JPH07284623A - Method for treating and recovering concentrated gaseous hydrocarbon contained in discharged gas - Google Patents

Method for treating and recovering concentrated gaseous hydrocarbon contained in discharged gas

Info

Publication number
JPH07284623A
JPH07284623A JP7023377A JP2337795A JPH07284623A JP H07284623 A JPH07284623 A JP H07284623A JP 7023377 A JP7023377 A JP 7023377A JP 2337795 A JP2337795 A JP 2337795A JP H07284623 A JPH07284623 A JP H07284623A
Authority
JP
Japan
Prior art keywords
adsorption
gas
gaseous hydrocarbon
vacuum
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7023377A
Other languages
Japanese (ja)
Other versions
JP2840563B2 (en
Inventor
Hiroshi Tawara
弘 田原
Toshinaga Kawai
利長 川井
Kenichiro Suzuki
謙一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYST ENJI SERVICE KK
Original Assignee
SYST ENJI SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYST ENJI SERVICE KK filed Critical SYST ENJI SERVICE KK
Priority to JP7023377A priority Critical patent/JP2840563B2/en
Publication of JPH07284623A publication Critical patent/JPH07284623A/en
Application granted granted Critical
Publication of JP2840563B2 publication Critical patent/JP2840563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To discharge a gas contg. <=1vol.% hydrocarbons into the atmosphere and simultaneously to recover the hydrocarbons by treating the discharged gas contg. concentrated hydrocarbons. CONSTITUTION:The well-known absorption method or gas separation membrane method and adsorption method are jointly used in this case. A pressure and temperature swing adsorption method (PTSA method) is used as the adsorption method. Concretely, the discharged gas contg. about 40vol.% gasoline vapor is introduced into an absorption tower 3, and a gas (exhaust gas 8) contg. 2-5vol.% gasoline vapor is discharged. The exhaust gas 8 is then sent to an adsorption tower 11 (12) to remove the residual gasoline vapor by adsorption, and the exhaust gas contg. <=1vol.% gasoline is discharged into the atmosphere. The heat of the tower 11 (12) is removed by water, the vacuum of the water is linked to the temp. in the adsorption bed, and the bed is cooled to about 60 deg.C in the PTSA method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃厚なガス状炭化水素
を含んだままの状態で放散されるガスの処理、並びに該
ガス状炭化水素の補集・回収方法に関する。特に本発明
は、光化学スモックの原因物質の一つであるガス状炭化
水素の濃度を1VOL%以下にして大気中に放出するため
の工業的手段に係る、放散ガスに含まれる濃厚なガス状
炭化水素の処理・回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment of a gas which is diffused while containing a rich gaseous hydrocarbon, and a method for collecting and recovering the gaseous hydrocarbon. In particular, the present invention relates to an industrial means for reducing the concentration of gaseous hydrocarbons, which is one of the causative substances of photochemical smocks, to 1 vol% or less and releasing them into the atmosphere. Regarding hydrogen treatment / recovery method.

【0002】[0002]

【従来の技術】大気汚染の原因の一つである光化学スモ
ックがNOXとガス状炭化水素の反応によって生じるこ
とは、従来から知られている。このため、以前から日
本、米国、欧州をはじめとする先進国、最近では台湾、
メキシコ、中国、韓国等にいたるまで、発生源の要因と
なるNOX及び大気中に含まれる揮発性炭化水素の排出
濃度を法的に厳しく規制しており、この規則値をクリヤ
−するための工業的規模の装置が各地に多数設置されて
いる。
BACKGROUND OF THE INVENTION It photochemical smog which is one of the causes of air pollution caused by the reaction of the NO X and gaseous hydrocarbons are known in the art. For this reason, Japan, the United States, Europe and other developed countries, recently Taiwan,
Even in Mexico, China, South Korea, etc., the emission concentrations of NO X and volatile hydrocarbons contained in the atmosphere, which are the sources of the emission sources, are strictly regulated legally, and in order to clear this regulation value. Many industrial-scale devices are installed in various places.

【0003】ところで、ガス状炭化水素の発生源として
特に問題視されているのは、揮発性炭化水素類を貯蔵す
る際の荷揚げ時や積み卸し時に貯蔵タンク又は油槽船か
ら発生する放散ガスであり、また、タンクロ−リ−に積
む時にロ−リ−車から発生する放散ガスである。
By the way, what is particularly problematic as a source of generation of gaseous hydrocarbons is emitted gas generated from a storage tank or an oil tanker at the time of unloading or unloading when storing volatile hydrocarbons. In addition, it is a gas emitted from the roll truck when it is loaded on the tank roll.

【0004】このようなガス状炭化水素含有放散ガスの
処理・回収法として、従来から広く用いられているの
は、(1) 特公昭54−8632号公報、特公昭54−5789号公
報、特公昭58−022503号公報等に記載の手段による吸収
法、(2) ガス分離膜を用いる方法(ガス分離膜法)、(3)
−60〜−70℃に深冷して液化する方法、(4) 活性炭や合
成ゼオライトを用いる吸着法、である。
As a method for treating and recovering the emission gas containing such a gaseous hydrocarbon, the following methods have been widely used: (1) Japanese Patent Publication No. 54-8632, Japanese Patent Publication No. 54-5789, Absorption method by means described in JP-A-58-022503, (2) Method using gas separation membrane (gas separation membrane method), (3)
Liquefaction by deep cooling to -60 to -70 ° C, (4) adsorption method using activated carbon or synthetic zeolite.

【0005】上記(1)〜(4)の方法のうち、(1)の吸収法
によるガス状炭化水素含有放散ガスの処理・回収法は、
日本ではもっとも広く使用されている方法である。この
吸収法による処理・回収法について、以下説明すると、
この方法は、 ・吸収塔にガス状炭化水素含有放散ガスを導入し、該放
散ガスと有機液体の吸収液とを向流的に気液接触せし
め、放散ガス中のガス状炭化水素を吸収液に吸収させる
工程、 ・吸収後のガスを吸収塔の頂部から大気中に放出する工
程、 ・ガス状炭化水素を吸収した吸収液を真空容器中にフラ
ッシュ蒸発させ、該吸収液からガス状炭化水素を分離・
回収する工程、 ・分離・回収後の吸収液を再度吸収塔に戻し、循環使用
する工程、 を含む方法である(前掲の特公昭58−022503号公報参
照)。
Among the above methods (1) to (4), the method for treating and recovering the emission gas containing gaseous hydrocarbons by the absorption method (1) is
This is the most widely used method in Japan. The processing / recovery method by this absorption method will be described below.
In this method, a gaseous hydrocarbon-containing emission gas is introduced into the absorption tower, and the emission gas and the absorption liquid of the organic liquid are brought into countercurrent gas-liquid contact, and the gaseous hydrocarbon in the emission gas is absorbed into the absorption liquid. A step of releasing the gas after absorption into the atmosphere from the top of the absorption tower, a flashing of the absorbing liquid that has absorbed the gaseous hydrocarbon into a vacuum container, and a gaseous hydrocarbon from the absorbing liquid. Separated
A step of recovering, and a step of returning the absorption liquid after separation / recovery to the absorption tower again and circulating it (see JP-B-58-022503 mentioned above).

