JPH01151921A - Recovery of desorbed substance at time of desorption of loaded sorbed material - Google Patents

Recovery of desorbed substance at time of desorption of loaded sorbed material

Info

Publication number
JPH01151921A
JPH01151921A JP63274643A JP27464388A JPH01151921A JP H01151921 A JPH01151921 A JP H01151921A JP 63274643 A JP63274643 A JP 63274643A JP 27464388 A JP27464388 A JP 27464388A JP H01151921 A JPH01151921 A JP H01151921A
Authority
JP
Japan
Prior art keywords
desorbate
desorption
gas
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274643A
Other languages
Japanese (ja)
Inventor
Reinhold Peinze
ラインホールト・パインツエ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REKUPERATOR KG DR ING SCHACK AND CO
Original Assignee
REKUPERATOR KG DR ING SCHACK AND CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REKUPERATOR KG DR ING SCHACK AND CO filed Critical REKUPERATOR KG DR ING SCHACK AND CO
Publication of JPH01151921A publication Critical patent/JPH01151921A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • B01D5/003Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium within column(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0081Feeding the steam or the vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To efficiently recover desorbate regardless of the kind of the desorbate by supplying a desorbate-contg. desorption gas flowing out of a sorption material to a direct heat exchanger, cooling this gas and supercooling the generated liquid desorbate, then circulating this desorbate to the heat exchanger. CONSTITUTION: The desorption gas is sent by a fan 6 to desorption apparatus 1, 1' where the solvent desorbed therein is desorbed. This desorbate-contg. desorption gas is sent to the direct heat exchanger 8 where the gas is brought into contact with the desorbate recovered from a cooling tank 11 and is cooled to a condensation temp. or below and the desorbate is liquefied. The resultant recovered desorbate is sent through a storage tank 10 to the cooling tank 11 where the desorbate is supercooled by the refrigerants of evaporators 4, 2 of a heat pump. The supercooled desorbate is circulated again to the direct heat exchanger 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負荷されている収着材料の脱着で生じる脱着
質を、収着材料中に流入する前に加熱されかつ収着材料
から流出した後で冷却される、循環案内される脱着ガス
により回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for treating the desorbate resulting from the desorption of a loaded sorbent material by heating it before flowing into the sorbent material and after leaving the sorbent material. It relates to a method of recovery using a desorption gas that is cooled by a desorption gas that is guided in circulation.

従来の技術 負荷されている収着材料から駆出された脱着質を回収す
る際に、脱着質は凝縮により回収される。その際に凝縮
するに当り、脱着室含有脱着ガス自体が液化され、収着
剤を水蒸気で1蒸発“させる場合がそれに該当し、その
際に水蒸気及び水蒸気と一緒に脱着質が後接続の冷却機
中で液化する。脱着ガスとして永久ガスを使用する場合
、脱着質含有脱着ガスを少なくとも脱着質の凝縮温度よ
り低温に冷却し、その際に脱着質は液状形で生じる。そ
の際に、冷却するに当っては、内壁が冷媒で必要な凝縮
温度にもたらされている間接的な熱交換器を使用する。
Conventional techniques In recovering the expelled desorbate from the loaded sorbent material, the desorbate is recovered by condensation. When condensing at that time, the desorption gas itself contained in the desorption chamber is liquefied, and the sorbent is evaporated with water vapor. When a permanent gas is used as the desorption gas, the desorption gas containing the desorption substance is cooled to at least a temperature lower than the condensation temperature of the desorption substance, with the desorption substance occurring in liquid form. In doing so, indirect heat exchangers are used, the inner walls of which are brought to the required condensing temperature with the refrigerant.

−般に、脱着質は冷却されている壁で液化し、落下しか
つ排出することができる。西ドイツ国特許第32013
90号明細書には、この種の方法が記載されており、更
に該方法では、脱着質含有脱着ガスの冷却の際にそのガ
スから放出される熱を、脱着ガスを加熱するために、ガ
スが脱着されるべき収着材料中に流入する前にその脱着
ガスに供給し、それ故脱着のために有効利用され、つま
り閉じている熱循環系を備えた熱ポンプ装置を用い、そ
の際に熱ポンプ装置の蒸発器は脱着質含有脱着ガスの冷
却機、それ故脱着質の凝縮機として接続されておりかつ
熱ポンプ装置の液化装置は熱を、収着材料に流入する脱
着ガスに供給する熱交換器として接続されている。この
種の熱ポンプ装置により、外部から供給されるエネルゼ
ー分を(与えるべき脱着エネルギーで測定)を明らかに
低下させることができ、それ故この方法を特に経済的に
実施することができる。
- Generally, the desorbate liquefies on the wall being cooled and can fall and be discharged. West German Patent No. 32013
No. 90 describes a method of this type, in which the heat released from the desorbate-containing desorption gas during cooling is transferred to the gas in order to heat the desorption gas. is supplied to the desorption gas before it enters the sorbent material to be desorbed, and is therefore effectively utilized for the desorption, i.e. using a heat pump device with a closed thermal circulation system, The evaporator of the heat pump device is connected as a cooler for the desorption gas containing desorbate and therefore as a condenser for the desorbate, and the liquefaction device of the heat pump device supplies heat to the desorption gas flowing into the sorbent material. Connected as a heat exchanger. With a heat pump arrangement of this type, the externally supplied energy content (measured in terms of the desorption energy to be provided) can be significantly reduced and the process can therefore be carried out particularly economically.

この種の冷却では、高温沸騰有機物質を脱着する際に困
難が生じ、それは凝縮温度より低温に冷却した面近くに
、該当する物質の冷却限界温度を下廻り、それ故過飽和
の結果として霧が発生する区域が生じることである。霧
滴は永久に脱着ガス中にとどまり、脱着ガスと一緒に再
び収着材料に供給され、その際に有機物質は熱供給区域
で蒸発し、それ故脱着ガス中で該物質の分圧は上昇する
。その結果、収着材料は十分に脱着され得ない。それと
いうのも脱着ガス中の該当する有機物質の分圧が非常に
低く保持される場合にだけ脱着されるからである。
With this type of cooling, difficulties arise in desorbing high-boiling organic substances, which are located near the surface cooled below the condensation temperature, below the cooling limit temperature of the substance in question, and hence fog formation as a result of supersaturation. This means that there will be areas where The fog droplets remain permanently in the desorption gas and are fed back to the sorption material together with the desorption gas, the organic substances evaporating in the heat supply zone and therefore increasing the partial pressure of the substances in the desorption gas. do. As a result, the sorbent material cannot be fully desorbed. This is because desorption occurs only if the partial pressure of the relevant organic substances in the desorption gas is kept very low.

