WO2024075664A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2024075664A1
WO2024075664A1 PCT/JP2023/035825 JP2023035825W WO2024075664A1 WO 2024075664 A1 WO2024075664 A1 WO 2024075664A1 JP 2023035825 W JP2023035825 W JP 2023035825W WO 2024075664 A1 WO2024075664 A1 WO 2024075664A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
random access
control method
preamble
uav
Prior art date
Application number
PCT/JP2023/035825
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024075664A1 publication Critical patent/WO2024075664A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This disclosure relates to a communication control method in a mobile communication system.
  • 3GPP The Third Generation Partnership Project
  • 3GPP The Third Generation Partnership Project
  • a standardization project for mobile communications systems prescribe aerial UEs (e.g., Non-Patent Document 1 and Non-Patent Document 2).
  • an aerial UE can report its altitude and its location information, including its vertical and horizontal speeds.
  • 3GPP provides appropriate support for communications with aerial UEs flying in the sky.
  • a communication control method is a communication control method in a mobile communication system.
  • the communication control method includes a step in which a network node (or a network device) transmits parameters used in a random access procedure to a user device.
  • the parameters are parameters dedicated to a user device located at an altitude equal to or higher than a predetermined threshold.
  • FIG. 1 is a diagram illustrating an example of the configuration of a mobile communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the configuration of a UE (user equipment) according to the first embodiment.
  • Figure 3 is a diagram showing an example configuration of a gNB (base station) according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the configuration of a protocol stack related to a user plane according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the configuration of a protocol stack related to a control plane according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a cell configuration according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of an operation according to the first embodiment.
  • the present disclosure aims to avoid interference in random access procedures.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to a first embodiment.
  • the mobile communication system 1 complies with the 3GPP standard 5th Generation System (5GS).
  • 5GS is taken as an example, but the mobile communication system may be at least partially applied to an LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • 6G 6th Generation
  • the mobile communication system 1 has a user equipment (UE) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20.
  • UE user equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network
  • the NG-RAN 10 may be simply referred to as the RAN 10.
  • the 5GC 20 may be simply referred to as the core network (CN) 20.
  • UE100 is a mobile wireless communication device.
  • UE100 may be any device that is used by a user.
  • UE100 is a mobile phone terminal (including a smartphone) and/or a tablet terminal, a notebook PC, a communication module (including a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (Vehicle UE), or an aircraft or a device provided in an aircraft (Aerial UE).
  • NG-RAN10 includes base station (called “gNB” in 5G system) 200.
  • gNB200 are connected to each other via Xn interface, which is an interface between base stations.
  • gNB200 manages one or more cells.
  • gNB200 performs wireless communication with UE100 that has established a connection with its own cell.
  • gNB200 has a radio resource management (RRM) function, a routing function for user data (hereinafter simply referred to as “data”), a measurement control function for mobility control and scheduling, etc.
  • RRM radio resource management
  • Cell is used as a term indicating the smallest unit of a wireless communication area.
  • Cell is also used as a term indicating a function or resource for performing wireless communication with UE100.
  • One cell belongs to one carrier frequency (hereinafter simply referred to as "frequency").
  • gNB200 can also be connected to EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations eNB: evolved Node B
  • 5GC20 5GC20
  • LTE base stations and gNB200 can also be connected via an inter-base station interface.
  • the 5GC20 includes an Access and Mobility Management Function (AMF) and a User Plane Function (UPF) 300.
  • the AMF performs various mobility controls for the UE 100.
  • the AMF manages the mobility of the UE 100 by communicating with the UE 100 using Non-Access Stratum (NAS) signaling.
  • NAS Non-Access Stratum
  • the UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface, which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing an example of the configuration of a UE 100 (user equipment) according to the first embodiment.
  • the UE 100 includes a receiver 110, a transmitter 120, and a controller 130.
  • the receiver 110 and the transmitter 120 constitute a wireless communication unit that performs wireless communication with the gNB 200.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
  • the transmitting unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitting unit 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
  • the control unit 130 performs various controls and processes in the UE 100. Such processes include processes for each layer described below.
  • the control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used in the processes by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various processes. Note that the control unit 130 may perform each process or operation in the UE 100 in each of the embodiments described below.
  • FIG. 3 is a diagram showing the configuration of a gNB 200 (base station) according to the first embodiment.
  • the gNB 200 includes a transmitter 210, a receiver 220, a controller 230, and a backhaul communication unit 240.
  • the transmitter 210 and receiver 220 constitute a wireless communication unit that performs wireless communication with the UE 100.
  • the backhaul communication unit 240 constitutes a network communication unit that performs communication with the CN 20.
  • the transmitting unit 210 performs various transmissions under the control of the control unit 230.
  • the transmitting unit 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
  • the control unit 230 performs various controls and processes in the gNB 200. Such processes include processes in each layer described below.
  • the control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used in the processes by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various processes. Note that the control unit 230 may perform each process or operation in the gNB 200 in each of the embodiments described below.
  • the backhaul communication unit 240 is connected to adjacent base stations via an Xn interface, which is an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF/UPF 300 via an NG interface, which is an interface between a base station and a core network.
  • the gNB 200 may be composed of a CU (Central Unit) and a DU (Distributed Unit) (i.e., functionally divided), and the two units may be connected via an F1 interface, which is a fronthaul interface.
  • Figure 4 shows the protocol stack configuration of the wireless interface of the user plane that handles data.
  • the user plane radio interface protocol has a physical (PHY) layer, a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, a Packet Data Convergence Protocol (PDCP) layer, and a Service Data Adaptation Protocol (SDAP) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of UE100 and the PHY layer of gNB200 via a physical channel.
  • the PHY layer of UE100 receives downlink control information (DCI) transmitted from gNB200 on a physical downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • RNTI radio network temporary identifier
  • the DCI transmitted from gNB200 has CRC parity bits scrambled by the RNTI added.
  • the MAC layer performs data priority control, retransmission processing using Hybrid Automatic Repeat reQuest (HARQ), and random access procedures. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of gNB200 via a transport channel.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resource blocks to be assigned to UE100.
