WO2024070920A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2024070920A1
WO2024070920A1 PCT/JP2023/034424 JP2023034424W WO2024070920A1 WO 2024070920 A1 WO2024070920 A1 WO 2024070920A1 JP 2023034424 W JP2023034424 W JP 2023034424W WO 2024070920 A1 WO2024070920 A1 WO 2024070920A1
Authority
WO
WIPO (PCT)
Prior art keywords
altitude
control method
cell
information
communication control
Prior art date
Application number
PCT/JP2023/034424
Other languages
English (en)
French (fr)
Inventor
真人 藤代
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024070920A1 publication Critical patent/WO2024070920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure relates to a communication control method in a mobile communication system.
  • 3GPP The Third Generation Partnership Project
  • a standardization project for mobile communication systems stipulate that an aerial UE is included (e.g., Non-Patent Document 1 and Non-Patent Document 2).
  • an aerial UE can report its altitude and its location information, including its vertical and horizontal speeds.
  • 3GPP provides appropriate support for communication with aerial UEs flying in the sky.
  • a communication control method is a communication control method in a mobile communication system.
  • the communication control method includes a step of transmitting altitude information regarding the altitude of the user device to the network node when the user device establishes an RRC connection to the network node (or network device) or after the RRC connection to the network node is established.
  • a communication control method is a communication control method in a mobile communication system.
  • the communication control method includes a step in which a user device receives aerial cell information regarding an aerial cell notified from an adjacent cell, and a step in which the user device transmits the aerial cell information to a serving cell.
  • a communication control method is a communication control method in a mobile communication system.
  • the communication control method includes a step in which a network node either transmits aerial cell information related to an aerial cell to an adjacent network node, or receives aerial cell information from an adjacent network node.
  • FIG. 1 is a diagram illustrating an example of the configuration of a mobile communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a UE (user equipment) according to the first embodiment.
  • Figure 3 is a diagram showing an example configuration of a gNB (base station) according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the configuration of a protocol stack related to a user plane according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the configuration of a protocol stack related to a control plane according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a cell configuration according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of an operation according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of an operation according to the second embodiment.
  • FIG. 9 is a diagram illustrating another operation example according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of operation
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to a first embodiment.
  • the mobile communication system 1 complies with the 3GPP standard 5th Generation System (5GS).
  • 5GS is taken as an example, but the mobile communication system may be at least partially applied to an LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • 6G 6th Generation
  • the mobile communication system 1 has a user equipment (UE) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20.
  • UE user equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network
  • the NG-RAN 10 may be simply referred to as the RAN 10.
  • the 5GC 20 may be simply referred to as the core network (CN) 20.
  • UE100 is a mobile wireless communication device.
  • UE100 may be any device that is used by a user.
  • UE100 is a mobile phone terminal (including a smartphone) and/or a tablet terminal, a notebook PC, a communication module (including a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (Vehicle UE), or an aircraft or a device provided in an aircraft (Aerial UE).
  • NG-RAN10 includes base station (called “gNB” in 5G system) 200.
  • gNB200 are connected to each other via Xn interface, which is an interface between base stations.
  • gNB200 manages one or more cells.
  • gNB200 performs wireless communication with UE100 that has established a connection with its own cell.
  • gNB200 has a radio resource management (RRM) function, a routing function for user data (hereinafter simply referred to as “data”), a measurement control function for mobility control and scheduling, etc.
  • RRM radio resource management
  • Cell is used as a term indicating the smallest unit of a wireless communication area.
  • Cell is also used as a term indicating a function or resource for performing wireless communication with UE100.
  • One cell belongs to one carrier frequency (hereinafter simply referred to as "frequency").
  • gNB200 can also be connected to EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations eNB: evolved Node B
  • 5GC20 5GC20
  • LTE base stations and gNB200 can also be connected via an inter-base station interface.
  • the 5GC20 includes an Access and Mobility Management Function (AMF) and a User Plane Function (UPF) 300.
  • the AMF performs various mobility controls for the UE 100.
  • the AMF manages the mobility of the UE 100 by communicating with the UE 100 using Non-Access Stratum (NAS) signaling.
  • NAS Non-Access Stratum
  • the UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface, which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing an example of the configuration of a UE 100 (user equipment) according to the first embodiment.
  • the UE 100 includes a receiver 110, a transmitter 120, and a controller 130.
  • the receiver 110 and the transmitter 120 constitute a wireless communication unit that performs wireless communication with the gNB 200.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
  • the transmitting unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitting unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls and processes in the UE 100. Such processes include processes for each layer described below.
  • the control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used in the processes by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various processes. Note that the control unit 130 may perform each process or operation in the UE 100 in each of the embodiments described below.
  • FIG. 3 is a diagram showing the configuration of a gNB 200 (base station) according to the first embodiment.
  • the gNB 200 includes a transmitter 210, a receiver 220, a controller 230, and a backhaul communication unit 240.
  • the transmitter 210 and receiver 220 constitute a wireless communication unit that performs wireless communication with the UE 100.
  • the backhaul communication unit 240 constitutes a network communication unit that performs communication with the CN 20.
  • the transmitting unit 210 performs various transmissions under the control of the control unit 230.
  • the transmitting unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
  • the control unit 230 performs various controls and processes in the gNB 200. Such processes include processes in each layer described below.
  • the control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used in the processes by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various processes. Note that the control unit 230 may perform each process or operation in the gNB 200 in each of the embodiments described below.
  • the backhaul communication unit 240 is connected to adjacent base stations via an Xn interface, which is an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF/UPF 300 via an NG interface, which is an interface between a base station and a core network.
  • the gNB 200 may be composed of a CU (Central Unit) and a DU (Distributed Unit) (i.e., functionally divided), and the two units may be connected via an F1 interface, which is a fronthaul interface.
  • Figure 4 shows the protocol stack configuration of the wireless interface of the user plane that handles data.
  • the user plane radio interface protocol has a physical (PHY) layer, a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, a Packet Data Convergence Protocol (PDCP) layer, and a Service Data Adaptation Protocol (SDAP) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of UE100 and the PHY layer of gNB200 via a physical channel.
  • the PHY layer of UE100 receives downlink control information (DCI) transmitted from gNB200 on a physical downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • RNTI radio network temporary identifier
  • the DCI transmitted from gNB200 has CRC parity bits scrambled by the RNTI added.
  • the MAC layer performs data priority control, retransmission processing using Hybrid Automatic Repeat reQuest (HARQ), and random access procedures. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of gNB200 via a transport channel.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resource blocks to be assigned to UE100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE100 and the RLC layer of gNB200 via logical channels.
  • the PDCP layer performs header compression/decompression, encryption/decryption, etc.
  • the SDAP layer maps IP flows, which are the units for QoS (Quality of Service) control by the core network, to radio bearers, which are the units for QoS control by the AS (Access Stratum). Note that if the RAN is connected to the EPC, SDAP is not necessary.
  • Figure 5 shows the configuration of the protocol stack for the wireless interface of the control plane that handles signaling (control signals).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) instead of the SDAP layer shown in Figure 4.
  • RRC Radio Resource Control
  • NAS Non-Access Stratum
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC connection connection between the RRC of UE100 and the RRC of gNB200
  • UE100 is in an RRC connected state.
  • RRC connection no connection between the RRC of UE100 and the RRC of gNB200
  • UE100 is in an RRC idle state.
  • UE100 is in an RRC inactive state.
  • the NAS which is located above the RRC layer, performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS of UE100 and the NAS of AMF300.
  • UE100 also has an application layer in addition to the radio interface protocol.
  • the layer below the NAS is called the Access Stratum (AS).
  • UAV Unmanned Aerial Vehicle or Uncrewed Aerial Vehicle.
  • UAV Unmanned Aerial Vehicle
  • UAV Uncrewed Aerial Vehicle
  • UAV generally refers to an unmanned aerial vehicle such as a drone.
  • a UE located at an altitude equal to or higher than a predetermined threshold (or exceeding a predetermined threshold) is called a UAV.
  • the UAV may be a UE capable of wireless communication with the gNB200 while flying unmanned in the sky like an unmanned aerial vehicle.
  • the UAV may be provided on an unmanned aerial vehicle.
  • the UAV may be provided on a manned aerial vehicle.
  • a UE owned by a user on board the airplane may also be a UAV.
  • the UAV may be a UAV UE.
  • the UAV may be an aerial UE.
  • the UAV may be used to distinguish it from a UE used on the ground.
  • the UAV may be included in the UE as an example of the UE.
  • the UAV and the UE may be collectively referred to as a UE.
  • the example configuration of UE100 shown in FIG. 2 may represent an example configuration of a UAV.
  • 3GPP provides the following specifications for functions to support Aerial UE:
  • the flying UE can report its altitude.
