV3を操作することによって、脱着ガスが脱着ガスライン110を通って熱交換器115へ送られる。
(Second Desorption Step of First Treatment Tank 104A)
During the second desorption step of the first treatment tank 104A (i.e., between t1 and t2 shown in FIG. 2), the desorbed gas is sent to the heat exchanger 115 through the desorbed gas line 110 by operating the three-way opening and closing valve V3.
 脱着ガスは熱交換器115のチューブ側へ供給され、熱交換器115のシェル側に滞留している補給水VIと熱交換される。具体的に、伝熱面を通じて補給水VIを間接加熱する。 The desorbed gas is supplied to the tube side of the heat exchanger 115 and exchanges heat with the make-up water VI that is retained on the shell side of the heat exchanger 115. Specifically, the make-up water VI is indirectly heated through the heat transfer surface.
 熱交換器115で補給水VIとの熱交換を終えた脱着ガスは、未凝縮の脱着ガスと凝縮した凝縮液とに分離される。未凝縮の脱着ガスは熱交換器出口ガスライン117を通じてコンデンサ111に供給される。コンデンサ111の内部では、脱着ガスと冷却水との熱交換が行われ、脱着ガスが冷却凝縮される。一方、熱交換器115で凝縮した脱着ガスの凝縮液は熱交換器凝縮液ライン118を通じてセパレータ113に供給される。 After the desorption gas has completed heat exchange with makeup water VI in heat exchanger 115, it is separated into uncondensed desorption gas and condensed condensate. The uncondensed desorption gas is supplied to condenser 111 through heat exchanger outlet gas line 117. Inside condenser 111, heat exchange occurs between the desorption gas and cooling water, and the desorption gas is cooled and condensed. Meanwhile, the condensate of the desorption gas condensed in heat exchanger 115 is supplied to separator 113 through heat exchanger condensate line 118.
 コンデンサ111で凝縮した脱着ガスの凝縮液はコンデンサ凝縮液ライン112を通じてセパレータ113に供給される。セパレータ113において、回収溶剤113Aの層と分離排水113Bの層とに分離する。 The condensate of the desorbed gas condensed in the condenser 111 is supplied to the separator 113 through the condenser condensate line 112. In the separator 113, it is separated into a layer of recovered solvent 113A and a layer of separated wastewater 113B.
 第1脱着工程と第2脱着工程において、コンデンサ111及びセパレータ113内に滞留している戻りガスは、脱着ガスによって押し出され、戻りガスライン114を通って被処理ガスライン101に導入され、被処理ガスIに混合される。被処理ガスライン101から導入される被処理ガスI及び戻りガスは、第2処理槽104Bに送られる。 In the first and second desorption steps, the return gas remaining in the condenser 111 and separator 113 is pushed out by the desorbed gas and introduced into the treated gas line 101 through the return gas line 114, where it is mixed with the treated gas I. The treated gas I and the return gas introduced from the treated gas line 101 are sent to the second treatment tank 104B.
 第2脱着工程では熱交換器115のシェル側では脱着ガスがチューブ側に供給されるため、補給水VIの蒸発により水蒸気が発生する。一方で第1脱着工程では脱着ガス入口チャンバー115Cに、熱交換器用水蒸気供給ライン120を通じて水蒸気Vの一部である水蒸気VIIを供給することで、水蒸気VIIによって補給水VIの蒸発によって水蒸気が発生する。補給水VIの蒸発により発生した水蒸気と水蒸気VIIとが混合した再生水蒸気が再生水蒸気ライン119を通じてスチームコンプレッサー122に吸い込まれる。水蒸気VIIの供給によって、補給水VIの蒸発量が変動する場合においてもスチームコンプレッサー122に吸い込まれる再生水蒸気の流量が不足することなく、第1処理槽104Aの脱着工程が効率よく行われる。 In the second desorption step, the desorption gas is supplied to the tube side of the heat exchanger 115 on the shell side, so that water vapor is generated by the evaporation of makeup water VI. On the other hand, in the first desorption step, water vapor VII, which is a part of water vapor V, is supplied to the desorption gas inlet chamber 115C through the heat exchanger water vapor supply line 120, and water vapor is generated by the evaporation of makeup water VI by the water vapor VII. Regenerated water vapor, which is a mixture of water vapor generated by the evaporation of makeup water VI and water vapor VII, is sucked into the steam compressor 122 through the regenerated water vapor line 119. By supplying water vapor VII, the flow rate of the regenerated water vapor sucked into the steam compressor 122 is not insufficient even when the evaporation amount of makeup water VI fluctuates, and the desorption step of the first treatment tank 104A is efficiently performed.