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE100 and the RLC layer of gNB200 via logical channels.
  • the PDCP layer performs header compression/decompression, encryption/decryption, etc.
  • the SDAP layer maps IP flows, which are the units for QoS (Quality of Service) control by the core network, to radio bearers, which are the units for QoS control by the AS (Access Stratum). Note that if the RAN is connected to the EPC, SDAP is not necessary.
  • Figure 5 shows the configuration of the protocol stack for the wireless interface of the control plane that handles signaling (control signals).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) instead of the SDAP layer shown in Figure 4.
  • RRC Radio Resource Control
  • NAS Non-Access Stratum
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC connection connection between the RRC of UE100 and the RRC of gNB200
  • UE100 is in an RRC connected state.
  • RRC connection no connection between the RRC of UE100 and the RRC of gNB200
  • UE100 is in an RRC idle state.
  • UE100 is in an RRC inactive state.
  • the NAS which is located above the RRC layer, performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS of UE100 and the NAS of AMF300.
  • UE100 also has an application layer in addition to the radio interface protocol.
  • the layer below the NAS is called the Access Stratum (AS).
  • UAV Unmanned Aerial Vehicle or Uncrewed Aerial Vehicle.
  • UAV Unmanned Aerial Vehicle
  • UAV Uncrewed Aerial Vehicle
  • UAV generally refers to an unmanned aerial vehicle such as a drone.
  • a UE located at an altitude equal to or higher than a predetermined threshold (or exceeding a predetermined threshold) is called a UAV.
  • the UAV may be a UE capable of wireless communication with the gNB200 while flying unmanned in the sky like an unmanned aerial vehicle.
  • the UAV may be provided on an unmanned aerial vehicle.
  • the UAV may be provided on a manned aerial vehicle.
  • a UE owned by a user on board the airplane may also be a UAV.
  • the UAV may be a UAV UE.
  • the UAV may be an aerial UE.
  • the UAV may be used to distinguish it from a UE used on the ground.
  • the UAV may be included in the UE as an example of the UE.
  • the UAV and the UE may be collectively referred to as a UE.
  • the example configuration of UE100 shown in FIG. 2 may represent an example configuration of a UAV.
  • 3GPP provides the following specifications for functions to support Aerial UE:
  • the flying UE can report its altitude.
  • the flying UE can report its altitude when its altitude is above or below a threshold.
  • the flying UE can also report location information.
  • the location information can also include the horizontal and vertical speed of the flying UE.
  • the LTE system network can request the flying UE to report flight route information.
  • the flight route information represents waypoints (passing point information or point information) (waypoints) on the route of the flying UE.
  • the flight route information may include multiple waypoints.
  • the waypoints are represented as three-dimensional position information.
  • the flying UE may report the flight route information including time information (timestamp) for each waypoint.
  • the HSS Home Subscriber Server
  • the eNB which is the base station of the LTE system, under the control of the MME (Mobility Management Entity).
  • the eNB can determine whether or not the UE is permitted to function as a flying UE.
  • events H1 and H2 can be used as trigger conditions for a measurement report.
  • Event H1 represents an event condition when the altitude of the flying UE exceeds a threshold.
  • event H2 represents an event condition when the altitude of the flying UE falls below a threshold. Whether or not these event conditions are met is determined using a hysteresis value, an offset value, and a threshold value in addition to the altitude.
  • 3GPP has begun discussions on introducing UAVs into NR (New Radio). With regard to UAVs, 3GPP has agreed to use the above-mentioned events H1 and H2, to report the altitude, position, and speed of the UAV, and to report the flight path plan.
  • FIG 6 An example of a cell configuration is shown.
  • the mobile communication system 1 includes a ground cell and an air cell.
  • a ground cell is formed by gNB 200-T1 and gNB 200-T2
  • an air cell is formed by gNB 200-U.
  • FIG. 6 shows an example in which UEs 100-1 to 100-4 communicate wirelessly with gNBs 200-T1 and 200-T2 in the ground cells, and UAVs 150-1 and 150-2 communicate wirelessly with gNB 200-U in the air cell.
  • the first scenario is a scenario in which a dedicated frequency is assigned to the air cell, and different frequencies are used for the ground cell and the air cell.
  • wireless communication by UAVs 150-1 and 150-2 and wireless communication by UEs 100-1 to 100-4 are performed using different frequencies, making it possible to avoid interference between the two wireless communications.
  • the second scenario is a scenario in which the same frequency (or the same frequency range) is used for the ground cell and the aerial cell.
  • the second scenario since the ground cell and the aerial cell share the same frequency, there is no need to increase frequency resources. Therefore, the second scenario makes it possible to make effective use of frequency resources.
  • the first embodiment aims to avoid interference in the random access procedure.
  • the parameters used in the random access procedure are parameters dedicated to the UAV150.
  • a base station e.g., gNB200
  • transmits the parameters used in the random access procedure to a user equipment e.g., UE100 or UAV150.
  • the parameters are parameters dedicated to a user equipment (e.g., UAV150) located at an altitude equal to or higher than a predetermined threshold.
  • gNB200 can set RACH parameters dedicated to UAV150 for UAV150. Therefore, when UAV150 executes a random access procedure, it is possible to appropriately set, for example, the transmission power of the random access preamble and the number of retransmissions of the random access preamble. Such settings make it possible to avoid interference with UE100 that occurs when UAV150 executes a random access procedure.
  • the random access procedure is performed when UE100 in RRC idle state performs initial access to the network, when UE in RRC inactive state performs RRC connection resume procedure, when UE100 performs RRC connection re-establishment procedure, etc.
  • the random access procedure enables UE100 to establish uplink synchronization with gNB200 (or cell).
  • the parameters used in the random access procedure are parameters used when transmitting a PRACH preamble.
  • the PRACH preamble is the first signal transmitted by UE 100 in the random access procedure.
  • the following transmission control is performed on the PRACH preamble, and these parameters are used.
  • UE100 first sets values to predetermined variables (preamble transmission counter, preamble power ramping counter, preamble power ramping step, etc.).