  • the flying UE can report its altitude when its altitude is above or below a threshold.
  • the flying UE can also report location information.
  • the location information can also include the horizontal and vertical speed of the flying UE.
  • the LTE system network can request the flying UE to report flight route information.
  • the flight route information represents waypoints (passing point information or point information) (waypoints) on the route of the flying UE.
  • the flight route information may include multiple waypoints.
  • the waypoints are represented as three-dimensional position information.
  • the flying UE may report the flight route information including time information (timestamp) for each waypoint.
  • flying UE is supported (or whether it can be used as a flying UE) is included in the subscription information for each user.
  • the HSS Home Subscriber Server
  • the eNB which is the base station of the LTE system, under the control of the MME (Mobility Management Entity).
  • the eNB can determine whether to communicate wirelessly with the flying UE.
  • events H1 and H2 can be used as trigger conditions for a measurement report.
  • Event H1 represents an event condition when the altitude of the flying UE exceeds a threshold.
  • event H2 represents an event condition when the altitude of the flying UE falls below a threshold. Whether or not these event conditions are met is determined using a hysteresis value, an offset value, and a threshold value in addition to the altitude.
  • 3GPP has begun discussions on introducing UAVs into NR (New Radio). With regard to UAVs, 3GPP has agreed to use the above-mentioned events H1 and H2, to report the altitude, position, and speed of the UAV, and to report the flight path plan.
  • FIG 6 An example of a cell configuration is shown.
  • the mobile communication system 1 includes a ground cell and an air cell.
  • a ground cell is formed by gNB 200-T1 and gNB 200-T2
  • an air cell is formed by gNB 200-U.
  • FIG. 6 shows an example in which UEs 100-1 to 100-4 communicate wirelessly with gNBs 200-T1 and 200-T2 in the ground cells, and UAVs 150-1 and 150-2 communicate wirelessly with gNB 200-U in the air cell.
  • the first scenario is a scenario in which a dedicated frequency is assigned to the air cell, and different frequencies are used for the ground cell and the air cell.
  • wireless communication by UAVs 150-1 and 150-2 and wireless communication by UEs 100-1 to 100-4 are performed using different frequencies, making it possible to avoid interference between the two wireless communications.
  • the second scenario is a scenario in which the same frequency (or the same frequency range) is used for the ground cell and the aerial cell.
  • the second scenario since the ground cell and the aerial cell share the same frequency, there is no need to increase frequency resources. Therefore, the second scenario makes it possible to make effective use of frequency resources.
  • a problem when applying the second scenario in the mobile communication system 1 is interference.
  • UAV150-1 and 150-2 (hereinafter, when UAV150-1 and UAV150-2 are not distinguished from each other, they may be referred to as UAV150) perform uplink communication, there are cases where the radio signal reaches not only the serving cell and its adjacent cells but also a wider range. In such a case, when UAV150 and UE100 on the ground use the same frequency, the signal from UAV150 may cause interference.
  • wireless communication by UAV150 there is a problem specific to UAV that the influence of interference is larger than when UE100 on the ground performs wireless communication.
  • the mobile communication system 1 needs to quickly perform appropriate settings for the UAV 150 flying in the sky.
  • an information element (aerial UE subscription information) indicating whether or not a UE is permitted to function as an aerial UE can be sent from the HSS to the MME using an S6a message. This information element can then be sent from the MME to the eNB using an S1AP message.
  • the eNB can determine whether or not a UE is permitted to function as an aerial UE (or whether the UE has the capability of being an aerial UE).
  • the eNB cannot determine whether the UE is actually flying or not. Therefore, the eNB may not be able to identify that the UE is a UAV.
  • the gNB 200 may not be able to identify whether the UE 100 is a UAV 150 or not.
  • the objective is to enable the UE 100 to properly identify that it is a UAV 150. Specifically, in the first embodiment, the objective is to enable the gNB 200 to determine whether the UE 100 is flying at a certain altitude or higher.
  • a user device e.g., UE100 transmits altitude information regarding the altitude of the user device to a base station (e.g., gNB200) either when establishing an RRC connection with the base station or after the RRC connection with the base station is established.
  • a base station e.g., gNB200
  • gNB200 determines that UE100 is flying at an altitude exceeding a predetermined threshold based on the altitude information of UE100, it can identify that UE100 is flying in the sky, i.e., that UE100 is UAV150.
  • gNB200 can also quickly perform appropriate processing for UAV150, making it possible to avoid the interference problem in the second scenario.
  • FIG. 7 is a diagram illustrating an example of an operation according to the first embodiment.
  • step S10 UE100 transmits altitude information regarding its own altitude to gNB200.
  • UE100 in an RRC idle state or an RRC inactive state may transmit a message (Msg1) including altitude information to gNB200 using a random access resource (or a PRACH (Physical Random Access Channel) resource) dedicated to UAVs (unmanned aerial devices).
  • the random access resource dedicated to UAVs may be set in advance by gNB200.
  • the UE may transmit Msg3 (RRC Setup Request message) including altitude information instead of Msg1.
  • Msg5 RRC Setup Complete message
  • UE100 in the RRC connected state may transmit UE-assisted information (UAI) including altitude information to gNB200.
  • UAI UE-assisted information
  • UE100 may transmit altitude information when establishing an RRC connection to gNB200.
  • UE100 may transmit altitude information after establishing an RRC connection.
  • the information included in the altitude information may include, for example, the following. That is, the altitude information may include information indicating that UE100 has flight capability. Alternatively, the altitude information may include information regarding the current or past altitude of UE100. Information regarding past altitude may include time information (or time stamp). Alternatively, the altitude information may include information representing the altitude of UE100 using areas divided according to altitude (this information may be referred to as "area information"). The area information may be composed of, for example, three area information items, high altitude, low altitude, and terrestrial, according to the altitude. In this way, the altitude information may include area information according to the altitude of UE100 itself.
  • the altitude information may be represented by an altitude acquired by an altitude sensor (or a distance sensor such as radar or lidar) provided in UE100.
  • the altitude itself may be represented by sea level.
  • the altitude itself may be represented by altitude.
  • the altitude itself may be expressed as height above ground.
  • the trigger for UE100 to transmit altitude information is, for example, as follows. That is, UE100 may transmit altitude information when the current altitude is equal to or greater than the first threshold (or when the current altitude becomes higher than the first threshold).
  • the first threshold may be included in the SIB and notified by gNB200.
  • step S11 the gNB200 performs a predetermined process in response to receiving the altitude information.
  • gNB200 may perform UAV-specific measurement configuration for UE100 (i.e., UAV150).
  • the UAV-specific measurement configuration makes it possible to set trigger conditions (e.g., H1 or H2) for UAV150 to transmit a measurement report, and to set UAV-specific information (e.g., location information including altitude information) to be included in the measurement report.
  • gNB200 may perform the configuration by transmitting an RRC message (RRCReconfiguration message or RRCResume message) including the UAV-specific measurement configuration to UAV150.
  • RRC message RRCReconfiguration message or RRCResume message
  • gNB200 may handover UE100 to an appropriate frequency. For example, even in the second scenario, it is possible to use frequencies within the range of shared frequencies separately for UAVs and terrestrial UEs.
  • gNB200 may handover UAV150 to an air cell that uses a frequency dedicated to UAVs.
  • a measurement configuration may be set for UAV150 in which the threshold value used in the event condition is lower than in a certain case so that UAV150 can easily handover to the cell.
  • the second embodiment is an example in which a UE 100 in an RRC connected state with a serving cell 200-1 acquires aerial cell information related to the aerial cell from a neighboring cell (or neighboring gNB) 200-2, and transmits the acquired aerial cell information to the serving cell 200-1.
  • the user equipment receives aerial cell information regarding the aerial cell broadcast from a neighboring cell (e.g., neighboring cell 200-2).
  • the user equipment transmits the aerial cell information to a serving cell (e.g., serving cell 200-1).
  • gNB200-1 (or a serving cell) can grasp the airspace cell information used by adjacent gNB200-2 (or an adjacent cell). Then, gNB200-1 can also perform interference avoidance processing for UAV150 based on the airspace cell information. Therefore, gNB200-1 can take measures to solve the interference problem in the second scenario.
  • FIG. 8 is a diagram illustrating an example of an operation according to the second embodiment.
  • step S20 UE 100 is in an RRC connected state with serving cell 200-1 (or gNB 200-1).
  • the neighboring cell (or neighboring gNB) 200-2 adjacent to the serving cell 200-1 broadcasts a SIB (System Information Block) including aerial cell information related to the aerial cell.
  • the aerial cell information may include a cell ID of the aerial cell.
  • the aerial cell information may include information on a frequency (or an aerial frequency) used in the aerial cell.