 第1脱着工程において第1処理槽104Aに供給された脱着用水蒸気の熱は第1吸着材105Aや第1処理槽104A本体、第1自動上ダンパ106A、第1自動下ダンパ107A、及び各配管ラインの加熱に多く消費されるため、第1処理槽104Aから排出される脱着ガスの温度は低くなる。そのため、第1脱着工程において熱交換器115の脱着ガス入口チャンバー115Cに水蒸気VIIを供給し、第1処理槽104Aから排出される脱着ガスが高温の状態(70~120℃程度)になる第2脱着工程に熱交換器115の脱着ガス入口チャンバーに水蒸気VIIを供給しないように制御すれば、脱着工程の前期の再生水蒸気の流量を十分確保できる上に水蒸気VIIの使用量を削減できるため、好ましい。 The heat of the desorption steam supplied to the first treatment tank 104A in the first desorption step is consumed in large amounts to heat the first adsorbent 105A, the first treatment tank 104A body, the first automatic upper damper 106A, the first automatic lower damper 107A, and each piping line, so the temperature of the desorption gas discharged from the first treatment tank 104A is low. Therefore, if steam VII is supplied to the desorption gas inlet chamber 115C of the heat exchanger 115 in the first desorption step and controlled so that steam VII is not supplied to the desorption gas inlet chamber of the heat exchanger 115 in the second desorption step, in which the desorption gas discharged from the first treatment tank 104A becomes high temperature (about 70 to 120°C), it is preferable because this ensures a sufficient flow rate of regenerated steam in the early stage of the desorption step and reduces the amount of steam VII used.
 第1脱着工程から第2脱着工程へ切り替えるタイミングは、第1脱着工程において処理槽から排出される脱着ガスの温度が高温の状態に達するまでの時間をあらかじめ測定しておいて決定すればよい。また、外気温の変動等により処理槽から排出される脱着ガスの温度が高温の状態に達するまでの時間が変動する場合は、処理槽から排出される脱着ガスの温度を測定する温度センサーを設け、温度センサーで検出された脱着ガスの温度が高温の状態に達した時点で自動的に第1脱着工程から第2脱着工程へ切り替えるように制御してもよい。 The timing for switching from the first desorption process to the second desorption process may be determined by measuring in advance the time it takes for the temperature of the desorption gas discharged from the treatment tank to reach a high temperature in the first desorption process. In addition, if the time it takes for the temperature of the desorption gas discharged from the treatment tank to reach a high temperature varies due to fluctuations in outside air temperature, etc., a temperature sensor may be provided to measure the temperature of the desorption gas discharged from the treatment tank, and the process may be controlled to automatically switch from the first desorption process to the second desorption process when the temperature of the desorption gas detected by the temperature sensor reaches a high temperature.
 また第一脱着工程において、水蒸気VIIを脱着ガス入口チャンバー115Cに供給することで、熱交換器で凝縮した水蒸気VIIは水となって熱交換器115のチューブ115B内を流れるため、脱着ガスの凝縮水に含まれる腐食性のある有機溶剤の分解物を洗い流す/希釈することで、凝縮水の腐食性を低減することができ、熱交換器115が高寿命化する。 In addition, in the first desorption step, by supplying water vapor VII to the desorption gas inlet chamber 115C, the water vapor VII condensed in the heat exchanger becomes water and flows through the tube 115B of the heat exchanger 115. This washes away/dilutes the decomposition products of corrosive organic solvents contained in the condensed water of the desorption gas, thereby reducing the corrosiveness of the condensed water and extending the life of the heat exchanger 115.
 一定時間が経過すると吸着工程と脱着工程が切り替わり、第1処理槽104Aが吸着工程、第2処理槽104Bが脱着工程となる。このように、吸着工程と脱着工程を交互に行なわれる連続的な処理により、有機溶剤回収装置100によって、連続的に回収溶剤113Aが回収される。 After a certain period of time has passed, the adsorption process and the desorption process are switched over, with the first treatment tank 104A performing the adsorption process and the second treatment tank 104B performing the desorption process. In this way, the organic solvent recovery device 100 continuously recovers the recovered solvent 113A through continuous processing in which the adsorption process and the desorption process are alternately performed.