【0006】[0006]

【発明が解決しようとする課題】上記(1)の“吸収法に
よるガス状炭化水素含有放散ガスの処理・回収法”で
は、吸収塔の頂部から大気中に放散されるガス状炭化水
素の濃度は、真空容器の真空度によって決定される。従
って、吸収塔頂部から大気中に放出されるガス状炭化水
素濃度を、例えば日本の各都府県が制定した公害防止条
例に基づいて5VOL%以下にするためには、30mmHg以下
の真空度に保持する必要がある。
[Problems to be Solved by the Invention] In the above-mentioned (1) "Method of treating and recovering gaseous emissions containing gaseous hydrocarbons by absorption method", the concentration of gaseous hydrocarbons released from the top of the absorption tower into the atmosphere Is determined by the vacuum degree of the vacuum container. Therefore, in order to reduce the concentration of gaseous hydrocarbons released into the atmosphere from the top of the absorption tower to 5 vol% or less based on the pollution prevention regulations established by each prefecture of Japan, for example, maintain a vacuum degree of 30 mmHg or less. There is a need.

【0007】ところで、日本を除く欧米先進国、台湾、
メキシコ等の諸国では、米国の環境保護局(EPA)が定
めた1VOL%以下(38mg/L以下)の排出濃度にすることを
義務づけられている。この規制値をクリヤ−するために
は、前記(1)の吸収法を例に取れば、真空容器の真空度
を7mmHg以下にする必要があり、特に配管中を流れる吸
収液の抵抗ロスを考慮すると2mmHgないしはそれ以下に
する必要がある。
By the way, Western countries except Japan, Taiwan,
In countries such as Mexico, it is obligatory that the emission concentration is 1 VOL% or less (38 mg / L or less) set by the US Environmental Protection Agency (EPA). In order to clear this regulation value, if the absorption method of (1) is taken as an example, it is necessary to set the vacuum degree of the vacuum container to 7 mmHg or less, and especially considering the resistance loss of the absorbing liquid flowing in the piping. Then it should be 2mmHg or less.

【0008】しかしながら、このような真空度で操作す
る場合、吸収液自身も一部蒸発し、循環使用に耐えられ
ない。一方、2mmHg程度の高真空で、しかも100〜2000
3/Hrの大量の放散ガスを処理する真空ポンプは見当
らない。従って、前記(1)の吸収法では、放散ガス中の
炭化水素濃度を1VOL%以下にすることは至難であり、
未だに実現されていない。
However, when operating at such a vacuum degree, the absorbing liquid itself also partially evaporates, and cannot be circulated. On the other hand, a high vacuum of about 2 mmHg and 100 to 2000
There is no vacuum pump that handles a large amount of m 3 / Hr of emitted gas. Therefore, with the absorption method of (1) above, it is extremely difficult to reduce the hydrocarbon concentration in the emitted gas to 1 VOL% or less,
It has not been realized yet.

【0009】また、前記(2)のガス分離膜を用いる方法
(ガス分離膜法)についても同様であって、放散ガス中の
炭化水素濃度を1VOL%以下にする技術は、未だ完成さ
れていない。
Further, the method using the gas separation membrane of the above (2)
The same applies to the (gas separation membrane method), and the technology for reducing the concentration of hydrocarbons in the emitted gas to 1 vol% or less has not been completed yet.

【0010】一方、前記(3)の−60〜−70℃に深冷して
液化する方法では、露点に達する迄はガス状炭化水素は
液化しない。例えば、放散ガス中の炭化水素の濃度が50
〜100VOL%の場合、その中のメタン、エタン、プロパン
等の軽い成分が少量であれば、−70℃以下に深冷すれば
辛うじてメタン、エタンを除いて露点に達し、1VOL%
をキ−プできる可能性がある。
On the other hand, in the method (3) of deep cooling to liquefy by -60 to -70 ° C., gaseous hydrocarbons are not liquefied until the dew point is reached. For example, the concentration of hydrocarbons in the emitted gas is 50
In the case of ~ 100VOL%, if the light components such as methane, ethane, propane, etc. are in small amount, if it is deep-cooled to -70 ° C or below, the dew point is barely reached except methane and ethane, and 1VOL%
There is a possibility that the

【0011】しかしながら、放散ガス中の炭化水素濃度
は、この炭化水素(ガソリン等)の貯蔵又は出荷の場合を
例にとれば通常5〜50VOL%である。そして、ガソリンの
場合についていえば、−100℃近くまで深冷しないと1V
OL%以下をキ−プできない。なお、−70℃程度であれば
冷媒としてメチルクロライドが使用できるが、最近その
毒性が問題になっており、まして−100℃を達成できる
冷媒として経済的に使用可能なものが見当らない。
However, the hydrocarbon concentration in the stripped gas is usually 5 to 50 VOL% in the case of storing or shipping the hydrocarbon (gasoline etc.). And in the case of gasoline, 1V is required unless it is deeply cooled to near -100 ° C.
I can't keep the level below OL%. It should be noted that methyl chloride can be used as a refrigerant at about −70 ° C., but its toxicity has recently become a problem, and no refrigerant that can achieve −100 ° C. can be economically used.

【0012】従って、放散ガス中の炭化水素濃度を1VO
L%以下にキ−プし得る方法としては、現状では、前記
(4)の活性炭や合成ゼオライトを用いる吸着法である
が、この方法においても以下のような問題がある。即
ち、活性炭を用いてガス状炭化水素を吸着させる場合の
吸着熱は、ガソリンベ−パ−を例にとれば、10〜15KCAL
/モルであり、このガス量(ガソリン量)が多いと発生す
る吸着熱は莫大な量となる。このため、活性炭吸着塔の
温度が上昇し、しばしば発火する事故が生じる。
Therefore, the hydrocarbon concentration in the stripped gas is adjusted to 1 VO
At present, as a method capable of keeping the L% or less,
Although this is an adsorption method using activated carbon or synthetic zeolite of (4), this method also has the following problems. That is, the heat of adsorption when adsorbing gaseous hydrocarbons using activated carbon is, for example, 10 to 15 KCAL in the case of gasoline vapor.
/ Mol, and if this gas amount (gasoline amount) is large, the heat of adsorption generated will be enormous. For this reason, the temperature of the activated carbon adsorption tower rises, and an accident that often ignites occurs.

【0013】この事故を防止する手段として、(A)吸着
塔に導入する放散ガスに空気を混合し、単位時間当りの
吸着熱を減少させ、該吸着塔の温度上昇を約60℃以内に
保持することが考えられる。しかしながら、放散ガスに
わざわざ空気で薄めることは、不経済であり、しかも空
気の混合による被処理ガスの増加量に比例して吸着塔及
び付属装置が大きくなり、経済的に成立しない。
As a means for preventing this accident, (A) air is mixed with the desorption gas introduced into the adsorption tower to reduce the heat of adsorption per unit time, and the temperature rise of the adsorption tower is kept within about 60 ° C. It is possible to do it. However, it is uneconomical to dilute the emission gas with air, and the size of the adsorption tower and ancillary equipment increases in proportion to the increase in the amount of gas to be treated due to the mixing of air, which is not economically feasible.