  • the aerial cell information may be expressed in the form of a list of cell IDs and/or frequencies.
  • the neighboring cell may broadcast cell list information representing a cell list managed by the neighboring cell. An identifier indicating that the cell is an aerial cell may be assigned to each entry in the cell list in the cell list information.
  • the cell list entry to which an identifier indicating that the cell is an aerial cell is assigned may be the aerial cell information. That is, the neighboring cell 200-2 may broadcast cell list information including the aerial cell information.
  • step S22 the UE 100 identifies the aerial cell in response to receiving the SIB notified in step S21.
  • the UE 100 may store the cell ID of the aerial cell in a memory or the like, and identify the aerial cell by comparing it with the cell ID included in the aerial cell information received from the neighboring cell 200-2.
  • the UE 100 transmits the airspace cell information received from the neighboring cell 200-2 to the serving cell 200-1.
  • the UE 100's altitude is higher than the second threshold (or when the UE 100's altitude is equal to or higher than the second threshold)
  • the UE 100 may transmit the airspace cell information to the serving cell 200-1.
  • This allows the serving cell 200-1 to identify that the UE 100 is a UAV 150 flying in the air.
  • the UE 100 may transmit an RRC message including the airspace cell information to the serving cell 200-1.
  • the second threshold and the first threshold (threshold for determining whether or not to transmit altitude information) described in the first embodiment may be the same threshold or different thresholds.
  • the second threshold may be included in the SIB and broadcast from the serving cell 200-1, for example.
  • the serving cell may perform a predetermined process if the frequency used by the serving cell is different from the airspace frequency included in the airspace cell information received from the UE 100.
  • the predetermined process may be, for example, the following three:
  • the serving cell 200-1 performs transmission power control for the UE 100 as a predetermined process. For example, when the serving cell 200-1 identifies that the UE 100 is a UAV 150, it may use a transmission power control (TPC) command to control the UAV 150 to reduce its transmission power. This makes it possible to avoid interference caused by radio signals transmitted from the UAV 150.
  • TPC transmission power control
  • the serving cell 200-1 may hand over the UE 100 to an appropriate frequency, as in the first embodiment. For example, when the serving cell 200-1 identifies that the UE 100 is a UAV 150, the serving cell 200-1 may control the UAV 150 to hand over to an airspace cell that supports an airspace frequency.
  • the serving cell 200-1 may release the UE 100 in the RRC connected state to the RRC idle state or the RRC inactive state.
  • the serving cell 200-1 may release the UE 100 in the RRC connected state to the RRC idle state by transmitting an RRC release (RRCRelease) message to the UE 100 in the RRC connected state.
  • the serving cell 200-1 may also release the UE 100 to the RRC inactive state by transmitting an RRC release (RRCRelease) message including a suspend configuration (suspendconfig) to the UE 100 in the RRC connected state.
  • aerial cell information regarding the aerial cell is transmitted from the neighboring cell 200-2 to the serving cell 200-1 via the UE 100, but this is not limiting.
  • the gNB 200-1 and the neighboring gNB 200-2 can share aerial cell information by transmitting directly to each other without going through the UE 100.
  • a base station (e.g., gNB200-1) either transmits aerial cell information related to the aerial cell to an adjacent base station (e.g., adjacent gNB200-2) or receives aerial cell information from the adjacent base station.
  • the neighboring gNB200-2 can grasp the aerial cell information (e.g., the cell ID or the aerial cell frequency used in the aerial cell) used in the gNB200-1.
  • the neighboring gNB200-2 can also prepare interference avoidance processing for the UAV150 based on the aerial cell information. Therefore, the neighboring gNB200-2 can take measures to solve the interference problem in the second scenario.
  • FIG. 9 shows another example of operation according to the second embodiment.
  • the gNB 200-1 transmits aerial cell information to the adjacent gNB 200-2 when establishing an Xn connection with the adjacent gNB 200-2 or when making a setting change to the adjacent gNB 200-2.
  • the aerial cell information may be the same as that in the second embodiment.
  • the gNB 200-1 may transmit cell list information including the aerial cell information.
  • the gNB 200-1 may transmit an Xn connection establishment request (XN SETUP REQUEST) message including the aerial cell information to the adjacent gNB 200-2.
  • the gNB 200-1 may transmit an NG-RAN setting update (NG-RAN NODE CONFIGURATION UPDATE) message including the aerial cell information to the adjacent gNB 200-2.
  • NG-RAN setting update NG-RAN NODE CONFIGURATION UPDATE
  • step S31 gNB200-1 detects the connection of UAV150.
  • UAV150 enters an RRC connected state with gNB200-1.
  • gNB200-1 may perform a predetermined process.
  • the predetermined process may be transmission power control in a suppressing direction for UAV150, as in the second embodiment.
  • the predetermined process may be handing over UAV150 to an airspace cell (or airspace frequency), as in the second embodiment.
  • the predetermined process may be releasing UAV150 in an RRC connected state to an RRC idle state or an RRC inactive state, as in the second embodiment.
  • gNB200-1 transmits aerial cell information to adjacent gNB200-2
  • adjacent gNB200-2 may transmit aerial cell information related to the aerial cell that it manages to gNB200-1.
  • gNB200-1 transmits aerial cell information
  • adjacent gNB200-2 transmits aerial cell information, it is possible to share aerial cell information between gNB200-1 and adjacent gNB200-2.
  • a UE 100 i.e., a UAV 150 located at an altitude equal to or higher than a predetermined threshold transmits a PRACH preamble using random access resources dedicated to the UAV (or random access resources for the sky).
  • UAV 150 wireless communication by UAV 150 is more susceptible to interference than wireless communication by UE 100 on the ground.
  • various interference avoidance measures will be taken for UAV 150 in an RRC connected state.
  • the third embodiment aims to avoid interference in the random access procedure. Specifically, the third embodiment aims to avoid collisions in PRACH preamble transmissions.
  • a base station e.g., gNB200 sets random access resources dedicated to unmanned aerial vehicles (UAVs) to a user device (e.g., UE100).
  • a user device located at an altitude equal to or higher than a predetermined threshold transmits a PRACH preamble to a base station using random access resources dedicated to unmanned aerial vehicles (UAVs).
  • UE 100 (or UAV 150) transmits a PRACH preamble to gNB 200 using a random access resource dedicated to the UAV, and therefore collisions with PRACH preambles transmitted using other resources can be avoided. Therefore, in the third embodiment, interference in the random access procedure can be avoided.
  • the two embodiments differ in that in the third embodiment, the main purpose is to avoid interference, while in the first embodiment, the main purpose is for the gNB 200 to determine whether the UE 100 is located at an altitude equal to or higher than the first threshold.
  • the gNB 200 having determined that the gNB 200 is a UAV 150, is able to set interference avoidance measures for the UAV 150, so the two embodiments can be said to share the purpose of avoiding interference.
  • 3GPP Rel-17 introduced a common framework for PRACH Partitioning. This framework makes it possible to configure PRACH resources for each function, such as RedCap (Radio Reduced Capability), SDT (Small Data Transmission), or RAN Slicing.
  • FIG. 10 is a diagram illustrating an example of operation according to the third embodiment.
  • step S40 gNB200 sets PRACH resources dedicated to UAV to UE100.
  • a PRACH resource dedicated to the UAV may be set.
  • a PRACH resource dedicated to the UAV may be added to the PRACH resource for the ground UE 100.
  • a new information element e.g., "Aerial vehicles” indicating that the resource is dedicated to the UAV may be added to an information element (FeatureCombination) indicating a function or a set of functions related to the random access resource.
  • Information regarding the PRACH resource dedicated to the UAV may be set by an information element (RACH-ConfigCommon) indicating the PRACH resource.
  • a PRACH resource dedicated to the UAV may be set for each altitude.
  • a PRACH resource #1 dedicated to the UAV may be set for a first range of altitudes
  • a PRACH resource #2 dedicated to the UAV may be set for a second range of altitudes.
  • An information element (FeatureCombination) representing a function or a set of functions related to random access resources may include an information element (e.g., "Aerial vehicles list") shown in list format for each altitude.
  • multiple information elements (RACH-ConfigCommon) representing PRACH resources may be set for each altitude.
  • the PRACH resource may be indicated by a RACH common setting, a preamble number, and/or a radio resource number.
  • the preamble number may be indicated as a range of preamble numbers available as PRACH resources (e.g., a start number and an end number).
  • the radio resource number may also be indicated as a range of preamble numbers available as PRACH resources (e.g., a start number and an end number).
  • the radio resource itself may be represented by frequency and/or time.