 [実施の形態2]
 図3を参照して、実施の形態2の有機溶剤回収システムについて説明する。図3は、実施の形態2の有機溶剤回収システム1Bの構成を示す図である。
[Embodiment 2]
An organic solvent recovery system according to the second embodiment will be described with reference to Fig. 3. Fig. 3 is a diagram showing the configuration of an organic solvent recovery system 1B according to the second embodiment.
 実施の形態2の有機溶剤回収システム1Bの基本的構成は、上記実施の形態1で説明した有機溶剤回収システム1Aと同じである。相違点として、実施の形態2の有機溶剤回収システム1Bは、補給水収容部115Eに、熱交換器115内の補給水VIの温度を測定する温度測定部である温度センサー115Hが設けられている。 The basic configuration of the organic solvent recovery system 1B of the second embodiment is the same as that of the organic solvent recovery system 1A described in the first embodiment above. The difference is that the organic solvent recovery system 1B of the second embodiment is provided with a temperature sensor 115H, which is a temperature measurement unit that measures the temperature of the makeup water VI in the heat exchanger 115, in the makeup water storage unit 115E.
 具体的に、制御部115Gは温度センサー115Hで検出される補給水収容部115Eの補給水VIの温度が所定範囲(70℃~97℃程度)に維持されるように、調整バルブV4の開度を調整して水蒸気VIIを供給する。 Specifically, the control unit 115G adjusts the opening of the adjustment valve V4 to supply water vapor VII so that the temperature of the make-up water VI in the make-up water storage unit 115E detected by the temperature sensor 115H is maintained within a predetermined range (approximately 70°C to 97°C).
 実施の形態2の有機溶剤回収システム1B構成によっても、上記実施の形態1における有機溶剤回収システム1Aと同様の作用効果を得ることができる。 The organic solvent recovery system 1B configuration of the second embodiment can achieve the same effects as the organic solvent recovery system 1A of the first embodiment.
 上記で開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed above should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 上記開示における有機溶剤回収装置100においては、処理槽として、第1処理槽104A及び第2処理槽104Bを用いて、吸着工程と脱着工程を交互に行なう有機溶剤の回収処理について説明したが、この2つの処理槽を用いる有機溶剤回収処理に限定されるものではなく、処理槽は3槽以上あってもよい。 In the organic solvent recovery device 100 disclosed above, the organic solvent recovery process is described as using a first treatment tank 104A and a second treatment tank 104B as treatment tanks, and alternately performing an adsorption process and a desorption process. However, the organic solvent recovery process is not limited to using these two treatment tanks, and there may be three or more treatment tanks.
 本発明により、省エネルギーで有機溶剤の回収効率が向上しつつ、水蒸気を発生させる機構が腐食されるのを低減する有機溶剤回収システムを提供することが可能となり、産業界へ大いに貢献できる。 The present invention makes it possible to provide an organic solvent recovery system that is energy-efficient and improves the efficiency of organic solvent recovery while reducing corrosion of the mechanism that generates water vapor, making a significant contribution to the industrial world.