【0014】また、(B)吸着塔を水で冷却し、除熱する
ことも考えられるが、冷却水を使用してもこの水の潜熱
しか利用できないので、さほどの冷却効果は期待できな
いものである。なお、冷却面積を大きくすることも、単
に冷却効果のみの理由で吸着塔を必要以上に大きくする
ことは、経済的ではない。
It is also conceivable that (B) the adsorption tower is cooled with water to remove heat, but even if cooling water is used, only the latent heat of this water can be utilized, and so much cooling effect cannot be expected. is there. In addition, it is not economical to increase the cooling area or to increase the size of the adsorption tower more than necessary simply because of the cooling effect.

【0015】更に、(C)四塩化炭素のような沸点の低い
不燃性の冷媒による除熱方法も考えられるが、この方法
を採用すると、吸着熱を奪って蒸発した四塩化炭素を大
気中に放出することができず、この四塩化炭素ベ−パ−
を沸点以下に冷却して再度元の液体四塩化炭素に戻す必
要があり、この方法も経済的でない。
Further, (C) a heat removal method using a non-flammable refrigerant having a low boiling point such as carbon tetrachloride can be considered, but if this method is adopted, the heat of adsorption is taken to evaporate carbon tetrachloride into the atmosphere. This carbon tetrachloride vapor could not be released.
Is required to be returned to the original liquid carbon tetrachloride by cooling to below the boiling point, and this method is not economical either.

【0016】一方、活性炭吸着塔の除熱手段として、蒸
発潜熱の大きな液状炭化水素(例えば液体ガソリン)を冷
媒として使用する方法が開発されており、諸外国で広く
採用されている。この方法は、吸着塔の内外部に液状炭
化水素の通路を配設し、この中に液状炭化水素を通し、
その蒸発潜熱を利用して熱除去を行い、蒸発した炭化水
素ガスを同種の液体炭化水素で洗浄して回収する方法で
ある。
On the other hand, as a heat removal means for an activated carbon adsorption tower, a method of using a liquid hydrocarbon having a large latent heat of vaporization (for example, liquid gasoline) as a refrigerant has been developed and widely adopted in various countries. In this method, a liquid hydrocarbon passage is provided inside and outside the adsorption tower, and liquid hydrocarbon is passed through the passage.
The latent heat of vaporization is used to remove heat, and the vaporized hydrocarbon gas is washed with the same type of liquid hydrocarbon and recovered.

【0017】上記方法は、冷却水を使用する場合に比し
て冷却効果が優れているが、若し液体炭化水素の通路が
破損した場合、火災事故につながる恐れがあり、このた
め、家屋から遠く離して設置する必要があるという欠点
を有している。なお、この方法は、日本では許可されて
いない。
The above method is superior in cooling effect to the case of using cooling water, but if the passage of the liquid hydrocarbon is damaged, it may lead to a fire accident. It has the drawback of having to be installed far away. This method is not permitted in Japan.

【0018】また、吸着塔の操作方法としては、吸着工
程及び脱着工程を交互に切り換えながら運転するのが一
般的である。この方法として、 ・PSA(Pressure Swing Adsorption)サイクル方式、 ・TSA(Temperature Swing Adsorption)サイクル方
式、 が従来より知られている。
As a method of operating the adsorption tower, it is general to operate by alternately switching the adsorption step and the desorption step. As this method, a PSA (Pressure Swing Adsorption) cycle method and a TSA (Temperature Swing Adsorption) cycle method have been conventionally known.

【0019】PSAサイクル方式とは、脱着工程におけ
るパ−ジガスとしてスチ−ムを用いる方法であるが、こ
の方法の欠点は、連続向流接触が難しいため、操作が非
定常化し、また、パ−ジガス中のN2、O2が一部吸着
し、吸着能の低下が生じ、その結果として吸着帯の一部
分でしか仕事をしないので効率が悪い。また、この方法
では、組み立てたままの状態で現地に設置できること、
いわゆる“スキットマウント”ができないという欠点も
有している。
The PSA cycle method is a method in which a steam is used as a purge gas in the desorption process. However, the disadvantage of this method is that continuous countercurrent contact is difficult, so that the operation becomes unsteady, and the operation is not stable. Part of N 2 and O 2 in the digas are adsorbed and the adsorbability is lowered, and as a result, work is performed only in a part of the adsorption zone, which is inefficient. Also, with this method, it can be installed in the field as it is,
It also has the drawback of not being able to do so-called "skit mounts".

【0020】上記PSAサイクル方式の改良型であるT
SAサイクル方式は、脱着手段として電熱加熱などを用
いて加熱する方法であるが、この方法では、脱着は加熱
によって行われるので、吸着塔全体を加温、冷却する結
果になり、熱の損失が多く、伝熱に長時間を要する欠点
を有している。
T which is an improved version of the PSA cycle system
The SA cycle method is a method of heating by using electrothermal heating or the like as the desorption means, but in this method, since desorption is performed by heating, the result is heating and cooling of the entire adsorption tower, resulting in heat loss. Many have the disadvantage that it takes a long time to transfer heat.

【0021】ところで、ガス状炭化水素の濃度が1VOL
%以下の希薄な放散ガスの処理法については、公知の活
性炭や合成ゼオライトを用いる吸着法が有効であり、こ
のような低濃度の放散ガス処理法としてこの吸着法が一
般的であが、濃厚なガス状炭化水素を含む100m3/Hr以
上の放散ガスを処理し、該ガスから効率よく炭化水素を
回収し、且つ大気中に排出するガス中の残存濃度を1VO
L%以下にするという経済的な方法が現存しない。
By the way, the concentration of gaseous hydrocarbon is 1 VOL.
As for the treatment method of dilute emission gas of less than 10%, the adsorption method using known activated carbon or synthetic zeolite is effective, and this adsorption method is generally used as a treatment method of such low concentration emission gas, but 100 m 3 / Hr or more of emission gas containing various gaseous hydrocarbons is treated, hydrocarbons are efficiently recovered from the gas, and the residual concentration in the gas discharged into the atmosphere is 1 VO
There is currently no economical way to reduce L% or less.

【0022】本発明は、上記点に鑑み成されたものであ
って、その目的は、濃厚なガス状炭化水素含有放散ガス
を処理し、該ガス状炭化水素を補集・回収する方法にお
いて、該放散ガスから効率よく炭化水素を回収すると共
に、大気中に排出するガス中の残存濃度を1VOL%以下
にし得る、濃厚なガス状炭化水素含有放散ガスの処理・
回収方法を提供することにある。また、本発明の目的
は、光化学スモックの原因物質の一つであるガス状炭化
水素の濃度を1VOL%以下にして放出するための工業的
手段を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to process a concentrated gaseous hydrocarbon-containing emission gas and collect and recover the gaseous hydrocarbon, Treatment of a rich gaseous hydrocarbon-containing emission gas that can efficiently recover hydrocarbons from the emission gas and reduce the residual concentration in the gas discharged into the atmosphere to 1 vol% or less.
It is to provide a recovery method. Another object of the present invention is to provide an industrial means for releasing the concentration of gaseous hydrocarbon, which is one of the causative substances of photochemical smock, at 1 VOL% or less.