  • the preamble transmission counter is set using a maximum number of PRACH transmissions parameter (preambleTransMax).
  • the maximum number of PRACH transmissions parameter indicates the maximum number of PRACH preamble transmissions.
  • the preamble power ramping step is set using a transmission power ramping step parameter (powerRampingStep).
  • the transmission power ramping step parameter is a parameter that is incremented each time the PRACH preamble is retransmitted.
  • UE100 sets the preamble reception target power (PREAMBLE_RECEIVED_TARGET_POWER) of the RACH preamble using the specified variable and a preamble reception target power parameter (preambleReceivedTargetPower), etc. Since the preamble reception target power is the target reception power on the gNB200 side, UE100 calculates the transmission power of the PRACH preamble by calculating the path loss to gNB200. UE100 transmits the PRACH preamble with the calculated transmission power.
  • parameters used when transmitting a PRACH preamble include, for example, a PRACH maximum transmission count parameter (preambleTransMax), a transmission power ramping step parameter (powerRampingStep), and a preamble reception target power parameter (preambleReceivedTargetPower).
  • preambleTransMax a PRACH maximum transmission count parameter
  • powerRampingStep a transmission power ramping step parameter
  • preambleReceivedTargetPower preambleReceivedTargetPower
  • a parameter used in the random access procedure there is a parameter used when retransmitting a PRACH preamble.
  • the parameters used for transmitting the PRACH preamble described above are also used when retransmitting the PRACH preamble.
  • a backoff time parameter (backoff time).
  • the backoff time indicates, for example, the time until the PRACH preamble is retransmitted.
  • the backoff time parameter is set as follows.
  • UE100 when UE100 receives a random access response (RAR) (Msg2) including a MAC sub PDU with a backoff instruction after transmitting a PRACH preamble, UE100 sets a preamble backoff variable (PREAMBLE_BACKOFF). UE100 multiplies the value contained in the BI field of the MAC sub PDU by the scaling factor (SCALING_FACTOR_BI) to set the preamble backoff variable.
  • the backoff time parameter is set using a random number between "0" and the preamble backoff variable.
  • parameters used when retransmitting a PRACH preamble include, for example, a PRACH maximum transmission count parameter (preambleTransMax), a transmission power ramping step parameter (powerRampingStep), a preamble reception target power parameter (preambleReceivedTargetPower), and a backoff time parameter (backoff time).
  • preambleTransMax a PRACH maximum transmission count parameter
  • powerRampingStep a transmission power ramping step parameter
  • preambleReceivedTargetPower preambleReceivedTargetPower
  • backoff time backoff time
  • the parameters used in the random access procedure include parameters used when UE 100 receives a random access response (Msg2).
  • the RAR reception window parameter (ra-ResponseWindow) is used when receiving a random access response.
  • the RAR reception window parameter is, for example, a parameter that indicates a time window for monitoring a random access response. If UE 100 is unable to receive a random access response within the time window indicated by the RAR reception window parameter, it retransmits the PRACH preamble until the backoff time has elapsed. On the other hand, if UE 100 receives a random access response within the time window indicated by the RAR reception window parameter, it stops the RAR reception window parameter.
  • RACH-ConfigGeneric is an information element included in the system information (SIB1) broadcast from gNB200. RACH-ConfigGeneric is used to identify parameters used in the random access procedure.
  • FIG. 7 shows an example of operation according to the first embodiment.
  • step S10 gNB200 transmits RACH parameters dedicated to UAV150.
  • the RACH parameters dedicated to UAV150 are linked to information representing the sky.
  • the information representing the sky may be a predetermined threshold for identifying the sky.
  • the predetermined threshold is a threshold for identifying whether UE100 is in the sky or on the ground, for example, an altitude threshold.
  • the predetermined threshold may be two or more, and when there are two thresholds, for example, three layers, "high altitude", “low altitude", and "ground”, can be configured.
  • the information representing the sky may be information representing a state (for example, "sky") representing that UE100 is located in the "sky". This link indicates that the RACH parameters are used by UE100 (i.e., UAV150) located in the sky.
  • the RACH parameters dedicated to the UAV 150 may be at least one parameter included in the above-mentioned information element (RACH-ConfigGeneric). Specifically, it may be any of the following:
  • the gNB 200 can set the preamble reception target power parameter (preambleReceivedTargetPower) dedicated to the UAV 150 to a value lower than the preamble reception target power parameter of the terrestrial UE 100, thereby making it possible to lower the transmission power of the PRACH preamble transmitted from the UAV 150 to a value lower than the transmission power of the PRACH preamble transmitted from the terrestrial UE 100.
  • preambleReceivedTargetPower dedicated to the UAV 150 to a value lower than the preamble reception target power parameter of the terrestrial UE 100, thereby making it possible to lower the transmission power of the PRACH preamble transmitted from the UAV 150 to a value lower than the transmission power of the PRACH preamble transmitted from the terrestrial UE 100.
  • This makes it possible to avoid interference when the random access procedure is executed in the UAV 150.
  • other parameters for example, by setting them to values lower (or smaller) than the parameters for the terrestrial UE 100, it is possible to avoid interference when the random access procedure is executed in the U
  • the RACH parameter dedicated to the UAV150 may be a backoff time parameter (backoff time).
  • the RACH parameter dedicated to the UAV150 may be a parameter representing the upper limit of the backoff time.
  • the backoff time itself is a random number ranging from "0" to the preamble backoff variable (PREAMBLE_BACKOFF), but by setting an upper limit on the random number, it is possible to prevent the backoff time from being set longer than necessary.
  • the backoff time when the PRACH preamble is retransmitted from the UAV150 is not set longer than necessary, and the PRACH preamble is not retransmitted from the UAV150 for a longer time than necessary, making it possible to avoid interference when the random access procedure is executed in the UAV150.
  • the RACH parameter dedicated to the UAV150 may be a parameter representing the maximum value of the backoff time.
  • the maximum value of the backoff time indicates that the backoff time is not set using a random number, but is set to the specified maximum value.