1A,1B 有機溶剤回収システム、100 有機溶剤回収装置、101 被処理ガスライン、102 被処理ガス送風機、103 被処理ガス導入ライン、104A 第1処理槽、104B 第2処理槽、105A 第1吸着材、105B 第2吸着材、106A 第1自動上ダンパ、106B 第2自動上ダンパ、107A 第1自動下ダンパ、107B 第2自動下ダンパ、108 脱着用水蒸気ライン、110 脱着ガスライン、111 コンデンサ(冷却部)、112 コンデンサ凝縮液ライン、113 セパレータ(凝縮液溜部)、113A 回収溶剤、113B 分離排水、114 戻りガスライン、115 熱交換器、115A シェル(吸熱部、容器部)、115B チューブ(発熱部、管部)、115C 脱着ガス入口チャンバー、115D 脱着ガス出口チャンバー(脱着ガス出口受部)、115E 補給水収容部、115F 圧力センサー(圧力測定部)、115G 制御部、115H 温度センサー(温度測定部)、116 コンデンサライン、117 熱交換器出口ガスライン、118 熱交換器凝縮液ライン、119 再生水蒸気ライン、120 熱交換器用水蒸気供給ライン(水蒸気供給部)、121 スチームコンプレッサー用水蒸気ライン、122 スチームコンプレッサー、V1 第1水蒸気開閉弁、V2 第2水蒸気開閉弁、V3 開閉バルブ、V4 調整バルブ、I 被処理ガス、II 処理ガス、III 回収溶剤、IV 分離排水、V,VII,VIII 水蒸気、VI 補給水 1A, 1B organic solvent recovery system, 100 organic solvent recovery device, 101 treated gas line, 102 treated gas blower, 103 treated gas introduction line, 104A first treatment tank, 104B second treatment tank, 105A first adsorbent, 105B second adsorbent, 106A first automatic upper damper, 106B second automatic upper damper, 107A first automatic lower damper, 107B second automatic lower damper, 108 desorption water vapor line, 110 desorption gas line, 111 condenser (cooling section), 112 condenser condensate line, 113 separator (condensate reservoir section), 113A recovered solvent, 113B separated wastewater, 114 return gas line, 115 heat exchanger, 115A shell (heat absorbing section, container section), 115B tube (heat generating section, tube section) , 115C Desorption gas inlet chamber, 115D Desorption gas outlet chamber (Desorption gas outlet receiving part), 115E Make-up water storage part, 115F Pressure sensor (Pressure measurement part), 115G Control part, 115H Temperature sensor (Temperature measurement part), 116 Condenser line, 117 Heat exchanger outlet gas line, 118 Heat exchanger condensate line, 119 Regenerated steam line, 120 Steam supply line for heat exchanger (Steam supply part), 121 Steam line for steam compressor, 122 Steam compressor, V1 First steam on-off valve, V2 Second steam on-off valve, V3 On-off valve, V4 Adjustment valve, I Gas to be treated, II Treated gas, III Recovered solvent, IV Separated wastewater, V, VII, VIII Steam, VI Make-up water

Claims (7)

  1.  有機溶剤を含有する被処理ガスから有機溶剤を吸着除去する吸着材が収容された処理槽を備え、前記処理槽に供給された前記被処理ガスを前記吸着材に接触させて処理ガスを排出する吸着処理と、前記処理槽に供給された脱着用水蒸気により前記吸着材から前記有機溶剤を脱着して脱着ガスを排出する脱着処理とを繰り返す有機溶剤回収装置と、
     前記有機溶剤回収装置から排出された前記脱着ガスが通過する発熱部と、補給水が供給される吸熱部とを有し、当該発熱部を通過する前記脱着ガスにて、当該吸熱部の補給水を間接加熱して水蒸気を発生させ、間接加熱後の前記脱着ガスを排出する熱交換器と、
     前記熱交換器から排出された前記脱着ガスを冷却して凝縮液を排出する冷却部と、を備えた有機溶剤回収システムであって、
     前記熱交換器の前記発熱部に水蒸気を供給する水蒸気供給部を備え、
     前記熱交換器は、前記補給水から発生した水蒸気を、前記脱着用水蒸気の少なくとも一部として前記有機溶剤回収装置に供給する、有機溶剤回収システム。
    an organic solvent recovery apparatus including a treatment tank containing an adsorbent that adsorbs and removes an organic solvent from a gas to be treated that contains the organic solvent, and repeats an adsorption process in which the gas to be treated that is supplied to the treatment tank is brought into contact with the adsorbent to discharge a treated gas, and a desorption process in which the organic solvent is desorbed from the adsorbent by a desorption steam supplied to the treatment tank and a desorbed gas is discharged;
    a heat exchanger including a heat generating section through which the desorption gas discharged from the organic solvent recovery apparatus passes and a heat absorbing section to which makeup water is supplied, the heat exchanger indirectly heating the makeup water in the heat absorbing section with the desorption gas passing through the heat generating section to generate steam, and discharging the indirectly heated desorption gas;
    a cooling unit that cools the desorption gas discharged from the heat exchanger and discharges a condensate,
    a water vapor supply unit that supplies water vapor to the heat generating unit of the heat exchanger,
    the heat exchanger supplies the water vapor generated from the make-up water to the organic solvent recovery device as at least a part of the water vapor for desorption.