【0023】[0023]

【課題を解決するための手段】本発明は、上記目的を達
成するため、公知の吸収法又はガス分離膜法と吸着法と
を併用するにあたり、吸着法として新規な真空加熱再生
吸着法(PTSA法)を採用することを特徴とする。
In order to achieve the above-mentioned object, the present invention uses a novel vacuum heating regeneration adsorption method (PTSA) as an adsorption method when the known adsorption method or gas separation membrane method is used in combination with the adsorption method. Method) is adopted.

【0024】即ち、本発明は、「濃厚なガス状炭化水素
を含む放散ガスを処理し、上記ガス状炭化水素を回収す
る方法において、吸収法又はガス分離膜法と真空加熱再
生吸着法とを組み合せることを特徴とする放散ガスに含
まれる濃厚なガス状炭化水素の処理・回収方法。」を要
旨とする。
That is, according to the present invention, in the method of treating the emission gas containing a rich gaseous hydrocarbon and recovering the gaseous hydrocarbon, an absorption method or a gas separation membrane method and a vacuum heating regeneration adsorption method are used. The method is a method for treating and recovering a rich gaseous hydrocarbon contained in the emitted gas, which is characterized by being combined. "

【0025】また、本発明は、前記真空加熱再生吸着法
(PTSA法)を採用するに当って、吸着装置として ・吸着層内部に減圧水を導入する内筒、管あるいはコイ
ルを埋設した吸着装置を使用し、及び/又は、 ・ジャケットにコイルを巻き付け或いはジャケット内に
該減圧水を供給する吸着装置を使用し、そして、上記減
圧水として大気圧以下(望ましくは約150mmHg)の蒸気圧
を持つ減圧水により、吸着層内部の温度を80℃以下(望
ましくは約60℃)に保持するようにした。
The present invention also provides the vacuum heating regeneration adsorption method.
In adopting (PTSA method), as an adsorbing device: -using an adsorbing device in which an inner cylinder, a tube or a coil for introducing decompressed water into the adsorbing layer is embedded, and / or-a coil is wound around a jacket or Using an adsorption device for supplying the reduced pressure water into the jacket, and the reduced pressure water having a vapor pressure of atmospheric pressure or less (desirably about 150 mmHg), the temperature inside the adsorption layer is 80 ° C. or less (desirably Was maintained at about 60 ° C).

【0026】更に、本発明は、吸着熱の発生によって生
じる吸着層内部の温度上昇をコントロ−ルする手段とし
て、循環水の循環経路内に真空装置を配設し、循環水の
蒸気圧、即ち真空度を任意に変えるようにした。
Further, according to the present invention, as a means for controlling the temperature rise inside the adsorption layer caused by the generation of heat of adsorption, a vacuum device is disposed in the circulation path of the circulating water, and the vapor pressure of the circulating water, that is, The degree of vacuum was changed arbitrarily.

【0027】本発明は、上記構成により、これまで実現
が困難であった「濃厚なガス状炭化水素を含む放散ガス
を処理し、大気中に排出するガス中の残存炭化水素濃度
を1VOL%以下にする」ことが容易に、しかも小型装置
により実施することができるものである。
The present invention, which has been difficult to realize by the above-mentioned constitution, treats the "emission gas containing rich gaseous hydrocarbons, and the residual hydrocarbon concentration in the gas discharged into the atmosphere is 1 vol% or less. Can be performed easily and with a small device.

【0028】以下、本発明を詳細に説明する。本発明者
等は、濃厚なガス状炭化水素の分離に広く使われている
吸収法又はガス分離膜法と、希薄なガス状炭化水素の分
離に広く使われている吸着法のそれぞれの長所を考慮に
入れながら、その欠点を克服することを技術的課題とし
て鋭意研究を重ねた結果、本発明を完成したものであ
る。
The present invention will be described in detail below. The present inventors have advantages of the absorption method or the gas separation membrane method, which is widely used for the separation of rich gaseous hydrocarbons, and the adsorption method, which is widely used for the separation of dilute gaseous hydrocarbons. The present invention has been completed as a result of earnestly researching the technical problem of overcoming the drawbacks while taking the above into consideration.

【0029】即ち、公知の吸収法又はガス分離膜法は、
濃厚なガス状炭化水素を含む放散ガスを処理するのに好
適であるが、前記したとおり、放散ガス中の炭化水素濃
度を1VOL%以下にする技術は完成されていない。な
お、この吸収法又はガス分離膜法によれば、処理後に大
気中に放出するガス中の該濃度は、通常2〜5VOL%であ
る。
That is, the known absorption method or gas separation membrane method is
It is suitable for treating the emission gas containing rich gaseous hydrocarbons, but as described above, the technique for reducing the concentration of hydrocarbons in the emission gas to 1 VOL% or less has not been completed. According to this absorption method or gas separation membrane method, the concentration in the gas released into the atmosphere after the treatment is usually 2 to 5 VOL%.

【0030】一方、公知の吸着法の利点は、吸着熱の発
生が少ない希薄なガス状炭化水素を含む放散ガスを処理
する場合に有効であり、この場合、通常入口の該濃度が
1VOL%以下、出口の該濃度がPPMのオ−ダである。この
吸着法の欠点は、前記したとおり、濃厚なガス状炭化水
素を含む放散ガスを処理する場合、多量の吸着熱が発生
するということである。
On the other hand, the advantage of the known adsorption method is that it is effective in treating a desorbed gas containing a dilute gaseous hydrocarbon which generates little heat of adsorption, and in this case, the concentration at the inlet is usually the same.
Below 1 VOL%, the concentration at the outlet is on the order of PPM. The disadvantage of this adsorption method is that, as mentioned above, a large amount of heat of adsorption is generated when treating a stripped gas containing a rich gaseous hydrocarbon.

【0031】この吸着熱を除去する冷媒として、蒸発潜
熱の大きな液体炭化水素(例えば液体ガソリン)を用いる
方法が開発されているが、前記したとおり危険を伴う。
また、冷媒として水又は低沸点で不燃性の四塩化炭素等
を用いることも考えられるが、前記したとおり、水の場
合、所望する冷却効果が期待できず、また、四塩化炭素
等の場合、吸着熱を奪って蒸発した四塩化炭素等を大気
中に放出することができず、沸点以下に冷却して再度元
の液体に戻す必要があり、経済的ではない。
A method using liquid hydrocarbon (for example, liquid gasoline) having a large latent heat of vaporization as a refrigerant for removing the heat of adsorption has been developed, but it involves danger as described above.
It is also possible to use water or a low boiling point nonflammable carbon tetrachloride or the like as the refrigerant, but as described above, in the case of water, the desired cooling effect cannot be expected, and in the case of carbon tetrachloride or the like, It is not economical because it is not possible to release the vaporized carbon tetrachloride and the like by absorbing the heat of adsorption to the atmosphere, and it is necessary to cool it to the boiling point or lower and return it to the original liquid again.