  • the RACH parameter dedicated to the UAV 150 may be a parameter indicating the lower limit of the backoff time (e.g., "0").
  • the lower limit allows the backoff time set by the random number to always be "0". This allows, for example, the gNB 200 to control the UAV 150 so that it must wait a certain amount of time before retransmitting the PRACH preamble, making it possible to avoid interference with the random access procedure of the terrestrial UE 100.
  • the parameter values included in the RACH parameters dedicated to UAV150 are parameter values that are different from the parameter values for ground UE100. This allows the RACH parameters to be dedicated to UAV150.
  • UE100 executes a random access procedure using RACH parameters dedicated to UAV150 at an altitude equal to or higher than a predetermined threshold.
  • the altitude of UE100 may be measured by an altitude sensor provided in UE100.
  • the altitude of UE100 may be measured by a distance sensor (such as radar or lidar) provided in UE100.
  • the altitude may be expressed in terms of altitude above sea level.
  • the altitude may be expressed in terms of altitude above sea level.
  • the altitude may be expressed in terms of height above ground level.
  • gNB200 may transmit some of the RACH parameters dedicated to UAV150 described above.
  • UE100 may apply some of the RACH parameters dedicated to UAV150 and apply terrestrial (or conventional) RACH parameters to other RACH parameters that have not been transmitted to execute the random access procedure.
  • the base station is an NR base station (gNB)
  • the base station may be an LTE base station (eNB) or a 6G base station.
  • the base station may also be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the base station may be a DU of an IAB node.
  • the UE 100 may also be an MT (Mobile Termination) of an IAB node.
  • network node primarily refers to a base station, but may also refer to a core network device or part of a base station (CU, DU, or RU).
  • a program may be provided that causes a computer to execute each process performed by UE100 or gNB200.
  • the program may be recorded on a computer-readable medium.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, and may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • circuits that execute each process performed by UE100 or gNB200 may be integrated, and at least a part of UE100 or gNB200 may be configured as a semiconductor integrated circuit (chip set, SoC: System on a chip).
  • the terms “based on” and “depending on/in response to” do not mean “based only on” or “only in response to” unless otherwise specified.
  • the term “based on” means both “based only on” and “based at least in part on”.
  • the term “in response to” means both “only in response to” and “at least in part on”.
  • the terms “include”, “comprise”, and variations thereof do not mean including only the recited items, but may include only the recited items or may include additional items in addition to the recited items.
  • the term “or” as used in this disclosure is not intended to mean an exclusive or.
  • a communication control method in a mobile communication system comprising: a network node transmitting to a user equipment parameters for use in a random access procedure; The communication control method, wherein the parameter is a parameter dedicated to a user device located at an altitude equal to or higher than a predetermined threshold.
  • Mobile communication system 20 5GC 100: UE 110: Receiving unit 130: Control unit 150: UAV 200: gNB 210: wireless communication unit 230: control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一態様に係る通信制御方法は、セルラ通信システムで用いる通信制御方法である。前記通信制御方法は、ネットワークノードが、ランダムアクセスプロシージャで用いられるパラメータをユーザ装置へ送信するステップを有する。前記パラメータは、所定閾値以上の高度に位置するユーザ装置専用のパラメータである。

Description

通信制御方法