  2.  前記熱交換器の前記吸熱部の気相部分の圧力を測定する圧力測定部を備え、当該圧力測定部の測定結果により前記発熱部に供給する水蒸気の流量を制御する、請求項1に記載の有機溶剤回収システム。 The organic solvent recovery system according to claim 1, further comprising a pressure measuring unit that measures the pressure of the gas phase of the heat absorbing unit of the heat exchanger, and controls the flow rate of the water vapor supplied to the heat generating unit based on the measurement results of the pressure measuring unit.
  3.  前記熱交換器の前記吸熱部の液相部分の温度を測定する温度測定部を備え、当該温度測定部の測定結果により前記発熱部に供給する水蒸気の流量を制御する、請求項1に記載の有機溶剤回収システム。 The organic solvent recovery system according to claim 1, further comprising a temperature measuring unit that measures the temperature of the liquid phase of the heat absorbing unit of the heat exchanger, and controls the flow rate of the water vapor supplied to the heat generating unit based on the measurement result of the temperature measuring unit.
  4.  前記処理槽から排出される前記脱着ガスを前記熱交換器に供給する経路と、
     前記処理槽から排出される前記脱着ガスを前記冷却部に供給する経路と、を備え、
     前記脱着処理の前期において、前記熱交換器の前記発熱部に水蒸気を供給するとともに、前記冷却部に前記処理槽から排出される前記脱着ガスを供給し、
     前記吸着処理の後期において、前記熱交換器の前記発熱部に前記脱着ガスを供給するとともに、前記冷却部に前記発熱部を通過した後の前記脱着ガスを供給する、請求項1から3のいずれか1に記載の有機溶剤回収装置。
    a path for supplying the desorption gas discharged from the treatment tank to the heat exchanger;
    a passage for supplying the desorption gas discharged from the treatment tank to the cooling section,
    In the early stage of the desorption treatment, water vapor is supplied to the heat generating section of the heat exchanger, and the desorbed gas discharged from the treatment tank is supplied to the cooling section;
    4. The organic solvent recovery apparatus according to claim 1, wherein, in a later stage of the adsorption treatment, the desorption gas is supplied to the heat generating section of the heat exchanger, and the desorption gas after passing through the heat generating section is supplied to the cooling section.
  5.  前記有機溶剤回収装置は、前記冷却部から排出される凝縮液を溜める凝縮液溜部を備え、
     前記熱交換器は、間接加熱した後の前記脱着ガスが滞留する脱着ガス出口受部と、当該脱着ガス出口受部から未凝縮の前記脱着ガスを前記冷却部に供給する配管経路と、当該脱着ガス出口受部から凝縮液となった前記脱着ガスを前記凝縮液溜部に供給する配管経路と、を備える、請求項1から3のいずれか1に記載の有機溶剤回収システム。
    the organic solvent recovery apparatus includes a condensate reservoir that accumulates the condensate discharged from the cooling unit,
    4. The organic solvent recovery system according to claim 1, wherein the heat exchanger comprises: a desorbed gas outlet receiving portion in which the desorbed gas after indirect heating accumulates; a piping path for supplying the uncondensed desorbed gas from the desorbed gas outlet receiving portion to the cooling portion; and a piping path for supplying the desorbed gas that has become a condensed liquid from the desorbed gas outlet receiving portion to the condensed liquid reservoir portion.
  6.  前記熱交換器は、前記吸熱部である容器部の内部に前記発熱部である管部を備えた多管式熱交換器である、請求項1から3のいずれか1に記載の有機溶剤回収システム。 The organic solvent recovery system according to any one of claims 1 to 3, wherein the heat exchanger is a multi-tube heat exchanger having a tube section, which is the heat generating section, inside a container section, which is the heat absorbing section.
  7.  前記水蒸気供給部は、前記有機溶剤回収装置に前記脱着用水蒸気を直接供給する脱着用水蒸気供給部と接続している又は兼用されている、請求項1から3のいずれか1に記載の有機溶剤回収システム。 The organic solvent recovery system according to any one of claims 1 to 3, wherein the water vapor supply unit is connected to or shared with a desorption water vapor supply unit that directly supplies the desorption water vapor to the organic solvent recovery device.