  • step S41 UE 100 selects a PRACH resource according to its altitude, and transmits a PRACH preamble using the selected PRACH resource. If UE 100 determines that it is located at an altitude below a predetermined threshold (or equal to or less than the predetermined threshold) (i.e., located on the ground), it may transmit the PRACH preamble using a normal PRACH resource used as a terrestrial UE. Also, for example, if UE 100 determines that it is located at an altitude equal to or greater than a predetermined threshold (or exceeds the predetermined threshold), it may transmit the PRACH preamble using a PRACH resource dedicated to any UAV depending on the altitude.
  • a predetermined threshold or equal to or less than the predetermined threshold
  • the specified threshold value may be the same as the first threshold value described in the first embodiment, or may be the same as the second threshold value described in the second embodiment.
  • the base station is an NR base station (gNB)
  • the base station may be an LTE base station (eNB) or a 6G base station.
  • the base station may also be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the base station may be a DU of an IAB node.
  • the UE 100 may also be an MT (Mobile Termination) of an IAB node.
  • network node primarily refers to a base station, but may also refer to a core network device or part of a base station (CU, DU, or RU).
  • a program may be provided that causes a computer to execute each process performed by UE100 or gNB200.
  • the program may be recorded on a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • circuits that execute each process performed by UE100 or gNB200 may be integrated, and at least a part of UE100 or gNB200 may be configured as a semiconductor integrated circuit (chip set, SoC: System on a chip).
  • the terms “based on” and “depending on” do not mean “based only on” or “depending only on”, unless otherwise specified.
  • the term “based on” means both “based only on” and “based at least in part on”.
  • the term “depending on” means both “based only on” and “depending at least in part on”.
  • the terms “include” and “comprise” do not mean including only the items listed, but may include only the items listed, or may include additional items in addition to the items listed.
  • the term “or” as used in this disclosure is not intended to be an exclusive or. Additionally, any reference to elements using designations such as “first”, “second”, etc., as used in this disclosure is not intended to generally limit the quantity or order of those elements.
  • a communication control method in a mobile communication system comprising: A communication control method comprising a step of a user equipment transmitting altitude information regarding an altitude of the user equipment to the network node either when establishing an RRC connection to the network node or after the RRC connection to the network node is established.
  • Appendix 2 The communication control method described in Appendix 1, wherein the transmitting step includes a step in which the user equipment transmits a message including the altitude information to the network node using a random access resource dedicated to an unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle
  • a communication control method in a mobile communication system comprising: receiving, by a user equipment, aerial use cell information regarding an aerial use cell broadcast from a neighboring cell;
  • the communication control method includes a step of the user equipment transmitting the airspace cell information to a serving cell.
  • a communication control method in a mobile communication system comprising: A communication control method comprising the steps of: a network node transmitting aerial-use cell information relating to an aerial-use cell to an adjacent network node; and receiving the aerial-use cell information from the adjacent network node.
  • the transmitting step includes a step of the network node transmitting the airspace cell information to the adjacent network node when establishing a connection with the adjacent network node or when making a setting change to the adjacent network node, 10.
  • a communication control method in a mobile communication system comprising: A network node configures a user device with a random access resource dedicated to an unmanned aerial vehicle (UAV); The user equipment, located at an altitude equal to or higher than a predetermined threshold, transmits a PRACH preamble to the network node using a random access resource dedicated to the unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一態様に係る通信制御方法は、移動通信システムにおける通信制御方法である。前記通信制御方法は、ユーザ装置が、ネットワークノードに対してRRC接続を確立する際及びネットワークノードに対してRRC接続が確立した後のいずれかにおいて、当該ユーザ装置の高度に関する高度情報をネットワークノードへ送信するステップを有する。

Description

通信制御方法
 本開示は、移動通信システムにおける通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(The Third Generation Partnership Project)の仕様において、飛行UE(Aerial UE)が規定されている(例えば、非特許文献1及び非特許文献2)。例えば、飛行UEは、高度を報告したり、垂直速度及び水平速度を含む位置情報を報告したりすることが可能である。3GPPでは、このような仕様を通じて、上空を飛行する飛行UEとの通信を適切にサポートするようにしている。
3GPP TS 36.300 V17.1.0 (2022-6) 3GPP TS 36.331 V17.1.0 (2022-6)
 一態様に係る通信制御方法は、移動通信システムにおける通信制御方法である。前記通信制御方法は、ユーザ装置が、ネットワークノード(又はネットワーク装置)に対してRRC接続を確立する際及びネットワークノードに対してRRC接続が確立した後のいずれかにおいて、当該ユーザ装置の高度に関する高度情報をネットワークノードへ送信するステップを有する。