 本開示は、移動通信システムにおける通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(The Third Generation Partnership Project)(登録商標。以下同じ。)の仕様において、飛行UE(Aerial UE)が規定されている(例えば、非特許文献1及び非特許文献2)。例えば、飛行UEは、高度を報告したり、垂直速度及び水平速度を含む位置情報を報告したりすることが可能である。3GPPでは、このような仕様を通じて、上空を飛行する飛行UEとの通信を適切にサポートするようにしている。
3GPP TS 36.300 V17.1.0 (2022-6) 3GPP TS 36.331 V17.1.0 (2022-6)
 一態様に係る通信制御方法は、移動通信システムにおける通信制御方法である。前記通信制御方法は、ネットワークノード(又はネットワーク装置)が、ランダムアクセスプロシージャで用いられるパラメータをユーザ装置へ送信するステップを有する。前記パラメータは、所定閾値以上の高度に位置するユーザ装置専用のパラメータである。
図1は、第1実施形態に係る移動通信システムの構成例を表す図である。 図2は、第1実施形態に係るUE(ユーザ装置)の構成例を表す図である。 図3は、第1実施形態に係るgNB(基地局)の構成例を表す図である。 図4は、第1実施形態に係るユーザプレーンに関するプロトコルスタックの構成例を表す図である。 図5は、第1実施形態に係る制御プレーンに関するプロトコルスタックの構成例を表す図である。 図6は、第1実施形態に係るセル構成例を表す図である。 図7は、第1実施形態に係る動作例を表す図である。
 本開示は、ランダムアクセスプロシージャにおける干渉を回避することを目的とする。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 [第1実施形態]
 (移動通信システムの構成)
 図1は、第1実施形態に係る移動通信システムの構成を表す図である。移動通信システム1は、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。移動通信システムには第6世代(6G)システムが少なくとも部分的に適用されてもよい。
 移動通信システム1は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。以下において、NG-RAN10を単にRAN10と呼ぶことがある。また、5GC20を単にコアネットワーク(CN)20と呼ぶことがある。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わない。例えば、UE100は、携帯電話端末(スマートフォンを含む)及び/又はタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数(以下、単に「周波数」と呼ぶ)に属する。
 なお、gNB200がLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局(eNB:evolved Node B)が5GC20に接続することもできる。LTEの基地局とgNB200とが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、第1実施形態に係るUE100(ユーザ装置)の構成例を表す図である。UE100は、受信部110、送信部120、及び制御部130を備える。受信部110及び送信部120は、gNB200との無線通信を行う無線通信部を構成する。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。なお、制御部130は、以下に示す各実施形態において、UE100における各処理又は各動作を行ってもよい。
 図3は、第1実施形態に係るgNB200(基地局)の構成を表す図である。gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。送信部210及び受信部220は、UE100との無線通信を行う無線通信部を構成する。バックホール通信部240は、CN20との通信を行うネットワーク通信部を構成する。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。なお、制御部230は、以下に示す各実施形態において、gNB200における各処理又は各動作を行ってもよい。
 バックホール通信部240は、基地局間インターフェイスであるXnインターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してAMF/UPF300と接続される。なお、gNB200は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がフロントホールインターフェイスであるF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を表す図である。
 ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。なお、UE100のPHYレイヤは、gNB200から物理下りリンク制御チャネル(PDCCH)上で送信される下りリンク制御情報(DCI)を受信する。具体的には、UE100は、無線ネットワーク一時識別子(RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。gNB200から送信されるDCIには、RNTIによってスクランブルされたCRCパリティビットが付加されている。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化等を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を表す図である。
 制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)を有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間にコネクション(RRCコネクション)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間にコネクション(RRCコネクション)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間のコネクションがサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤよりも上位に位置するNASは、セッション管理及びモビリティ管理等を行う。UE100のNASとAMF300のNASとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。また、NASよりも下位のレイヤをAS(Access Stratum)と呼ぶ。
 (UAV)
 ここで、第1実施形態に係る無人飛行装置(UAV:Unmanned Aerial Vehicle or Uncrewed Aerial Vehicle。以下では、「無人飛行装置」を「UAV」と称する場合がある。)について説明する。
 UAVは、一般的には、ドローンなどの無人航空機のことである。ただし、第1実施形態では、所定閾値以上の(又は所定閾値を超える)高度に位置するUEを、UAVと呼ぶ。UAVは、無人航空機のように上空を無人で飛行しながらgNB200と無線通信が可能なUEであってもよい。或いは、UAVは、無人航空機に設けられてもよい。或いは、UAVは、有人航空機に設けられてもよい。例えば、飛行機が所定閾値以上の高度で飛行している状態で、当該飛行機に搭乗しているユーザが所有するUEもUAVであってもよい。UAVは、UAV UEであってもよい。或いは、UAVは、飛行UE(Aerial UE)であってもよい。UAVは、地上で用いられるUEと区別して用いられる場合がある。ただし、特に当該UEと区別しない場合は、UAVは、UEの一例としてUEに含まれてもよい。この場合、UAVとUEとをまとめてUEと称する場合がある。図2に示すUE100の構成例は、UAVの構成例を表してもよい。
 3GPPでは、飛行UE(Aerial UE)をサポートする機能として、例えば、以下のような規定が設けられている。
 第1に、飛行UEは、自身の高度を報告することができる。例えば、飛行UEは、自身の高度が閾値以上又は閾値以下になったときに、高度を報告することができる。この際、飛行UEは、位置情報も報告できる。位置情報には、飛行UEの水平速度及び垂直速度を含めることも可能である。
 第2に、LTEシステムのネットワーク(E-UTRAN)は、飛行経路情報を報告するように飛行UEに要求することができる。飛行経路情報は、飛行UEの経路上のウェイポイント(通過点情報又は地点情報)(waypoint)を表す。飛行経路情報には、多数のウェイポイントが含まれてもよい。ウェイポイントは、3次元の位置情報として表される。飛行UEは、ウェイポイントごとの時刻情報(タイムスタンプ)を飛行経路情報に含めて報告してもよい。