【0032】そこで、本発明は、濃厚なガス状炭化水素
を含む放散ガスの処理法として有効な吸収法又はガス分
離膜法と、希薄なガス状炭化水素を含む放散ガスの処理
法として有効な吸着法とを併用することを意図したもの
である。そして、この吸収法又はガス分離膜法と吸着法
とを併用するシステムを構築するに当たり、この併用の
メリットを生かすため、吸収法の場合は真空容器の真空
度を軽減して、また、ガス分離膜法の場合は膜にかける
放散ガス圧力を軽減して、次工程の吸着塔に導入するガ
ス中の炭化水素濃度を1VOL%に近づけるのではなく、
5VOL%程度の比較的高い炭化水素濃度にすることによ
って、この吸収法又はガス分離膜法による放散ガス処理
工程を極めて簡略化し、且つ小さな処理装置にする。
Therefore, the present invention is effective as an absorption method or a gas separation membrane method that is effective as a treatment method for a desorbed gas containing rich gaseous hydrocarbons, and an effective method as a treatment method for a desorbed gas containing dilute gaseous hydrocarbons. It is intended to be used together with the adsorption method. And in constructing a system that uses this absorption method or gas separation membrane method and adsorption method together, in order to take advantage of this combined use, in the case of the absorption method, the degree of vacuum of the vacuum container is reduced and gas separation is also performed. In the case of the membrane method, the pressure of the emitted gas applied to the membrane is reduced so that the hydrocarbon concentration in the gas introduced into the adsorption tower in the next step does not approach 1 VOL%.
By setting the hydrocarbon concentration to a relatively high level of about 5 VOL%, the process of treating the emission gas by the absorption method or the gas separation membrane method is extremely simplified and the processing apparatus becomes small.

【0033】上記処理工程に続く吸着法による処理工程
(以下“吸着工程”という)では、吸着塔に導入するガス
中の炭化水素濃度は、通常実施されている1VOL%以下
(入口濃度)に比べればかなり濃いため、吸着層の温度が
高くなる。しかしながら、本発明は、本発明者等が提案
する新規な真空加熱再生吸着法(PTSA法)による吸着
熱除去法を採用し、これによって吸着工程を簡素にし、
且つ小さな装置にすることが可能となり、これによっ
て、これまで実現が困難であった「濃厚なガス状炭化水
素を含む放散ガスを処理し、大気中に排出するガス中の
残存炭化水素濃度を1VOL%以下にする」ことが容易
に、しかも小型装置により実施することができ、極めて
経済的に有利なシステムを構築することができる。
Treatment step by adsorption method following the above treatment step
In (hereinafter referred to as "adsorption step"), the concentration of hydrocarbons in the gas introduced into the adsorption tower is 1 VOL% or less, which is usually carried out.
Since it is considerably darker than the (inlet concentration), the temperature of the adsorption layer rises. However, the present invention employs a novel vacuum heat regeneration adsorption method (PTSA method) proposed by the present inventors to remove the heat of adsorption, thereby simplifying the adsorption step,
Moreover, it is possible to make it into a small device, which has been difficult to achieve until now by treating the emission gas containing rich gaseous hydrocarbons and reducing the residual hydrocarbon concentration in the gas discharged to the atmosphere to 1 vol. % Or less ”can be easily implemented with a small device, and a very economically advantageous system can be constructed.

【0034】ここで本発明で採用する新規な真空加熱再
生吸着法(PTSA法:Pressure and Temperature Swing Ads
orption method)による吸着熱除去法について説明す
る。本発明者等は、吸着熱を除去するための冷媒として
水を用い、吸着熱によって際限なく上昇する吸着層内の
温度を安全な温度範囲内にコントロ−ルするべく冷却水
の真空度を該温度に連動させることにより吸着層内の温
度を任意に設定し、そして、冷却水を排出することなく
循環使用することが可能になる方法を見いだした。
Here, the novel vacuum heating regeneration adsorption method (PTSA method: Pressure and Temperature Swing Ads) adopted in the present invention is used.
The adsorption heat removal method by the orption method will be described. The present inventors have used water as a refrigerant for removing the heat of adsorption, and set the degree of vacuum of cooling water to control the temperature in the adsorption layer, which is endlessly increased by the heat of adsorption, within a safe temperature range. The inventors have found a method in which the temperature in the adsorption layer can be set arbitrarily by linking with the temperature, and the cooling water can be circulated and used without being discharged.

【0035】具体的には、吸着剤を内蔵した吸着塔であ
って、 ・該吸着塔の内部に冷媒としての水を供給する内筒、管
あるいはコイルを埋設した吸着塔を使用し、及び/又
は、 ・ジャケットにコイルを巻き付け或いはジャケット内に
冷媒としての水を供給する吸着塔を使用し、上記内筒、
管、コイル、ジャケット内に冷媒としての水を循環さ
せ、吸着熱を除去する方法であり、この際、冷却水の真
空度を吸着層内の温度に連動させることにより、吸着層
内の温度を任意に設定できるようにしたものである。
Specifically, it is an adsorption tower containing an adsorbent, which uses an adsorption tower in which an inner cylinder for supplying water as a refrigerant, a pipe or a coil is embedded inside the adsorption tower, and / or Or, using an adsorption tower in which a coil is wound around the jacket or water as a refrigerant is supplied into the jacket,
This is a method to circulate water as a refrigerant in a pipe, a coil, and a jacket to remove heat of adsorption. At this time, the temperature in the adsorption layer is controlled by linking the vacuum degree of cooling water with the temperature in the adsorption layer. It can be set arbitrarily.

【0036】なお、上記吸着塔として、その内部に内筒
を埋設した吸着塔にあっては、該吸着塔に対して縦断な
いしは横断するように1つ又はその外側にさらに1以上
の内筒を配設した吸着塔であって、該内筒の内・外部に
吸着剤を挿入した吸着塔を使用することができる。ま
た、吸着塔として、その内部に管を埋設した吸着塔にあ
っては、該吸着塔に対して縦断ないしは横断するように
1以上の管を配設した吸着塔であって、該管の外側に吸
着剤を挿入した吸着塔を使用することができる。
In the case of an adsorption tower having an inner cylinder embedded therein as the adsorption tower, one or more inner cylinders may be provided on the outer side of the adsorption tower so as to cross or cross the adsorption tower. An adsorption tower in which an adsorbent is inserted inside and outside the inner cylinder can be used. Further, in the case of an adsorption tower having a tube embedded therein as the adsorption tower, the adsorption tower is one in which one or more tubes are arranged so as to cross or cross the adsorption tower, and the outside of the tube. An adsorption tower in which an adsorbent is inserted can be used.

【0037】そして、吸着塔内の吸着層の温度は、プロ
グラマブル指示計でTIC(Temperature Indicator Contro
ller)の信号とPIC(Pressure Indicator Controller)と
の信号とを比較し、常時TICの設定値(例えば60℃)をキ
−プするように、PIC弁をコントロ−ルして真空度を調
整するようにしたものである(後記図2参照)。
The temperature of the adsorption layer in the adsorption tower is measured by a programmable indicator TIC (Temperature Indicator Contro
ller) signal and PIC (Pressure Indicator Controller) signal are compared, and the PIC valve is controlled so that the TIC set value (for example, 60 ° C) is constantly kept and the vacuum degree is adjusted. (See FIG. 2 below).