易分解性有機物質(主にハロゲン化炭化水素)を脱着す
る際にも困難が生じることを考慮すべきである。この場
合の困難とは、水の存在で自触媒作用による分解を回避
するために、脱着温度を分解温度より低温に保持しなけ
ればならないという点である。自触媒作用分解によりハ
ロゲン化水素酸の発生をもたらし、これは脱着ガス循環
系で腐食による損傷をもたらす。これは特に、モレキュ
ラーシープを含有する選択的な収着装置を通して、水蒸
気の絶対含量を制限する場合に該当する。ハロゲン化炭
化水素の分解により生成し、脱着ガス中で循環案内され
るハロゲン化水素酸は装入されているモレキュラーシー
プに作用し、その水分離能力を低め、それ故脱着質循環
系中での水の量を次第に少なくするようになる。このこ
とはハロゲン化水素酸含量を高めることになり、それは
腐食作用を加速する。
It should also be taken into account that difficulties arise when desorbing easily degradable organic substances (mainly halogenated hydrocarbons). The difficulty in this case is that the desorption temperature must be kept below the decomposition temperature in order to avoid autocatalytic decomposition in the presence of water. Autocatalytic decomposition leads to the generation of hydrohalic acids, which lead to corrosive damage in the desorption gas circulation system. This is particularly the case when limiting the absolute water vapor content through selective sorption devices containing molecular sheep. The hydrohalic acids produced by the decomposition of halogenated hydrocarbons and circulated in the desorption gas act on the charged molecular sheep, reducing its water separation capacity and therefore reducing the amount of water in the desorbate circulation system. The amount of water will gradually decrease. This increases the hydrohalic acid content, which accelerates the corrosive action.

発明が解決しようとする課題 それ故、本発明は脱着質の回収をこれらの困難を回避し
ながら、高温沸騰し、霧を形成する傾向のある有機物質
に関するかどうかとは関係なくあるいは低沸点の分解傾
向のある例えばハロゲン化炭化水素に関するかどうかと
は関係な〈実施することのできる方法の展開を提案する
という課題に基づいている。
Problem to be Solved by the Invention The present invention therefore aims to improve the recovery of desorbate, while avoiding these difficulties, irrespective of whether it concerns organic substances that tend to boil at high temperatures and form fogs or that have a low boiling point. It is based on the task of proposing the development of a process that can be carried out, whether or not it concerns e.g. halogenated hydrocarbons, which tend to decompose.

課題を解決するための手段 この課題は予想外に簡単に特許請求の範囲に記載の方法
により解決される。
Means for Solving the Problem This problem is solved in a surprisingly simple manner by the method described in the claims.

本方法により、閉じている脱着ガス循環系が直接熱交換
器を介して導かれていて、この熱交換器中で脱着質の凝
縮温度より低温に冷却すべき脱着ガスを、脱着質の凝縮
温度を著しく下廻る温度に(分圧に注意しながら)過冷
却されかつ回収された脱着質と直接接触させ、それによ
り脱着ガスを冷却する。その際に、凝縮物は直接熱交換
器中で導入された液状脱着質により吸収採取される。こ
れは、低い温度差で良好な伝熱が達成される直接凝縮に
相当する。それというのも熱伝達を阻止する熱交換面が
存在していないからである。僅かな温度差の結果、鍔形
成は起らない。霧が存在しないので脱着ガス中の脱着質
の残留含量は低く、かつ脱着質の分圧は加熱後でも凝縮
温度の分圧に相当する。それ故、収着材料の効果的な脱
着が可能になる。
According to the method, a closed desorption gas circulation system is conducted directly via a heat exchanger in which the desorption gas to be cooled to a temperature below the condensation temperature of the desorption mass is cooled to a temperature below the condensation temperature of the desorption mass. is subcooled to a temperature significantly below (taking care of the partial pressure) and in direct contact with the recovered desorbate, thereby cooling the desorbed gas. In this case, the condensate is directly absorbed by the liquid desorbate introduced in the heat exchanger. This corresponds to direct condensation, where good heat transfer is achieved with low temperature differences. This is because there is no heat exchange surface to prevent heat transfer. As a result of the slight temperature difference, flange formation does not occur. Due to the absence of fog, the residual content of desorbate in the desorption gas is low and the partial pressure of the desorbate, even after heating, corresponds to the partial pressure at the condensation temperature. Effective desorption of sorbent materials is therefore possible.

低温沸騰物質では生成したハロゲン化水素酸の吸着が達
成される。液相中では回収された脱着質が、場合により
起り得るハロゲン化炭化水素の分解を回避するための手
段をこの液相中で簡単に行なえるように処理されかつ仕
上げ処理される。
Adsorption of the produced hydrohalic acid is achieved in low boiling substances. In the liquid phase, the recovered desorbate is treated and worked up in such a way that measures to avoid any possible decomposition of the halogenated hydrocarbons can be easily carried out in this liquid phase.

凝縮による直接冷却では吸収が該当するので、冷却機が
並流であるいは向流で作動されるかどうかは無関係であ
る。多量の凝縮熱の発生及びそれに関連する導入される
過冷却脱着質の著しい加熱の場合には向流式装置が有利
である。それというのもその際に脱着質の残留含量が基
本的にガス流出区域の過冷却脱着質の流入温度により決
定されるからである。
In direct cooling by condensation, absorption is relevant, so it is irrelevant whether the cooler is operated in cocurrent or countercurrent. In the case of the generation of a large amount of heat of condensation and the associated significant heating of the supercooled desorbate introduced, a countercurrent system is advantageous. This is because the residual content of desorbate is essentially determined by the inlet temperature of the supercooled desorbate in the gas exit zone.

液状脱着質の過冷却で発生する熱を再び脱着ガスに伝達
し、つまり蒸発器により液状脱着質から熱を吸収する熱
ポンプ装置を用いて行なうと有利である。熱ポンプ装置
の冷媒循環系がこの熱を液化装置に伝達し、この装置が
熱を脱着ガスに供与する。特により広い温度差を発生さ
せるべき場合にもカスケード状装置が有用であることは
明らかである。更に、脱着温度はそれが直接熱ポンプ装
置により保障されない場合には、付加的な後加熱により
得られることも明らかである。しかしながらその際にこ
の後加熱は、その熱必要量を鑑みて熱ポンプ装置により
搬送される熱量より小さく調整することができる。
This is advantageously carried out using a heat pump device, which transfers the heat generated by the subcooling of the liquid desorbate back to the desorption gas, ie absorbs the heat from the liquid desorbate by means of an evaporator. A refrigerant circuit of the heat pump device transfers this heat to the liquefaction device, which donates heat to the desorption gas. It is clear that cascaded devices are also useful, especially if wider temperature differences are to be generated. Furthermore, it is clear that the desorption temperature can be obtained by additional post-heating if this is not guaranteed by a direct heat pump device. However, taking into account the heat requirements, this subsequent heating can be adjusted to be smaller than the amount of heat delivered by the heat pump device.