 第3に、飛行UEのサポート有無(又は飛行UEとして機能することを許可するか否か)はユーザ毎の加入者情報(subscription information)に含まれる。LTEシステムにおけるHSS(Home Subscriber Server)には、ユーザ毎に加入者情報が記憶されている。飛行UEのサポート有無は加入者情報に含まれる。当該加入者情報は、MME(Mobility Management Entity)の制御により、HSSからLTEシステムの基地局であるeNBへ送信される。eNBは、UEを飛行UEとしての機能することを許可しているか否かを把握することができる。
 第4に、測定レポートのトリガ条件として、イベントH1とイベントH2とを用いることができる。イベントH1は、飛行UEの高度が閾値を超えた場合のイベント条件を表す。一方、イベントH2は、飛行UEの高度が閾値を下回った場合のイベント条件を表す。これらのイベント条件は、高度に加え、ヒステリシス値、オフセット値、及び閾値を用いて条件が満たされるか否かが判定される。
 このように3GPPで規定されていることは、飛行UE(すなわち、UAV)がLTEシステムで利用されることを想定したものとなっている。
 一方、3GPPでは、NR(New Radio)においてUAVを導入することについての議論が開始されている。UAVに関し、3GPPでは、上述したイベントH1及びイベントH2を利用すること、UAVの高度、位置、及び速度を報告すること、飛行計画(flight path plan)を報告すること、などが合意されている。
 (地上用セルと上空用セル)
 例えば、地上用セルと上空用セルとがネットワーク内に混在するケースを仮定する。図6は、このようなケースを示すセルの構成例を表す図である。
 図6に示すように、移動通信システム1では、地上用セルと上空用セルとを含む。図6に示す例では、gNB200-T1とgNB200-T2とで各々地上用セルが形成され、gNB200-Uにより上空用セルが形成されている。そして、図6では、地上用セルにおいては、UE100-1乃至100-4がgNB200-T1及び200-T2と無線通信を行い、上空用セルにおいては、UAV150-1及び150-2がgNB200-Uと無線通信を行う例を表している。
 ここで、UE100-1乃至100-4が地上用セルにおいて適切に無線通信を行い、UAV150-1及び150-2が上空用セルにおいて適切に無線通信を行うためには、以下の2つのシナリオが想定される。
 第1シナリオは、上空用セルに対して専用の周波数が割り当てられ、地上用セルと上空用セルとにおいて各々異なる周波数が用いられるシナリオである。第1シナリオでは、例えば、UAV150-1及び150-2による無線通信と、UE100-1乃至100-4による無線通信とが異なる周波数を用いて行われるため、2つの無線通信間の干渉を回避させることが可能となる。
 一方、第2シナリオは、地上用セルと上空用セルとにおいて同一の周波数(又は同一の周波数範囲)が用いられるシナリオである。第2シナリオでは、地上用セルと上空用セルとで周波数を共用するため、特に周波数リソースを増やさなくてもよい。そのため、第2シナリオでは周波数リソースの有効活用化を図ることができる。
(第1実施形態に係る通信制御方法)
 UAV150による無線通信では、地上のUE100が無線通信を行う場合よりも干渉の影響が大きい、というUAV特有の問題点がある。例えば、図6に示すように、上空に位置するUAV150-1及び150-2(以下では、UAV150-1とUAV150-2とを区別しない場合は、UAV150と称する場合がある。)がアップリンク通信を行うケースを想定する。このようなケースでは、UAV150から送信される無線信号が、サービングセルとその隣接セルだけではなく、更に広範囲に亘って届いてしまう場合がある。地上のUE100がUAV150と同一の周波数を用いている場合、地上のUE100からの信号に対して、UAV150からの信号が干渉となってしまう場合がある。3GPPにおける今後の議論においては、RRCコネクティッド状態のUAV150に対して様々な干渉回避対策が講じられることが想定される。
 一方、UAV150がランダムアクセスプロシージャを実行した場合においても、同時に同一の周波数を用いて地上のUEがランダムアクセスプロシージャを実行した場合、上述したケースと同様に、干渉が発生する場合がある。
 しかし、UAV150がランダムアクセスプロシージャを実行することで発生した干渉に対して、現在のところ、回避策が存在しない。
 そこで、第1実施形態では、ランダムアクセスプロシージャにおける干渉を回避することを目的としている。
 そのため、第1実施形態では、ランダムアクセスプロシージャで用いるパラメータ(以下では、「RACH」パラメータと称する場合がある。)をUAV150専用のパラメータとする例について説明する。具体的には、基地局(例えばgNB200)が、ランダムアクセスプロシージャで用いられるパラメータをユーザ装置(例えばUE100又はUAV150)へ送信する。ここで、当該パラメータは、所定閾値以上の高度に位置するユーザ装置(例えばUAV150)専用のパラメータである。
 このように、第1実施形態では、gNB200は、UAV150専用のRACHパラメータをUAV150に対して設定できる。そのため、UAV150がランダムアクセスプロシージャを実行する際に、例えば、ランダムアクセスプリアンブルの送信電力を適切に設定したり、ランダムアクセスプリアンブルの再送回数も適切に設定したりすることが可能となる。このような設定により、UAV150がランダムアクセスプロシージャを実行することで発生するUE100に対する干渉を回避させることが可能となる。
 (ランダムアクセスプロシージャで用いられるパラメータの例)
 ここで、ランダムアクセスプロシージャで用いられるパラメータの例について説明する。
 ランダムアクセスプロシージャは、RRCアイドル状態のUE100がネットワークに対して初期アクセス(Initial access)を行う場合、RRCインアクティブ状態のUEがRRC接続再開(RRC Connection Resume)プロシージャを実行する場合、UE100がRRC再確立(RRC Connection Re-establishment)プロシージャを実行する場合などで行われる。ランダムアクセスプロシージャにより、UE100は、gNB200(又はセル)に対して上り方向での同期を確立することができる。
 第1に、ランダムアクセスプロシージャで用いられるパラメータとして、PRACHプリアンブルの送信に際に用いられるパラメータがある。PRACHプリアンブルは、ランダムアクセスプロシージャにおいて、UE100が最初に送信する信号である。PRACHプリアンブルに対して以下のような送信制御が行われることで、当該パラメータが用いられる。
 すなわち、UE100は、最初に、所定の変数(プリアンブル送信カウンタ、プリアンブル電力ランピングカウンタ、及びプリアンブル電力ランピングステップなど)に値をセットする。所定の変数のうち、プリアンブル送信カウンタは、PRACH送信最大回数パラメータ(preambleTransMax)を用いてセットされる。PRACH送信最大回数パラメータは、PRACHプリアンブル送信の最大回数を表す。また、所定の変数のうち、プリアンブル電力ランピングステップは、送信電力ランピングステップパラメータ(powerRampingStep)を用いてセットされる。送信電力ランピングステップパラメータは、PRACHプリアンブルが再送される毎に加算されるパラメータである。
 次に、UE100は、当該所定の変数及びプリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)などを用いて、RACHプリアンブルのプリアンブル受信目標電力(PREAMBLE_RECEIVED_TARGET_POWER)をセットする。当該プリアンブル受信目標電力はgNB200側の目標受信電力であるため、UE100は、gNB200に対するパスロスを計算することで、PRACHプリアンブルの送信電力を計算する。UE100は、計算した送信電力でPRACHプリアンブルを送信する。
 このように、PRACHプリアンブルの送信に際に用いられるパラメータとして、例えば、PRACH送信最大回数パラメータ(preambleTransMax)、送信電力ランピングステップパラメータ(powerRampingStep)、及びプリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)などがある。