【0038】周知のように水の沸点は真空度によって決
まり、安全な温度として約60℃が適当であれば、150mmH
gの減圧下で水を循環させることによって、60℃の水の
沸点に基づく蒸発潜熱(〉540Kcal/Kg)を吸着層から
奪って自らは気化する。この気化した水のベ−パ−(水
蒸気)は、循環水の貯槽の上部を真空ポンプ若しくはス
チ−ムエジェクタ−を用いて吸引し、大気中に吐出さ
せ、系外に排出させる。
As is well known, the boiling point of water is determined by the degree of vacuum, and if a safe temperature of about 60 ° C. is appropriate, 150 mmH
By circulating water under a reduced pressure of g, latent heat of vaporization (> 540Kcal / Kg) based on the boiling point of water at 60 ° C is taken from the adsorption layer and vaporized by itself. The vaporized water vapor (steam) is sucked into the upper part of the circulating water storage tank by using a vacuum pump or a steam ejector, discharged into the atmosphere, and discharged outside the system.

【0039】また、本発明で採用する真空加熱再生吸着
法(PTSA法)によれば、水の沸点は真空度を変えるこ
とにより任意に設定できるので、これを吸着塔の温度に
連動させて真空度や減圧水の循環量を変えることによ
り、吸着層内の温度を安全な範囲にキ−プすることがで
きる。
Further, according to the vacuum heating regeneration adsorption method (PTSA method) adopted in the present invention, the boiling point of water can be arbitrarily set by changing the degree of vacuum. The temperature in the adsorption layer can be kept within a safe range by changing the temperature and the circulating amount of the reduced pressure water.

【0040】本発明における吸着工程において、真空加
熱再生吸着法(PTSA法)を選んだ理由は、以下のとお
りである。即ち、従来から用いられている真空再生吸着
法(PSA法)は、放散ガス中の炭化水素を活性炭乃至合
成ゼオライトに吸着させ置換パ−ジを行った後、真空ポ
ンプにて炭化水素を脱着させることにより、放散ガス中
の炭化水素を高濃度で回収することができるが、真空ポ
ンプで吸引する前の予備処理としての置換パ−ジ(N2、O
2)の際の置換ガスは、製品ガス、即ち真空ポンプで吸引
したガス状炭化水素を用いている。
The reason why the vacuum heating regeneration adsorption method (PTSA method) is selected in the adsorption step of the present invention is as follows. That is, in the conventional vacuum regeneration adsorption method (PSA method), the hydrocarbon in the desorbed gas is adsorbed on the activated carbon or synthetic zeolite to carry out the substitution purge, and then the hydrocarbon is desorbed by the vacuum pump. Thus, the hydrocarbon in the stripped gas can be recovered at a high concentration, but the replacement purge (N 2 , O as a pretreatment before being sucked by the vacuum pump).
As the replacement gas in 2 ), the product gas, that is, the gaseous hydrocarbon sucked by the vacuum pump is used.

【0041】しかし、このパ−ジガスの量は、製品ガス
の数倍にもなるため、該ガスの循環に要する動力が非常
に大きなものになる。そこで本発明では、前記したPT
SA法を用いることにより、吸着完了後吸着層をヒ−タ
−或いは熱交換器を用いて加熱し、吸着剤中の高濃度炭
化水素を脱着させるものであり、そのため置換パ−ジ工
程を省略できるという顕著な利点を有する。
However, since the amount of this purge gas is several times that of the product gas, the power required to circulate the gas becomes very large. Therefore, in the present invention, the above-mentioned PT
By using the SA method, the adsorption layer is heated after the completion of adsorption by using a heater or a heat exchanger to desorb high-concentration hydrocarbons in the adsorbent, and therefore the substitution purge step is omitted. It has the significant advantage of being able to.

【0042】本発明において、使用する吸着剤について
は、限定するものではないが、合成ゼオライト、特に活
性シリカが好適である。また、本発明は、これも限定す
るものではないが、ガソリン蒸気含有放散ガスの処理・
回収に好適であり、その他ベンゼン、アセトン、メタノ
−ルなどの低沸点の炭化水素を含む放散ガスにも適用で
き、これも本発明に包含されるものである。
In the present invention, the adsorbent used is not limited, but synthetic zeolite, particularly activated silica is preferable. The present invention also includes, but is not limited to, the treatment of diffused gas containing gasoline vapor.
It is suitable for recovery and can be applied to other emission gases containing low boiling point hydrocarbons such as benzene, acetone and methanol, which are also included in the present invention.

【0043】[0043]

【実施例】次に、本発明の実施例を図1及び図2に基づ
いて説明する。図1は、本発明の一実施例を説明するた
めの炭化水素処理・回収装置を示したもので、前段に吸
収法を用いた場合の図である。また、図2は、吸着塔の
除熱についての本発明の真空加熱再生吸着法(PTSA
法)の一例を示す図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows a hydrocarbon treatment / recovery device for explaining an embodiment of the present invention, and is a diagram in the case where an absorption method is used in the preceding stage. Further, FIG. 2 shows the vacuum heating regeneration adsorption method (PTSA) of the present invention for removing heat from the adsorption tower.
FIG.

【0044】図1に示すように、炭化水素類(ガソリン)
の貯蔵タンク1から放散される約40VOL%のガソリンベ
−パ−は、導管2を経て吸収塔3に入る。吸収塔3の頂
部では、揮発しない重質な吸収液4が散布され、この中
にガソリンベ−パ−が吸収される。
As shown in FIG. 1, hydrocarbons (gasoline)
40 vol% of gasoline vapor discharged from the storage tank 1 of the above enters the absorption tower 3 via the conduit 2. At the top of the absorption tower 3, a heavy non-volatile absorption liquid 4 is sprayed, and the gasoline vapor is absorbed therein.

【0045】吸収塔3の底部から排出されたガソリンを
含む吸収液4′は真空槽5に入る。この槽5は、真空ポ
ンプ6によって約30mmHgの真空度に保たれている。真空
槽5において、ガソリンを蒸発分離した吸収液4は、ポ
ンプ(図示せず)により再度吸収塔3の頂部に戻し、循環
使用する。
The absorption liquid 4 ′ containing gasoline discharged from the bottom of the absorption tower 3 enters the vacuum tank 5. The tank 5 is kept at a vacuum degree of about 30 mmHg by a vacuum pump 6. In the vacuum tank 5, the absorption liquid 4 obtained by evaporating and separating gasoline is returned to the top of the absorption tower 3 again by a pump (not shown), and is recycled.

【0046】一方、真空ポンプ6で吸引されたガソリン
ベ−パ−は、100VOL%に近い濃度で回収塔7に導入す
る。回収塔7の頂部には、別に設けられているガソリン
タンク(図示せず)からのフレッシュな液体ガソリンが散
布され、この中にガソリンベ−パ−が溶け込み、そのま
ま元のガソリンタンクに戻して回収する。
On the other hand, the gasoline vapor sucked by the vacuum pump 6 is introduced into the recovery tower 7 at a concentration close to 100 VOL%. On the top of the recovery tower 7, fresh liquid gasoline is sprayed from a separately provided gasoline tank (not shown), and the gasoline vapor is melted into this and returned to the original gasoline tank for recovery. .