 また、一態様に係る通信制御方法は、移動通信システムにおける通信制御方法である。前記通信制御方法は、ユーザ装置が、隣接セルから報知された上空用セルに関する上空用セル情報を受信するステップと、ユーザ装置が、上空用セル情報をサービングセルへ送信するステップとを有する。
 更に、一態様に係る通信制御方法は、移動通信システムにおける通信制御方法である。前記通信制御方法は、ネットワークノードが、上空用セルに関する上空用セル情報を隣接ネットワークノードへ送信する、及び上空用セル情報を隣接ネットワークノードから受信することのいずれかを行うステップを有する。
図1は、第1実施形態に係る移動通信システムの構成例を表す図である。 図2は、第1実施形態に係るUE(ユーザ装置)の構成例を表す図である。 図3は、第1実施形態に係るgNB(基地局)の構成例を表す図である。 図4は、第1実施形態に係るユーザプレーンに関するプロトコルスタックの構成例を表す図である。 図5は、第1実施形態に係る制御プレーンに関するプロトコルスタックの構成例を表す図である。 図6は、第1実施形態に係るセル構成例を表す図である。 図7は、第1実施形態に係る動作例を表す図である。 図8は、第2実施形態に係る動作例を表す図である。 図9は、第2実施形態に係る他の動作例を表す図である。 図10は、第3実施形態に係る動作例を表す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 [第1実施形態]
 (移動通信システムの構成)
 図1は、第1実施形態に係る移動通信システムの構成を表す図である。移動通信システム1は、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。移動通信システムには第6世代(6G)システムが少なくとも部分的に適用されてもよい。
 移動通信システム1は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。以下において、NG-RAN10を単にRAN10と呼ぶことがある。また、5GC20を単にコアネットワーク(CN)20と呼ぶことがある。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わない。例えば、UE100は、携帯電話端末(スマートフォンを含む)及び/又はタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数(以下、単に「周波数」と呼ぶ)に属する。
 なお、gNB200がLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局(eNB:evolved Node B)が5GC20に接続することもできる。LTEの基地局とgNB200とが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、第1実施形態に係るUE100(ユーザ装置)の構成例を表す図である。UE100は、受信部110、送信部120、及び制御部130を備える。受信部110及び送信部120は、gNB200との無線通信を行う無線通信部を構成する。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。なお、制御部130は、以下に示す各実施形態において、UE100における各処理又は各動作を行ってもよい。
 図3は、第1実施形態に係るgNB200(基地局)の構成を表す図である。gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。送信部210及び受信部220は、UE100との無線通信を行う無線通信部を構成する。バックホール通信部240は、CN20との通信を行うネットワーク通信部を構成する。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。なお、制御部230は、以下に示す各実施形態において、gNB200における各処理又は各動作を行ってもよい。
 バックホール通信部240は、基地局間インターフェイスであるXnインターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してAMF/UPF300と接続される。なお、gNB200は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がフロントホールインターフェイスであるF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を表す図である。
 ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。なお、UE100のPHYレイヤは、gNB200から物理下りリンク制御チャネル(PDCCH)上で送信される下りリンク制御情報(DCI)を受信する。具体的には、UE100は、無線ネットワーク一時識別子(RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。gNB200から送信されるDCIには、RNTIによってスクランブルされたCRCパリティビットが付加されている。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化等を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を表す図である。
 制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)を有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間にコネクション(RRCコネクション)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間にコネクション(RRCコネクション)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間のコネクションがサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤよりも上位に位置するNASは、セッション管理及びモビリティ管理等を行う。UE100のNASとAMF300のNASとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。また、NASよりも下位のレイヤをAS(Access Stratum)と呼ぶ。
 (UAV)
 ここで、第1実施形態に係る無人飛行装置(UAV:Unmanned Aerial Vehicle or Uncrewed Aerial Vehicle。以下では、「無人飛行装置」を「UAV」と称する場合がある。)について説明する。
 UAVは、一般的には、ドローンなどの無人航空機のことである。ただし、第1実施形態では、所定閾値以上の(又は所定閾値を超える)高度に位置するUEを、UAVと呼ぶ。UAVは、無人航空機のように上空を無人で飛行しながらgNB200と無線通信が可能なUEであってもよい。或いは、UAVは、無人航空機に設けられてもよい。或いは、UAVは、有人航空機に設けられてもよい。例えば、飛行機が所定閾値以上の高度で飛行している状態で、当該飛行機に搭乗しているユーザが所有するUEもUAVであってもよい。UAVは、UAV UEであってもよい。或いは、UAVは、飛行UE(Aerial UE)であってもよい。UAVは、地上で用いられるUEと区別して用いられる場合がある。ただし、特に当該UEと区別しない場合は、UAVは、UEの一例としてUEに含まれてもよい。この場合、UAVとUEとをまとめてUEと称する場合がある。図2に示すUE100の構成例は、UAVの構成例を表してもよい。
 3GPPでは、飛行UE(Aerial UE)をサポートする機能として、例えば、以下のような規定が設けられている。
 第1に、飛行UEは、自身の高度を報告することができる。例えば、飛行UEは、自身の高度が閾値以上又は閾値以下になったときに、高度を報告することができる。この際、飛行UEは、位置情報も報告できる。位置情報には、飛行UEの水平速度及び垂直速度を含めることも可能である。
 第2に、LTEシステムのネットワーク(E-UTRAN)は、飛行経路情報を報告するように飛行UEに要求することができる。飛行経路情報は、飛行UEの経路上のウェイポイント(通過点情報又は地点情報)(waypoint)を表す。飛行経路情報には、多数のウェイポイントが含まれてもよい。ウェイポイントは、3次元の位置情報として表される。飛行UEは、ウェイポイントごとの時刻情報(タイムスタンプ)を飛行経路情報に含めて報告してもよい。
 第3に、飛行UEのサポート有無(又は飛行UEとして利用可能であるか否か)はユーザ毎の加入者情報(subscription information)に含まれる。LTEシステムにおけるHSS(Home Subscriber Server)には、ユーザ毎に加入者情報が記憶されている。飛行UEのサポート有無は加入者情報に含まれる。当該加入者情報は、MME(Mobility Management Entity)の制御により、HSSからLTEシステムの基地局であるeNBへ送信される。eNBは、飛行UEと無線通信するか否かを把握することができる。
 第4に、測定レポートのトリガ条件として、イベントH1とイベントH2とを用いることができる。イベントH1は、飛行UEの高度が閾値を超えた場合のイベント条件を表す。一方、イベントH2は、飛行UEの高度が閾値を下回った場合のイベント条件を表す。これらのイベント条件は、高度に加え、ヒステリシス値、オフセット値、及び閾値を用いて条件が満たされるか否かが判定される。
 このように3GPPで規定されていることは、飛行UE(すなわち、UAV)がLTEシステムで利用されることを想定したものとなっている。
 一方、3GPPでは、NR(New Radio)においてUAVを導入することについての議論が開始されている。UAVに関し、3GPPでは、上述したイベントH1及びイベントH2を利用すること、UAVの高度、位置、及び速度を報告すること、飛行計画(flight path plan)を報告すること、などが合意されている。
 (地上用セルと上空用セル)
 例えば、地上用セルと上空用セルとがネットワーク内に混在するケースを仮定する。図6は、このようなケースを示すセルの構成例を表す図である。
 図6に示すように、移動通信システム1では、地上用セルと上空用セルとを含む。図6に示す例では、gNB200-T1とgNB200-T2とで各々地上用セルが形成され、gNB200-Uにより上空用セルが形成されている。そして、図6では、地上用セルにおいては、UE100-1乃至100-4がgNB200-T1及び200-T2と無線通信を行い、上空用セルにおいては、UAV150-1及び150-2がgNB200-Uと無線通信を行う例を表している。
 ここで、UE100-1乃至100-4が地上用セルにおいて適切に無線通信を行い、UAV150-1及び150-2が上空用セルにおいて適切に無線通信を行うためには、以下の2つのシナリオが想定される。
 第1シナリオは、上空用セルに対して専用の周波数が割り当てられ、地上用セルと上空用セルとにおいて各々異なる周波数が用いられるシナリオである。第1シナリオでは、例えば、UAV150-1及び150-2による無線通信と、UE100-1乃至100-4による無線通信とが異なる周波数を用いて行われるため、2つの無線通信間の干渉を回避させることが可能となる。
 一方、第2シナリオは、地上用セルと上空用セルとにおいて同一の周波数(又は同一の周波数範囲)が用いられるシナリオである。第2シナリオでは、地上用セルと上空用セルとで周波数を共用するため、特に周波数リソースを増やさなくてもよい。そのため、第2シナリオでは周波数リソースの有効活用化を図ることができる。
 (第1実施形態に係る通信制御方法)