 第2に、ランダムアクセスプロシージャで用いられるパラメータとして、PRACHプリアンブルを再送する際に用いられるパラメータがある。上述したPRACHプリアンブルの送信に用いられるパラメータは、PRACHプリアンブルを再送する際にも用いられる。更に、PRACHプリアンブルを再送する際に用いられるパラメータとして、パックオフ時間パラメータ(backoff time)がある。バックオフ時間は、例えば、PRACHプリアンブルを再送するまでの時間を表す。バックオフ時間パラメータは以下のようにして設定される。すなわち、UE100が、PRACHプリアンブル送信後、バックオフ指示付きのMAC sub PDUを含むランダムアクセス応答(RAR:Random Access Response)(Msg2)を受信した場合、UE100は、プリアンブルバックオフ変数(PREAMBLE_BACKOFF)をセットする。UE100は、当該MAC sub PDUのBIフィールドに含まれる値に、スケーリングファクタ(SCALING_FACTOR_BI)で乗算した値を、プリアンブルバックオフ変数とする。バックオフ時間パラメータは、「0」からプリアンブルバックオフ変数までの乱数を用いて設定される。
 このように、PRACHプリアンブルを再送する際に用いられるパラメータとして、例えば、PRACH送信最大回数パラメータ(preambleTransMax)、送信電力ランピングステップパラメータ(powerRampingStep)、プリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)、及びバックオフ時間パラメータ(backoff time)がある。
 第3に、ランダムアクセスプロシージャで用いられるパラメータとして、UE100がランダムアクセス応答(Msg2)を受信する際に用いられるパラメータがある。ランダムアクセス応答を受信する際に用いられるパラメータとして、例えば、RAR受信ウィンドウパラメータ(ra-ResponseWindow)がある。RAR受信ウィンドウパラメータは、例えば、ランダムアクセス応答を監視する時間ウィンドウを表すパラメータである。UE100は、RAR受信ウィンドウパラメータによって示された時間ウィンドウ内にランダムアクセス応答を受信できなかった場合、バックオフ時間(backoff time)が経過するまでPRACHプリアンブルの再送を行う。一方、UE100は、RAR受信ウィンドウパラメータによって示された時間ウィンドウ内にランダムアクセス応答を受信した場合、RAR受信ウィンドウパラメータを停止させる。
 なお、PRACH送信最大回数パラメータ(preambleTransMax)、送信電力ランピングステップパラメータ(powerRampingStep)、プリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)、及びRAR受信ウィンドウパラメータ(ra-ResponseWindow)は、情報要素(RACH-ConfigGeneric)に含まれる。RACH-ConfigGenericは、gNB200から報知されるシステム情報(SIB1)に含まれる情報要素である。RACH-ConfigGenericは、ランダムアクセスプロシージャで用いられるパラメータを特定するために用いられる。
 (第1実施形態に係る動作例)
 次に、第1実施形態に係る動作例について説明する。
 図7は、第1実施形態に係る動作例を表す図である。
 図7に示すように、ステップS10において、gNB200は、UAV150専用のRACHパラメータを送信する。
 第1に、UAV150専用のRACHパラメータは、上空を表す情報と紐づいている。上空を表す情報は、上空を識別する所定閾値でもよい。所定閾値は、UE100が上空に居るのか、地上に居るのかを識別するための閾値であり、例えば高度の閾値である。所定閾値が1つの場合、当該閾値よりも高いか低いかで、「上空」と「地上」の2レイヤを構成することができる。所定閾値は2以上であってもよく、例えば2つの場合、「高高度」、「低高度」、及び「地上」の3レイヤを構成することができる。或いは、上空を表す情報は、UE100が「上空」に位置することを表す状態(例えば「上空」)を表す情報でもよい。当該紐づきにより、当該RACHパラメータは、上空に位置するUE100(すなわちUAV150)において用いられることが表される。
 第2に、UAV150専用のRACHパラメータは、上述した情報要素(RACH-ConfigGeneric)に含まれる少なくとも1つのパラメータであってもよい。具体的には、以下のいずれかであってもよい。
 (A1)PRACH送信最大回数パラメータ(preambleTransMax)
 (A2)送信電力ランピングステップパラメータ(powerRampingStep)
 (A3)プリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)
 (A4)RAR受信ウィンドウパラメータ(ra-ResponseWindow)
 例えば、gNB200は、UAV150専用のプリアンブル受信目標電力パラメータ(preambleReceivedTargetPower)を、地上UE100のプリアンブル受信目標電力パラメータよりも低い値に設定することで、UAV150から送信されるPRACHプリアンブルの送信電力を、地上のUE100から送信されるPRACHプリアンブルの送信電力よりも低くすることも可能となる。これにより、UAV150においてランダムアクセスプロシージャが実行される際の干渉を回避させることも可能となる。その他のパラメータも、例えば、地上のUE100に対するパラメータよりも低い(又は小さい)値に設定することで、UAV150においてランダムアクセスプロシージャが実行される際の干渉を回避させることが可能となる。
 また、UAV150専用のRACHパラメータは、パックオフ時間パラメータ(backoff time)でもよい。或いは、UAV150専用のRACHパラメータは、バックオフ時間の上限時間を表すパラメータであってもよい。バックオフ時間自体は、上述したように、「0」からプリアンブルバックオフ変数(PREAMBLE_BACKOFF)までの乱数が用いられるが、乱数に上限を設けることで、必要以上に長くバックオフ時間が設定されることを排除させることができる。これにより、例えば、UAV150からPRACHプリアンブルが再送される際のバックオフ時間が必要以上に長く設定されることがなくなるため、必要以上に長い時間に亘ってPRACHプリアンブルがUAV150から再送されることもなくなり、UAV150においてランダムアクセスプロシージャが実行される際の干渉を回避させることも可能となる。或いは、UAV150専用のRACHパラメータは、バックオフ時間の最大値を表すパラメータであってもよい。バックオフ時間の最大値は、バックオフ時間を、乱数を用いて設定するのではなく、指定された最大値をバックオフ時間とすることを表している。或いは、UAV150専用のRACHパラメータは、バックオフ時間の下限値(例えば「0」)を表すパラメータでもよい。当該下限値により、乱数で設定されるバックオフ時間を、常に「0」とすることができる。これにより、例えば、gNB200は、UAV150に対して、PRACHプリアンブルの再送に一定時間待たなければならないように制御することが可能となり、地上UE100のランダムアクセスプロシージャに対する干渉を回避させることも可能となる。
 このように、UAV150専用のRACHパラメータに含まれるパラメータ値は、地上UE100に対するパラメータ値とは異なるパラメータ値となる。これにより、UAV150専用のRACHパラメータとなり得る。
 なお、上述した(A1)から(A4)、及びバックオフ時間パラメータは、システム情報(SIB)を利用してブロードキャストで送信されてもよい。
 ステップS11において、UE100は、所定閾値以上の高度において、UAV150専用のRACHパラメータを用いて、ランダムアクセスプロシージャを実行する。なお、UE100の高度は、UE100に設けられた高度センサで測定されてもよい。UE100の高度は、UE100に設けられた距離センサ(レーダー又はライダーなど)で測定されてもよい。なお、高度は、海抜で表されてもよい。当該高度は、標高で表されてもよい。当該高度は、地上からの高さで表されてもよい。
 なお、gNB200は、上述したUAV150専用のRACHパラメータの一部を送信してもよい。この場合、UE100は、UAV150専用のRACHパラメータの一部を適用するとともに、送信されていない他のRACHパラメータについては地上用(又は従来の)RACHパラメータを適用して、ランダムアクセスプロシージャを実行してもよい。
[その他の実施形態]
 上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。各フローにおいて、必ずしもすべてのステップを実行する必要は無く、一部のステップのみを実行してもよい。