【0047】吸収塔3の頂部から排出される排気ガス8
は、2〜5VOL%のガソリンベ−パ−を含んでおり、この
ガスをブロワ−9及び水によるク−ラ−10を経て吸着塔
11、12に送る。吸着塔11、12は、吸着工程と脱着工程と
を交互に切り換えながら運転する。この切り換え時間は
3〜10分である。
Exhaust gas 8 discharged from the top of the absorption tower 3
Contains 2 to 5 VOL% of gasoline vapor, and this gas is passed through a blower 9 and a cooler 10 with water to an adsorption tower.
Send to 11, 12. The adsorption towers 11 and 12 are operated by alternately switching the adsorption process and the desorption process. This switching time is
3 to 10 minutes.

【0048】吸着工程を終えた後、吸着塔11、12は加熱
用交換器で安全な温度範囲まで加熱され、更に真空ポン
プ13で吸引することにより脱着させる。脱着したガソリ
ンベ−パ−は、回収塔7に戻して液体ガソリンとして回
収する。吸着塔11(脱着工程に切り換え後は吸着塔12)の
頂部から排出されるクリ−ンな乾燥ガスは、1VOL%以
下のガソリンベ−パ−を含む湿分のある空気として大気
中に放出する。
After the adsorption step is completed, the adsorption towers 11 and 12 are heated to a safe temperature range by a heating exchanger, and further desorbed by sucking with a vacuum pump 13. The desorbed gasoline vapor is returned to the recovery tower 7 and recovered as liquid gasoline. The clean dry gas discharged from the top of the adsorption tower 11 (the adsorption tower 12 after switching to the desorption step) is released into the atmosphere as humid air containing 1 vol% or less of gasoline vapor.

【0049】図2は、吸着塔の除熱についての本発明の
真空加熱再生吸着法(PTSA法)の一例を示す図であ
る。図2において、吸着層22を内蔵する吸着塔20の内部
には、コイル21が埋め込まれており、この中を減圧水23
が50〜60℃の沸点を持ったまま循環しており、この減圧
水23は真空容器24に貯えられる。
FIG. 2 is a diagram showing an example of the vacuum heating regeneration adsorption method (PTSA method) of the present invention for removing heat from the adsorption tower. In FIG. 2, a coil 21 is embedded inside an adsorption tower 20 containing an adsorption layer 22, and decompressed water 23
Circulates while having a boiling point of 50 to 60 ° C., and this reduced pressure water 23 is stored in a vacuum container 24.

【0050】真空容器24は、真空ポンプ25で吸引するこ
とにより一定の真空度に保たれている。真空ポンプ25の
吐出ガスは、水蒸気であるので大気に放出しても差し支
えない。吸着層22の温度は、プログラマブル指示計でTI
C(Temperature Indicator Controller)の信号とPIC(Pre
ssure Indicator Controller)との信号とを比較して、
常時TICの設定値(例えば60℃)をキ−プするように、PIC
V(PIC弁)をコントロ−ルして真空度を調整する。
The vacuum container 24 is maintained at a constant degree of vacuum by sucking with a vacuum pump 25. Since the gas discharged from the vacuum pump 25 is water vapor, it may be released into the atmosphere. The temperature of the adsorption layer 22 can be measured by TI
C (Temperature Indicator Controller) signal and PIC (Pre
ssure Indicator Controller)
Always keep the TIC set value (for example, 60 ° C) so that the PIC
Control the V (PIC valve) to adjust the vacuum level.

【0051】また、真空容器24にはLI(Level Indicato
r)が設けられており、循環水(減圧水23)の途中には水の
補給口26が設けられている。
Further, the vacuum container 24 has a LI (Level Indicato
r) is provided, and a water supply port 26 is provided in the middle of the circulating water (reduced pressure water 23).

【0052】[0052]

【発明の効果】本発明は、以上詳記したとおり、公知の
ガス分離膜法又は吸収法と吸着法とを併用するにあた
り、吸着法として新規な真空加熱再生吸着法を採用する
ことを特徴とし、これにより、これまで実現が困難であ
った「濃厚なガス状炭化水素を含む放散ガスを処理し、
大気中に排出するガス中の残存炭化水素濃度を1VOL%
以下にする」ことが容易に、しかも小型装置により実施
することができる効果が生じる。
As described above in detail, the present invention is characterized in that when the known gas separation membrane method or absorption method is used in combination with the adsorption method, a novel vacuum heating regeneration adsorption method is adopted as the adsorption method. , Which has been difficult to realize until now, "to process the emission gas containing rich gaseous hydrocarbons,
The residual hydrocarbon concentration in the gas discharged into the atmosphere is 1 VOL%
The effect that "the following" can be performed easily and can be performed by a small device is produced.

【0053】そして、本発明によれば、大気汚染物質で
あるガス状炭化水素を処理・回収する方法において、従
来用いられていた吸収法或いはガス分離膜法では到底達
成できなかった米国の環境保護局(EPA)が定めた1VOL%
以下の規制値を完全にクリヤ−でき、さらに厳しくなる
ことが予想される規制値にも充分対応できるシステムを
構築することができる。
Further, according to the present invention, in the method of treating and recovering gaseous hydrocarbons which are air pollutants, the environmental protection in the United States which could not be achieved at all by the absorption method or the gas separation membrane method which has been conventionally used. 1VOL% established by the Bureau (EPA)
It is possible to construct a system that can completely clear the following regulation values and can sufficiently cope with the regulation values that are expected to become stricter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための炭化水素処
理・回収装置を示したもので、前段に吸収法を用いた場
合の図。
FIG. 1 is a diagram showing a hydrocarbon treatment / recovery device for explaining an embodiment of the present invention, and is a diagram in the case where an absorption method is used in the preceding stage.

【図2】吸着塔の除熱についての本発明の真空加熱再生
吸着法(PTSA法)の一例を示す図。
FIG. 2 is a diagram showing an example of the vacuum heating regeneration adsorption method (PTSA method) of the present invention for removing heat from an adsorption tower.

【符号の説明】[Explanation of symbols]

1 貯蔵タンク 2 導管 3 吸収塔 4、4′吸収液 5 真空槽 6 真空ポンプ 7 回収塔 8 排気ガス 9 ブロワ− 10 ク−ラ− 11、12 吸着塔 13 真空ポンプ 20 吸着塔 21 コイル 22 吸着層 23 減圧水 24 真空容器 25 真空ポンプ 26 水の補給口 1 Storage Tank 2 Conduit 3 Absorption Tower 4, 4'Absorption Liquid 5 Vacuum Tank 6 Vacuum Pump 7 Recovery Tower 8 Exhaust Gas 9 Blower 10 Cooler 11, 12 Adsorption Tower 13 Vacuum Pump 20 Adsorption Tower 21 Coil 22 Adsorption Layer 23 Decompressed Water 24 Vacuum Container 25 Vacuum Pump 26 Water Supply Port

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C10L 3/10 ZAB ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C10L 3/10 ZAB