直接熱交換器に供給すべき液状の脱着質の良好な過冷却
を達成するには、液状の脱着質の冷却を、脱着質を直接
熱交換器に供給するのに接続している管中で行なうと有
利である。そのためにこの管を熱交換器として構成し、
例えば蒸発器を構成する蛇管又はスリーブを取り付け、
その際に周壁が蒸発器として構成されている。
To achieve good subcooling of the liquid desorbate to be fed directly to the heat exchanger, the cooling of the liquid desorbate is carried out in the tubes connected to the direct feed of the desorbate to the heat exchanger. It is advantageous to do so. For this purpose, this tube is configured as a heat exchanger,
For example, attaching a flexible pipe or sleeve that constitutes an evaporator,
In this case, the peripheral wall is designed as an evaporator.

この装置では、液状脱着質を促進するポンプの回避し得
ない損失熱が一緒に放出される。
In this device, the unavoidable heat losses of the pump promoting the liquid desorbate are also released.

多量の凝縮熱の発生について配慮すべき場合、脱着質を
タンク中に捕集しかつこのタンク中で冷却すると有利で
あり、このために熱ポンプ装置の蒸発器をこのタンク中
に備え付ける。このようにして、脱着質から採取される
可能な限り多量の熱を有効利用する。この両方の装置を
相互に組合せることができることも明らかである。
If consideration is given to the generation of large amounts of heat of condensation, it is advantageous to collect the desorbate in a tank and to cool it in this tank, for which purpose the evaporator of the heat pump arrangement is installed in this tank. In this way, as much heat as possible extracted from the desorption material is utilized. It is also clear that both devices can be combined with each other.

本方法はハロゲン化炭化水素の分解の抑制について、直
接熱交換器中に装入される回収脱着質に酸結合剤(安定
剤又は酸受容体)を添加すると特に有利である。この種
の安定剤又は酸受容体は西Vイッ国特許公告第1084
713号明細書から公知である。有機ヒドラジン化合物
、アルコール、エポキシド及びフェノール少なくとも1
種の混合物が該当する。これらによって、ハロゲン化炭
化水素の自触媒作用分解が抑制されかつ液相中で場合に
より遊離したハロゲン化水素酸の結合が達成される。そ
れ故、これらの酸は作用を及ぼさず、従って脱着ガス中
の液状脱着質が冷却器中に滞留している間、ハロゲン化
水素酸の蒸発も阻止される。ハロゲン化炭化水素の分解
に関しては含水量が尺度となるので、脱着ガスの水分を
監視しかつそれに相応して酸結合剤の配量を行なうと有
利である。脱着ガスの水分の監視は、回収され、冷却さ
れる脱着質の水分の監視と同等である。回収された脱着
質を直接熱交換器に導入するために設けたポンプを酸結
合剤の添合に利用すると有利であり、その際に吸引側の
負圧を酸結合剤の吸引圧として利用しかつポンプの吸引
側への入口中に配量弁を設けて配量を行なう。
The process is particularly advantageous for suppressing the decomposition of halogenated hydrocarbons if an acid binder (stabilizer or acid acceptor) is added to the recovered desorbate which is directly charged into a heat exchanger. This type of stabilizer or acid acceptor is described in West V.I. Patent Publication No. 1084.
It is known from US Pat. No. 713. At least one organic hydrazine compound, alcohol, epoxide and phenol
A mixture of species is applicable. These suppress the autocatalytic decomposition of the halogenated hydrocarbons and achieve the binding of any liberated hydrohalic acids in the liquid phase. Therefore, these acids have no effect and therefore the evaporation of the hydrohalic acids is also prevented while the liquid desorbate in the desorption gas remains in the cooler. Since the moisture content is a determining factor for the decomposition of halogenated hydrocarbons, it is advantageous to monitor the moisture content of the desorption gas and meter the acid binder accordingly. Monitoring the moisture content of the desorbed gas is equivalent to monitoring the moisture content of the desorbed material that is collected and cooled. It is advantageous to use a pump provided to introduce the recovered desorbate directly into the heat exchanger for the addition of the acid binder, and in this case, the negative pressure on the suction side is used as the suction pressure for the acid binder. In addition, a metering valve is provided in the inlet to the suction side of the pump for metering.

ハロゲン化炭化水素分解を特に有効に制限するには、脱
着ガス循環系において冷却機と加熱機との間に乾燥機と
して機能する選択的な水分離用の吸着装置を接続するこ
とである。一般に、この種の吸着装置はモレキュラーシ
ープ、珪酸グル又は類縁の乾燥物質で装填されている。
A particularly effective way to limit the decomposition of halogenated hydrocarbons is to connect an adsorption device for selective water separation, which acts as a dryer, between the cooler and the heater in the desorption gas circuit. Generally, adsorption devices of this type are loaded with molecular sheep, silicate glue, or similar dry materials.

この吸着装置に不必要な負荷を与えないために、脱着ガ
ス循環系を2つの分流に分け、そのうちの一方だけが吸
着装置を通って流動し、他方の分流は吸着装置の周辺を
導かれる。ガス流の一方を調節することにより、吸着装
置の流量をほぼ0〜100%の間の所望の数値に調節す
ることができる。脱着の際にいずれの場合も初めに水分
が駆出されるので、該吸着装置が作動する作動時間は脱
着の初期段階である。従って、切換えが可能であるので
、この吸着装置が有機物質(これは後で駆出される)に
より負荷されることはない。一方の部分流の調節(これ
は第2の部分流の相対する調節をもたらす)により、乾
燥機として機能する吸着装置を流動する部分ガス流を常
に本発明による作動条件に適合させることかでき、これ
は例えば脱着ガスの含水量を監視して、それが絞り弁調
節の調節量と認められる場合である。
In order not to impose unnecessary loads on this adsorption device, the desorption gas circulation is divided into two sub-streams, only one of which flows through the adsorption device, and the other sub-stream is guided around the adsorption device. By adjusting one of the gas streams, the adsorption device flow rate can be adjusted to a desired value between approximately 0 and 100%. Since the water is first driven out in each case during desorption, the operating time during which the adsorption device is activated is the initial stage of desorption. Switching is therefore possible so that the adsorption device is not loaded with organic substances, which are subsequently pumped out. By adjusting one partial stream, which results in a corresponding adjustment of the second partial stream, the partial gas stream flowing through the adsorption device functioning as a dryer can always be adapted to the operating conditions according to the invention, This is the case, for example, if the water content of the desorbed gas is monitored and this is recognized as an adjustment variable for the throttle valve adjustment.

実施例 本方法の1つの例を次に記載する。Example One example of this method is described below.