 上述の実施形態及び実施例において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)又は6G基地局であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDUであってもよい。また、UE100は、IABノードのMT(Mobile Termination)であってもよい。
 また、用語「ネットワークノード」は、主として基地局を意味するが、コアネットワークの装置又は基地局の一部(CU、DU、又はRU)を意味してもよい。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」等の呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、矛盾しない範囲で、各実施形態、各動作、各処理、及び各ステップの全部又は一部を組み合わせることも可能である。
 本願は、日本国特許出願第2022-161585号(2022年10月6日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
 (付記)
 (付記1)
 移動通信システムにおける通信制御方法であって、
 ネットワークノードが、ランダムアクセスプロシージャで用いられるパラメータをユーザ装置へ送信するステップ、を有し、
 前記パラメータは、所定閾値以上の高度に位置するユーザ装置専用のパラメータである
 通信制御方法。
 (付記2)
 前記パラメータは、前記ユーザ装置がPRACHプリアンブルを送信する際に用いるパラメータである
 付記1記載の通信制御方法。
 (付記3)
 前記パラメータは、前記ユーザ装置がPRACHプリアンブルを再送する際に用いるパラメータである
 付記1又は付記2に記載の通信制御方法。
 (付記4)
 前記パラメータは、前記ユーザ装置がランダムアクセス応答を受信する際に用いるパラメータである
 付記1乃至付記3のいずれかに記載の通信制御方法。
 1:移動通信システム
 20:5GC
 100:UE
 110:受信部 130:制御部
 150:UAV
 200:gNB
 210:無線通信部
 230:制御部

Claims (4)

  1.  移動通信システムにおける通信制御方法であって、
     ネットワークノード(又はネットワーク装置)が、ランダムアクセスプロシージャで用いられるパラメータをユーザ装置へ送信すること、を有し、
     前記パラメータは、所定閾値以上の高度に位置するユーザ装置専用のパラメータである
     通信制御方法。
  2.  前記パラメータは、前記ユーザ装置がPRACHプリアンブルを送信する際に用いるパラメータである
     請求項1記載の通信制御方法。
  3.  前記パラメータは、前記ユーザ装置がPRACHプリアンブルを再送する際に用いるパラメータである
     請求項1記載の通信制御方法。
  4.  前記パラメータは、前記ユーザ装置がランダムアクセス応答を受信する際に用いるパラメータである
     請求項1記載の通信制御方法。
PCT/JP2023/035825 2022-10-06 2023-10-02 通信制御方法 WO2024075664A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022161585 2022-10-06
JP2022-161585 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024075664A1 true WO2024075664A1 (ja) 2024-04-11

Family

ID=90608498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035825 WO2024075664A1 (ja) 2022-10-06 2023-10-02 通信制御方法

Country Status (1)

Country Link
WO (1) WO2024075664A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203402A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置及び基地局
JP2020535717A (ja) * 2017-09-28 2020-12-03 京セラ株式会社 無人航空機のためのプリアンブル管理

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203402A1 (ja) * 2017-05-02 2018-11-08 株式会社Nttドコモ ユーザ装置及び基地局
JP2020535717A (ja) * 2017-09-28 2020-12-03 京セラ株式会社 無人航空機のためのプリアンブル管理

Similar Documents

Publication Publication Date Title
EP4020861A1 (en) Method and apparatus for performing sl communication on basis of psfch overhead in nr v2x
US11729694B2 (en) Method and apparatus for reselecting relay based on SL RLF
EP4124158A1 (en) Method and apparatus for performing dtx-based rlf operation in nr v2x
WO2020205395A2 (en) Dynamically configurable acknowledgement procedures
CN115486188A (zh) 非地面网络中的缓冲区状态报告传输
KR20210119391A (ko) Nr v2x에서 단말의 상태를 기반으로 sl 통신을 수행하는 방법 및 장치
KR20210113403A (ko) Nr v2x에서 위치 정보를 전송하는 방법 및 장치
CN114223268A (zh) 针对空中无线设备发射限制指示技术
KR20210137228A (ko) Nr v2x에서 rsrp를 결정하는 방법 및 장치
US20230284293A1 (en) Method and device for performing communication on basis of power saving mode
CN116888908A (zh) 具有用于飞行器的向上倾斜天线的基站的装置和方法
WO2022126047A1 (en) Beam failure reporting using data field in uplink control channel
KR20230030647A (ko) Nr v2x에서 rsrp 값을 기반으로 사이드링크 전송 자원을 결정하는 방법 및 장치
EP4007421A1 (en) Method and apparatus for transmitting, to base station, information associated with sidelink on basis of bwp in nr v2x
KR20220128370A (ko) Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
KR20220051357A (ko) Nr v2x에서 harq 프로세스를 관리하는 방법 및 장치
WO2024075664A1 (ja) 通信制御方法
US11968137B2 (en) Signaling configurations for communication with unmanned aerial systems
EP4142391A1 (en) Method and apparatus for performing sidelink transmission on basis of pucch processing time in nr v2x
CN117796139A (zh) 用于在nr v2x中执行sl drx操作的方法和设备
CN117441371A (zh) 用于与空中用户装备的无线通信的空中覆盖映射
KR20230074187A (ko) Nr v2x에서 sl drx 동작 시 모드2 자원 재평가 및 프리앰션을 수행하는 방법 및 장치
WO2024070920A1 (ja) 通信制御方法
WO2024070921A1 (ja) 通信制御方法
KR20220024665A (ko) Nr v2x의 동시 모드에서 채널 측정을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874791

Country of ref document: EP

Kind code of ref document: A1