 第1実施形態では、第2シナリオに着目する。移動通信システム1において第2シナリオを適用する際の問題点として干渉がある。例えば、UAV150-1及び150-2(以下では、UAV150-1とUAV150-2とを区別しない場合は、UAV150と称する場合がある。)がアップリンク通信を行う場合、サービングセルとその隣接セルだけではなく、更に広範囲に亘って無線信号が届いてしまうケースがある。このようなケースにおいて、UAV150と、地上のUE100とが同一の周波数を用いている場合、UAV150からの信号が干渉となる場合がある。UAV150による無線通信では、干渉の影響が地上のUE100が無線通信を行う場合よりも大きい、というUAV特有の問題点がある。
 そのため、第2シナリオにおいて干渉を回避するために、移動通信システム1では、上空で飛行するUAV150に対して適切な設定を迅速に行うことが必要である。
 しかし、移動通信システム1において、適切な設定を迅速に行うために、上空で飛行するUAV150をどのように識別するのかという問題点がある。
 LTEシステムにおいては、UEが飛行UEとして機能することが許可されているか否かを示す情報要素(飛行UE加入情報(Aerial UE subscription information))をHSSからS6aメッセージを利用してMMEへ送信させることが可能である。そして、当該情報要素を、MMEからS1APメッセージを利用してeNBへ送信させることも可能である。従って、LTEシステムにおいては、eNBは、UEが飛行UEとして機能することを許可している(又はUEが飛行UEの能力がある)か否かを把握することが可能である。
 しかし、eNBは、UEが実際に飛行しているか否かまでは把握することはできない。そのため、eNBは、UEがUAVであることを識別することまではできない場合がある。NRにおいて、UE100がUAV150であるのか否かをgNB200が把握する規定が3GPPでは現在のところ存在しない。そのため、gNB200は、UE100がUAV150であるか否かを識別することができない場合がある。
 そこで、第1実施形態では、UE100がUAV150であることを適切に識別できるようにすることを目的とする。具体的には、第1実施形態では、UE100が一定上の高度を飛行しているのか否かをgNB200が把握できるようにすることを目的としている。
 そのため、第1実施形態では、ユーザ装置(例えばUE100)が、基地局(例えばgNB200)に対してRRC接続を確立する際及び基地局に対してRRC接続が確立した後のいずれかにおいて、当該ユーザ装置の高度に関する高度情報を基地局へ送信する。これにより、gNB200では、UE100の高度情報に基づいて、所定閾値を超える高度で飛行することを把握した場合、UE100が上空を飛行すること、すなわち、UE100がUAV150であることを識別することができる。gNB200は、UE100がUAV150であることを適切に識別することにより、UAV150に対する適切な処理を迅速に行ことも可能となり、第2シナリオにおける干渉問題を回避することが可能となる。
 (第1実施形態に係る動作例)
 図7は、第1実施形態に係る動作例を表す図である。
 図7に示すように、ステップS10において、UE100は、自身の高度に関する高度情報をgNB200へ送信する。
 第1に、高度情報の送信方法として、例えば、以下がある。すなわち、RRCアイドル状態又はRRCインアクティブ状態のUE100が、UAV専用(無人飛行装置専用)のランダムアクセス用リソース(又はUAV専用のPRACH(Physical Random Access Channel)リソース)を用いて、高度情報を含むメッセージ(Msg1)をgNB200へ送信してもよい。UAV専用のランダムアクセス用リソースは、予めgNB200によって設定されてもよい。或いは、当該UEは、Msg1に代えて、高度情報を含むMsg3(RRCセットアップ要求(RRCSetupRequest)メッセージ)を送信してもよい。当該UEは、高度情報を含むMsg5(RRCセットアップ完了(RRCSetupComplete)メッセージ)を送信してもよい。或いは、RRCコネクティッド状態のUE100が、高度情報を含むUEアシスト情報(UAI:UE-Assisted Information )をgNB200へ送信してもよい。このように、UE100は、gNB200に対してRRC接続を確立する際に高度情報を送信してもよい。UE100は、RRC接続確立後に高度情報を送信してもよい。ただし、UE100は、RRC接続確立後の際はできるだけ早急に高度情報を送信することが好ましい。
 第2に、高度情報に含まれる情報は、例えば、以下がある。すなわち、高度情報には、UE100が飛行能力を有することを表す情報が含まれてもよい。或いは、高度情報には、現在又は過去におけるUE100の高度に関する情報が含まれてもよい。過去の高度に関する情報には、時刻情報(又はタイムスタンプ)が含まれてもよい。或いは、高度情報には、高度に応じて区分した領域を用いてUE100の高度を表した情報(当該情報を、「領域情報」と称する場合がある。)が含まれてもよい。領域情報は、例えば、高度に応じて、高高度(High altitude)、低高度(Low altitude)、及び地上(Terrestrial)の3つの領域情報から構成されてもよい。このように、高度情報には、UE100自身の高度に応じた領域情報が含まれてもよい。高度情報は、UE100に設けられた高度センサ(又は、レーダー又はライダーなどの距離センサ)により取得した高度で表されてもよい。高度自体は、海抜で表されてもよい。当該高度自体は、標高で表されてもよい。当該高度自体は、地上からの高さにより表されてもよい。
 第3に、UE100が高度情報を送信するトリガは、例えば、以下となる。すなわち、UE100は、現在の高度が第1閾値以上のとき(又は現在の高度が第1閾値より高くなったとき)に、高度情報を送信してもよい。第1閾値は、SIBに含まれて、gNB200から報知されてもよい。
 ステップS11において、gNB200は、高度情報を受信したことに応じて、所定の処理を行う。
 第1に、所定の処理として、gNB200は、UAV専用の測定設定(measurement configuration)をUE100(すなわち、UAV150)に対して行ってもよい。UAV専用の測定設定により、UAV150が測定報告(measurement report)を送信するトリガ条件(例えば、H1又はH2など)を設定したり、測定報告に含まれるUAV特有の情報(高度情報を含む位置情報など)を設定したりすることが可能となる。なお、gNB200は、UAV専用の測定設定を含むRRCメッセージ(RRC再設定(RRCReconfiguration)メッセージ又はRRC再開(RRCResume)メッセージ)をUAV150に送信することで、当該設定が行われてもよい。
 第2に、所定の処理として、gNB200は、UE100を適切な周波数にハンドオーバさせてもよい。例えば、第2シナリオであっても共用される周波数の範囲内で、UAV専用の周波数と地上UE専用の周波数とに分けて使用することも可能である。gNB200は、UE100がUAV150であると判定した場合、UAV150を、UAV専用の周波数を用いる上空用セルへハンドオーバさせるようにしてもよい。具体的には、UAV150が当該セルへ容易にハンドオーバできるように、イベント条件で用いる閾値を一定の場合よりも低くした測定設定(measurement configuration)をUAV150に設定してもよい。
[第2実施形態]
 次に、第2実施形態について説明する。第2実施形態では、第1実施形態との相違点を中心に説明する。
 第2実施形態は、サービングセル200-1とRRCコネクティッド状態のUE100が、隣接セル(又は隣接gNB)200-2から上空用セルに関する上空用セル情報を取得すると、取得した上空用セル情報をサービングセル200-1へ送信する例である。
 具体的には、第1に、ユーザ装置(例えばUE100)が、隣接セル(例えば隣接セル200-2)から報知された上空用セルに関する上空用セル情報を受信する。第2に、ユーザ装置が、上空用セル情報をサービングセル(例えばサービングセル200-1)へ送信する。
 これにより、例えば、gNB200-1(又はサービングセル)は、隣接gNB200-2(又は隣接セル)において使用されている上空用セル情報を把握できる。そして、gNB200-1は、上空用セル情報に基づいて、UAV150に対して干渉回避処理を行うことも可能となる。よって、gNB200-1は、第2シナリオにおける干渉問題に対する解決策を講じることが可能となる。
 (第2実施形態に係る動作例)
 図8は、第2実施形態に係る動作例を表す図である。
 図8に示すように、ステップS20において、UE100は、サービングセル200-1(又はgNB200-1)に対してRRCコネクティッド状態にある。
 ステップS21において、サービングセル200-1と隣接する隣接セル(又は隣接gNB)200-2は、上空用セルに関する上空用セル情報を含むSIB(System Information Block)を報知する。上空用セル情報には、上空用セルのセルIDが含まれてもよい。或いは、上空用セル情報には、上空用セルで用いられる周波数(又は上空用周波数)の情報が含まれてもよい。或いは、上空用セル情報は、セルID及び/又は当該周波数がリスト形式で表されてもよい。なお、隣接セルは、自身が管理するセルリストを表すセルリスト情報を報知してもよい。セルリスト情報には、セルリストのエントリ毎に、上空用セルであることを表す識別子が付与されてもよい。上空用セルであることを示す識別子が付与されたセルリストのエントリが、上空用セル情報であってもよい。すなわち、隣接セル200-2は、上空用セル情報を含むセルリスト情報を報知してもよい。
 ステップS22において、UE100は、ステップS21で報知されたSIBを受信したことに応じて、上空用セルを特定する。例えば、UE100は、上空用セルのセルIDをメモリなどに記憶しており、隣接セル200-2から受信した上空用セル情報に含まれるセルIDと比較することで、上空用セルを特定してもよい。
 ステップS23において、UE100は、隣接セル200-2から受信した上空用セル情報をサービングセル200-1へ送信する。UE100は、自身の高度が第2閾値より高いとき(又は自身の高度が第2閾値以上になったとき)、上空用セル情報をサービングセル200-1へ送信してもよい。これにより、サービングセル200-1では、UE100が上空を飛行するUAV150であることを識別することが可能となる。UE100は、上空用セル情報を含むRRCメッセージをサービングセル200-1へ送信してもよい。なお、第2閾値と、第1実施形態で説明した第1閾値(高度情報を送信するか否かを決定するための閾値)とは同一の閾値でもよいし、異なる閾値でもよい。第2閾値は、例えば、サービングセル200-1からSIBに含まれて報知されてもよい。
 ステップS24において、サービングセルは、当該サービングセルで用いる周波数と、UE100から受信した上空用セル情報に含まれる上空用周波数とが異なる場合、所定の処理を行ってもよい。所定の処理は、例えば、以下の3つがある。
 第1に、サービングセル200-1は、所定の処理として、UE100に対する送信電力制御を行う。例えば、サービングセル200-1は、UE100がUAV150であることを識別した場合、送信電力制御(TPC:Transmission Power Control)コマンドを利用して、UAV150に対して送信電力を抑制させるように制御してもよい。これにより、UAV150から送信される無線信号による干渉を回避させることが可能となる。
 第2に、サービングセル200-1は、所定の処理として、第1実施形態と同様に、UE100を適切な周波数へハンドオーバさせてもよい。例えば、サービングセル200-1は、UE100がUAV150であることを識別した場合、UAV150に対して上空用周波数をサポートする上空用セルへハンドオーバさせるように制御してもよい。