PCT/JP2023/034492 2022-09-30 2023-09-22 Organic solvent recovery system WO2024070945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158207 2022-09-30
JP2022158207 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070945A1 true WO2024070945A1 (en) 2024-04-04

Family

ID=90477776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034492 WO2024070945A1 (en) 2022-09-30 2023-09-22 Organic solvent recovery system

Country Status (1)

Country Link
WO (1) WO2024070945A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149378A (en) * 1978-05-12 1979-11-22 Boewe Boehler & Weber Kg Masch Method and apparatus for regenerating adsorbent
JPS58171221U (en) * 1982-05-08 1983-11-15 熱工技術株式会社 Activated carbon desorption device
JPS59115724A (en) * 1982-12-24 1984-07-04 Nittetsu Kakoki Kk Cooling method of adsorption tank using activated carbon
JPS62221418A (en) * 1986-03-24 1987-09-29 トレトマン・ド・ガ−ズ・エ・ジエニ・エンデユストリエル Method and apparatus for regenerating solvent adsorbed activated carbon
JPS6341702A (en) * 1986-08-06 1988-02-23 三菱重工業株式会社 Steam regenerating facility
JPS6425320U (en) * 1987-08-06 1989-02-13
JP2009072671A (en) * 2007-09-19 2009-04-09 Tsukishima Kankyo Engineering Ltd Gas treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149378A (en) * 1978-05-12 1979-11-22 Boewe Boehler & Weber Kg Masch Method and apparatus for regenerating adsorbent
JPS58171221U (en) * 1982-05-08 1983-11-15 熱工技術株式会社 Activated carbon desorption device
JPS59115724A (en) * 1982-12-24 1984-07-04 Nittetsu Kakoki Kk Cooling method of adsorption tank using activated carbon
JPS62221418A (en) * 1986-03-24 1987-09-29 トレトマン・ド・ガ−ズ・エ・ジエニ・エンデユストリエル Method and apparatus for regenerating solvent adsorbed activated carbon
JPS6341702A (en) * 1986-08-06 1988-02-23 三菱重工業株式会社 Steam regenerating facility
JPS6425320U (en) * 1987-08-06 1989-02-13
JP2009072671A (en) * 2007-09-19 2009-04-09 Tsukishima Kankyo Engineering Ltd Gas treatment method

Similar Documents

Publication Publication Date Title
JP4927092B2 (en) System and method for managing moisture content in fluid
CN102119050B (en) The purification of air-flow
JP6568114B2 (en) Solid-liquid separator
RU2580319C2 (en) Regeneration of kinetic hydrate-formation inhibitor
JPH01151921A (en) Recovery of desorbed substance at time of desorption of loaded sorbed material
WO2024070945A1 (en) Organic solvent recovery system
KR20130058839A (en) Apparatus for treatment wastewater
KR102202900B1 (en) Apparatus for recovery of volatile organic compounds and method for recovery of volatile organic compounds
KR101146557B1 (en) Co? collecting apparatus
WO2024070944A1 (en) Organic solvent recovery system
WO2016143848A1 (en) Fresh water-generating apparatus
CN212327833U (en) Recovery device and recovery system
KR20020010384A (en) Method and equipment for continuous vacuum thermal regeneration of adsorbent and recovery of adsorbate
KR100635283B1 (en) VENT GAS ABSORPTION SYSTEM AND METHOD FOR RECOVERY VOCs
RU2004125472A (en) METHOD FOR COLLECTING AND RECOVERING VAPORS OF HYDROCARBONS AND OTHER EASY-BOILING SUBSTANCES FROM STEAM-GAS MIXTURES AND DEVICE FOR ITS IMPLEMENTATION
CN211070117U (en) Device for regenerating adsorbent and recovering organic compound by utilizing hot nitrogen
CN211660014U (en) Refining device and recovery refining system
CN211302563U (en) Oil gas treatment system
JP2011092871A (en) Organic solvent recovery system
JP2015160183A (en) Method and device of recovering adsorbed volatile organic compound
JP6740818B2 (en) Organic solvent recovery system
JPH07284623A (en) Method for treating and recovering concentrated gaseous hydrocarbon contained in discharged gas
JP6765921B2 (en) Water treatment equipment, water treatment system and water treatment method
RU2624160C1 (en) Method and installation for purifying natural gas from carbon dioxide and hydrogen sulphide
RU95550U1 (en) INSTALLING GLYCOL REGENERATION