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 濃厚なガス状炭化水素を含む放散ガスを
処理し、上記ガス状炭化水素を回収する方法において、
吸収法又はガス分離膜法と真空加熱再生吸着法とを組み
合せることを特徴とする放散ガスに含まれる濃厚なガス
状炭化水素の処理・回収方法。
1. A method for recovering the above-mentioned gaseous hydrocarbon by treating an emission gas containing rich gaseous hydrocarbon,
A method for treating and recovering a rich gaseous hydrocarbon contained in a released gas, which is characterized by combining an absorption method or a gas separation membrane method and a vacuum heating regeneration adsorption method.
【請求項2】 前記真空加熱再生吸着法は、吸着層内部
に大気圧以下の蒸気圧を持つ減圧水を導入する内筒、管
あるいはコイルを埋設し及び/又はジャケットにコイル
を巻き付け或いはジャケット内に該減圧水を供給する吸
着装置を使用し、吸着層内部の温度を80℃以下に保持す
ることを特徴とする請求項1記載の放散ガスに含まれる
濃厚なガス状炭化水素の処理・回収方法。
2. In the vacuum heating regeneration adsorption method, an inner cylinder, pipe or coil for introducing decompressed water having a vapor pressure below atmospheric pressure is embedded in the adsorption layer and / or a coil is wound around a jacket or in a jacket. The treatment and recovery of the rich gaseous hydrocarbon contained in the desorbed gas according to claim 1, characterized in that an adsorption device for supplying the reduced pressure water is used to maintain the temperature inside the adsorption layer at 80 ° C or lower. Method.
【請求項3】 吸着熱の発生によって生じる吸着層内部
の温度上昇をコントロ−ルする手段として、循環水の循
環経路内に真空装置を配設し、循環水の蒸気圧、即ち真
空度を任意に変えるようにすることを特徴とする請求項
1記載の放散ガスに含まれる濃厚なガス状炭化水素の処
理・回収方法。
3. As a means for controlling the temperature rise inside the adsorption layer caused by the generation of heat of adsorption, a vacuum device is provided in the circulation path of the circulating water, and the vapor pressure of the circulating water, that is, the degree of vacuum is arbitrarily set. The method for treating and recovering the rich gaseous hydrocarbon contained in the emitted gas according to claim 1, wherein
【請求項4】 吸着塔から大気に排出されるクリ−ンな
ガス中の炭化水素濃度を1VOL%以下にすることを特徴
とする請求項1記載の放散ガスに含まれる濃厚なガス状
炭化水素の処理・回収方法。
4. The rich gaseous hydrocarbon contained in the stripped gas according to claim 1, wherein the hydrocarbon concentration in the clean gas discharged from the adsorption tower to the atmosphere is 1 vol% or less. How to process and recover.
JP7023377A 1994-02-28 1995-01-18 Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas Expired - Lifetime JP2840563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023377A JP2840563B2 (en) 1994-02-28 1995-01-18 Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5451494 1994-02-28
JP6-54514 1994-02-28
JP7023377A JP2840563B2 (en) 1994-02-28 1995-01-18 Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas

Publications (2)

Publication Number Publication Date
JPH07284623A true JPH07284623A (en) 1995-10-31
JP2840563B2 JP2840563B2 (en) 1998-12-24

Family

ID=26360733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023377A Expired - Lifetime JP2840563B2 (en) 1994-02-28 1995-01-18 Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas

Country Status (1)

Country Link
JP (1) JP2840563B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020618A1 (en) * 1995-12-06 1997-06-12 Cosmo Engineering Co., Ltd. Method of treating or recovering gaseous hydrocarbon contained in waste gas
CN105617854A (en) * 2015-12-29 2016-06-01 中国石油化工股份有限公司 Method for treating waste gas of heavy dirty oil storage tank
CN105854519A (en) * 2016-06-10 2016-08-17 成都中科能源环保有限公司 Mixed gas separation method and system
CN106215616A (en) * 2016-08-29 2016-12-14 合肥合意环保科技工程有限公司 A kind of administering method of gaseous contaminant
JP6259135B1 (en) * 2017-01-20 2018-01-10 俊洋 都留 Heat dissipation promotion device for heat dissipation member of cooling device
CN110234418A (en) * 2017-02-03 2019-09-13 液体空气先进技术美国有限责任公司 For removing H from biogas2S and CO2Integrated PTSA/ film method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003227182A1 (en) 2002-03-29 2003-10-13 Mitsui Chemicals, Inc. Method of recycling waste gas in polymer production plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020618A1 (en) * 1995-12-06 1997-06-12 Cosmo Engineering Co., Ltd. Method of treating or recovering gaseous hydrocarbon contained in waste gas
US6066192A (en) * 1995-12-06 2000-05-23 Cosmo Engineering Co., Ltd. Method of treating or recovering gaseous hydrocarbon contained in waste gas
CN105617854A (en) * 2015-12-29 2016-06-01 中国石油化工股份有限公司 Method for treating waste gas of heavy dirty oil storage tank
CN105854519A (en) * 2016-06-10 2016-08-17 成都中科能源环保有限公司 Mixed gas separation method and system
CN106215616A (en) * 2016-08-29 2016-12-14 合肥合意环保科技工程有限公司 A kind of administering method of gaseous contaminant
JP6259135B1 (en) * 2017-01-20 2018-01-10 俊洋 都留 Heat dissipation promotion device for heat dissipation member of cooling device
CN110234418A (en) * 2017-02-03 2019-09-13 液体空气先进技术美国有限责任公司 For removing H from biogas2S and CO2Integrated PTSA/ film method and system

Also Published As

Publication number Publication date
JP2840563B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
KR100427676B1 (en) Process or recovery of gaseous hydrocarbons contained in waste gas
US3534529A (en) Process for recovering organic vapors from airstream
CA1149308A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CA1132061A (en) Process and apparatus for recovering hydrocarbons from air-hydrogen vapor mixtures
CA1137426A (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
JP2007105657A (en) Gas treatment apparatus
CN110124437A (en) A kind of purification of methylene chloride and recovery method and system
JPH07284623A (en) Method for treating and recovering concentrated gaseous hydrocarbon contained in discharged gas
JP3011094B2 (en) Treatment and recovery of gaseous hydrocarbons contained in waste gas
US7294173B2 (en) Method and system for desorption and recovery of desorbed compounds
JP3133988B2 (en) Equipment for treating lean gaseous hydrocarbons contained in waste gas
KR100582718B1 (en) Method and equipment for continuous vacuum thermal regeneration of adsorbent and recovery of adsorbate
JP2925522B2 (en) Method for recovering hydrocarbons in liquid form from waste gas containing gaseous hydrocarbons
KR101167207B1 (en) The apparatus for volatile organic compoundsand and method for recovery of volatile organic compounds
KR20020057852A (en) A Method for Recovery and Removal of Volatile Organic Compounds, and An Apparatus Using the Method
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JPH06226029A (en) Method for recovering solvent
JP4911139B2 (en) Removal and recovery of volatile organic compounds
KR200287399Y1 (en) An Apparatus for Recovery and Removal of Volatile Organic Compounds
JP4973817B2 (en) Removal and recovery of volatile organic compounds
JPH08150319A (en) Method for recovering solvent and device therefor
KR101134520B1 (en) A Recovery and Preservation Apparatus of CO2 Discharged by the Incineration Facilities
JP2005095858A (en) Cleaning method of exhaust gas containing volatile hydrocarbon
JP3788814B2 (en) Solvent recovery method
JPH03288519A (en) Solvent recovery method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101016

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111016

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term