 第3に、サービングセル200-1は、所定の処理として、RRCコネクティッド状態のUE100を、RRCアイドル状態又はRRCインアクティブ状態へ解放させてもよい。サービングセル200-1は、RRCコネクティッド状態のUE100に対して、RRC解放(RRCRelease)メッセージを送信することで、UE100をRRCアイドル状態へ解放させてもよい。また、サービングセル200-1は、RRCコネクティッド状態のUE100に対して、中断設定(suspendconfig)を含むRRC解放(RRCRelease)メッセージを送信することで、UE100をRRCインアクティブ状態へ解放させてもよい。
(第2実施形態の他の例)
 次に、第2実施形態の他の例について説明する。
 第2実施形態では、UE100を介して、上空用セルに関する上空用セル情報が隣接セル200-2からサービングセル200-1へ送信される例について説明したがこれに限定されない。例えば、gNB200-1と隣接gNB200-2とが、UE100を介することなく、直接送信しあうことで、上空用セル情報を共有することも可能である。
 具体的には、基地局(例えばgNB200-1)が、上空用セルに関する上空用セル情報を隣接基地局(例えば隣接gNB200-2)へ送信する、及び上空用セル情報を隣接基地局から受信することのいずれかを行う。
 これにより、例えば、隣接gNB200-2は、gNB200-1において使用されている上空用セル情報(例えば上空用セルで利用されているセルID又は上空用セルの周波数など)を把握することができる。そして、隣接gNB200-2は、上空用セル情報に基づいて、UAV150に対して干渉回避処理の準備を行うことも可能となる。よって、隣接gNB200-2は、第2シナリオにおける干渉問題に対する解決策を講じることが可能となる。
 図9は、第2実施形態に係る他の動作例を表す図である。
 図9に示すように、ステップS30において、gNB200-1は、隣接gNB200-2とXn接続を確立する際及び隣接gNB200-2に対して設定変更を行う際のいずれかにおいて、上空用セル情報を隣接gNB200-2へ送信する。上空用セル情報は、第2実施形態と同一であってもよい。gNB200-1は、上空用セル情報を含むセルリスト情報を送信してもよい。上空用セル情報の送信に関し、gNB200-1は、上空用セル情報を含むXn接続確立要求(XN SETUP REQUEST)メッセージを隣接gNB200-2へ送信してもよい。或いは、gNB200-1は、上空用セル情報を含むNG-RAN設定更新(NG-RAN NODE CONFIGURATION UPDATE)メッセージを隣接gNB200-2へ送信してもよい。
 ステップS31において、gNB200-1は、UAV150の接続を検知する。UAV150は、gNB200-1に対してRRCコネクティッド状態となる。
 ステップS32において、gNB200-1は、所定の処理を行ってもよい。所定の処理は、第2実施形態と同様に、UAV150に対する抑制方向への送信電力制御であってもよい。或いは、所定の処理は、第2実施形態と同様に、UAV150を上空用セル(又は上空用周波数)へハンドオーバさせてもよい。或いは、所定の処理は、第2実施形態と同様に、RRCコネクティッド状態のUAV150を、RRCアイドル状態又はRRCインアクティブ状態へ解放させてもよい。
 なお、第2実施形態の他の動作例において、gNB200-1が、上空用セル情報を隣接gNB200-2へ送信する例について説明したが、これに限定されない。例えば、隣接gNB200-2が、gNB200-1へ、自身が管理する上空用セルに関する上空用セル情報を送信してもよい。gNB200-1が上空用セル情報を送信する場合であっても、隣接gNB200-2が上空用セル情報を送信する場合であっても、gNB200-1と隣接gNB200-2との間で上空用セル情報を共有することが可能となる。
[第3実施形態]
 次に、第3実施形態について説明する。
 第3実施形態では、所定閾値以上の高度に位置するUE100(すなわち、UAV150)が、UAV専用のランダムアクセス用リソース(又は上空用のランダムアクセス用リソース)を用いてPRACHプリアンブルを送信する例について説明する。
 第1実施形態でも説明したように、UAV特有の問題点として、UAV150による無線通信の方が地上のUE100による無線通信の場合よりも干渉の影響が大きいことが挙げられる。3GPPにおける今後の議論においては、RRCコネクティッド状態のUAV150に対して様々な干渉回避対策が講じられることが想定される。
 一方、UAV150がランダムアクセスプロシージャを実行した場合において、干渉が発生した場合、現在のところ、回避策が存在しない。
 そこで、第3実施形態では、ランダムアクセスプロシージャにおける干渉を回避することを目的としている。具体的には、第3実施形態では、PRACHプリアンブル送信の衝突を回避することを目的としている。
 そのため、第3実施形態では、第1に、基地局(例えばgNB200)が、無人飛行装置(UAV)専用のランダムアクセス用リソースをユーザ装置(例えばUE100)に設定する。第2に、所定閾値以上の高度に位置するユーザ装置が、無人飛行装置(UAV)専用のランダムアクセス用リソースを用いて、PRACHプリアンブルを基地局へ送信する。
 このように、第3実施形態では、UE100(或いはUAV150)は、UAV専用のランダムアクセス用リソースを用いて、PRACHプリアンブルをgNB200へ送信するため、他のリソースを用いて送信されたPRACHプリアンブルに対して衝突を回避させることができる。そのため、第3実施形態では、ランダムアクセスプロシージャにおける干渉を回避させることができる。
 第3実施形態では干渉回避が主な目的であり、第1実施形態ではUE100が第1閾値以上の高度に位置するか否かをgNB200が把握することが主な目的である点で、2つの実施形態は異なる。しかし、第1実施形態においても、gNB200がUAV150であることを把握したgNB200が干渉回避策を当該UAV150に設定することが可能になるため、2つの実施形態は、干渉回避という目的では共通しているといえる。
 なお、第1実施形態において、UAV専用のランダムアクセス用リソースを用いて、高度情報を含むメッセージ(Msg1)を送信することについて説明したが、gNB200によるUAV専用のランダムアクセス用リソースの設定により、このような送信が可能となる。
 また、3GPPのRel-17では、PRACH Partitioningの共通フレームワークが導入された。当該フレームワークにより、RedCap(Radio Reduced Capability)、SDT(Small Data Transmission)、又はRAN Slicingなどの機能毎にPRACHリソースの設定が可能になる。
 (第3実施形態に係る動作例)
 図10は、第3実施形態に係る動作例を表す図である。
 図10に示すように、ステップS40において、gNB200は、UAV専用のPRACHリソースをUE100に設定する。
 第1に、UAV専用のPRACHリソースが設定されてもよい。例えば、地上のUE100に対するPRACHリソースに、UAV専用のPRACHリソースが追加されるようにしてもよい。或いは、ランダムアクセス用リソースに関連した機能又は機能の集合を表す情報要素(FeatureCombination)に、UAV専用であることを表す新たな情報要素(例えば“Aerial vehicles”)が追加されてもよい。UAV専用のPRACHリソースに関する情報は、PRACHリソースを表す情報要素(RACH-ConfigCommon)により設定されてもよい。
 第2に、UAV専用のPRACHリソースが高度毎に設定されてもよい。例えば、第1範囲の高度では、UAV専用のPRACHリソース#1が設定され、第2範囲の高度では、UAV専用のPRACHリソース#2が設定される、などである。ランダムアクセス用リソースに関連した機能又は機能の集合を表す情報要素(FeatureCombination)には、高度毎にリスト形式で示された情報要素(例えば“Aerial vehicles list”)が含まれてもよい。この場合、高度毎に、PRACHリソースを表す情報要素(RACH-ConfigCommon)が複数設定されてもよい。
 なお、PRACHリソースは、RACH共通設定、プリアンブル番号、及び/又は無線リソース番号により示されてもよい。当該プリアンブル番号は、PRACHリソースとして利用可能なプリアンブル番号が範囲(例えば開始番号と終了番号など)として示されてもよい。また、当該無線リソース番号も、PRACHリソースとして利用可能なプリアンブル番号が範囲(例えば開始番号と終了番号など)として示されてもよい。無線リソースそのものは、周波数及び/又は時間により表されてもよい。
 ステップS41において、UE100は、自身の高度に応じたPRACHリソースを選択し、選択したPRACHリソースを用いてPRACHプリアンブルを送信する。UE100は、所定閾値未満(又は所定閾値以下)の高度に位置する(すなわち、地上に位置する)と判定した場合、地上UEとして用いる通常のPRACHリソースを用いてPRACHプリアンブルを送信してもよい。また、例えば、UE100は、所定閾値以上の(又は所定閾値を超える)高度に位置すると判定した場合、高度に応じて、いずれかのUAV専用のPRACHリソースを用いて、PRACHプリアンブルを送信してもよい。
 なお、所定閾値は、第1実施形態で説明した第1閾値と同一でもよいし、第2実施形態で説明した第2閾値と同一でもよい。
[その他の実施形態]
 上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。各フローにおいて、必ずしもすべてのステップを実行する必要は無く、一部のステップのみを実行してもよい。
 上述の実施形態及び実施例において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)又は6G基地局であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDUであってもよい。また、UE100は、IABノードのMT(Mobile Termination)であってもよい。
 また、用語「ネットワークノード」は、主として基地局を意味するが、コアネットワークの装置又は基地局の一部(CU、DU、又はRU)を意味してもよい。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「含む(include)」、及び「備える(comprise)」の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、矛盾しない範囲で、各実施形態、各動作、各処理、及び各ステップの全部又は一部を組み合わせることも可能である。
 本願は、米国仮出願第63/409868号(2022年9月26日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
 (付記)
 (付記1)
 移動通信システムにおける通信制御方法であって、
 ユーザ装置が、ネットワークノードに対してRRC接続を確立する際及び前記ネットワークノードに対してRRC接続が確立した後のいずれかにおいて、当該ユーザ装置の高度に関する高度情報を前記ネットワークノードへ送信するステップ、を有する
 通信制御方法。
 (付記2)
 前記送信するステップは、前記ユーザ装置が、無人飛行装置(UAV)専用のランダムアクセス用リソースを用いて前記高度情報を含むメッセージを前記ネットワークノードへ送信するステップを含む
 付記1に記載の通信制御方法。
 (付記3)
 前記高度情報は、前記ユーザ装置が飛行能力を有することを示す情報を含む
 付記1又は付記2のいずれかに記載の通信制御方法。
 (付記4)
 前記高度情報は、現在又は過去における前記ユーザ装置の高度に関する情報を含む
 付記1乃至付記3のいずれかに記載の通信制御方法。
 (付記5)
 前記高度情報は、前記ユーザ装置の高度を当該高度に応じて区分した領域を用いて表した情報を含む
 付記1乃至付記4のいずれかに記載の通信制御方法。
 (付記6)