工業プロセスから排出されかつ塩化メチル及びエタノー
ルの溶剤混合物を含有する排出空気を濾過器中で浄化す
る。該濾過器は活性炭を含有し、その量は2層中に30
00 kt存在する、排出空気は溶剤100ky/hの
量を搬送し、これはほぼ100%まで活性炭に吸着され
る。8時間シフト後には、約600〜800 kyを含
有する活性炭はほぼ飽和されておりかつ溶剤を回収する
ことができる。このために窒素を脱着ガス循環系中を4
50Kまで加熱して循環させかつ活性炭を通過させる。
The exhaust air discharged from an industrial process and containing a solvent mixture of methyl chloride and ethanol is purified in a filter. The filter contains activated carbon, the amount of which is 30% in two layers.
The exhaust air, present at 00 kt, carries a quantity of 100 k/h of solvent, which is adsorbed to almost 100% on the activated carbon. After an 8 hour shift, the activated carbon containing about 600-800 ky is nearly saturated and the solvent can be recovered. For this purpose, nitrogen is desorbed in the gas circulation system by 4
Heat to 50K, circulate and pass through activated carbon.

流出する窒素は、脱着時間が2〜3時間継続するように
370kg/hまでの量の脱着溶剤を搬送し、かつ脱着
された活性炭を冷却するのに5〜6時間で十分である。
The effluent nitrogen transports an amount of desorption solvent of up to 370 kg/h so that the desorption time lasts 2-3 hours, and 5-6 hours is sufficient to cool the desorbed activated carbon.

脱着された溶剤を含有する窒素は約300〜320Kに
再冷却されるが、この温度は溶剤の凝縮温度を上回って
いる。溶剤を再冷却するだめに、窒素を直接熱交換器中
で、その中に液体を吸込むことにより急冷する。この液
体は塩化メチルとエタノールとからの混合物であり、こ
れは初めにこの工業プロセスで使われた溶剤が混合され
たものであり、後には凝縮された脱着質である。この急
冷用液体は約265Kに過冷却されるが、この温度は脱
着された溶剤の凝縮温度より被い(即ちこれが“過冷却
“の意味である)。この冷却は、閉じている循環系熱ポ
ンプの蒸発器である熱交換器中で行なわれる。この熱ポ
ンプにより伝達される熱がより高い温度レベルにもたら
しかつこの熱を、窒素を活性炭濾過中に流入する前に加
熱あるいは前加熱するのに使用することができる。量3
70ky/h  の液状脱着質が生産量として流出する
The nitrogen containing desorbed solvent is recooled to about 300-320K, which is above the condensation temperature of the solvent. To recool the solvent, the nitrogen is directly quenched in a heat exchanger by sucking the liquid into it. This liquid is a mixture of methyl chloride and ethanol, which is a mixture of solvents initially used in the industrial process and later condensed desorbates. This quenching liquid is subcooled to about 265 K, which is above the condensation temperature of the desorbed solvent (ie, this is what is meant by "subcooled"). This cooling takes place in a heat exchanger, which is the evaporator of a closed circulation heat pump. The heat transferred by the heat pump brings it to a higher temperature level and can be used to heat or preheat the nitrogen before it enters the activated carbon filtration. Amount 3
70 ky/h of liquid desorbate flows out as a production amount.

塩化メチルの一部が加水分解して発生する塩化水素酸に
より惹起される腐食問題を抑制するために、腐食阻止剤
として水酸化ナトリウムを濃度的5 o ppmで急冷
用液体に添加する。
Sodium hydroxide is added as a corrosion inhibitor to the quench liquid at a concentration of 5 o ppm to suppress corrosion problems caused by hydrochloric acid generated by hydrolysis of some of the methyl chloride.

次に本発明の趣旨を実施例である添付図面の第1図及び
第2図の方法工程図により詳説する。
Next, the gist of the present invention will be explained in detail with reference to method process diagrams shown in FIGS. 1 and 2 of the accompanying drawings, which are examples.

ガスの精製装置に収着材料が充填されている2つの吸着
装置1及び1′が接続されており、これらの装置は弁2
.1. 2.2及び2.1’、  2.2’により選択
的にガス流から分離することができる。図示されている
実施例では吸着装置1′はガス精製のために設けられて
おり、弁が閉じている吸着装置1を精製されるガスは流
動しない。脱着のために、両方の吸着装置1及び1′は
脱着ガス循環系に接続しており、その際に吸着装置中へ
の脱着ガス入口の前に弁3.1及び3.1′並びに吸着
装置からの脱着ガス出口の後に弁3.2及び3.2′が
設げられている。これによって、ガス、f#製作動に関
与しない吸着装置1は図示されているように開口してい
る弁3.1及び3.2によって脱着ガス循環系に接続さ
れている。脱着ガスとしては窒素又は酸素分の少ない不
活性ガスを使うと有利である。
Connected to the gas purification device are two adsorption devices 1 and 1' filled with sorbent material, which devices are connected to a valve 2.
.. 1. 2.2 and 2.1', 2.2' can be selectively separated from the gas stream. In the embodiment shown, the adsorption device 1' is provided for gas purification, and the gas to be purified does not flow through the adsorption device 1 with the valve closed. For desorption, both adsorption devices 1 and 1' are connected to a desorption gas circulation system, with valves 3.1 and 3.1' and the adsorption device connected before the desorption gas inlet into the adsorption device. Valves 3.2 and 3.2' are provided after the desorption gas outlet from. Thereby, the adsorption device 1 which does not take part in the gas, f# production operation is connected to the desorption gas circulation system by means of valves 3.1 and 3.2 which are open as shown. It is advantageous to use nitrogen or an inert gas with a low oxygen content as the desorption gas.

脱着ガスは送風機6により循環系を搬送さね、循環系は
結合管7.1. 7.2及び7.3により閉じている。
The desorbed gas is conveyed through the circulation system by a blower 6, which is connected to a coupling pipe 7.1. 7.2 and 7.3.

管7.1は送風機6の吹出口を、脱着すべき脱着材料が
充填されている吸着装置1と連結している。管7.2は
この吸着装置1から直接冷却機8に接続しており、かつ
管7.3は冷却機8を送風wR6に接続している。管7
.1中に間接熱交換器の加熱器7.4が接続されていて
、この加熱器中で熱ポンプ装置の蒸発器4.1から放出
される熱が脱着ガスに伝達される。脱着ガスを乾燥する
ために、水選択的に作動する吸着装置9が接続されてい
てよく、その際にこの装置は管7.3と平行に接続され
ていて、この管7.3中に=W弁9.2が設けられてい
ると有利である。
A pipe 7.1 connects the outlet of the blower 6 with the adsorption device 1, which is filled with the desorption material to be desorbed. A pipe 7.2 connects the adsorption device 1 directly to the cooler 8, and a pipe 7.3 connects the cooler 8 to the air blower wR6. tube 7
.. A heater 7.4 of an indirect heat exchanger is connected in 1, in which the heat emitted by the evaporator 4.1 of the heat pump arrangement is transferred to the desorption gas. In order to dry the desorbed gas, a water-selectively operated adsorption device 9 can be connected, which device is connected parallel to the line 7.3, in which = Advantageously, a W valve 9.2 is provided.