 前記送信するステップは、前記ユーザ装置が、当該ユーザ装置の高度が第1閾値以上のとき、前記高度情報を送信するステップを含む
 付記1乃至付記5のいずれかに記載の通信制御方法。
 (付記7)
 移動通信システムにおける通信制御方法であって、
 ユーザ装置が、隣接セルから報知された上空用セルに関する上空用セル情報を受信するステップと、
 前記ユーザ装置が、前記上空用セル情報をサービングセルへ送信するステップと、を有する
 通信制御方法。
 (付記8)
 前記送信するステップは、前記ユーザ装置が、当該ユーザ装置の高度が第2閾値より高いとき、前記上空用セル情報を送信するステップを含む
 付記7記載の通信制御方法。
 (付記9)
 移動通信システムにおける通信制御方法であって、
 ネットワークノードが、上空用セルに関する上空用セル情報を隣接ネットワークノードへ送信する、及び前記上空用セル情報を前記隣接ネットワークノードから受信することのいずれかを行うステップ、を有する
 通信制御方法。
 (付記10)
 前記送信するステップは、前記ネットワークノードが、前記隣接ネットワークノードと接続を確立する際及び前記隣接ネットワークノードに対して設定変更を行う際のいずれかにおいて前記上空用セル情報を前記隣接ネットワークノードへ送信するステップを含む、
 付記9記載の通信制御方法。
 (付記11)
 前記上空用セル情報は、前記上空用セルのセルID又は前記上空用セルで用いられる周波数を含む
 付記7乃至付記10のいずれかに記載の通信制御方法。
 (付記12)
 移動通信システムにおける通信制御方法であって、
 ネットワークノードが、無人飛行装置(UAV)専用のランダムアクセス用リソースをユーザ装置に設定するステップと、
 所定閾値以上の高度に位置する前記ユーザ装置が、前記無人飛行装置(UAV)専用のランダムアクセス用リソースを用いて、PRACHプリアンブルを前記ネットワークノードへ送信するステップと、を有する
 通信制御方法。
 (付記13)
 前記無人飛行装置(UAV)専用のランダムアクセス用リソースは、前記ユーザ装置の高度に応じて異なるリソースである
 付記12記載の通信制御方法。

Claims (13)

  1.  移動通信システムにおける通信制御方法であって、
     ユーザ装置が、ネットワークノード(又はネットワーク装置)に対してRRC接続を確立する際及び前記ネットワークノードに対してRRC接続が確立した後のいずれかにおいて、当該ユーザ装置の高度に関する高度情報を前記ネットワークノードへ送信すること、を有する
     通信制御方法。
  2.  前記送信することは、前記ユーザ装置が、無人飛行装置(UAV)専用のランダムアクセス用リソースを用いて前記高度情報を含むメッセージを前記ネットワークノードへ送信することを含む
     請求項1記載の通信制御方法。
  3.  前記高度情報は、前記ユーザ装置が飛行能力を有することを示す情報を含む
     請求項1記載の通信制御方法。
  4.  前記高度情報は、現在又は過去における前記ユーザ装置の高度に関する情報を含む
     請求項1記載の通信制御方法。
  5.  前記高度情報は、高度に応じて区分した領域を用いて、前記ユーザ装置の高度を表した情報を含む
     請求項1記載の通信制御方法。
  6.  前記送信することは、前記ユーザ装置が、当該ユーザ装置の高度が第1閾値以上のとき、前記高度情報を送信することを含む
     請求項1記載の通信制御方法。
  7.  移動通信システムにおける通信制御方法であって、
     ユーザ装置が、隣接セルから報知された上空用セルに関する上空用セル情報を受信することと、
     前記ユーザ装置が、前記上空用セル情報をサービングセルへ送信することと、を有する
     通信制御方法。
  8.  前記送信することは、前記ユーザ装置が、当該ユーザ装置の高度が第2閾値より高いとき、前記上空用セル情報を送信することを含む
     請求項7記載の通信制御方法。
  9.  移動通信システムにおける通信制御方法であって、
     ネットワークノードが、上空用セルに関する上空用セル情報を隣接ネットワークノードへ送信する、及び前記上空用セル情報を前記隣接ネットワークノードから受信することのいずれかを行うこと、を有する
     通信制御方法。
  10.  前記送信することは、前記ネットワークノードが、前記隣接ネットワークノードと接続を確立する際及び前記隣接ネットワークノードに対して設定変更を行う際のいずれかにおいて前記上空用セル情報を前記隣接ネットワークノードへ送信することを含む、
     請求項9記載の通信制御方法。
  11.  前記上空用セル情報は、前記上空用セルのセルID又は前記上空用セルで用いられる周波数を含む
     請求項7及び請求項9のいずれかに記載の通信制御方法。
  12.  移動通信システムにおける通信制御方法であって、
     ネットワークノードが、無人飛行装置(UAV)専用のランダムアクセス用リソースをユーザ装置に設定することと、
     所定閾値以上の高度に位置する前記ユーザ装置が、前記無人飛行装置(UAV)専用のランダムアクセス用リソースを用いて、PRACHプリアンブルを前記ネットワークノードへ送信することと、を有する
     通信制御方法。
  13.  前記無人飛行装置(UAV)専用のランダムアクセス用リソースは、前記ユーザ装置の高度に応じて異なるリソースである
     請求項12記載の通信制御方法。
PCT/JP2023/034424 2022-09-26 2023-09-22 通信制御方法 WO2024070920A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263409868P 2022-09-26 2022-09-26
US63/409,868 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070920A1 true WO2024070920A1 (ja) 2024-04-04

Family

ID=90477735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034424 WO2024070920A1 (ja) 2022-09-26 2023-09-22 通信制御方法

Country Status (1)

Country Link
WO (1) WO2024070920A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093583A1 (ja) * 2011-01-07 2012-07-12 三菱電機株式会社 通信システム
WO2018203402A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置及び基地局
WO2019193954A1 (ja) * 2018-04-05 2019-10-10 ソニー株式会社 通信装置、方法およびプログラム
JP2020503731A (ja) * 2017-04-21 2020-01-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて空中ueに対する測定を行う方法及びそのための装置
JP2021506193A (ja) * 2017-11-16 2021-02-18 京セラ株式会社 インターフェースのアベイラビリティに基づく無人航空機のハンドオーバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093583A1 (ja) * 2011-01-07 2012-07-12 三菱電機株式会社 通信システム
JP2020503731A (ja) * 2017-04-21 2020-01-30 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて空中ueに対する測定を行う方法及びそのための装置
WO2018203402A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置及び基地局
JP2021506193A (ja) * 2017-11-16 2021-02-18 京セラ株式会社 インターフェースのアベイラビリティに基づく無人航空機のハンドオーバ
WO2019193954A1 (ja) * 2018-04-05 2019-10-10 ソニー株式会社 通信装置、方法およびプログラム
JP2021114635A (ja) * 2018-04-05 2021-08-05 ソニーグループ株式会社 通信装置、方法およびプログラム

Similar Documents

Publication Publication Date Title
CN113630849B (zh) 网络切片的选择方法、无线接入设备和终端
CN110998693B (zh) 无线通信系统中的装置和方法、计算机可读存储介质
TWI448183B (zh) 處理無線資源控制連線重設之方法
US9510372B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
US9345055B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
CN110999373B (zh) 无线通信系统中的装置和方法、计算机可读存储介质
US9655155B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
JP2023523171A (ja) ユーザ機器および基地局
US20180176962A1 (en) Device and Method of Handling System Information
US11798425B2 (en) Preamble management for unmanned aerial vehicles
CN110351882B (zh) 一种请求系统信息的指示方法、相关设备及系统
US9560686B2 (en) Method and apparatus for reconfiguring device-to-device connection information in wireless communication system
US10433227B2 (en) Base station and wireless LAN termination apparatus
US20220070926A1 (en) Communication control method and user equipment
JPWO2019159777A1 (ja) 通信装置、基地局装置、方法およびプログラム
CN117480815A (zh) 用于非地面网络卫星切换的方法、终端设备及网络设备
WO2024070920A1 (ja) 通信制御方法
US20230363020A1 (en) Method and apparatus for performing mobility in wireless communication system
CN114600472B (zh) 通信方法及装置
WO2024075664A1 (ja) 通信制御方法
WO2024075663A1 (ja) 通信制御方法
WO2024070921A1 (ja) 通信制御方法
CN114079951B (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240146396A1 (en) Method and apparatus for coverage extension and wireless communication
EP4277431A1 (en) Method and device for processing state transition in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872146

Country of ref document: EP

Kind code of ref document: A1