この調整弁9.2により、乾燥機として作動する吸着装
置9を流動する脱着ガス流をほぼ0〜100%調整する
ことができる。調整駆動装置を設置する際にも調節する
ことができ、その際に例えば脱着ガスの水分が調節を惹
起する尺度として適用することができる。乾燥機として
作用する吸着装置を完全に脱着ガス流から分離するため
に、止め弁を吸着装置管9.1中に設置することができ
る。乾燥機として接続した脱着装置9は蓄熱−兼貯水機
としても有用でありかつ冷却段階に吸熱しかつ水分を放
出するので、他の尺度として脱着ガスの温度を適用する
こともできる。その際に、作動状態を注意すべきである
。それというのも乾燥機として作動する吸着装置9は、
吸着装置1中の吸着材料の脱着の間水分を吸着しかつ吸
着装置1中の収着材料の冷却段階では水蒸気自体の駆出
により脱着されるからである。
This regulating valve 9.2 makes it possible to regulate the desorption gas flow flowing through the adsorption device 9, which operates as a dryer, by approximately 0 to 100%. An adjustment can also be made when installing the adjustment drive, in which case, for example, the moisture content of the desorption gas can be used as a measure for triggering the adjustment. In order to completely separate the adsorption device acting as a dryer from the desorption gas stream, a stop valve can be installed in the adsorption device tube 9.1. Since the desorption device 9 connected as a dryer is also useful as a heat and water storage and absorbs heat and releases moisture during the cooling phase, the temperature of the desorption gas can also be used as another measure. At that time, you should pay attention to the operating condition. This is because the adsorption device 9, which operates as a dryer,
This is because water is adsorbed during the desorption of the adsorbent material in the adsorption device 1, and is desorbed by ejection of water vapor itself during the cooling stage of the adsorption material in the adsorption device 1.

直接熱交換器8中で、脱着質含有脱着ガスが冷却夕/り
11からの回収脱着質と接触する。
In the direct heat exchanger 8, the desorbate-containing desorbent gas contacts the recovered desorbate from the cooling tank 11.

過冷阻は冷却タンク11中に設けた熱ポンプ装置の蒸発
器4.2により行ない、その際に該蒸発器はその1つの
接続側で圧m機5の吸込側と連結しており、その加圧側
は両方の管4.3の一方を介して加熱器7.4中の液化
装置又は凝縮機4.1に接続する。他方の管4.3は液
化装置中で液化された、熱ポンプ装置の循環系の冷媒を
再び蒸発器4.2に戻し、その流入前の絞り調整により
冷却タンク11中の回収脱着質の調節された蒸発、それ
故効果的な冷却が可能である。過冷却後に、回収脱着質
は冷却タンク11から輸送ポンプにより管11.1を介
して吸出されかつ管11.2を介して直接熱交換器8に
導入される。
Subcooling is carried out by means of an evaporator 4.2 of a heat pump device installed in the cooling tank 11, which evaporator is connected at one connection side to the suction side of the pressure generator 5. The pressure side is connected via one of the two pipes 4.3 to a liquefier or condenser 4.1 in a heater 7.4. The other pipe 4.3 returns the refrigerant from the circulation system of the heat pump device, which has been liquefied in the liquefier, back to the evaporator 4.2, and adjusts the recovered and desorbed substances in the cooling tank 11 by adjusting the throttle before its inflow. evaporation and therefore effective cooling is possible. After supercooling, the recovered desorbate is sucked out of the cooling tank 11 by a transport pump via line 11.1 and introduced directly into the heat exchanger 8 via line 11.2.

この導入は分配装置8.2を介して行なわれ、導入され
た脱着質は直接熱交換器の内部構造部材もしくは横材(
ここでは棚8.1)を介して流動し、かつその際に熱及
び凝縮する脱着質を吸収する。加熱されかつ凝縮分離し
た脱着質の分だけ増量して、脱着質は管8.3を介して
熱交換器8から流出し、管8.3は回収脱着質の捕集容
器10中に開口しており、かつ容器10中で脱着質循環
系を閉じるために、液面下に浸漬している。回収された
脱着質の貯蔵タンク10中では溢流管10.1により一
定の液面を維持し、この管10を通して過剰分の脱着質
が貯蔵タンクから捕集タンクに排出される。貯蔵タンク
10と′は別個に、冷却タンク11が設けられており、
このタンク11は管10.2t−介して貯蔵タンク10
と連結しており、それ放向−の液面を有する(その際に
、閉じている液体容器では、特に低沸点物質の場合に必
要とされるよ5に液面上で圧力調整が行なわれる)。冷
却タンク11中に流動する回収脱着質から、熱ポンプ装
置の蒸発器4.2中で蒸発する冷媒により吸熱され、脱
着質は過冷却されかつ過冷却された回収脱着質として、
直接熱交換器8中に導入するために先端部中に再度到達
する。
This introduction takes place via a distribution device 8.2, and the introduced desorbent is directly transferred to the internal structural components or cross-members of the heat exchanger (
Here it flows via the shelf 8.1) and absorbs heat and the desorbed matter that condenses in the process. The heated and condensed desorbate leaves the heat exchanger 8 via the condensed desorbate, which opens into the collecting vessel 10 for the recovered desorbate. and is immersed below the liquid surface to close the desorbate circulation system in the container 10. A constant liquid level is maintained in the storage tank 10 for the collected desorbate by means of an overflow pipe 10.1, through which excess desorbate is discharged from the storage tank into a collection tank. A cooling tank 11 is provided separately for the storage tanks 10 and '.
This tank 11 is connected to the storage tank 10 through a pipe 10.2t.
and has a liquid level directed to it (in closed liquid containers, pressure regulation takes place above the liquid level, as is required especially in the case of low-boiling substances). ). Heat is absorbed from the recovered desorbent flowing in the cooling tank 11 by the refrigerant evaporated in the evaporator 4.2 of the heat pump device, and the desorbent is supercooled, and the recovered desorbent is supercooled.
It reaches again into the tip for direct introduction into the heat exchanger 8.

ポンプ12の吸込み接続管片の前方で、管13.1が過
冷却された回収脱着質を案内する管11.1中に開口し
ている。管13.1は、酸結合剤、安定剤又は酸受容体
が必要時にそなえて貯蔵されている貯蔵容器に接続して
いる。この装置により、付加的にポンプを設置せずに、
直接熱交換器への先端部中の過冷却脱着質中に添加すべ
き酸結合剤の圧力比のみに基いて添加混合することがで
きる。混合個所をインゼクタ11.3として構成するこ
とは有利であり、これにより吸込作用は著しく高まり、
場合により添加すべき物質を一定の高度差を介して供給
することもできる。管13.1中に接続した絞り部13
.2により所望の配量が可能である。絞り個所が調整絞
つとして構成されている場合、配量を調節することがで
きる。調整駆動部を設けて調整絞りを制輝絞つとし、こ
れによって酸結合剤又は他の配量すべき物質の過冷却脱
着質への制御された供給も簡単に行なうことができる。
In front of the suction connection of the pump 12, a tube 13.1 opens into a tube 11.1 which guides the subcooled recovered desorption material. The tube 13.1 connects to a storage container in which the acid binder, stabilizer or acid acceptor is stored ready for use. With this device, you can eliminate the need for additional pump installation.
It is possible to add and mix only the pressure ratio of the acid binder to be added into the subcooled desorbate in the tip to the direct heat exchanger. It is advantageous to configure the mixing point as an injector 11.3, which significantly increases the suction effect and
If necessary, it is also possible to feed in the substances to be added via a certain height difference. Restriction 13 connected into pipe 13.1
.. 2 allows the desired dosing. If the throttle point is designed as a regulating throttle, the metering can be adjusted. A regulating drive is provided to control the regulating throttle as a brightening throttle, which also facilitates the controlled supply of acid binder or other substances to be metered into the supercooled desorbent.

その際に、該制御は例えば脱着ガスの水分又は回収脱着
質の水分(有利には帰り管8.3中で測定)と相関させ
ることができる。
In this case, the control can be correlated, for example, with the moisture content of the desorbed gas or the moisture content of the recovered desorbed material (preferably measured in the return line 8.3).

第2図による別法は、液状脱着質を過冷却する熱交換器
4.2の他の装置を示す。即ち管4.3を介して相互に
結合しているコンプレッサ5、液化装置4.1及び蒸発
器4.2より成る熱ポンプ装置は、蒸発器4.2が、直
接熱交換器8に供給すべき液状脱着質を案内する管11
.2と共に、管11.2から管4.3に熱伝達する熱交
換器を形成するように構成されている。こうすることに
より管11.2中を案内される液状脱着質が過冷却され
る。貯蔵タンク10からポンプ12への管11.1をも
含めて可能であるこの配置は、ポンプ12中で液状脱着
質に伝達される損失熱も l−緒に捕集されるという利
点を有する。それ故、凝縮温度が非常に低い場合に、第
2図に図示した液状脱着質の冷却法を行なうことができ
る。
The alternative according to FIG. 2 shows another arrangement of heat exchangers 4.2 for subcooling the liquid desorbate. A heat pump arrangement consisting of a compressor 5, a liquefier 4.1 and an evaporator 4.2, which are connected to each other via a pipe 4.3, is configured so that the evaporator 4.2 directly feeds the heat exchanger 8. A tube 11 that guides the liquid desorbent to be removed.
.. 2 to form a heat exchanger for transferring heat from tube 11.2 to tube 4.3. In this way, the liquid desorbent guided through the tube 11.2 is supercooled. This arrangement, which is also possible by including the pipe 11.1 from the storage tank 10 to the pump 12, has the advantage that the heat losses transferred to the liquid desorbate in the pump 12 are also collected. Therefore, the method of cooling the liquid desorbate illustrated in FIG. 2 can be carried out when the condensation temperature is very low.

液状脱着質の冷却に関しては、特別な冷却タンク11は
無条件に必要ではなく、蒸発器4.2は貯蔵タンク10
中に取り付けられていてもよい。熱ポンプ装置の蒸発器
4.2と、直接冷却機となした管11.1もしくは11
.2とが相互に連絡して熱交換器を構成する場合にも冷
却タンク11を省くことができる。最後に、貯蔵タンク
10を省いて、直接熱交換器8の排出尖端部が直接熱交
換器8を通る脱着質処理量の1緩衝空間“を形成するよ
うにすることも考えられる。
Regarding the cooling of liquid desorption substances, a special cooling tank 11 is not absolutely necessary, the evaporator 4.2 is replaced by the storage tank 10.
It may be installed inside. Evaporator 4.2 of the heat pump device and tube 11.1 or 11 serving as a direct cooler
.. 2 to form a heat exchanger, the cooling tank 11 can be omitted. Finally, it is also conceivable to omit the storage tank 10 so that the discharge tip of the direct heat exchanger 8 forms a buffer space for the desorbed mass through the direct heat exchanger 8.

この場合、液状脱着質をポンプ12に供給する帰り管1
1.1を直接熱交換器8の容器尖端部中に接続する。図
示されているように、直接熱交換器8中に孔付棚が設け
られて−てよく、同様に、方法技術的に公知の挿入物か
らのリング状パツキン等を設けることができる。
In this case, the return pipe 1 that supplies liquid desorbent to the pump 12
1.1 directly into the vessel tip of the heat exchanger 8. As shown, perforated shelves can be provided in the direct heat exchanger 8, as well as ring-shaped packings or the like from inserts known in the method technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の方法工程図を示し、第2図は別法
の工程図を示す。 1、 1’、  9・・・吸着装置、8・・・直接熱交
換器、10・・・貯蔵タンク、11・・・冷却タンク、
13・・・貯蔵容器 第1図 13.貯蔵容器 第2図
FIG. 1 shows a process diagram of the method of the invention, and FIG. 2 shows a process diagram of an alternative method. 1, 1', 9... Adsorption device, 8... Direct heat exchanger, 10... Storage tank, 11... Cooling tank,
13...Storage container Figure 1 13. Storage container diagram 2

Claims (1)

【特許請求の範囲】 1、負荷されている収着材料を脱着する際に生じる脱着
質を、収着材料中への流入前に加熱されかつ収着材料か
らの流出後に冷却される脱着ガスにより回収する方法に
おいて、収着材料から流出する脱着質含有脱着ガスを冷
却機として機能する直接熱交換器に供給し、この交換器
中で脱着ガスを回収脱着質により凝縮温度より低温に冷
却し、その際に液状形の回収脱着質を該冷却機中に導入
しかつ液状脱着質を該冷却機中への流入前に過冷却する
ことを特徴とする、負荷されている収着材料を脱着する
際に生じる脱着質を回収する方法。 2、脱着ガスを、過冷却導入する回収脱着質と並流で案
内する請求項1記載の方法。 3、脱着ガスを、過冷却導入する回収脱着質に対して向
流で冷却器中を案内する請求項1記載の方法。 4、液状脱着質から、冷却機中への流入前に取り出され
る熱は熱ポンプ装置の蒸発器を用いて取出し、その熱を
冷媒循環系を用いて液化装置に供給しかつこの液化装置
中で収着材料に導かれる脱着ガスに熱伝達する請求項1
から3までのいずれか1項記載の方法。 5、直接熱交換器に供給する液状脱着質を、直接熱交換
器に接続している管中で冷却する請求項1から4までの
いずれか1項記載の方法。 6、直接熱交換器に供給する液状脱着質を貯蔵タンク中
に中間貯蔵し、かつ貯蔵タンク中で冷却する請求項1か
ら4までのいずれか1項記載の方法。 7、導入すべき過冷却された回収脱着質に酸結合剤、安
定剤及び/又は酸受容体を加える請求項1から6までの
いずれか1項記載の方法。 8、添加される酸結合剤、安定剤又は酸受容体を混合イ
ンゼクタにより吸引する請求項7記載の方法。 9、脱着質及び/又は脱着ガスの酸含量を監視し、かつ
酸結合剤、安定剤又は酸受容体の配量はその酸含量によ
り制御する請求項7又は8記載の方法。 10、冷却機として機能する直接熱交換器から流出する
脱着ガスを2つの分流に分け、その際に一方の分流から
水分を乾燥機として機能する吸着装置中で除去する請求
項1から9までのいずれか1項記載の方法。 11、これらの分流の一方は絞り弁により調節可能であ
る請求項10記載の方法。 12、乾燥機として機能する吸着装置を流動する分流の
大きさを絞り弁の調節駆動部により制御する請求項11
記載の方法。
[Claims] 1. The desorbate produced during the desorption of the loaded sorbent material by a desorbent gas that is heated before entering the sorbent material and cooled after leaving the sorbent material. In the method of recovering, the desorbing gas containing the desorbing material flowing out from the sorbing material is fed to a direct heat exchanger functioning as a cooler, in which the desorbing gas is cooled by the recovered desorbing material to a temperature lower than the condensation temperature, Desorbing the loaded sorbent material, characterized in that the recovered desorption material in liquid form is introduced into the cooler and the liquid desorption material is supercooled before entering the cooler. A method for collecting the desorbed matter produced during the process. 2. The method according to claim 1, wherein the desorption gas is guided in parallel flow with the recovered desorption substance to be introduced to be supercooled. 3. The method according to claim 1, wherein the desorbed gas is guided through the cooler in countercurrent to the recovered desorbed material to be supercooled. 4. The heat extracted from the liquid desorbate before it flows into the cooler is extracted using the evaporator of the heat pump device, and the heat is supplied to the liquefaction device using the refrigerant circulation system, and the heat is extracted in the liquefaction device. Claim 1 wherein heat is transferred to the desorption gas guided by the sorption material.
The method described in any one of (3) to (3) above. 5. The method according to any one of claims 1 to 4, wherein the liquid desorbate supplied to the direct heat exchanger is cooled in a tube connected directly to the heat exchanger. 6. The method as claimed in claim 1, wherein the liquid desorbate fed directly to the heat exchanger is intermediately stored in a storage tank and cooled in the storage tank. 7. The method according to claim 1, wherein an acid binder, a stabilizer and/or an acid acceptor are added to the supercooled recovered desorbate to be introduced. 8. The method according to claim 7, wherein the added acid binder, stabilizer or acid acceptor is aspirated by a mixing injector. 9. The method according to claim 7 or 8, wherein the acid content of the desorbate and/or the desorbent gas is monitored and the dosage of the acid binder, stabilizer or acid acceptor is controlled by the acid content. 10. The method according to claims 1 to 9, wherein the desorption gas flowing out of the direct heat exchanger functioning as a cooler is divided into two sub-streams, with the water being removed from one of the sub-streams in an adsorption device functioning as a dryer. The method described in any one of the above. 11. The method according to claim 10, wherein one of these divided flows is adjustable by a throttle valve. 12. Claim 11, wherein the magnitude of the divided flow flowing through the adsorption device functioning as a dryer is controlled by a regulating drive of a throttle valve.
Method described.
JP63274643A 1987-11-01 1988-11-01 Recovery of desorbed substance at time of desorption of loaded sorbed material Pending JPH01151921A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3737408.7 1987-11-01
DE19873737408 DE3737408A1 (en) 1987-11-01 1987-11-01 METHOD FOR RECOVERY OF THE DESORBATE RESULTING FROM THE DESORPTION OF LOADED SORPTION MATERIALS, AND DEVICE THEREFOR

Publications (1)

Publication Number Publication Date
JPH01151921A true JPH01151921A (en) 1989-06-14

Family

ID=6339753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274643A Pending JPH01151921A (en) 1987-11-01 1988-11-01 Recovery of desorbed substance at time of desorption of loaded sorbed material

Country Status (6)

Country Link
US (1) US5069038A (en)
JP (1) JPH01151921A (en)
CA (1) CA1325001C (en)
DE (1) DE3737408A1 (en)
FR (1) FR2622472B1 (en)
GB (1) GB2211753B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043278A (en) * 2002-05-14 2004-02-12 Morikawa Co Ltd Activated carbon excellent in capability for adsorbing/desorbing halogenated organic compound, its production method, and apparatus and method for adsorbing/desorbing halogenated organic compound
JP2010172804A (en) * 2009-01-28 2010-08-12 Kyuchaku Gijutsu Kogyo Kk Moisture removal using absorbent, voc concentration by temperature swinging method of performing recovery of cold, and voc recovering method by low-temperature liquefaction
JP2019122935A (en) * 2018-01-18 2019-07-25 大陽日酸株式会社 Gas refining apparatus and gas refining method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187131A (en) * 1990-01-16 1993-02-16 Tigg Corporation Method for regenerating particulate adsorbents
IL108626A (en) * 1994-02-13 1997-04-15 Ram Lavie And Technion Researc Method for the recovery of fugitive organic vapors
US5505825A (en) * 1994-09-20 1996-04-09 Foster Miller Inc. Electrically conductive sorption system and method
US5565077A (en) * 1994-09-26 1996-10-15 Foster Miller, Inc. Transverse flow self-heating electrically conductive sorption system
US5515686A (en) * 1995-01-30 1996-05-14 Jordan Holding Company Absorber fluid circuit for vapor recovery system
FR2735382B1 (en) * 1995-06-15 1997-07-25 Air Liquide CARBON MONOXIDE PRODUCTION PLANT INCORPORATING A CRYOGENIC SEPARATION UNIT
WO1997022402A1 (en) * 1995-12-15 1997-06-26 Jordan Holding Company, Inc. Apparatus and method for recovering volatile liquid
US5958109A (en) * 1998-05-15 1999-09-28 Fuderer; Andrija Adsorption process for recovery of solvents
JP2001113116A (en) * 1999-10-19 2001-04-24 Fujitsu Ltd Method and device for treating waste gas
EP1333923A4 (en) * 2000-10-19 2006-04-26 American Purification Inc Apparatus and method for removing and fractionating sorbates from sorbents
US7107784B2 (en) * 2004-09-08 2006-09-19 Beck Douglas S Thermal management system using an absorption heat pump
US20130081413A1 (en) * 2010-06-17 2013-04-04 Tomas Åbyhammar Method in treating solvent containing gas
US9314731B2 (en) * 2013-11-20 2016-04-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude RTSA method using adsorbent structure for CO2 capture from low pressure and low concentration sources
US9308486B2 (en) 2013-11-20 2016-04-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of using a structured adsorbent bed for capture of CO2 from low pressure and low pressure concentration sources
US10551097B2 (en) * 2014-11-12 2020-02-04 Carrier Corporation Refrigeration system
CN109157945A (en) * 2018-10-15 2019-01-08 江苏科威环保技术有限公司 The dry method parsing technique and its system of exhaust gas
IT201900003829A1 (en) * 2019-03-15 2020-09-15 Marelli Europe Spa ADSORPTION REFRIGERATOR SYSTEM FOR THE PRODUCTION OF DEMINERALIZED WATER ON BOARD A MOTOR VEHICLE, MOTOR VEHICLE AND METHOD OF PRODUCTION OF DEMINERALIZED WATER ON BOARD A MOTOR VEHICLE

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941615A (en) * 1960-09-07 1963-11-13 Apv Co Ltd A new or improved method of and apparatus for preheating a process liquid as it passes to a temperature processing operation
US3232029A (en) * 1960-10-14 1966-02-01 Celanese Corp Recovery of organic solvents from gaseous media
US3774677A (en) * 1971-02-26 1973-11-27 Ibm Cooling system providing spray type condensation
US3981156A (en) * 1975-02-03 1976-09-21 Ecology Control, Inc. Vapor recovery system and method
NL7713256A (en) * 1976-12-01 1978-06-05 Cng Res Co METHOD FOR SEPARATING 1 OR MORE GASES WITH RELATIVELY HIGH BOILING POINT FROM A GAS MIXTURE.
DE2936873C2 (en) * 1979-09-12 1985-05-02 Rekuperator KG Dr.-Ing. Schack & Co, 4000 Düsseldorf Process for the thermal regeneration of loaded sorbent materials
IT1062296B (en) * 1980-08-08 1984-06-26 Massimo Sacchetti PROCESS AND EQUIPMENT TO ELIMINATE AND RECOVER VOLATILE ORGANIC SUBSTANCES FROM INDUSTRIAL EXHAUST GASES
DE3042082A1 (en) * 1980-11-07 1982-05-13 Lohmann Gmbh & Co Kg, 5450 Neuwied Reclaiming solvent from adsorbent - esp. solvent removed from waste air leaving painting plant, where energy is also reclaimed
US4444016A (en) * 1981-05-20 1984-04-24 Airco, Inc. Heat exchanger apparatus
DE3201390A1 (en) * 1982-01-19 1983-07-28 CEAG Verfahrenstechnik GmbH, 4714 Selm METHOD FOR RECOVERY OF AN essentially WATER-FREE DESORBATE, AND DEVICE FOR CARRYING OUT THE METHOD
DE3303423C2 (en) * 1983-02-02 1986-09-25 Janetschek & Scheuchl, 8038 Gröbenzell Process for the regeneration of the adsorber units in the low-water recovery of solvents from a gas stream and device for carrying out this process
US4589890A (en) * 1985-01-10 1986-05-20 Dedert Corporation Heat recovery method and apparatus
FR2580947B1 (en) * 1985-04-25 1989-09-01 Air Liquide METHOD AND INSTALLATION FOR PURIFICATION BY ADSORPTION ON ACTIVE CARBON, AND CORRESPONDING ADSORBER POT
DE3637803A1 (en) * 1986-11-06 1988-05-19 Scheurutec Gmbh Process for recovering solvents from a process gas stream and plant for carrying out this process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043278A (en) * 2002-05-14 2004-02-12 Morikawa Co Ltd Activated carbon excellent in capability for adsorbing/desorbing halogenated organic compound, its production method, and apparatus and method for adsorbing/desorbing halogenated organic compound
JP2010172804A (en) * 2009-01-28 2010-08-12 Kyuchaku Gijutsu Kogyo Kk Moisture removal using absorbent, voc concentration by temperature swinging method of performing recovery of cold, and voc recovering method by low-temperature liquefaction
JP2019122935A (en) * 2018-01-18 2019-07-25 大陽日酸株式会社 Gas refining apparatus and gas refining method

Also Published As

Publication number Publication date
US5069038A (en) 1991-12-03
GB8824974D0 (en) 1988-11-30
FR2622472B1 (en) 1992-02-07
DE3737408A1 (en) 1989-05-11
CA1325001C (en) 1993-12-07
GB2211753A (en) 1989-07-12
DE3737408C2 (en) 1993-03-11
GB2211753B (en) 1992-03-18
FR2622472A1 (en) 1989-05-05

Similar Documents

Publication Publication Date Title
JPH01151921A (en) Recovery of desorbed substance at time of desorption of loaded sorbed material
JPS62502671A (en) Method and apparatus for purifying gases
US5630913A (en) Water distillation system
RU2199059C2 (en) Refrigerating plant for exhaust gas
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
JPS6319839B2 (en)
US4283212A (en) Treatment of gas streams
RU2695209C1 (en) Apparatus for regenerating an aqueous solution of methanol
RU2580319C2 (en) Regeneration of kinetic hydrate-formation inhibitor
JPH0143561B2 (en)
JPH0371161B2 (en)
US4370816A (en) Closed-circuit condensation purifier for gaseous flows containing solvents and moisture
US4149857A (en) Process for the two-stage separation of ammonia
EP1492610B1 (en) Method and system for desorption and recovery of desorbed compounds
WO2009105967A1 (en) An adsorption device and a method for regenerating the adsorbent
CN109477671A (en) Adsorption type heat pump and method for running adsorption type heat pump
EP3627071A1 (en) Aqua-ammonia absorption refrigeration system
CN206027114U (en) Humidification dehumidification system
US1134269A (en) Refrigerating apparatus.
JPS58150412A (en) Method and apparatus for recovering substantially anhydrous desorbed substance
CN105749723B (en) The purification-recovery system of carbon dioxide in industrial tail gas
KR102292770B1 (en) Hybrid seawater-desalination apparatus and method
JP3312549B2 (en) Absorption refrigerator
CN106163637A (en) For from air-flow, flue gas stream especially separates method and the separation equipment of carbon dioxide, including chilled(cooling) water return (CWR)
US3266268A (en) Sub-cooling steam condensate in tube side of heat exchanger for an absorption refrigeration system